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Variation of canonical heights of subvarieties for
polarized endomorphisms

par THOMAS GAUTHIER et GABRIEL VIGNY

RESUME. Pour un endomorphisme f : X — X d’une variété pro-
jective qui est polarisé par un fibré en droites ample L, i.e. tel
que f*L ~ L% avec d > 2, et qui est défini sur un corps de nom-
bres, Call et Silverman ont défini une fonction hauteur canon-
ique h 7. Dans une famille (X, f,£) paramétrée par une courbe
S munie d’une section P : § — X, ils prouvent également que
?Lft (P(t))/h(t) converge vers la hauteur canonique Efn (P,) sur la
fibre générique.

Dans cet article, nous étudions les variations en famille de
la hauteur canonique de sous-variétés Y; et nous démontrons un
énoncé équivalent en toute dimension relative.

ABSTRACT. When an endomorphism f : X — X of a projective
variety which is polarized by an ample line bundle L, i.e. such that
f*L ~ L®¢ with d > 2, is defined over a number field, Call and
Silverman defined a canonical height h ¢ for f. In a family (X, f, L)
parametrized by a curve S together with a section P : § — X,
they show that Eft (P(t))/h(t) converges to the height ﬁfn (P,) on
the generic fiber.

In the present paper, we prove the equivalent statement when
studying the variation of canonical heights of subvarieties Y; vary-
ing in a family ) of any relative dimension.

1. Introduction

A family (X, f, £) of polarized endomorphisms parametrized by a smooth
projective curve S over a field k of characteristic 0 is a family 7 : X — S of
projective k-varieties which is flat over a Zariski open subset S° of S and
such that X is smooth, a rational map f : X --+ X which is regular over
SY and a relatively ample line bundle £ on X, such that for each t € SY,
if X; := 7~ {t} is the fiber of 7 over ¢, L; := L|x, and f; := flx,, then
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(X4, fi, Lt) is a polarized endomorphism, i.e. there is an integer d > 2
such that f;L; ~ L¥Y. When S and (X, f, L) are defined over a number
field K, given a parameter ¢t € S°(Q), one want to relate the arithmetic
complexity of ¢, the dynamical complexity of the corresponding map f; and
the dynamical complexity of the family f. This can be done using the
theory of heights.

For a polarized endomorphism (X, f, L) defined over a product formula

field K, let hx r be the standard Weil height function on X (K), relative

to L. Call and Silverman [4] defined the canonical height Ef : X(K) —» Ry
of the endomorphism f as

hf = nh—>n<;l<> dinhX’L o fn

Assume that X is defined over the function field of characteristic zero K :=
K(S) where K is a number field and S is a smooth projective K-curve. To
the polarized endomorphism (X, f, L) we associate a model (X, f, L) over
S, i.e. a family of polarized endomorphisms (X, f, £) parametrized by S
such that, if n is the generic point of S, then (X,f, L) is isomorphic to
(X, [, Ly) where X, is the generic fiber of 7 : X — S, f, := f|x, and
L7I = [’|X77'

Endow S with an ample Q-line bundle and take P € X(K), P can be
thought of as a function S — X. In that setting, we have the canoni-
cal height h f,(Py) which describes the arithmetic complexity of the orbit
Orby, (P) = (f (Py))n over K(S) and, given a parameter ¢ € Q, the naive
height hg(t) which describes the arithmetic complexity of ¢, and the canon-
ical height h #,(P(t)) which describes the arithmetic complexity of the orbit
Orby, (P(t)) = (f(P(t))s over Q. In that setting, Call and Silverman [4,
Theorem 4.1] proved

by (P(8)
hSé)HOO hs(t) = hfn (PTI)'

teSO(Q)

(1.1)

In the particular case where X = P!(K) and f is a polynomial map, Ingram
[9] improved (1.1) by showing there is an effective Q-divisor D(f, P) on S
of degree Efn (P,) such that /ﬁft (P(t)) = hp(s,p)(t)+0y ps(1) (see also Tate
[16] for the case of families of elliptic curves) and finally the first author
and Favre showed in [7] that the height function h 7 (P(t)) is induced by a
continuous adelic metrization of the line bundle O(D(f, P)). Very recently,
Ingram also improved (1.1) in [10] saving a power in the error term.

