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Abstract. — The aim of this note is to give a proof of Theorem A from [GV] in the
simpler case of the quadratic family; being in dimension 1 in both the dynamical space and
the parameter space, and having a simple and explicit parametrization of the family allow
to simplify the proof and, we hope, make the ideas more apparent.

Consider the quadratic family{
f : C× C→ C× C

(z, λ) 7→ (z2 + λ, λ).

For each λ, fλ(z) := z2 + λ defines a polynomial map on C whose filled Julia set Kλ is

Kλ := {z ∈ C, lim sup |fnλ (z)| <∞}.
It is a (perfect) compact set in C and one can similarly consider

K := {(z, λ) ∈ C2, lim sup |fnλ (z)| <∞} =
⋃
λ∈C

Kλ × {λ}.

In this situation, the Geometric Dynamical Northcott Property can be rephrased as

Theorem 1 ([Be, Ba, D]). — The only algebraic curves of C2 contained in K are prepe-
riodic.

We gave a generalization of this result for families of polarized endomorphisms over a
projective variety in [GV] (see also [CH]) though the proof is quite involved due to the
necessity to deal with singular projective varieties, to take normalizations of several such
projective varieties, and to deal with possible isotrivial subvarieties . . . The purpose of this
note is to give the proof in the simplest possible case for a reader who would like to have
a good understanding of the main ideas used in [GV].

The Green current Tf of f is defined as Tf := limn→+∞ 2−n(fn)∗(π∗1(ω)) where
πi : C × C → C is the projection on the i-th factor, and ω is the Fubini-Study
form of P1. The current Tf is a positive closed current with continuous potential
G := lim 2−n log max(|fn(z, λ)|, 1) (i.e. ddcG = Tf in C2) and its slice with any vertical
line {λ} ×C is the Green measure µλ of fλ: µλ is the unique ergodic measure of maximal
entropy log 2, and it satisfies the equidistribution property

lim
n→∞

1

2n

∑
z, fnλ (z)=z

δz = µλ

which is first due to [Br] in that case. Moreover, we have K = {G = 0}.
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Lemma 2. — Let Z ⊂ C2 be an algebraic curve. If Z ⊂ K then Tf ∧ [Z] = 0.

Proof. — As G ≡ 0 on Z, we have G · [Z] = 0 in the sense of currents, so that we find
Tf ∧ [Z] = ddc(G · [Z]) = 0.

In the following, deg(Z) is computed with respect to the ample line bundle π∗1(O(1))⊕
π∗2(O(1)) (in other words, we count the sum of the number of intersections of Z with a
generic vertical line and a generic horizontal line).

Lemma 3. — Let Z ⊂ C2 be an algebraic curve with no vertical component, then Tf ∧
[Z] = 0 if and only if deg(fn(Z)) = O(1).

Proof. — Recall that G is defined by limn 2−n log+ |fnλ (z)|. From the inequality log+ |a+
b| ≤ log+ |a|+ log+ |b|+ log 2, we easily have

| log+ |fλ(z)| − 2 log+ |z|| ≤ log+ |λ|+ log 2.

Hence, |2−k log+ |fkλ (z)| − 2−k+1 log+ |fk−1λ (z)| ≤ 2−k(log+ |λ|+ log 2) and summing from
n+ 1 to ∞, we deduce that

∀λ, z,
∣∣G(z, λ)− 2−n log+ |fnλ (z)|

∣∣ ≤ ∞∑
n+1

|2−k log+ |fkλ (z)| − 2−k+1 log+ |fk−1λ (z)|

≤ log+ |λ|+ log 2

2n−1
.(1)

Let A� 1 and consider the cut-off function on C

φA :=
log max(|λ|, e2A)− log max(|λ|, eA)

A
.

Then, φA is equal to 1 on the disk D(eA) centered at 0 of radius eA, is zero outside D(e2A)

and ddcφA =
λS2A−λSA

A where λSA (resp. λS2A
) is the unit (of mass 1) Lebesgue measure

on the circle of radius eA (resp. radius e2A).
Take an algebraic curve Z ⊂ C2 with no vertical components. We compute, using the

fact that f acts trivially on the variable λ∫
C2

φAf
n
∗ ([Z]) ∧ (π∗2(ω) + π∗1(ω)) =

∫
C2

φA[Z] ∧ (π∗2(ω) + (fn)∗(π∗1(ω)))

=

∫
C2

φA[Z] ∧ π∗2(ω) +

∫
C2

φA[Z] ∧ 2nTf

+ 2n
∫
C2

φA[Z] ∧ (2−n(fn)∗(π∗1(ω))− Tf ).
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Now, since we have 2−n(fn)∗(π∗1(ω))− Tf = ddc(2−n log+ |fλ(z)| −G), by Stokes, (1) and
Bézout’s theorem, we find

In : =

∣∣∣∣2n ∫
C2

φA[Z] ∧ (2−n(fn)∗(π∗1(ω))− Tf )

