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Abstract. Let OK be the ring of integers of an imaginary quadratic field K.

Recently, Ji and Xie proved that every rational map f : Ĉ → Ĉ of degree d ≥ 2
whose multipliers all lie in OK is a power map, a Chebyshev map or a Lattès

map. Their proof relies on a result from non-Archimedean dynamics obtained
by Rivera-Letelier. In the present note, we show that one can avoid using this

result by considering a differential equation instead. Our proof of Ji and Xie’s

result also applies to the case of entire maps. Thus, we also show that every
nonaffine entire map f : C → C whose multipliers all lie in OK is a power map

or a Chebyshev map.

1. Introduction

Suppose that S is a Riemann surface and f : S → S is a holomorphic map. We
recall that a point z0 ∈ S is periodic for f if there exists an integer p ≥ 1 such that
f◦p (z0) = z0. In this case, the least such integer p is called the period of z0. The
multiplier of f at z0 is the unique eigenvalue λ ∈ C of the differential of f◦p at z0.
By the chain rule, the multiplier is invariant under conjugation: if ϕ : S → S is a
biholomorphism and g = ϕ ◦ f ◦ϕ−1, then ϕ (z0) is periodic for g with period p and
multiplier λ. In this note, we will assume that S represents either the complex line

C or the Riemann sphere Ĉ, and thus the map f will be either entire or rational.

A rational map f : Ĉ → Ĉ of degree d ≥ 2 is said to be

• a power map if it is conjugate to z 7→ z±d,
• a Chebyshev map if it is conjugate to ±Td, where Td is the dth Chebyshev
polynomial,

• a Lattès map if there exist a 1-dimensional complex torus T, a holomorphic

map L : T → T and a nonconstant holomorphic map p : T → Ĉ that make
the following diagram commute:

T T

Ĉ Ĉ

L

f

p p
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Power maps, Chebyshev maps and Lattès maps are called finite quotients of affine
maps by Milnor in [Mil06] and exceptional maps by Ji and Xie in [JX23]. In this
note, we will use the second terminology.

As shown by Milnor in [Mil06], if f : Ĉ → Ĉ is a power map, a Chebyshev map
or a Lattès map, then its multipliers at its periodic points all belong to the ring of
integers OK of some imaginary quadratic field K ⊂ C. Milnor conjectured that the
converse is true. In [Hug22], the third author proved the conjecture for quadratic
rational maps. Ji and Xie later proved the general case:

Theorem 1 ([JX23, Theorem 1.12]). Assume that K ⊂ C is an imaginary qua-

dratic field and f : Ĉ → Ĉ is a rational map of degree d ≥ 2 whose multipliers all
lie in OK . Then f is a power map, a Chebyshev map or a Lattès map.

In this note, we present a variant of Ji and Xie’s proof of Theorem 1. Our proof
only differs from the original one in one of the arguments: where they use a result
from non-Archimedean dynamics proved by Rivera-Letelier in [RL03], we consider
a differential equation instead. Thus, our main contribution is Proposition 13.

We also determine the entire maps with integer multipliers. A nonaffine entire
map f : C → C is said to be a power map or a Chebyshev map if it is polynomial
and it is a power map or a Chebyshev map in the previous sense. Equivalently, a
nonaffine entire map f : C → C is

• a power map if it is conjugate to z 7→ zd for some integer d ≥ 2,
• a Chebyshev map if it is conjugate to ±Td for some integer d ≥ 2.

Also note that Lattès maps are not polynomial.
Our arguments to prove Theorem 1 also apply to the case of entire maps. Thus,

we obtain the result below, which shows that there is no transcendental entire map
whose multipliers all lie in the ring of integers of some imaginary quadratic field.

Theorem 2. Assume that K ⊂ C is an imaginary quadratic field and f : C → C
is a nonaffine entire map whose multipliers all lie in OK . Then f is a power map
or a Chebyshev map.

Remark 3. In fact, our proof shows that the conclusions of Theorems 1 and 2 still
hold if one only assumes that there is some open set U that intersects the Julia set
Jf of f and such that the multipliers of f at its periodic points in U all lie in OK .
This is also true of Ji and Xie’s proof of Theorem 1.