Nevertheless, when the relative dimension of X is at least 2, it can be
useful to consider the canonical height of fibers of a subvariety JV C X
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with w()) = S of positive relative dimension. Indeed, generalizing the 1-
dimensional theory [14, 13], Berteloot, Bianchi and Dupont [1] showed that
bifurcations in a complex family of endomorphisms of the projective space
P* are caused by the unstability of the critical set (which has codimen-
sion 1), and the authors of op. cit., following DeMarco [6] in dimension 1,
defined a bifurcation current which gives a measurable meaning to bifur-
cations. The authors showed in [8] that, in the case of an algebraic family
of endomorphisms of the projective space P¥, the mass of this current is
actually the canonical height of the critical divisor.

Here is the main result of this article.

Main Theorem. Let (X, f,L) be a family of polarized endomorphisms
over S and let Y C X be an irreducible subvariety such that w()) =S, all
defined over a number field K. For any Q-ample height hg on S of degree
1, we have
o hp(Y)
1 —=— = hy (Y,
hs(ltggoo hs(t) f"( 77)’
tesg)(@)
where 5’5), be the mazimal Zariski open subset of S° over which |y is flat
and projective.

Ingram [11] proved this result when ) = Crit(f) is the critical locus of
the family f using a different description of the height of a divisor and
explicit estimates local.

As an application, observe that if h . (Yn) # 0, then, for any integer n, the

set of parameters t € S°(K) such that h #,(Y;y) = 0, where K is an algebraic
extension of Q with [K : Q] < n, is finite by the Northcott property. Note
that the preperiodicity of Y; implies & 7, (Y2) = 0 (see e.g. [19]). Recall that
an endomorphism f; of P¥ is post-critically finite (PCF for short) if the
critical set is preperiodic, i.e. if there are integers n > m > 0 such that
fL(Crit(fr)) € f*(Crit(f)). The Main Theorem above shows that, when
Y = Crit(f) is the critical set of a family f of endomorphisms of P¥ with
ﬁfn(Yn) # 0 (which means the family is unstable), there are only finitely
many post-critically finite (PCF for short) maps on a given extension of Q.

Heights can be seen in two different and entangled fashions: by working
at all places which can often gives precise estimates and by the mean of
arithmetic or algebraic intersection theory which is more intrinsic and al-
lows cohomological arguments. The philosophy of this article is to rely as
much as possible on the latter. Our first contribution is a comparison of
the naive height and the canonical height in families directly using [4] for
sections and using intersection theory for subvarieties of positive relative
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dimension (see Proposition 4.1). In a second time, using the exposition
[17] of Yuan and Zhang of the Deligne pairing [5] of metrized line bundles
we deduce the Main Theorem from Proposition 4.1 and from the quasi-
equivalence of ample heights on curves.

2. The canonical height over a number field

2.1. Adelic metrics and their height functions. Let X be a projective
variety of dimension k, and let Lg,...,L; be Q-line bundles on X, all
defined over a number field K. Assume L; is equipped with an adelic
continuous metric {||-||vi Jvers, and denote L; := (Li, {||-|lv }versy ). Assume
L; is semi-positive for 1 < i < k. Fix a place v € Mg. Denote by X3" the
Berkovich analytification of X at the place v. We also let c1(L;), be the
curvature form of the metric || - ||, ; on L3".

For any closed subvariety Y of dimension g of X, the arithmetic inter-
section number (Eo e Eq|Y) is symmetric and multilinear with respect to
the L;’s. As observed by Chambert-Loir [3], we can define (Lg--- Lq|Y)
inductively by

(Lo~ LJY) = (L1 - Lyldiv(s) N Y)

q
+ Y / log sl A\ e1(Lo)e,
Yvan

veE My 7j=1

for any global section s € H°(X, Lg) such that the intersection div(s) NY
is proper. In particular, if Ly is the trivial bundle and || - ||, 0 is the trivial
metric at all places but vg, this gives
q
(o LalY) =g | g slilo A\ r(Zab
yzan i1
When L is a big and nef Q-line bundle endowed with a semi-positive contin-
uous adelic metric and Lly is still big, following Zhang [18], we can define
hz(Y) as
(L)
(¢+1)[K: Q]degy (L)’
where degy (L) = (L}y)? is the volume of the line bundle L restricted to Y.

hi(Y) =

2.2. Canonical height over a number field. Let X be a projective
variety of dimension k, let f : X — X be a morphism and let L be an
ample line bundle on X, all defined over a number field K. Recall that we
say (X, f, L) is a polarized endomorphism of degree d > 1 if f*L ~ L% je.
f*L is linearly equivalent to L®.

