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Abstract. Jonsson and Reschke [JR] showed that birational selfmaps on projective
surface defined over a number field satisfy the energy condition of Bedford and Diller
[BD] so their ergodic properties are very well understood. Under suitable hypotheses on
the indeterminacy loci, we extend that result to birational maps Pk 99K Pk, k ≥ 2, defined
over a number field, showing that they satisfy a similar energy condition introduced by
De Thélin and the second author [DTV]. As a consequence, we can construct for such
maps their Green measure and deduce several important ergodic consequences.

Under a mild additional hypothesis, we show that generic sequences of Galois invariant
subset of periodic points equidistribute toward the Green measure.

1. Introduction

Let f : X 99K X be a birational map defined on a complex projective surface. Assume
that the action of f on the cohomology H1,1(X) has spectral radius λ1(f) > 1, which
is necessary to have positive entropy. In [BD], Bedford and Diller introduced an energy
condition which can be restated as∑

n∈N

1

λ1(f)n
log d(f−n(If ), If−1) > −∞ and

∑
n∈N

1

λ1(f)n
log d(fn(If−1), If )) > −∞,

where If (resp. If−1) is the indeterminacy locus of f (resp. of f−1). Under that condition,
the authors managed to construct a natural mixing hyperbolic measure for f which does
not charge curves, and combining with results of Dujardin [Du], we have that this measure
is of maximal entropy log λ1(f) and describes the equidistribution of saddle periodic points.
In other words, the energy condition is a natural condition to extend the ergodic properties
of Hénon maps to birational maps on a complex projective surface (e.g. [BS, BLS]).

This condition is not always satisfied for birational maps of P2 ([DG, B]). Still, it
is natural to produce examples of birational maps satisfying the energy condition. Our
source of inspiration in this article is the work of Jonsson and Reschke [JR] which says
the following: assume f : X 99K X is a birational maps defined on a complex projective
surface X where X and f are defined over a number field, assume that λ1(f) > 1, then,
up to birational change of coordinates

X ′

π
��

f ′ // X ′

π
��

X
f
// X
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the map f ′ satisfies the energy condition, also, as the measure µf ′ does not charge curve,
it descends to a measure µf with the same ergodic properties. Note that the choice of
the birational model is to ensure that the map f ′ is algebraically stable (see below), and
when f : P2 99K P2 already is algebraically stable, then there is no need to change the
model. Roughly speaking, combining [JR] and [BD] tells us that we have a very good
understanding of birational maps defined over a number field.

In the present note, we focus on higher dimension and we consider the dynamics of
birational maps f : Pk 99K Pk defined over a number field. Just like birational maps of
P2(C) generalize Hénon maps, the maps we consider are natural generalizations of Hénon-
Sibony maps, which are the polynomials automorphisms of Ck for which If−1 ∩ If = ∅
and whose dynamics is very well understood, see [Sib, Chapitre 2]. So, we make the
assumption that, as for Hénon-Sibony maps, there is an integer 1 ≤ s ≤ k − 1 such that

dim If = k − s− 1 and dim If−1 = s− 1,(†)

where If (resp. If−1) is the indeterminacy locus of f (resp. of f−1). We say that f
satisfies the improved algebraic stability condition if we have⋃

n≥0

fn(If−1) ∩ If =
⋃
n≥0

f−n(If ) ∩ If−1 = ∅.(⋆)

Indeed, algebraic stability means that no hypersurface is sent to the indeterminacy set
under iteration [Sib] and this is implied by (⋆).

Let d (resp. δ) be the algebraic degree of f (resp. f−1). Under the hypothesis (†)
and (⋆), one can show that ds = δk−s and that the algebraic degree of fn (resp. f−n)
is dn (resp. δn), see [DTV]. De Thélin and the second author introduced for such maps
a finite energy condition which generalizes Bedford-Diller’s condition [DTV, Definition
3.1.9], which can be stated as

∞∑
n=0

1

dsn

∫
fn(If−1 )

ϕ · f∗(ωs−1) > −∞ and

∞∑
n=0

1

δn(k−s)

∫
f−n(If )

ψ · (f−1)∗(ωk−s−1) > −∞.

(1)

where ω is the Fubini-Study form on Pk(C) and where ϕ (resp. ψ) is a quasi-potential
of d−1f∗(ω), i.e. d−1f∗(ω) = ω + ddcϕ (resp. a quasi-potential of δ−1(f−1)∗(ω), i.e.
δ−1(f−1)∗(ω) = ω + ddcψ). Under that condition, we can construct a mixing and hyper-
bolic measure of maximal entropy s log d, see [DTV]. The main result of the paper is the
following.

Theorem 1.1. Any birational map f : Pk 99K Pk which satisfies (⋆) and (†) and which is
defined over a number field satisfies the finite energy condition (1).

In particular, its Green measure µf is well-defined, mixing, hyperbolic, and has maximal
entropy s log d.

As in [JR], the idea is to interpret (1) as the local contribution of a canonical height
of the subvariety If at an archimedean place of the field of definition of f . The difficulty
is that If is not a finite set of points anymore so we have to use the notion of height
of subvarieties following Zhang [Z] and use Chambert-Loir’s interpretation [CL] of the
arithmetic intersection to relate local contributions of the height with (1).
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In [JR], the complex projective surface is not necessarily P2 and algebraic stability is
not assumed. In our case, we work on Pk and assume algebraic stability for two reasons.
First, (1) was only defined for maps on Pk(C) where the super-potentials theory of Dinh
and Sibony [DS3] is efficient, so the last part of Theorem 1.1 will only work on Pk(C).
Second, it is not clear that one can even find a suitable model where a birational map is
algebraically stable in dimension > 2 (Diller and Favre made it possible in dimension 2
[DF] but Kim and Bedford [BK] shows it is not true anymore for k = 3, see also the recent
work [BDJK] of Bell, Diller, Jonsson, and Krieger). Nevertheless, we show in § 4.3 how
to produce many examples which are not Hénon-Sibony maps.

