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Abstract. We give an overview of results on the cubic Schrödinger-half-wave equation.
This equation is motivated by the study of long time behavior of solutions. It acts as
a toy model for equations with low dispersion, as there is a lack of dispersion in one of
the two spatial variables. In particular, the question of local and global well-posedness
is a delicate issue. We present a recent almost-sure local well-posedness result below
the energy space. Because of the lack of probabilistic smoothing in the second Picard’s
iteration, we rely on a refined probabilistic ansatz adapted from the work on Bringmann
on the derivative nonlinear wave equation.
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1. Introduction

In this note, we mention some results on the cubic Schrödinger half-wave equation on R2.

Let us denote |Dy| =
√
−∂2yy and µ ∈ R, the Schrödinger half-wave equation takes the

form
i∂tu+

(
∂2xx − |Dy|

)
u = µ |u|2 u , (t, x, y) ∈ R× R2 . (NLS-HW)

This equation is motivated by a mathematical interest on the long time behavior and
qualitative properties of solutions. It was first introduced in [36] in the defocusing case
(µ > 0) on the wave guide Rx ×Ty to evidence weak turbulence in the growth of Sobolev
norms. Then, in the focusing case (µ < 0), the ground state standing waves and traveling
waves on the wave guide Rx × Ty was first constructed in [2], and the stability properties
of some standing waves investigated in [3]. We summarize these results in section 3.

Our main concern is to investigate the local Cauchy problem at low regularity. We
recall in section 2 the know deterministic well-posednesss and ill-posedness properties for
equation (NLS-HW). The main difficulties are caused by the lack of dispersion in the
second spatial variable y, as equation (NLS-HW) can be decomposed as a coupled system
of two transport equations in this variable. Hence we are led to consider generic initial
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data under the form of random initial data. In this setting, the lack of dispersion causes a
lack of probabilistic smoothing of the Duhamel’s iterate, hindering the classical approach
of Bourgain. However, recent developments enable us to overcome this problem by using
a refined quasilinear ansatz, which we explain in section 4.

2. Cauchy problem

Due to the anisotropy of the equation, the relevant regularity spaces are anisotropic
Sobolev spaces Hs defined as

Hs := L2
xH

s
y ∩H2s

x L
2
y , Ḣs := L2

xḢ
s
y ∩ Ḣ2s

x L
2
y .

Note that as a consequence, the exponents in the Sobolev embeddings are the same as the
ones in R3 even if there are only two variables, because the homogeneous dimension is 3.

For instance, we have H
3
2
+ ↪→ L∞.

Equation (NLS-HW) is a Hamiltonian system, with a formal conserved energy

H(u) =
1

2

∫
R2

|∂xu|2 +
∣∣∣|Dy|

1
2u

∣∣∣2 dx dy +
µ

4

∫
R2

|u|4 dx dy .

The mass ∥u∥2L2 is also formally conserved by the flow. There is no known conservation

law above regularity H
1
2 for equation (NLS-HW). Moreover, a Brezis-Gallouët argument

does not appear to be sufficient in order to control the norm of high-regularity solutions,

therefore it seems necessary to handle the Cauchy problem below regularity H
1
2 in the

hope to get global well-posedness.
However, we will see that the flow map cannot be C3 in Hs when s < 1

2 , and there is

even a norm-inflation mechanism when s < 1
4 . As a consequence, the question of local

well-posedness below the energy space is a challenging problem.
One can summarize the state-of-the-art Cauchy theory results for (NLS-HW) in the

following diagram.

Norm-inflation [24] Flow map is not C3 [7] Local well-posedness [2]

Hs

I
L2

I
H

1
4

I
H

1
2

Figure 1. Deterministic Cauchy theory for equation (NLS-HW).

Let us now detail the properties of the three zones evidenced in this diagram.

2.1. Local well-posedness

When s > 1
2 , semilinear well-posedness is obtained using Strichartz estimates with a

derivative loss in [2].

Proposition 2.1 (Local well-posedness above the energy space, [2] Theorem 1.6). Let
s > 1

2 . For every u0 ∈ Hs(R2), there exists T = T (∥u0∥Hs) such that equation (NLS-HW)
admits a unique local solution in C((−T, T ),Hs) with initial data u0.

It is shown in [2] that local well-posedness actually holds in L2
xH

s
y . The proof follows

from a fixed point argument in L∞
t ([−T , T ];L2

xH
s
y)∩L4

t ([−T , T ];L∞
x,y(R2)), for some T >

0 depending on the Hs(R2)-norm of the initial data. The use of the Strichartz space
L4
t ([−T , T ];L∞

x,y(R2)) requires that s > 1
2 because of the lack of dispersion in the y-

direction, so that one need to use the Sobolev embeddings. Consequently, we have no
control on the growth of the Hs-norm of the solution since there we do not have access to
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the conserved energy, which is at the level of H
1
2 . Global existence for smooth solutions

to (NLS-HW) is an open problem.