It is known that polarized endomorphisms defined over the field K admit
a canonical metric. This is an adelic semi-positive continuous metric on
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L, which can be built as follows: let 2~ — Spec(€Ok) be an Ok-model
of X and .Z be a model of L endowed with a model metric, for example
L = 1*Opn (1), where ¢ : X — PV is an embedding inducing L and Opn (1)
is endowed with its naive metrization. We then define L f as

_ TL
Lj:= lim — n(f "Lk
This metrization induces the canonical height h ¢ of f: for any closed point
z € X(Q) and any section o € H°(X, L) which does not vanish at x, we let

Ef(x): [K Q) deg Z Z ny log ||lo(y ”v )

vGMK yeO(x)

where z € X(K) , O(z) is the Galois orbit of z in X. The function }\Lf :
X(Q) — R satisfies /ﬁf of = d-ﬁf, /ﬁf > 0 and Ef(w) = 0 if and only if
x is preperiodic under iteration of f, i.e. if there is n > m > 0 such that
f™(x) = f™(z). Note that /ﬁf can also be defined as

hy(x) = Jim dlfnhX,L(fn(ﬂf)),

where hx 1, is any Weil height function on X associated with the ample line
bundle L.

3. The canonical height over a function field of characteristic
zero

We now focus on the dynamical setting: let 7 : X — S be a family of
complex projective varieties, where X is a smooth projective variety and
S is a smooth complex projective curve, and let £ be a nef and relatively
ample line bundle on X. We let f : X --+ X be a rational map such
that (X, f, L) is a family of polarized endomorphisms of degree d > 2, with
regular part SY) i.e. for all t € S°(C), X; := 7~ 1{t} is smooth, L; := L]y,
is ample and ffL; ~ L,?d.

Let ) C X be a proper subvariety of X’ of dimension g+1 with 7())) = S.
Let Sg, be the maximal Zariski open subset of SY such that the restriction
mly : Y — S of 7 is flat over S°. We denote by Y and X° the regular parts
W0 = 7r|§1(S§),) and X0 := W_I(SS);).

Let w be a smooth positive form representing the first Chern class ¢1 (L)
on X. As f*L£ ~ £%% on X0, there is a smooth function g : X° — R such
that d~' f*w = w + dd°g as forms on X°. In particular, the following limit
exists as a closed positive (1,1)-current on X°

Ty i= lim (/") (),

n—oo "
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and can be written as ff = w + dd°gy, where gy := Y ° d "go f"is
continuous on X°. The current T ' is the fibered Green current of f.
Let Y}, be the generic fiber of a family J — S of subvarieties of relative

dimension g of X — S, and let ¢, : X;, — X be a birational morphism such
that f" o ¢, extends as a morphism Fj, : X,, = X. We define

7 -— lim d—™4a+t1) ((Fn)*‘ﬁ{y} ‘ Cl(ﬁ)q“)
h’fn (Yﬂ> T nlﬁood ! (q =+ 1) degyn (L”]) ’

The next lemma follows from [8]:

Lemma 3.1. For any )Y as above, ﬁfn(Yn) is well-defined and satisfies
Efn((fn)*(yn)) = d/ﬁfn(Yn). In addition, we can compute iALf?7 (Yy) as

~ 1 N
he (Y,) = T A Y.
s (¥) (¢ + 1) degy, (Ly) /Xo(C) f V]

Proof. The fact that it is well-defined and the formula relating the limit
of d=™a+D) ((f7),{V} - e1(L£)9H!) with T}Hl A (f«]Y]) are contained in [8,
Theorem BJ]. We then can compute

by () V) = delgyn G /X o TP DY

_ 1 *pg+1
(g +1)d9degy, (Ly) /XO((C) (f 1y ) A
Ja+1

(¢ +1)d? degy, (Ly) /XO(C) f V] (V)

where we used that f*(ff) = dff, dimY, = ¢, and dim)Y = ¢ + 1. O

In particular, the last part of the lemma states that the height h £, (Yn) is
> 0 if and only if the measure f}frl A [V] is not identically zero on X°(C).
Let m, :=mo ¢, : X, — S. Relying on estimates from [8] we can deduce

Lemma 3.2. There is a constant C > 1 depending only on (X, f, L) and Y
such that for any ample Q-line bundle M on S of degree 1 and anyn > 1,
we have

(Gnfd} - (Fn)*er(£)7)
(¢ +1) (934} - (Fn)*er(£)7 - er(mi M)

Proof. Combining Proposition 3.5 and Theorem B from [8] we have

dfn(qul) (gf)Z{y} . (Fn)*61(£)q+1) — /XO((C) f}“‘l A D}] + 0 <dln> .