Let us now move to the problem of the equidistribution of periodic points toward µf . For
Hénon-Sibony maps, the equidistribution is due to Dinh and Sibony [DS4] using complex
methods and to Lee [L1] in the arithmetic setting. We want to extend Lee’s result to maps
satisfying (⋆), (†), and (1). For that, we rely on De Thélin and Nguyen Van Sang [DTNVS]
who proved that for such maps, isolated periodic points are Zariski dense in Pk. We then
apply an arithmetic equidistribution theorem of the first author [Ga, Theorem 6] to deduce
the following from Theorem 1.1.

Theorem 1.2. Let f : Pk 99K Pk be a birational map defined over a number field and
satisfying (⋆) and (†). Assume in addition there is a constant C ≥ 0 such that

(2)
1

d
h ◦ f +

1

δ
h ◦ f−1 ≥

(
1 +

1

dδ

)
h− C

on (Pk \ (If ∪ If−1))(Q̄), where h is the naive logarithmic height. Then, there exist generic

sequence (Fi)i of finite Galois invariant subsets of Pk(Q̄) of periodic points of f and, for
such sequence, we have

1

#Fi

∑
x∈Fi

δx → µf ,

in the weak sense of probability measures on Pk(C).

We construct the canonical height under (⋆) and (†) (Proposition 3.2.1), but we need
the additional assumption (2) to derive the equidistribution theorem 1.2 (even though we
expect this hypothesis is not necessary). The condition (2) is not true in general but by
Kawaguchi [K2, Corollary C] (or Lee [L2, Theorem 1.2]), it is true for Hénon-Sibony maps
where, roughly speaking, it is possible to construct a nice birational model of Pk for both f
and f−1. Thus condition (2) holds for maps of the form A◦f where A is an automorphism
and f is a Hénon-Sibony map both defined over a number field, see §4.3 for examples.

It is worth noticing that apart from the case of Hénon-Sibony maps (see [L1] and [DS4]),
this is the first equidistribution result for birational maps in dimension at least 3.

2. Preliminaries

2.1. Metrized line bundles and mutual energy. Let (K, | · |) be an algebraically
closed field of characteristic zero which is complete with respect to a non-trivial absolute
value. Let X be a smooth projective variety of dimension q ≥ 2 and let L be an ample
line bundle on X, both defined over K. In what follows, we denote by Xan the Berkovich
analytification of X.
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We let ∥ · ∥1 and ∥ · ∥2 be two semi-positive continuous metrics on L and denote by
c1(L, ∥ · ∥i) the curvature form associated with ∥ · ∥i (see [Gu]). The continuous function

ϕ := log
∥ · ∥1
∥ · ∥2

: Xan → R

defines a continuous metric on OX , which is a model metric if both ∥ · ∥1 and ∥ · ∥2 are
model metrics (see [Z]). The mutual energy of ∥ · ∥1 and ∥ · ∥2 on X is defined as

EX(L, ∥ · ∥1, ∥ · ∥2) :=
1

(q + 1)

q∑
j=0

∫
Xan

ϕ · c1(L, ∥ · ∥1)j ∧ c1(L, ∥ · ∥2)q−j .(3)

2.2. Adelic metrics and arithmetic intersection. Let X be a projective variety of
dimension k, and let L0, . . . , Lk be Q-line bundles on X, all defined over a number field
K. Assume Li is equipped with an adelic continuous metric {∥ · ∥v,i}v∈MK and denote
L̄i := (Li, {∥ · ∥v}v∈MK). Assume L̄i is semi-positive for 1 ≤ i ≤ k. Fix a place v ∈ MK.
Denote by Xan

v the Berkovich analytification of X at the place v. We also let c1(L̄i)v be
the curvature form of the metric ∥ · ∥v,i on Lan

v .
Note that the hypothesis that L̄i is adelic means in particular that for all but finitely

many v ∈MK, the metric ∥ · ∥v,i is a model metric on Lan
i,v.

In the sequel, for a given place v ∈ MK, denote by Cv an algebraically closed and
complete extension of (K, | · |v).

For any closed subvariety Y of dimension q of X, the arithmetic intersection num-
ber

(
L̄0 · · · L̄q|Y

)
is symmetric and multilinear with respect to the Li’s. As observed by

Chambert-Loir [CL], we can define
(
L̄0 · · · L̄q|Y

)
inductively by

(
L̄0 · · · L̄q|Y

)
=
(
L̄1 · · · L̄q|div(s) ∩ Y

)
+
∑
v∈MK

nv

∫
Y an
v

log ∥s∥−1
v

q∧
j=1

c1(L̄i)v,

for any global section s ∈ H0(X,L0) such that the intersection div(s) ∩ Y is proper. In
particular, if L0 is the trivial bundle and ∥ · ∥v,0 is the trivial metric at all places but a
finite set S of places of K, this gives

(
L̄0 · · · L̄q|Y

)
=
∑
v∈S

nv

∫
Y an
v

log ∥s∥−1
v,0

q∧
j=1

c1(L̄i)v.(4)

When L̄ is an ample Q-line bundle endowed with a semi-positive continuous adelic metric,
following Zhang [Z], we can define hL̄(Y ) as

hL̄(Y ) :=

(
L̄q+1|Y

)
(q + 1)[K : Q] degL(Y )

,

where degL(Y ) = (L|Y )
q is the volume of the line bundle L restricted to Y .