After writing this note, the third author obtained the following stronger version
of Theorem 1:

Theorem 4 ([Hug23, Main Theorem]). Assume that K ⊂ C is a number field and

f : Ĉ → Ĉ is a rational map of degree d ≥ 2 whose multipliers all lie in K. Then f
is a power map, a Chebyshev map or a Lattès map.

In contrast, the first and third authors together with Gorbovickis later showed
that Theorem 2 does not generalize to the case of rational multipliers:

Theorem 5 ([BGH23, Theorem 4]). Assume that K ⊂ C is a number field that is
not contained in R. Then there exist transcendental entire maps f : C → C whose
multipliers all lie in K.

In Section 2, we present a characterization of power maps, Chebyshev maps and
Lattès maps. In Section 3, we present our proof of Theorems 1 and 2.



ENTIRE OR RATIONAL MAPS WITH INTEGER MULTIPLIERS 3

2. Exceptional maps and escaping quadratic-like maps

Throughout this section, we assume that S denotes either C or Ĉ. We say that
a holomorphic map f : S → S is nonlinear if it is neither constant nor injective. In
other words, the nonlinear holomorphic maps f : S → S are precisely the nonaffine

entire maps if S = C and the rational maps of degree d ≥ 2 if S = Ĉ.

2.1. Exceptional maps. We say that a nonlinear holomorphic map f : S → S is
exceptional if it is a power map, a Chebyshev map or a Lattès map.

Ritt obtained the following characterization of exceptional maps:

Lemma 6 ([Rit22]). Suppose that f : S → S is a nonlinear holomorphic map,
ϕ : C → S is a nonconstant holomorphic map, α : C → C is an affine map that is
not a translation and τ : C → C is a nontrivial translation such that

ϕ ◦ α = f ◦ ϕ and ϕ ◦ τ = ϕ .

Then f is exceptional.

Remark 7. In fact, Ritt is interested in the equation ϕ ◦ α = f ◦ ϕ, with f : Ĉ → Ĉ
a rational map, α : C → C a nontrivial homothety about the origin and ϕ : C → Ĉ
a periodic and nonconstant holomorphic map, and he seeks to find ϕ. As he points
out in the last sentence of his introduction, his arguments also apply if f : C → C
is an entire map and ϕ : C → C is a periodic and nonconstant entire map. We may
also take α : C → C to be any affine map that is not a translation, conjugating α if
necessary to reduce to the previous situation. Finally, one easily deduces from the
form of ϕ found by Ritt that f is necessarily exceptional if it is nonlinear.

The following generalization of Lemma 6 is essentially due to Ji and Xie (com-
pare [JX23, Lemma 2.9]).

Lemma 8. Suppose that f : S → S is a nonlinear holomorphic map, ϕ : C → S is
a nonconstant holomorphic map and α1 : C → C and α2 : C → C are affine maps
that do not commute and such that

ϕ ◦ α1 = f ◦ ϕ = ϕ ◦ α2 .

Then f is exceptional.

Proof. Note that α1 or α2 is not a translation as, otherwise, they would commute.
Also note that α1 and α2 are both nonconstant because f and ϕ are not constant.
Define the affine map

τ = α1 ◦ α−1
2 ◦ α1 ◦ α2 ◦

(
α−1
1

)◦2
.

Then τ is a translation as the linear endomorphism associated with a composition
of affine maps equals the composition of the associated linear endomorphisms and
linear endomorphisms of C commute. Also note that τ is not the identity map as,
otherwise, α1 and α2 would commute. Thus, τ : C → C is a nontrivial translation.
Moreover, we have

ϕ ◦ α1 ◦ α2 = f ◦ ϕ ◦ α2 = f◦2 ◦ ϕ = f ◦ ϕ ◦ α1 = ϕ ◦ α◦2
1 ,

and hence

ϕ ◦ τ = ϕ ◦ α1 ◦ α−1
2 ◦ α1 ◦ α2 ◦

(
α−1
1

)◦2
= ϕ ◦ α1 ◦ α2 ◦

(
α−1
1

)◦2
= ϕ .

Therefore, f is exceptional by Lemma 6, and the lemma is proved. □
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2.2. Escaping quadratic-like maps. An escaping quadratic-like map is a holo-
morphic covering map f : U → V of degree 2, with U, V nonempty open subsets of
C such that U ⋐ V and V is simply connected. In this situation, note that U has
two connected components U1 and U2, which are mapped biholomorphically onto
V by f .