—d"hy, (Yy)| < C.
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Let now a be a smooth form on S(C) which represents ¢; (M) (it has mass
1 = degg(M)) and w be a smooth form on X (C) which represents c¢;(L).
By definition, we have

(@Y} - (Fn) er(£)? - er(mpM)) = / (f* )W) A AT* ()

x°(C)

— / () w)? A DY) A
S’

%(C)

-/ . ([ wrrwor) na

— dq”/ (degyt (Lt)) «
5%,(C)
= d" degy, (Ly),

where we used that dimY; = ¢, dim)° = ¢ + 1 and that ((f")*w)? A [V]
has bidegree (g, ¢) on Y°(C) so that 7. (((f*)*w)? A [V]) has bidegree (0, 0)
on S%(C), i.e. is a function, since the fibers of m have dimension gq. O

4. Comparing the canonical and the naive heights in families

As above, let (X, f, L) be a family of polarized endomorphisms of degree
d > 2 defined over K, with regular part S°. We endow £ with a semi-
positive adelic continuous metrization £. We let ) C X be a subvariety
defined over K and such that 7()) = S, and let Sg, be the maximal Zariski
open subset of S” such that 7|y is flat over Sg,. We also endow S with an
ample divisor H of degree 1.

We prove here the following higher dimensional counterpart to Call and
Silverman’s pointwise estimate [4, Theorem 3.1], see [11, Theorem 1] for
the case of hypersurfaces of P*

Proposition 4.1. There exists a constant C' > 1 depending only on the
family (X, f, L) and the heights h; and hs p such that for any subvariety
Y C X such that (X, f,L,)) is a dynamical pair with regular part Sg, and
Jor any t € 55,(Q) we have

he(Y) = by, (V)| < C(hsu(t) +1).

Proof. Let ¢ be the relative dimension of ) and K be a finite extension
of Q over which Y and ¢ are defined. We let D be a diviso/r\ of X which
represents £ and we decompose the height functions hy and hy, using this
representative of L:

1

"t =K. g

~ 1 ~
Z nv)\QU and hft = [K - @] Z nv)\ft,Dt,va
ve Mg ’ veMg
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where /):tht,Uoft = d-Xft,th and /thDt’U = Apulx, +0y(1), where O, (1) =
0 for all but finitely places v € Mg. We also let hg i = @ ZUGMK Ny NH,p-

We rely on a key estimate of Call and Silverman [4, Theorem 3.2]: there
is a constant C; > 1 depending only on the family (X, f, £), and the heights
h; and hg g such that for any ¢t € S°(Q), any z € X¢(Q) \ supp(D;), and
any v € Mk, we have

(4.1) ADo (%) = Mgy, 0,0 (@) < C(0)(Apro(t) + 1)

with C'(v) = C; > 1 for all v in a finite set S C Mg containing all
archimedean places, and C(v) = 0 otherwise. Moreover, the constant C}
depends only on the choice of D and on the choice of the above decompo-
sitions.

We now fix ¢t € SS))(@) and let ¢ := dimY; (which is independent of
t € S5(Q)). By definition, we have

1
(¢ +1)[K: Q] degy, (L)

< 3 me{ () = (R5), )

ve Mg

he(Yy) = hy, (Vi) =

Fix now a place v € Mk. Then we can compute

q
(L) = (2efive) =D ((Le=Lep) - L - LiGIM:).
j=0

q
=3 [ (= Ruin) - er(Ef Aea(Lug)i
j:0 t,v

where we used that the local height function Az, , — Xft, D.,v €xtends as a

continuous metric on the trivial bundle, since hj, and h 1, are induced by
adelic continuous metrization on the same line bundle L;. Combined with
(4.1), this gives

(), ~ (1) |
v v

<CO Qs+ DY [ allifnal)i?