2.3. Arithmetic intersection and mutual energies.

Lemma 2.3.1. Let X be a smooth projective variety endowed with an ample line bundle
L, both defined over a number field K. Let {∥ · ∥v,1}v∈MK and {∥ · ∥v,2}v∈MK be two adelic
semi-positive metrics on L and denote by L̄i := (L, {∥ · ∥v,i}v∈MK). For a given place
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v ∈MK, we denote by EX,v(L, ∥ · ∥v,1, ∥ · ∥v,2) the mutual energy (3) of the metrics ∥ · ∥v,1
and ∥ · ∥v,2 on Lan

v . Then

1

q + 1

(
(L̄q+1

1 |X)− (L̄q+1
2 |X)

)
=
∑
v∈MK

nv · EX,v(L, ∥ · ∥v,1, ∥ · ∥v,2).

Proof. Since the arithmetic intersection product is multilinear, we have

(L̄q+1
1 |X)− (L̄q+1

2 |X) =

q∑
j=0

(
(L̄1 − L̄2) · L̄j1 · L̄

q−j
2 |Y

)
.

Note that by assumption, L̄1− L̄2 is the trivial bundle endowed with an adelic continuous
metric which is trivial for all v /∈ S (S ⊂ MK is a finite set such that for any v /∈ S, we
have ∥ · ∥v,2 = ∥ · ∥v,1 as metrics on Lan

v ). Using (4) with the constant section s ≡ 1 of the
trivial bundle, we find(

(L̄1 − L̄2) · L̄j1 · L̄
q−j
2 |Y

)
=
∑
v∈S

nv

∫
Xan

v

ϕv · c1(L̄1)
j
v ∧ c1(L̄2)

q−j
v ,

where ϕv = log(∥ · ∥1,v/∥ · ∥2,v). We thus get

(L̄q+1
1 |X)− (L̄q+1

2 |X) = (q + 1)
∑
v∈S

nv · EX,v(L, ∥ · ∥v,1, ∥ · ∥v,2).

Together with the fact that EX,v(L, ∥ · ∥v,1, ∥ · ∥v,2) = 0 for all v /∈ S, this gives the
lemma. □

2.4. Dynamical degrees and algebraic stability. Let K be an algebraically closed
field of characteristic zero and let f : Pk 99K Pk be a dominant rational map defined over
K. Recall that the j-dynamical degree of f can be computed as

λj(f) := lim
n→∞

(
(fn)∗(Lj) · Lk−j

)1/n
,

for any ample line bundle L on PkK (see [RS, DS2] for the complex case and [T, Da] for
arbitrary characteristic).

By [DTV, § 3.1], we have

Proposition 2.4.1. Assume f : Pk 99K Pk is a birational map which satisfies the improved
algebraic stability condition (⋆) and the dimension hypothesis (†). Let d be the algebraic
degree of f and δ be the algebraic degree of f−1. Then

∀1 ≤ j ≤ s, λj(f) = λ1(f)
j = dj and ∀s ≤ ℓ ≤ k, λℓ(f) = λ1(f

−1)k−ℓ = δk−ℓ.

In particular, ds = δk−s.

2.5. The finite energy condition over a metrized field. Let f : Pk 99K Pk be a
dominant rational map defined over an algebraically closed field K of characteristic zero.
Let d = be the algebraic degree of f . Let 1 ≤ s ≤ k − 1 be such that dim If = k − s− 1
where If is the indeterminacy locus of f . Assume that for all q ≤ s,

(λq(f))
n =

(
(fn)∗(OPk(1)q) · OPk(1)k−q

)
= dnq.

Definition 2.5.1. Let X ⊊ Pk be a closed subvariety. We say X is f -good if⋃
n≥0

fn(X) ∩ If = ∅.
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Observe that if X is f -good, then necessarily, dimX + dim If ≤ k − 1 so dimX ≤ s.

Assume in addition that (K, | · |) is complete. Let F : Ak+1 → Ak+1 be a polynomial lift of
f defined over K, i.e. F = (F0, . . . , Fk) with Fi ∈ K[X0, . . . , Xk] homogeneous of degree
d with π ◦ F = f ◦ π and If = π(F−1{0}), where π : Ak+1 \ {0} → Pk is the canonical
projection. We define

φf (x) :=
1

d
log ∥F (p)∥ − log ∥p∥,

for all x ∈ (Pk \ If )(K) and p ∈ Ak+1(K) \ {0} with π(p) = x. If we equip OPk(1) with a
model metric ∥ · ∥0, we define a (singular) metric on OPk(1) by letting ∥ · ∥f := ∥ · ∥0e−φf .
The singularities of the metric ∥ · ∥f are contained in If and, for any closed subvariety

X ⊊ Pk with X ∩ If = ∅, the line bundle (1df
∗OPk(1) − OPk(1))|X is nothing but the

trivial bundle OX on X and ∥ · ∥f is a model metric on L := OPk(1)|X .

Definition 2.5.2. Let X ⊊ Pk be an f -good closed subvariety of dimension q and let
Ln := OPk(1)|fn(X) and ∥ · ∥f,n and ∥ · ∥n be the respective restrictions of ∥ · ∥f and ∥ · ∥ to
Ln. We say (f,X) satisfies the finite energy condition (E) if

∞∑
n=0

1

dn(q+1)
Efn(X)(Ln, ∥ · ∥f,n, ∥ · ∥n) > −∞.(E)

Remark that, when K = C, the curvature form c1(OPk(1), ∥ · ∥) is the Fubini-Study
form ω. In particular, c1(Ln, ∥ · ∥f,n) is the restriction of d−1f∗ω to fn(X). So that (E)
rewrite as

∞∑
n=0

1

d(q+1)n

q∑
j=0

∫
fn(X)

φf · ωj ∧ f∗(ωq−j) > −∞.

When X = If−1 , this condition implies the first part of (1) for a birational maps of Pk
satisfying (†) and (⋆).

3. Finite energy condition for maps defined over a number field

3.1. A general result for dominant rational maps. Let now f : Pk 99K Pk be a
dominant rational map of degree d defined over a number field K. Let 1 ≤ s ≤ k − 1 be
such that dim If = k − s − 1 where If is the indeterminacy locus of f . Assume that for
all q ≤ s,

(λq(f))
n =

(
(fn)∗(OPk(1)q) · OPk(1)k−q

)
= dnq.