2.2. Ill-posedness results

The solutions of equation (NLS-HW) are invariant under the scaling symmetry

u 7→ uλ(t, x, y) = λu(λ2t, λx, λ2y) . (2.1)

This scaling leaves the Ḣ
1
4 -norm invariant. As a consequence, when 0 < s < 1

4 , there

is short-time inflation of the Ḣs-norm for the solutions obtained by regularizing a rough
initial data. We call this phenomenon a low-to-high frequency cascade or norm inflation
mechanism. An adaptation of the arguments from [8] implemented in [24] imply the fol-
lowing ill-posedness result.

Theorem 2.2 (Norm inflation [24]). Let s < 1
4 . For every bounded set B of Hs and

T > 0, the flow map cannot be extended as a continuous map from B to C([−T, T ],Hs).
More precisely, there exists a sequence (tn)n∈N of positive numbers tending to zero and a
sequence (un(t))n≫1 of C∞(R2) solutions of (NLS-HW) defined for t ∈ [0, tn], such that
when n→ +∞,

∥un(0)∥Hs → 0 ,

∥un(tn)∥Hs → +∞ .

In other words, for arbitrarily short times, there exist sequences of smooth initial data
going to zero in Hs, such that the corresponding solutions go to infinity in Hs. Such a
norm inflation mechanism was originally exhibited in [25, 26, 27] for the wave equation,
then extended to the Schrödinger equation in [14]. Non-uniform continuity of the flow map
for s = 1

4 in equation (NLS-HW) has also been investigated in [24].
To evidence norm inflation in the scaling-supercritical regime, we perform a small dis-

persion analysis. By rescaling an arbitrary compactly supported smooth function, one
generates a sequence of smooth initial data (ψn)n going to zero in Hs, and spatially
concentrating around a point. Let un be the smooth solution to (NLS-HW) with initial
data ψn. We show that for short times, un stays close to the bubble solution vn to the
dispersionless ODE {

i∂tvn = σ|vn|p−1vn ,

vn(0) = ψn .
(2.2)

The ODE profile vn is very oscillating and grows in Hs at times tn satisfying tn → 0.
When 0 < s < sc, a priori energy estimates up to time tn imply that uniformly in n,

∥un(tn)− vn(tn)∥Hs ≲ 1 . (2.3)

Therefore, the oscillations dominate the dispersion, hence the instability stems from the
same frequency cascade from low to high Fourier modes.

The argument from [35] implies that this result presented in Theorem 2.2 is still valid
around any initial data u(0) ∈ Hs and not just the zero initial data. However, this indicates
that allowing for any sequence of smooth functions (un(0))n to approximate a given initial
data u(0) in Hs may not be restrictive enough, so that one may rather need to restrict this
study only to the natural approximations of the initial data obtained by convolution by
an approximate identity (ρε)ε>0. More precisely, we consider the sequence of initial data
(ρεn ∗ u(0))n for some sequence εn → 0. In this case, the zero initial is approximated by
the smooth zero initial data un(0) = 0, so that the corresponding smooth solution is the
zero solution which does not present norm inflation.

Using the method of Sun and Tzvetkov [32], adapted to Schrödinger-type equations
in [11], we show that the regularization of rough initial data by convolution does not
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prevent norm inflation in Hs. This result holds for a dense set of initial data, which can
be proven to be a dense Gδ set when a sufficient global Cauchy theory is available.

More precisely, we fix ρ ∈ C∞
c (R2), valued in [0, 1], such that

∫
R2 ρ(x) dx = 1 and ρ

vanishes for x2 + y2 ≥ 1
104

. Due to the anisotropy, we define an approximate identity
(ρε)ε>0 of the form

ρε(x, y) :=
1

ε3
ρ
(x
ε
,
y

ε2

)
.

Theorem 2.3 (Generic ill-posedness for (NLS-HW) [12]). Let s < 1
4 . There exists a dense

set S ⊂ Hs such that for every f ∈ S, the family of local solutions uε of (NLS-HW) with
initial data ρε ∗ f does not converge as ε → 0. More precisely, there exist εn → 0 and
tn → 0 such that uεn(tn) is well-defined and

lim
n→∞

∥uεn(tn)∥Hs = +∞ .

