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Abstract. — In the first part of the present paper, we continue our study of the distri-
bution of postcritically finite parameters in the moduli space of polynomials: we show the
equidistribution of PCF Misiurewicz parameters with prescribed combinatorics toward the
bifurcation measure. Our results essentially rely on a combinatorial description of the escape
locus and of the bifurcation measure developed by Kiwi and Dujardin-Favre.

In the second part of the paper, we construct a bifurcation measure for the connectedness
locus of the quadratic anti-holomorphic family which is supported by a strict subset of the
boundary of the Tricorn. We also establish an approximation property by PCF Misiurewicz
parameters in the spirit of the previous one.
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Introduction

In this article, we study equidistribution problems in parameter spaces of polynomials.
In any holomorphic family of rational maps, DeMarco [De] introduced a current Tbif

which is supported exactly on the bifurcation locus, giving a measurable point of view
to study bifurcations. Bassanelli and Berteloot [BB1] considered the self-intersections of
this current which enable to study higher bifurcations phenomena. In the moduli space Pd
of degree d polynomials, the maximal self-intersection of the bifurcation current induces a
bifurcation measure, µbif, which is the analogue of the harmonic measure of the Mandelbrot
set when d ≥ 3. It measures the sets of maximal bifurcation phenomena (see [DF]).

In particular, we want to understand the distribution of the postcritically finite Misi-
urewicz parameters (the parameters for which all the critical points are strictly preperi-
odic). Such parameters play a central role in complex dynamics. They allow computations
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of Hausdorff dimension of parametric fractal sets ([Sh, G1]). They also are special from
the arithmetic point of view, since they are points of small height for a well-chosen Weil
height ([I, FG]). They also play a central role in the geometry of the bifurcation locus:
it is around such parameters that we can exhibit rich geometric phenomena (for example
small copies of the Mandelbrot set [Mc, G2] or similarity between the Julia set and the
bifurcation locus [DH2, Ta]).

In Pd, Dujardin and Favre [DF] proved the density of Misiurewicz parameters in the
support of the bifurcation measure (see [BE] for the case of rational maps, which relies on
the results of [BB1]). Our goal here is to give a measurable version of this statement to
better understand the distribution of these parameters. More precisely, we want to show
that the probability measure equidistributed on such Misiurewicz parameters converges
to the bifurcation measure (letting the length of critical orbits go to ∞). This can be
seen as a parametric version of Birkhoff’s ergodic Theorem and also as an arithmetic
equidistribution statement. Several distinct approaches exist to get such a convergence of
measures, making it a deep and rich subject.

Indeed, such convergence has already been achieved using pluripotential theoretic tools.
Levin [L] showed the equidistribution of PCF (postcritically finite) parameters toward
the bifurcation measure in the quadratic family using extremal properties of the Green
function of the Mandelbrot set. That approach has been extended by Dujardin and Favre
to prove the equidistribution of maps having a preperiodic marked critical point toward
the bifurcation current of that given critical point [DF] (see also [O] for a simplified proof
in the hyperbolic case). Still relying on pluripotential theory, the authors proved the
equidistribution of hyberbolic PCF parameters with exponential speed of convergence in
[GV]. Notice also the results of [Du] for the case of intersections of bifurcation currents
of given marked critical points.

Another fruitful approach was the use of arithmetic methods, using the Theorem of
equidistribution of points of small height. Indeed, PCF parameters are arithmetic. Favre
and Rivera-Letelier [FRL] first used this approach for the quadratic family in order to
prove the equidistribution of PCF parameters toward the bifurcation measure, with an
exponential speed of convergence. This result was extended to higher degrees by Favre
and the first author in [FG]. Notice that the equidistribution statement proved in [FG]
requires technical assumptions on the preperiods and periods of the critical orbits of the
PCF parameters considered in the approximation.

Here, we develop instead a combinatorial approach, based on the impression of external
rays. For that, we impose conditions on the combinatorics of angles with given period and
preperiod landing at critical points instead of giving conditions for the parameter itself
(see Section 3.1). On the other hand, we make no technical assumption on the periods
and preperiods of the critical orbits. The first part of this article is dedicated to the proof
of Theorem A in that setting. For that, we develop further the arguments of Dujardin and
Favre [DF], using Kiwi’s results on the combinatorial space and the landing of external
rays ([K4, K3]) and the results of Przytycki and Rohde [PR] on the rigidity of Topological
Collet-Eckmann repellers.

Let Cb be the space of combinatorics of degree d polynomials (see Section 1 for a precise
definition). Pick now any (d − 1)-tuples n = (n0, . . . , nd−2) and m = (m0, . . . ,md−2) of
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non-negative integers with mi > ni. We let

C(m,n) := {(Θ0, . . . ,Θd−2) ∈ Cb ; ∀i, ∃θ ∈ Θi, d
miθ = dniθ }.

When mi > ni ≥ 1 for all i, we also let

C∗(m,n) := C(m,n) \ C(m− n, 0).

A combinatorics Θ ∈ C∗(m,n) is called Misiurewicz. The space Cb is known to admit
a natural probability measure µCb. Dujardin and Favre have also built a landing map
e : Cb −→ Pd which satisfies e∗(µCb) = µbif and which sends Misiurewicz combinatorics to
Misiurewicz polynomials (see Sections 3.1 and 3 for more details).

Our first result can be stated as follows.

Theorem A. — Let (nk)k and (mk)k be two sequences of (d − 1)-tuples with mk,j >
nk,j ≥ 1 and mk,j → ∞ as k → ∞ for all j. Let Xk := e(C∗(mk, nk)) and let µk be the
measure

µk :=
1

Card(C∗(mk, nk))

∑
{P}∈Xk

NCb(P ) · δ{P},

where NCb(P ) ≥ 1 is the (finite) number of distinct combinatorics of the polynomial P .
Then µk converges to µbif as k →∞ in the weak sense of probablility measures on Pd.

Notice that the support of µk is contained in the set of classes {P} ∈ Pd such that
Pnk,j (cj) = Pmk,j (cj) and cj is not periodic. Remark also that the above result does not
deal with an equidistribution property, since the considered measures take into account
the combinatorial multiplicity NCb(P ) of Misiurewicz parameters. We give in Section 3.1
a description of the range of NCb.

Building on the same idea, we give a sufficient condition for polynomials with (d − 1)
distinct parabolic cycles to equidistribute the bifurcation measure.

In the second part of the present work, we adapt the above combinatorial methods to
the case of the parameters space of quadratic antiholomorphic polynomials, i.e. the family

fc(z) := z̄2 + c , c ∈ C.

The connectedness locus, in this setting, is known as the Tricorn M∗
2. As observed by Inou

and Mukherjee in [IM], the harmonic measure of the Tricorn is not a good candidate to
measure bifurcation phenomena: the existence of (real analytic) stable parabolic arcs is
an obstruction for the density of PCF parameters in the boundary of tricorn. We develop
further the theory of the landing map of external rays in this setting. Precisely, we prove
the following.

Theorem B. — Almost any external ray of the Tricorn M∗
2 lands and, if ` : R/Z −→

∂M∗
2 is the landing map, then ` is measurable and there exists a set R ⊂ R/Z of full

Lebesgue measure such that `|R is continuous.

The use of external rays for the Tricorn has been initiated by Nakane in [N] to prove the
connectedness of the Tricorn. A finer study of the topological and combinatorial properties
was developed by several authors (e.g. [HS] where the authors showed that the Tricorn
is not path connected).

To prove Theorem B, we imbed the quadratic antiholomorphic polynomials family in
a complex family of degree 4 polynomials maps in order to use again Kiwi’s results on
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the combinatorial space to prove the equidistribution of Misiurewicz parameters. We now
define the bifurcation measure of the Tricorn M∗

2 as

µ∗bif := (`)∗
(
λR/Z

)
.

We believe that this measure should equidistribute other dynamical phenomena, as hy-
perbolic postcritically finite parameters for example. For n > k > 0, we consider the
following set of Misiurewicz parameters:

Per∗(n, k) := {c ∈ C ; fnc (0) = fkc (0) and fn−kc (0) 6= 0} ,

similarly we consider the following set of Misiurewicz combinatorics:

C∗(n, k) := {θ ∈ R/Z ; (−2)n−1θ = (−2)k−1θ and (−2)n−k(θ) 6= θ} .

Building on the above definition of the bifurcation measure, we can describe the distri-
bution of the sets (`)∗(C

∗(n, k)) which is a subset of Per∗(n, k). This is the content of our
next result.

Theorem C. — For any 1 < k < n, the set Per∗(n, k) is finite and (`)∗(C
∗(n, k)) ⊂

Per∗(2n, 2k). Moreover, for any sequence 1 < k(n) < n, the measure

µ∗n :=
1

Card(C∗(n, k(n)))

∑
c∈(`)∗(C∗(n,k(n)))

NR/Z(c) · δc ,

where NR/Z(c) := Card{θ ∈ C∗(n, k(n)) ; `(θ) = c} ≥ 1, converge to µ∗bif in the weak sense
of measures on C.

In a certain sense, parameters of (`)∗(C
∗(n, k(n))) are truly of pure period n−k(n) and

preperiod k(n), since their combinatorics also have the same property.
Notice that the question of counting parameters such that fnc (0) = fkc (0) is of real

algebraic nature and is difficult. On this matter, notice the difficult work [MNS] where
the authors notably count the number of hyperbolic components of the Tricorn.

In order to prove the above result, we relate the Misiurewicz character of fc to the Mis-
iurewicz character of the induced degree 4 polynomials for which we can apply known re-
sults about landing of external rays. We also relate the measure µ∗bif to the bifurcation mea-
sure νbif of this family of degree 4 polynomials by the inclusion supp(µ∗bif) ⊂ supp(νbif)∩R2.
This follows from the fact that Misiurewicz parameters belong to the support of νbif and
are dense in it.