∣∣∣∣
=

∣∣∣∣2n ∫
C2

(2−n log+ |fλ(z)| −G)ddcφA ∧ [Z]

∣∣∣∣
≤ 2

∫
C2

(log+ |λ|+ log 2)
π∗1(λA)

A
∧ [Z] + 2

∫
C2

(log+ |λ|+ log 2)
π∗1(λ2A)

A
∧ [Z]

≤ 2

∫
C2

(A+ log 2)
π∗1(λSA)

A
∧ [Z] + 2

∫
C2

(2A+ log 2)
π∗1(λS2A

)

A
∧ [Z]

≤ C deg(Z)

where C is a constant that depends neither on A, nor on Z, nor on n. So, up to taking a
larger C, and by letting A→∞, the degree deg fn(Z)

deg fn(Z) :=

∫
C2

fn∗ ([Z]) ∧ (π∗1(ω) + π∗2(ω)).

satisfies ∣∣∣∣deg fn(Z)− 2n
∫
C2

[Z] ∧ Tf
∣∣∣∣ ≤ C deg(Z)

which ends the proof.

Remark. — We may see the family f as a dynamical system f on P1(K), where K is
the field of complex rational functions. Any point z ∈ P1(K) corresponds to a rational

function z : P1 → P1 and the dynamical height function ĥf : P1(K) → R+ is defined on
P1(K) by

ĥf(z) := lim
n→∞

1

2n
deg(zn),

where zn : P1 → P1 corresponds to zn and is defined by zn(λ) := fnλ (z(λ)). In particular,
the lemma gives

ĥf(z) =

∫
C2

Tf ∧ [Z],

when Z is the graph of z ∈ P1(K). In other words, we proved that∣∣∣deg(fn(Z))− 2nĥf (z)
∣∣∣ ≤ C deg(Z).

Lemma 4. — Let Z ⊂ C2 be an algebraic curve with no vertical components, if
deg(fn(Z)) = O(1) then Z is preperiodic.

Proof. — Let AD denote the set of algebraic sets Z of degree ≤ D where, from now on,
we compute the degree in P2 (having bounded degree in P2 or in P1 × P1 is equivalent).
Such Z is defined by some equation: ∑

i+j≤D
ai,jλ

izj = 0

where the (ai,j) ∈ P
(D+1)(D+2)

2 (C). So AD is an algebraic variety (notice that ai,j = 0 for
(i, j) 6= (0, 0) corresponds to the line at infinity). Usually, computing the direct image of
an analytic set cannot be done explicitly, but here it is possible: write

∑
i+j≤D ai,jλ

izj =



4 THOMAS GAUTHIER & GABRIEL VIGNY

∑
i+2j≤D a

′
i,jλ

i(z2+λ)j +z
∑

i+2j≤D−1 a
′′
i,jλ

i(z2+λ)j for some suitable a′i,j , a
′′
i,j depending

linearly on the (ai,j). Then,∑
i+j≤D

ai,jλ
izj = 0 ⇐⇒

∑
i+2j≤D

a′i,jλ
i(z2 + λ)j = −z

∑
i+2j≤D−1

a′′i,jλ
i(z2 + λ)j

⇐⇒
∑

i+2j≤D
a′i,jλ

ifλ(z)j = −z
∑

i+2j≤D−1
a′′i,jλ

ifλ(z).

Take the square (this does not add points because the set −Z := {(z, λ), (−z, λ) ∈ Z} has
the same image than Z) and compute: ∑

i+2j≤D
a′i,jλ

ifλ(z)j

2

=(z2 + λ)

 ∑
i+2j≤D−1

a′′i,jλ
i(fλ(z))j

2

− λ

 ∑
i+2j≤D−1

a′′i,jλ
i(fλ(z))j

2

.

So we recognize that f(Z) is given by the equation ∑
i+2j≤D

a′i,jλ
izj

2

= z

 ∑
i+2j≤D−1

a′′i,jλ
izj

2

− λ

 ∑
i+2j≤D−1

a′′i,jλ
izj

2

.

In particular, the application that sends Z to f(Z) is a morphism (a priori from AD to
AdD) and the condition that deg(f(Z)) ≤ D is an algebraic condition. Intersecting,

{Z ∈AD, ∀n, fn(Z) ∈AD}

is a subvariety of AD.
We now start with a horizontal irreducible algebraic curve Z ∈AD with deg(fn(Z)) ≤

D for all n and consider the Zariski closure Z of {fn(Z), n ∈ N} in AD. Observe that
f induces an action f : Z → Z. In particular, there is an irreducible component Z1 of
Z with fk(Z1) = Z1 for some k. Without loss of generality, we may assume k = 1 and
Z1 = Z in the rest of the proof. Furthermore, a generic element of Z is irreducible by
construction. If Z has dimension 0, then it is finite and Z is preperiodic so we are done.

Assume by contradiction that dim(Z) ≥ 1. Consider the set

Ẑ := {(Z, z, λ) ∈ Z × C2, (z, λ) ∈ Z}.

