
Journal de Théorie des Nombres
de Bordeaux 00 (XXXX), 000–000

Variation of canonical heights of subvarieties for

polarized endomorphisms

par Thomas Gauthier et Gabriel Vigny

Résumé. Pour un endomorphisme f : X → X d’une variété pro-
jective qui est polarisé par un fibré en droites ample L, i.e. tel
que f∗L ' L⊗d avec d ≥ 2, et qui est défini sur un corps de nom-
bres, Call et Silverman ont défini une fonction hauteur canon-

ique ĥf . Dans une famille (X , f,L) paramétrée par une courbe
S munie d’une section P : S → X , ils prouvent également que

ĥft(P (t))/h(t) converge vers la hauteur canonique ĥfη (Pη) sur la
fibre générique.

Dans cet article, nous étudions les variations en famille de
la hauteur canonique de sous-variétés Yt et nous démontrons un
énoncé équivalent en toute dimension relative.

Abstract. When an endomorphism f : X → X of a projective
variety which is polarized by an ample line bundle L, i.e. such that
f∗L ' L⊗d with d ≥ 2, is defined over a number field, Call and

Silverman defined a canonical height ĥf for f . In a family (X , f,L)
parametrized by a curve S together with a section P : S → X ,

they show that ĥft(P (t))/h(t) converges to the height ĥfη (Pη) on
the generic fiber.

In the present paper, we prove the equivalent statement when
studying the variation of canonical heights of subvarieties Yt vary-
ing in a family Y of any relative dimension.

1. Introduction

A family (X , f,L) of polarized endomorphisms parametrized by a smooth
projective curve S over a field k of characteristic 0 is a family π : X → S of
projective k-varieties which is flat over a Zariski open subset S0 of S and
such that X is smooth, a rational map f : X 99K X which is regular over
S0 and a relatively ample line bundle L on X , such that for each t ∈ S0,
if Xt := π−1{t} is the fiber of π over t, Lt := L|Xt and ft := f |Xt , then
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(Xt, ft, Lt) is a polarized endomorphism, i.e. there is an integer d ≥ 2

such that f∗t Lt ' L⊗dt . When S and (X , f,L) are defined over a number
field K, given a parameter t ∈ S0(Q̄), one want to relate the arithmetic
complexity of t, the dynamical complexity of the corresponding map ft and
the dynamical complexity of the family f . This can be done using the
theory of heights.

For a polarized endomorphism (X, f, L) defined over a product formula
field K, let hX,L be the standard Weil height function on X(K̄), relative

to L. Call and Silverman [4] defined the canonical height ĥf : X(K̄)→ R+

of the endomorphism f as

ĥf = lim
n→∞

1

dn
hX,L ◦ fn.

Assume that X is defined over the function field of characteristic zero K :=
K(S) where K is a number field and S is a smooth projective K-curve. To
the polarized endomorphism (X, f, L) we associate a model (X , f,L) over
S, i.e. a family of polarized endomorphisms (X , f,L) parametrized by S
such that, if η is the generic point of S, then (X, f, L) is isomorphic to
(Xη, fη, Lη) where Xη is the generic fiber of π : X → S, fη := f |Xη and
Lη := L|Xη .

Endow S with an ample Q-line bundle and take P ∈ X(K), P can be
thought of as a function S → X . In that setting, we have the canoni-

cal height ĥfη(Pη) which describes the arithmetic complexity of the orbit

Orbfη(P ) = (fnη (Pη))n over K(S) and, given a parameter t ∈ Q̄, the naive
height hS(t) which describes the arithmetic complexity of t, and the canon-

ical height ĥft(P (t)) which describes the arithmetic complexity of the orbit
Orbft(P (t)) = (fnt (P (t))n over Q̄. In that setting, Call and Silverman [4,
Theorem 4.1] proved

lim
hS(t)→∞
t∈S0(Q̄)

ĥft(P (t))

hS(t)
= ĥfη(Pη).(1.1)

In the particular case where X = P1(K) and f is a polynomial map, Ingram
[9] improved (1.1) by showing there is an effective Q-divisor D(f, P ) on S

of degree ĥfη(Pη) such that ĥft(P (t)) = hD(f,P )(t)+Of,P,S(1) (see also Tate
[16] for the case of families of elliptic curves) and finally the first author

and Favre showed in [7] that the height function ĥft(P (t)) is induced by a
continuous adelic metrization of the line bundle O(D(f, P )). Very recently,
Ingram also improved (1.1) in [10] saving a power in the error term.

