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Introduction

Let G be a reductive algebraic group over k an algebraically closed field. Con-
sider G-varieties i.e. varieties X with an algebraic action of G. Equivariant bi-
rational geometry consists of the study of G-equivariant birational classes of G-
varieties or, in a more algebraic perspective, of the study of the function fields
k(X) of G-varieties together with its G-action. This contains the birational classi-
fication of varieties (for G trivial) thus it is way too ambitious for this lecture.

From this equivariant birational geometry point of view, spherical varieties cor-
respond to one of the easiest possible situations. Indeed, a normal G-variety X is
spherical if and only if k(X)B = k where B is a Borel subgroup of G (Theorem
2.3.9). This point of view is the starting point of the Luna-Vust Theory of em-
beedings (see [17], [15] and [6]). Another equivalent definition is to ask that any
G-birational model of X has finitely many G-orbits (cf. Theorem 4.0.3). For this
reason, spherical varieties have especially nice geometric properties that we review
in these lectures.

There are many well known examples of spherical varieties. Let us cite the
most famous ones: rational projective homogeneous spaces like projective spaces or
Grassmannians, toric varieties and symmetric spaces. One of the goal of a geometric
study of spherical varieties is to extend as much as possible the classical geomet-
ric results known for the above three classes of spherical varieties to the general
case. Another important motivation for the theory comes from the equivariant
compactification problem: given a G-homogeneous variety X0 = G/H, construct a
G-equivariant embedding X0 → X such that X is projective (compact) and X0 is
dense in X. Here are few example of such situations:

(1) Let X0 be the reductive group G itself, what are the possible G × G-
equivariant compactifications, where G × G acts by left and right multi-
plication?

(2) Let X0 be the set of non-degenerate quadratic forms on kn. Then X0 =
GLn(k)/On(k), what are the possible compactification which are GLn(k)-
equivariant?

(3) Let X0 be the space of irreducible plane conis in P2. Then we have X0 =
PGL3(k)/PO3(k). What is a good PGL3(k)-equivariant compactification
forX0? This last problem is related to the famous Steiner’s conic problem:
how many plane conics are tangent to 5 given conics?1

In these lectures, we want to carefully study G-varieties with a special focus on
the case of spherical varieties. In particular, we would like to adress the following
problems.

1Answer: 3264.
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8 INTRODUCTION

(1) Given geometric, group theoretic or representation theoretic characterisa-
tions of spherical varieties.

(2) Give a classification of spherical varieties.
(3) Describe the geometry of spherical varieties, in particular:

• Describe the Picard group of a spherical variety.
• Compute a canonical divisor.
• Describe Chow groups and especially duality between curves and

divisors.
• Describe B-orbits and the inclusions between their closures.

We will very partially answer the above questions, reviewing results of many
authors on spherical varieties.

Convention, notation and prerequisites

We work over an algebraically closed field k. We assume char(k) ≥ 0 and specify
when the assumption char(k) = 0 is needed but we will in many cases restrict to
char(k) = 0 to simplify the proofs.

All the groups we shall consider will be linear algebraic groups (except in the
first chapter). Denote by Γ such a group and use G for connected reductive groups.
Denote by R(Γ) and Ru(Γ) the radical and the unipotent radical of a group Γ. The
group of characters of Γ is denoted by X(Γ).

Denote by T a maximal torus of G and B a Borel subgroup containing T .
Denote by R the root system of (G,T ), by R+, respectively R−, the sets of positive,
respectively negative roots. For P a parabolic subgroup of G containing B, denote
by P− the opposite subgroup with respect to T .

Denote by W the Weyl group of G and by WP the Weyl group of a parabolic
subgroup P ⊃ B. Denote by U the maximal unipotent subgroup of B. Denote
by Lie(G) the Lie algebra of G, we shall also use the gothic letter g. Write gα for
the root space associated to the root α and Uα for the one-dimensional unipotent
subgroup of G with Lie(Uα) = gα.

We will also assume some familiarities with basics on algebraic geometry and
use [13] as reference. A k-variety is a reduced and separated k-scheme of finite
type over k. In particular a k-variety might be reducible. We will mainly consider
k-varieties in these lectures.
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G-varieties





CHAPTER 1

Algebraic groups, actions and quotients

1. Algebraic groups

We recall few definitions and facts about algebraic groups and actions of alge-
braic groups. For more details we refer to one of the classical books on the subject
[1], [14] and [25].

Definition 1.1.1. An algebraic group is a k-variety Γ which has a group struc-
ture such that the multiplication map µ : Γ×Γ → Γ and the inverse map i : Γ → Γ
are morphisms.

Example 1.1.2. The following are examples of algebraic groups.
(1) Finite groups.
(2) The additive group (Ga,+) with Ga = k.
(3) The multiplicative group (Gm,×) with Gm = k×.
(4) The group GLn(k) of invertible matrices of size n.
(5) The special linear group SLn(k) = {A ∈ GLn(k) | det(A) = 1}.
(6) The orthogonal group On(k), the special orthogonal group SOn(k) and

the symplectic group Sp2n(k).
(7) The projective linear group PGLn(k) obtained as the quotient GLn(k)/Gm

where Gm is the center of GLn(k).
(8) Elliptic curves are projective algebraic groups.

In the above list of example, we only consider algebraic groups which are either
affine (all cases but the last one) or projective (the first and last cases). This
dichotomy is classical because of the big difference between these cases. However,
recently mixed cases gained a lot of attention.

Here is a non example in positive characteristic which shows that bad thing
can hapend even if we start with algebraic groups defined as above.

Example 1.1.3. Let char(k) = p. The morphism of k-varieties f : Gm → Gm
defined by f(a) = ap is a group morphism. The fiber (as scheme) of f over 1 is
Spec(k[x, x−1]/(xp − 1)) = Spec(k[x]/((x − 1)p) and is therefore not reduced. It
has a group structure induced by the group structure of Gm but is not an algebraic
group with our definition. The kernel of the above map (the fiber of 1 with reduced
structure) is trivial.

The above subgroup is everywhere non-reduced and thus nowhere smooth. This
never happends for algebraic groups. In fact, with the above definition, any alge-
braic group Γ is smooth and we may describe its irreducible components as follows.

Proposition 1.1.4. Let Γ be an algebraic group, e its neutral element, and Γ0

the connected component of Γ containing e.
(1) Γ0 is a closed normal subgroup of Γ, and a smooth irreducible variety.
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(2) The connected components of Γ are the cosets g.Γ0 for g ∈ Γ.
(3) Γ0 is the largest closed connected subgroup of finite index of Γ.

In particular, Γ is smooth and all its components are isomorphic as varieties. Thus
Γ is equidimensional.

Definition 1.1.5. The finite group Γ/Γ0 is called the group of components of
Γ. We denote it by π0(Γ).

Example 1.1.6. The groups GLn(k), SLn(k), SOn(k) and Sp2n(k) are con-
nected. We have π0(On(k)) = {±1} via the determinant.

We will only consider affine algebraic groups but for completeness we state the
following two results.

Theorem 1.1.7. A complete connected algebraic group is commutative.

Complete connected algebraic groups are called Abelian Varieties. We refer to
the book [18] for a proof of the above result and much more on abelian varieties.
Furthermore, we have the following structure result on algebraic groups which ex-
plains why (up to extensions), we may split the study of algebraic groups into the
study of affine algebraic groups and abelian varieties.

Theorem 1.1.8 (Chevalley Structure Theorem). Let Γ be a connected algebraic
group. Then Γ has a largest connected affine normal subgroup Γaff . Further, the
quotient group A := Γ/Γaff is an abelian variety. We thus have an exact sequence

1 → Γaff → Γ → A→ 0.

Actually the map Γ → A above in a special instance of the Abel-Jacobi map.
We refer to [3] for a proof of this result. From now on, we focus on affine algebraic
groups. Recall the following classical results on affine algebraic groups.

Theorem 1.1.9. Let Γ be an affine algebraic group, then there exists a finite
dimensional k-vector space V and a closed embedding Γ → GL(V ).

2. Actions

Let X be a variety with an action of an affine algebraic group Γ.

Definition 1.2.1. The action of Γ on X is called rational or algebraic if the
map a : Γ×X → X induced by the action is a morphism.

Since we will only deal with algebraic action, we will drop the word rational or
algebraic when working with group actions. We will use the notation g.x for the
image of (g, x) via the action map a : Γ×X → X.

Definition 1.2.2. Let Γ be an affine algebraic group.
(1) A Γ-variety is a variety X equipped with an algebraic action of Γ.
(2) Given two Γ-varieties X,Y and a morphism of varieties f : X → Y , we say

that f is equivariant (or a Γ-morphism) if f(g.x) = g.f(x) for all g ∈ Γ
and x ∈ X.

(3) Let X be a Γ-variety, and Y ⊂ X be a (locally closed) subvariety. We
say that Y is Γ-stable (resp. Γ-fixed) if for all g ∈ Γ and y ∈ Y , we
have g.y ∈ Y (resp. g.y = y). The Γ-fixed points XΓ in X form a closed
subvariety.
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(4) Let X be a Γ-variety and x ∈ X, the orbit map of x is the morphism
ax : Γ → X, g 7→ g.x.

(5) The orbit Γ.x of x is the image of ax.
(6) The stabiliser of x (or isotropy subgroup) is Γx = {g ∈ Γ | g.x = x} with

its reduced structure. It is the reduced fiber of ax at e the identity element
of Γ.

(7) A Γ-variety X is Γ-homogeneous if there exists x0 ∈ X such that the map
ax0 : G→ X is surjective. If this holds, ax is surjective for any x ∈ X.

(8) A Γ-variety X is quasi-homogeneous if there exists x ∈ X such that Γ.x ⊂
X is a dense open orbit.

Remark 1.2.3. The stabiliser Γx is a closed subgroup of Γ (since the fiber is
closed). Furthermore, for g ∈ Γ, we have Γg.x = gΓxg

−1. Note also that any orbit
Γ.x is Γ-homogeneous

Example 1.2.4. Some homogeneous and quasi-homogeneous spaces.
(1) The projective space Pn is a homogeneous GLn+1(k)-variety but also a

quasi-homogeneous (Gm)n+1-variety where (Gm)n+1 is the subtorus of
diagonal matrices in GLn+1(k).

(2) The grassmannian variety Gr(p, n) of linear subspaces of dimension p in
kn is a homogeneous Γ-variety with Γ = GLn(k).

Proposition 1.2.5. Let X be a Γ-variety and let x ∈ X.
(1) The orbit Γ.x is smooth and open in its closure (thus locally closed in X).
(2) Γ.x is equidimensional of dimension dim(Γ)− dim(Γx).
(3) The boundary Γ.x \Γ.x is a union of orbits of strictly smaller dimension.
(4) Every orbit of minimal dimension is closed.
(5) The dimension of Γx is upper semicontinuous for x ∈ X while the dimen-

sion of Γ.x is lower semicontinuous.
(6) In particular if X is irreducible, it contains an open dense subset on which

dimΓ.x is maximal and dimΓx is minimal.

Proof. (1) The orbit Γ.x contains an open subset of its closure as image of the map
ax, the result follows by translation by Γ, the orbit being homogeneous.

(2) By homogeneity, all fibers are isomorphic of the same dimension. The
dimension formula follows from general results on dimension of fibers for morphisms.

(3) By (1), the boundary is closed and of strictly smaller dimension. Since it
is Γ-stable it is a union of orbits.

(4) Follows from (3).
(5) Consider the map Γ × X → X × X defined by (g, x) 7→ (g.x, x) and let

Y = (Γ ×X) ×X×X ∆X with ∆X ⊂ X ×X the diagonal. Note that Γx identifies
with the fiber over (x, x) of the map Y → ∆x. The result now follows from the
semicontinuity of dimension of fibers of morphisms. The result for orbits follows
from this and (2).

(6) Follows from (5). □

3. Quotients

The existence and construction of quotients of a Γ-variety under the action of
Γ is often difficult.
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Example 1.3.1. The following examples show that the usual quotient for ab-
stract goup actions will not have nice geometric properties in general.

(1) Let Γ = Gm be the mutliplicative group of invertible elements in k and
let Γ act on X = k2 via z.(x, y) = (zx, zy). The orbits are the origin
x0 = {(0, 0)} and the lines through x0 (without x0). So any orbit closure
contains x0 and there is no topology on the quotient X/Γ such that X/Γ
is separated and the quotient map X → X/Γ is continuous.

On the other hand, removing x0, we can define a nice quotient (X \
x0)/Γ = (k2 \ {(0, 0)})/Γ = P1.

(2) Let Γ = Ga be the one-dimensional addivitive group over k, let X = k2

and let Γ act on X via t.(x, y) = (x, y+ tx). The points on the line x = 0
are fixed while the other orbits are the lines x = x0 with x0 ̸= 0. In
particular all orbits are closed.

Once again there is no topology on the quotient X/Γ such that it is
separated and the quotient map X → X/Γ is continuous. Furthermore,
there is no structure of variety on X/Γ such that X → X/Γ is a morphism.
Indeed, otherwise, we would be able to separate points on X/Γ by rational
functions so to separate orbits on X by invariant rational functions. But
an invariant rational function on X is a rational function in x and rational
functions in x do not separate fixed points.

Restricting to the open G-invariant subset X \{x = 0}, there is a nice
quotient given by X \ {x = 0} → k, (x, y) 7→ x.

Let us define what we mean by a quotient.

Definition 1.3.2. Let X be a Γ-variety. A geometric quotient of X by Γ is a
morphism π : X → Y such that

(1) π is surjective and the fiber of π coincide with the Γ-orbits
(2) π induces and isomorphism k(Y ) ≃ k(X)Γ.

Remark 1.3.3. T>he first condition above imples that π is Γ-equivariant, that
the orbits are closed and that Y = X/Γ.

The first example is the case of finite groups.

Proposition 1.3.4. Let Γ be a finite group and let X be a quasi-projective
Γ-variety, then there exists a geometric quotient X → X/Γ.

Proof. We only give a sketch of proof. If X = Spec(A) is affine with A a finitely
generated k-algebra, then one checks that AΓ is a finitely generated as well. Then
the geometric quotient is given by X = Spec(A) → X/Γ = Spec(AΓ). Furthermore
this quotient is uniquely determined.

For X quasi projective, any finite set is contained in an open affine subset. In
particular any orbit is contained in an affine open subset and taking the intersection
of its translates, any orbit is contained in a Γ-stable affine open subset. We construct
the quotient on each of these affine open Γ-stable subsets and glue them together
using the fact that the quotient is unique. □

We now give important examples of geometric quotient.

Definition 1.3.5. A subgroup Γ′ of Γ is called a closed subgroup if it is a
closed subvariety of Γ.
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Theorem 1.3.6. Let Γ′ be a closed subgroup of Γ, then the quotient Γ/Γ′ has
a unique structure of algebraic variety such that the quotient map π : Γ → Γ/Γ′ is
a morphism. This map is flat and separable.

Proposition 1.3.7. Let Γ′ ⊂ Γ be a closed subgroup.
(1) The quotient map Γ → Γ/Γ′ is a geometric quotient.
(2) The quotient Γ/Γ′ is quasi-projective.
(3) The quotient Γ/Γ′ is projective iff Γ′ is a parabolic subgroup1.
(4) If Γ′ is a normal subgroup, then Γ/Γ′ is affine and has a structure of linear

algebraic group such that the quotient map is a morphism of algebraic
groups.

(5) If Γ is solvable, then Γ/Γ′ is a affine.
(6) If Γ′ is reductive, then Γ/Γ′ is a affine.

Proof. (1) and (2) See [25, Theorem 5.5.5]. (3) See [25, Theorem 6.2.7]. (4) See
[25, Proposition 5.5.10]. (5) See [28, Theorem 3.5]. (6) See [28, Theorem 3.7]. □

From a given geometric quotient, one can construct new geometric quotients.
We refer to Appendix A for proofs and more details.

Proposition 1.3.8 (See Corollary A.2.11). Let Γ be a group, Γ′ ⊂ Γ be a closed
subgroup and F be a quasi-projective Γ′-variety. Consider the action of Γ′ on Γ×F
given by (g, (x, f)) 7→ (xg−1, g.f).

Then Γ × F admits a geometric quotient denoted by Γ ×Γ′
F and we have a

cartesian diagram
Γ× F //

��

Γ×Γ′
F

��
Γ // Γ/Γ′.

A very important particular example is the construction of Γ-equivariant vector
bundles on homogeneous spaces.

Example 1.3.9. Let Γ′ ⊂ Γ be closed subgroup and let V be a Γ′-representation,
we obtain a morphism Γ ×Γ′

V → Γ/Γ′ whose fibers are isomorphic to V . This
is actually a vector bundle on Γ′/Γ as a result of the following generalisation of
Hilbert’s Theorem 90.

Theorem 1.3.10. Any surjective GLn(k)-invariant morphism π : X → Y with
fibers isomorphic to GLn(k) is locally trivial for Zariski topology: there exists an
Zariski open covering {Ui} of Y such that π−1(Ui) ≃ Ui ×GLn(k).

As a consequence the above fibration Γ ×Γ′
V → Γ/Γ′ is locally trivial for

Zariski topology. Indeed using the map Γ′ → GL(V ), we can write Γ ×Γ′
V =

(Γ ×Γ′
GL(V )) ×GL(V ) V . But Γ ×Γ′

GL(V ) → Γ/Γ′ satisfies the assumptions of
the above theorem and is Zariski locally trivial proving the result.

We finish this section on quotients with a result of Rosenlicht [23].

Theorem 1.3.11. Let Γ be a linear algebraic group and let X be an irreducible
Γ-variety. There exists a non empty open Γ-stable subset X0 such that X0 → X0/Γ
is a geometric quotient.

1i.e. contains a Borel subgroup.



16 1. ALGEBRAIC GROUPS, ACTIONS AND QUOTIENTS

Proof. We first assume that Γ is connected. Replacing X by an open subset,
we may assume that all orbits have the same dimension. Since k(X) is a finitely
generated extension of k, the same holds for k(X)Γ. Choose f1, · · · , fr ∈ k(X)Γ

some generators of this extention. Replacing X by an open subset, we may assume
that fi ∈ k[X] for all i. Consider the morphism f : X → kr defined by x 7→
(f1(x), · · · , fr(x)). Replacing X by an open subset, we may assume that the image
Y is affine and by generic flatness that f is flat. In particular all fibers have the
same dimension.

To prove that f (or the restriction of f to an open subset of X) is a geometric
quotient, we are left to prove that the fibers of f are Γ-orbits. Since f is Γ-invariant,
the fibers are union of orbits. Since all the orbits have the same dimension, it is
enough to prove that generically, for x ∈ X, the orbit Γ.x is dense in f−1(f(x)).

To prove the above claim, consider the morphism ϕ : Γ×X → X ×X defined
by (g, x) 7→ (x, g.x). Let Z = {(x, x′) ∈ X ×X | x′ ∈ Γ.x} be its image. Since Γ
is connected, Z is irreducible. Define W = X ×Y X = {(x, x′) ∈ X ×X | f(x) =
f(x′)}. Since f is Γ-invariant, it is constant on orbits therefore we have Z ⊂ W .
Note for p = pr2 :W = X ×Y X → X, we have p−1(x) = f−1(x) and p−1(x)∩Z =
Γ.x. In particular, if Z is dense in W , then W is irreducible and by Lemma 1.3.13,
there exists a open subset X0 of X such that all fibers p−1(x)∩Z is dense in p−1(x)
for x ∈ X0 proving that the restriction of the map f : X → Y to X0 is the desired
geometric quotient.

To conclude the proof, we need to prove that Z is dense in W . Consider U and
U ′ two non empty affine open subsets of X and consider the restriction

ψ : V = ϕ−1(U ×Y U ′) → U ×Y U ′.

We prove that ψ is dominant. Note that since X is irreducible, the diagonal ∆X

of X ×X meets U × U ′ and therefore V is non empty. Note also that U ×Y U ′ is
affine so it is sufficent to prove that ψ∗ : k[U ] ⊗k[Y ] k[U

′] → k[V ] is injective. Let∑
i ui ⊗ vi ∈ Kerψ∗. For all (g, x) ∈ Γ×X, we have

ψ∗

(∑
i

ui ⊗ vi

)
(g, x) =

∑
i

ui(x)vi(g.x).

For g ∈ Γ, define hg ∈ k(X) by hg(x) =
∑
i ui(x)vi(g.x). Then hg vanishes on

U ∩ g−1U ′ so hg = 0. We prove that this implies the vanishing of
∑
i ui ⊗ vi. First

we may assume that the vi are linearly independent over k(X)Γ = k(Y ). Indeed, if
vj =

∑
i̸=j civi, then

∑
i ui⊗vi =

∑
i ̸=j(ui+ciuj)⊗vi. The vanishing of

∑
i ui⊗vi

now follows from the following lemma.

Lemma 1.3.12. Let (ui)i∈[1,s], (vi)i∈[1,s] be rational functions on X such that
the vi are linearly independent over k(X)Γ. If hg =

∑
i ui(g

−1.vi) = 0 for all g ∈ Γ,
then ui = 0 for all i.

Proof. We proceed by induction on s. If s = 1, the result is obvious. Assume
s > 1 and u1 ̸= 0. For all g, g′ ∈ Γ, we have

∑
i g

′.(uiu
−1
1 )(g.vi) = 0. Since

g′.(u1u
−1
1 ) = g′.1 = 1 = u1u

−1
1 , we get∑

i≥2

(
g′.(uiu

−1
1 )− (uiu

−1
1 )
)
(g.vi) = 0.
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By induction hypothesis, it follows that g′.(uiu−1
1 ) = uiu

−1
1 for all g′ ∈ Γ, so that

uiu
−1
1 ∈ k(X)Γ. We therefore get a linear dependence relation

v1 +
∑
i≥2

(uiu
−1
1 )vi = 0

contradicting the linear independence of the vi’s. □

This proves that Z is dense in W and finishes the proof for Γ connected. If Γ
is not connected, let Γ0 be its connected component containing the identity. By
the above argument, we find an Γ0-stable open subset X0 admitting a geometric
quotient by Γ0. The intersection of all g.X0 is open (since Γ/Γ0 is finite) and Γ-
stable. Replacing X by this open subset, we may assume that there is a geometric
quotient X → X/Γ0 on which the finite group Γ/Γ0 acts. The geometric quotient
(X/Γ0)/(Γ/Γ0) which exists for finite groups is a geometric quotient X/Γ. □

Lemma 1.3.13. Let W be irreducible and Z0 ⊂ W be a dense open subset. Let
p :W → X be a dominant morphism. Then there exists a dense open subset X0 of
X such that p−1(x) ∩ Z0 is dense in p−1(x) for all x ∈ X0.

Proof. Let C1, · · · , Cs be the irreducible components of W \ Z0 and reorder them
so that C1, · · · , Cr map dominantly onto X while Cr, · · · , Cs do not. Set

U = X \
⋃
i>r

p(Ci).

Let X0 be the open subset of U such that the following holds:
(1) Any component of the fiber of p−1(X0) → X0 has dimension dimW −

dimX,
(2) For all i ∈ [1, r], any component of the fiber of Ci ∩ p−1(X0) → X0 has

dimension dimCi − dimX.
Now for x ∈ X0, the fiber p−1(x) will not meet Ci for i > r and for i ∈ [1, r], any
irreducible component C of p−1(x) satisfies the following inequalities:

dim(Ci ∩ C) = dimCi − dimX < dimW − dimX = dimC.

In particular C meets Z0 and the result follows. □

Exercise 1.3.14. Recall Example 1.3.1.
(1) Let Γ = Gm be the mutliplicative group of invertible elements in k and

let Γ act on X = k2 via z.(x, y) = (zx, zy). Prove that the quotient X/Γ
endowed with the quotient topology is not separated.

(2) Let Γ = Ga be the one-dimensional addivitive group over k, let X = k2

and let Γ act on X via t.(x, y) = (x, y+ tx). Prove that the quotient X/Γ
endowed with the quotient topology is not separated.

