Preprints

  1. Probabilistic well-posedeness for the nonlinear Schrödinger equation on the 2d sphere I: positive regularities with N. Burq, C. Sun, N. Tzvetkov 2024.
    arXiv,
  2. Modified scattering for the cubic Schrödinger equation on Diophantine waveguides with G. Staffilani 2024.
    arXiv,
  3. Long time stability for cubic nonlinear Schrödinger equations on non-rectangular flat tori with J. Bernier 2024.
    arXiv,

Publications

  1. The Second Picard iteration of NLS on the 2d sphere does not regularize Gaussian random initial data with N. Burq, M. Latocca, C. Sun, N. Tzvetkov 2025.
    EMS Surv. Math. Sci. , arXiv
  2. Exponential stability of solutions to the Schrödinger-Poisson equation with J. Bernier, B. Grébert, Z. Wang 2024.
    Disc. Cont. Dyn. Syst., arXiv
  3. Refined probabilistic local well-posedness for a cubic Schrödinger half-wave equation with L. Gassot, S. Ibrahim, 2022.
    J. Differ. Equ. arXiv,
  4. Pathological set of initial data for scaling-supercritical nonlinear Schrödinger equations. with L. Gassot, 2022.
    Int. Math. Res. Not., arXiv,
  5. Scattering for the cubic Schrödinger equation in 3D with randomized initial data. 2021.
    Trans. Amer. Math Soc., arXiv,
  6. Asymptotic stability of small ground states for NLS under random perturbations. 2020.
    Ann. Inst. H. Poincaré Anal. Non Linéaire, arXiv,

Seminar Proceedings

  1. N. Camps, Journées équations aux dérivées partielles (2024), 15p. This Proceeding on stability results for NLS on Diophantine tori highlights one of my current research directions.
  2. N. Camps, L. Gassot, S. Ibrahim, Journées équations aux dérivées partielles (2022), 15p. This presents a non-perturbative resolution scheme due to Bjoern Bringmann, which is relevant in the context of weakly dispersive PDEs.