In a first section, we start with general preliminaries, notably on the combinatorial space
and the landing of external rays. We then give the proof of Theorem A in the particular
case of the quadratic family (for parabolic and Misiurewicz combinatorics). That proof
is of folklore nature in this case but we believe it will help the global understanding of
the reader. In Part I, we prove Theorem A and explore the basic landing properties of
parabolic combinatorics à la Douady and Hubbard. In Part II, we treat the case of the
Tricorn. We start by exploring the combinatorial space in this setting. Finally, we prove
Theorems B and C.

Acknowledgement. — Both authors are partially supported by the ANR project
Lambda ANR-13-BS01-0002.
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1. General preliminaries

1.1. The moduli space and the visible shift locus

The moduli space Pd of degree d polynomials is the space of affine conjugacy classes of
degree d polynomials with d − 1 marked critical points. A point in Pd is represented
by a d-tuple (P, c0, . . . , cd−2) where P is a polynomial of degree d, and the ci’s are com-
plex numbers such that {c0, . . . , cd−2} is the set of all critical points of P . For each i,
Card{j, cj = ci} is the order of vanishing of P ′ at ci. Two points (P, c0, . . . , cd−2) and

(P̃ , c̃0, . . . , c̃d−2) are identified when there exists an affine map φ such that P̃ = φ◦P ◦φ−1,
and c̃i = φ(ci) for all 0 ≤ i ≤ d− 2.

The set Pd is a quasiprojective variety of dimension d − 1, and is isomorphic to the
quotient of Cd−1 by the finite group of (d− 1)-th roots of unity acting linearly and diago-
nally on Cd−1 (see [Si]). When d ≥ 3, this space admits a unique singularity at the point
(zd, 0, . . . , 0).

Recall that for (P, c0, . . . , cd−2) ∈ Pd, the Green function of P is defined by

gP (z) := lim
n→+∞

d−n log+ |Pn(z)|, z ∈ C .

It satisfies KP = {gP = 0} and it is a psh and continuous function of (P, z) ∈ Pd×C. Let

G(P ) := max
0≤j≤d−2

gP (cj) .

The connectedness locus Cd := {(P, c0, . . . , cd−2) ∈ Pd ; JP is connected} is a compact set
and satisfies Cd = {(P, c0, . . . , cd−2) ∈ Pd ; G(P ) = 0} (see [BH]).

We also call Böttcher coordinate of P at infinity the unique biholomorphic map

φP : C \ {z ∈ C ; gP (z) ≤ G(P )} −→ C \ D(0, exp(G(P )))

which is tangent to the identity (assuming that P is monic) at infinity and satisfies

1. φP ◦ P = (φP )d on C \ {z ∈ C ; gP (z) ≤ G(P )},
2. gP (z) = log |φP (z)| for all z ∈ C \ {z ∈ C ; gP (z) ≤ G(P )}.

For an angle θ ∈ [0, 1], consider the set:

φ−1
P (] exp(G(P )),+∞[e2iπθ) .

We define the external ray Rθ for P of angle θ as the maximal flow line of the gradient
∇gP in {gP > 0} = C \ KP that contains that set. If it meets a critical point ci of P , we
say that Rθ terminates at ci.

Definition 1.1. — We say that a (P, c0, . . . , cd−2) ∈ Pd lies in the shift locus Sd if all
critical points of P escape under iteration. We also say that a class (P, c0, . . . , cd−2) ∈ Sd
lies in the visible shift locus Svis

d if for all 0 ≤ i ≤ d − 1, there exists degci(P ) external
rays terminating at ci and P (ci) belongs to an external ray.

When (P, c0, . . . , cd−2) ∈ Svis
d , we denote by Θ(P ) the combinatorics (or critical portrait)

of P , i.e. the (d − 1)-tuple Θ(P ) := (Θ0, . . . ,Θd−2) of finite subsets of R/Z for which Θi

is exactly the collection of angles of rays landing at ci.
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1.2. The combinatorial space

We follow the definition given by Dujardin and Favre [DF]. Two finite and disjoint subsets
Θ1,Θ2 ⊂ R/Z are said to be unlinked if Θ2 is included in a single connected component
of (R/Z) \Θ1. We let S be the set of pairs {α, α′} contained in the circle R/Z, such that
dα = dα′ and α 6= α′. First, we can define the simple combinatorial space.

Definition 1.2. — We let Cb0 be the set of (d − 1)-tuples Θ = (Θ0, . . . ,Θd−2) ∈ Sd−1

such that for all i 6= j, the two pairs Θi and Θj are disjoint and unlinked.

It is known that Cb0 has a natural structure of translation manifold. It is also known
to carry a natural invariant probability measure that we will denote µCb0 (see [DF, §7]).
We now may define the full combinatorial space.

Definition 1.3. — The set Cb is the collection of all (d − 1)-tuples (Θ0, . . . ,Θd−2) of
finite sets in R/Z satisfying the following four conditions:

– for any fixed i, Θi = {θ1, . . . , θk(i)} and dθj = dθ1 for all j;
– for any i 6= j, either Θi = Θj or Θi ∩Θj = ∅;
– if N is the total number of distinct Θi’s, then Card

⋃
i Θi = d+N − 1;

– for any i 6= j such that Θi ∩Θj = ∅, the sets Θi and Θj are unlinked.

Remark. — When (P, c0, . . . , cd−2) ∈ Svis
d , then Θ(P ) ∈ Cb.

We will use the following.

Proposition 1.4 (Kiwi, Dujardin-Favre). — The set Cb is compact and path con-
nected and contains Cb0 as a dense open subset.

Then, we define, as Dujardin and Favre, the combinatorial measure µCb as the only
probability measure on µCb which coincides with µCb0 on Cb0 and does not charge Cb\Cb0.

Following Kiwi [K4], we will use the following definition.

Definition 1.5. — Pick Θ ∈ Cb. We say that P lies in the impression of Θ if there exists
a sequence Pn ∈ Svis

d converging to P such that the corresponding combinatorics Θ(Pn)
converge to Θ.

We denote by ICd(Θ) the impression of any Θ ∈ Cb. Kiwi proved the following result
concerning basic properties of the impression of a combinatorics (see [K4]).

Proposition 1.6. — For any Θ ∈ Cb, the impression ICd(Θ) is a non-empty connected
compact subset of ∂Cd ∩ ∂Sd.

According to Theorem 5.12 of [K3], whenever JP = KP is locally connected and P has
no irrationally neutral cycle, the map P : JP −→ JP is conjugate to the maps induced
by z 7→ zd on a quotient S1/ ∼P of S1 by a dynamically defined equivalence relation.
Moreover, Theorem 1 of [K4] guarantees that if P, P ′ ∈ ICd(Θ) have only repelling cycles
and have locally connected Julia sets JP = KP and JP̃ = KP̃ , the quotient spaces S1/ ∼P
and S1/ ∼P ′ depend only on the combinatorics Θ, and in particular are homeomorphic.
In fact, Theorem 5.13 of [K3] guarantees that they are actually conjugate on C

All this summarizes as follows.
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Theorem 1.7 (Kiwi). — Let Θ ∈ Cb0 and let (P, c0, . . . , cd−2), (P̃ , c̃0, . . . , c̃d−2) ∈
ICd(Θ). Assume that JP = KP and JP̃ = KP̃ are locally connected and that P and P̃
have only repelling cycles. Then there exists an orientation preserving homeomorphism
h : C −→ C which conjugates P to P̃ on C.

In the sequel, we will use this result in the following way: when the impression ICd(Θ)
of Θ contains a polynomial which is topologically rigid, with locally connected Julia set
and having only repelling cycles, then ICd(Θ) is reduced to the singleton {P}. We will be
particularly interested in the case where P is Topological Collet-Eckmann.

Recall that a polynomial P satisfies the topological Collet-Eckmann (or TCE) condition
if for some A ≥ 1 there exist constants M > 1 and r > 0 such that for every x ∈ JP there
is an increasing sequence (nj) with nj ≤ A · j such that for every j,

Card
{
i ; 0 ≤ i < nj ,Compf i(x)f

−(nj−i)D(fnj (x), r) ∩ C(P ) 6= ∅
}
≤M,

where Compx(X) is the connected component of the set X containing x and C(P ) is the
critical set of P . It is known that if P is TCE, then JP is locally connected, C(P ) ⊂ JP =
KP and P only has repelling cycles (see e.g. [PRLS, Main Theorem]).

1.3. Measure theoretic tools

A classical result states that if f : X −→ Y is a map between metric spaces, ν is a
probability measure on X and νn converges weakly to ν and if the set Df of discontinuities
of f satisfies ν(Df ) = 0, then f∗(νn) converges weakly to f∗(ν). This is known as the
mapping theorem. We prove the following slight generalization that we will use in a
crucial way.

Theorem 1.8. — Let (X, dX) and (Y, dY ) be metric spaces and let f : X −→ Y be a
measurable map. Let ν be a probability measure on X such that there exists a Borel subset
S ⊂ X with ν(S) = 1 and such that f |S : S −→ Y is continuous. Pick any sequence νn of
probability measures on X with νn(S) = 1. Assume in addition that νn converges weakly
to ν on X. Then f∗(νn) converges weakly to f∗(ν).

We rely on the following classical fact (see e.g. [B, Theorem 2.1 p. 16]).

Fact. — A sequence of probability measures µn on a metric space converges weakly to a
probability measure µ if and only if lim supn→∞ µn(F ) ≤ µ(F ) for any closed set F , or
equivalently, if and only if lim infn→∞ µn(U) ≥ µ(U) for any open set U .

Proof of Theorem 1.8. — First, f∗(ν) is a probability measure on Y and its restriction to
W := f(S) is a probability measure since ν(S) = 1. Let g := f |S : S →W and ν̃n := νn|S
and ν̃ := ν|S . Notice that, by assumption, g is a continuous map between metric spaces
and f∗(νn)|W = g∗(ν̃n) and f∗(ν)|W = g∗(ν̃). Moreover, ν̃n and ν̃ are probability measures
on the metric space S and ν̃n converges weakly to ν̃ on S.