Exercise 1.3.15. Let G = GLn(k) act by conjugation on X =Mn(k) the space
of square matrices of size n: g.A = gAg−1 for g ∈ G and A ∈ X.

(1) Find an open subset on which we have a geometric quotient.
(2) Does there exist a geometric quotient for X itself?
(3) Find a maximal open subset of X on which there exists a geometric quo-

tient.





CHAPTER 2

Invariants of G-varieties

In this chapter, we focus on varieties with the action of a reductive group G.

1. Rank and Complexity

Let Γ be a linear algebraic group, let G be a reductive linear algebraic group
and choose T ⊂ B ⊂ G where B is a Borel subgroup and T a maximal torus.

Definition 2.1.1. The complexity cΓ(X) of an irreducible Γ-variety X is the
minimal codimension of a Γ-orbit: cΓ(X) = min{codim(Y ) | Y ⊂ X is a Γ-orbit}.
If the group Γ is clear from the context, we write cΓ(X) = c(X).

Let X be an irreducible Γ-variety, the following proposition computes the com-
plexity cΓ(X) using the action of Γ on k(X), the field of rational functions.

Proposition 2.1.2. We have cΓ(X) = Trdeg(k(X)Γ).

Proof. Let X0 be a Γ-stable open subset such that there is a geometric quotient π :
X0 → X0/Γ as in Rosenlicht’s Theorem (Theorem 1.3.11). Since the dimension of
Γ-orbits is lower semi-continuous the maximal dimension of an orbit is the dimension
of the fibers of π thus cΓ(X) = dimX0/Γ = Trdeg(k(X0/Γ)) = Trdeg(k(X)Γ). □

Definition 2.1.3. Let X be an irreducible B-variety, the weight lattice of X
is the subgroup Λ(X) ⊂ X(B) of weights of B occuring in k(X). This is a free
abelian group and its rank rk(X) is the rank of X.

Example 2.1.4. Let X = Pn be the projective space.
(1) Let G = PGLn+1(k) and consider X as a G-variety. Choose B ⊂ G

be the Borel subgroup of upper triangular matrices and U its unipotent
radical (the subgroup of upper triangular matrices with a 1 on the diag-
onal). Then U acts with an open orbit on X thus any B-eigenfunction
is U -invariant and thus constant. In particular the set k(X)(B) of B-
eigenvectors in k(X) is given by constant functions and Λ(X) is trivial
and rk(X) = 0.

(2) Let G = T ⊂ PGLn+1(k) be the maximal torus of diagonal matrices.
Then T = B = G (the group G is solvable and connected). Furthermore,
the coordinate functions xi/xj on Pn have weight ϵi − ϵj and Λ(X) is the
roots lattice of PGLn+1(X) (which is also the weight lattice of T0 = {t ∈
T | det(t) = 1}). We thus have rk(X) = n.

(3) Let T be a torus and X = T.x be a T -orbit. Then X ≃ T/T ′ for some
subgroup T ′ ⊂ T . In particular X is isomorphic to a torus T0 ≃ GdimX

m .
In an adapted basis, we have k(X) ≃ k(x±1

1 , · · · , x±1
dimX) where T acts via

a basis of character of T0 on x1, · · · , xdimX . We thus have rk(X) = dimX.
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Remark 2.1.5. Both rank and complexity and birational invariants. Its is
clear for the rank since it is defined using the field k(X) of rational functions, for
complexity it comes from the semicontinuity of the dimension of orbits or from
Proposition 2.1.2.

For T -varieties we have the following relation between rank and complexity.

Proposition 2.1.6. Let X be an irreducible T -variety, then rk(X) is the max-
imal dimension of T -orbits. In other words cT (X) = dimX − rk(X)

Proof. Since the dimension of orbits is lower semi-continuous, we may replace X by
an open subset on which we have a geometric quotient π : X → X/T by Theorem
1.3.11. Fix generators χ1, · · · , χr with r = rk(X) of Λ(X). There exists elements
f1, · · · , fr ∈ k(X)(T ) with weights χ1, · · · , χr. Choose a general enough fiber F of π
such that fi restricts to a well defined non vanishing rational function on F . Then
the χi are weight of k(F ) and we have an inclusion Λ(X) ⊂ Λ(F ) and therefore
rk(X) ≤ rk(F ). By Proposition 2.2.7 below, we have rk(F ) ≤ rk(X) and the result
follows by Example 2.1.4.(3). The last assertion follows from Proposition 2.1.2. □

Example 2.1.7. Beware that rank and complexity depend on the group acting.
If we replace T by an arbitrary reductive group G, the above result is false.

(1) For X = Pn and G = T ⊂ PGLn+1(k) a maximal torus, then cT (X) = 0
since T has a dense orbit and rk(X) = dimX.

(2) However, if X = Pn and G = PGLn+1(k), then we have cG(X) = 0 since
X is G-homogenous but rk(X) = 0 and cG(X) = 0 < n = dimX− rk(X).

(3) Let G = SL2(k) = X and T ⊂ G be a maximal torus. As a T -variety,
we have rk(X) = dimX − cT (X) = 3 − 2 = 1 which is the dimension of
any T -orbit in X. It is also easy to check that rk(X) = 1 as G-variety
as well. However, we have cG(X) = 0 since X is G-homogeneous so that
cG(X) = 0 < 2 = dim(X)− rk(X) as G-variety.

In the previous proposition we use a relation between the rank of X and the
rank of G-subvarieties. In the next section, we consider the behaviour of rank and
complexity by restriction.

2. Rank and complexity of stable subvarieties

We want to compare rank and complexity ofX with those of stable subvarieties.
For this we will need to find stable affine open subsets. This is in general not possible
as shows the following example.

Example 2.2.1. Let X = Pn and Γ = GLn+1(k). Then X is a homogeneous Γ-
variety and admits no affine open Γ-stable subset. So in general there is no Γ-stable
affine covering.

This can be solved in two different – both useful – ways. The first one keeps
the group Γ unchanged by replaces affine by quasi-projective. In this direction, we
recall the following results of Sumihiro [26, 27] enabling in many cases to assume
that a Γ-variety is quasi-projective. Let me mention the paper by Brion [2] where
the second result below is generalised to Γ-varieties defined over any field and with
Γ algebraic by not necessarily linear. We refer to Appendix B for some proofs.
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Theorem 2.2.2 (Equivariant Chow-Lemma). Let Γ be a connected linear alge-
braic group and X a Γ-variety. There exists a quasi-projective Γ-variety X̃ and a
birational Γ-equivariant projective surjective morphism f : X̃ → X.

Theorem 2.2.3. Let Γ be a connected linear algebraic group, X a normal Γ-
variety and Y ⊂ X a Γ-orbit.

(1) There exists a quasi-projective Γ-invariant open subset containing Y .
(2) If X is quasi-projective, there exists a finite dimensional Γ-module V to-

gether with a Γ-equivariant embedding X → P(V ).
(3) There exists a Γ-equivariant embedding X → X̄ with X̄ normal and

proper.

We prove parts (1) and (2) of the above theorem in Theorem B.3.4.

Definition 2.2.4. A Γ-variety X is called locally linear if it admits a Γ-stable
covering (Ui)i such that for each i there exists a finite fdimensional Γ-module Vi
and a Γ-equivariant embedding Ui → P(Vi).

Note that by Theorem 2.2.3, any normal Γ-variety is locally linear. We will
mainly consider locally linear Γ-varieties.

Another possible direction, is to look for affine open subsets which are stable
under a subgroup of the acting group. Borel subgroups will work.

Proposition 2.2.5. Let X be a normal G-variety and Y a G-stable closed
subset. Then there exists an open B-stable affine open subset X0 of X such that

(1) X0 ∩ Y ̸= ∅
(2) ∀f ∈ k[X0 ∩ Y ](B), ∃N ∈ N and ∃f ′ ∈ k[X0]

(B) with f ′|X0∩Y = fp
N

,
where p is the characteristic exponent of k.

Proof. By Sumihiro’s Theorem, we may assume that X is equivariantly embedded
in P(V ) where V is a finite dimensional G-module. Let X̄ and Ȳ be the closures of
X and Y in P(V ). Set ∂X = X̄ \X and let X̂, ∂̂X and Ŷ be the cones in V over
X̄, ∂X and Ȳ .

Note that Ŷ ̸⊂ ∂̂X and choose a homogeneous B-eigenfunction f ∈ k[Ŷ ∪
∂̂X](B) vanishing on ∂̂X but not on Ŷ . We now need the following result from
representation theory (see [8, Theorems 1.3 and 2.1]):

Theorem 2.2.6. Let X be an affine G-variety, Y ⊂ X a closed G-stable subset
and f ∈ k[Y ](B). Then there exists N ∈ N and f ∈ k[X](B) with f ′|Y = fp

N

.

Note that if char(k) = 0, then we have a surjective map k[X] → k[Y ] and a
finite dimensional G-module W ⊂ k[Y ] containing f . Since G is reductive, the
G-module W also occurs in k[X] (here we use that char(k) = 0) thus there exists
f ′ ∈ k[X] which maps onto f via k[X] → k[Y ].

Choose f ′ such that f ′|Ŷ = fp
N

and set X0 = DX(f ′) = {x ∈ X | f ′(x) ̸= 0}.
Then X0 ⊂ X is affine B-stable and meets Y .

Let ϕ ∈ k[X0∩Y ](B) be homogeneous. There exists m ≥ 0 with ϕfm ∈ k[Ŷ ](B).
By the above surjectivity (or the same argument if char(k) = 0), we get ψ ∈ k[X̂](B)

with ψ|Ŷ = (ϕfm)p
N

. Then (ψf ′
−m

) ∈ k[X0]
(B) with (ψf ′

−m
)|Ŷ = ϕp

N

. □
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Proposition 2.2.7. Let X be an irreducible normal G-variety and Y ⊂ X be
irreducible and G-stable, then rk(Y ) ≤ rk(X).

Proof. Let X0 be as in Proposition 2.2.5. Any weight of Λ(X) is the difference of
weights of k[X0] and any weight of Λ(Y ) is the difference of weights of k[X0 ∩ Y ].
The result follows from Theorem 2.2.6 for the inclusion Y ∩X0 ⊂ X0. □

Remark 2.2.8. If char(k) = 0, the above proof implies that we have an inclu-
sion Λ(Y ) ⊂ Λ(X) for Y ⊂ X is a G-subvariety. In general, this inclusion might
not be true but will be true after multiplication by some power of p.

The fact that the rank is decreasing on G-subvarieties fails for complexity in
general as shows the following example.

Example 2.2.9. Quasi-homogeneous G-varieties do not always admit finitely
many G-orbits. For example, consider X = P(M2(k)) the projective space over the
space of square matrices of size 2. The group G = SL2(k) acts by left multiplication
and has a dense orbit: the locus where the determinant is not vanishing therefore
cG(X) = 0. However, for v ∈ k2 with v ̸= 0, the variety Yv = {[M ] ∈ X | v ∈
KerM} is stable under the G-action so that we must have infinitely many G-orbits.

Let B be the Borel subgroup of upper triangular matrices. The B-complexity is
cB(X) = 1. Indeed, the open subset of rank 2 matrices is covered by a 1-dimensional
family of 2-dimensional B-orbits:

X[v] = {[M ] ∈ X | rk(M) = 2 and [Mv] is B-stable},

with v ∈ k2 and [v] ∈ P1 its class. We also have the equalities cU (X) = 2 and
rk(X) = 1 (see Proposition 2.3.5 below).

To get a nice behaviour, one needs to consider the B-complexity of G-varieties.

Proposition 2.2.10. Let X be an irreducible normal G-variety and Y be a
closed irreducible B-stable subvariety, then cB(Y ) ≤ cB(X).

Proof. Write c for cB . Let Y ⊂ X be closed and B-stable. We prove c(Y ) ≤ c(X).
We start with a G-orbit Y . Let X0 be an open affine B-stable subvariety of X

with X0∩Y ̸= ∅ as in Proposition 2.2.5. Let f ∈ k(Y )B , we can write f = u/v with
u, v ∈ k[X0∩Y ](B) having the same weight: consider {v ∈ k[X0∩Y ] |fv ∈ k[X0∩Y ]}
which is B-stable and thus admits a B-eigenvector v, then u = fv is a B-eigenvector
of the same weight. There exist u′, v′ ∈ k[X0]

(B) such that u′|Y = up
N

and v′|Y =

vp
N

. We get (u′/v′)|Y = fp
N

. It follows that the transcendence degree of k(X)B is
bigger than or equal to the transcendence degree of k(Y )B so c(X) ≥ c(Y ).

Let Y be any closedB-stable subset. We prove that c(Y ) ≤ c(GY ) and conclude
by the previous argument. Recall that G is generated by the minimal parabolic
subgroups strictly containing B. We therefore only need to prove that c(Y ) ≤
c(PY ) for any minimal parabolic subgroup P .

Consider the contracted product P ×B Y defined as the quotient of P × Y
by the action of B defined by b.(p, y) = (pb, b−1y). The projection on the first
factor induces a morphism pr1 : P ×B Y → P/B which is P -equivariant, locally
trivial for the Zariski tolopogy (it is trivial on the open subset (U−∩P )B/B where
U− is the unipotent radical of B−) with fiber isomorphic to Y . In particular
dimP ×B Y = dimY + 1.
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The map π : P ×B Y → PY, [p, y] 7→ py is surjective. It is also proper since it
can be viewed as the restriction of the projection P ×B X → X. In particular PY
is closed and dimPY ≤ dimY + 1. Assume that PY ̸= Y (otherwise we trivially
get c(Y ) ≤ c(PY )). Then the map π is generically finite so c(P ×B Y ) = c(PY ).

For p ∈ P \ B, the orbit BpB/B is dense in P/B and if we set Bp = B ∩
pBp−1, we have an isomorphism BpB/B ≃ B/Bp. Consider the contracted product
B ×Bp p.Y . We have an embedding B ×Bp p.Y → P ×B Y defined by [b, p.y] 7→
[bp, y]. Its image is pr−1

1 (BpB/B) therefore B-invariant and open. In particular
c(P ×B Y ) ≥ c(B ×Bp p.Y ). But any B-orbit in B ×Bp p.Y is of the form B ×Bp Z
for Z a Bp-orbit in Y . In particular c(B ×Bp Y ) = cBp

(Y ) where we write cBp
(Y )

for the minimal codimension of a Bp orbit in p.Y . On the other hand, we have
cBp

(p.Y ) ≥ cpBp−1(p.Y ) = c(Y ) so that we get

c(PY ) ≥ c(P ×B Y ) ≥ c(B ×Bp Y ) = cBp
(p.Y ) ≥ c(Y ).

This completes the proof. □

Example 2.2.11. The assumption that X is a G-variety is important. Recall
Example 2.2.9 where X = P(M2(k)) is the projective space over the vector space
of 2× 2 matrices. For v ∈ k2 with v ̸= 0, let Z = X[v] be the closure of the B-orbit

X[v] = {[M ] ∈ X | [Mv] is B-stable}.
Then Z contains the subvariety

Y =

{[(
a b
0 0

)]
∈ X

∣∣ a, b ∈ k

}
whose points are fixed by B. In particular, we have cB(Z) = 0 and cB(Y ) = 1 so
cB(Y ) > cB(Z) even if Y ⊂ Z.

3. Spherical varieties

We define spherical varieties and give their first characterisations.

Definition 2.3.1. A spherical variety is a normal G-varietyX with cB(X) = 0.

Remark 2.3.2. A G-variety is spherical iff it is normal with a dense B-orbit.

Example 2.3.3. Projective rational homogeneous spaces are spherical varieties.
Indeed such a variety X is of the form X = G/P for G reductive and P ⊂ G a
parabolic subgroup. The Bruhat decomposition shows that X has a dense B-orbit,
so we get cB(X) = 0.

Example 2.3.4. Assume that G = T is a torus. Then a spherical G-variety is
called a toric variety. Any dense B-orbit in X is a T -orbit and since the quotient
of any torus is again a torus, a toric variety is an equivariant partial completion of
a torus. By Example 2.1.4.(3), we have rk(X) = dimX for toric varieties.

We first prove the following relationship between rank and complexity.

Proposition 2.3.5. Let X be a B-variety, then cU (X) = cB(X) + rk(X).

Proof. Replacing X with an open B-stable subset and using Rosenlicht’s The-
orem, we have morphisms X → X/U → X/B with dim(X/U) = cU (X) and
dim(X/B) = cB(X). Note that rk(X) is the rank of the group of characters of
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elements in k(X)(B) = (k(X)U )(T ) = k(X/U)(T ) so rk(X) = rk(X/U). Further-
more X/B = (X/U)/T so by Proposition 2.1.6, we have rk(X) = rk(X/U) =
dim(X/U)− dim(X/B) = cU (X)− cB(X). □

Corollary 2.3.6. For a spherical variety X, we have rk(X) = cU (X).

Example 2.3.7. Let X = G/P be a projective rational homogeneous space.
The Bruhat decomposition shows that the dense B-orbit is actually also a U -orbit
so rk(X) = cU (X) = 0, see Example 2.1.4.(1).

Proposition 2.3.8. A spherical G-variety X has finitely many B-orbits.

Proof. Assume that X has infinitely many B-orbits and let Y be a B-stable closed
subvariety of minimal dimension in X having infinitely many B-orbit. By Proposi-
tion 2.2.10, we have cB(Y ) ≤ cBB(X) = 0 therefore Y has a dense B-orbit Z. But
then W = Y \Z is closed B-stable with dim(W ) < dimY and W contains infinitely
many B-orbits. A contradiction. □

As a consequence we obtain equivalent definitions of spherical varieties.

Theorem 2.3.9. Let X be a normal G-variety. The following are equivalent
(1) X is spherical.
(2) X has finitely many B-orbits.
(3) k(X)B = k.

Proof. (1) ⇒ (2) Follows from the previous result.
(2) ⇒ (3) Any function f ∈ k(X)B is constant on B-orbits. Since X has finitely

many B-orbits, there must be a dense orbit thus f is constant on X.
(3) ⇒ (1) We know that cB(X) = Trdeg(k(X)B) = Trdeg(k) = 0. □

Exercise 2.3.10. Let X = P(M2(k)) and G = GL2(k) acting by left multipli-
cation. Let B ⊂ G be the Borel subgroup of uper triangular matrices. Describe all
G-orbits and B-orbits in X. Compute the complexity for G and B of all G-orbit
closures and the B-complexity of all B-orbit closures.

Exercise 2.3.11. Let V = kn and S2V ∨ be the space of quadratic forms on
V . Let G = GL(V ) act on S2V ∨ by the action induced by the standard action of
G on V . Compute the complexity cG(S2V ∨) and the rank rk(S2V ∨).



CHAPTER 3

Affine G-varieties

Let G be a connected reductive group, we focus on affine G-varieties.

1. Existence of quotients by reductive groups

The results of this section are part of Geometric Invariant Theory (GIT). Most
of the results will be proved in J.-B. Bost’s lectures so we only state them and refer
to the book [19] for more details.

Theorem 3.1.1. Let A be a finitely generated k-algebra with a rational action
of G. Then AG is finitely generated over k.

Definition 3.1.2. Let X be an affine G-variety, the quotient X//G is defined
by X//G = Spec(k[X]G). Let π : X → X//G be the morphism defined by the
inclusion k[X]G → k[X].

The quotient π : X → X//G has the following properties.

Proposition 3.1.3. Let X be an affine G-variety.
(1) The morphism π is G-invariant (constant on the G-orbits).
(2) Any G-invariant morphism X → Z factors through π.
(3) The variety X//G has the quotient topology.
(4) The fibers of π contain a unique closed orbit.

Remark 3.1.4. The map π : X → X//G is not a quotient in the classical sense:
the fibers of π may contain more that one orbit as the following example shows.

Example 3.1.5. Let X = Mn(k) and let G = GLn(k) act by conjugation.
Then a classical result asserts that k[X]G is the polynomial ring generated by the
coefficients of the characteristic polynomial. In particular, the map π : X → X//G
is given by M 7→ χ(M) where χ(M) is the characteristic polynomial of M . In
particular X//G ≃ kn−1 and the fiber of 0 is the nilpotent cone (the set of all
nilpotent matrices) which has a unique closed orbit: the zero matrix.

Corollary 3.1.6. Let X be an affine G-variety with a dense orbit, then X
has a unique closed orbit.

Proof. Consider the quotient π : X → X//G and recall that π is surjective and that
there is a unique closed orbit in each fiber of π. We are therefore left to prove that
the quotient is reduced to one point. But π is constant on the G-orbits, therefore
it is constant on a dense subset thus π is constant and the result follows. □

The above construction is an example of a categorical quotient.

Definition 3.1.7. A G-invariant morphism π : X → Y is a categorical quotient
if any G-invariant morphism p : X → Z uniquely factors through π.

25
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Remark 3.1.8. Categorical quotients are unique.

Proposition 3.1.9. Geometric quotients and the quotients X → X//G with X
affine and G reductive are categorical quotients.

Proposition 3.1.10. Let π : X → Y be a categorical quotient. If X is normal,
then so is Y .

Proof. Let ν : Y ′ → Y be the normalisation of Y . Since X is normal, the map π
lifts to a G-invariant map π′ : X → Y ′ and thus factors through π. The uniqueness
in the definition of categorical quotients implies that ν is an isomorphism. □

GIT is based on the above result and aims at constructing quotients for pro-
jective G-varieties (see [19] for more details).

2. Unipotent quotients of affine G-varieties

We want to extend the above construction to quotients by unipotent subgroups.

Theorem 3.2.1. Let X be an affine G-variety, then k[X]U is finitely generated.

We give a proof of this result for char(k) = 0 in Appendix C for the general
case see [8]. We will also need the following fact (see Corollary C.1.8).

Fact 3.2.2. Any G-module M is determined by the T -module MU .

Remark 3.2.3. Theorem 3.2.1 is false if we only assume that X is an U -variety.
Examples of non-finitely generated invariant rings were first given by Nagata, see
[20, Theorem 2.45]

Theorem 3.2.1 allows the following definition.

Definition 3.2.4. For X an affine G-variety, define the quotient π : X → X//U
induced by the map k[X]U → k[X].

Remark 3.2.5. The above quotient may not be surjective. Indeed, let X =
G = SL2. Then the quotient X/U is isomorphic to A2 \ {0} while X//U ≃ A2. In
particular, the quotient X//U is not a categorical quotient in general.

Some of the properties of X can be detected on X//U .

Proposition 3.2.6. Let G be a reductive group, U a maximal unipotent sub-
group and X an irreducible affine G-variety.

(1) k(X)U is the field of fractions of k[X]U .
(2) Any element of k(X)(B) is the quotient of two B-eigenvectors in k[X].
(3) If char(k) = 0, then the variety X is normal if and only if X//U is normal.

Proof. (1) and (2). The fraction field of k[X]U is contained in k(X)U and the
quotient of any two B-eigenvectors of k[X] is an element of k(X)(B).

Conversely, let f ∈ k(X)U (resp. in k(X)(B)) and consider the vector space:

Vf = {f ′ ∈ k[X] | f ′f ∈ k[X]}.
Since f is U -stable (resp. a B-eigenvector), then Vf is U -stable. Since U is unipo-
tent, there is a U -invariant element f ′ in Vf (and even a B-eigenvector). This
proves the result.

(3) Assume that X is normal, then k[X] is integrally closed in k(X). We want
to prove that k[X]U is integrally closed in its field of fractions which is k(X)U by (1).
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If f ∈ k(X)U is such that P (f) = 0 with P a monic polynomial with coefficients in
k[X]U . Then f is in k[X] and the result follows.

Conversely, if X//U is normal, let ν : X ′ → X be the normalisation of X. We
define a G-action on X ′: the action morphism a : G×X → X induces a morphism
a′ : G ×X ′ → G ×X → X and since G ×X ′ is normal it factors through X ′ i.e.
we have a commutative diagram:

G×X ′ //

��

X ′

��
G×X // X.