Remark 9. The notion of escaping quadratic-like map is related to the well-known
one of quadratic-like map as follows: Recall that a quadratic-like map is a proper
holomorphic map f : V → W of degree 2, with V ⋐ W nonempty simply connected
open subsets of C. In this situation, f : V → W has a unique critical point γ ∈ V .
If f(γ) ∈ W \ V , then f : f−1(V ) → f−1(W ) is an escaping quadratic-like map.

We shall use the result below, which was proved by Bergweiler. His proof relies
on a weak version of the Ahlfors five islands theorem. We give here a proof in the
case of rational maps, which follows Ji and Xie’s proof of Theorem 1. We refer the
reader to Bergweiler’s article for a proof of the general case.

Lemma 10 ([Ber00, Proposition B.3]). Suppose that f : S → S is a nonlinear
holomorphic map. Then there exist an integer n ≥ 1 and open subsets U, V of C
such that f◦n : U → V is an escaping quadratic-like map.

Proof in the case of rational maps. Suppose here that f : Ĉ → Ĉ is a rational map
of degree d ≥ 2. Then f has infinitely many repelling periodic points. Moreover, f
has only finitely many critical points and, hence, also only finitely many periodic
points that lie in the forward orbit of a critical point. Therefore, f has a repelling
periodic point z1 ∈ C, with period p ≥ 1, that does not lie in the forward orbit of
a critical point. There exist a simply connected open neighborhood V1 of z1 in C
and a local inverse g1 : V1 → g1 (V1) of f

◦p such that g1 (z1) = z1 and g1 (V1) ⋐ V1.
Now, z1 lies in the Julia set Jf of f and its iterated preimages accumulate on all
of Jf , and hence there exist ℓ ≥ 1 and z2 ∈ V1 \ {z1} such that f◦ℓ (z2) = z1. The
point z2 is not critical for f by the definition of z1, and hence there exist a simply
connected open neighborhood V ⊂ V1 of z1 and a local inverse g2 : V → g2(V ) of
f◦ℓ such that g2 (z1) = z2 and g2(V ) ⋐ V1 \ {z1}. Now, note that g1 : V1 → g1 (V1)
is a contracting map with respect to the Poincaré metric on V1 since g1 (V1) ⋐ V1.
Therefore, as g1 (z1) = z1, g2(V ) ⋐ V1 \ {z1} and V ⊂ V1, there exist m1,m2 ≥ 1
such that

W2 = g◦m1
1 ◦ g2(V ) ⋐ V and W1 = g◦m2

1 (V ) ⋐ V \W2 .

Define
h1 = g◦m2

1 : V → W1 and h2 = g◦m1
1 ◦ g2 : V → W2 .

Note that h1 is a local inverse of f◦n1 , with n1 = m2p, and h2 is a local inverse of
f◦n2 , with n2 = m1p+ ℓ. Set

n = n1n2 and U = h◦n2
1 (V ) ∪ h◦n1

2 (V ) .

Then f◦n : U → V is an escaping quadratic-like map. This completes the proof of
the lemma in the case of rational maps. □

2.3. Affine escaping quadratic-like maps. We say that an escaping quadratic-
like map f : U → V is affine if it is affine on each of the two connected components
of U . We say that two escaping quadratic-like maps f1 : U1 → V1 and f2 : U2 → V2

are conjugate if there exists a biholomorphism ϕ : V1 → V2 such that ϕ ◦ f1 = f2 ◦ϕ
on U1.
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In our proof of Theorems 1 and 2, we shall use the following characterization of
exceptional maps:

Lemma 11. Suppose that f : S → S is a nonlinear holomorphic map such that an
escaping quadratic-like map of the form f◦n : U → V , with n ≥ 1 and U, V ⊂ C, is
conjugate to an affine escaping quadratic-like map. Then f is exceptional.