Pick now any closed subset B ⊂ Y and let B′ := W ∩ B. We have that νn(f−1(B)) =
ν̃n(g−1(B′)) and ν(f−1(B)) = ν̃(g−1(B′)), since νn(X \ S) = ν(X \ S) = 0. Recall also
that B′ is a closed subset of W and g−1(B′) is a closed subset of S. Hence, by the above
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Fact,

lim sup
n→∞

f∗(νn)(B) = lim sup
n→∞

g∗(ν̃n)(B′) = lim sup
n→∞

ν̃n(g−1(B′))

≤ ν̃
(
g−1(B′)

)
= ν

(
f−1(B)

)
= f∗(ν)(B) .

Again by the Fact, this ends the proof.

We say that a sequence (An)n≥0 of finite subsets of R/Z is equidistributed if
limn→∞Card(An) = +∞ and if for any open interval I ⊂ R/Z we have

lim
n→+∞

Card(An ∩ I)

Card(An)
= λR/Z(I),

where λR/Z denotes the Lebesgue measure on the circle R/Z. We shall also use the
following easy lemma.

Lemma 1.9. — Pick (An)n≥0 and (Bn)n≥0 two sequences of finite sets of R/Z. Assume
that (An) and (Bn) are equidistributed, that Bn ⊂ An and that

lim inf
n→∞

Card(An \Bn)

Card(An)
> 0.

Then the sequence (An \Bn) is equidistributed. In other words, the probability measure µn
equidistributed on An \Bn converges weakly towards λR/Z.

Proof. — From the above fact, it is sufficient to check that for any open interval I ⊂
R/Z, we have lim infn→∞ µn(I) ≥ λR/Z(I), since any open subset of R/Z is a disjoint
union of open intervals. Pick an open interval I ⊂ R/Z and ε > 0. As An and Bn are
equidistributed, there exists n0 ≥ 1 such that for any n ≥ n0,∣∣∣∣Card(An ∩ I)

Card(An)
− λR/Z(I)

∣∣∣∣ ≤ ε and

∣∣∣∣Card(Bn ∩ I)

Card(Bn)
− λR/Z(I)

∣∣∣∣ ≤ ε.
Let α := lim infn Card(An \ Bn)/Card(An). By assumption, we have α > 0 and up to
increasing n0, for any n ≥ n0 we may assume Card(An \Bn)/Card(An) ≥ α/2 > 0. Hence∣∣∣∣Card((An \Bn) ∩ I)

Card(An \Bn)
− λR/Z(I)

∣∣∣∣ ≤ 4

α
ε.

This concludes the proof.

2. In the quadratic family

This section serves as a model to the sequel: we illustrate our strategy in the family

pc(z) := z2 + c , (c, z) ∈ C2

which parametrizes the moduli space of quadratic polynomials.
In the present section, we prove a continuity property for the Riemann map of the

complement of the Mandelbrot set which we combine with well known landing properties
of rational rays to deduce theorems A for d = 2 (see e.g. [DH1, DH2, Sc1]). We also
prove an equidistribution result for parabolic parameters.
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2.1. Prime-End Impressions and Collet-Eckmann parameters

The content of this section is classical (see e.g. [DH1, DH2]). Recall that the bifurcation
measure of the quadratic family (pc)c∈C is the harmonic measure µM of the Mandelbrot
set M := {c ∈ C ; |pnc (0)| ≤ 2 , ∀n ≥ 0} = {c ∈ C ; Jc is connected}. Moreover, the map

Φ : C \M −→ C \ D

defined by Φ(c) := φpc(c) is a biholomorphism which is tangent to the identity at ∞. The
external ray of the Mandelbrot set of angle θ ∈ R/Z is the set

RM(θ) := Φ−1
(
{Re2iπθ ; R > 1}

)
.

The combinatorial space Cb is then Cb = {{α, α+ 1
2} ; α ∈ R/Z}. The impression of the

combinatorics Θ = {α, α + 1
2} can be described as the impression at angle θ = 2α under

the map Φ−1, i.e. as the set

IM(Θ) =
⋂

ρ>1, ε>0

Φ−1 ({Re2iπτ ; |θ − τ | < ε, 1 < R < ρ}).

We say θ is Misiurewicz if there exists n > k ≥ 1 such that 2nθ = 2kθ and 2n−kθ 6= θ.
Combining [Sc1, Lemma 4.1] with [K4, Theorem 5.3], we have the following.

Proposition 2.1. — For any Misiurewicz angle θ, the prime-end impression of θ is re-
duced to a singleton. Moreover, this singleton consists in a Misiurewicz parameter c. In
particular, the ray RM(θ) lands at c.

For any Misiurewicz parameter c, at least one ray lands at c and the angles of the rays
that land at c are exactly the angles of the dynamical rays of pc that land at its critical
value c.

We also say that θ is parabolic if there exists n ≥ 1 such that 2nθ = θ. The following
is classical (see [DH1, DH2] and [Sc2, Corollary 5.3]).

Proposition 2.2. — Pick any parameter c for which pc admits a parabolic cycle. Either
c = 1/4, in which case exactly one external ray of M lands at c, or exactly two external
rays of M land at c. Furthermore, the corresponding impressions are reduced to singletons.

We shall now give a short proof of the following toy-model for Theorem 3.6 (see Sec-
tion 3.3 for a more detailed proof of this result).

Theorem 2.3. — There exists a set C ⊂ R/Z of full Lebesgue measure such that

1. the map Φ−1 :]1,+∞[×R/Z −→ C \M extends continuously to {0} × C,
2. the set C contains the Misiurewicz and parabolic angles.

Proof. — From [Sm], we know that Collet-Eckmann angles have full Lebesgue measure
and that their impression contains the limit of the corresponding ray which is a Collet-
Eckmann parameter. Pick such a θ, let Θ := {θ, θ + 1

2} and let c0 be a Collet-Eckmann
parameter contained in IM(Θ). According to [K3, Theorem 1] and [Sm, §2], any param-
eter c in IM(Θ) has locally connected Julia set Jc = Kc and all its cycles are repelling. By
Theorem 1.7, this implies that pc and pc0 are topologically conjugate on their Julia sets.
By [PR, Corollary C], they are affine conjugate, hence c = c0. Since IM(Θ) is connected,
it is reduced to a singleton hence Φ−1 extends continuously to {(0, θ)}.

Item 2 follows directly from the two above propositions.
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2.2. Distribution of Misiurewicz and Parabolic parameters

We now aim at proving the following, using Theorem 2.3.

Theorem 2.4. — For any integer, let µn be the measure equidistributed on the set Xn of
roots of hyperbolic components of period k|n. Then µn converges to µM in the weak sense
of measures on C as n→∞.

Proof. — Let ` : R/Z −→ M be the landing map of rays, i.e. the radial limit almost
everywhere of the map Φ−1. For any n ≥ 1, let also

P(n) := {θ ∈ R/Z ; 2nθ = θ} .

It is known that ` is a well-defined measurable map which satisfies µM = `∗(λR/Z) (see

e.g. [GŚ]). By Theorem 2.3, it restricts as a continuous function on a set of full measure
which contains the set P(n) for any n. It is clear that the sequence {P(n)}n is equidis-
tributed. Let ρn be the probability measure equidistributed on P(n). By Theorem 1.8,
the above implies that

`∗(ρn) =
1

Card(P(n))

∑
`(P(n))

NM(c) · δc

converges weakly to `∗(λR/Z) = µM, where NM(c) is the number of external rays of M
that land at c. Remark now that Card(P(n)) = 2n − 1. Using Proposition 2.2, we deduce
that Card(Xn) = 2n−1 and

`∗(ρn)− µn =
1

2n − 1
µn −

1

2n−1
δ1/4

converges weakly to 0. This concludes the proof.

Remark that, for any λ ∈ C, it is known that the set of parameters c ∈ C for which pc
admits a n-cycle of multiplier λ equidistribute towards µM by [BG2].

For any integers n > k > 1, we let

C(n, k) := {θ ∈ R/Z ; 2n−1θ = 2k−1θ and 2n−kθ 6= θ}

and we let d(n, k) := Card(C(n, k)) = 2n−1 − 2k−1 − 2n−k + 1. A similar proof gives the
following.

Theorem 2.5. — Pick any sequence 1 < k(n) < n and let dn := d(n, k(n)). Let also νn

νn :=
1

dn

∑
`(C(n,k(n)))

NM(c) · δc ,

where NM(c) is the number of external rays of M that land at c. Then νn converges to
µM in the weak sense of measures on C as n→∞.
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PART I

IN THE MODULI SPACE OF POLYNOMIALS

3. The bifurcation measure and combinatorics

3.1. Misiurewicz combinatorics

We define the map Md : R/Z −→ R/Z by letting

Md(θ) = d · θ mod 1.

Recall that we say that a combinatorics Θ = (Θ0, . . . ,Θd−2) ∈ Cb is Misiurewicz if any
α ∈

⋃
i Θi is strictly preperiodic under the map Md : R/Z → R/Z. We denote by Cbmis

the set of all Misiurewicz combinatorics.

We will use the following (see [K4, Theorem 5.3]).

Theorem 3.1 (Kiwi). — The impression of a Misiurewicz combinatorics is reduced to
a singleton and corresponds to the only degree d critically marked Misiurewicz polynomial
with the chosen combinatorics.

As noticed by Dujardin and Favre [DF, Theorem 7.18], this induces a bijection between
Cbmis and the set of Misiurewicz parameters in the moduli space of combinatorially marked
degree d polynomials (see also [BFH, Theorem III]).