Because this is an action on an open subset (where ν is an isomorphism) and the
varieties are normal, this is an action. Thus we also have a quotient X ′//U and a
commutative diagram

X ′ ν //

��

X

��
X ′//U

ν̄ // X//U

with X ′//U and X//U normal varieties with k(X ′)U = k(X)U i.e. k[X ′]U and k[X]U

have the same field of fractions.
The algebra k[X ′] is the integral closure of k[X] in k(X). Consider the ideal

I = {f ∈ k[X] | fk[X ′] ⊂ k[X]}.

This ideal is stable under the action of G and therefore stable under U and thus
contains an U -invariant element f ∈ k[X]U . This implies the inclusion fk[X ′]U ⊂
k[X]U . The subspace fk[X ′]U is thus an ideal of k[X]U and thus a finite k[X]U -
module. Therefore k[X ′]U is also a finite k[X]U -module but since X//U is normal
we get the equality k[X ′]U = k[X]U . Finally since char(k) = 0, the U -invariants
determine the module and we get k[X] = k[X ′]. □

For V a G-module and λ a character of B, set V (B)
λ = {v ∈ V | b.v = λ(b)v}.

Note that V U =
⊕

λ V
(B)
λ . For X an affine G-variety, define the monoid Λ(X)+.

Definition 3.2.7. Define Λ(X)+ = {λ ∈ X(T ) | k[X]
(B)
λ ̸= 0}.

Proposition 3.2.8. For X an affine G-variety, Λ(X)+ is finitely generated.

Proof. Follows from the decomposition k[X]U =
⊕

λ k[X]
(B)
λ and the fact that this

algebra is finitely generated by Theorem 3.2.1. □

The following is a direct application of Proposition 3.2.6.(2).

Corollary 3.2.9. Let X be an affine G-variety. The weight lattice Λ(X) of
X is the subgroup of X(T ) generated by Λ(X)+.

3. Characterisation of affine spherical G-varieties

We extend the results of Theorem 2.3.9 for affine spherical varieties.

Definition 3.3.1. A G-module M is multiplicity free if any simple G-module
occurs in M with multiplicity at most 1.
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Proposition 3.3.2. For X an affine irreducible G-variety, the following are
equivalent.

(1) The variety X contains a dense B-orbit.
(2) Any B-invariant rational function is constant: k(X)B = k.
(3) The G-module k[X] is multiplicity free.

Proof. We proved the equivalence of the first two properties in Theorem 2.3.9. We
prove the equivalence of (2) and (3). Assume that the representation V (λ) appears
with multiplicity at least 2 in k[X]. Then there exists two B-eigenfunctions f and f ′
with eigenvalue λ. The quotient f/f ′ is a B-invariant non trivial rational function,
proving (2) ⇒ (3). Let f be a B-invariant rational function. Then by Proposition
3.2.6 it is the quotient f1/f2 of two B-eigenfunctions. Their eigenvalue have to be
the same and by assumption f1 and f2 must be colinear. This imples that f is
constant, proving (3) ⇒ (2). □

Definition 3.3.3. A normal irreducible variety X is toric if there exists a torus
T acting on X with a dense orbit isomorphic to T .

Definition 3.3.4. Let Λ+ be a finitely generated monoid.
(1) Define ΛQ = Λ+ ⊗Z Q.
(2) Cone(Λ+) is the cone generated by Λ+ in ΛQ.
(3) The saturation of Λ+ is Λ

+
= ZΛ+ ∩ Cone(Λ+).

(4) A finitely generate monoid Λ+ is called saturated if Λ
+
= Λ+.

Lemma 3.3.5. Let Y be an affine irreducible variety with an action by a torus
T such that k[Y ] is multiplicity free. Then the following are equivalent.

(1) The variety Y is normal.
(2) The monoid Λ(Y )+ is saturated.

Proof. If Λ(Y )+ is not saturated, there exists a λ ∈ ZΛ(Y )+ ∩ Cone(Λ(Y )+) with
λ ̸∈ Λ(Y )+. Since λ ∈ Cone(Λ(Y )+), we have nλ ∈ Λ(Y )+ for n ∈ N large enough.
Furthermore, since λ ∈ ZΛ(Y )+, there exists f ∈ k(Y )λ \{0}. Let g ∈ k[Y ]nλ, then
fn/g ∈ k(Y )B = k since Y is multiplicity free thus fn ∈ kg ⊂ k[Y ]. In particular f
is integral on k[Y ] but not in k[Y ] proving that Y is not normal.

Conversely, assume that Λ(Y )+ is saturated and let f ∈ k(Y ) be integral on
k[Y ]. Decomposing f in sum of eigenvectors, we may assume that f is an eigenvector
of weight λ. Since f is integral on k[Y ], a multiple of λ lies in Λ(Y )+. Since the
later is saturated, the weight λ already lies in Λ(Y )+. Because k[Y ] is multipllicity
free we get f ∈ k[Y ]. □

Example 3.3.6. Let X = Spec(k[x, y]/(y2 − x3)) be the cuspidal cubic with
action of G = T = Gm given by t.(x, y) = (t2x, t3y). Then Λ(X)+ = Z≥0 \ {1}
while ΛQ = Q and Λ

+
= Z≥0, so that Λ(X)+ is not saturated and X is not normal.

Corollary 3.3.7. Assume char(k) = 0 and let X be an affine toric T -variety
and Y ⊂ X be a closed T -stable subvariety. Then Y is an affine toric variety.

Proof. Since T has a dense orbit, the complexity of X is 0 and by Proposition
2.2.10, the subvariety Y also has vanishing complexity. We only need to prove that
Y is normal. Let λ ∈ Λ(Y )

+
and let f ∈ k(Y )(T ) of weight λ. Write f = u/v

with u, v ∈ k[Y ](B). There exist u′, v′ ∈ k[X](T ) such that u′|Y = u and v′|Y = v.
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We get f ′ = u′/v′ with f ′ ∈ k(X)(T ) of weight λ and f ′|Y = f . Now there exists
n ∈ Z>0 such that nλ ∈ Λ(Y )+ ⊂ Λ(X)+. Since X is normal, the monoid Λ(X)+

is saturated thus λ ∈ Λ(X)+ and by the multiplicity free property φ ∈ k[X]. This
implies f ∈ k[Y ] and λ ∈ Λ(Y )+. The weight monoid of Y is saturated and Y is
normal. □

Remark 3.3.8. Corollary 3.3.7 holds in positive characteristic as well since tori
are linearly reductive so that invariants lift without having to take pth powers.

Applying this, we get a characterisation of affine spherical varieties.

Proposition 3.3.9. Let X be an irreducible affine G-variety. The following
conditions are equivalent.

(1) X is spherical.
(2) k[X] is multiplicity free and Λ(X)+ is saturated.
(3) Assume char(k) = 0. The affine T -variety X//U is a toric variety.

Proof. (1)⇒(3) We already know (Proposition 3.2.6) that if X is normal so is
X//U . The T -module k[X//U ] is k[X]U and therefore multiplicity free as T -module.
Therefore, there is a dense T -orbit in X//U . This orbit is isomorphic to T/T ′ ≃ T ′′

which is a torus thus X//U is toric.
(3) ⇒(2) If X//U is toric then k[X]U is multiplicity free as T -module thus k[X]

is multiplicity free as G-module. Since X//U is toric its weight monoid Λ(X//U)+

is saturated but since Λ(X//U)+ = Λ(X)+, the result follows.
(2) ⇒ (1) By Proposition 3.3.2, we only need to check that X is normal. By

Proposition 3.2.6, we only need to prove that X//U is normal and this follows from
Lemma 3.3.5 and the fact that Λ(X)+ = Λ(X//U)+ is saturated. □

Corollary 3.3.10. Assume char(k) = 0 and let X be an affine spherical G-
variety and Y ⊂ X be a closed G-stable subvariety. Then Y is G-spherical.

Proof. By Proposition 2.2.10, we only need to prove that Y is normal. But Y//U is
a closed T -stable subvariety of X/U which is toric. By Corollary 3.3.7, the variety
Y//U is also toric and thus Y is G-spherical. □

Example 3.3.11. In positive characteristic, the above result is false. Let
char(k) = p > 0, let G = SL2(k) × G2

m and let X = k4. Write (x1, x2, y1, y2)
for the coordinates in X and write x = (x1, x2) resp. y = (y1, y2). Define a SL2(k)-
action via the usual action (g, x) 7→ g.x and (g, y) 7→ (F (g)T )−1.y where F is the
Frobenius map and F (g) is the matrix obtained by applying F to each coefficient.
Define the G2

m action as (u, v).(x, y) = (ux, vy) for (u, v) ∈ G2
m and (x, y) ∈ X.

Then X is G-spherical. Set Y = V (xp1y1 + xp2y2), then Y is G-stable and
closed in X but its singular locus contains Z = V (x1, x2) which has codimension 1
therefore Y is not normal along Z and is not G-spherical.

4. The cone of an affine G-variety

Definition 3.4.1. The cone of X is defined as Cone(X) = Cone(Λ(X)+).

Example 3.4.2. Let X = G, then Λ(X) = X(T ) and Λ(X)+ = X(T )+. The
cone Cone(X) of X is the cone of dominant characters. The rank rk(X) is the rank
of G as a reductive group.
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For a spherical variety, the cone of The cone of X contains many informa-
tion since Λ(X)+ = Cone(X) ∩ Λ(X). Furthermore, the multiplicity free property
implies that as G-modules, we have an isomorphism

k[X] =
⊕

λ∈Λ(X)+

V (λ).

However, the algebra structure on k[X] is not determined by Λ(X)+ as the following
examples shows.

Example 3.4.3. Let G = SL2(k) and consider the irreducible representation
V2 = k[x, y]2 of homogeneous polynomials of degree 2. The orbits of non-degenerate
forms are closed and isomorphic to X = SL2(k)/SO2(k). The variety of degenerate
forms is X0 = G.x2 ∪ {0} (that is the affine cone over P1 in its second Veronese
embedding). Both X and X0 are spherical with Λ(X) = Λ(X0) = 2Z ⊂ Z and
Cone(X) = Cone(X0) = Q≥0. However X and X0 are not G-isomorphic since X is
smooth while X0 is singular.

However, for smooth varieties, we have the following result, see [16].

Theorem 3.4.4. Any two smooth affine spherical G-varieties having the same
weight monoid are G-isomorphic.

Proposition 3.4.5. Assume char(k) = 0. Let X be a irreducible affine G-
variety and let x ∈ X. Then Cone(G.x) ⊂ Cone(X) with equality for x in a
non-empty open subset of X.

Proof. Let x ∈ X, we have a surjective map k[X] → k[G.x]. By Theorem 2.2.6
any eigenvector of B in k[G.x] extends to k[X], proving the inclusion Cone(G.x) ⊂
Cone(X).

Since Λ(X)+ is finitely generated, so is Cone(X). Let (λi)i∈[1,n] be generators
of Λ(X)+ and for each i ∈ [1, n], let fi ∈ k[X] be a B-eigenfunction of weight λi.
Since X is irreducible, there exists x ∈ X with fi(x) ̸= 0 for all i ∈ [1, n]. Then
fi is a non trivial function on G.x thus λi ∈ Cone(G.x). Since (λi)i∈[1,n] generate
Cone(X) we get the equality Cone(G.x) = Cone(X). □

Proposition 3.4.6. Let X be an affine G-variety and Y ⊂ X be a closed
G-stable subvariety, then Cone(Y ) ⊂ Cone(X).

Proof. We have a surjective map k[X] → k[Y ]. By Theorem 2.2.6 any eigenvector
of B in k[Y ] extends to k[X], proving the inclusion Cone(Y ) ⊂ Cone(X). □

Definition 3.4.7. Denote by Lin(Cone(X)) the linear part of Cone(X) i.e.
the maximal vector subspace contained in Cone(X).

Definition 3.4.8. For H a closed subgroup of G, denote by X(G)H the kernel
of the restriction map X(G) → X(H) and set X(G)HQ = X(G)H ⊗Z Q.

Proposition 3.4.9. Let x ∈ X such that G.x is closed and let Gx be the
stabiliser of x. Then we have the inclusion X(G)Gx

Q ⊂ Lin(Cone(X)) with equality
for some x ∈ X.

Proof. Since G.x is closed, we have Cone(G.x) ⊂ Cone(X). Let λ ∈ X(G)Gx , then
λ induces a regular function λ : G→ Gm constant on Gx. Since G.x = G/Gx, this
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function descents to a function λ̄ : G.x→ k which is a B-eigenvector of weight −λ:
t.λ̄(g.x) = λ̄(t−1.g.x) = λ(t−1)λ̄(g.x) for any t ∈ T . Thus X(G)Gx ⊂ Cone(X) and
since X(G)Gx is a subgroup of X(T ), we get X(G)Gx ⊂ Lin(Cone(X)).

For the second assertion, first remark that by Proposition 3.4.5, we may assume
that x has a dense orbit in X: replace X by G.x with x such that Cone(X) =
Cone(G.x). Assume that X has a dense orbit. By Corollary 3.1.6, there is a unique
closed orbit in X. Let x ∈ X such that G.x is the unique closed orbit and let
λ ∈ Lin(Cone(X)). There exists an integer n such that ±nλ are weights of k[X].
Let f and f ′ be eigenfunctions associated to these weights. The function ff ′ is
again an eigenfunction with weight 0. As the only representation with highest
weight 0 is the trivial representation the product ff ′ is an invariant function for G.
It is therefore constant on the dense subset of X and thus on the all of X. Thus
f (and f ′) are non vanishing functions on G.x = G/Gx. They come from a non
vanishing function f̄ on G constant on Gx. Such a non vanishing function on G is
a character (modulo a constant scalar: use Lemma B.1.5). The result follows. □

Definition 3.4.10. The group (G,G) is the closed subgroup of G generated
by the commutators (g, h) = ghg−1h−1 for all g, h ∈ G.

Corollary 3.4.11. Let X be an affine irreducible G-variety.

(1) Cone(X) contains no non trivial linear subspace if and only if we have the
equality G = (G,G)Gx for all x ∈ X such that G.x is closed.

(2) Cone(X) is a vector space if and only if (G,G) acts trivially and for x in
a non empty open subset of X, the orbit G.x is closed.

Proof. (1) The space Lin(Cone(X)) is trivial if and only if for any x ∈ X such
that G.x is closed the character group X(G)Gx is trivial. Recall that any character
is trivial on (G,G) therefore X(G) = X(G/(G,G)). The previous condition thus
reads Ker(X(G/(G,G)) → X(Gx/((G,G) ∩ Gx))) = 0. Since G/(G,G) is a torus,
this condition is equivalent to Gx/((G,G) ∩Gx) = G/(G,G) i.e. G = (G,G)Gx.

(2) If (G,G) acts non trivially on X it also acts non trivially on k[X]] ahs thus
k[X] has a B-eigenvector of non trivial weight λ. The weight λ is therefore in the
dominant cone of (G,G) which forms a stricly convex cone, contradicting the fact
that Cone(X) is a vector space. Therefore (G,G) has to act trivially on X. As
G/(G,G) is a torus, we may assume that G is a torus. Choose x be in the open
subset such that Cone(G.x) = Cone(X). For λ a weight in this cone, then −λ is in
the cone therefore there exists an integer n such that ±nλ are weights of functions
on X. Let f and f ′ in k[X] be functions of weights nλ and −nλ respectively.
Then ff ′ is weight 0 thus invariant for G and therefore constant on G.x. This in
particular implies that the ideal of G.x \ G.x is trivial: any B-eigenfunction f in
this ideal is constant on G.x and therefore vanishes. By Lie-Kolchin this implies
that the ideal is trivial. The orbit G.x is therefore closed.

Conversely, there exists x ∈ X with G.x closed and Cone(G.x) = Cone(X). We
have k[G.x] = k[G/Gx] and (G,G) ⊂ Gx thus G/Gx is a torus quotient of G/(G,G)
and the weights of k[G.x] form a group, proving the result. □

Exercise 3.4.12. Let X = G = SL2. Prove that the quotient X/U is isomor-
phic to A2 \ {0} while X//U is isomorphic to A2.
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Exercise 3.4.13. Let T ⊂ GLn(k) be the maximal torus of diagonal matrices
and let T act on X = An = kn. Set Y = {(xi)i∈[1,n] ∈ X | xi ̸= 0 for all i ∈ [1, n]}.
Compute the monoids Λ+(X) and Λ+(Y ) and the lattices Λ(X) and Λ(Y ).

Exercise 3.4.14. Check the assertions in Example 3.4.3 and Example 3.3.11.



CHAPTER 4

Characterisations of spherical varieties

In this chapter, we prove several new characterisations of spherical varieties.

Definition 4.0.1. Two G-varieties are called G-birational if there exists dense
G-stable open subsets which are G-isomorphic.

Definition 4.0.2. Let X be a G-variety. A G-embedding of X is a G-morphism
X → X ′ inducing an isomorphism of X onto a dense open subset of X ′.

Theorem 4.0.3. Let X be a normal quasi-projective G-variety. The following
conditions are equivalent.

(1) The variety X is spherical.
(2) Any G-variety G-birational to X has finitely many G-orbits.
(3) For any G-linearised line bundle L on X, the G-module H0(X,L) is mul-

tiplicity free.

Proof. (1) ⇒ (2). A spherical variety has B-complexity 0. As complexity is a
birational invariant, the same is true for any G-birational variety. Furthermore,
varieties with B-complexity 0 have finitely many B-orbits. In particular finitely
many G-orbits.

(2) ⇒ (3). Let G/H be an open dense orbit of X. The G-module H0(X,L) is a
submodule of H0(G/H,L), we may thus assume that X = G/H. Then L is of the
form G ×H kχ for some character χ of H. The group H0(G/H,L) is the group of
sections of the map p : G×H kχ → G/H induced by the first projection on G× kχ.
In particular H0(G/H,L) = k[G]

(H)
−χ . Let Ĝ be the set of irreducible representations

of G. We have a decomposition k[G] = ⊕λ∈ĜV (λ)∨ ⊗ V (λ)(see Corollary C.1.4)
implies that the multiplicity of V (λ)∨ in H0(G/H,L) is dimV (λ)

(H)
−χ .

Assume that dimV (λ)
(H)
−χ ≥ 2 and let v, w ∈ V (λ)

(H)
−χ be two linearly indepen-

dent vectors. Let y = [v ⊕ w] ∈ P(V (λ)⊕ V (λ)) and Y = G.y ⊂ P(V (λ)⊕ V (λ)).

Lemma 4.0.4. The variety Y has infinitely many closed G-orbits.

Proof. Let B be a Borel subgroup and η be a (unique up to scalar) B-eigenvector in
V (λ)∨. This defines an hyperplane Hη = Kerη in V (λ). Since V (λ)∨ is simple, the
G-orbit of η spans V (λ)∨ thus, there exists g ∈ G such that (g.η)(v) = 1. Replacing
B by a conjugate we may assume that η(v) = 1.

Define a rational function f on P(V (λ)⊕ V (λ)) by

f(v1 ⊕ v2) =
η(v2)

η(v1)
.

This function is defined on y and B-invariant. We claim that f is not constant on
Y . Otherwise we would have z ∈ k with η(g.w) = zη(g.v) for all g ∈ G. This in
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turn implies (g−1.η)(w− zv) = 0 for all g ∈ G but since the orbit of η spans V (λ)∨

we get ν(w − zv) = 0 for all ν ∈ V (λ)∨ i.e. w = zv a contradiction.
The image of f is locally closed in k thefore for any z ∈ k except finitely many

values, there exists gz ∈ G with η(gzw) = zη(gzv). Excluding finitely many more
values of z we may even assume that η(gzv) ̸= 0.

Let T be a maximal torus in B and B− the opposite Borel subgroup i.e. the
Borel subgroup of G such that B ∩B− = T . There is a unique B−-highest weight
vector tλ such that η(tλ) = 1: pick a basis (tµ) of T -eigenvectors in V (λ) and
the dual basis (t∨µ) in V (λ)∨, then η = t∨λ . Because η is the dual basis element
corresponding to tλ, we may then write

gzv = cztλ +
∑
µ

vµ

with vµ eigenvectors of eigenvalue µ and such that λ − µ is a non negative linear
combination of simple roots. Furthermore we have cz ̸= 0 for z avoiding our finite
set of values. We may also write

gzw = dztλ +
∑
µ

wµ

with wµ eigenvectors of eigenvalue µ and such that λ − µ is a non negative linear
combination of simple roots. We have dz = zcz.

Let θ be a cocharacter of T such that ⟨θ, α⟩ > 0 for any simple root α. Then

θ(s) · y =
[
czs

⟨θ,λ⟩(tλ ⊕ ztλ) +
∑
µ s

⟨θ,µ⟩(vµ ⊕ wµ)
]

=
[
cz(tλ ⊕ ztλ) +

∑
µ s

⟨θ,µ−λ⟩(vµ ⊕ wµ).
]

In particular we get the limit lim
s→∞

θ(s) · y = [tλ ⊕ ztλ].
The variety Y therefore contains the G-orbit of [tλ ⊕ ztλ] for all z ∈ k except

maybe for a finite number of values of z. Because [tλ⊕ztλ] is a highest weight vector
for B, the stabiliser of this point contains B and the orbit is therefore projective
thus compact and in particular closed. For each z in k except maybe for a finite
number of values, we get a closed G-orbit in Y , proving the claim. □

We use Y to construct an embedding of G/H with infinitely many G-orbits.
Since H acts on v ⊕ w via a character, it acts trivially on y therefore H ⊂ Gy.

Let X ′ be a compact embedding of X = G/H. Denote by x′ the element of
G/H = X ⊂ X ′ corresponding to the identity element e ∈ G. Consider X ′′ the
nomalisation of the closure ofG.(x′, y) inX ′×Y . TheG-orbitG.(x′, y) is isomorphic
to G/H (since H ⊂ Gy) thus X ′′ is an embedding of X and the projection X ′′ → Y
is proper since X ′ is compact. Therefore X ′′ maps surjectively on Y and contains
infinitely many G-orbits.

(3) ⇒ (1). In view of Theorem 2.3.9, we only have to check that any B-invariant
rational function on X is constant. Let L be a very ample line bundle. Up to taking
a high power of L, we may assume that L is G-linearised. Let f ∈ k(X)B . Then
there exists an integer n > 0 and elements u, v ∈ H0(X,L⊗n) with f = u/v.
Looking at the B-module {v ∈ H0(X,L⊗n) | fv ∈ H0(X,L⊗n)} we get by Lie-
Kolchin’s Theorem the existence of v which is a B-eigenvector and in this case u is
also a B-eigenvector for the same weight. By the multiplicity free condition, u and
v have to be colinear proving the result. □



CHAPTER 5

Weight lattice, colors and examples

We define some the main combinatorial objects for classifying spherical vari-
eties: the colors and a map from the set of colors to the dual of the weight lattice.
We then give some examples of these invariants.

1. Colors

Let X be a spherical G-variety and recall the definition of the weight lattice
Λ(X). For f ∈ k(X)(B), we denote its weight by λf ∈ Λ(X). Note that for
λ ∈ Λ(X), there is, up to scalar, a unique rational function f ∈ k(X)(B) with
λf = λ. Indeed, if f and f ′ have the same weight, then f/f ′ ∈ k(X)B = k is
constant. In particular we have an exact sequence

1 → k× → k(X)(B) → Λ(X) → 0.

Definition 5.1.1. Let Y ⊂ X be a G-orbit in a spherical G-variety X.
(1) Set D(X) = {B-stable prime divisors}.
(2) Set DY (X) = {D ∈ D(X) | Y ⊂ D}.
(3) A color is a D ∈ D(X) such that D is not G-stable.
(4) The set of colors is ∆(X) = {D ∈ D(X) | D is not G-stable}.
(5) Set ∆Y (X) = ∆(X) ∩DY (X).