Nevertheless, when the relative dimension of X is at least 2, it can be
useful to consider the canonical height of fibers of a subvariety Y ( X
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with π(Y) = S of positive relative dimension. Indeed, generalizing the 1-
dimensional theory [14, 13], Berteloot, Bianchi and Dupont [1] showed that
bifurcations in a complex family of endomorphisms of the projective space
Pk are caused by the unstability of the critical set (which has codimen-
sion 1), and the authors of op. cit., following DeMarco [6] in dimension 1,
defined a bifurcation current which gives a measurable meaning to bifur-
cations. The authors showed in [8] that, in the case of an algebraic family
of endomorphisms of the projective space Pk, the mass of this current is
actually the canonical height of the critical divisor.

Here is the main result of this article.

Main Theorem. Let (X , f,L) be a family of polarized endomorphisms
over S and let Y ( X be an irreducible subvariety such that π(Y) = S, all
defined over a number field K. For any Q-ample height hS on S of degree
1, we have

lim
hS(t)→∞
t∈S0
Y (Q̄)

ĥft(Yt)

hS(t)
= ĥfη(Yη),

where S0
Y be the maximal Zariski open subset of S0 over which π|Y is flat

and projective.

Ingram [11] proved this result when Y = Crit(f) is the critical locus of
the family f using a different description of the height of a divisor and
explicit estimates local.

As an application, observe that if ĥfη(Yη) 6= 0, then, for any integer n, the

set of parameters t ∈ S0(K) such that ĥft(Yt) = 0, where K is an algebraic
extension of Q with [K : Q] ≤ n, is finite by the Northcott property. Note

that the preperiodicity of Yt implies ĥft(Yt) = 0 (see e.g. [19]). Recall that

an endomorphism ft of Pk is post-critically finite (PCF for short) if the
critical set is preperiodic, i.e. if there are integers n > m ≥ 0 such that
fnt (Crit(ft)) ⊂ fmt (Crit(ft)). The Main Theorem above shows that, when
Y = Crit(f) is the critical set of a family f of endomorphisms of Pk with

ĥfη(Yη) 6= 0 (which means the family is unstable), there are only finitely
many post-critically finite (PCF for short) maps on a given extension of Q.

Heights can be seen in two different and entangled fashions: by working
at all places which can often gives precise estimates and by the mean of
arithmetic or algebraic intersection theory which is more intrinsic and al-
lows cohomological arguments. The philosophy of this article is to rely as
much as possible on the latter. Our first contribution is a comparison of
the naive height and the canonical height in families directly using [4] for
sections and using intersection theory for subvarieties of positive relative
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dimension (see Proposition 4.1). In a second time, using the exposition
[17] of Yuan and Zhang of the Deligne pairing [5] of metrized line bundles
we deduce the Main Theorem from Proposition 4.1 and from the quasi-
equivalence of ample heights on curves.

2. The canonical height over a number field

2.1. Adelic metrics and their height functions. Let X be a projective
variety of dimension k, and let L0, . . . , Lk be Q-line bundles on X, all
defined over a number field K. Assume Li is equipped with an adelic
continuous metric {‖·‖v,i}v∈MK and denote L̄i := (Li, {‖·‖v}v∈MK). Assume
L̄i is semi-positive for 1 ≤ i ≤ k. Fix a place v ∈ MK. Denote by Xan

v the
Berkovich analytification of X at the place v. We also let c1(L̄i)v be the
curvature form of the metric ‖ · ‖v,i on Lan

v .
For any closed subvariety Y of dimension q of X, the arithmetic inter-

section number
(
L̄0 · · · L̄q|Y

)
is symmetric and multilinear with respect to

the Li’s. As observed by Chambert-Loir [3], we can define
(
L̄0 · · · L̄q|Y

)
inductively by(

L̄0 · · · L̄q|Y
)

=
(
L̄1 · · · L̄q|div(s) ∩ Y

)
+
∑
v∈MK

nv

∫
Y an
v

log ‖s‖−1
v

q∧
j=1

c1(L̄i)v,

for any global section s ∈ H0(X,L0) such that the intersection div(s) ∩ Y
is proper. In particular, if L0 is the trivial bundle and ‖ · ‖v,0 is the trivial
metric at all places but v0, this gives(

L̄0 · · · L̄q|Y
)

= nv0

∫
Y an
v0

log ‖s‖−1
v0,0

q∧
j=1

c1(L̄i)v0 .