For any place v ∈ MK, we let ∥ · ∥f,v and φf,v be defined as in § 2.5. The metric ∥ · ∥f,v
induces a singular metric on OPk(1)anv with singular locus exactly Ianf,v and the function

φf,v extends as a continuous function on Pk,anv \ Ianf,v.
The main result of this section is the following version of [JR, Theorem 5.1] to our case,

in which we use the notations of Definition 2.5.2 and add a v to precise the dependence
on the choice of the place v ∈MK. Note that it only relies on the product formula over a
number field as well as the non-negativity of the naive height.

Theorem 3.1.1. Let X ⊊ Pk be an f -good subvariety defined over K. There is a constant
C ≥ 0 such that for any place v ∈MK, we have

∞∑
n=0

1

dn(q+1)
Efn(X)(Ln, ∥ · ∥f,n,v, ∥ · ∥n,v) ≥ − [K : k] deg(X)

nv
(hnv(X) + C) .
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In particular, the pair (X, f) satisfies the finite energy condition (E) over Cv.

Proof. AsX is f -good, we must have q := dimX ≤ s. In particular, the degree of (fn)(X),
counted with multiplicity, can be computed by

(5) (fn(X) · OPk(1)q) = (X · (fn)∗(OPk(1)q)) = dnq deg(X).

Fix an integer n ≥ 0 and recall that Ln := OPk(1)|fn(X). Let L̄n = (Ln, {∥ · ∥n,v}v∈MK) be

the semi-positive adelic ample line bundle induced by ŌPk(1) on fn(X).
Note that, since X is f -good, the collection {∥·∥f,n,v}v∈MK of singular metrics on OPk(1)

induces a model metric on Ln. We denote by L̄f,n the induced adelically metrized line
bundle. By construction, we have f∗L̄n+1 = dL̄f,n and

(L̄q+1
f,n |fn(X)) = d−(q+1)((f∗L̄n+1)

q+1|fn(X)) = d−(q+1)(L̄q+1
n+1|f

n+1(X)).

We thus find

IN :=

N∑
n=0

1

(q + 1)dn(q+1)

(
(L̄q+1

f,n |fn(X))− (L̄q+1
n |fn(X))

)
=

N∑
n=0

1

(q + 1)dn(q+1)

(
1

dq+1
(L̄q+1

n+1|f
n+1(X))− (L̄q+1

n |fn(X))

)
=

1

(q + 1)d(q+1)(N+1)
(L̄q+1

N+1|f
N+1(X))− 1

q + 1
(L̄q+1

0 |X)

≥ −[K : Q] deg(X)hL̄0
(X),

since (L̄q+1
N+1|fN+1(X)) = (q + 1)[K : Q] deg(fN+1(X))hL̄N+1

(X) ≥ 0. According to
Lemma 2.3.1, for any n ≥ 0,

1

q + 1

(
(L̄q+1

f,n |fn(X))− (L̄q+1
n |fn(X))

)
=
∑
v∈MK

nv · Efn(X),v(Ln, ∥ · ∥f,n,v, ∥ · ∥n,v).

For any N ≥ 0, this leads to

N∑
n=0

∑
v∈MK

nv

dn(q+1)
Efn(X),v(Ln, ∥ · ∥f,n,v, ∥ · ∥n,v) ≥ −[K : Q] deg(X)hL̄0

(X).(6)

We now recall that, by the (strong) triangular inequality, for any v ∈MK, there is Cv ≥ 0
such that

φf,v ≤ Cv on (Pk \ If )(Cv),(7)

with Cv = 0 for all but finitely many v ∈ MK, see, e.g., [Sil, JR]. As a consequence, for
all n ≥ 0 and all v ∈MK

Efn(X),v(Ln, ∥ · ∥f,n,v, ∥ · ∥n,v) ≤ Cv · degLn
(fn(X)) = Cv · dnq deg(X),

where we used (5). Set S := {v ∈ MK : Cv ̸= 0} ⊂ MK. For all v /∈ S, we get
Efn(X);v(L, ∥ · ∥f,n,v, ∥ · ∥n,v) ≤ 0. Finally, we pick a place v0 ∈MK and n ≥ 0. By (6) and



8 THOMAS GAUTHIER AND GABRIEL VIGNY

(7), we have

N∑
n=0

nv0d
−n(q+1)

[K : Q] deg(X)
Efn(X),v0(Ln, ∥ · ∥f,n,v0 , ∥ · ∥n,v0) ≥ −hL̄0

(X)−
∑

v∈MK\{v0}

N∑
n=0

nv
dn
Cv

≥ −hL̄0
(X)− dC

d− 1
,

where C :=
∑

v∈MK
nvCv =

∑
v∈S nvCv, since Cv ≥ 0 for all v ∈ MK and Cv = 0 for

all v /∈ S. Since L̄0 = OPk(1)|X and since this metrization induces the naive height, this
concludes the proof. □

3.2. Finite energy and canonical heights for birational maps. In this section, we
let f : Pk 99K Pk be a birational map defined over a number field K satisfying the improved
algebraic stability assumption (⋆) and (†).