Definition 5.1.2. Define Q(X) = HomZ(Λ(X),Q) = Λ(X)∨Q.

For D ∈ ∆(X) and λ ∈ Λ(X), choose f ∈ k(X)(B) with λf = λ. Since f is
unique up to scalar, the vanishing multiplicity νD(f) of f at D does not depend on
the choice of f .

Definition 5.1.3. Define the map ρX : ∆(X) → Q(X), D 7→ ρX(D) by the
formula ⟨ρX(D), λ⟩ = νD(f), where f ∈ k(X)(B) with λf = λ.

2. Examples

Most of these examples are taken from Gandini [6].

Example 5.2.1 (Projective rational homogeneous spaces). Let X = G/P be a
projective rational homogeneous space. Let B ⊂ P be a Borel subgroup and U ⊂ B
a maximal unipotent subgroup. Recall the Bruhat decomposition

G =
∐
w∈W

UwB.

In particular we have G = ∪w∈WUwP and X is the union of finitely many U -orbits
and thus of finitely many B-orbits. This in particular implies that X is spherical.
We have cB(X) = 0 = cU (X). This imples that rk(X) = cB(X)− cU (X) = 0 (see
Proposition 2.3.5) thus Λ(X) = 0. The B-stable divisors are the Schubert divisors
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and are indexed by simple roots α which are not in the root system of P . So if ∆
is the set of simple root of G and ∆P the subset of simple roots of P we have

∆(X) = ∆ \∆P = D(X).

There is a unique G-orbit Y = X and we have ∆Y (X) = ∆(X) = D(X) = DY (X).
Note that since rk(X) = 0, the map ρX is the zero map. In particular, we see that
ρX may be non-injective.

Example 5.2.2 (Grassmannian). Grassmannian varieties are special cases of
projective rational homogeneous space. Let E = kn and let X = Gr(p,E) = {V ⊂
kn | V is a vector subspace of E with dim(V ) = p}. Let G = GLn(k), we have
that G acts transitively on X so there is a unique G-orbit. Let B ⊂ G be the Borel
subgroup of upper triangular matrices. If (ei)i∈[1,n] is the canonical bases in E,
then B is the stabiliser of the flag (Ei)i∈[1,n] where Ei = ⟨ej | j ∈ [1, i]⟩. The group
U is the subgroup of B of matrices having all diagonal coefficients equal to 1. The
group U has a dense orbit in X given by U.Ep where Ep = ⟨ej | j ∈ [n+1− p, n]⟩.
Indeed, it is an easy exercise to check that

U.Ep = {V ∈ X | dim(V ∩ Ei) = max(0, p+ i− n) for all i ∈ [1, n]}.

Since dim(V ∩ Ei) ≥ p+ i− n for all i ∈ [1, n], the above set is open proving that
cU (X) = cB(X) = 0. We thus have Λ(X) = 0. Define D ⊂ X as follows

D = {V ∈ X | V ∩ En−p ̸= 0}.

It is an easy exercise to check that D ⊂ X is a prime B-stable divisor. There is a
unique G-orbit Y = X with ∆Y (X) = ∆(X) = D(X) = DY (X) = {D}. Again ρX
is the zero map.

Example 5.2.3 (Toric varieties). A toric variety is a T -spherical variety for T
a torus. In particular X contains a dense T -orbit and cB(X) = cT (X) = 0. Since
U is trivial in this case, we have cU (X) = dimX and rk(X) = dimX and

Λ(X) = ZdimX .

Since G = B = T in this case, we have ∆(X) = ∅. There are not colors: every
B-stable divisor is G-stable.

Example 5.2.4. Let G = SL2(k), let T be the subgroup of diagonal matrices
and let B be the subgroup of upper triangular matrices. Denote by α the posi-
tive root, by ϖα the fundamental weight and by s the simple reflection. An easy
computation gives the following decomposition of SL2(k)/T in B-orbits:

SL2(k)/T = B/T ∪Bṡ/T ∪BuT/T, with u =

(
0 −1
1 1

)
and ṡ =

(
0 −1
1 0

)
.

In particular X = SL2(k)/T is a spherical 2-dimensional SL2(k)-variety. There are
two B-stable divisors: D+ = B/T and D− = Bs/T and

∆(X) = {D+, D−} = D(X).

To compute Λ(X), assume for simplicity that char(k) = 0. The decomposition of
the algebra k[SL2(k)] = ⊕n∈NV (nϖα)⊗ V (nϖα)

∨ induces a decomposition

k[X]T =
⊕
n∈N

V (nϖα)⊗ (V (nϖα)
∨)T .
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Since V (nϖα)
∨ has a (unique) trivial weight only for n = 2k even, we get

k[X]T =
⊕
k∈N

V (2kϖα) =
⊕
k∈N

V (kα).

The set Λ+(X) of weights of k[X] is therefore Nα. Since T is reductive, Proposition
1.3.7.(6), implies that X = SL2(k)/T is affine and by Corollary 3.2.9, we get

Λ(X) = Zα.

We now compute the map ρX : ∆X → Q(X). For i, j ∈ {1, 2}, let ai,j ∈
k[SL2(k)] be the corresponding matrix coefficient. Then the inverse image of B/T
in SL2(k) is the vanishing locus a2,1 while the inverse image of Bs/T is the vanishing
locus of a2,2. Furthermore a2,1a2,2 ∈ k[SL2(k)]

T = k[X] and is a B-semiinvariant
i.e. f ∈ k[X](B) of weight α. Since νD+(f) = 1 = νD−(f) we get ⟨ρX(D+), α⟩ =
1 = ⟨ρX(D−), α⟩. In particular:

ρX(D+) =
1

2
α∨ = ρX(D−).

Example 5.2.5 (Determinantal varieties). Let Mm,n be the space of matrices
of size M × n and let Mr

m,n ⊂ Mm,n be the closed subset of matrices of rank at
most r. Let G = GLm(k)×GLn(k) act on Mm,n via (g, h).x = gxh−1. Define

xr =

(
Ir 0
0 0

)
,

where Ir is the identity matrix of size r. Then G.xr is dense in Mr
m,n. The stabiliser

of xr in G is given by pairs of matrices of the form((
Ar,r Br,m−r
0 Cm−r,m−r

)
,

(
Ar,r 0
Dn−r,r En−r,n−r

))
,

where the indices indicate the size of the matrices. In particular this stabiliser
has dimension r2 + r(m − r) + r(n − r) + (m − r)2 + (n − r)2 thus dimMr

m,n =

r2r(m − r) + r(n − r) = r(m + n − r). Let B−
m ⊂ GLm(k) be the Borel subgroup

of lower triangular matrices and Bn ⊂ GLn(k) be the Borel subgroup of upper
triangular matrices. Then B = B−

m×Bn is a Borel subgroup of G and the stabiliser
of xr in B has dimension r + (m − r)(m − r + 1)/2 + (n − r)(n − r + 1)/2. This
proves that B.xr is dense in Mr

m,n thus cB(Mr
m,n) = 0.

TheG-orbits inMr
m,n are indexed by the rank, there are therefore r+1G-orbits.

We compute the weight lattice and weight monoid of Mr
m,n. Let U−

m ⊂ B−
m and

Un ⊂ Bn be the unipotent radicals such that U = U−
m×Un is a maximal connected

unipotent subgroup in G. We compute k[Mr
m,n]

U . Let dk be the kth principal minor
that is the determinant of the upper left k×k block of a matrix in Mm,n. It is easy
to check that dk ∈ k[Mm,n]

U and that dk ∈ k[Mr
m,n]

U does not vanish for all k ∈
[1, r]. Let ϵ1, · · · , ϵm be the characters on B−

m defined by ϵk(diag(t1, · · · , tm)) = tk
and η1, · · · , ηn be the characters on Bn defined by ηk(diag(t1, · · · , tn)) = tk. Set
ϖk = ϵ1 + · · ·+ ϵk and ωk = η1 + · · ·+ ηk. The weights (ϖk)k∈[1,m] and (ωk)k∈[1,n]

are the dominant weights of GLm(k) and GLn(k). Note that dk ∈ k[Mr
m,n]

(B) is a
B-eigenfunction with weight ϖk − ωk.
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We prove that k[Mr
m,n]

U = k[d1, · · · , dr]. Let f ∈ k[Mr
m,n]

(B) be of weight m∑
i=1

λiϵi,

n∑
j=1

µjηj

 .

Since (diag(t1, · · · , tr, tr+1, · · · , tm),diag(t1, · · · , tr, t′r+1, · · · , t′n)) acts trivially on
xr, we must have λi + µi = 0 for i ∈ [1, r] and λi = µj = 0 for i > r and j > r.
In particular the weight of f is a Z-linear combination of ϵi − ηi for i ∈ [1, r].
Since the weight of f has to be dominant, we have the inclusion Λ(Mr

m,n)
+ ⊂

N(ϖ1 − ω1) + · · ·+ N(ϖr − ωr). Since dk has weight ϖk − ωk, we get the equality

Λ(Mr
m,n)

+ = N(ϖ1 − ω1) + · · ·+ N(ϖr − ωr).

This implies

Λ(Mr
m,n) = Z(ϖ1 − ω1) + · · ·+ Z(ϖr − ωr) = Z(ϵ1 − η1) + · · ·+ Z(ϵr − ηr).

In particular Mr
m,n has rank r and since the monoid Λ(Mr

m,n)
+ is saturated, we

get (if char(k) = 0) that Mr
m,n is an affine spherical G-variety. The fact that Mr

m,n

is normal actually holds true in any characteristic (see [5]).
We now focus on colors. First notice that G-orbits are given by the rank so that

Mr
m,n contains a G-stable divisor if and only if m = n. In that case the unique G-

stable divisor is Mr−1
m,n . For k ∈ [1, r], set Dk = {x ∈Mr

m,n | dk(x) = 0}. Then Dk

is a prime B-stable divisor (Dk is irreducible since dk is an irreducible polynomial).
Note that for m = n, we have Dr = Mr−1

m,n . Conversely, let D be a B-stable prime
divisor. Let ID ⊂ k[Mr

m,n] be its ideal. Then ID is a B-module thus there exists
f ∈ I

(B)
D ⊂ k[Mr

m,n]
U . We thus have f = λda11 · · · darr with λ ∈ k× and ai ∈ N. In

particular D is contained in D1 ∪ · · · ∪Dr and since it is prime D = Dk for some k.
Note that Mr

m,n has a unique closed G-orbit: Y = M0
m,n = {0}. Thus for m ̸= n,

we have DY (M
r
m,n) = D(Mr

m,n) = {D1, · · · , Dr} = ∆(Mr
m,n) = ∆Y (M

r
m,n) and

for m = n, we have DY (M
r
m,n) = D(Mr

m,n) = {D1, · · · , Dr} ⊃ {D1, · · · , Dr−1} =
∆(Mr

m,n) = ∆Y (M
r
m,n).

Finally, we compute the map ρX . We have νDi
(dj) = δi,k. Identifying Λ(Mr

m,n)
with the character group of Grm ⊂ GLr(k) via

diag(t1, · · · , tr) 7→ (diag(t1, · · · , tr, 1, · · · , 1), In),

the weight of dk identifies with the fundamental weight ϖk of GLr(k) and ρX(Dk)
identifies with α∨

k the corresponding coroot.

Remark 5.2.6. For m = n = r the previous example is a partial compacti-
fication of GLn(k) as GLn(k) × GLn(k)-variety. This example generalises to any
reductive group G.

Example 5.2.7 (Reductive groups). Any reductive group G is spherical with
respect to the action of G × G. Indeed, the Bruhat decomposition implies that
B− ×B has a dense orbit.

Let f ∈ k[G](B
−×B) and write λf = (λ1, λ2) with λ1, λ2 ∈ X(T ). Since diag(G)

fixes the identity of G and since B−B is open in G, we have λ1+λ2 = 0. Conversely,
recall that the multiplication induces an isomorphism B−B ≃ U−×T ×U (see [25,
Theorem 6.3.5 and Lemma 8.3.6]). Therefore, for all λ ∈ X(T ), we get fλ ∈
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k[B−B](B
−×B) ⊂ k(G)(B

−×B) of weight (λ,−λ) by setting fλ(utu
′) = λ(t). We

therefore have
Λ(G) = {(λ,−λ) | λ ∈ Λ(T )}.

We now describe the set of colors ∆(G). By the Bruhat decomposition, the colors
coincide with the Schubert divisors Dα = B−sαB, where α ∈ ∆ is a simple root
and sα is the corresponding simple reflection. In particular

∆(G) = ∆.

Identifying Λ(G) with Λ(T ) via Λ(T ) → Λ(G), λ 7→ (λ,−λ), similar arguments to
those given in the previous example for GLn(k) imply that the map ρG is given as
follows (see [6, Example 3.7] for a proof):

ρG(Dα) = α∨,

where we identify Λ(G)∨ with the coroot lattice Λ(T )∨ of G.

Example 5.2.8 (Symmetric matrices). Assume char(k) ̸= 2 and let X =
Symn(k) be the space of symmetric n×n-matrices. Let G = GLn(k) act by congru-
ence: for g ∈ G and A ∈ X, then g.A = ((g−1)TAg−1. Let B ⊂ G be the subgroup
of upper triangular matrices, then B.In is open in X (here In is the identity matrix)
thus X is G-spherical.

The G-orbits are parametrised by the rank. If Ik is the diagonal matrix with
k ones and n− k zeros on the diagonal, then the G-orbits are

G.Ik = {A ∈ X | rk(A) = k}.

Set Xk = G.Ik = {A ∈ X | rk(A) ≤ k}, we have the inclusions X0 ⊂ · · · ⊂ Xn = X.
For A ∈ X, let dk(A) be the k-principal minor of A i.e. the determinant of the
upper left square block of order k. Note that dk ∈ k[X](B) and we have

(diag(t1, · · · , tn).dk)(A) = dk(diag(t1, · · · , tn)−1.A) = t21 · · · t2kdk(A).

In particular λdk = 2ϖk with ϖk the k-th fundamental weight so 2Λ(T ) ⊂ Λ(X)
where T is the maximal torus of diagonal matrices in G. We prove that the inclusion
is an equality. Indeed, let f ∈ k(X)(B) and t = diag(1, · · · , 1,−1, 1 · · · , 1) the
matrix with a unique −1 at the k-th position. Since B.In is dense, we may assume
that f is defined at In and that f(In) ̸= 0. we have tIn = In and λf (t)f(In) =
(t.f)(In) = f(t−1.In) = f(In). In particular λf (t) = 1 so writing λf =

∑
i aiϖi we

have ak ∈ 2Z. Since this is true for all k, we get

Λ(X) = 2Λ(T ).

Let Dk = {A ∈ X | dk(A) = 0}. Since dk ∈ k[X](B), we have Dk ∈ D(X).
Furthermore, one can check that X \B.In = D1 ∪ · · · ∪Dn. Furthermore, the only
G-stable divisor is Dn = Xn−1, therefore

∆(X) = {D1, · · · , Dn−1} ⊂ D(X) = {D1, · · · , Dn}.

The above description shows that νDk
(dl) = δk,l therefore

ρX(Dk) =
1

2
α∨
k ,

where (α∨
i )i∈[1,n] is the dual basis of (ϖk)k∈[1,n]. Note that α∨

n is not a coroot since
there is no root αn in GLn(k). If (ϵi)i∈[1,n] is the usual orthonormal basis of Λ(T )
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and setting ϵn+1 = 0, we have

ϖk =

k∑
i=1

ϵi, α
∨
k = ϵk − ϵk+1, for all k ∈ [1, n].



CHAPTER 6

Local structure theorems

In this chapter, we assume char(k) = 0. We start with a structure theorem for
G-modules and deduce a structure theorem for G-spherical varieties.

1. Local structure for G-varieties

Let V be a G-module and let Y be a closed orbit of P(V ). The stabiliser of
any point in Y is a parabolic subgroup of G because Y is projective. Furthermore,
there exists an element y ∈ Y such that B.y is open and dense in Y .

Lemma 6.1.1. Let v ∈ V such that [v] = y.
(1) There exists a B-eigenvector η ∈ (V ∨)(B) such that ⟨η, v⟩ = 1.
(2) Gy and Gη are opposite parabolic subgroups and we have B.y = Gη.y.

Proof. (1) If for any η ∈ (V ∨)(B) we have ⟨η, v⟩ = 0, then ⟨η, b.v⟩ = 0 for all b ∈ B
thus ⟨η, w⟩ = 0 for all w ∈ Y and because Y is a G-orbit we get ⟨g.η, w⟩ = 0 for
all g ∈ G and w ∈ Y therefore Y is anihilated by V ∨ (since V ∨ is spanned by its
highest weight vectors (V ∨)(B)). This implies Y = ∅, a contradiction.

(2) Let η as in (1) and let P = Gη be its stabiliser. The orbit Y is the quotient
G/Gy and is projective. The subgroup Gy is therefore a parabolic subgroup and
thus contains a Borel subgroup B′ of G. Since any two Borel subgroups contain
a maximal torus in their intersection, there exists T a maximal torus in B ∩ B′.
But B.y is open and dense in Y = G/Gy, thus BGy is open and dense in G. This
implies the decomposition g = b+ gy on the level of Lie algebras and therefore gy
contains b− the opposite Borel Lie algebra with respect to the torus T . Thus Gy
contains B− the Borel opposite to B and the vector v with [v] = y is a T -fixed
point (since T ⊂ B′ ⊂ Gy). It is therefore a highest weight vector for B−. Let λv
be the T -weight of v and consider the decompositions

V =
⊕
λ∈Ĝ

V mλ

λ and V ∨ =
⊕
λ∈Ĝ

(V ∨
λ )mλ ,

where the weights λ ∈ Ĝ are considered as dominant weight for the Borel B (thus
−λv is dominant). The element η must lie in (V ∨

−λv
)m−λv . The stabilisers of y and

[η] ∈ P(V ∨) are therefore respectively spanned by T and the unipotent subgroups
Uα associated to the roots α such that ⟨α∨, λv⟩ ≥ 0, respectively ⟨α∨,−λv⟩ ≥ 0
and are therefore opposite parabolic subgroups.

For the second statement, let us remark that P is spanned by B and the
unipotent subgroups Uα with ⟨α∨,−λv⟩ = 0. But these subgroups Uα are also in
Gy proving the result. □

Set P = Gη and L = P ∩ Gy. The group L is reductive and is a maximal
reductive subgroup of both P and Gy. Denote by Ru(P ) the unipotent radical

41
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of P , we have P = LRu(P ). The subset P(V )η where η does not vanish is open,
P -stable and contains P.y.

Proposition 6.1.2. There exists a closed L-subvariety S of P(V )η containing
y such that the morphism

Ru(P )× S → P(V )η

defined by (p, x) 7→ px is a P -equivariant isomorphism.

Proof. We first reduce to the case of simple modules. Denote by ⟨G.v⟩ and ⟨G.η⟩
the G-submodules of V and V ∨ spanned by v and η. Note that ⟨G.v⟩ is simple while
⟨G.η⟩ is isomorphic to its dual. The orthogonal ⟨G.η⟩⊥ is therefore of codimension
dim⟨G.v⟩ in V and in direct sum with ⟨G.v⟩. We thus get a decomposition V =
⟨G.v⟩ ⊕ ⟨G.η⟩⊥. The projection p from ⟨G.η⟩⊥ onto P⟨G.v⟩ defines a rational G-
equivariant morphism p : P(V )η → P⟨G.v⟩. This morphism restricts to the identity
on Y since Y ⊂ P⟨G.v⟩. If the statement is true for ⟨G.v⟩, then there exists S as
above and we get the Cartesian diagram

Ru(P )× p−1(S)

p

��

// P(V )η

��
Ru(P )× S // P⟨G.v⟩.

Since the bottom horizontal arrow is an isomorphism, the same is true for the top
horizontal arrow and the result follows.

We are left to prove the result for V simple. Let Tv = Tv(G.v) be the tangent
space of G.v at v. We consider Tv as a vector subspace of V . Since v is a Gy-
eigenvector, the group Gy acts on Tv. Since the weight of v as an eigenvector is
non trivial (otherwise V would be trivial), the space Tv contains the line kv.

The space Tv is thus a sub-L-representation of V and since L is reductive there
is a decomposition

V = Tv ⊕ E

with E a representation of L. Define S = P(kv ⊕ E)η. This is a closed subvariety
of P(V )η which is stable under L and contains y. Note that S is isomorphic to
the affine space y + E and that S meets Y tranversaly in y: indeed, the tangent
spaces of Y and S at y are Tv/kv and E which are supplementary in V/kv. Also
note that the variety P(V )η has a unique closed T -orbit: the fixed point y. Indeed,
since V is simple, the weight λv is the smallest weight (for B) of V . Any weight
of V is therefore of the form λv + µ with µ a non-negative linear combination of
simple roots of B. Any element z = [w] ∈ P(V )η can be written w =

∑
µ wλv+µ

with wλv+µ of weight λv + µ and t ∈ T acts via t.w =
∑
µ(λv + µ)(t)wλv+µ. Let θ

be a dominant cocharacter, then

θ(s).w =
∑
µ

s⟨θ,λv+µ⟩wλv+µ = s⟨θ,λv⟩

wλv +
∑
µ ̸=0

s⟨θ,µ⟩wλv+µ


and when s goes to 0 we get [θ(s).w] → [wλv ] = y.

Consider Ru(P ) × S as a T -variety via the action t.(p, z) = (tpt−1, t.z). By
the same argument as before and since (e, y) has lowest weight for the T -action, we
also have that Ru(P )× S has a unique closed T -orbit: the fixed point (e, y).
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Consider the multiplication morphism m : Ru(P ) × S → P(V )η. We want to
prove that this morphism is an isomorphism. We first claim, that the differential
d(e,y)m is injective.

Let ru(P ) be the Lie algebra of Ru(P ). We know that P.y = Ru(P )L.y =
Ru(P ).y is open in Y = G.y therefore the morphism Ru(P )× kv → Y is dominant
and its tangent map ru(P ) × kv → TyY is surjective. We get the equality TyY =
ru(P )v/kv. The same argument gives Tv(G.v) = ru(P )v + kv.

Furthermore, since η is fixed by Ru(P ), we have ⟨η, pv⟩ = ⟨p−1η, v⟩ = ⟨η, v⟩ = 1
for all p ∈ Ru(P ) and therefore η is constant on Ru(P ).y. This implies by derivation
that η vanishes on ru(P ).v. In particular ru(P ).v and kv are complement and
Tv(G.v) = ru(P ).v ⊕ kv. This also implies the equality TvV = kv ⊕ ru(P ).v ⊕ E.

These equalities lead to the identifications of S and P(V )η with the affine spaces
v+E and v+(ru(P ).v⊕E). The morphism m is given by m((p, (v+x)) = p.(v+x).
We may now compute the differential: d(e,v)m(ξ, x) = v + ξ.v + x for ξ ∈ ru(P )
and x ∈ E. Indeed, the first two terms come from the differentiation of the action
of Ru(P ) on v while the second term comes from the differential of the action on
E which is linear.

We are left to prove that the map ru(P ) → ru(P ).v given by the action on v is
injective. This is true since the intersection of Ru(P ) with the stabiliser Gy of y is
trivial thus Ru(P ) acts freely on y and v thus by differentiation the same is true at
the Lie algebra level.

Let Z be the locus in Ru(P ) × S where the differential of m is not surjective.
This is a closed subset of Ru(P )×S. If Z is non empty, then it contains a closed T -
orbit which has to be (e, y), a contradiction. The morphismm : Ru(P )×S → P(V )η
is therefore open.

Let Z be the complement of the image, then Z is closed and T -stable. If it is
non empty, then it contains a closed T -orbit which has to be y, a contradiction.
Thus m is surjective.

Thus m is a covering but since both varieties are affine spaces which are simply
connected, the map m is an isomorphism. □

Example 6.1.3. Consider V = Mn(k) and G = GLn(k) × GLn(k) acting via
(P,Q).M = PMQ−1. Consider Y the set of rank 1 matrices. It is the only closed
subvariety stable by G and let y = [M ] ∈ Y with

M =


1 0 · · · 0

0 0
. . .