The idea is to superpose an infinite number of bubble solutions in the dispersionless
ODE (2.2), in other words, we replace the bump initial data ψn by an infinite series
of bumps with different scales. Given one convolution parameter εn, we prove that only
the n-th bubble exhibits norm inflation at time tn. Indeed, the bubbles at bigger scale
would need a bigger time than tn to grow, whereas the bubbles at smaller scale are
shrunk because of the convolution. Finally, a perturbative argument implies that the
actual solution to (NLS-HW) still satisfies estimate (2.3).

2.3. Semilinear ill-posedness

We have seen that when s < 1
4 , the equation is scaling-subcritical, so that one can evidence

some norm-inflation mechanisms of the solutions. Yet, semilinear local well-posedness is
only known in Hs when 1

2 < s. We can show that actually, the flow map cannot be of

class C3 when 1
4 < s < 1

2 , meaning that (NLS-HW) is semilinearly ill-posed for this range
of exponents.

Theorem 2.4 (Semilinear ill-posedness [12]). If there exists a local in time flow map
on Hs with regularity C3 at the origin, then s ≥ 1

2 .

To establish this result, we note that as a corollary of Remark 2.12 in [7], if there exists
a C3 local in time flow map at the vicinity of the origin in the space Hs, then the following
Strichartz estimate holds:

∥eit(∂2
xx−|Dy |)ϕ∥L4([0,1]×R2) ≲ ∥ϕ∥Ḣ s

2
. (2.4)

We consider a one-parameter family constructed from traveling waves for the one-dimensional
Szegő equation to invalidate these Strichartz estimates when s < 1

2 . Then, we conclude

that the flow map cannot be of class C3 at the origin when 1
4 < s < 1

2 . As a consequence,

it is not possible to run a contraction mapping argument when 1
4 < s < 1

2 , since otherwise
the flow-map would be analytical.

More precisely, we consider a Gaussian distribution G, a family of traveling waves
profiles for the Szegő equation Kρ(y) =

1
y+iρ for ρ ∈ (0 ,+∞), and set

ϕ(x, y) = G(x)Kρ(y) .

Since Kρ is a traveling wave for the Szegő equation on the line [30], and in particular a
traveling wave for equation (NLS-HW), one can see that for every t, there holds

∥eit|Dy |Kρ∥L4(Ry) = ∥Kρ∥L4(Ry)

implying that as ρ→ 0,

∥eit(∂2
xx−|Dy |)ϕ∥L4([0,1]×R2

x,y)
= ∥eit∂xxG∥L4([0,1]×Rx)∥Kρ∥L4(Ry) ∼ Cρ−

3
4 .
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Then we show using the independence of the functions G and Kρ that

∥ϕ∥Ḣs ∼
ρ→0

C ′ρ−
1
2
− s

2 .

Since inequality (2.4) has to hold as ρ → 0, we see that necessarily, ρ−
3
4 ≲ ρ−

1
2
−s as

ρ → 0, therefore 1
2 ≤ s. This completes the study of deterministic Cauchy theory for

equation (NLS-HW).

3. Long-time behavior of solutions

Given the challenges to overcome in order to get a satisfying global well-posedness theory
for equation (NLS-HW), the study of long-time behavior of solutions relies on special
phenomenon, such as modified scattering in the defocusing case, or special solutions,
such as traveling waves in the focusing case. We mention the known results regarding
these problem, then we compare them with the one-dimensional cubic half-wave equation
and cubic Schrödinger equation that are obtained by considering both space variables
separately.

3.1. Modified scattering in the defocusing case

Equation (NLS-HW) was originally introduced by Xu [36] in the defocusing case (µ > 0)
on the spatial wave guide Rx×Ty to evidence weak turbulence mechanisms in the growth
of Sobolev norms. Global existence and modified scattering are obtained for a class of
sufficiently smooth and decaying small initial data on the wave guide Rx×Ty. In addition,
the author shows that the limiting effective dynamics is governed by the Szegő equation
on the torus.

In order to formulate the result, we define two spaces S and S+ of sufficiently smooth
initial data with enough decay in the spatial variable x, mainly, for some fixed N ≥ 13,

∥u0∥S = ∥u0∥HN
x,y

+ ∥xu0∥L2
x,y
, ∥u0∥S+ = ∥u0∥S + ∥xu0∥S + ∥(1− ∂xx)

4u0∥S .

We also denote by Πy is the Szegő projector onto nonnegative Fourier frequencies in the
variable y.

Theorem 3.1 (Modified scattering [36]). There exists ε = ε(N) > 0 such that if the
initial data u0 ∈ S+ satisfies ∥u0∥S+ ≤ ε, then the corresponding solution u ∈ C(R+, S)
exists globally in S. Moreover, there exists G ∈ C(R+, S) such that

∥u(t)− eit(∂
2
xx−|Dy |)G(π ln(t))∥S → 0, t→ +∞. (3.1)

The profile G is solution to the following resonant system. We denote G+ = Πy(G) and

G− = G−G+. Let us consider the the partial Fourier transform Ĝ± of G± in the variable x
only, with corresponding Fourier variable ξ. Then{

i∂tĜ+ = Πy(|Ĝ+|2Ĝ+)(ξ, y)

i∂tĜ− = (Id−Πy)(|Ĝ−|2Ĝ−)(ξ, y).