Proof of Theorem 1.1. Fix a complex place v ∈MK. As f satisfies (⋆), (If−1 , f) is a good
pair. In particular, we can apply Theorem 3.1.1 over Cv, which means

∞∑
n=0

1

dns
Efn(If−1 )(Ln, ∥ · ∥f,n, ∥ · ∥n) > −∞,

with

Efn(If−1 )(Ln, ∥ · ∥f,n, ∥ · ∥n) :=
1

s

s−1∑
j=0

∫
fn(If−1 )

φ · c1(Ln, ∥ · ∥f,n)j ∧ c1(Ln, ∥ · ∥n)s−1−j ,

where Ln = OPk(1)|fn(If−1 ), ∥ · ∥n is the naive metric ∥ · ∥0 on Ln, and ∥ · ∥f,n is the metric

∥ · ∥0e−φf on Ln with

φf (x) =
1

d
log ∥F (p)∥ − log ∥p∥

for some lift F of f . The finiteness of the sum implies (and is in fact equivalent) to the
finiteness of the sum for j = s − 1, see [DTV, Proof of Theorem 3.2.1], and φf is indeed
a quasi-potential of d−1f∗(ω). Using that c1(Ln, ∥ · ∥f,n) is the restriction of d−1f∗(ω) to
fn(If−1) implies the first part of (1). Finally, working with (If , f

−1) implies f satisfies
(1).

The fact that its Green measure µf is well-defined, mixing, hyperbolic, and has maximal
entropy s log d is an immediate consequence of [DTV, Theorems 4 & 5]. □

The set of points with a well defined grand orbit is

Pkf := Pk \

⋃
n≥0

fn(If−1) ∪ f−n(If )

 .

We prove here the following.

Proposition 3.2.1. Assume f satisfies assumption (⋆) and (†). There exist canonical

height functions ĥ+f , ĥ
−
f : Pkf (Q̄) → R+ such that

ĥ+f (f(x)) = dĥ+f (x) and ĥ
−
f (f

−1(x)) = δĥ−f (x) for all x ∈ Pkf (Q̄).
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In particular, if x ∈ Pk(Q̄) is periodic, then ĥ+f (x) = ĥ−f (x) = 0.

Moreover, if we assume there exists a constant C ∈ R such that

1

d
h(f(x)) +

1

δ
h(f−1(x)) ≥

(
1 +

1

dδ

)
h(x) + C, x ∈ Pk(Q̄) \ (If (Q̄) ∪ If−1(Q̄)),(8)

then there is a sequence of positive numbers (ϵn)n such that ϵn → 0 as n→ ∞ and

(9)
1

dn
h ◦ fn(x) + 1

δn
h ◦ f−n(x) ≤ ĥ+f (x) + ĥ−f (x) + ϵn, x ∈ Pkf (Q̄).

Proof. As before, we use that max{φf,v, φf−1,v} ≤ Cv on Pkf (Q̄) where Cv = 0 for all but
finitely many v ∈MK. We deduce that

max{φf,v ◦ fn, φf−1,v ◦ f−n} ≤ Cv on Pkf (Q̄).

In particular, if C1 is the constant C1 :=
∑

v∈MK
nv · Cv ∈ R+, summing over all places

and over all Galois conjugates of a point x ∈ Pkf (Q̄), we find
1

dn+1
hnv(f

n+1(x))− 1

dn
hnv(f

n(x)) ≤ 1

dn
C1, and

1

δn+1
hnv(f

−n−1(x))− 1

δn
hnv(f

−n(x)) ≤ 1

δn
C1,

(10)

where C1 is independent of x ∈ Pkf (Q̄) and of n ≥ 0. As in Kawaguchi [K1], we deduce,

following the arguments of [CS], that the limits

ĥ+f := lim sup
n→∞

1

dn
hnv ◦ fn and ĥ−f := lim sup

n→∞

1

δn
hnv ◦ f−n

are well-defined functions ĥ±f : Pkf (Q̄) → R+ and satisfy ĥ+f ◦f = dĥ+f and ĥ−f ◦f−1 = δĥ−f .

We now assume (8) holds. We again follow ideas of [K1]. Let D := dδ and h′ := h+ κ
where κ = −CD

D+1−d−δ is a constant chosen so that (8) rephrases as

1

d
h′(f(x)) +

1

δ
h′(f−1(x)) ≥

(
1 +

1

D

)
h′(x).(11)

For n ∈ N∗ and x ∈ Pkf , let us denote by h′n(x) the quantity

h′n(x) :=
1

dn
h′(fn(x)) +

1

δn
h′(f−n(x)).

We write h′0 = h′ for n = 0. We let cn := (Dn + 1)/Dn for n ≥ 1 and c0 = 1. We shall
prove by induction on n that

h′n ≥ cn
cn−1

h′n−1

whenever all these quantities are well defined. The step n = 1 is (11). Assume now the
inequality holds for some n and compose (11) with fn and f−n:

1

dn+1
h′(fn+1(x)) +

1

δdn
h′(fn−1(x)) ≥ c1

1

dn
h′(fn(x))

1

dδn
h′(f−(n−1)(x)) +

1

δn+1
h′(f−(n+1)(x)) ≥ c1

1

δn
h′(f−n(x)).

Summing we recognize

h′n+1 +
1

D
h′n−1 ≥ c1h

′
n.
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Using the induction hypothesis gives h′n+1 +
cn−1

Dcn
h′n ≥ c1h

′
n so h′n+1 ≥

(
c1 − cn−1

Dcn

)
h′n =

cn+1

cn
h′n by a straightforward computation. So h′n ≥ cn

cn−1
h′n−1 holds for all n. Multiplying

that inequality for m ≥ n+ 1 and passing to the limit give

lim suph′m ≥ cnh
′
n.

Recall that ĥ+f = lim sup d−nh ◦ fn and ĥ−f = lim sup δ−nh ◦ f−n so, replacing h′n by

d−nh ◦ fn + δ−nh ◦ f−n + κ(d−n + δ−n) implies (9) for points in Pkf . □

4. Distribution of generic periodic points of birational maps

4.1. Arithmetic equidistribution for quasi-heights. In this section, we let X be a
projective variety of dimension k defined over a number field K and we fix a place v ∈MK.
For any n ≥ 0, we let ψn : Xn → X be a birational morphism and we let Ln be a big and
nef Q-line bundle on Xn endowed with a semi-positive adelic continuous metrization L̄n.
We assume that

(1) the sequence vol(Ln) converges to constant V > 0 and the sequence of probability
measures (vol(Ln)

−1(ψn)∗c1(L̄n)
k
v)n converges weakly to a probability measure µv

on Xan
v ,

(2) For any ample line bundle M0 on X and any adelic semi-positive continuous
metrization M̄0 on M0, there is a constant C ≥ 0 such that(

ψ∗
n(M̄0)

)j · (L̄n)k+1−j ≤ C,

for any 2 ≤ j ≤ k + 1 and any n ≥ 0.