When L̄ is a big and nef Q-line bundle endowed with a semi-positive contin-
uous adelic metric and L|Y is still big, following Zhang [18], we can define
hL̄(Y ) as

hL̄(Y ) :=

(
L̄q+1|Y

)
(q + 1)[K : Q] degY (L)

,

where degY (L) = (L|Y )q is the volume of the line bundle L restricted to Y .

2.2. Canonical height over a number field. Let X be a projective
variety of dimension k, let f : X → X be a morphism and let L be an
ample line bundle on X, all defined over a number field K. Recall that we
say (X, f, L) is a polarized endomorphism of degree d > 1 if f∗L ' L⊗d, i.e.
f∗L is linearly equivalent to L⊗d.

It is known that polarized endomorphisms defined over the field K admit
a canonical metric. This is an adelic semi-positive continuous metric on
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L, which can be built as follows: let X → Spec(OK) be an OK-model
of X and L̄ be a model of L endowed with a model metric, for example
L̄ = ι∗ŌPN (1), where ι : X ↪→ PN is an embedding inducing L and OPN (1)
is endowed with its naive metrization. We then define L̄f as

L̄f := lim
n→∞

1

dn
(fn)∗L̄ |K.

This metrization induces the canonical height ĥf of f : for any closed point
x ∈ X(Q̄) and any section σ ∈ H0(X,L) which does not vanish at x, we let

ĥf (x) :=
1

[K : Q] deg(x)

∑
v∈MK

∑
y∈O(x)

nv log ‖σ(y)‖−1
v ,

where x ∈ X(K) , O(x) is the Galois orbit of x in X. The function ĥf :

X(Q̄) → R satisfies ĥf ◦ f = d · ĥf , ĥf ≥ 0 and ĥf (x) = 0 if and only if
x is preperiodic under iteration of f , i.e. if there is n > m ≥ 0 such that

fn(x) = fm(x). Note that ĥf can also be defined as

ĥf (x) = lim
n→∞

1

dn
hX,L(fn(x)),

where hX,L is any Weil height function on X associated with the ample line
bundle L.

3. The canonical height over a function field of characteristic
zero

We now focus on the dynamical setting: let π : X → S be a family of
complex projective varieties, where X is a smooth projective variety and
S is a smooth complex projective curve, and let L be a nef and relatively
ample line bundle on X . We let f : X 99K X be a rational map such
that (X , f,L) is a family of polarized endomorphisms of degree d ≥ 2, with
regular part S0, i.e. for all t ∈ S0(C), Xt := π−1{t} is smooth, Lt := L|Xt
is ample and f∗t Lt ' L⊗dt .

Let Y ( X be a proper subvariety of X of dimension q+1 with π(Y) = S.
Let S0

Y be the maximal Zariski open subset of S0 such that the restriction

π|Y : Y → S of π is flat over S0. We denote by Y0 and X 0 the regular parts
Y0 := π|−1

Y (S0
Y) and X 0 := π−1(S0

Y).
Let ω be a smooth positive form representing the first Chern class c1(L)

on X . As f∗L ' L⊗d on X 0, there is a smooth function g : X 0 → R such
that d−1f∗ω = ω + ddcg as forms on X 0. In particular, the following limit
exists as a closed positive (1, 1)-current on X 0

T̂f := lim
n→∞

1

dn
(fn)∗(ω),
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and can be written as T̂f = ω + ddcgf , where gf :=
∑∞

n=0 d
−ng ◦ fn is

continuous on X 0. The current T̂f is the fibered Green current of f .

Let Yη be the generic fiber of a family Y → S of subvarieties of relative
dimension q of X → S, and let φn : Xn → X be a birational morphism such
that fn ◦ φn extends as a morphism Fn : Xn → X . We define

ĥfη(Yη) := lim
n→∞

d−n(q+1)

(
(Fn)∗φ

∗
n{Y} · c1(L)q+1

)
(q + 1) degYη(Lη)

.