By considering the Fourier variable ξ as a parameter, the equation for Ĝ+ is the cubic
Szegő equation on the torus. As a consequence of the work [21] on the growth of Sobolev
norms for the Szegő equation, this remark implies the existence of arbitrarily small initial
data such that for every s > 1

2 and N ≥ 1, the solution u exhibits weak turbulence. It is
expected that this result actually holds for a dense Gδ set of such initial data.
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Corollary 3.2 (Growth of Sobolev norms [36, 21]). For every N ≥ 13, for every ε > 0,
there exists u0 ∈ S+ such that ∥u0∥S+ ≤ ε and the corresponding solution u satisfies:

∀s > 1

2
, lim sup

t→∞

∥u(t)∥L2
xH

s
y

log(t)N
= ∞ , lim inf

t→∞
∥u(t)∥L2

xH
s
y
<∞ .

The strategy employed by Xu on Rx×Ty is adapted from the study for the Schrödinger

equation on the wave guide Rx ×Td
y from Hani, Pausader, Tzvetkov and Visciglia in [23].

On Rx ×Ry, modified scattering should also be expected but it would rely on different
arguments. Xi [34] constructed wave operators in this setting, and deduced a different
type of growth of Sobolev norms in infinite time. Indeed, the resonant behavior is then
linked to the cubic Szegő equation on the line, for which there is a transition towards high
Fourier frequencies [22]. As a consequence, many solutions have a growth of the following
form:

1

C
log(t) ≤ ∥u(t)∥L2

xH
1
y
≤ C log(t).

In comparison, the defocusing Schrödinger equation

i∂tu+∆u = |u|2u
is completely integrable in one dimension. In particular, on R or on T, the existence of
conservation laws controlling Sobolev norms of arbitrary high regularity imply that the
solutions satisfy that for every s ≥ 1 and t ∈ R,

∥u(t)∥Hs ≤ Cs(∥u0∥Hs).

However, as noticed in [23], the Schrödinger equation on the wave guide Rx × Td
y for

d ≥ 2 exhibits modified scattering. As a consequence of the analysis of the resonant
system [15], they prove that for every s ≥ 30, for every ε > 0, there exists a global
solution u ∈ C(R+, H

s) satisfying ∥u0∥Hs ≤ ε and

lim sup
t→∞

∥u(t)∥Hs = +∞.

Concerning the defocusing half-wave equation on the torus (y ∈ T)

i∂tu− |Dy|u = |u|2u , (3.2)

we know that for every s > 1, there exists a sequence (un)n of solutions and a sequence
of times tn → ∞ satisfying

∥un0∥Hs → 0, ∥un(tn)∥Hs → +∞.

The proof relies on the closeness between solutions of the half-wave equation and the
Szegő equation for large times [20, 31] and the growth of Sobolev norms for the Szegő
equation [21]. However, the existence of an arbitrary small initial data such that the
solution to the half-wave equation satisfies lim supt→∞ ∥u(t)∥Hs = ∞ is an open problem.

3.2. Traveling waves in the focusing case

Subsequently, Bahri, Ibrahim and Kikuchi consider in [2, 3] the focusing case µ < 0 for
equation (NLS-HW) on the wave guide Rx × Ty. They construct ground state standing
waves and traveling waves. Then they obtain orbital stability and transverse instability
results for the family of standing waves, conditional to the existence of a good Cauchy
theory in the energy space. Unfortunately, such a Cauchy theory is yet to be addressed,
since not much is known about the global existence of smooth solutions in Sobolev spaces.

More precisely, on Rx × Ty, the authors introduce a family of ground state standing
wave solutions uω with frequency ω > 0 of the form

uω(x, y, t) = eiωtQω (x, y) .
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The ground states are constructed as minimizers of the energy functional

Sω(u) =
1

2
∥∂xu∥2L2 +

1

2
∥|Dy|1/2u∥2L2 +

ω

2
∥u∥2L2 −

1

4
∥u∥4L4

under the constraint Nω(u) = 0 with

Nω(u) = ∥∂xu∥2L2 + ∥|Dy|1/2u∥2L2 + ω∥u∥2L2 − ∥u∥4L4 .