Proof. By hypothesis, there exist an affine escaping quadratic-like map g : U ′ → V ′

and a biholomorphism ϕ : V ′ → V such that ϕ ◦ g = f◦n ◦ ϕ on U ′. Denote by U ′
1

and U ′
2 the two connected components of U ′. Then the restrictions of g to U ′

1 and
U ′
2 agree with the restrictions of affine maps α1 : C → C and α2 : C → C. We have

ϕ ◦ α1 = f◦n ◦ ϕ on U ′
1 and ϕ ◦ α2 = f◦n ◦ ϕ on U ′

2. As the affine maps α1 and α2

are repelling, we may use any of these two relations to extend ϕ to a holomorphic

map ϕ̂ : C → S. By the identity principle, we have

ϕ̂ ◦ α1 = f◦n ◦ ϕ̂ = ϕ̂ ◦ α2 .

Furthermore, α1 and α2 have distinct fixed points, in U ′
1 and U ′

2 respectively, and
hence they do not commute. Therefore, the map f◦n is exceptional by Lemma 8,
and hence so is f . Thus, the lemma is proved. □

Remark 12. The proof above uses the fact that, if f : Ĉ → Ĉ is a rational map of
degree d ≥ 2 such that f◦n is exceptional for some n ≥ 1, then so is f . This can be

deduced from the following facts. Any postcritically finite rational map f : Ĉ → Ĉ
of degree d ≥ 2 has an associated orbifold Of . A rational map f : Ĉ → Ĉ of degree
d ≥ 2 is an exceptional map if and only if it is postcritically finite and its orbifold

Of is parabolic. If f : Ĉ → Ĉ is a rational map of degree d ≥ 2 and n ≥ 1, then f
is postcritically finite if and only if f◦n is postcritically finite and, in this case, we
have Of = Of◦n . We refer the reader to [BM17] for further details.

3. Proof of the results

As for entire and rational maps, we can define the notions of periodic point and
multiplier for escaping quadratic-like maps. It follows from Lemmas 10 and 11 that
Theorems 1 and 2 are a consequence of the following result:

Proposition 13. Assume that K is an imaginary quadratic field and f : U → V is
an escaping quadratic-like map whose multipliers all lie in OK . Then f is conjugate
to an affine escaping quadratic-like map.

Our proof of this statement will occupy the rest of the note. Assume from now
on that f : U → V is an escaping quadratic-like map whose multipliers all lie in the
ring of integers OK of some imaginary quadratic field K. Denote by U1 and U2 the
two connected components of U and define

f1 = f |U1
, f2 = f |U2

, g1 = f−1
1 : V → U1 , g2 = f−1

2 : V → U2 .

As U ⋐ V , the maps g1 and g2 are contracting with respect to the Poincaré metric
on V . Therefore, the maps f1 and f2 have unique fixed points z1 ∈ U1 and z2 ∈ U2

respectively, which are repelling. Denote by λ1 and λ2 their associated multipliers,
which lie in OK .

By the Koenigs linearization theorem, the sequence (ϕn)n≥0 of univalent maps
defined on V by

ϕn(z) = λn
1 (g

◦n
1 (z)− z1)
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converges to a univalent map ϕ : V → C such that ϕ ◦ f1 = λ1ϕ. Thus, replacing f
by ϕ ◦ f ◦ ϕ−1 if necessary, we may assume that f1(z) = λ1z for all z ∈ U1, which
yields U1 = 1

λ1
V and z1 = 0. We shall prove that f2 is affine.

3.1. A special sequence of periodic points. Still following Ji and Xie’s proof,
we consider a particular sequence of periodic points for f . For each n ≥ 1, the map

g2 ◦ g◦(n−1)
1 : V → U2 is contracting with respect to the Poincaré metric on V , and

hence it has a unique fixed point wn ∈ U2. For every n ≥ 1, we have

∀j ∈ {1, . . . , n}, f◦j (wn) = g
◦(n−j)
1 (wn) =

wn

λn−j
1

.

In particular, for every n ≥ 1, the point wn is periodic for f with period n and its
associated multiplier ρn satisfies

ρn =

n∏
j=1

f ′

(
wn

λn−j
1

)
= λn−1

1 f ′
2 (wn) ∈ OK .

Note that

wn = g2

(
wn

λn−1
1

)
= α+

β

λn−1
1

+ o

(
1

λn
1

)
as n → +∞ , with

{
α = g2(0)
β = αg′2(0)

,

since lim
n→+∞

wn = α, and hence

ρn = λn−1
1 f ′

2 (wn) = aλn−1
1 + b+ o(1) as n → +∞ , with

{
a = f ′

2(α)
b = βf ′′

2 (α)
.