The next lemma follows from [8]:

Lemma 3.1. For any Y as above, ĥfη(Yη) is well-defined and satisfies

ĥfη((fη)∗(Yη)) = dĥfη(Yη). In addition, we can compute ĥfη(Yη) as

ĥfη(Yη) =
1

(q + 1) degYη(Lη)

∫
X 0(C)

T̂ q+1
f ∧ [Y].

Proof. The fact that it is well-defined and the formula relating the limit

of d−n(q+1)
(
(fn)∗{Y} · c1(L)q+1

)
with T̂ q+1

f ∧ (f∗[Y]) are contained in [8,

Theorem B]. We then can compute

ĥfη((fη)∗(Yη)) =
1

(q + 1) degYη(f∗ηLη)

∫
X 0(C)

T̂ q+1
f ∧ (f∗[Y])

=
1

(q + 1)dq degYη(Lη)

∫
X 0(C)

(
f∗T̂ q+1

f

)
∧ [Y]

=
dq+1

(q + 1)dq degYη(Lη)

∫
X 0(C)

T̂ q+1
f ∧ [Y] = dĥfη(Yη),

where we used that f∗(T̂f ) = dT̂f , dimYη = q, and dimY = q + 1. �

In particular, the last part of the lemma states that the height ĥfη(Yη) is

> 0 if and only if the measure T̂ q+1
f ∧ [Y] is not identically zero on X 0(C).

Let πn := π ◦φn : Xn → S. Relying on estimates from [8] we can deduce

Lemma 3.2. There is a constant C ≥ 1 depending only on (X , f,L) and Y
such that for any ample Q-line bundle M on S of degree 1 and any n ≥ 1,
we have∣∣∣∣∣

(
φ∗n{Y} · (Fn)∗c1(L)q+1

)
(q + 1) (φ∗n{Y} · (Fn)∗c1(L)q · c1(π∗nM))

− dnĥfη(Yη)

∣∣∣∣∣ ≤ C.
Proof. Combining Proposition 3.5 and Theorem B from [8] we have

d−n(q+1)
(
φ∗n{Y} · (Fn)∗c1(L)q+1

)
=

∫
X 0(C)

T̂ q+1
f ∧ [Y] +O

(
1

dn

)
.
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Let now α be a smooth form on S(C) which represents c1(M) (it has mass
1 = degS(M)) and ω be a smooth form on X (C) which represents c1(L).
By definition, we have

(φ∗n{Y} · (Fn)∗c1(L)q · c1(π∗nM)) =

∫
X 0(C)

((fn)∗ω)q ∧ [Y] ∧ π∗(α)

=

∫
S0
Y (C)

π∗ (((fn)∗ω)q ∧ [Y]) ∧ α

=

∫
S0
Y (C)

(∫
Yt

((fnt )∗ωt)
q

)
∧ α

= dqn
∫
S0
Y (C)

(
degYt(Lt)

)
α

= dqn degYη(Lη),

where we used that dimYt = q, dimY0 = q + 1 and that ((fn)∗ω)q ∧ [Y]
has bidegree (q, q) on Y0(C) so that π∗ (((fn)∗ω)q ∧ [Y]) has bidegree (0, 0)
on S0

Y(C), i.e. is a function, since the fibers of π have dimension q. �

4. Comparing the canonical and the naive heights in families

As above, let (X , f,L) be a family of polarized endomorphisms of degree
d ≥ 2 defined over K, with regular part S0. We endow L with a semi-
positive adelic continuous metrization L̄. We let Y ( X be a subvariety
defined over K and such that π(Y) = S, and let S0

Y be the maximal Zariski

open subset of S0 such that π|Y is flat over S0
Y . We also endow S with an

ample divisor H of degree 1.
We prove here the following higher dimensional counterpart to Call and

Silverman’s pointwise estimate [4, Theorem 3.1], see [11, Theorem 1] for
the case of hypersurfaces of Pk

Proposition 4.1. There exists a constant C ≥ 1 depending only on the
family (X , f,L) and the heights hL̄ and hS,H such that for any subvariety
Y ( X such that (X , f,L,Y) is a dynamical pair with regular part S0

Y and

for any t ∈ S0
Y(Q̄) we have∣∣∣hL̄(Yt)− ĥft(Yt)

∣∣∣ ≤ C (hS,H(t) + 1) .