...
...

. . . . . . 0
0 · · · 0 0


and η the linear form defined by η(ai,j) = a1,1. If P is the stabiliser of η, we have

P =

{((
a 0
C D

)
,

(
a′ B′

0 D′

)) ∣∣ a, a′ ∈ Gm, D,D′ ∈ GLn−1(k), C
T , B′ ∈M1,n−1(k)

}
Gy =

{((
A B
0 D

)
,

(
A′ 0
C ′ D′

)) ∣∣ a, a′ ∈ Gm, D,D′ ∈ GLn−1(k), C
′, BT ∈Mn−1,1(k)

}
.

Setting

S =

{(
1 0
0 M

) ∣∣ M ∈Mn−1(k)

}
≃Mn−1(k),
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we have the isomorphism Ru(P )× S → P(V )η given by the action((
1 0
C 1

)
,

(
1 B′

0 1

)
,

(
1 0
0 M

))
7→
(

1 −B′

C ′ M − C ′B′

)
.

Note that the action of L = P ∩Gy on S is given as follows((
a 0
0 D

)
,

(
a′ 0
0 D′

))
.

(
1 0
0 M

)
=

(
a/a′ 0
0 DM(D′)−1

)

=

(
1 0

0 a′

a DM(D′)−1

)
.

To compute the invariants we may therefore use Example 5.2.5.

Remark 6.1.4. The above result enables to replace locally the study of quasi-
projective G-varieties to quasi-affine G-varieties and of projective G-varieties to
affine G-varieties.

Example 6.1.5. Let us consider V to be the vector space of quadratic forms
on kn i.e. V = (S2kn)∨. There is a unique closed orbit of G = GLn(k) in P(V )
given by the quadratic forms of rank one. Pick y = x21. Then the stabiliser of y
is the stabiliser of the hyperplane given by the last n − 1 coordinate vectors. The
linear form η ∈ V ∨ can be chosen to be η(q) = q(1, 0, · · · , 0). If B is the Borel
subgroup of lower triangular matrices in G, we have η ∈ (V ∨)(B).

A quadratic form q satisfies η(q) ̸= 0 if and only if it can be writen in the form

q(x1, · · · , xn) = λ(x1 + a2x2 + · · ·+ anxn)
2 + q′(x2, · · · , xn)

where λ ̸= 0 and q′ is a quadratic form on the last n− 1 variables.
Now Ru(P ) maps e1 to e1 + a2e2 + · · ·+ anen and is the identity on the other

vectors, therefore the above Theorem boils down to the fact that there exists a
unique u ∈ Ru(P ) such that

q = λu(y + q′′)

with q′′ = u−1q′ is a quadratic form in the last n − 1 variables thus here S is the
set of quadratic forms in these last n− 1 variables.

Corollary 6.1.6. For a G-variety X, the following are equivalent.
(1) We have the vanishing rk(X) = 0.
(2) Any G-orbit in X is compact.

Proof. Assume that any G-orbit is compact and let f ∈ k(X)(B). Let Y be a
G-orbit meeting the locus where f is defined. This orbit is compact it is of the
form G/P for some parabolic subgroup P . Thus there is a dense U -orbit in Y . In
particular we have f |Y ∈ k(G/P )(B) = k(G/P )B thus the weight of f is trivial.

Conversely, assume that rk(X) = 0. Let Y be a G-orbit and let Y be its closure
in X. Then we know that rk(Y ) ≤ rk(X) and since the rank is a birational invariant
we get rk(Y ) = 0. We may therefore assume that X is homogeneous i.e. X = Y .

If X = G/H, we know that X is quasi-projective and that there exists V a G-
module such that G/H is a locally closed subset of P(V ). let X be the closure of X
in P(V ) and let x ∈ X be an element in a closed G-orbit Y . Then we get a parabolic
subgroup P (opposite to Stab(x)) with Levi factor L and a closed subvariety S of
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P(V )η stable under L such that Ru(P ) × S → P(V )η is an isomorphism. Let
Z = X ∩ S. We get an isomorphism Ru(P )× Z → Xη thus an open immersion

Ru(P )× Z → X.

Furthermore Z contains x which is fixed by L.

Lemma 6.1.7. We have k(X)(B) = k(Z)(L∩B).

Proof. If f ∈ k(Z)(L∩B) is of weight λ, then the composition Ru(P ) × Z
f→ A1

is a rational function f̄ on X. Furthermore, for b ∈ B we may write b = uc with
u ∈ Ru(P ) and c ∈ L ∩ B thus we get (b.f̄)(u′, z) = f̄(c−1u′cu−1, cz) = f(c−1z) =
λ(c)f(z) = λ(b)f̄(u′, z) proving that f̄ is indeed in k(X)(B).

Conversely for f ∈ k(X)(B), then f defines a rational function on Ru(P ) × Z
such that if b = uc is a decomposition with u ∈ Ru(P ) and c ∈ B ∩ L we have
b.f(u′, z) = f(c−1u′cu−1, c−1z) = λ(b)f(u′, z). In particular for c = 1 and u = u′ we
have f(u′, z) = f(e, z). We may define f̃(z) = f(e, z) = f(u′, z) for all u′ ∈ Ru(P )

which will therefore be a rational function on Z. We obviously have f̃ ∈ k(Z)(L∩B).
Furthermore one checks that f̃ = f and f̃ = f proving the result. □

As a consequence we get that rk(Z) = 0 as a L-variety. We get that in k[Z],
any B ∩ L-eigenfunction has a trivial weight. This implies that k[Z] is a trivial
L-module. But notice that Z is affine thus L acts trivally on Z. Therefore the
maximal torus T of G, which is contained in L acts trivally on Z. But Y was closed
thus compact and of the form G/P with P parabolic. Thus T only has finitely
many fixed points in Y . Therefore Z must be finite and since Ru(P ) × Z is open
in X is it irreducible thus Z is one point. Then Y is the G-orbit of Z and has to
be dense in X thus Y = X which is compact. □

2. Local structure for spherical varieties

For a spherical variety X, we describe the local structure not only along pro-
jective orbits but along any G-orbit Y . Recall that the following definitions:

D(X) = {D ⊂ X B-stable prime divisor},
∆(X) = {D ∈ D(X) | D is not G-stable},
DY (X) = {D ∈ D(X) | Y ⊂ D} and
∆Y (X) = {D ∈ ∆(X) | Y ⊂ D} = ∆(X) ∩DY (X).

Finally denote the set of B-stable prime divisors containing no G-orbit by

∆̊(X) = ∆(X) \
⋃
Y

∆Y (X) = D(X) \
⋃
Y

DY (X)

where Y runs over the set of G-orbits in X.

Definition 6.2.1. A G-variety is called simple if it has a unique closed G-
orbit.

Define the G-chart XY,G = {x ∈ X | G.x ⊃ Y }.

Lemma 6.2.2. The G-chart XY,G is an open G-stable neighborhood of Y and
is a simple G-variety.
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Proof. Indeed XY,G is G-stable and Y ⊂ XY,G. If x ∈ X \ XY,G, then G.x ⊂
X \ XY,G thus XY,G is open. Finally any closed orbit in XY,G has to contain Y
which is therefore the unique closed orbit. □

Corollary 6.2.3. Any spherical variety is covered by finitely many open simple
spherical varieties.

Proposition 6.2.4. Let X be a simple G-spherical variety with closed orbit Y .
(1) Y has a unique dense B-orbit Y ◦

B.
(2) X contains a unique minimal B-stable affine open subset XY,B meeting Y

non trivially.
(3) We have Y ◦

B = Y ∩XY,B.
(4) We have

XY,B = X \
⋃

D∈D(X)\DY (X)

D

and any divisor D ∈ D(X) \DY (X) is Cartier and globally generated.
(5) We have XY,B = {x ∈ X | B.x ⊃ Y }.

Proof. (1) Since X contains finitely many B-orbits, so does Y and the result follows.
(2) By Proposition 2.2.5, there exists a B-stable affine open subset X0 meeting

Y . Since X0 is affine, its complement has codimension 1 and therefore X \ X0 is
the union of prime B-stable divisors not containing Y , in other words a subset of
D(X) \DY (X). Since this set is finite, so is the set of all such affine open subsets.
Since a finite intersection of non-empty affine open subsets is still non-empty affine
and open the results follows.

(3) Since the intersection Y ∩XY,B is non-empty and open, we have the inclusion
Y ◦
B ⊂ Y ∩ XY,B . Conversely, let X0 as in (1), or as in Proposition 2.2.5, and let
f ∈ k[Y ∩X0]

(B) such that f vanishes on (Y ∩X0) \ Y ◦
B . Lift f to f ′ ∈ k[X0]

(B),
then X0 ∩ {x ∈ X | f ′(x) ̸= 0} is a B-stable affine subset meeting Y non-trivially
along Y ◦

B proving the converse inclusion.
(4) Let D = ∪D∈D(X)\DY (X)D. By the above, we have X \D ⊂ XY,B .

Lemma 6.2.5. Then OX(D) is Cartier and globally generated. The same is
true for any of the sheaves associated to any irreducible component of D

Proof. Modulo replacing G by a finite cover, we may assume that OXG,Y
(D) is

G-linearised. In particular, the non-Cartier locus and the locus where it is non
globally generated are G-stable. If these loci are non empty, they must contain the
only closed G-orbit: Y . But OX(D) is locally free and globally generated outside
D and therefore on an open subset of Y proving the assertion. The same argument
works for any irreducible component of D. □

We prove XY,B = X \D. For this it is enough to produce a affine B-stable open
subset meeting Y with trivial intersection with D. Let η ∈ H0(X,OX(D)) be the
canonical section defining D. Set N = ⟨G.η⟩ and M = N∨. We have a morphism

φ : X → P(M)

define by φ(x) = [σ ∈ N 7→ σ(x)]. This morphism is G-equivariant and is defined
everywhere. Indeed if there exists x ∈ X with σ(x) = 0 for all σ ∈ N , then
g.η(x) = 0 for all g ∈ G thus Y ⊂ G.x ⊂ D, a contradiction. By definition of η, we
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have X \D = φ−1(P(M)η). By Theorem 6.1.2, there exists S ⊂ X \D closed and
stable under a Levi subgroup of P = Stab(η) such that the map

Ru(P )× S → X \D

is an isomorphism. Since B = Ru(P )(B ∩ L) and B ∩ L is a Borel subgroup of
L, the variety S is L-spherical and meets Y . By Proposition 2.2.5, the variety S
contains an open B ∩ L-stable affine open subset S0 meeting Y . Then Ru(P )S0 is
an open affine B-stable open subset of X \D meeting Y . This proves the equality
XY,B = X \D.

(5) Note that (4) implies that X \ D is affine and thus S is also affine. Fur-
thermore, the restriction of Ru(P ) × S → X \ D to Y induces an isomorphism
Ru(P ) × (Y ∩ S) → (X \ D) ∩ Y = XY,B ∩ Y = Y ◦

B which is a unique orbit thus
Y ∩ S is a unique B ∩ L-orbit.

We prove the equality XY,B = {x ∈ X | B.x ⊃ Y }. Note that the right hand
side is B-stable, open and contains Y ◦

B . Let x ∈ D, then B.x ⊂ D ̸⊃ Y thus x is
not in the right hand side. This proves the inclusion {x ∈ X | B.x ⊃ Y } ⊂ XY,B .
Conversely, let Z be a closed B-orbit in XY,B . Then Z ∩ S is a closed B ∩ L-orbit
in S thus L(Z ∩ S) is a closed L-orbit in S. Since S is affine and L-spherical,
it has a unique closed L-orbit. This Z ∩ S and Y ∩ S are closed L-orbits in S,
we have Z ∩ S = Y ∩ S and Z ⊂ XY,B ∩ Y = Y ◦

B . This gives Z = Y ◦
B and

XY,B ⊂ {x ∈ X | B.x ⊃ Y }. □

Corollary 6.2.6. We have XY,G = GXY,B.

Proof. If x ∈ XY,B , then G.x ⊃ B.x ⊃ Y thus x ∈ XY,G and since the later is
G-stable, we get GXY,B ⊂ XY,G. Let x ∈ XY,G, then Y ⊂ G.x. Pick x′ ∈ G.x such
that B.x′ = G.x, then x′ ∈ XY,B and the result follows. □

Remark 6.2.7. In positive characteristic, we will introduce XY,G and XY,B in
a slightly different way. We will set:

XY,B = X \
⋃

D∈D(X)\DY (X)

D and XY,G = GXY,B .

The equality XY,G = {x ∈ X | G.x ⊃ Y } will still hold true but the equality
XY,B = {x ∈ X | B.x ⊃ Y } might fail.

Let P be the stabiliser of XY,B i.e. P = {g ∈ G | g.XY,B = XY,B}. Then P is
a parabolic subgroup containing B.

Theorem 6.2.8. Let X be G-spherical and Y ⊂ X be a G-orbit.
(1) There exists L ⊂ P a Levi subgroup and S ⊂ XY,B closed such that:

(a) The variety S is stable under L.
(b) The map Ru(P )× S → XY,B , (p, x) 7→ p.x is a P -isomorphism.

(2) The variety S is affine L-spherical and S ∩ Y is an L-orbit with isotropy
subgroup Ly containing (L,L) the derived subgroup of L for any y ∈ S∩Y .
The subgroup Ly is independent of y. Denote it by LY .

(3) There exists a closed LY -stable subvariety SY ⊂ S containing an LY -fixed
point such that the morphism

L×LY SY → S, [l, y] 7→ l.y
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is an L-equivariant isomorphism. The variety SY is affine LY -spherical
of rank rk(X)− rk(Y ).

Proof. Since XY,B is contained in XY,G we may assume that X = XY,G is simple.
(1) As in the previous proof, let D = X \XY,B . The divisor D is Cartier and

globally generated. Let η ∈ H0(X,OX(D) be the canonical section, N = ⟨G.η⟩
and M = N∨. We have a G-equivariant morphism φ : X → P(M) defined by
φ(x) = [σ ∈ N 7→ σ(x)] and X \D = φ−1(P(M)η). By Theorem 6.1.2, there exists
S ⊂ X \D closed and stable under a Levi subgroup of P = Stab(η) such that the
map Ru(P )× S → X \D is an isomorphism.

(2) We have finitely many B-orbits in XY,B since X is spherical thus B also has
finitely many orbits in Ru(P )×S. Recall that P = Ru(P )L thus B = Ru(P )(L∩B)
and L∩B is a Borel subgroup of L. Recall also that the action of P = Ru(P )L on
Ru(P )×S is given by ul.(u′, x) = (ulu′l−1, l.x) thus B∩L must have finitely many
orbits in S. SinceXY,B is normal as an open subset ofX, the variety S is also normal
thus S is L-spherical. It is an affine variety as closed subvariety of the affine variety
XY,B . The isomorphism in (1) induces an isomorphism Ru(P )×(S∩Y ) → Y ∩XY,B .
The right hand side is a P -orbit and a B-orbit, thus S ∩ Y is an L-orbit and a
(B ∩ L)-orbit as well.

Let y ∈ S ∩ Y . We have S ∩ Y = L.y = (B ∩ L).y thus (B ∩ L)Ly = L.

Lemma 6.2.9. Let H be a closed subgroup of a connected reductive group G
such that G = HB for B a Borel subgroup of G, then H contains (G,G).

Proof. Since (G,G) is connected, we may assume H to be connected. First assume
G to be semisimple. Since G = HB, we have G/B = H/(B ∩ H). On the one
hand this implies rk(G) = rk(Pic(G/B)) = rk(Pic(H/(H ∩ B))) ≤ rk(H). On the
other hand dimUG = dimG/B = dimH/(H ∩B) ≤ dimUH where UG and UH are
maximal unipotent subgroups of G and H. We deduce dimH ≥ dimG and H = G.

For a general G, let π : G→ G′ = G/R(G) be the quotient of G by its radical.
We have G′ = H ′B′ with H ′ = π(H) and B′ = π(B). Since G′ is semisimple, we
deduce G′ = (G′, G′) ⊂ H ′. Thus π|H is surjective and π((H,H)) = (G′, G′) = G′.
Since (H,H) ∩ R(G) ⊂ (G,G) ∩ R(G) is finite, we get dim(H,H) = dimG′ =
dim(G,G) thus (G,G) = (H,H) ⊂ H. □

We deduce that Ly contains (L,L). This implies that Ly does not depend on
y. Indeed, for l ∈ L, then Ll.y = lLyl

−1. For any h ∈ Ly we have lhl−1h−1 ∈
(L,L) ⊂ Ly thus lhl−1 ∈ Ly and Ll.y ⊂ Ly and by symmetry Ll.y = Ly. Denote
by LY this stabiliser. We have (L,L) ⊂ LY thus L/LY is a quotient of L/(L,L)
which is a torus.

(3) The orbit S∩Y = L.y is thus isomorphic to the torus L/LY . Let (χ1, · · · , χn)
a basis of the group of characters of L/LY . Since S∩Y is closed in S which is affine,
we can extend these functions to functions (f1, · · · , fn) on S. We may furthermore
assume that these functions are (L ∩ B)-eigenfunctions of weights (χ1, · · · , χn).
These functions do not vanish on the closed orbit S ∩ Y in S thus they do not
vanish at all on S. These functions therefore define an L-equivariant morphism
ψ : S → (Gm)n ≃ L/LY . Let SY be the fiber over the identity element of this
morphism. The natural map defined by the action: L × SY → S factors through
L ×LY SY → S. This map is bijective. Indeed, if s ∈ S, then there exists l ∈ L
such that l̄ = ψ(s) and if l′ satisfies the same condition, then l′ = lh with h ∈ LY .
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Define s 7→ [l, l−1s] ∈ L ×LY SY . This is well defined and an inverse map. But
since S is normal, this morphism must be an isomorphism.

Finally rk(X)− rk(Y ) = rk(S)− rk(S ∩Y ) = rk(S)−dim(L/LY ) = rk(SY ). □

Corollary 6.2.10. Let X be a spherical G-variety, then any closed G-stable
subvariety Y is again a spherical G-variety.

Proof. We only have to prove that Y is normal. By the local structure Theorem,
we may assume X affine, the result follows from Corollary 3.3.10. □

Remark 6.2.11. Recall from Example 3.3.11 that the previous result fails in
positive characteristic. In characteristic 0, spherical varieties enjoy even stronger
properties: any spherical variety is Cohen-Macaulay and has rational singularities
(see [22, Corollary 2.3.4]).

Example 6.2.12. Let us consider again the case of quadratic forms: V is the
vector space of quadratic forms on kn i.e. V = (S2kn)∨. We have seen that the
G-orbits for G = GLn(k) in P(V ) are given by the rank. Pick y = x21+ · · ·+x2i and
let Y be its G-orbit. Then XY,B is the set of quadratic forms such that the first i
principal minors are non zero. Let P be the stabiliser of ⟨e1⟩, · · · , ⟨e1, · · · , ei⟩, this
is a parabolic subgroup and is the stabiliser of XY,B .

Let S be the set of quadratic forms of the form a1x
2
1+· · ·+aix2i+q′(xi+1, · · · , xn)

with ak ∈ Gm. Then S is stable under L = Gim×GLn−i(k) which is a Levi subgroup
of P . We see that the natural map

Ru(P )× S → XY,B

is an isomorphism.
The intersection S∩Y is the set of quadratic forms of the form a1x

2
1+ · · ·+aix2i

with ak ∈ Gm. This is an L-orbit and the stabiliser of y is LY = {±1} ×GLn−i(k)
which contains (L,L) = SLn−i(k).

If SY is the set of elements of the form x21 + · · ·+ x2i + q′(xi+1, · · · , xn) we see
that SY is stable under LY and meets Y in the unique point y = x21 + · · · + x2i .
Furthermore, we have L×LY SY ≃ S.

3. Structure Theorem for toroidal varieties

We define an important class of spherical varieties.

Definition 6.3.1. A a spherical variety is toroidal if ∆̊(X) = ∆(X).

For X toroidal, we set ∆X = ∪D∈∆(X)D. If X̊G is the dense G-orbit and X̊B

is the dense B-orbit, we have

∆X = X̊G \ X̊B .

Let PX be the stabiliser of X̊B . It is also the stabiliser of ∆X and B ⊂ PX .

Remark 6.3.2. The group PX is a birational invariant of X.

Theorem 6.3.3. Let X be spherical. The following conditions are equivalent.
(1) The variety X is toroidal.
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(2) There exists a Levi subgroup L ⊂ PX only depending on the open G-orbit
of X and a closed L-stable subvariety Z ⊂ X \∆X such that the map

Ru(PX)× Z → X \∆X

is a PX-isomorphism, (L,L) acts trivially on Z which is a toric variety
for a quotient of L/(L,L). Any G-orbit meets Z along a unique L-orbit.

Proof. Assume that X is toroidal. First remark that ∆X is Cartier and globally
generated. Indeed this is a local condition and can be checked on the simple spheri-
cal varieties XY,G for Y any G-orbit. Then the restriction of ∆X to XY,G is Cartier
and globally generated by Lemma 6.2.5.

Now proceed as in the proof of Theorem 6.2.8 replacing D with ∆X , to obtain
a variety Z (called S in the proof of Theorem 6.2.8).

The intersection of X̊G the dense G-orbit in X with X\∆X is the dense B-orbit
X̊B . Thus X̊G ∩ Z = X̊B ∩ Z. It is a B ∩ L-orbit and also a L-orbit. By Lemma
6.2.9 we get that (L,L) acts trivially on Z which has to be a toric variety under
the action of a quotient of L/(L,L).

Let Y be a G-orbit in X. Then Y is not contained in ∆X therefore Y ∩(X\∆X)
is dense in Y and Ru(PX)(Z ∩ Y ) is also dense in Y . Since Y is a G-orbit, there is
a PX -orbit Y ′ ⊂ Y dense in Y and Z ′ = Y ′ ∩ Z is an L-orbit dense in Z ∩ Y . The
variety Z is toric for some torus TZ . The structure Theorem of spherical varieties
applied to toric varieties gives a TZ′ -variety SZ′ and an isomorphism

T ×TZ′ SZ′ → Z.

The orbit Z ′ therefore corresponds to a TZ′ -fixed point s in SZ′ . Consider the
cone Cs(SZ′) associated to s (see for example [6, Section 6]) and choose a basis
(ρ(νD)) (over Q of this cone) given by LZ′ -stable divisors D. The affine chart
gives that s is the intersection of these divisors therefore Z ′ is the intersection of
divisors D1, · · ·Dr of Z with r = codimZ(Z

′). Then each divisor Xi = Ru(PX)Di is
irreducible B-stable and does not meet the dense G-orbit (this is true since Di does
not meets the dense L-orbit of Z). This implies that Xi is G-stable. Now consider
X ′ = Ru(PX)Z ′. It is a subvariety of codimension r in X which is contained in the
intersection of the Xi. Since ∆X contains no closed G-orbit the intersection of the
Xi has a dense open subset given by (

⋂
iXi)∩ (X \∆X). The variety X ′ has to be

an irreducible components of the intersection of the Xi and is thus G-stable. We
get X ′ = Y and Y ∩ (X \∆X) = Ru(PX)Z ′ thus Y ∩ Z = Z ′ proving the result.

Conversely, any G-orbit of X meets Z and thus is not contained in ∆X and
therefore is not contained in any B-stable but not G-stable divisor. □

Remark 6.3.4. Note that G(X \∆X) = X.

Corollary 6.3.5. The irreducible G-stable subvarieties of a smooth toroidal
variety are smooth, toroidal and transverse intersections of G-stable divisors.