Definition 4.1.1. The data (X,µv, Xn, L̄n) is a quasi-height on X at the place v.

A sequence (Fi)i of Galois-invariant finite subsets of X(Q̄) is quasi-small if ψ−1
n {Fi} is

a finite subset of Xn(Q̄) for any n ≥ 0 and any i and if the sequence

εn({Fi}i) := lim sup
i

hL̄n
(ψ−1

n (Fi))− hL̄n
(Xn)

satisfies lim supn→∞ εn({Fi}) ≤ 0.

The following is proved in [Ga] (see also [YZ]):

Theorem 4.1.2 (Equidistribution of quasi-small points). Let X be a projective variety
defined over a number field K, let v ∈MK and let (X,µv, Xn, L̄n) be a quasi-height on X
at the place v. For any quasi-small sequence (Fm)m of Galois-invariant finite subsets of
X(Q̄) such that for any hypersurface H ⊂ V defined over K, we have

#(Fn ∩H) = o(#Fn), as n→ +∞,

the probability measure µFm,v on Xan
v which is equidistributed on Fm converges to µv

in the weak sense of measures, i.e. for any continuous function with compact support
φ ∈ C 0(Xan

v ), we have

lim
m→∞

1

#Fm

∑
y∈Fm

φ(y) =

∫
Xan

v

φµv.
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4.2. Dynamical quasi-heights for birational maps. We now prove Theorem 1.2, ap-
plying Theorem 4.1.2 above. Let f : Pk 99K Pk be a birational selfmap of Pk defined over
a number field K and satisfying (⋆) and (2). Let d := deg(f) and δ := deg(f−1). Recall
that ds = δk−s. We now choose an embedding K ↪→ C, and let f : Pk(C) 99K Pk(C) be the
induced complex birational selfmap. By Theorem 1.1, f satisfies the hypothesis of [DTV,

Theorems 4 & 5]. More precisely, the Green currents T jf and T ℓf−1 are well-defined for

1 ≤ j ≤ s and for 1 ≤ ℓ ≤ k − s and satisfy

lim
n→∞

1

dnj
(fn)∗ωj = T jf and lim

n→∞

1

δnℓ
(f−n)∗ωℓ = T ℓf .

By [DTV, Theorem 3.2.8], the above convergence is in the Hartogs’ sense (which means
that the super-potentials are almost decreasing to the super-potentials of the limits [DS3].)

Moreover, the measure µf := T sf ∧T
k−s
f−1 is mixing (with an exponential speed by [V]) hence

ergodic, and of maximal entropy s log d > 0. Since the currents T sf and T k−s
f−1 are wedgeable

by [DTV, Theorem 3.4.1], continuity of the wedge product under Hartogs convergence for
wedgeable currents (see again [DS3, Proposition 4.2.6]) implies

(12) µf = lim
n→∞

1

dns
(fn)∗(ωs) ∧ 1

δn(k−s)
(f−n)∗(ωk−s).

The measure µf satisfies
∫
log d(x, If )dµf > −∞ and is hyperbolic

χ1 ≥ · · · ≥ χs > 0 > χs+1 ≥ · · · ≥ χk,

where χi is the i-th Lyapunov exponent of µf .

We define Xn as a finite sequence of blowups ψn : Xn → Pk of Pk such that the maps
fn ◦ ψn and f−n ◦ ψn extend as morphisms fn, gn : Xn → Pk. This amounts to the fact
that the following diagram commutes:

Xn

ψn
��

fn

  

gn

~~
Pk Pk

fn
//

f−n
oo Pk

We let L̄0 be the classical adelic metrization on OPk(1), so that in particular hL̄0
≥ 0

on Pk(Q̄) and, if ω be the Fubini Study form on Pk, then ω is the curvature form of L̄0

over C. Let
L̄n :=

1

dn
f∗nL̄0 +

1

δn
g∗nL̄0.

In what follows, we denote by h the naive logarithmic height on Pk. We prove here the
following.

Proposition 4.2.1. Let f be a birational selfmap of Pk satisfying (⋆) and (†). Assume
in addition there is a constant C ≥ 0 such that

1

d
h ◦ f +

1

δ
h ◦ f−1 ≥

(
1 +

1

dδ

)
h− C

on (Pk \(If ∪If−1))(Q̄). With the above notations, (Pk, µf , Xn, L̄n) is a quasi-height at the

complex place and any sequence (Fi) of Galois-invariant finite sets Fi ⊂ Pk(Q̄) of periodic
points of f is quasi-small.
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Proof. We first check condition (1). Note that, since fn and gn are generically finite
dominant morphisms, and since OPk(1) is ample, the Q-line bundle Ln is big and nef. In
particular, vol(Ln) = (Lkn). Then we can compute

vol(Ln) =

∫
Xn(C)

(
1

dn
f∗nω +

1

δn
g∗nω

)k
=

k∑
j=0

(
k

j

)
1

(djδk−j)n

∫
Xn(C)

f∗n(ω
j) ∧ g∗n(ωk−j).