We now want to describe how many Misiurewicz combinatorics can have the same
impression in Pd. To this aim, for any 0 ≤ i ≤ d− 2 and any 0 ≤ n < m, we let

Ci(m,n) := {Θ ∈ Cb ; Θi = {α1, . . . , αki}, ∃j, d
mαj = dnαj } .

Notice that the periods and preperiods do not depend on the combinatorics, i.e. for any
Θ,Θ′ with the same impression, the periods and preperiods of Θi and Θ′i coincide. Relying
on a result of Kiwi [K2], we can prove

Proposition 3.2. — Pick any two (d − 1)-tuples of positive integers (n0, . . . , nd−2) and
(m0, . . . ,md−2) such that mi > ni. Let also (P, c0, . . . , cd−2) ∈ Pd be such that Pni(ci) =
Pmi(ci), P

mi−ni(ci) 6= ci and Pni(ci) is exactly (mi − ni)-periodic. Set

NCb(P ) := Card ({Θ ∈ Cbmis ; {(P, c0, . . . , cd−2)} = ICd(Θ)}) .
Then NCb(P ) is finite. More precisely, if Θ = (Θ0, . . . ,Θd−2) and qi is the exact period of
the cycle contained in the orbit {Mk

d (Θi)}k≥1, then (mi − ni)|qi and∏
degP (ci)(P

ni−1) ·
(

qi
mi − ni

)
≤ NCb(P ) ≤

∏
degP (ci)(P

ni−1) ·max

(
`+ 1, `

qi
mi − ni

)
where the product ranges over the set of geometrically distinct critical points of P and ` is
the number of geometrically distinct critical values of P .

The following lemma is a reformulation of [K2, Theorem 3.2].

Lemma 3.3. — Let P be any degree d ≥ 3 polynomial with connected Julia set. Assume
that P has ` distinct critical values. Let z be a repelling or parabolic periodic point of P
of exact period p. Then

1. the number N of cycles of rays that land on the orbit of z satisfies 1 ≤ N ≤ `+ 1,



12 Thomas Gauthier & Gabriel Vigny

2. if N = `+ 1, then the exact period of any of those cycles of rays is p.

Proof of Proposition 3.2. — By Theorem 3.1, if α is periodic and lies in the orbit under
iteration of Md of Θi, then the point z at which it lands lies in the orbit under iteration
of P of ci. In particular, if Rα is the dynamical ray of angle α of P , then P qi(Rα) = Rα,
hence P qi(z) = z, i.e. (mi − ni)|qi.

Up to reordering, write now c1, . . . , c` the geometrically distinct critical points of P ,
d1, . . . , d` ≥ 2 the local degree of P at c1, . . . , c` respectively. As long as P r(ci) is not a
critical point, a ray landing at P r+1(ci) has one and only one preimage under P which
lands at P r(ci). On the other hand, if P r(ci) = cj for some j 6= i, then any ray landing
at P r+1(ci) has exactly dj preimages landing at P r(ci) = cj . As a conclusion, the number
Ni of rays landing at P (ci) is exactly degP (ci)(P

ni−1) times the number of rays landing at

Pni(ci), which satisfies

degP (ci)(P
ni−1) ·

(
qi

mi − ni

)
≤ Ni ≤ degP (ci)(P

ni−1) ·max

(
`+ 1, `

qi
mi − ni

)
by Lemma 3.3.

Finally, each ray landing at P (ci) has exactly di preimages. For any i, pick θi landing
at P (ci) and let Θi be the set of angles whose rays land at ci and Md(α) = θi for any
α ∈ Θi. Then Θ := (Θ0, . . . ,Θd−2) (with repetitions if critical points are multiple) is a
combinatorics for P and we can associate to each collection (θ0, . . . , θd−2) of angles landing
respectively at P (ci) one and only one combinatorics for P . The conclusion follows.

3.2. The bifurcation measure and the Goldberg and landing maps

We recall here material from [DF, §6 & 7]. Recall that we defined the psh and continuous
function G : Pd −→ R+ by letting G(P ) := max0≤j≤d−2 gP (cj) for any (P, c0, . . . , cd−2) ∈
Pd. We can define the bifurcation measure µbif of the moduli space Pd as the Monge-
Ampère measure associated to the function G, i.e.

µbif := (ddcG)d−1 .

This measure was introduced first by Dujardin and Favre [DF] and they proved that it
is a probability measure whose support is the Shilov boundary of the connectedness locus
∂SCd (see [DF, §6]).

The Goldberg and landing maps after Dujardin and Favre. — For r > 0, let
G(r) := {(P, c0, . . . , cd−2) ∈ Pd ; gP (ci) = r, ∀0 ≤ i ≤ d− 2}. The set G(r) is contained in
Svis
d . Moreover, there exists a unique continuous map

Φg : Cb× R+
∗ −→ Pd

(Θ, r) 7−→ (P (Θ, r), c0(Θ, r), . . . , cd−2(Θ, r))

such that the following holds:

– P (Θ, r) ∈ Svis
d and the (d− 1)-tuple Θ of subsets is the combinatorics of P (Θ, r) and

gP (Θ,r)(ci(Θ, r)) = r for each 0 ≤ i ≤ d− 2,
– the map Φg(·, r) is a homeomorphism from Cb onto G(r). Moreover, Φg(·, r) restricts

to a homeomorphism from Cb0 onto the subset of G(r) of polynomials for which all
critical points are simple.
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The map Φg is the Goldberg map of the moduli space Pd. The radial limit of the map
Φg(·, r) as r → 0 exists µCb-almost everywhere and defines a map e : Cb −→ Pd (see [DF,
Proposition 7.19]). By construction, its image is contained in ∂Cd ∩ ∂Svis

d .

Definition 3.4. — The map e : Cb −→ Pd is called the landing map.

The main result relating this landing map with the bifurcation measure is the following
(see [DF, Theorem 8]).

Theorem 3.5 (Dujardin-Favre). — e∗ (µCb) = µbif.

3.3. Continuity of the landing map on a set of µCb-full measure

The main goal of this section is to prove the following result.

Theorem 3.6. — There exists a set Cb1 ⊂ Cb0 of full µCb-measure such that the map
e|Cb1 is continuous. Moreover, the set Cb1 contains the Misiurewicz combinatorics Cbmis.

In fact, we rely on the stronger statement below, which is essentially the combination
of Theorem 1.7 with [K4, Theorem 1] and with the rigidity property established in [PR,
Corollary C].

Theorem 3.7. — Pick Θ ∈ Cb0 such that there exists (P, c0, . . . , cd−2) ∈ ICd(Θ) with
JP = KP and which satisfies the TCE condition. Then the impression ICd(Θ) is reduced
to a singleton.

Proof. — Pick Θ ∈ Cb and (P, c0, . . . , cd−2), (P̃ , c̃0, . . . , c̃d−2) ∈ ICd(Θ) such that
(P, c0, . . . , cd−2) satisfies the TCE condition. According to [K4, Theorem 1], the
real lamination of P is equal to that of Θ and has aperiodic kneading since P has only
repelling cycles. Again by [K4, Theorem 1], P and P̃ have the same real lamination and

do not satisfy the Strongly Recurrent Condition (see e.g. [Sm, §2]). In particular, P̃
also has only repelling periodic points and its Julia set is locally connected. Moreover,
P̃ ∈ Cd ∩ ∂Sd and all its cycles are repelling, hence KP̃ has no interior, i.e. JP̃ = KP̃ .

We now apply Theorem 1.7: the polynomials P and P̃ are conjugate on their Julia sets
by an orientation preserving homeomorphism. Finally, since P satisfies the TCE property
and C(P ) ⊂ JP = KP (recall that C(P ) is the critical set of P ), [PR, Corollary C] states

that P and P̃ are affine conjugate and there exists σ in the symmetric group of d − 1
elements such that c̃i = cσ(i). Hence ICd(Θ) is contained in a finite subset of Pd.

Since ICd(Θ) is connected, it is reduced to a singleton.

We now are in position to prove Theorem 3.6.

Proof of Theorem 3.6. — Dujardin and Favre [DF, Theorem 10] prove that there exists
a Borel set Cb∗1 ⊂ Cb0 such that

– Cb∗1 has full µCb-measure,
– for any Θ ∈ Cb∗1 the impression ICd(Θ) contains a polynomial P satisfying the TCE

condition.

Let us now set
Cb1 := Cb∗1 ∪ Cbmis.

Pick Θ ∈ Cb∗1 ∪ Cbmis. According to Theorem 3.7, Theorem 3.1 of Kiwi, the impression
ICd(Θ) is reduced to a singleton. By definition of the impression ICd(Θ), the map Φg

extends continuously to Cb1×{0}. Recall that the landing map e is the radial limit almost
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everywhere of the map Φg(·, r), as r → 0. The landing map e thus coincides µCb-almost
everywhere with the extension of the Goldberg map Φg, which ends the proof.

4. Distribution of Misiurewicz Combinatorics

Our goal here is to apply the combinatorial tools studied above to equidistribution prob-
lems concerning Misiurewicz parameters with prescribed combinatorics.

4.1. Preliminary properties

Recall that, for any 0 ≤ i ≤ d− 2 and any 0 ≤ n < m, we have denoted

Ci(m,n) := {Θ ∈ Cb ; Θi = {α1, . . . , αki}, ∃αj ∈ Θi, d
mαj = dnαj} .

For any i, pick any sequences 0 < nk,i < mk,i such that mk,i →∞ as k →∞ and let

C∗k,i := Ci(mk,i, nk,i) \ Ci(mk,i − nk,i, 0) and C∗k :=

d−2⋂
i=0

C∗k,i.

Notice that the set C∗k is finite and that Card(C∗k) ≥ c · d
∑
imk,i , where c > 0 is a constant

depending only on d and not on the sequences (mk,i) and (nk,i) (see [FG, §5.3]). Finally,
we let νk be the probability measure on Cb which is equidistributed on C∗k.

Lemma 4.1. — The sequence νk(Cb \ Cb0) converges to 0 as k → +∞.