an
0’ Yw

<

q

< C(v) (As,ap(t) +1) Z (Li L Yt)

j=0
< C(v) (As,ap(t) +1) (¢ + 1) degy, (Ly),
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since the measures ¢;(L¢)) A ¢1 (L, f);%‘j don’t give mass to the closed sub-

variety Dt MYy, seen as a pluripolar subset of X7, see e.g. [2, Lemma 8.6]

for non-archimedean v € Mg. As we have hgpy = @ ZUGMK Ny S, H,vs
summing over all places and dividing by (¢ + 1)[K : Q] degy, (L) gives

he(Ye) = hy,(Yy)| < Ct (hsu(t) + 1),

forallt € Sg,(@), which is the wanted estimate, supp(D;) Nsupp(Y;) is not
a component of supp(Y;).

Let us now replace D by another divisor representing £ in a finite family
of such divisors so that we can make sure that for any family ) — S and

any t € Sg, (Q), there is a choice D such that Supp(Dgi)) Nsupp(Y;) is not

a component of supp(Y;). Replacing C; by max; C;(D®) gives the wanted
estimate. O

5. Variation of canonical heights of subvarieties

5.1. Variation of naive heights of subvarieties. The material here
follows the presentation of Yuan and Zhang [17] of the Deligne pairing ([5]).
Let S be a smooth and integral projective curve defined over a number field
K. Let w : X — S be a projective and flat morphism defined over K. Let
D :=dim(X)—1 > 0 be its relative dimension. Let L be a model ample line
bundle on X, i.e. there is a Og-model Z of X, together with an hermitian
line bundle .# which restricts as L on the generic fiber of the structure
morphism 2~ — Spec(0k). One can define an adelic metrized ample line
bundle on S as the Deligne pairing (L”*1). One can fprove the next result
by combining several statements from [17].

Theorem 5.1. Let S be a smooth integral projective curve and X be an
integral projective variety, both defined over a number field. Assume there
is a flat and projective morphism m : X — S of relative dimension D,
also defined over a number field. Let L be a big and nef line bundle on X,
equipped with a model metric.

_ -1 _

Then M := ((D+ 1)dean(L,7)) (LP+Y) is an adelic semi-positive
continuous ample line bundle on S whose induced height function is given
by

hy(t) = hp(Xy), te€SQ).
Moreover, for any place v € Mg, the measure c1(M), is mc1(L)P and
degg(M) = hr,(Xy), where X, is the generic fiber of ™ and L, is the
restrictions of L to X,,.

Proof. Fix a Og-model m : 2~ — & of m : X — S which is flat and
projective and which induces the hermitian line bundle L. Yuan and Zhang
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[17, §4.4] prove that .Z = (ZP*!) is an ample hermitian line bundle on
- and that one can compute

(£ ) _ (£ k)

h T t = =
@) = 4o dog()
where  (resp. X;) is the closure of ¢ (resp. of X;) in the scheme 2 .
Note that the last quantity is precisely (D + 1)degy, (L¢)hp(Xt). As 7 is
projective and flat, degy, (L¢) = degx, (Ly) for all t. We deduce the wanted

properties of M noticing that M is the restriction of .# to the special fiber
of the structure morphism . — Spec(0k).
All there is left to do is to determine, for any archimedean place v €

My, the measure c;(M),. This is done in [17, §4.3.2] where c1(M), =
me(c1(L)P) is proved, which concludes the proof. O

v

5.2. From comparison of heights to variation of heights. We now
come back to the dynamical setting: let (X, f,£,)) be a dynamical pair
parametrized by a smooth projective curve S, all defined over a number
field K, with regular part S°.

In what follow, we say that the dynamical pair (X, f, £,)) is unstable if
hy, (Yy,) # 0. We now prove the following, which implies the main theorem.

Theorem 5.2. Let (X, f,L,)) be a dynamical pair parametrized by S with
reqular part S°, all defined over a number field K. For any Q-ample height
hs on S of degree 1 and any € > 0, there exists a constant C(g) > 0 such

that, the following holds for all t € Sp(Q),
(s, (V) = &) hs(t) = C(e) < s (¥5) < (By, (V) +2) hs() + C(e).

In particular, if the dynamical pair (X, f,L,Y) is unstable, the function
t — hy,(Y2) is an ample height on S.