In [3], the authors establish that for small frequencies 0 < ω < ω∗, the ground state Qω

does not depend on the spatial variable y. As a consequence, Qω is equal to the line soliton
for the Schrödinger equation, which is known to be orbitally stable on the line [13]. On
the wave guide for (NLS-HW), however, the Schrödinger line soliton presents transverse
instability properties: it is orbitally stable for small frequencies 0 < ω < ωp whereas it is
orbitally unstable for ω > ωp. After showing that ωp ≥ ω∗, the authors deduce the orbital
stability of ground states for small frequencies.

Theorem 3.3 (Ground state standing waves [3]). There exists ω∗ > 0 such that Qω does
not depend on y when 0 < ω ≤ ω∗, but depends on y when ω > ω∗. Moreover, the ground
state standing wave uω is orbitally stable when 0 < ω ≤ ω∗.

Their result is actually true for any nonlinearity of order 1 < p < 5 including the cubic
nonlinearity p = 3. The strategy employed to study orbital stability relies on the fact that
the standing wave only depends in one of the two variables, transferring the problem to
the Schrödinger equation on the line. It would be interesting to consider other geometries.
For instance one could try to establish some orbital stability or instability property when
the two spatial variables lie in Rx × Ry, so that the ground state has to depend on both
variables, but also on the wave guide Tx ×Ry where the dynamics at small frequencies ω
would be governed by the half-wave equation on the line rather than the Schrödinger
equation.

4. Cauchy problem and random initial data

Given the difficulties to tackle the Cauchy problem due to the lack of dispersion, an
alternative approach is to resort to random initial data and study whether a generic well-
posedness holds. The probabilistic Cauchy theory goes back to Bourgain in [4] and Burq,
Tzvetkov in [9, 10].

4.1. Bourgain’s historical approach

Let sc be a critical threshold under which instabilities are known to occur, or a threshold
under which deterministic local well-posedness is unknown. When s < sc, we remark that a
generic initial data in Hs has better integrability properties in Lp spaces than expected by
the Sobolev embedding. Moreover, in favorable situations, the dispersion is strong enough
to give some local energy decay or bilinear estimates, or in the case wave-type equations,
the Duhamel formula gains one derivative. In this case, one can exploit the enhanced
integrability property of a generic initial data to prove that the Picard’s iterations are
actually smoother than the initial data or its linear evolution, therefore they fall into
the subcritical regime. As a consequence, one can construct strong solutions with initial
data distributed according to a non-degenerate probability measure charging any open set
in Hs.

We construct randomized initial data ϕω from a given function ϕ ∈ Hs as follows.
We consider the unit-scale frequency decomposition (ϕωn)n of ϕ in the frequency space.
In compact settings, it would also be natural to consider the decomposition of ϕ along
a spectral resolution of the dispersive operator (such as the Laplace operator for the
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Schrödinger equation). We decouple each mode using a sequence (gn(ω))n of normalized
independent Gaussian variables, defined on a probability space (Ω,F ,P):

ω ∈ Ω 7→ ϕω ∼
∑
n

gn(ω)ϕn , where ϕ ∼
∑
n

ϕn ∈ Hs .

Then, for many initial data ϕω in a statistical ensemble Σ ⊂ Hs which has full measure,
one expects to observe a probabilistic smoothing effect for the recentered solution around
the linear evolution thanks to the combination of space-time oscillations (dispersion) and
probabilistic oscillations (randomization). Namely, the goal is to show that there exists
ν > sc such that for all ϕω ∈ Σ,

v(t) := u(t)− eit(∂xx−|Dy |) ϕω ∈ C([−T , T ];Hν) . (4.1)

Then v solves the original equation perturbed by stochastic terms stemming from the

linear evolution eit(∂
2
xx−|Dy |) ϕω:

i∂tv + (∂2xx − |Dy|)v = µ|v + eit(∂
2
xx−|Dy |) ϕω|2(v + eit(∂

2
xx−|Dy |) ϕω).

In this case, if ν > sc, the recentered solution v is obtained from a fixed point argument
at subcritical regularities in Hν . This strategy has been successful on the Euclidean and
periodic case in many contexts for the Schrödinger equation

i∂tu+∆u = µ|u|2u,

where we replace the operator ∂2xx − |Dy| by the Laplace operator ∆. Unfortunately we
will see that the recentered solution v does not gain regularity for equation (NLS-HW),
so that the traditional probabilistic method fails.

4.2. Probabilistic smoothing effect and dispersion

Let us understand why probabilistic smoothing does not occur for (NLS-HW). In order to
observe a probabilistic smoothing effect, we exploit dispersive properties of the equation
to gain decay and Strichartz estimates without trading regularity. Equation (NLS-HW),
however, is constructed so that there is no dispersion in the y-direction. Therefore, in
the low x-frequency regimes, the Strichartz estimates come with a derivative loss, so that
we have neither usable bilinear estimates, nor local smoothing estimates at our disposal.
A manifestation of this lack of dispersion is that the second Picard iteration of the ran-
domized initial data does not have a better regularity than the initial data: there is no
probabilistic smoothing.