Proof. — To do so, it is sufficient to prove that

lim sup
k→+∞

Card (C∗k \ Cb0)

Card
(
C∗k
) = 0 .

An element in the set C∗k \ Cb0 coincides with the union over the j of the set
⋂
i 6=j C

∗
k,i

intersected with
⋃
i 6=j{Θ ∈ Cb ; Θj = Θi}. The equation dmα1 = dnα1 has dm − dn − 1 ≤

dm solutions, the conditions dα1 = dαj implies that they are at most c(d)dm possible Θi

in Ci(m,n) (c(d) is an (explicit) constant that depends only on d). As a consequence,

Card (C∗k \ Cb0) ≤ C
∑
j

d−mk,j+
∑
mk,i

where C depends only on d. Hence

Card (C∗k \ Cb0)

Card
(
C∗k
) ≤

∑
j

C

c
d−mk,j −→ 0 ,

as k → +∞, which ends the proof.

We now give a more precise description of the spaces Cb and S and of the measure µCb
we will need in our proof. We refer to [DF, §7.1] for more details.

Recall that S is the set of pairs {α, α′} contained in the circle R/Z, such that dα = dα′

and α 6= α′. The set S is a translation manifold of dimension 1 which has bd/2c connected
components, each of them being isomorphic to R/Z. We endow each of these components
with a copy of the probability measure λR/Z and let λS be the probability measure which
is proportional to the obtained finite measure.
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The set Cb0 can be seen as an open subset of Sd−1. Notice that λ
⊗(d−1)
S (Cb0) > 0 and

let µCb0 be the measure

µCb0 :=
1

λ
⊗(d−1)
S (Cb0)

1Cb0 · λ
⊗(d−1)
S .

The set Cb has Cb0 as an open and dense subset. The measure µCb is then the trivial
extension of µCb0 to Cb.

4.2. An equidistribution result: Theorem A

For any 0 ≤ i ≤ d− 2 and any 0 ≤ n < m, we let

S(m,n) := {{α, α′} ∈ S ; dmα = dnα or dmα′ = dnα′} and S∗(m,n) := S(m,n)\S(m−n, 0) .

For any i, pick any sequences 0 < nk,i < mk,i such that mk,i →∞ as k →∞ and let

S∗k :=
d−2∏
i=0

S∗(mk,i, nk,i) ⊂ Sd−1.

Finally, we let mk be the probability measure equidistributed on the finite set S∗k of Sd−1.
As in [DF, §7.1], for any collection of open intervals I0, . . . , Id−2 ⊂ R/Z, and any

collection of integers q0, . . . , qd−2 ∈ {1, . . . , bd/2c}, we let

Ii(qi) :=
{
{α, α′} ∈ S ; {α, α′} ⊂ Ii ∪

(
Ii +

qi
d

)}
and we can define an open set of Sd−1 by setting

U(I, q) :=
{

Θ ∈ Sd−1 ; Θi ∈ Ii(qi)
}
,

where I := (I0, . . . , Id−2) and q = (q0, . . . , qd−2). The open sets U(I, q), for all I and q,
span the topology of Sd−1.

We rely on the following key intermediate result.

Lemma 4.2. — The sequence (mk) is equidistributed with respect to λd−1
S on Sd−1. More

precisely, if I = (I0, . . . , Id−2) is a (d − 1)-tuple of intervals and q = (q0, . . . , qd−2) is a
(d− 1)-tuple of integers with 1 ≤ qi ≤ bd/2c, we have

lim
k→∞

mk(U(I, q)) = λ
⊗(d−1)
S (U(I, q)) =

d−2∏
i=0

λS(Ii(qi)).

Proof. — As the measure mk is a product measure mk = mk,0⊗ · · · ⊗mk,d−1, where mk,i

is the probability measure equidistributed on the set S∗(mk,i, nk,i), by Fubini Theorem, it
is sufficient to prove that mk,i is equidistributed with respect to λS as k → +∞.

Let dk := Card(S∗(mk,i, nk,i)). Since for any m > n > 0,

dm − dn ≤ Card(S(m,n)) ≤ bd/2c · (dm − dn) ,
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we find

dk = Card(S(mk,i, nk,i))− Card(S(mk,i − nk,i, 0))

≥ dmk,i − dnk,i − bd/2c · (dmk,i−nk,i − 1)

≥ dmk,i − dnk,i − d/2 + 1

d
· (dmk,i − dnk,i)

≥
(

1− d/2 + 1

d

)
· (dmk,i − dnk,i).

Notice that 1 − d/2+1
d > 0. Now, the natural measure λS is the renormalization of bd/2c

copies of λR/Z, hence we can directly apply Lemma 1.9. This gives the equidistribution of
mk,i with respect to λS, as k → +∞ and the proof is complete.

As a consequence, using classical measure theory, we easily get the following:

Corollary 4.3. — The sequence (mk) converges towards λ
⊗(d−1)
S in the weak sense of

probability measures on Sd−1.

We now can end the proof of Theorem A.

Proof of Theorem A. — Write again λ := λ
⊗(d−1)
S . Recall that νk is the probability mea-

sure equidistributed on C∗k and µk is the measure defined in Theorem A. By Theorem 3.1,
one has e∗(νk) = µk for any k. Notice also that µbif = e∗(µCb), by Theorem 3.5. According
to Theorem 3.6 and Theorem 1.8, it is sufficient to prove that (νk) converges weakly to
µCb.

First, remark that, since µCb is the trivial extension of µCb0 to Cb, Lemma 4.1 implies
that it is actually sufficient to prove that νk converges weakly towards µCb0 . Let K be any
compact subset of Cb0. Then

νk(K)− µCb0(K) =
mk(K)

mk(Cb0)
− λ(K)

λ(Cb0)
.

According to Corollary 4.3 and to the Fact of Section 1.3, for any ε > 0, there exists k0 ≥ 1
such that for any k ≥ k0,

mk(K) ≤ λ(K) + ε and mk(Cb0) ≥ λ(Cb0)− ε

since Cb0 is open and K is compact in Cb0, hence in Cb. In particular, for k ≥ k0, we find

νk(K)− µCb0(K) ≤ ε · λ(Cb0) + λ(K)

λ(Cb0)(λ(Cb0)− ε)
.

Taking the limsup as k →∞ and then making ε→ 0 gives

lim sup
k→∞

νk(K) ≤ µCb0(K).

This ends the proof, using again the Fact of Section 1.3.

4.3. The case of Parabolic Combinatorics: a triviality criterion

Pick any (d− 1)-tuple of integers m. A combinatorics Θ ∈ C∗(m, 0) is called parabolic.
The same proof as that of Theorem A gives the following.
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Theorem 4.4. — Let (nk)k be any sequence of (d − 1)-tuples with nk,j → ∞ as k → ∞
for all j and gcd(nk,j , nk,i) = 1 for all k and j 6= i. Let Yk := e(C(nk, 0)) and µ′k be the
measure

µ′k :=
1

Card(C(nk, 0))

∑
{P}∈Yk

MCb(P ) · δ{P},

where MCb(P ) is the (finite) number of combinatorics in C(nk, 0) whose landing point is
reduced to {P}. If for any k and any Θ ∈ C(nk, 0) the impression Id(Θ) is trivial, then
µ′k converges to µbif as k →∞ in the weak sense of probability measures on Pd.

Unfortunately, apart from the case d = 2, we don’t know how to prove the triviality
of impressions. However, we can prove that the parameters involved in the statement
of Theorem 4.4 have (d − 1) distinct parabolic cycles. We call such parameters totally
parabolic.

Let P be a degree d polynomial. We say that a parabolic periodic point z of P is
n-degenerate if it has period k|n and if n is minimal so that (Pn)′(z) = 1. The following
shows that for all parabolic combinatorics Θ ∈ C(nk, 0), the landing map is well defined
at Θ and that such lading parameter is totally parabolic with d−1 parabolic cycles which
are n0, . . . , nd−2-degenrate respectively.

Theorem 4.5. — Pick n = (n0, . . . , nd−2) with gcd(ni, nj) = 1 for i 6= j and ni ≥ 2
for all i. Let Θ = (Θ0, . . . ,Θd−2) ∈ Cbpar be a combinatorics such that for any j, there
exists θj ∈ Θj which is exactly nj-periodic for Md. There exists a unique critically marked
polynomial (P, c0, . . . , cd−2) ∈ ICd(Θ) having d− 1 distinct parabolic periodic cycles which
are respectively nj-degenerate such that any sequence (Qn)n≥1 ⊂ Svis

d with Θ(Qn) = Θ
converges to P .

In particular, the landing map e is well-defined at Θ. Moreover, for all 0 ≤ j ≤ d− 2,
if Θj = {θj , θ′j}, the following holds

– the ray Rθj (P ) lands at a parabolic point zj of period kj |nj of P whose basin contains
cj and

– the ray Rθ′j (P ) lands at the preimage z′j of P (zj) which satisfies zj 6= z′j and which

lies on the boundary of the bounded Fatou component of P that contains cj.

For our proof, we deeply rely on the seminal work [DH1] of Douady and Hubbard.
Moreover, we follow closely the proof of [DH1, Exposé VIII Théorème 2].

Recall the following (see [Si, p. 225], [Mi2, Appendix D] or [BB2, Theorem 2.1]):

Theorem 4.6 (Milnor, Silverman). — For any n ≥ 1, there exists a polynomial map
pn : Pd × C→ C such that for any (P, c0, . . . , cd−2) ∈ Pd and any w ∈ C,

1. if w 6= 1, then pn(P,w) = 0 if and only if P has a cycle of exact period n and
multiplier w,

2. otherwise, pn(P, 1) = 0 if and only if there exists q ≥ 1 such that P has a cycle of
exact period n/q and multiplier η a primitive q-root of unity.