Then, Ẑ is a subvariety of AD×C2 and our hypothesis implies that the canonical projection

Π : Ẑ → C2 onto the second factor, i.e. defined by Π(Z, z, λ) = (z, λ) is dominant (if not,
its image is a strict algebraic subvariety of C2 which would contradict our assumption that
dim(Z) ≥ 1).

In particular, there is a non-empty Zariski open set W ⊂ C2 such that for any (z, λ) ∈
W , there exists an irreducible Z0 ∈ Z such that (z, λ) ∈ Z0 (if not, we have that for
infinitely many λ, a set in Z has to pass through finitely many points and so Z is finite).

Lemma 5. — Let Z0 ∈ Z be irreducible such that (z0, λ0) ∈ Z0 where z0 is a repelling
periodic point of fλ0 of period k. Then Z0 = {(z, λ), fkλ (z) = z}.
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Take the lemma for granted and continue the proof. As repelling periodic points of a
polynomial are Zariski dense in C, this implies that generically in (z, λ), one and only one
Z ∈ Z passes through (z, λ). In particular, dim(Z) = 1 and the projection Π is finite-to-1
onto its image. Up to taking a base change B → C, we can assume that a given Z0 ∈ Z

is an analytic graph hence, every Z ∈ Z is a graph. In particular, for every (z, λ) in a
Zariski dense open set of C × B, there exists a unique Z ∈ Z such that (z, λ) ∈ Z. Fix
two generic close λ0, λ1, outside the Mandelbrot set (in particular, periodic points can be
followed holomorphically). Let us denote by Φ : C→ C the application that sends z to the
intersection of the leaf that contains z at λ0 with C× {λ1}. Then fλ1(Φ(z)) = Φ(fλ0(z))
for every periodic point, hence for all points by Zariski density. In particular, we have a
holomorphic (hence affine) conjugacy between fλ1 and fλ0 . This is absurd, as fλ1 and fλ0
are holomorphically conjugate if and only if λ1 = λ0.

We now prove Lemma 5.

Proof of Lemma 5. — Let us fix such λ0 and z0 a repelling periodic point of period k of fλ0 ;
we can follow that periodic point holomorphically by λ 7→ y(λ). Let Z0 ∈ Z, irreducible,
such that (z0, λ0) ∈ Z0. Assume that the intersection Z0∩{(y(λ), λ)} is proper at (z0, λ0).
Up to reparametrizing, we can follow locally a branch of Z0 that contains (z0, λ0) through
a graph λ 7→ z(λ) and our hypothesis means that for every λ 6= λ0 in a neighborhood of
λ0, y(λ) 6= z(λ).

By hypothesis, the Green function λ 7→ G(z(λ), λ) is harmonic and it admits a minimum
at (λ0) so it is identically 0. In particular, (z(λ), λ) ∈ K so the sequence (λ 7→ fnλ (z(λ)))n is
normal. In particular, for ε > 0 small enough, we can find K > 1 and δ > 0 small enough
so that, for every n, |fknλ (z(λ)) − y(λ)| < ε for |λ − λ0| < δ (indeed, this is a normal

sequence that is 0 at λ0) and |fkλ (z)− y(λ)| ≥ K|z− y(λ)| for |z− y(λ)| < ε. By iteration,

we deduce |fknλ (z(λ))− y(λ)| ≥ Kn|z(λ)− y(λ)| as y(λ) is repelling, a contradiction.

In particular, by irreducibility, Z0 ⊂ {(z, λ), fkλ (z) = z}. Finally, as {(z, λ), fkλ (z) = z}
is irreducible (e.g. [BL]), we have the equality.

Now, Theorem 1 then follows from the three above lemmas, since the assumption Z ⊂ K

implies Z has no vertical components as K ∩ C× {λ} is compact in C× {λ}.

Remark. — In the particular case we are in, we can give a very short alternate argument
of the end of the proof of Lemma 4 using [BL]: above a Zariski generic parameter λ0,
for a Zariski dense subset of periodic points z for fλ0 , the set Z ∈ Z that passes through
(z, λ0) is of the form {(z, λ), fkλ (z) = z}. But they are only finitely many such algebraic
sets of degree ≤ D.

References

[Ba] Matthew Baker. A finiteness theorem for canonical heights attached to rational maps over
function fields. J. Reine Angew. Math., 626:205–233, 2009.

[Be] Robert L. Benedetto. Heights and preperiodic points of polynomials over function fields. Int.
Math. Res. Not., (62):3855–3866, 2005.

[Br] Hans Brolin. Invariant sets under iteration of rational functions. Ark. Mat., 6:103–144 (1965),
1965.



6 0 REFERENCES

[BL] Xavier Buff and Tan Lei. The quadratic dynatomic curves are smooth and irreducible. In
Frontiers in complex dynamics. In celebration of John Milnor’s 80th birthday. Based on a con-
ference, Banff, Canada, February 2011, pages 49–72. Princeton, NJ: Princeton University Press,
2014.
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