Proof. Let q be the relative dimension of Y and K be a finite extension
of Q over which Y and t are defined. We let D be a divisor of X which
represents L and we decompose the height functions hL̄ and ĥft using this
representative of L:

hL̄ =
1

[K : Q]

∑
v∈MK

nvλD,v and ĥft =
1

[K : Q]

∑
v∈MK

nvλ̂ft,Dt,v,
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where λ̂ft,Dt,v◦ft = d·λ̂ft,Dt,v and λ̂ft,Dt,v = λD,v|Xt+Ov(1), where Ov(1) =

0 for all but finitely places v ∈MK. We also let hS,H = 1
[K:Q]

∑
v∈MK

nvλH,v.

We rely on a key estimate of Call and Silverman [4, Theorem 3.2]: there
is a constant C1 ≥ 1 depending only on the family (X , f,L), and the heights
hL̄ and hS,H such that for any t ∈ S0(Q̄), any x ∈ Xt(Q̄) \ supp(Dt), and
any v ∈MK, we have∣∣∣λD,v(x)− λ̂ft,Dt,v(x)

∣∣∣ ≤ C(v)(λH,v(t) + 1).(4.1)

with C(v) = C1 ≥ 1 for all v in a finite set S ⊂ MK containing all
archimedean places, and C(v) = 0 otherwise. Moreover, the constant C1

depends only on the choice of D and on the choice of the above decompo-
sitions.

We now fix t ∈ S0
Y(Q̄) and let q := dimYt (which is independent of

t ∈ S0
Y(Q̄)). By definition, we have

hL̄(Yt)− ĥft(Yt) =
1

(q + 1)[K : Q] degYt(Lt)

×
∑
v∈MK

nv

((
L̄q+1
t |Yt

)
v
−
(
L̄q+1
t,ft
|Yt
)
v

)
.

Fix now a place v ∈MK. Then we can compute(
L̄q+1
t |Yt

)
v
−
(
L̄q+1
t,ft
|Yt
)
v

=

q∑
j=0

((
L̄t − L̄t,ft

)
· L̄jt · L̄

q−j
t,ft
|Yt
)
v

=

q∑
j=0

∫
Y an
t,v

(
λL̄t,v − λ̂ft,Dt,v

)
· c1(L̄t)

j
v ∧ c1(L̄t,f )q−jv ,

where we used that the local height function λL̄t,v − λ̂ft,Dt,v extends as a

continuous metric on the trivial bundle, since hL̄t and ĥft are induced by
adelic continuous metrization on the same line bundle Lt. Combined with
(4.1), this gives∣∣∣∣ (L̄q+1

t |Yt
)
v
−
(
L̄q+1
t,ft
|Yt
)
v

∣∣∣∣
≤ C(v) (λS,H,v(t) + 1)

q∑
j=0

∫
Y an
t,v

c1(L̄t)
j
v ∧ c1(L̄t,f )q−jv

≤ C(v) (λS,H,v(t) + 1)

q∑
j=0

(
Ljt · L

q−j
t · Yt

)
≤ C(v) (λS,H,v(t) + 1) (q + 1) degYt(Lt),
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since the measures c1(L̄t)
j
v ∧ c1(L̄t,f )q−jv don’t give mass to the closed sub-

variety Dt ∩ Yt, seen as a pluripolar subset of Xan
t,v, see e.g. [2, Lemma 8.6]

for non-archimedean v ∈ MK. As we have hS,H = 1
[K:Q]

∑
v∈MK

nvλS,H,v,

summing over all places and dividing by (q + 1)[K : Q] degYt(Lt) gives∣∣∣hL̄(Yt)− ĥft(Yt)
∣∣∣ ≤ C1 (hS,H(t) + 1) ,

for all t ∈ S0
Y(Q̄), which is the wanted estimate, supp(Dt)∩ supp(Yt) is not

a component of supp(Yt).

Let us now replace D by another divisor representing L in a finite family
of such divisors so that we can make sure that for any family Y → S and

any t ∈ S0
Y(Q̄), there is a choice D(i) such that supp(D

(i)
t )∩ supp(Yt) is not

a component of supp(Yt). Replacing C1 by maxiC1(D(i)) gives the wanted
estimate. �

5. Variation of canonical heights of subvarieties

5.1. Variation of naive heights of subvarieties. The material here
follows the presentation of Yuan and Zhang [17] of the Deligne pairing ([5]).
Let S be a smooth and integral projective curve defined over a number field
K. Let π : X → S be a projective and flat morphism defined over K. Let
D := dim(X )−1 > 0 be its relative dimension. Let L̄ be a model ample line
bundle on X , i.e. there is a OK-model X of X, together with an hermitian
line bundle L̄ which restricts as L̄ on the generic fiber of the structure
morphism X → Spec(OK). One can define an adelic metrized ample line
bundle on S as the Deligne pairing 〈L̄D+1〉. One can fprove the next result
by combining several statements from [17].