Now, let us use the assumption that the multipliers of f all lie in OK to obtain
the following:

Claim 14. We have ρn = aλn−1
1 + b for all n sufficiently large.

Proof. Write ρn = aλn−1
1 + b+ εn for n ≥ 1, so that lim

n→+∞
εn = 0. Then, for every

n ≥ 1, we have

λ1ρn − ρn+1 = (λ1 − 1) b+ λ1εn − εn+1 ∈ OK .

Moreover, lim
n→+∞

(λ1εn − εn+1) = 0. It follows that (λ1 − 1) b ∈ OK because OK is

closed in C. Therefore, since OK is discrete, for every n sufficiently large, we have
λ1ρn − ρn+1 = (λ1 − 1) b, and hence εn+1 = λ1εn. As |λ1| > 1 and lim

n→+∞
εn = 0,

this yields εn = 0 for all n sufficiently large. Thus, the claim is proved. □

3.2. A differential equation. Our proof now deviates from Ji and Xie’s proof of
Theorem 1. Instead of using a result concerning the non-Archimedean dynamics of
rational maps, we show that f2 is solution of a simple differential equation.

Claim 15. The holomorphic map f2 : U2 → V satisfies

(E) ∀z ∈ U2, f
′
2(z) = a+ b

f2(z)

z
.

Proof. For every n sufficiently large, we have

f ′
2 (wn) =

ρn

λn−1
1

= a+
b

λn−1
1

= a+ b
f2 (wn)

wn
.

Therefore, since (wn)n≥1 accumulates at α ∈ U2, the relation (E) follows from the
identity principle. Thus, the claim is proved. □
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Note that, as (E) is a first-order linear ordinary differential equation, it may be
easily solved. However, we shall not use the explicit form of the solutions.

Claim 16. We have

f ′
2(α)

λ2
= 1 +

ν

1− λ2
, with α = g2(0) and ν = z2

f ′′
2 (z2)

f ′
2 (z2)

.

Proof. Evaluating (E) at z = z2, we obtain

λ2 = a+ b = f ′
2(α) + b .

Moreover, differentiating (E) and evaluating at z = z2, we obtain

f ′′
2 (z2) =

b

z2
(λ2 − 1) .

Therefore, we have

ν = z2
f ′′
2 (z2)

λ2
=

b

λ2
(λ2 − 1) =

(
1− f ′

2(α)

λ2

)
(λ2 − 1) ,

which may be rewritten in the desired form. Thus, the claim is proved. □

3.3. Conclusion. For k ≥ 1, consider the map f [k] : U1 ∪ g◦k2 (V ) → V defined by

f [k](z) =

{
λ1z if z ∈ U1

f◦k
2 (z) if z ∈ g◦k2 (V )

.

For every k ≥ 1, the map f [k] is an escaping quadratic-like map whose multipliers
all lie in OK . Moreover, for every k ≥ 1, the map f [k] fixes z2 with multiplier λk

2 .
Therefore, for every k ≥ 1, applying Claim 16 with f [k] instead of f , we obtain(

f◦k
2

)′
(αk)

λk
2

= 1 +
νk

1− λk
2

, with αk = g◦k2 (0) and νk = z2

(
f◦k
2

)′′
(z2)(

f◦k
2

)′
(z2)

.

Now, an elementary calculation – which is the composition rule for nonlinearities –
shows that

νk =

k−1∑
j=0

λj
2ν1 =

1− λk
2

1− λ2
ν1

for all k ≥ 1, and in particular

νk
1− λk

2

=
ν1

1− λ2

does not depend on k ≥ 1. Therefore, for every k ≥ 1, we have

f ′
2 (αk+1)

λ2
·
(
f◦k
2

)′
(αk)

λk
2

=

(
f
◦(k+1)
2

)′
(αk+1)

λk+1
2

=

(
f◦k
2

)′
(αk)

λk
2

,

and hence f ′
2 (αk+1) = λ2. As (αk)k≥2 accumulates at z2 ∈ U2, it follows from the

identity principle that

∀z ∈ U2, f
′
2(z) = λ2 .

Thus, the map f2 is affine, which completes the proof of Proposition 13.
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