Proof. We need to consider the closure Y of a G-orbit G · y. The above Structure
Theorem for toroidal varieties gives an isomorphism X \ ∆X ≃ Ru(PX) × Z and
any G-orbit meets Z along a unique L-orbit. Furthermore, Z is toric and smooth
therefore Y meets Z along a smooth toric subvariety Y ′ (see Lemma ?? for a
smoothness criterion for toric varieties). Then Ru(PX)×Y ′ is an open subset of Y
with G · Y ′ = Y thus Y is smooth and toroidal.
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For the last assertion, Y ′ being a toric subvariety of the smooth toric variety
Z, it is a complete intersection of toric divisors and we get the result. □





Part 2

Classification of spherical varieties





CHAPTER 7

Invariant valuations

1. Valuations and existence of invariant valuations

Definition 7.1.1. Let X be a normal variety. A valuation of X is a map
ν : k(X) → Q ∪ {∞} satisfying the following four properties for f1, f2 ∈ k(X):

(V1) ν(0) = ∞ (V2) ν(f1 + f2) ≥ min(ν(f1), ν(f2))
(V3) ν(f1f2) = ν(f1) + ν(f2) (V4) ν|k× = 0.

If X is a G-variety and ν(g.f) = ν(f), then the valuation is called invariant. We
denote by V(X) the set of invariant valuations on X.

Example 7.1.2. The following are classical examples of valuations.
(1) The trivial valuation is defined by ν(k(X)∗) = 0 and ν(0) = ∞.
(2) A prime divisor D ⊂ X defines a valuation νD: the local ring R at the

generic point of D is a discrete valuation ring with fraction field k(X).
For f ∈ k(X), write f = u/v with u, v ∈ R and u = zau′, v = zbv′ with z
an uniformising element of R not divising u′ and v′. Set νD(f) = a− b.

(3) If ν is a valuation and λ ∈ Q≥0, then λν is also a valuation.

The following is a classical fact on valuations (see [7, Proposition B.69]).

Fact 7.1.3. Let K be a field extension of k and L be an extension of K. If
ν : K → Q is a valuation, then there exists a valuation ν′ : L→ Q with ν′|K = ν.

Definition 7.1.4. For ν a valuation of k(X), set Rν = {f ∈ k(X) | ν(f) ≥ 0}
and mν = {f ∈ k(X) | ν(f) > 0}. A center for ν is a subvariety Z of X such that
OX,Z ⊂ Rν and mX,Z ⊂ mν .

Remark 7.1.5. If Z is the center of a valuation ν, then Z is the center of λν
for any λ ∈ Q>0.

Lemma 7.1.6. Let ν be a valuation on a normal variety X.
(1) If X is affine, then ν has a center if and only if ν is non negative on k[X].

In that case its center is defined by the ideal mν ∩ k[X].
(2) A center, if it exists, is unique.
(3) Every subvariety Y ⊂ X is the center of a valuation.
(4) Assume that X is a G-variety. If ν ∈ V(X) has a center, then the center

is G-stable. Conversely every G-stable subvariety Y is the center of a
G-invariant valuation.

Proof. (1) If Z is a center, then k[X] ⊂ OX,Z ⊂ Oν and ν is non negative on k[X].
Conversely, define Z by its ideal I(Z) = k[X] ∩mν . This is indeed a center.

(2) Taking an affine cover, it is enough to check the affine case so assume that
X is affine. Let Z be the center defined by I(Z) = k[X]∩mν . and let Y be another

55



56 7. INVARIANT VALUATIONS

center for ν. Then I(Y ) ⊂ k[X] ∩ mν = I(Z) thus Z ⊂ Y . Let f ∈ I(Z) \ I(Y ),
then f has an inverse in OX,Y ⊂ Oν but f ∈ mν thus cannot be invertible in Oν . A
contradiction thus I(Z) = I(Y ) and Y = Z.

(3) Let Y be a subvariety and let E be a component of the exceptional divisor
of the normalisation of the blow-up of X along Y . The valuation νE is a valuation
on k(X) with center Y .

(4) Let Y be the center. Since ν ∈ V(X), for any g ∈ G, both Y and g.Y are
centers therefore Y = g.Y . Conversely, since G is connected, the construction in 3,
can be done equivariantly giving a G-invariant valuation νE . □

Remark 7.1.7. Let D ⊂ X be a prime divisor and νD the associated valuation,
then νD is the unique valuation in Q≥0νD such that νD(k(X)×) = Z. Indeed,
since νD is the valuation of a valuation ring with quotient field k(X), we have
νD(k(X)×) = Z.

Lemma 7.1.8. Let ν be a valuation of k(G), there exists a unique invariant
valuation ν̄ of k(G) such that ν̄(f) = ν(g.f) for any f ∈ k(G) and all g in a non
empty open subset Uf of G.

Proof. We claim that for f ∈ k(G), there exists an open subset Uf ⊂ G such
that ν(g.f) is constant for G ∈ Uf . If the claim holds, define ν̄(f) = ν(g.f) for
g ∈ Uf and ν̄(0) = ∞. By definition ν̄ satisfies (V1) and for f, f ′ ∈ k(G), let
g ∈ Uf ∩ Uf ′ ∩ Uf+f ′ . We have

ν̄(f + f ′) = ν(g.f + g.f ′) ≥ min(ν(g.f), ν(g.f ′)) = min(ν̄(f), ν̄(f ′)) and
ν̄(ff ′) = ν((g.f)(g.f ′)) = ν(g.f)ν(g.f ′) = ν̄(f)ν̄(f ′),

proving (V2) and (V3) for ν̄. The condition (V4) is obviously satisfied. Furthermore
for h ∈ Uf ∩Ug.fg, we have ν̄(f) = ν(h.f) = ν(hg−1.(g.f)) = ν̄(g.f) thus ν̄ ∈ V(G).

We are left to prove the claim. Since G is affine, we may assume that f ∈ k[G].
For q ∈ Q, let Vq = {f ′ ∈ k[G] | ν(f ′) ≥ q}. This is a linear subspace of k[G]. Let
V be a finite dimensional subrepresentation of k[G] containing f . Let f1, · · · , fr a
basis and set q0 = mini ν(fi). Then V ⊂ Vq0 . Define V ′ = {f ′ ∈ V | ν(f ′) > q0}.
This is a proper subspace of V and set Uf = {g ∈ G | g.f ̸∈ V ′} is open in G. For
g ∈ Uf , we have g.f ∈ V \ V ′ therefore ν(g.f) = q0. □

Corollary 7.1.9. Let H be a closed subgroup of G. We have a surjective
restriction map res : V(G) → V(G/H).

Proof. We have k(G/H) = k(G)H ⊂ k(G) and we define res as the restriction of
the valuation. Let ν′ ∈ V(G/H). By Fact 7.1.3, we can lift ν′ to a valuation ν̄
of k(G) and by the previous lemma, we can find an invariant valuation ν ∈ V(G)
with ν(f) = ν̄(g.f) for g in some open subset Uf of G. For f ∈ k(G/H) = k(G)H

and g ∈ Uf , we have ν(f) = ν(g.f) = ν̄(g.f) = ν′(g.f) = ν′(f) (note that the left
action of G commutes with the right action of H so that if f is H-invariant for the
right action, so is g.f for all g ∈ G). □

2. Relation to weights of rational functions

For V ⊂ k[G] a vector subspace and n an integer, we define V n to be the vector
space spanned by all the products of n elements of V : V n = ⟨f1 · · · fn|fi ∈ V ⟩
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Proposition 7.2.1. Let ν ∈ V(G/H) and let f ∈ k(G/H). Assume that there
exists f0 ∈ k(G)(B×H) such that ff0 ∈ k[G], and let V = ⟨G.ff0⟩. Then

(1) For all n ∈ N, V nf−n0 ⊂ k(G/H).
(2) ν(f) = min{ 1

nν(f
′/fn0 ) | n ∈ N, f ′ ∈ (V n)(B)}.

Proof. (1) Let λ be the H-character of f0. The left G-action commutes with the
rightH-action therefore all the elements in V n areH-eigenfunctions with eigenvalue
nλ. We thus have V nf−n0 ⊂ k(G)H = k(G/H).

(2) Let ν′ ∈ V(G) be a lifting of ν and consider Vq = {f ′ ∈ k[G] | ν′(f ′) ≥ q}.
Since ν′ is G-invariant, this is a G-stable vector subspace of k[G]. For f ′ ∈ V n,
we have ν′(f ′) ≥ nν′(ff0) = n(ν(f) + ν′(f0)) and ν(f) ≤ 1

nν
′(f ′) − ν′(f0) =

1
nν

′(f ′/fn0 ) =
1
nν(f

′/fn0 ) by (1). This proves that the left hand side is smaller that
the right hand side in (2). Define R = ⊕n≥0V

n. This is a graded integral k-algebra.
For r ∈ R, denote by rn its n-th graded part and for r ∈ R, define

ν′′(r) = inf
n∈N

{ν′(rn)− nν′(ff0)}.

Then ν′′ is a G-invariant valuation with ν′′|R ≥ 0. Let I = {r ∈ R | ν′′(r) > 0}.
This is a G-invariant prime homogeneous ideal. Note that ν′′(ff0) = 0 thus the
quotient R/I contains non-trivial elements of positive degree. There exists therefore
a B-eigenvector in (R/I)(B) of positive degree, a power of which can be lifted to a B-
eigenvector say f ′ in R(B). Taking graded parts, we may even choose f ′ ∈ (V n)(B).
We get ν′′(f ′) = 0 therefore ν′(f ′) = nν′(ff0) concluding the proof. □

Let x0 ∈ G/H and B a Borel subgroup of G such that B.x0 is dense in G/H.

Lemma 7.2.2. Assume that G is simply connected and let B ×H act on G via
(b, h).g = bgh−1. If D ⊂ G is a B ×H-stable divisor, there exists f ∈ k(G)(B×H)

such that D = div(f).

Proof. Since G is simply connected, we have Pic(G) = 0 (see Corollary B.2.7). In
particular if D is a divisor on G, then D = div(f) for some f ∈ k(G). Since D
is B × H-stable, the function f is defined and non vanishing on the dense open
subset BH ⊂ G. In particular, we may furthermore assume f(1) = 1. Define
φ ∈ k(B × H) by φ(b, h) = f(bh). We have φ ∈ k[B × H]× and by Lemma
B.1.5, there exists λ ∈ k[B]× and µ ∈ k[H]× such that φ = λµ and by Exercise
B.1.6 the functions λ and µ can be chosen to be characters of B and H. For
b, b′ ∈ B and h, h′ ∈ H, we thus have f(bb′h′h) = φ(bb′h′h) = λ(bb′)µ(hh′) =
λ(b)λ(b′)µ(h)µ(h′) = λ(b)µ(h)φ(b′h′) = λ(b)µ(h)f(b′h′). Since BH is dense in G,
we get f(bgh) = λ(b)µ(h)f(g) proving the result. □

Corollary 7.2.3. Let f ∈ k[B.x0] and ν0 ∈ V(G/H). There exists n ≥ 0 and
f ′ ∈ k(G/H)(B) such that the following three conditions hold:

(1) ν0(f ′) = ν0(f
n);

(2) ν(f ′) ≥ ν(fn) for all ν ∈ V(G/H);
(3) νD(f ′) ≥ νD(f

n) for all D ∈ ∆(G/H).

Proof. Replacing G by a finite cover, we may assume that G is simply connected.
Let δ be the B-stable part of div(1/f) and let D = π∗(δ) with π : G → G/H.
Then by the previous lemma, D = div(f0) for some f0 ∈ k(G)(B×H) Note that ff0
is defined on BH and on all the B-stable divisors of G by definition of f0. Since
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G \ BH contains only B-stable divisors, ff0 is defined on a open subset whose
complement has codimension at least 2, by normality of G, ff0 ∈ k[G].

By Proposition 7.2.1, there exist n ∈ N and φ ∈ k[G](B) such that φ/fn0 ∈
k(G/H)(B) with ν0(φ/f

n
0 ) = ν0(f) and ν(φ/fn0 ) ≥ ν(fn) for any ν ∈ V(G/H),

proving (1) and (2). For D ∈ ∆(G/H) a B-stable divisor and D′ any component
of π−1(D), we have

νD(φ/f
n
0 ) = νD′(φ/fn0 ) ≥ νD′(1/fn0 ) = νD′(fn) = νD(f

n).

Setting f ′ = φ/fn0 , this concludes the proof. □

Any valuation ν ∈ V(G/H) induces a morphism ρν : k(G/H)(B) → Q defined
by ρν(f) = ν(f). Therefore we have a map

ρ : V(G/H) → Q(X).

Corollary 7.2.4. The map ρ is injective.

Proof. Let ν ̸= ν′ in V(G/H). Since BH/H ≃ B/B ∩ H and B is solvable, the
quotient BH/H is affine. In particular k(G/H) = k(BH/H) = Frac(k[BH/H])
and any valuation is determined by its value on k[BH/H]. Therefore, there exists
f ∈ k[BH/H] with ν(f) < ν′(f). By the previous corollary, there exists f ′ ∈
k(G/H)(B) with ν(f ′) = ν(fn) < ν′(fn) ≤ ν′(f ′) proving the injectivity. □

For X a G-spherical variety and Y ⊂ X a G-orbit, we may now define the
B-chart and G-charts of Y in any characteristics.

Definition 7.2.5. Let X be a G-spherical variety. Define the B-chart XY,B of
Y and the G-chart XY,G of Y and as follows:

XY,B = X \
⋃

D∈D(X)\DY (X)

D and XY,G = G.XY,B .

Proposition 7.2.6. Let X be a G-spherical variety and Y ⊂ X a G-orbit.
(1) XY,B is the unique minimal B-stable affine open subset of X meeting Y

non trivially.
(2) We have XG,B = {x ∈ X | G.x ⊃ Y }.
(3) Y ∩XY,B is a B-orbit.
(4) Any D ∈ ∆(XY,G)\∆Y (XY,G) is Cartier and globally generated. We have

XY,G \XY,B =
⋃

D∈∆(XY,G)\∆Y (XY,G)

D.

Proof. Let X0 be an affine open subset as in Proposition 2.2.5, let ν0 be a valuation
with center Y . Let f ∈ k[X0] be a function not vanishing on Y (thus ν0(f) = 0)
but vanishing on all D ∈ D(X) \ DY (X) (thus νD(f) > 0 for all such D). By
Corollary 7.2.3, we may find f0 ∈ k(X)(B) with the same properties but since f0
is defined on Y (because ν0(f0) = 0) and vanishes on all D ∈ D(X) \ DY (X)
(because νD(f0) = 0), we get that f0 is defined on all B-stable divisors of X0 and
by B-semiinvariance of f0 and normality of X that f0 ∈ k[X0]

(B).
(1) Any B-stable affine open subset meeting Y has to contain XY,B since the

complement of an affine open subset is of pure codimension 1. Thus XY,B ⊂ X0

and we get XY,B = {x ∈ X0 | f0(x) ̸= 0} thus XY,B is affine, meets Y and is
therefore minimal for this property.
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(2) Let Z ⊂ X be a G-orbit and assume that Y ̸⊂ Z. Let νZ be an invari-
ant valuation centered at Z, then in the construction of f0, we may assume that
νZ(f0) > 0 thus XY,B ∩Z = ∅ and Y is the unique closed orbit in XY,G = G.XY,B .
This gives the inclusion XY,G ⊂ {x ∈ X | G.x ⊃ Y }. Conversely, let x ∈ X

such that G.x ⊃ Y and assume that G.x ∩ XY,B = ∅. Then G.x ⊂ D for some
D ∈ D(X) \DY (X) and Y ⊂ G.x ⊂ D ̸⊃ Y , a contradiction.

(3) It is enough to prove that any f ∈ k[XY,B ∩ Y ](B) is invertible. Indeed, let
Z ⊊ XY,B ∩ Y be a closed B-orbit and let I(Z) ⊂ k[XY,B ∩ Y ] be its ideal. Then
any element in I(Z)(B) would be invertible and Z = ∅.

Let f ∈ k[XY,B ∩ Y ](B), then there exists d ∈ N such that ffd0 ∈ k[X0 ∩ Y ](B)

thus there exists n and f ′ ∈ k[X0]
(B) such that f ′|Y = (ff0)

n. Now f ′|XY,B
is

invertible since the only divisors on which it can vanish are the divisors D ∈ DY (X)
containing Y and f ′ does not vanish on Y . This implies that f is invertible and
finishes the proof of (3).

(4). Since XY,B is affine and B-stable, its complement in XY,G is a union of
prime B-stable divisors non containing Y . By definition of XY,G, these divisors are
not G-stable proving the equality.

Let D be the union of all the above divisors and let Xsm → X be the inclusion
of the smooth locus in X. Let Lsm = OXsm(D ∩Xsm). This is an invertible sheaf
on X . Replacing G by a finite cover, we may assume that Lsm is G-linearised. The
group G acts on L = i∗L

sm. Since X is normal we get L = OX(D). The locus in
X where L is not locally free is a closed G-stable subset contained in D. It has to
contain a closed G-orbit. Its intersection with XY,G has to contain a closed G-orbit
as well but the only closed G-orbit is Y which is not contained in D thus D is
Cartier.

Let s be the canonical section of L = OX(D). The group G acts on the sections
of L thus gs is again a section and the locus where all these section vanish is a closed
G-orbit therefore empty in XY,G. □





CHAPTER 8

Simple embeddings

1. Classification of simple spherical embeddings

Definition 8.1.1. An embedding of an homogeneous space G/H is a normal
G-variety with an open G-orbit isomorphic to G/H.

Remark 8.1.2. A divisor D ∈ D(X) \ ∆(X) is G-stable and defines a G-
invariant valuation νD ∈ V(X) and we recover D from νD as its unique center.

Definition 8.1.3. For a G-spherical variety X with dense orbit G/H and
Y ⊂ X a G-orbit, define VY (X) = {νD ∈ V(G/H) | D ∈ DY (X) \∆Y (X)}. Since
ρ : V(X) → Q(X) is injective, we may view VY (X) as a subset of Q(X).

Theorem 8.1.4. A simple spherical embedding X of G/H with closed orbit Y
is completely determined by the pair (VY (X),∆Y (X)).

Proof. Let X ′ be another simple embedding of G/H with closed orbit Y ′ and with
(VY ′(X ′),∆Y ′(X ′)) = (VY (X),∆Y (X)). Let XY,B and X ′

Y ′,B the corresponding
B-stable affine subsets and define X0 which is an open subset of both X and X ′ as
follows:

X0 = G/H \
⋃

D∈D(G/H)\∆Y (X)

.

By normality of X and X ′, we have equalities

k[XY,B ] = {f ∈ k[X0] | ν(f) ≥ 0 for all ν ∈ VY (X)} = k[X ′
Y ′,B ].

Therefore, theG-birational isomorphism betweenX andX ′ induces an isomorphism
XY,B ≃ X ′

Y ′,B and therefore an isomorphism X = XY,G ≃ X ′
Y ′,G = X ′. □

We now switch to convex geometry.

Definition 8.1.5. Let V be a Q-vector space and C ⊂ V .
(1) C is a cone if it stable by addition and by multiplication with Q≥0.
(2) The dual of a cone C ⊂ V is C∨ = {f ∈ V ∨ | f(v) ≥ 0 for all v ∈ C}.
(3) A cone is strictly convex if C ∩ −C = 0, equivalently C contains no line.
(4) A cone is polyedral if C can be written C = Q≥0v1 + · · ·+Q≥0vn.
(5) A face of a cone C is a subset Ff = {v ∈ C | f(v) = 0} for some f ∈ C∨.
(6) The dimension of a cone is the dimension of its linear span.
(7) An extremal ray is a face of dimension one.
(8) The relative interior C◦ of C is the complement of all proper faces of C.

Definition 8.1.6. LetX be a spherical G-variety and Y ⊂ X a G-orbit. Define
the cone CY (X) ⊂ Q(X) as the cone generated by VY (X) and ρX(∆Y (X)).

Lemma 8.1.7. The sets Q≥0ν with ν ∈ VY (X) are exactly the extremal rays of
CY (X) which do not contain any element of ρ(∆Y (X)).

61
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Proof. Let D ∈ DY (X) \ ∆Y (X) and let νD be the corresponding element in
VY (X). Consider the affine chart XY,B and let D = ∪D′∈DY (X),D′ ̸=DD

′. There
exists f ′ ∈ k[XY,B ] such that f ′ vanishes on D and not on D. By Corollary 7.2.3
there exists a function f ∈ k(G/H)(B) vanishing on all D′ ∈ DY (X) except D.
The face Fλf

defined by the weight λf of f is therefore an extremal ray of CY (X)
containing D and not containing any element of ρ(∆Y (X)). The converse is obvious
by definition of CY (X). □

Corollary 8.1.8. A simple spherical embedding X of G/H with closed orbit
Y is completely determined by the pair (CY (X),∆Y (X)).

Proof. It suffices to prove that we can recover VY (X) from (CY (X),∆Y (X)). By the
above lemma we recover the ray Q≥0νD for all νD ∈ VY (X). Now νD is determined
by the fact that νD(Λ(X)) = Z. □

Proposition 8.1.9. Let X be a simple G-spherical embedding of G/H with
closed orbit Y and let ν ∈ V(G/H).

(1) We have the equality k[XY,B ]
(B) = {f ∈ k(G/H)(B) | λf ∈ CY (X)

∨}.
(2) The center of ν exists if and only if ν ∈ CY (X).
(3) The center of ν is Y if and only if ν ∈ CY (X)

◦.

Proof. (1) Let f ∈ k[XY,B ]
(B). Then f ∈ k(G/H)(B) and is defined on the di-

visors D ∈ DY (X) thus λf is non negative on CY (X). Conversely, a function
f ∈ k(G/H)(B) non negative on CY (X) is defined on BH/B and on all D ∈ DY (X)
therefore on an open subset of XY,B whose complement has codimension at least
2. By normality f ∈ k[XY,B ].

(2) Since XY,B is affine, ν is G-invariant and X = GXY,B , the valuation ν has
a center if and only if ν is non negative on k[XY,B ]. By (1), this is equivalent to
ν ∈ CY (X).

(3) If Y is the center of ν, then any f ∈ k[XY,B ]
(B) with ν(f) = 0 will not

vanish on Y and therefore will not vanish at all (since the zero locus of f is a
B-stable divisor of XY,B thus has to contain Y ). Thus for any ρ(ν′) ∈ CY (X), we
have ν′(f) = 0 and the weight of f is in the vertex of CY (X)

∨. This proves that ν
is in the interior of CY (X).

Now let ν′ ∈ CY (X) with center Z ⊋ Y . Let νY be the valuation associated to
Y . There exists f ∈ k[XY,B ] with ν′(f) = 0 and νY (f) > 0. By Corollary 7.2.3 we
may assume f to be a B-eigenfunction and we get that ν′ is not in the interior of
the cone. □

Definition 8.1.10. A colored cone for G/H, is a pair (C,F) with C ⊂ Q(G/H)
and F ⊂ ∆(G/H) having the following properties

(CC1) C is a cone generated by ρ(F) and finitely many elements of V(G/H);
(CC2) The intersection C◦ ∩ V(G/H) is non empty.

The colored cone is called strictly convex if the following condition holds.
(SCC) The cone C is strictly convex and 0 ̸∈ ρ(F).

Theorem 8.1.11. The map X 7→ (CY (X),∆Y (X)) is a bijection between the
isomorphism classes of simple spherical embeddings X of G/H with closed orbit Y
and strictly convex colored cones.
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Proof. We first check that the map is well defined. For such a simple embedding
X, we already know that (CC1) is satisfied and by the previous proposition, since
Y induces an invariant valuation in the interior of the cone, we know that (CC2) is
also satisfied. Finaly, to prove that the cone is strictly convex we need to prove that
there is no linear subspace in it. Let D the union of B-stable divisors containing
Y , these are exactly the B-stable divisors meeting XY,B . There exists f ∈ k[XY,B ]

vanishing on D. By Corollary 7.2.3, we may choose f ∈ k[XY,B ]
(B) and for any νD

with D ∈ DY (X) we have νD(f) > 0. Therefore CY (X) is in the half-space with
non negative value on f proving (SCC).