Fix 0 ≤ j ≤ k. As ω is a smooth form and as fn and gn are morphisms, for any closed
subvariety Y ⊊ Xn, the measure f∗n(ω

j) ∧ g∗n(ω
k−j) does not give mass to Y (C). Let

Yn := ψ−1
n

(⋃
0≤ℓ≤n f

ℓ(If−1) ∪ f−ℓ(If )
)
, so that ψn is an isomorphism from Xn \Yn to its

image Zn :=
⋃

0≤ℓ≤n f
ℓ(If−1) ∪ f−ℓ(If ). We then have∫

Xn(C)
f∗n(ω

j) ∧ g∗n(ωk−j) =
∫
Xn(C)\Yn(C)

f∗n(ω
j) ∧ g∗n(ωk−j)

=

∫
Xn(C)\Yn(C)

ψ∗
n

(
(fn)∗(ωj) ∧ (f−n)∗(ωk−j)

)
=

∫
Pk(C)\Zn(C)

(fn)∗(ωj) ∧ (f−n)∗(ωk−j).

We now use Bézout Theorem for currents to find∫
Pk(C)\Zn(C)

(fn)∗(ωj) ∧ (f−n)∗(ωk−j) ≤(∫
Pk(C)

(fn)∗(ωj) ∧ ωk−j
)

×

(∫
Pk(C)

(f−n)∗(ωk−j) ∧ ωj
)
,

with equality when j = s. By assumption, this gives∫
Xn(C)

f∗n(ω
j) ∧ g∗n(ωk−j) ≤ λj(f)

n × λk−j(f
−1)n,

and we have proved that (d−jδj−k)nf∗n(ω
j) ∧ g∗n(ωk−j) has mass at most

(
λj(f)

dj
λk−j(f

−1)

δk−j

)n
=

 O (δ−n) if j < s,
1 if j = s,
O (d−n) if j > s.

In particular, the volume of Ln satisfies

vol(Ln) ≤
k∑
j=0

(
k

j

)(
λj(f)

dj
λk−j(f

−1)

δk−j

)n
=

(
k

s

)
+ o(1).

Moreover, for j = s, the measure (d−sδs−k)nf∗n(ω
s) ∧ g∗n(ωk−s) is a probability measure,

whence vol(Ln) ≥
(
k
s

)
for any n, so that limn→∞ vol(Ln) =

(
k
s

)
=: V > 0.
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We now show that vol(Ln)
−1(ψn)∗c1(L̄n)

k converges to the measure µf = T sf ∧ T k−s
f−1 .

As above, we have

(ψn)∗c1(L̄n)
k =

k∑
j=0

(
k

j

)
1

dnjδn(k−j)
(ψn)∗

(
f∗n(ω

j) ∧ g∗n(ωk−j)
)

=

(
k
s

)
dnsδn(k−s)

(ψn)∗

(
f∗n(ω

s) ∧ g∗n(ωk−s)
)
+ νn,

where the mass of νn is O(min{d, δ}−n), whence tends to 0 as n→ ∞. Also

1

dnsδn(k−s)
(ψn)∗

(
f∗n(ω

s) ∧ g∗n(ωk−s)
)
=

1

dnsδn(k−s)
(fn)∗(ωs) ∧ (f−n)∗(ωk−s),

which converges towards µf as n→ ∞ by (12). Since vol(Ln) →
(
k
s

)
, this gives

lim
n→∞

vol(Ln)
−1(ψn)∗c1(L̄n)

k = µf ,

as expected.

We now check condition (2). The metrized line bundle M̄n := L̄n− 2ψ∗
nL̄0 is integrable

(in the sense of Zhang) with underlying trivial bundle. Fix a place v ∈ MK. Let En be
the exceptional divisor of ψn. Then the function

un,v := φf,v ◦ ψn + φf−1,v ◦ ψn : (Xn \ En)(Cv) → R
extends continuously to Xan

n,v \ Ean
n,v, where φf±1,v are the functions introduced in § 2.5.

Applying (7) to f and f−1, we see that there exists a constant Cv ≥ 0 such that

un,v ≤ Cv on Xan
n,v,

and there exists a finite set S ⊂MK such that Cv = 0 for all v /∈ S.

We now pick an integer N ≥ 1 and let M̄ be the line bundle M := OPk(N) endowed
with an adelic semi-positive continuous metrization. Pick any integer 2 ≤ j ≤ k. Then(
ψ∗
n(M̄)

)j · (L̄n)k+1−j
=
(
ψ∗
n(M̄)

)j · (L̄n)k−j · (M̄n

)
+ 2

(
ψ∗
n(M̄)

)j · (L̄n)k−j · (ψ∗
nL̄0

)
.

As Mn is the trivial bundle on Xn, we have(
ψ∗
n(M̄)

)j · (L̄n)k−j · (M̄n

)
=
∑
v∈MK

nv

∫
Xan

n,v

un,v · c1(L̄n)k−jv ∧ c1((ψn)∗M̄)jv

≤ C1 · ((ψn)∗M j · Lk−jn ) ≤ C1max{N, 2}k,

where C1 :=
∑

v∈MK
nv · Cv ∈ R+. In particular, the constant C2 := C1max{N, 2}k

depends only on c1(M) and(
ψ∗
n(M̄)

)j · (L̄n)k+1−j ≤ C2 + 2
(
ψ∗
n(M̄)

)j · (L̄n)k−j · (ψ∗
nL̄0

)
.

In particular, iterating the process and using the projection formula, we deduce(
ψ∗
n(M̄)

)j · (L̄n)k+1−j ≤

(
k+1−j∑
ℓ=0

2ℓC2

)
+ 2k+1−j (ψ∗

n(M̄)
)j · (ψ∗

nL̄0

)k+1−j

≤

(
k+1−j∑
ℓ=0

2ℓC2

)
C2 + 2k+1−j (M̄)j · (L̄0

)k+1−j

The conclusion follows taking C :=
(∑k+1

ℓ=0 2
ℓC2

)
C2 +maxj 2

k+1−j (M̄)j · (L̄0

)k+1−j
.
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To conclude the proof, we check that periodic points are quasi-small. By construction,
we have

hL̄n
=

1

dn
hL̄0

◦ fn +
1

δn
hL̄0

◦ gn =
1

dn
h ◦ fn +

1

δn
h ◦ gn +O(min{d, δ}−n) on Xn(Q̄),

by our choice of L̄0. In particular, we have hL̄n
≥ 0 on Xn(Q̄) and hL̄n

(Xn) ≥ 0 by,

e.g., [Ga, Lemma 7]. As above, we denote by Pkf (Q̄) the set of points with well-defined
orbits:

Pkf (Q̄) := Pk(Q̄) \

⋃
n≥0

f−n(If ) ∪ fn(If−1)

 .