We can define an algebraic hypersurface by letting

Pern(w) := {(P, c0, . . . , cd−2) ∈ Pd | pn(P,w) = 0} ,

for n ≥ 1 and w ∈ C. By the Fatou-Shishikura inequality and using the compactness of
the connectedness locus, we have the following:
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Lemma 4.7. — Pick n0, . . . , nd−2 ≥ 2 and assume that gcd(ni, nj) = 1 for all i 6= j and

ni ≥ 2 for all i. Pick any w0, . . . , wd−2 ∈ D. Then the algebraic variety
⋂
i Perni(wi) is a

finite set.

Proof of Theorem 4.5. — Pick (P, c0, . . . , cd−2) ∈ ICd(Θ). Recall that ICd(Θ) ⊂ Cd so

that the Böttcher coordinate of P at infinity is a biholomorphism φP : C \ KP −→ C \ D.
According to [DH1, Exposé VIII, §2, Proposition 2], the dynamical external rays of P
of respective angles θ0, . . . , θd−2 land at periodic points z0, . . . , zd−2 of P . Moreover, the
period of zi divides ni and either zi is repelling, or (Pni)′(zi) = 1.

Notice that, since gcd(ni, nj) = 1 for i 6= j, the points zi and zj can not lie in the same
cycle. We now assume by contradiction that there exists 0 ≤ i ≤ d − 2 such that zi is
repelling. Moreover, by the implicit function theorem we can follow zi holomorphically as
a repelling ni-periodic point zi(Q) of Q, in a neighborhood of P in Pd. Notice also that,
since P ∈ ∂Sd, the only possible periodic Fatou components of P are Siegel disks and
parabolic basins.

Pick now a sequence Qn ∈ Svis
d such that Θ(Qn) = Θ for all n and Qn → P as n→ +∞.

We may apply [DH1, Exposé VIII, §2, Proposition 3]: there exist a neighborhood W of
(P, c0, . . . , cd−2) in Pd and a continuous map

ψ : (Q, s) ∈W × R+ 7−→ ψ(Q, s) ∈ C

which depends holomorphically of Q ∈W and such that the following holds

– for any s ≥ 0 and any Q ∈ W , ψ(Q, s) = φ−1
Q

(
es+2iπθi

)
and in particular

gQ (ψ(Q, s)) = s,
– for any Q ∈W , the dynamical ray of Q of angle θi lands at zi(Q) = ψ(Q, 0).

According to [K4, Lemma 3.19], the visible shift locus is dense in the shift locus, and since

(P, c0, . . . , cd−2) ∈ ICd(Θ), W ∩Sd 6= ∅ and P ∈W ∩ Svis
d ; hence we may assume Qn ∈W

for n large enough. Let sn := gQn(ci(Qn)). Set now

Hs(Q) := ψ(Q, s)− ci(Q), Q ∈W.

By the above, (Q, s) ∈ W × R+ 7→ Hs(Q) ∈ C is continuous and we have Hsn(Qn) =
ψ(Qn, sn) − ci(Qn) = 0 for all n large enough. As n → ∞, we get ci(P ) = zi, which is a
contradiction since zi is repelling. We thus have shown that P has d−1 distinct parabolic
cycles which are n0, . . . , nd−2-degenerate respectively, i.e. (P, c0, . . . , cd−2) ∈

⋂
i Perni(1).

On the other hand, by Theorem 3.7 of [K4], for all n ≥ 1, the set Xn := {Q ∈
Svis
d ; Θ(Q) = Θ and G(Qn) ≤ 1

n} is connected. In particular, the set

X(Θ) :=
⋂
n≥1

Xn

is compact and connected. The above implies X(Θ) is contained in the finite set⋂
i Perni(1), i.e. X(Θ) is reduced to a singleton.

Since the set Rθi(Qn) ∪ {∞} is a compact connected subset of P1, the set R :=
lim supn→∞Rθi(Qn)∪{∞} is a connected compact subset of P1. Moreover, R∩(C\KP ) =
Rθi(P ), ci(P ) ∈ R and, reasonning as in [K1, Lemma 7.6], we find that any z ∈ R ∩ JP
satisfies Pni(z) = z. In particular, ci(P ) ∈ R ∩ K̊P , and the component U of K̊P which
contains ci(P ) is periodic of period dividing ni, hence ci(P ) lies in the parabolic basin of
zi by the above.
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Similarly, if Θi = {θi, θ′i} the ray θ′i lands at a preimage by P of P (zi). Let now
R′ := lim supn→∞Rθ′i(Qn) ∪ {∞}. As above, we have R′ ∩ (C \ KP ) = Rθ′i(P ) and

ci(P ) ∈ R′, hence Rθ′i(P ) lands at the boundary of the bounded Fatou component of P

which contains ci(P ). This ends the proof.

Note also that we lack a precise control on the cardinality of combinatorics that land
at a given parabolic polynomial to have a better result in the spirit of Theorem 2.4.

An easy estimate follows from Theorem 4.5 up to considering all the possible permu-
tations of the given combinatorics (a priori, two permuted combinatorics may land at
the same parameter). Given such a polynomial P with periodic parabolic cycles of exact
periods ki and combinatorial periods ni, the number MCb(P ) is bounded above:

MCb(P ) ≤ ((d− 1)!)2 ·
d−2∏
i=0

(
ki ·max

{
d, (d− 1)

ni
ki

})
.

Following [Sc1] and [K2], one can expect that the only angles which actually belong to Θi

are the characteristic rays of the parabolic cycle whose parabolic basin contains ci, i.e. the
rays separating the petals containing P (ci) from the other petals clustering at the same
point of the considered parabolic cycle. This would give an exact formula for MCb(P ).

PART II

IN THE QUADRATIC ANTI-HOLOMORPHIC FAMILY

5. The anti-holomorphic quadratic family

5.1. Anti-holomorphic polynomials and the Tricorn

We now aim at studying the family of quadratic anti-holomorphic dynamical systems, i.e.
the family

fc(z) := z̄2 + c , z ∈ C ,

parametrized by c ∈ C. It is classical to proceed by analogy with the holomorphic case,
i.e. to define the filled Julia set of fc and the Julia set of fc by letting

Kc := {z ∈ C ; (fnc (z))n is bounded} and Jc := ∂Kc .
We also define the Tricorn as the set

M∗
2 := {c ∈ C ; (fnc (0))n is bounded} .

Again, as in the holomorphic case, for n > k > 0, we let

Per(n, k) := {c ∈ C ; fnc (0) = fkc (0)} and Per∗(n, k) := {c ∈ Per(n, k) ; fn−kc (0) 6= 0}.

Definition 5.1. — We say that a parameter c ∈
⋃
n>k≥1 Per∗(n, k) is a Misiurewicz

parameter.

Notice that we chose this definition by analogy to the holomorphic case. Observe that
we do not have to consider the case Per∗(n, 1) since this set is empty. Indeed, since the
map fc has local degree 2 at 0, the point fc(0) cannot have a preimage distinct from 0. In
particular, any parameters for which fnc (0) = fc(0) satisfies fn−1

c (0) = 0.
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We now want to address the following question.

Question. — Is the set Per(n, k(n)) (resp. the set Per∗(n, k(n))) finite and can we de-
scribe its distribution as n→∞, for any sequence 0 ≤ k(n) < n?

The rest of the paper gives a partial answer to the above question for k(n) > 1 (see the
above remark for k(n) = 1).

For convenience, define the family of quadratic anti-holomorphic polynomials

fλ(z) := z̄2 + (a+ ib)2 , z ∈ C ,

for λ = (a, b) ∈ C2. A classical observation is that fλ ◦ fλ defines a family of holomorphic
degree 4 polynomials Pλ. An easy computation shows that for λ = (a, b) ∈ C2,

Pλ(z) = z4 + 2(a− ib)2z2 + (a+ ib)2 + (a− ib)4 , z ∈ C.

This family has (complex) dimension 2. The critical points of Pλ are exactly c0 := 0,
c1 := ia + b and c2 = −(ia + b). It is also easy to check that for any λ = (a, b) ∈ C2, we
have c1 = c2 if and only if c0 = c1 if and only if c0 = c2 if and only if b = −ia.

Lemma 5.2. — The family (Pλ, 0, ia + b,−(ia + b))λ∈C2 projects, in the moduli space
P4, to the surface X := {(P, c0, c1, c2) ∈ P4 ; P (c1) = P (c2)}. Moreover, the projection
π : C2 −→ X is a degree 6 branched covering ramifying exactly at λ = (0, 0). Moreover, if
λ = (a, b) ∈ R2 then Pλ is the only real representative of {Pλ} in the family.

Proof. — We first show that the surface X is irreducible. Let (P, c0, c1, c2) ∈ X , we can

choose a representative P̃ of the form:

P̃ (z) = z4 − 2αz2 + γ

so that the critical points are 0, c1 and c2 with c2
1 = α, c1 + c2 = 0. Conversely, such a

marked polynomials is in X . Consider the analytic set X ′ of C4 defined by the equations:

X ′ := {(α, γ, c1, c2) ∈ C4, c2
1 = α, c1 + c2 = 0}.

Then X ′ is irreducible since c2
1 = α is irreducible. Hence X is irreducible by considering

the canonical map X ′ → X .
Then, since π is proper, it is surjective, hence has finite degree. Solve the equations:

(αz + β) ◦ Pλ = Pλ′ ◦ (αz + β)

(αz + β)(0) = 0

(αz + β)(ia+ b) = ia′ + b′

where λ = ia+ b and λ′ = ia′ + b′. We get that β = 0 and α3 = 1 and we can rewrite the
previous equations as:

α(a− ib) = a′ − ib′

α(a+ ib)2 = (a′ + ib′)2.

By Bézout theorem, we get six solutions. One can see they give six different λ′ by looking
at the parameter λ = (1,−i).

One easily sees that if (a, b) in R2 then Pλ is the only real representative of {Pλ} in the
family. Moreover, it is clear that π ramifies exactly at λ = (0, 0) (else c1 6= 0).