The injectivity of the map follows from Theorem 8.1.4. Let us prove the surjec-
tivity. Let (C,F) be a colored cone with the above three properties (CC1), (CC2)
and (SCC). By (CC1) and Gordan’s Lemma (see [21, Page 3]), there exists a finite
set of elements g1, · · · , gn ∈ k(G/H)(B) ⊂ k(G)H such that the weights λgi span
C∨ ∩ Λ(G/H) as a monoid. Denote by π : G→ G/H the quotient map and let D0

be the union of all divisors D ∈ ∆(G/H) \ F. Note that the poles of the gi are
contained in D0. Since D0 is a B-stable divisor of G/H, there exists an element
f0 ∈ k[G](B×H) vanishing on D0 and with fi = f0gi ∈ k[G] for all i ∈ [1, n]. Let W
be the G-submodule of k[G] spanned by the (fi)i∈[0,n]. Since the gi are H-invariants
while f0 is aH-eigenfunction of weight say χ ∈ X(H), we get that all the elements in
W are H-eigenfunctions of weight χ. Therefore we have a G-equivariant morphism

φ : G/H → P(W∨)

defined by x 7→ [f0(x) : · · · : fn(x)]. Let D(f0) be the open subset of P(W∨) defined
by the non vanishing of f0 and define X ′

0 and X ′ by

X ′
0 = φ(G/H) ∩D(f0) and X ′ = GX ′

0.

Note that φ(G/H) is dense in X ′ therefore X ′ has a dense B-orbit and that X ′
0 is

a B-stable dense open affine subset in X ′ containing the dense B-orbit.

Lemma 8.1.12. We have k[X ′
0]

(B) = {f ∈ k(G/H)(B) | λf ∈ C∨}.

Proof. Let f ∈ k(G/H)(B) with λf ∈ C∨. Write λf =
∑
i aiλgi with ai ≥ 0 for

all i. Define F =
∏n
i=1 g

ai
i =

∏n
i=1(fi/f0)

ai ∈ k[X ′
0]

(B). Then λf = λF thus
f/F ∈ k(G/H)B = k is constant. Therefore f is a multiple of F ∈ k[X ′

0]
(B).

Conversely, let f ∈ k[X ′
0]

(B) and let v be in an extremal ray of C. If v = ρ(νD)
with D ∈ F, since φ(D) meets non trivially D(f0), then f is defined on an open
subset ofD thus νD(f) ≥ 0. If v = ν ∈ V(G/H), first note that ν(fi/f0) = ν(gi) ≥ 0
by definition of the gi. For a general f ∈ k[X ′

0], write f = f ′/fn0 with f ′ ∈ SnW
and extend ν to an invariant valuation ν̄ ∈ V(G). Write f ′ =

∏
i

∑
j ai,jgi,j .fki,j ,

with ai,j ∈ k and gi,j ∈ G. We then have

ν(f) ≥
∑
i

min
j

{ν̄(fki,j )− ν̄(f0)} =
∑
i

min
j

{ν(gki,j )} ≥ 0,

proving the result. □

Define Υ = {λf | f ∈ k[X ′
0]

(B)}. The previous lemma implies that Cone(Υ) =
C∨. We also have that Υ spans Λ(G/H). Indeed, the orthogonal of the linear
span of Υ has to be contained in C. As C contains no linear subspace by (SCC),
this orthogonal is trivial. Since X ′

0 is an affine open subset of X ′ we get that
Λ(X ′) = Λ(G/H).
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Lemma 8.1.13. The fibers of φ are finite.

Proof. We prove that the fibers are affine and proper. We first prove that the fibers
are affine. LetD ∈ F be a B-stable divisor. Then νD(f) ≥ 0 for all f ∈ k[X ′

0]
(B) and

by (SCC) there exists f with νD(f) > 0. Thus D ⊂ {x ∈ G/H | f(x) = 0} and φ|D
is not dominant onX ′. IfD ∈ D(G/H)\F, then φ(D) ⊂ {x ∈ G/H | f0(x) = 0} and
again φ|D is not dominant onX ′. Since φ is equivariant, this implies that the proper
B-orbits of G/H are mapped to proper B-orbits in X ′ thus φ−1(φ(BH/H)) =
BH/H. This B-orbit and its image are affine thus the restriction of φ is a morphism
between affine varieties and the fibers are therefore affine.

Let us now prove that the fibers are proper. For this consider ϕ : G/H → X ′′ a
proper embedding of G/H (for example embedded G/H equivariantly in a projec-
tive space and take the normalisation of its closure). Set x = φ(H/H), x′ = φ(x)

and x′′ = ϕ(x) and define X ′′′ as the normalisation of G(x′, x′′) ⊂ X ′×X ′′. This is
an embedding of G/H since Stab(x′) ⊃ H = Stab(x′′). Furthermore, the projection
p : X ′′′ → X ′ is proper since X ′′ is proper. We claim that p−1(φ(G/H)) = G/H.
This proves that the fibers of φ are equal to those of p and therefore proper. To
prove the claim, assume that there exists a closed G-stable subset Z in X ′′′, disjoint
from G/H such that p|Z is dominant on X ′. Let νZ ∈ V(G/H) be the correspond-
ing valuation. The map p induces an injection of fields k(X ′) → k(X ′′′) = k(G/H).
Let f ∈ k(X ′) a non trivial element, the corresponding function induced on Z is
also non trivial since p|Z is dominant on X ′. In particular νZ(f) = 0. So for
f ∈ k[X ′

0]
(B), we have νZ(f) = 0 and νZ ∈ Υ⊥. By (SCC), νZ must be trivial, a

contradition. □

Let X be the normalisation of X ′ in k(G/H). The morphism φ factors as
follows

G/H //

φ
""

X

ψ

��
X ′

where all maps are G-equivariant, the horizontal map is an open embedding while
the map ψ is finite. Let X0 = ψ−1(X ′

0). Since ψ is finite, X0 is an affine B-
stable open subset of X. Note that X0 is the normalisation of X ′

0 in k(G/H) and
X ′ = GX ′

0 proving that GX0 = X. The following lemma concludes the proof. □

Lemma 8.1.14. X is a simple embedding with colored cone (C,F).

Proof. Since X0 → X ′
0 is finite, we have k[X ′

0]
(B) ⊂ k[X0]

(B) and for f ∈ k[X0]
(B),

there exists n ∈ Z>0 such that λf = nλf ′ with f ′ ∈ k[X ′
0]

(B). Recall from Lemma
8.1.12 the equality

Υ = {λf ′ | f ′ ∈ k[X ′
0]

(B)} = {λf ′ | f ′ ∈ k(G/H)(B) and λf ′ ∈ C∨}.
In particular, for f ∈ k(G/H)(B) with nλf ∈ Υ, then λf ∈ Υ. We deduce that
k[X0]

(B) = k[X ′
0]

(B).
By (CC2), there exists ν ∈ C◦ ∩ V(G/H). By the above ν is non negative on

k[X0]
(B). By Corollary 7.2.3 it is non negative on k[X0]. Therefore it has a center

Y0 in X0 and since ν is G-invariant it has a G-stable center Y in X. Let Z ⊂ X be
a G-stable closed subvariety such that Y ̸⊂ Z. Since X = GX0, we have X0∩Z ̸= ∅
and νZ is non negative on k[X0]. In particular νZ ∈ C. On the other hand, there
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exists a function f ∈ k[X0] with νZ(f) > 0 and ν(f) = 0. By Corollary 7.2.3, we
may assume f ∈ k[X0]

(B) so λf ∈ C∨. Since ν ∈ C◦ and νZ ∈ C, the vanishing
⟨λf , ρ(ν)⟩ = ν(f) = 0 implies λf = 0 and therefore νZ(f) = 0. A contradiction.
Thus Y is the only closed orbit of G in X and X is a simple embedding with closed
orbit Y . The same argument works replacing Z by D ∈ F, so Y is contained in any
B-stable divisor of X0.

Since X is normal and by the above X0 = XY,B , we get that CY (X)
∨∩Λ(G/H)

is the set of weights of k[X0] and is therefore is equal to C∨∩Λ(G/H) by Proposition
8.1.9. This implies CY (X) = C. By the above, we also have the inclusion F ⊂
∆Y (X). Conversely, for D ∈ ∆(G/H)\F, we have φ(D) ⊂ D0 so D is not a divisor
of X0 and therefore not in ∆Y (X). □

Remark 8.1.15. In characteristic 0, the variety X ′ in the above proof is already
the simple embedding with colored cone (C,F): indeed with notations as in the
above proof ZΥ = Λ(G/H) thus Λ(X ′) = Λ(G/H) and, in characteristic 0, this
implies that G/H → X ′ is injective (prove this as an exercise).

Here is a proof, a posteriori, that X = X ′ using the above construction of X
and X ′. Using Theorem 6.2.8 and the fact that P = StabG(X0) = StabG(X

′
0), we

can write X ≃ P ×L SY and X ′ = P ×L S′
Y ′ where L ⊂ P is a Levi subgroup,

Y ′ = ψ(Y ) and where SY ⊂ X0 and S′
Y ′ ⊂ X ′ are closed L-stable subsets which are

multiplicity-free. The map ψ restricts to an L-equivariant finite morphism ψ : SY →
S′
Y ′ but Λ+(SY ) = Λ(G/H) ∩ C∨ = Λ(S′

Y ′) and decomposing decomposing the
coordinate rings into irreducibleL-module, we get k[SY ] = k[S′

Y ′ ], thus SY ≃ S′
Y ′

and X0 ≃ X0 proving X ≃ X ′.

Definition 8.1.16. Let (C,F) be a colored cone. A colored cone (C0,F0) is
called a colored face of (C,F) if the following conditions are satisfied:

(CF1) C0 is a face of the cone C;
(CF2) F0 = F ∩ ρ−1(C0).

Remark 8.1.17. A colored face (C0,F0) of a colored cone (C,F) is completely
determined by the face C0. The colored faces of a colored cone (C,F) are the faces
of C whose interior meets V(G/H).

Lemma 8.1.18. Let X be a G-spherical embedding of G/H and let Y ⊂ X a
G-orbit. There is a bijection Z 7→ (CZ(X),∆Z(X)) between the set of G-orbits in
X with Z ⊃ Y and the set of faces of (CY (X),∆Y (X)).

Proof. If Z is a G-orbit with Z ⊃ Y , then ∆Z(Y ) ⊂ ∆Y (X), DZ(X) ⊂ DY (X). We
get CZ(X) ⊂ CY (X). We also get XZ,B ⊂ XY,B corresponding to the localisation
morphism k[XY,B ] → k[XZ,B ]. Let D ∈ DY (X)\DZ(X) and f ∈ k[XY,B ] such that
νD(f) = 0 and νD′(f) > 0 for D′ ∈ DZ(X). By Corollary 7.2.3, we may assume
that f ∈ k[XY,B ]

(B). Then CZ(X) is in the face defined by f while D is not. As we
can do this for any D ∈ DY (X) \DZ(X), we get that CZ(X) is the intersection of
all these faces. Furthermore νZ is in the interior of CZ(X) thus (CZ(X),∆Z(X)) is
indeed a colored face of (CY (X),∆Y (X)).

If (C0,F0) is a colored face of (CY (X),∆Y (X)), pick ν ∈ C◦
0. By Proposition

8.1.9, it has a G-stable center. Since X is spherical, this center is the closure of a
G-orbit Z and Y ⊂ Z. We already proved that (CZ(X),∆Z(X)) is a colored face of
(CY (X),∆Y (X)). Proposition 8.1.9 implies that ν = νZ ∈ CZ(X)◦. Since ν ∈ C◦,
we must have C = CZ(X) and therefore F = ∆Z(X). □
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Example 8.1.19. Consider the simplest simple embedding: X = G/H. The
unique closed orbit is G/H. The open subset XY,B is the dense B-orbit BH/H.
In this case the cones CY (X) and CY (X)

∨ are trivial. The center of the trivial
valuation is X and V(G/H) = {0}.

Example 8.1.20. Let G = SL2(k) and let U be the maximal unipotent sub-
group of unipotent upper-triangular matrices. The standard action of G on A2

realises an isomorphism G/U ≃ A2 \ {0}. Set X = A2. The G-orbits are A2 \ {0}
and Y = {0}. The latter is the unique closed orbit. The B-orbits are

• B.(1, 0) = {(a, b) ∈ A2 | a ̸= 0},
• B.(0, 1) = {(a, b) ∈ A2 | a = 0 and b ̸= 0} and
• B.(0, 0) = {0}.

There is a unique B-stable divisor D = {(a, b) ∈ A2 | a = 0} and Y ⊂ D. We thus
have ∆Y (X) = ∆(X) = {D} = D(X) = DY (X) and XY,B = X.

We also have k(G/H)(B) = k(A2)(B) = k(a, b)(B) = {an | n ∈ Z} and Λ(X) =
Zλa = Zϖα. The cone CY (X) = Z≥0ρ(νa) is one dimensional generated by the
image valuation νa with respect to a. We have νY = νa ∈ CY (X)

◦ and ρ(D) = α∨.
We have V(G/H) = Λ(G/H).

Example 8.1.21. Consider X = A2 as a spherical variety for G = B = T =
G2
m. The G-orbits and the B-orbits coincide and are described by:

• {(a, b) ∈ A2 | a ̸= 0, b ̸= 0},
• {(a, b) ∈ A2 | a ̸= 0, b = 0},
• {(a, b) ∈ A2 | a = 0, b ̸= 0} and
• {(a, b) ∈ A2 | a = b = 0} = Y .

Then Y is the unique closed orbit., there are two B-stable divisors and XY,B = X.
On the level of invariants we have k(G/H)(B) = k(A2)(T ) = {anbm | n,m ∈ Z}.

The cone CY (X) = Z≥0ρ(νa) ⊕ Z≥0ρ(νb) is of dimension 2. In this case we again
have the equality V(G/H) = Λ(G/H).

Example 8.1.22 (Symmetric matrices). Recall the notation of Example 5.2.8.
ThenX has a unique closed orbit Y = {0}. We have ∆Y (X) = ∆(X) and DY (X) =
D(X). We get XY,B = X. Furthermore, with the notation of Example 5.2.8, one
can prove that k[X]U = k[d1, · · · , dn]. By Proposition 8.1.9, we get

CY (X) = Cone

(
1

2
α∨
1 , · · · ,

1

2
α∨
n

)
.

There are n − 1 colors on CY (X). Note that not all the faces are colored faces,
otherwise there would be 2n irreducible closed G-stable subvarieties. This comes
from the fact that the cone V(G/H) is strictly contained in Q(G/H) and even in
CY (X): The only G-orbits are given by the rank and the only irreducible closed
G-stable subvarieties are their closure (Xk)k∈[0,n]. One can actually prove that the
following holds:

V(G/H) = Cone (ϖ∨
1 , · · · , ϖ∨

n ) ,

where (ϖ∨
i )i∈[1,n] is the dual basis of (αi)i∈[1,n]. Explicitly

ϖ∨
k =

n∑
i=k+1

ϵi with αk = ϵk − ϵk+1.



CHAPTER 9

Classification of spherical embeddings

1. Colored fans

Definition 9.1.1. A colored fan F is a finite collection of colored cones (C,F)
satisfying the following properties:

(CF1) Every colored face of a colored cone (C,F) of F is in F.
(CF2) For every ν ∈ V(G/H) there is at most one colored cone (C,F) of F such

that ν ∈ C◦.

A colored cone is called stricly convex if any cone of F is strictly convex. This is
equivalent to the fact that (0, ∅) is in F.

Definition 9.1.2. Let X be an embedding of G/H we define F(X) to be the
set of all colored cones (CY (X),∆Y (X)) for Y a G-orbit in X.

Theorem 9.1.3. The map X 7→ F(X) is a bijection between isomorphism
classes of embedding and strictly colored fans.

Proof. If X is a spherical embedding of G/H, we prove that F(X) is a colored fan.
By Lemma 8.1.18, we know that any face of a cone of F(X) is again a cone of F(X).
If Y1 and Y2 are such that a valuation ν ∈ V(G/H) lies in CY1

(X)◦ ∩CY2
(X)◦, then

their closure are the center of ν and must be equal. Thus Y1 = Y2. Finally, all the
colored cones are strictly convex.

Conversely, let F be a colored fan. Then for any cone (C,F), there exists
a simple spherical embedding X(C,F). These embedding are isomorphic on the
smaller simple spherical embedding given by colored faces. We can therefore glue
these embedding along their intersection to get X. This is a priori not a separated
scheme. If we prove that it is separated, then it will be a spherical embedding with
colored fan F. So we are left to prove that X is indeed separated. By definition
we need to prove that the diagonal embedding X → X × X is closed. Let Y be
an orbit of the closure of the diagonal, we want to prove that Y is contained in
the diagonal. We may assume that Y is contained in a product X1 × X2 with
X = X(C,F) and X2 = X(C′,F′) and choose (C,F) and (C′,F′) minimal for this
property. Let X3 be the normalisation of the closure of the diagonal embedding
of G/H in X1 × X2. The variety X3 is a spherical embedding. Let Y3 be an
orbit in X3 mapping onto Y . Let Y1 and Y2 be the orbits images of Y under
the projections to X1 and X2. By minimality, Y1 and Y2 are the closed orbits in
X1 and X2. Let ν ∈ V(G/H) with center Y3. Then ν has Y1 and Y2 for center
therefore ν ∈ CY1

(X)◦ ∩ CY2
(X)◦ ∩ V(G/H) = C◦ ∩ (C′)◦ ∩ V(G/H). By (CF2) we

get (C,F) = (C′,F′), thus X1 = X2 and Y is in the diagonal. □

67
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2. Morphisms

Let φ : G/H → G/H ′ a dominant (surjective) G-equivariant morphism be-
tween homogeneous spherical varieties. This morphism induces a field extension
k(G/H ′) → k(G/H) which in turn induces an injection k(G/H ′)(B) → k(G/H)(B).
Taking weight leads to the injection

φ∗ : Λ(G/H ′) // Λ(G/H).

Taking duals induces a surjection

φ∗ : Q(G/H) // Q(G/H ′).

Fact 9.2.1. We have the equality φ∗(V(G/H)) = V(G/H ′).

Proof. Any invariant valuation is mapped to an invariant valuation proving the
inclusion φ∗(V(G/H)) ⊂ V(G/H ′). Conversely, for a valuation ν ∈ V(G/H ′), then
lift the valuation to an invariant valuation of k(G) and restrict it to k(G/H) =
k(G)H . □

Definition 9.2.2. Let φ : G/H → G/H ′ be a G-equivariant morphism.
1. Define Fφ = {D ∈ D(G/H) | φ maps D dominantly onto G/H ′}.
2. Define φ∗ : ∆(G/H) \ Fφ → ∆(G/H ′) by D 7→ φ(D).

Definition 9.2.3. Let φ : G/H → G/H ′ be a G-equivariant morphism.
1. Let (C,F) and (C′,F′) be colored cones of G/H and G/H ′ respectively. We

say that (C,F) maps to (C′,F′) is the following conditions holds:
(CM1) φ∗(C) ⊂ C′;
(CM2) φ∗(F \ Fφ) ⊂ F′.

2. Let F and F′ be colored fans of embeddings of G/H and G/H ′ respectively.
The colored fan F maps to F′ if every colored cone of F is mapped to a colored cone
of F′.

Theorem 9.2.4. Let φ : G/H → G/H ′ be a surjective morphism between
spherical homogeneous spaces. Let X and X ′ be embeddings of G/H and G/H ′

respectively.
Then φ extends to a morphism X → X ′ if and only if F(X) maps to F(X ′).

Proof. We may assume that X and X ′ are simple embedding. Assume that φ
extends to such a morphism and let Y be the closed orbit in X. It is mapped to an
orbit Y ′ in X ′. This is the closed orbit: if Z is the closed orbit, then Y ⊂ φ−1(Z)
thus Y ′ ⊂ Z and both are orbits proving the equality. Let D ∈ ∆Y (X). If φ(D) is
not dense, we have φ(D) ∈ ∆Y ′(X ′). This proves (CM2). We now compare XY,B

and X ′
Y ′,B . We have the equalities

XY,B = X \
⋃

D∈D(X)\DY (X)

D and X ′
Y ′,B = X ′ \

⋃
D′∈D(X′)\DY ′ (X′)

D′.

For x ∈ X, if φ(x) ̸∈ X ′
Y ′,B , then there exists D′ ∈ D(X ′) \ DY ′(X ′) such that

φ(x) ∈ D′. Let D be an irreducible component of φ−1(D′) containing x. Then Y ̸⊂
D so D ∈ D(X)\DY (X) and finally x ̸∈ XY,B . This proves that φ(XY,B) ⊂ X ′

Y ′,B .
In particular, for f ′ ∈ k[X ′

Y ′,B ], we have φ∗f ′ ∈ k[XY,B ]. We get φ∗Λ+(X ′
Y ′,B) ⊂

Λ+(XY,B) and thus φ∗CY (X) ⊂ CY ′(X ′). In particular (CM1) holds.
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Conversely, assume that (CM1) and (CM2) hold and consider the open subsets
of G/H and G/H ′ defined by

X0 = G/H \
⋃

D∈D(X)\DY (X)

D and X ′
0 = G/H ′ \

⋃
D′∈D(X′)\DY ′ (X′)

D′.

Since φ∗(F \Fφ) ⊂ F′ and proceeding as above, we get that φ maps X0 to X ′
0. On

the other hand we proved the following description:

k[XY,B ] = {f ∈ k[X0] | ν(f) ≥ 0 for ν ∈ V(G/H) ∩ CY (X)} and
k[X ′

Y ′,B ] = {f ′ ∈ k[X ′
0] | ν′(f ′) ≥ 0 for ν′ ∈ V(G/H ′) ∩ CY ′(X ′)}.

By (CM1), if f ′ ∈ k[X ′
Y ′,B ], then φ∗(f ′) ∈ k[X0] with ν(φ∗(f ′)) = φ∗(ν)(f

′) ≥ 0

for ν ∈ V(G/H) ∩ CY (X). Therefore the map φ extends on these affine subspaces
and by G-invariance, it extends to X = GXY,B . □

Definition 9.2.5. The support Supp(F) of a colored fan F is defined as follows:

Supp(F) = V(G/H)
⋂ ⋃

(C,F)∈F

C

 .

Remark 9.2.6. Note that Supp(F(X)) ⊂ φ−1
∗ (Supp(F(X ′))) ∩ V(G/H).

Theorem 9.2.7. Let φ : X → X ′ be a dominant morphism extending a sur-
jective morphism G/H → G/H ′ between spherical embeddings. Then φ is proper if
and only if Supp(F(X)) = φ−1

∗ (Supp(F(X ′))) ∩ V(G/H).
In particular X is proper if and only if Supp(F(X)) = V(G/H).

Proof. Recall the valuative criterion of properness (see for example [13, Theorem
II.4.7]). A morphism φ : X → X ′ is proper if and only if for every valuation ring
R with field of fractions K and for every commutative diagram

Spec(K) //

��

X

φ

��
Spec(R)

ψ

::

// X ′,

we can complete the diagram with a unique morphism ψ : Spec(R) → X. Note
that to prove properness we may assume that the map Spec(K) → X is dominant.

Assume that ν ∈ V(G/H) \ Supp(F(X)) but φ∗ν ∈ Supp(F(X ′)). Then
F(X), (Q≥0ν, ∅) is a colored fan associated to a spherical variety X⋆. Furthermore,
we have a factorisation

X
ι //
φ

  

X⋆

φ⋆

��
X ′

Then X⋆ \X = Y⋆ which is a closed orbit associated to the maximal cone (Q≥0ν, ∅)
and Y ′ = φ⋆(Y⋆). Then Y ′ is not in the image of varphi (since it is the center of
φ∗ν) thus the image φ(Y ) is not closed (since its closure contains Y ′). □
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3. The cone of valuations and Toroidal embedding

We prove that the set of invariant valuations is a convex polyhedral cone. For
this, we define a special class of embedding which have a simple combinatorial
description and are useful in many other geometric situations.