Theorem 5.1. Let S be a smooth integral projective curve and X be an
integral projective variety, both defined over a number field. Assume there
is a flat and projective morphism π : X → S of relative dimension D,
also defined over a number field. Let L̄ be a big and nef line bundle on X ,
equipped with a model metric.

Then M̄ :=
(

(D + 1) degXη(Lη)
)−1
〈L̄D+1〉 is an adelic semi-positive

continuous ample line bundle on S whose induced height function is given
by

hM̄ (t) = hL̄(Xt), t ∈ S(Q̄).

Moreover, for any place v ∈ MK, the measure c1(M̄)v is π∗c1(L̄)Dv and
degS(M) = hLη(Xη), where Xη is the generic fiber of π and Lη is the
restrictions of L to Xη.

Proof. Fix a OK-model π : X → S of π : X → S which is flat and
projective and which induces the hermitian line bundle L̄. Yuan and Zhang
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[17, §4.4] prove that M̄ := 〈L̄ D+1〉 is an ample hermitian line bundle on
S and that one can compute

h〈L̄D+1〉(t) =

(
〈L̄ D+1〉|t̄

)
deg(t̄)

=

(
L̄ D+1|X̄t

)
deg(t̄)

,

where t̄ (resp. X̄t) is the closure of t (resp. of Xt) in the scheme X .
Note that the last quantity is precisely (D + 1) degXt(Lt)hL̄(Xt). As π is
projective and flat, degXt(Lt) = degXη(Lη) for all t. We deduce the wanted

properties of M̄ noticing that M̄ is the restriction of M̄ to the special fiber
of the structure morphism S → Spec(OK).

All there is left to do is to determine, for any archimedean place v ∈
MK, the measure c1(M̄)v. This is done in [17, §4.3.2] where c1(M̄)v =
π∗(c1(L̄)Dv ) is proved, which concludes the proof. �

5.2. From comparison of heights to variation of heights. We now
come back to the dynamical setting: let (X , f,L,Y) be a dynamical pair
parametrized by a smooth projective curve S, all defined over a number
field K, with regular part S0.

In what follow, we say that the dynamical pair (X , f,L,Y) is unstable if

ĥfη(Yη) 6= 0. We now prove the following, which implies the main theorem.

Theorem 5.2. Let (X , f,L,Y) be a dynamical pair parametrized by S with
regular part S0, all defined over a number field K. For any Q-ample height
hS on S of degree 1 and any ε > 0, there exists a constant C(ε) > 0 such
that, the following holds for all t ∈ S0(Q̄),(

ĥfη(Yη)− ε
)
hS(t)− C(ε) ≤ ĥft(Yt) ≤

(
ĥfη(Yη) + ε

)
hS(t) + C(ε).

In particular, if the dynamical pair (X , f,L,Y) is unstable, the function

t 7→ ĥft(Yt) is an ample height on S.

Proof. As f is a finite endomorphism on X 0 and S0
fn(Y) = S0

Y for any n ≥ 1,

we can apply Proposition 4.1 to the cycle (fnt )∗(Yt) for all t ∈ S0
Y(Q̄). This

is possible since (fnt )∗(Yt) = deg(fnt |Yt) · fnt (Yt) and fnt (Yt) is irreducible at
least when Yt is.∣∣∣hL̄((fnt )∗(Yt))− ĥft((fnt )∗(Yt))

∣∣∣ ≤ C (hS,H(t) + 1) .