We also will rely on the following which is essentially obvious.
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Lemma 5.3. — The map π|R2 : R2 −→ P4 is a real-analytic homeomorphism onto its
image. Moreover, if λ ∈ R2, then fλ(c1) = fλ(c2) = c0.

Proof. — If λ ∈ R2 \ {0}, the polynomials Pλ and P−λ are affine conjugate, but the
conjugacy exchanges c1 with c2 and the conclusion follows from Lemma 5.2. The fact that
fλ(c1) = fλ(c2) = c0 follows from a direct computation.

We have the first following result on the finiteness of the sets Per(n, k) and Per∗(n, k).

Lemma 5.4. — Pick n > k > 0. Then the sets Per(n, k) and Per∗(n, k) are finite.

Proof. — We first prove that Per(n, k) is a finite set (hence Per∗(n, k) ⊂ Per(n, k) is also
finite). Pick λ = (a, b) ∈ R2 with c = (a + ib)2. Assume c ∈ Per(n, k). According to
Lemma 5.3,

Pnλ (c0) = f2n
c (0) = f2k

c (0) = P kλ (c0)

and again by Lemma 5.3,

Pn+1
λ (c1) = fc ◦ f2n

c (fc(c1)) = fc ◦ f2n
c (0)

= fc ◦ f2k
c (0) = fc ◦ f2k

c (fc(c1)) = P k+1
λ (c1).

Since Pλ(c1) = Pλ(c2), we get Pn+1
λ (c2) = P k+1

λ (c2). We write

Perj(m, l) := {(P, c0, c1, c1) ∈ P4 ; Pm(cj) = P l(cj)}.
The set Perj(m, l) is an algebraic subvariety of P4 and Per0(n, k) ∩ Per1(n + 1, k + 1) ∩
Per2(n+ 1, k+ 1) is contained in the compact set C4, hence it is finite. By Lemma 5.2, the
set of λ ∈ C2 with π(λ) ∈ Per0(n, k)∩Per1(n+ 1, k+ 1)∩Per2(n+ 1, k+ 1) is thus finite.
The finiteness of Per(n, k) follows directly.

5.2. The combinatorial space

For the material of this section, we follow [N]. Let ψc be the Böttcher coordinate of
the anti-holomorphic polynomial fc(z) = z̄2 + c, with c ∈ C, i.e. the holomorphic map
conjugating fc near ∞ to z̄2 near ∞ which is tangent to the identity. Let λ = (a, b) ∈ R2

be such that c = (a + ib)2. The map ψc is known to be a biholomorphic map from {z ∈
C ; gPλ(z) > gPλ(c0)} onto C\D(0, exp(gPλ(c0))). Moreover, we also have ψc ◦Pλ = (ψc)

4,
i.e. ψc = φλ (recall that φλ is the Böttcher coordinate of Pλ).

For c ∈ C, we let Ψ∗(c) := ψc(c), when c ∈ C \M∗
2. The map

Ψ∗ : C \M∗
2 −→ C \ D

is known to be a real-analytic isomorphism (see [N]).
For θ ∈ R/Z, the external ray of M∗

2 of angle θ is the curve R∗(θ) defined by

R∗(θ) := (Ψ∗)−1
(
{Re2iπθ ; 1 < R < +∞}

)
.

We will need the following.

Lemma 5.5. — Let c = (a + ib)2 ∈ C with λ := (a, b) ∈ R2. Assume that c ∈ R∗(θ)
and Ψ∗(c) = e2r+2iπθ with θ ∈ R/Z and r > 0. Then {Pλ} ∈ Svis

4 , Pλ has simple
critical points, i.e. Θ(Pλ) ∈ Cb0 and r = gPλ(c0) = 2gPλ(c1) = 2gPλ(c2). Moreover, if
Θ(Pλ) = (Θ0,Θ1,Θ2), then Θ(P−λ) = (Θ0,Θ2,Θ1) and

−2Θ0 = 4Θ1 = 4Θ2 = {θ} .
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Proof. — As seen above, Pλ has simple critical points if and only if c 6= 0, which is the case
here since gPλ(c0) > 0. Notice that Pλ(c1) = Pλ(c2) = fλ(c0) = c in our case, hence this
point belongs to the ray of angle θ by assumption. Moreover, since gPλ = log |φλ| = log |ψc|
on {gPλ > 0}, we have G(Pλ) = gPλ(c0) = 2gPλ(c1) = 2gPλ(c2). As a consequence
gPλ(Pλ(c0)) = 4gPλ(c0) > G(Pλ) which means that Pλ(c0) = fλ(c) belongs to the ray of
angle −2θ.

Finally, let α and α + 1
2 be the angles so that −2α = −2(α + 1

2) = θ. In particular,

4α = 4(α+ 1
2) = −2θ and the two dynamical rays of angle α and α+ 1

2 don’t cross critical

points of Pλ until they terminate at c0 by [K4, Lemma 3.9]. Since c1, c2 /∈
⋃
n≥1 P

−n
λ {c0},

using again [K4, Lemma 3.9], we have 2 distinct rays terminating at c1 (resp. at c2),
hence Pλ ∈ Svis

4 .
The last assertion follows immediately, since taking P−λ instead of Pλ only exchanges

the roles of c1 and c2.

Mimicking the quadratic case, we define the impression at angle θ = −2α under the
map (Ψ∗)−1 as the set⋂

ρ>1, ε>0

(Ψ∗)−1 ({Re2iπτ ; |θ − τ | < ε, 1 < R < ρ}).

Remark that, when c = (a+ ib)2 ∈ C and λ := (a, b) ∈ R2, then both Pλ and P−λ are the
polynomial map f2

c . As an immediate consequence of Lemma 5.5, we get the following
crucial property.

Corollary 5.6. — Let c = (a+ ib)2 ∈ C with λ := (a, b) ∈ R2, let θ ∈ R/Z and let r > 0.
Assume that c ∈ R∗(θ) and Ψ∗(c) = e2r+2iπθ. Then IC4(Θ(Pλ)) and IC4(Θ(P−λ)) both
contain a copy of the prime end impression of the angle θ under the map Ψ∗.

6. A bifurcation measure for the Tricorn

We now want to define a good bifurcation measure for the Tricorn M∗
2 and prove equidis-

tribution properties of specific parameters towards this bifurcation measure.

6.1. Misiurewicz combinatorics

We let Rmis be the set of angles θ ∈ R/Z such that there exists integers n > k > 1 for
which θ satisfies (−2)n−1θ = (−2)k−1θ and such that (−2)n−kθ 6= θ. For n > k ≥ 1, we
also let C∗(n, k) := {θ ∈ R/Z ; (−2)n−1θ = (−2)k−1θ}. We now want to relate Misiurewicz
combinatorics with Misiurewicz parameters.

Lemma 6.1. — Pick θ ∈ Rmis and let n > k > 1 be minimal such that θ ∈ C∗(n, k).

1. There exists a Misiurewicz parameter c ∈ ∂M∗
2 such that the prime end impression

of θ under Ψ∗ is reduced to {c} and c ∈ Per∗(2n, 2k),
2. Moreover, if n− k is even, then c ∈ Per∗(n, k).

Proof. — First, we prove 1. Let Θ0 := {α, α + 1
2} be such that −2α = θ. Let also

{β1, β2, β3, β4} be such that 4βi = θ for 1 ≤ i ≤ 4, and let Θ1,Θ2 be such that Θ1 ∪Θ2 =
{β1, β2, β3, β4} and Θ1 ∩Θ2 = ∅ and Θ := (Θ0,Θ1,Θ2) ∈ Cb0.

By assumption, 4nα = (−2)2nα = (−2)2kα = 4kα. Moreover, if 4(n−k)α ∈ Θ0, then

(−2)2(n−k)θ = θ, which is excluded since θ ∈ Rmis. As a consequence, α is strictly preperi-
odic under the map M4. Similarly, βi is strictly M4-preperiodic for all i, hence Θ ∈ Cbmis.
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Moreover, according to Theorem 3.1, the impression IC4(Θ) is reduced to a singleton {Pλ}
where Pλ Misiurewicz and Θi is a set of angles landing at the critical point ci of Pλ.

By Corollary 5.6, this implies that the prime end impression of θ is reduced to a singleton
{c}. Writing λ = (a, b), we thus have c = (a+ ib)2 and f2n

c (0) = Pnλ (0) = P kλ (0) = f2k
c (0),

i.e. c ∈ Per(2n, 2k). As c is contained in the prime end impression of θ by Ψ∗, c lies on

the boundary of M∗
2. If we had f

2(n−k)
c (0) = 0, then c would be a center of a hyperbolic

component of M∗
2 which contradicts the fact that c ∈ ∂M∗

2 (see e.g. [HS]).
To prove 2, if n is even, we may proceed exactly as above, replacing n and k respectively

with n/2 and k/2. Otherwise, we replace n and k with (n+1)/2 and (k+1)/2 respectively.
This ends the proof.

Notice that this result can be understood as follows: Misiurewicz combinatorics have
to cluster to Misiurewicz parameters which are countable, i.e. we naturally have a rigidity
property for the impression of such combinatorics. On the other hand, the existence of
(real analytic) arcs of stable parabolic parameters is an obstruction to the rigidity of those
parameters ([IM]). Parabolic combinatorics, i.e. periodic ones under multiplication by
−2, should then cluster on parabolic parameters (see Corollary 5.6) so we cannot expect
rigidity of the impression.

6.2. Landing of rays and the bifurcation measure

We want first to prove the following, in the spirit of Theorem 3.6.

Theorem 6.2. — There exists a set R ⊂ R/Z of full Lebesgue measure such that the map

Φ : (θ, r) ∈ R/Z × R∗+ 7−→ (Ψ∗)−1 (e2r+2iπθ) ∈ C \M∗
2 extends continuously to R × {0}.