The terms of the equation that prevent probabilistic smoothing are coming from high-
low-low interactions present in nonlinearity from the second Picard iteration. For sim-
plicity, we assume that there is no dependence in the variable x (in practice, we rather
restrict the solution to low x-frequency). In the second Picard iteration applied to the
initial data ϕω, the high-low-low type interactions involve the product of ϕω projected at
in high y-frequencies |η| ≫ 1, and the square of ϕω projected at low y-frequencies |η| ≲ 1:
they take on the form∫ t

0
ei(t−τ)|Dy |

(
e−iτ |Dy |P|η|≫1ϕ

ω
)(

e−iτ |Dy |P|η|≤1ϕω
)(

e−iτ |Dy |P|η|≤1ϕ
ω
)
dτ .

In this case, the linear operator e−iτ |Dy | is not dispersive as it acts as a transport equa-
tion on each term P|η|≫1ϕ

ω and P|η|≤1ϕ
ω after separating between positive and negative

frequencies. Hence derivatives of the high-low-low interaction term can all fall at the same
time onto the first term P|η|≫1ϕ

ω. This implies that one can only handle s derivatives
for the high-low-low interaction instead of the desired ν derivatives. Similarly, Oh [28]
considered the Szegő equation on the circle and proved that the first nontrivial Picard’s

8
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iterate does not gain regularity compared to the initial data. As a consequence, one needs
to resort to a more sophisticated quasilinear scheme than Bourgain’s method.

4.3. A refined probabilistic ansatz

We have seen that the first nontrivial Picard’s iterate has the same regularity as the initial
data because of the high-low-low iteractions. As a consequence, the standard probabilistic
method is not sufficient. In order to handle this difficulty, Bringmann [5] developed a
refined probabilistic ansatz in a quasilinear setting using paracontrolled calculus, to prove
probabilistic local well-posedness for a derivative wave equation. In [12], we adapt this
strategy to prove almost-sure local well-posedness in the quasilinear regime (i.e. below the
energy space) for equation (NLS-HW). The main idea is to refine the classical probablistic

ansatz (4.1), where we replace the linear correction eit(∂
2
xx−|Dy |)ϕω by a more sophisticated

probabilistic term that incorporates the high-low-low interactions.
We mention that breakthrough papers of Deng, Nahmod and Yue [17, 18], Sun and

Tzvetkov [33], and more recently Bringmann, Deng, Nahmod and Yue [6], pushed even
further the paracontrolled approach for dispersive PDE in the probabilistic setting. The
new developments incorporate tools from random matrix theory and introduce powerful
methods such as random averaging operators and random tensors.

Let us explain how the refined probabilistic ansatz applies to equation (NLS-HW). We
fix ϕ ∈ Hs(R2). Taking the partial Fourier transform in the y-variable only, we decompose
ϕ using Fourier projectors P1,k on an interval of unit length centered around k ∈ Z:

ϕ =
∑
k∈Z

P1,kϕ, supp(Fy→ηP1,kϕ) ⊆ [k − 1, k + 1].

We do not need to introduce a randomization along the Schrödinger variable x since the
Schrödinger equation exhibits dispersion. We consider a sequence of independent normal-
ized Gaussian variables (gk(ω))k∈Z on a probability space (Ω,A,P), and define the Wiener
randomization of ϕ as

ω ∈ Ω 7→ ϕω :=
∑
k∈Z

gk(ω)P1,kϕ .

The relevant probability measure on Hs is the measure induced by this random variable.
For T > 0 and s, σ ∈ R, we establish the convergence of approximate local solutions
towards a local solution to (NLS-HW) in the space

Xs
T0

:= Ct
(
[−T0 , T0] ; Hs(R2)

)
∩ L8

t

(
[−T0 , T0] ; L4

xW
σ,∞
y (R2)

)
.

We also denote the truncated initial data as

P≤nϕ
ω :=

∑
|k|≤n

gk(ω)P1,kϕ .

The main result from [12] is as follows.

Theorem 4.1 (Probabilistic local well-posedness [12]). Let s ∈ (13/28, 1/2] and ϕ ∈ Hs.
There exist T0 > 0 and a full measure set Σ ⊂ Hs such that for any ϕω ∈ Σ the following
holds. There exists a uniform random time Tω ∈ (0, T0] such that for all n ∈ N, there exists
a function un ∈ C([−T0, T0],H∞) which is the unique solution on [−Tω, Tω] to (NLS-HW)
with smooth initial data P≤nϕ

ω:{
i∂tun + (∂2xx − |Dy|)un = |un|2un , (t, x, y) ∈ [−Tω , Tω]× R2 ,

un|t=0 = P≤nϕ
ω .