Pick any n ≥ 1. By construction of Xn and L̄n, for x ∈ Pkf (Q̄), x avoids the exceptional
set of ψn for any n and

hL̄n
(ψ−1

n (x)) =
1

dn
hL̄0

◦ fn(ψ−1
n (x)) +

1

δn
hL̄0

◦ gn(ψ−1
n (x))

=
1

dn
h(fn(x)) +

1

δn
h(f−n(x)) +O(min{d, δ}−n).

Together with Proposition 3.2.1, this implies

hL̄n
(ψ−1

n (x)) ≤ ĥ+f (x) + ĥ−f (x) + ϵn +O(min{d, δ}−n), x ∈ Pkf (Q̄),

and hL̄n
(ψ−1

n (x)) ≤ ϵn +O(min{d, δ}−n) for all periodic points x ∈ Pk(Q̄) (since ĥ+f (x) =

ĥ−f (x) = 0 for x periodic). As min{d, δ} ≥ 2 and ϵn → 0, this concludes the proof of the
Proposition. □

4.3. Proof of Theorem 1.2 and examples. Let us explain quickly how to deduce from
[DTNVS] that the set of isolated periodic points of f is Zariski dense in Pk. By [DTV,
Theorem 3.4.13], we know that the measure µf does not charge (pluripolar hence) strict
algebraic sets. We are thus in the settings of [DTNVS, Théorème 5]: isolated hyperbolic
periodic points accumulated to a set of measure arbitrarily close to 1 (recurring orbits are
of full measure on the natural extension for the lift of µf since it is ergodic) and are thus
Zariski dense.

In particular, there exist generic sequences {Fi}i of Galois invariant finite subsets of
Pk(Q̄) of periodic points of f (we do not claim that all points in {Fi}i are hyperbolic).
We apply Proposition 4.2.1 to end the proof of Theorem 1.2.

Example. It is easy to produce examples of birational maps of Pk defined over a number
field K, satisfying (⋆), (†) and (2). To do so, start with a regular automorphism f of Ck
defined of K, see [Sib], which obviously satisfies (⋆), (†) and also (2) by [K2, Corollary C]
or [L2, Theorem 1.2]. Then, for A ∈ PSL(k+ 1,K), A ◦ f still satisfies (†) and (2). For A
sufficiently close to the identity (at the complex place), A◦f will still satisfy the improved
algebraic stability because it is a regular birational map of Pk(C): its indeterminacy sets
are contained in two disjoint fixed open sets of Pk(C), see [DS1] for a detailed study of such
maps. By [BD, DTV], we know that outside a pluripolar set of maps A ∈ PSL(k + 1,C),
then A◦f satisfies (⋆) and the energy condition, nevertheless, countable sets are pluripolar
so it could be that the A ∈ PSL(k+ 1,K) for which A ◦ f satisfies the improved algebraic
stability are exactly those for which A ◦ f is a regular birational map.

Let us a give a slight modification of the above construction to show it can produce
many birational maps that satisfy the improved algebraic stability. Let us stick to the
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case of dimension 2 and degree 2 for simplicity. Pick a, b in K, a prime number p and a
p-adic absolute value |.|p on K with |a|p = |b|p = 1 and consider the Hénon map

f([x : y : t]) = ([x2+ yt+ at2 : bxt : t2]) and f−1([x : y : t]) = ([yt/b : xt− y2/b2− at2 : t2])
so If = [0 : 1 : 0] and If−1 = [1 : 0 : 0]. Take A ∈ PSL(3,K) such that

A−1([x, y, t]) = [a1x+ b1y + c1t : a2x+ b2y + c2t : a3x+ b3y + c3t].

with |b2|p strictly larger than the p-adic absolute values of all the others numbers ai, bi,
ci. Then we claim that the map f ◦A is algebraically stable.

For that, we claim by induction on n that, writing (f ◦ A)−n(A−1(If )) = [xn : yn : tn],
then |yn|p > max |xn|p, |tn|p which implies the algebraic stability as {(f ◦ A)−nIf◦A} ∩
{I(f◦A)−1} = ∅. Indeed, observe that If◦A = A−1(If ) = [b1 : b2 : b3] so the case n = 0 is
clear. Now, assume |yn|p > max |xn|p, |tn|p for some n, then

[xn+1 : yn+1 : tn+1] = A−1[yntn/b : xntn − y2n/b
2 − at2n : t2n]

and by the strong triangular inequality |xntn − y2n/b
2 − at2n|p = |yn|2p so applying A−1

concludes the induction as b2 dominates all the other coefficients.
To go further, we show that we can impose the condition that the backward orbit of

If is Zariski dense. Let us sketch the construction: assume |b2|p ≫ |b1|p ≫ |b3|p ≫
max |ai|p, |cj |p so that |y0|p > 2|x0|p > 4|t0|p ̸= 0. An immediate induction then shows
that

|yn|p > 2n+1|xn|p > 4n+1|tn|p ̸= 0.

Take any hypersurface over Q. It is given by the equation P (x, y, t) = 0 for some homo-
geneous polynomial of degree p:

P (x, y, t) =
∑

i1+i2+i3=p

ai1,i2,i3x
i1yi2ti3

where the ai1,i2,i3 are in Q̄. Then, it is easy to see that for n large enough, one cannot

have [xn : yn : tn]
∀n
∈ (P = 0).
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