Let now φn : Xn → X be a birational morphism such that there is a
morphism Fn : Xn → X with Fn = fn ◦ φn on φ−1

n (X 0) and let L̄n :=
(d−nFn)

∗ L̄. As Fn is a generically finite morphism and L̄ is an ample
adelic semi-positive continuous metrized line bundle, the line bundle L̄n is
an adelic semi-positive continuous metrized big and nef line bundle on Xn.
Set now Yn := φ−1

n (Y). Up to applying the Raynaud-Gruson flattening
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theorem [15, Theorem 5.2.2], we can assume Yn → S is flat and projective.
Now, we define a hermitian line bundle L̄n on Yn by restricting L̄n to
Yn. Since for any t ∈ S0(Q̄), we have hL̄((fnt )∗(Yt)) = h(fn)∗L̄(Yt) =

hL̄n(φ−1
n (Yt)), by the invariance property ĥft((ft)∗(Yt)) = dĥft(Yt), this

gives ∣∣∣hL̄n(φ−1
n (Yt))− ĥft(Yt)

∣∣∣ ≤ C

dn
(hS,H(t) + 1) .(5.1)

We now rely on Theorem 5.1: the function t 7→ hL̄n(φ−1
n (Yt)) is a Weil

height function associated with an ample adelic semi-positive continuous
Q-line bundle Mn on S. Moreover, the degree of this line bundle is given
by

deg(Mn) =
1

dn
hLη((fn)∗(Yη))

=
1

dn(q + 1)vol(((fnη )∗Lη)|Yη)

(
c1(L)q+1 · (Fn)∗{Yn}

)
=

1

(q + 1)dn(q+1)vol(Lη|Yη)

(
c1(L)q+1 · (Fn)∗{Y}

)
= ĥfη(Yη) +O(d−n),

where we used Lemma 3.1. We now use the quasi-equivalence of ample
height functions on a projective curve, see e.g. [12, Chapter 4, Corol-
lary 3.5]: for any two height functions h1, h2 induced by two ample line
bundles L1, L2 on S respectively, then

lim
h1(t)→∞

h2(t)

h1(t)
=

deg(L2)

deg(L1)
.

Fix now any ample height hS on S induced by an ample Q-line bundle of
degree 1. We deduce from the above that

hL̄((fnt )∗(Yt)) =
(
dnĥfη(Yη) +O(1)

)
hS(t) + εn(hS(t)),

where εn(hS(t)) = o(hS(t)) depends on n. Together with (5.1), this gives∣∣∣ĥfη(Yη)hS(t)− ĥft(Yt)
∣∣∣ ≤ C1

dn
(hS(t) + hS,H(t) + 1) + εn(hS(t)),

for all t ∈ S0(Q̄). Again by quasi-equivalence of ample heights, we have
hS,H ≤ C2(hS + 1) since H is ample and hS is induced by an ample line
bundle, where C ′′ depends only on deg(H). Fix n > 1 large enough so that
2C1(1 + C2) ≤ dnε. We then have∣∣∣ĥfη(Yη)hS(t)− ĥft(Yt)

∣∣∣ ≤ ε

2
hS(t) + hS,H(t) + C3 + εn(hS(t)),

for all t ∈ S0(Q̄), where C3 > 0 is a constant depending on ε > 0. Now,
as εn(hS(t)) = o(hS(t)), there exists B(ε) ≥ 1 such that if hS(t) ≥ B(ε),
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then εn(hS(t)) ≤ εhS(t)/2 and we have εn(hS(t)) ≤ B(ε) + ε
2hS(t). The

conclusion follows letting C(ε) := C3 + (ε). �

An immediate consequence is the Theorem from the introduction:

Proof the Main Theorem. Fix ε > 0, divide the inequalities obtained in
Theorem 5.2 by hS(t) and make it tend to ∞ to find∣∣∣∣∣∣ lim

hS(t)→∞
t∈S0(Q̄)

ĥft(Yt)

hS(t)
− ĥfη(Yη)

∣∣∣∣∣∣ ≤ ε.
As this holds for any ε > 0, the result follows. �

Remark 5.3. As observed by the referee, the deep theory of adelic line
bundles of Yuan and Zhang [17] is perfectly adaptated to prove this kind
of statements and it actually holds on quasi-projective varieties. Using its
full strength could allow to simplify the proof by taking a suitable version
of Theorem5.1 for quasi-projective variety (with π still being flat and pro-
jective). Then, one can prove the main theorem of the current paper by
only applying the Deligne pairing to L̄S0 where S0 is a quasi-projective
variety of S over which f is a morphism and the metrization is provided by
[17, § 6.1]. Still, we choose here to use the theory of Deligne pairings over
projective varieties - which is only a part of what Yuan and Zhang have
written about Deligne pairings - and we use softer arguments to conclude
the proof.
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