Moreover, the sequence (un)n≥1 converges in L2
ω

(
Ω ;Xs,σ

T0

)
for some 0 < σ < s to a

limiting object u which is solution to (NLS-HW) on [−Tω, Tω] with initial data ϕω.

9
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The idea behind the refined probabilistic ansatz is the following. We first construct
the solution uN for dyadic N ∈ 2N only by induction on N . The solution at step N is
constructed from the solution at step N

2 following the ansatz

uN = uN
2
+ FN + wN . (4.2)

The probabilistic term FN isolates the problematic rough high-low-low frequency interac-
tions from the equation, and is called adapted linear evolution. The nonlinear remainder
term wN will exhibit a nonlinear smoothing effect.

As a consequence of the induction scheme (4.2), the solution at step N can be written
as a series

uN = uN0 +
N∑

L=2N0+1

(wL + Fω
L ) .

We prove that the series of smooth remainder terms (wN )N≥N0 converges almost-surely
in a subcritical space C([−T0 , T0];Hν(R2)), for some ν > 1

2 and some 0 < T0 ≪ 1. On
the other hand, the series with general term (FN )N≥N0 composed of the probabilistic
corrections converges almost-surely in the space of rough regularity C([−T0 , T0];Hs(R2)).
Then, we prove that there exists a random time Tω > 0 such that the limit of (uN )N
solves (NLS-HW) in C

(
[−Tω , Tω];Hs(R2)

)
. Finally, we use an argument from [33] to

show that the result for dyadic frequencies N extends to the general approximation with
integer frequencies n.

Let 0 < γ < 1 be some parameter. We denote the cubic nonlinear term by

N (u) = |u|2u , N (u1, u2, u3) = u1u2u3 + u1u2u3 + u1u2u3 .

The adapted linear evolution FN is solution to the equation{
i∂tFN + (∂2xx − |Dy|)FN = N (FN , P≤NγuN

2
, P≤NγuN

2
) ,

FN (0) = PNϕ
ω .

(4.3)

It encapsulates the high-low-low interactions at scale of order N . The high frequencies are
carried by the solution FN , whose initial data is the projection PNϕ

ω = P≤Nϕ
ω −P≤N

2
ϕω

of ϕω at frequency N , so that we expect this property to stay true at least for small times.
The low frequencies are carried by the projection of the solution uN

2
at step N

2 onto the

frequencies |η| ≤ Nγ ≪ N .
The nonlinear remainder wN is solution to (NLS-HW) with a stochastic forcing term

and zero initial condition:{
i∂twN + (∂2xx − |Dy|)wN = N

(
uN

)
−N

(
uN

2

)
−N

(
FN , P≤NγuN

2
, P≤NγuN

2

)
,

wN (0) = 0 .

Since we removed the high-low-low interactions from the stochastic forcing term, we expect
that wN exhibits probabilistic nonlinear smoothing.

The local existence of the smooth solution un is guaranteed by the local well-posedness
result from Theorem 1.6 in [2]. However, the time of existence in say Hν , for some ν > 1

2 ,
depends on the Hν-norm of un, therefore it depends on n. The strategy is to first modify
slightly the equation for un to show the convergence of (un)n∈N, on a time interval [−T0, T0]
which does not depend on n. In order to get convergence on a fixed time interval, we
follow [5] by making use of the truncation method from De Bouard and Debussche [16],
which consists in truncating the terms involved in the nonlinearity so that they stay
bounded on a long enough time interval. Then, we prove that on some random time
interval [−Tω, Tω], the limit of (un)n solves (NLS-HW) in C

(
[−Tω , Tω];Hs(R2)

)
.

The key idea behind construction (4.3) is a probabilistic independence between FN ,
whose initial data PNϕ

ω only depends on (gn)N
2
<n≤N , and the solution at step uN

2
, whose

10
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initial data P≤N
2
ϕω only depends on (gn)n≤N

2
. As a consequence, one can show that these

two objects remain decoupled for small times. We obtain probabilistic Strichartz estimates

for small times, controlling the L∞ norm of FN with a loss N
γ
2
−σ (γ2 − σ derivatives)

instead of the expected loss N
1
2 (12 derivatives).

We stress out that we only implement the probabilistic scheme in the half-wave vari-
able y, whereas a traditional deterministic analysis is performed in the Schrödinger vari-
able x. Indeed, since we can exploit the dispersion materialized by the Strichartz estimates
for the Schrödinger equation, there is no need to introduce random initial data in the x-
variable. Also note that we use mixed Lebesgue spaces and a TT ∗-type argument, which
seem more adapted for this Schrödinger-type equation (NLS-HW) than the Gronwall in-
equalities and energy estimates implemented for the wave-type equation in [5].