Proof. As f is a finite endomorphism on X" and S9, ) = Sg, for any n > 1,

we can apply Proposition 4.1 to the cycle (f{").(Y;) for all t € S3,(Q). This
is possible since (f{*)«(Y;) = deg(f']y;) - f*(Yy) and f*(Y;) is irreducible at
least when Y; is.

he ()< (YD) = g, () (YD) | < C (hsu(t) +1).

Let now ¢, : A, — X be a birational morphism such that there is a
morphism F,, : X, — X with F,, = f" o ¢, on ¢51(X0) and let £,, =
(d™"F,)" L. As F, is a generically finite morphism and £ is an ample
adelic semi-positive continuous metrized line bundle, the line bundle £, is
an adelic semi-positive continuous metrized big and nef line bundle on A,.

Set now YV, := ¢,'()). Up to applying the Raynaud-Gruson flattening
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theorem [15, Theorem 5.2.2], we can assume Y, — S is flat and projective.
Now, we define a hermitian line bundle L, on ), by restricting L, to

Vn. Since for any t € S%(Q), we have hz((f/)«(Y;)) = hipmyez(Ye) =

hi (¢5'(Y;)), by the invariance property ﬁft((ft)*(Yt)) = d/ﬁft(}/,g), this
gives

(5.1 e, (61 (V0) ~ By (V)| < S (hs () +1).

We now rely on Theorem 5.1: the function ¢ — hz (¢, (¥3)) is a Weil
height function associated with an ample adelic semi-positive continuous
Q-line bundle M,, on S. Moreover, the degree of this line bundle is given
by
1
deg(Ma) = —hu,, ((f).(Y;))

_ 1 o (L)
= Er Dl Ly, @O () 0n)

1

= (T D@ oL,y @O )

= hfn (Yn) + O(d_n)7
where we used Lemma 3.1. We now use the quasi-equivalence of ample
height functions on a projective curve, see e.g. [12, Chapter 4, Corol-

lary 3.5]: for any two height functions hi, hy induced by two ample line
bundles L1, Ls on S respectively, then

i 2() _ deg(L2)
hi(t)—oo hi(t)  deg(Ly)’

Fix now any ample height hg on S induced by an ample Q-line bundle of
degree 1. We deduce from the above that

he((F1)+(¥0) = (@°hy, (V) + O(1)) hs(t) + en(hs(t),
where g, (hg(t)) = o(hg(t)) depends on n. Together with (5.1), this gives

~ ~ C
Ry, (Y)hs(8) = By, (Vo) € —2 (hs(t) + hs () + 1) + enlhs (),

for all t € S°(Q). Again by quasi-equivalence of ample heights, we have

hsy < C2(hs + 1) since H is ample and hg is induced by an ample line

bundle, where C” depends only on deg(H). Fix n > 1 large enough so that

2C1(1 4 Cy) < d™e. We then have

By, (Yi)hs(t) = T, (V)| < Shs(t) + hsa(t) + Cs + 2n(hs (1),

for all t € S°(Q), where C5 > 0 is a constant depending on £ > 0. Now,
as en(hs(t)) = o(hs(t)), there exists B(e) > 1 such that if hg(t) > B(e),
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then e,,(hs(t)) < ehs(t)/2 and we have e,(hs(t)) < B(e) + Shs(t). The
conclusion follows letting C'(¢) := C3 + (¢). O

An immediate consequence is the Theorem from the introduction:

Proof the Main Theorem. Fix € > 0, divide the inequalities obtained in
Theorem 5.2 by hg(t) and make it tend to oo to find

~

. h‘ft (Yt) T
1 ——= —h¢ (V)| Le
hs(giloo hS(t) fn( 77) >¢€
tes0(Q)
As this holds for any € > 0, the result follows. g

Remark 5.3. As observed by the referee, the deep theory of adelic line
bundles of Yuan and Zhang [17] is perfectly adaptated to prove this kind
of statements and it actually holds on quasi-projective varieties. Using its
full strength could allow to simplify the proof by taking a suitable version
of Theorem5.1 for quasi-projective variety (with 7 still being flat and pro-
jective). Then, one can prove the main theorem of the current paper by
only applying the Deligne pairing to Lg, where Sy is a quasi-projective
variety of S over which f is a morphism and the metrization is provided by
[17, § 6.1]. Still, we choose here to use the theory of Deligne pairings over
projective varieties - which is only a part of what Yuan and Zhang have
written about Deligne pairings - and we use softer arguments to conclude
the proof.
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