Moreover, this set contains the set Rmis and the extended map Φ induces a surjection
between Rmis × {0} and the set of Misiurewicz parameters.

We follow Smirnov [Sm] and Dujardin and Favre [DF].

Proof. — As for the proof of Theorem 3.6, we rely on Theorem 3.7. To an angle θ ∈ R/Z,
owing to Lemma 5.5, we can associate Θ ∈ Cb0 and we let R1 be the set of angles θ
such that the associated Θ satisfies that the impression IC4(Θ) contains a polynomial Pλ
satisfying the TCE condition. Let R := R1 ∪ Rmis. According to Corollary 5.6 and to
Theorem 3.1, the map Φ extends as a continuous map to R× {0} and the extended map
Φ induces a surjection from Rmis × {0} to the set of Misiurewicz parameters. Indeed, any
θ ∈ Rmis corresponds exactly to 2 distinct Θ,Θ′ ∈ Cbmis. According to Lemma 5.5 they
correspond respectively to distinct (a, b), (a′, b′) ∈ R2 with c = (a + ib)2. The conclusion
follows from Theorem 3.1.

It remains to prove that R has full-Lebesgue measure. Notice that Rmis is countable,
hence satisfies dimH(Rmis) = 0. Hence it has Lebesgue measure 0 and the full measure
property will be fulfilled by the set R1. Let

Cb1 := {Θ = (Θ0,Θ1,Θ2) ∈ Cb0 ;−2Θ0 = 4Θ1 = 4Θ2}.
Lemma 5.5 allows to define a map π : Cb1 −→ R/Z. It is clear that π is a degree 2
unbranched cover. In particular, dimH(R/Z \ R) = dimH(Cb1 \ π−1R1). Assume (see the
proof below) we have the following :

Claim. — dimH(R/Z \ R) ≤ log 3/ log 4 < 1.

In particular, λR/Z(R/Z \ R) = 0 which ends the proof.
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Proof of The Claim. — We follow the proof of [DF, Lemma 7.25]. Pick Θ ∈ Cb1 and let
c = (a+ ib)2 be such that Pa,b ∈ IC4(Θ). According to [DF, Lemma 7.24], there exists a
partition of Ja,b into three sets J0, J1 and the impression of the external ray of angle θ of

Pa,b in Ja,b, where {θ} = −2Θ0. Let Σ2 := {0, 1}N and κ : (R \Q)/Z −→ Σ2 be defined as
follows: we say that κ(θ)n = ε ∈ {0, 1} if 4nθ ∈ Iε, where Iε is the connected component
of R/Z \ {α, α+ 1

2}, with −2α = θ, such that angles in Iε land in Jε.
Following Smirnov [Sm], we see that θ ∈ R/Z fails the TCE condition if and only if

θ ∈ κ−1(SR) i.e. is strongly recurrent. The precise definition of SR can be found in [Sm].
It is known that SR has Hausdorff dimension 0 and, following Dujardin and Favre, if Cn
is any cylinder of depth n in Σ2, then κ−1(Cn) consists of the intersection of (R \ Q)/Z
with at most A× n3n intervals of length at most 2−n, where A is a constant independent
of n.

Indeed, if 4nθ turns once around R/Z so that 4nθ = θ, then θ ∈ Q, which is excluded.
We now proceed by induction on n: let I be an interval of R/Z of length `I < 1/4. Then,
either 4θ /∈ I and M−1

4 (I) ∩ Iε consists in 2 intervals, or 4θ ∈ I and M−1
4 (I) ∩ Iε consists

in 3 intervals, which can occur only for one of the N(n) intervals. As a consequence,
N(n + 1) ≤ 2 · (N(n) − 1) + 3 ≤ 2N(n) + 1, whence N(n) ≤ A × n3n. The estimate for
the Hausdorff dimension then easily follows.

Thanks to Theorem 6.2, we can define the landing map and the bifurcation measure for
the Tricorn.

Definition 6.3. — The landing map of the Tricorn is the measurable map ` : R/Z →
∂M∗

2 defined by `(θ) := Φ(e2iπθ, 0) for any θ ∈ R. We define the bifurcation measure of
the Tricorn as the probability measure

µ∗bif := `∗
(
λR/Z

)
.

As an immediate consequence of Theorem 6.2, we have proven Theorem B. Notice also
that we have Rmis ⊂ R.

6.3. Distribution of Misiurewicz combinatorics: Theorem C

Recall that, for n > k > 1, we denoted by Per∗(n, k) the set of parameters such that
fnc (0) = fkc (0) and fn−kc (0) 6= 0.

For any n ≥ 4, pick 1 < k(n) < n. Let Xn := C∗(n, k(k)) \ C∗(n − k(n) + 1, 1),

dn := Card(Xn) = 2n−1 − 2k(n)−1 − 2n−k(n) + 1 and

νn :=
1

dn

∑
θ∈Xn

δθ.

Let also Xn := ` (Xn) ⊂ Per∗(2n, 2k(n)), and let µ∗n be the probability measure

µ∗n :=
1

dn

∑
c∈Xn

NR/Z(c) · δc ,

where NR/Z(c) ≥ 1 is the number of angles θ ∈ Rmis for which `(θ) = c, i.e. µ∗n = `∗(νn).
Our aim here is to prove the following.

Theorem 6.4. — The sequence of measures (νn)n≥4 converges weakly to λR/Z.
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Proof. — As in the proof of the above lemma, if n− k(n) is even, we have

dn = 2n−1 − 2k(n)−1 − 2n−k(n) + 1

≥ 2n−1 − 2k(n)−1 − 1

2

(
2n−1 − 2k(n)−1

)
≥ 1

2
Card(C∗(n, k(n))) ,

and if n− k(n) is odd, we also have

dn = 2n−1 + 2k(n)−1 − 2n−k(n) − 1

≥ 2n−1 + 2k(n)−1 − 1

2

(
2n−1 + 2k(n)−1

)
≥ 1

2
Card(C∗(n, k(n))) .

Moreover, it is easy to see that the sequence (C∗(n, k(n)))n≥2 is equidistributed for λR/Z
and that (C∗(n− k(n) + 1, 1))n≥2 is either equidistributed or k(n) ≥ n − K for some

integer K ≥ 1. By Lemma 1.9, the sequence (Xn)n is equidistributed. In particular, the
sequence of probability measures (νn) converges weakly towards λR/Z.

We now can prove Theorem C.

Proof of Theorem C. — It follows directly from Theorem 6.2, Lemmas 5.4 and 6.1 com-
bined with Theorem 6.4 and Theorem 1.8.

Remark. — We expect the measure which is equidistributed on the set Per∗(n, k(n))
converges towards to the bifurcation measure µ∗bif, whenever 1 < k(n) < n.

7. The bifurcation measure of the Tricorn and real slices

Let µbif,d (resp. νbif,d) denote the bifurcation measure on the moduli space Pd of degree d
polynomials with marked critical points (resp. on the moduli spaceMd of degree d rational
maps with marked critical points). Let {P} ∈ Pd (resp. {R} ∈ Md), then {P ◦m} ∈ Pdm
(resp. {R◦m} ∈ Mdm). Let itm : {P} 7→ {P ◦m} (resp. itm : {R} 7→ {R◦m}). We have
the following interesting result that relates the image of the support of the bifurcation
measure under the iteration map itm with the support of the bifurcation measure. It is
new to the authors’ knowledge. More precisely:

Proposition 7.1. — Let m ≥ 2, then with the above notations, we have that:

– if {P} ∈ Pd satisfies {P} ∈ supp(µbif,d) then {P ◦m} ∈ supp(µbif,dm). In other words

itm(supp(µbif,d)) ⊂ supp(µbif,dm) ∩ itm(Pd);
– if {R} ∈ Md satisfies {R} ∈ supp(νbif,d) then {R◦m} ∈ supp(νbif,dm). In other words

itm(supp(νbif,d)) ⊂ supp(νbif,dm) ∩ itm(Md).

Proof. — We first prove the case where {P} ∈ Pd. By density of Misiurewicz parameters
in supp(µbif,d) (see [DF]), we can assume that {P} is Misiurewicz, i.e. all critical points
of P are preperiodic to repelling cycles. Then P ◦m is also Misiurewicz since its critical
points are the preimages of the critical points of P by P ◦k for k ≤ m− 1. But then, it is
known that such conjugacy classes {P ◦m} belong to supp(µbif,dm) (see again [DF]). This
ends the proof in Pd.

The case of rational maps is similar (see [BE], [G1] and [BG1]).
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Question. — Does the reverse inclusion hold? Namely, if {P ◦m} ∈ supp(µbif,dm), is it
true that {P} ∈ supp(µbif,d) ? We expect the answer to be positive.

We proceed similarly for µ∗bif. Let π : C→ P4 be the map defined by

π(c) := ([f2
c2 ], 0, c1, c2), c ∈ C,

where (c1, c2) := (ic̄,−ic̄). Let also µ be the bifurcation measure of the complex surface
X := {c1 = −c2} of the moduli space P4 of degree 4 critically marked polynomials and let
S ⊂ X be the smooth real surface defined as the image of the map π. Then proceeding as
in the proof of Proposition 7.1, we have:

Proposition 7.2. — Let c ∈ C be such that c ∈ supp(µ∗bif), then π(c) ∈ supp(µ). In
other words, π(supp(µ∗bif)) ⊂ supp(µ) ∩ S.

The fact that Misiurewicz parameters belong to the support of µ follows from [G1].

Question. — Is µ∗bif the slice 〈µ,S〉 in the sense of measures of µ along S ? One of
our initial strategies (that we could not conduct) to define µ∗bif was to define it as this
slice. Notice that it is not clear that 〈µ,S〉 is even well-defined (see for instance [Ti] for
the delicate question of the real slicing of the harmonic measure of the Mandelbrot set).
Numerical evidences of such results, in the spirit of Milnor’s explorations ([Mi1]), would
be a first step.
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