5. Perspectives

To conclude this note, let us mention some open problems linked to equation (NLS-HW).

(1) Modified scattering for defocusing (NLS-HW) on Rx × Ry, global solutions for
smooth and decaying initial data, following [34].

(2) Growth of Sobolev norms for the defocusing half-wave equation (3.2). In particular
it is open whether there exist solutions satisfying lim supt→∞ ∥u(t)∥Hs = +∞.

(3) Orbital stability or instability property for traveling waves of focusing (NLS-HW)
on different geometries than the wave guide Rx × Ty, for instance when the two
spatial variables lie in Rx × Ry, or in the wave guide Tx × Ry.

(4) Probabilistic local well-posedness for other non-dispersive PDE.

The refined probabilistic ansatz developed in [12] for equation (NLS-HW) also
applies to the half-wave equation on the line (3.2) by removing the variable x
all throughout the paper. We believe that this strategy will also be successful to
investigate other Schrödinger-type equations which lack dispersion. One example
is the Schrödinger equation on the Heisenberg group in the radial case

i∂tu−∆H1u = |u|2u, (NLS-H1)

where H1 is parameterized by three real coordinates (x, y, s) ∈ H1 for which the
sub-Laplacian for radial functions takes on the from

∆H1 = ∂xx + ∂yy + (x2 + y2)∂ss.

This equation is a totally non dispersive equation [1]. As a consequence, the study
of the Cauchy problem at low regularity is a delicate issue. Properties of the flow
map are similar to equation (NLS-HW), and can be summarized in the following
diagram in the scale of Sobolev spaces associated to the operator ∆H1 .

Norm-inflation Flot map is not C3 Local well-posedness

Hs

I
H1/2

I
H1

I
H3/2

I
H2

Figure 2. Deterministic Cauchy theory for equation (NLS-H1).

The situation is even less favorable in this context since the energy space, at
regularity H1, is far from the minimal exponent at which deterministic local well-
posedness is known to hold. The refined probabilistic method presented in this

11
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note would relieve the penalization of the dispersionless direction that was neces-
sary in [19] to tackle local well-posedness properties with random initial data for
equation (NLS-H1).

(5) Reaching a global well-posedness theory for equation (NLS-HW), whether in the
deterministic or the probabilistic case.

Using a deterministic approach, two difficulties are the following. First, one cannot

use a Yudovich argument to get local existence in the energy spaceH
1
2 , because the

Lq-norms are not controlled by the energy when q > 6. Then, in the defocusing
case, the Brezis-Gallouët estimate fails to extend smooth solutions globally in
time, since Hs is not an algebra when s < 3

4 , and there is no conservation law

that controls the H
3
4 -norm. This is in contrast with the half-wave equation or the

Szegő equation on the line.

From the point of view of random initial data, it would be challenging but in-
teresting to understand the long-time behavior of the probabilistic solutions to
equation (NLS-HW) generated by the paracontrolled decomposition. Indeed, we
constructed in Theorem 4.1 a probabilistic solution in the presence of a conserved
energy. However, this construction is not sufficient to globalize the solutions, since
the probabilistic information propagated for short times is crucial in the iteration
scheme. To understand how this information is transported by the flow on longer
time scales, one could try to prove quasi-invariance of the probability measure,
but the current techniques rely on dispersion properties of the equation, see for
instance [29]. Hence, the study of the long-time behavior of solutions provided by
the refined probabilistic ansatz would require a combination of energy methods
with some measure theory arguments.
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4(3):379–404, 2011.

[31] O. Pocovnicu. First and second order approximations for a nonlinear wave equation. Journal of Dy-
namics and Differential Equations, 25(2):305–333, 2013.

[32] C. Sun and N. Tzvetkov. Concerning the pathological set in the context of probabilistic well-posedness.
Comptes Rendus. Math., 358(9-10):989–999, 2020.

[33] C. Sun and N. Tzvetkov. Refined probabilistic global well-posedness for the weakly dispersive NLS.
Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 213:91, 2021.

[34] C. Xi. In preparation, 2023.
[35] B. Xia. Generic Ill-posedness for wave equation of power type on three-dimensional torus. Int. Math.

Res. Not., 20:15533–15554, 2021.
[36] H. Xu. Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear

Schrödinger equation. Mathematische Zeitschrift, 286(1):443–489, 2017.

13



N. Camps, L. Gassot, S. Ibrahim

Nicolas Camps, Louise Gassot, Slim Ibrahim
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