Let f1, · · · , fs ∈ k[G](H) and let Mi ⊂ k[G](H), the submodule generated by fi
for all i ∈ [1, s]. Denote by M1 · · ·Ms ⊂ k[G] the G-submodule generated by all
products of s elements respectively in M1, · · · ,Ms. Any element in Mi is of the
form

∑
j gj · fi with gj ∈ G.

Any f ∈ M1 · · ·Ms is a linear combinaison of product
∏
i

∑
j gj · fi. Thus

f ∈ k[G](H) has the same H-weight as the product f1 · · · fs. Therefore f1 · fsf−1 ∈
k(G)H = k(G/H). By the above description of f , we have for ν̄ ∈ V(G), the
inequality ν̄(f) ≥

∑
i ν̄(fi). Since any ν ∈ V(G/H) can be extended to ν̄ ∈ V(G),

we have

ν(f1 · · · fsf−1) ≤ 0,

for all f1, · · · , fs ∈ k[G](H) and all f ∈M1 · · ·Ms.

Definition 9.3.1. In the above situation, assume furthermore that fi ∈ k[G](B×H)

for all i ∈ [1, s] and f ∈ (M1 · · ·Ms)
(B). We have f1 · · · fsf−1 ∈ k(G/H)(B)

1. Define the weight γ(f1, · · · , fs, f) = λf1 + · · ·+ λfs − λf .
2. Let Γ+

0 ⊂ Λ(X) be the set of all weights γ(f1, · · · , fs, f) where f1, · · · , fs ∈
k[G](B×H) run over all possible choices as above.

The root lattice Γ of G/H is the sublattice of Λ(G/H) generated by Γ+
0 . The

root monoid Γ+ of G/H is the monoid Γ ∩ Cone(Γ+
0 ).

Lemma 9.3.2. As a subset of Λ(T ), the root monoid Γ+ is contained in the
monoid generated by the simple roots.

Proof. Consider γ = γ(f1, · · · , fs, f), with f1, · · · , fs, f ∈ k[G](B). Then fi is a
highest weight of Mi and for any T -weight λ of Mi, the difference λfi − λ is a sum
of simple roots. The result follows. □

Proposition 9.3.3. The set of invariant valuations V(G/H) is a cone. More
precisely, we have

V(G/H) = {v ∈ Q(G/H) | ⟨v, γ⟩ ≤ 0 for all γ ∈ Γ+}.

Proof. By the above discussion, the inclusion from the left hand side in the right
hand side holds. Let v ∈ Q(G/H) \ {0} such that ⟨v, γ⟩ ≤ 0 for all γ ∈ Γ+.
Define (C,F) = (Q≥0v, ∅). Then C∨ is a polyhedral cone generated by finitely
many weights λ1, · · · , λs and for all i, we choose g1, · · · , gs ∈ k(G/H)(B) such that
λgi = λi. Let f0 ∈ k[G](B×H) vanishing on all divisors D ∈ D(G/H) and such
that fi = f0gi ∈ k[G]. With notation as above, let M be the G-submodule of
k[G] generated by the (fi)i∈[0,s]. We have a morphism φ : G/H → P(M∨). Let
X ′

0 = {x′ ∈ φ(G/H) | f0(x′) ̸= 0} and X ′ = GX ′
0.

Let f ′ ∈ k(G/H)(B) such that ⟨λf ′ , v⟩ ≥ 0. Write λf ′ =
∑
i aiλgi with ai ≥ 0

for all i and define F =
∏n
i=1 g

ai
i =

∏n
i=1(fi/f0)

ai ∈ k[X ′
0]

(B). Then λf ′ = λF
thus f ′/F ∈ k(G/H)B = k is constant. Therefore f ′ is a multiple of F ∈ k[X ′

0]
(B)

and {f ′ ∈ k(G/H)(B) | ⟨λf ′ , v⟩ ≥ 0} ⊂ k[X ′
0]. Conversely, let f ′ ∈ k[X ′

0]
(B). Then



3. THE CONE OF VALUATIONS AND TOROIDAL EMBEDDING 71

f ′ = f/fn0 with f ∈ (Mn0
0 Mn1

1 · · ·Mns
s )(B) and n =

∑
i ni. We have

n1λ1 + · · ·+ nsλs − λf ′ = n1(λf1 − λf0) + · · ·+ ns(λfs − λf0)− λf ′

= n0λf0 + n1λf1 + · · ·+ nsλfs − λf ∈ Γ+.

In particular ⟨v, λf ′⟩ ≥ ⟨v, λ1⟩ + · · · + ⟨v, λs⟩ ≥ 0 therefore we have the equality
k[X ′

0] = {f ′ ∈ k(G/H)(B) | ⟨λf ′ , v⟩ ≥ 0}.
The same proof as in Lemma 8.1.13 shows that the fibers of φ are finite. We

therefore get a normal G-variety X such that φ factors through a spherical embed-
ding G/H → X and a finite morphism ψ : X → X ′. Set X0 = ψ−1(X ′

0). This
is an affine B-stable open subset of X. By the above argument k[X ′

0] = {f ′ ∈
k(G/H)(B) | ⟨λf ′ , v⟩ ≥ 0} ⊂ k[X0]

(B) and the same argument as in Lemma 8.1.14
gives the equality k[X0]

(B) = k[X ′
0]

(B). For D ∈ D(G.H), we have ψ(D) ∩X ′
0 = ∅

therefore X0 ∩ G/H = BH/H. Now k[X0]
(B) ⊊ k(G/H)(B) ⊂ k[BH/H](B). In

particular X0 meets a non dense G-orbit Y ⊂ X. Let νY ∈ V(G/H) be a valuation
with center Y . Then νY |k[X0](B) ≥ 0 therefore ν ⊂ Q≥0νY proving the result. □

We will see that this cone is actually a polyhedral cone.

Definition 9.3.4. A spherical variety X is called toroidal if ∆Y (X) = ∅ for
all G-orbit Y ⊂ X.

Remark 9.3.5. Define the set of B-stable prime divisors containing no G-orbit
by

∆̊(X) = ∆(X) \
⋃
Y

∆Y (X) = D(X) \
⋃
Y

DY (X)

where Y runs in the set of G-orbits in X. The embedding G/H → X is toroidal if
and only if ∆(X) = ∆̊(X).

Suppose that G/H → X is a toroidal embedding and let Y ⊂ X be a closed
G-orbit. By definition we have CY (X) ⊂ V(G/H). If moreover X is complete and
toroidal, then V(/G) = ∪Y CY (X), where Y runs in the set of closed orbits of X.
In particular, every complete toroidal embeddings corresponds to a subdivision of
V(G/H) into strictly convex cones, and a simple complete toroidal embedding exists
if and only if V(G/H) is a strictly convex cone. In general such an embedding needs
not to exists, on the other hand complete toroidal embeddings always do exist.

Proposition 9.3.6. Let G/H be a spherical homogeneous space, then G/H
admits a complete toroidal embedding.

Proof. Let π : G → G/H be the projection. Let f0 ∈ k[G](B×H) be a function
vanishing on π−1(D) for all D ∈ ∆(G/H) and let V ⊂ k[G] be the G-module
generated by f0. This induces a G-equivariant map G/H → P(V ∨). Let X ′ be the
closure of the image and ψ : X → X ′ the induced map. If Z ⊂ X ′ is the locus
defined by the vanishing of f0, then ψ(D) ⊂ Z for all D ∈ ∆(G/H). If Y ⊂ Z is a
G-orbit, then f0|Y = 0 and also (g · f0)|Y = 0 for all g ∈ G and finally f |Y = 0 for
all f ∈ V . This implies Y = ∅, a contradiction.

Let G/H → X̄ be a G-equivariant completion of G/H and define X as the
normalisation of the closure of the image of the diagonal map G/H → X ′ × X̄.
Since both X ′ and X̄ are proper, so is X. Let D ∈ ∆(X), then the image of D in
X ′ under the first projection is contained in Z and therefore contains no G-orbit.
So X is a toroidal embedding. □
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Corollary 9.3.7. The set of invariant valuations V(G/H) is a polyhedral
cone.

Proof. LetX be a toroidal proper embedding of G/H. Then V(G/H) is the union of
the cones of F(X). As there are finitely many such cones all of which are polyedral
the result follows. □

Example 9.3.8. Recall Example 5.2.4. Let G = SL2(k), let H = T be the
subgroup of diagonal matrices and let B be the subgroup of upper triangular ma-
trices. Denote by α the positive root, by ϖα the fundamental weight. We have
Λ(X) = Zα and Q(G/H) = Qα∨. We also have ∆(G/H) = {D+, D−} with
ρ(D+) = ρ(D−) = 1

2α
∨.

Note that G/H has the following two embeddings:
(1) G/H the homogeneous space.
(2) X = P1 × P1 with diagonal action of SL2(k).

We will prove that these are the only possible embedding.
Consider X given by embedding (2). The dense orbit is G.([1 : 0], [0 : 1]) and

X has a unique closed orbit Y = G.([1 : 0], [1 : 0]) which is the diagonal in X.
The variety X has only two G-orbits Y and X \ Y = G/H. Note in particular
that X is simple and no color contains Y (since Y is a divisor). This means that
(CY (X),∆Y (X)) = (V(G/H), ∅).

We use this to compute V(G/H). One easily checks that the open affine B-chart
is given by XY,B = X \ ({0} × P1 ∪ P1 × {0}) = Spec

(
k
[
a
b ,

c
d

])
with coordinates

([a : b], [c : d]) in X. Furthermore λ a
b
= λ c

d
= −α. Therefore, the weights occuring

in k[XY,B ]
(B) form the cone Q≥0(−α). We deduce that V(G/H) is the dual of this

cone thus V(G/H) = Q≥0(−α∨).
It is now easy to use the definition of colored cones and fans to see that there

are only two possible colored cones :
(1) (0, ∅) and
(2) (Q≥0(−α), ∅)

These two colored cones correspond to the above two embeddings and there is no
other embedding.

Example 9.3.9. Recall Example 8.1.20 with G = SL2(k) and H = U the
maximal unipotent subgroup of unipotent upper-triangular matrices. We have
Λ(G/H) = Zϖα and Q(G/H) = Qα∨. We also have ∆(G/H) = {D} with
ρ(D) = α∨. Finally, we have V(G/H) = Q(G/H). We list the possible colored
fans and the associated embeddings.

Colored fans:
(1) (0, ∅)
(2) (Q≥0(α), {D})
(3) (Q≥0(−α), ∅)
(4) (Q≥0(α), ∅)
(5) ((Q≥0(−α), ∅), (Q≥0(α), {D}))
(6) ((Q≥0(−α), ∅), (Q≥0(α), ∅))

Associated embeddings:
(1) G/H = A2 \ {0}
(2) A2



3. THE CONE OF VALUATIONS AND TOROIDAL EMBEDDING 73

(3) P2 \ {0}
(4) Bl0(A2)
(5) P2

(6) Bl0(P2)

where Bl0(A2) and Bl0(P2) are the blow-ups of A2 and P2 at the origin 0. It is
also easy to check on the colored fans that we have maps as follows between the
embeddings:

A2 \ {0} //

��

P2 \ {0}

��
A2 // P2

Bl0(A2)

OO

// Bl0(P2).

OO
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APPENDIX A

Principal bundles

In this chapter be explain some constructions used in the text especially con-
tracted products. We start with finite groups.

1. Galois and unramified coverings

1.1. Existence of quotients by finite groups.

Lemma A.1.1. Let A be a finitely generated k-algebra and G a finite group
acting on A. Then AG is finitely generated.

Proof. The ring A is integrally closed over AG. Indeed, for a ∈ A, we have the
equation ∏

g∈G
(a− g · a) = 0.

Let a1, · · · an be generators of A as an algebra and let Pi be equations for the ai
over B. Let C be the subalgebra of B spanned by the coefficients of the Pi. The
elements ai are integral over C thus A is a finite module over C. But B is a sub-
C-module of A and C is noetherian (because C = k[coefficients of the Pi]. Thus B
is also finite over C and B = C[b1, · · · , bk], the result follows. □

Proposition A.1.2. Let X = Spec(A) be affine and G be a finite group acting
on X. Let X/G = Spec(AG) and π : X → X/G be the induced morphism.

(1) The morphism π is constant on the orbits of G and any morphism X → Z
constant on the G-orbits factors through X/G.

(2) The morphism π is finite.
(3) The variety X/G has the quotient topology.
(4) The fibers of π contain a unique closed orbit.

Remark A.1.3. Note that as any orbit if finite and therefore closed, the last
condition implies that X/G is the set of orbits justifying a posteriori the notation.

Corollary A.1.4. Assume that X is a variety such that any finite set is
contained in an affine open subset (for example X is quasi-projective). Then there
exists an algebraic variety X/G with a morphism π : X → X/G constant on the G
orbits and such that for any morphism ϕ : X → Z constant on the G-orbits, there
exists a morphism ψ : X/G→ Z with ϕ = ψ ◦ π.

Proof. The condition tells us that X can be covered by affine subsets (Ui) stable
under the action of X. The quotient exists on Ui and by the universal property
is unique. Therefore on Ui ∩ Uj the two quotients coming from Ui and Uj are
isomorphic. We can glue them to get the quotient of X. □

77
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Remark A.1.5. If we replace G by a reductive group, then it is harder to find
a mild condition to replace the condition that any finite subset of X is contained in
an affine open subset which ensured the existence of an affine covering stable under
the action. This is where the so called stability conditions are needed. We shall
not enter this subject. For more details, see for example [19].

1.2. Unramified covers.

Definition A.1.6. A morphism f : X → Y is called unramified if the condition
Ω1
X/Y = 0 is satisfied. Unramified finite morphism are called an unramified cover.

Remark A.1.7. Few remarks on unramified morphisms.
(1) There are several equivalent conditions for a morphism to be unramified

(see for example [11, IV4 Théorème 17.4.1]). A map f : X → Y is
unramified if and only if one of the following equivalent conditions are
satisfied
(a) the diagonal morphism X → X ×Y X is open;
(b) for any point y in Y , the fiber of π over y is a disjoint union of reduced

points (here we assume that k is algebraic closed).
(2) A finite cover is not necessarily étale. To get the étale property, we need

to add the assumption that the morphism is flat. If f : X → Y is a non
ramified cover between irreducible varieties, then there is an open subset
where f is flat and therefore étale.

(3) For f : X → Y a separable morphism between irreducible varieties (i.e.
such that k(X)/k(Y ) is separable) then set of point in Y such that the
morphism is separable is open and dense.

Let us state the following two facts that we shall use without proof.

Fact A.1.8. [11, IV4 Proposition 17.3.3] Unramified covers are stable under
base change.

Fact A.1.9. [24, Section 1.4] If π : X → X/K is the quotient of a variety X
by a finite groups K, then π is an unramified cover if and only if K acts freely on
X. These unramified covers are called Galois covers.

Lemma A.1.10. Let f : X → Y be an unramified cover. There exists a Galois
cover π : Z → Y such that X is a partial quotient of Z.

Proof. Let n be the degree of f and consider Xn
Y the n-fold fibered product of

X over Y . Remove the (open because of the unramification and closed) subset of
points fixed by at least one non trivial element in Sn acting by permuting the points.
Then the complement Z maps to Y and this map Z → Y is an unramified covering.
We have X = Z/Sn−1 and Y = Z/Sn (the degree of the maps Z/Sn−1 → X and
Z/Sn → Y are both 1). □

Lemma A.1.11. Let π : X → X/K be a Galois cover of group K and let
f : Y → X/K be a morphism, then the base change morphism X ×X/K Y → Y is
again a galois cover.

Proof. Define the action on X ×X/K Y by σ · (x, y) = (σ(x), y) and let Z be the
quotient. The map X ×X/K Y → Y is constant on the K-orbits thus we have a
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morphism Z → Y and therefore a commutative diagram:

X ×X/K Y //

��

Y

Z.

::

Both maps starting from X ×X/K Y are of degre |K| thus Z → Y is of degree 1
and therefore an isomorphism. □

2. Principal bundles

2.1. Isotrivial bundles and special groups.

Definition A.2.1. A principal bundle of group G over X is a morphism f :
P → X with a faithful right action of G on P such that f is G-equivariant for the
trivial action of G on X.

Definition A.2.2. Let f : P → X be a G-principal bundle.
(1) The fibration is called trivial if there is an isomorphism P ≃ X ×G such

that f is the first projection.
(2) The fibration is called isotrivial if there exists an unramified coverX ′ → X

such that the pull-back of the fibration to X ′ (obtained by base change)
is trivial.

(3) A fibration is called locally trivial if there exists a open covering (Ui)i∈I
of X (for the Zariski topology) such that the restriction of the fibration
to Ui is trivial for all i ∈ I.

(4) A fibration is called locally isotrivial if there exists a open covering (Ui)i∈I
(for the Zariski topology) and unramified maps U ′

i → Ui such that pull-
back to U ′

i of the restriction of the fibration to Ui is trivial for all i ∈ I.

Remark A.2.3. It can be proved, see [12] that if G is a linear algebraic group,
then any principal bundle is locally isotrivial.

Lemma A.2.4. Let f : P → X be a principal G-bundle and let π : X ′ → X be
a Galois cover of group K.

(1) Assume that the pull-back X ′ ×X P is trivial over X ′, then the action of
K on X ′ ×G is given by morphisms fσ : X ′ → G for σ ∈ K such that

σ · (x, g) = (σ(x), fσ(x)g).

(2) Furthermore, the principal bundle f : P → X is trivial if (and only if)
there is a morphism a : X ′ → G such that

fσ(x) = a(σ(x))−1a(x).

Remark A.2.5. The classes of families (fσ)σ∈K such that the above formula
gives an action modulo the classes of functions of the form fσ(x) = a(σ(x))−1a(x)
is a pointed set usually denoted by H1(K,Hom(X ′, G)).

Proof. (1) We know that the base change of the Galois cover is again a Galois cover
thus we have an action of K on X ′ ×G. This action has to induce an equivariant
map X ′ ×G → X ′ thus σ(x, g) = (σ(x), aσ(x, g)). Furthermore, the action has to
respect the G-action i.e.

σ(x, gh) = σ(x, g)h.
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In particular σ(x, g) = σ(x, e)g therefore σ(x, g) = (σ(x), aσ(x, e)g) proving (ı) by
setting fσ(x) = aσ(x, e). Note that the associativity of the action gives the cocycle
condition fστ = fτ ◦ σ · fσ.

(2) Consider the composition X ′ × G → X ′ × G → (X × G)/K whose first
map is given by (x, g) 7→ (x, a(x)−1g) and second map is given by the quotient of
the action given by fσ(x) = a(σ(x))−1a(x). This map is constant on the orbits of
the action σ · (x, g) = (σ(x), g) and therefore factors through X/K ×G. The same
argument gives the inverse map. □

Exercise A.2.6. With the assumptions of the previous lemma.
(1) Prove the converse statement of (2) in the previous lemma.
(2) Prove that if we define an action on X ′ ×G as in the above lemma with

the cocycle condition fστ = fτ ◦ σ · fσ, then the quotient is a principal
G-bundle over X.

Definition A.2.7. A group G is called special if any isotrivial principal bundle
of group G is locally trivial.

Remark A.2.8. We have the following results on special groups, see [24, 10].
(1) Any special group is connected and linear.
(2) Connected solvable groups are special.
(3) The groups GL, SL or Sp are special.
(4) The groups PGL, SO or Spin are not special.
(5) A subgroup G of GL is special if and only if the fibration GL → GL/G is

locally trivial.
(6) There is a complete classification of special groups, see [10].

Let us now prove that GL is special (Hilbert’s Theorem 90).

Theorem A.2.9. Any isotrivial GL-principal fibration is locally trivial.

Proof. Let P → X be a locally isotrivial principal GL fibration. We thus have an
unramified covering π : X ′ → X such that X ′ ×X P is trivial i.e. isomorphic to
X ′×GL. We want to prove that P is trivial. It is enough to prove this for X ′ → X
a Galois covering in view of Lemma A.1.10.

Let X ′ → X be a Galois covering trivialising P i.e. X ′ ×X P ≃ X ′ ×GL. We
need to prove that locally the cocycle (φσ)σ∈K ∈ Hom(X ′,GL)K defining the action
of K on X ′×GL comes from a boundary i.e. is of the form φσ(x) = a(σ(x))−1a(x)
for a ∈ Hom(X ′,GL).

For this let x ∈ X, we will work locally around x. Consider the scheme π−1(x).
This is a discrete disjoint union of 0-dimensional irreducible schemes. Let A(x) be
the (semi)local ring OX′,π−1(x). Let x′ be a point in π−1(x) and pick an element h
in GL(A(x)) with h(x′) = id and h(y) = 0 for y ∈ π−1(x) and y ̸= x′. Define

a =
∑
σ∈K

h ◦ σ · φσ ∈ GL(A(x)).

We can now check the following equalities:

a ◦ σ · φσ =
∑
τ∈K

h ◦ τ ◦ σ · φτ ◦ σ · φσ =
∑
τ∈K

h ◦ τ ◦ σ · φτσ = a

the second equality coming from the cocycle condition. □
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2.2. Existence of some quotients. Let G be an algebraic group and let H
be a closed subgroup.

Proposition A.2.10. The quotient morphism π : G→ G/H is a locally isotriv-
ial H-principal bundle.

In other words, there exists a covering of G/H by open subsets (Ui)i∈I and
unramified coverings φi : U ′

i → Ui such that the map π : G→ G/H trivialises when
pulled-back to U ′

i .

Proof. Because the morphism is equivariant and G/H homogeneous, it is enough
to check that there exists a non trivial open subset U of G/H with an unramified
covering φ : U ′ → U such that the fibration π trivialises on U ′.

Let G0 be the connected component of G and let H0 = H ∩ G0. The variety
G0/H0 is irreducible and it is the connected component of G/H at the image of e
the unit of G. Because π is separable, the extension k(G0) → k(G0/H0) is sepa-
rable. Consider the map on local rings (OG/H,ē,mG/H,ē) → (OG,e,mG,e). Because
the morphism is separable, the corresponding map mG/H,ē/m

2
G/H,ē → mG,e/m

2
G,e

is injective. Pick a subspace n of mG,e such that its image in the quotient is a
supplementary of the image of this injection. Let I be the ideal in OG,e spanned
by n. Then the local ring (OG,e/I,mG,e/I) is the local ring of a subvariety X
in G containing e whose tangent space is supplementary to that of H. The map
π : X → G/H is therefore separable at e and dimX = dimG/H. Thus the map is
quasi-finite and this implies that there exist an open dense subset U of G/H such
that if we set U ′ = X ∩π−1(U), the morphism φ = π|U ′ : U ′ → U is finite and thus
an unramified covering (see last semester lecture Theorem 6.2.25).

We now only need to check that π trivialises when restricted to U ′. We look
at the pull-back diagram

U ′ ×G/H G //

��

G

π

��
U ′ φ // U ⊂ G/H.

We want to prove that U ′ × H is isomorphic to U ′ ×G/H G. For this we check
the universal property of the product. We have a natural map ϕ : U ′ → G (the
inclusion) such that φ ◦ π = idU . We may thus define maps U ′ × H → G and
U ′ × H → U ′ by (u, h) 7→ ϕ(u)h and (u, h) 7→ u. This map obviously factors
through the fibered product. If we have maps a : Z → G and b : Z → U ′ with
π ◦ a = φ ◦ b then we define Z → U ′ × H by z 7→ (a(z), a(z)−1ϕ(b(z))). This
concludes the proof. □

Corollary A.2.11. Let H be a closed subgroup of an algebraic group G and
let X be a variety with a left action of H. Assume furthermore that any finite set of
points in X is contained in an affine open subset (for example X quasi-projective).
Let us define a right action of H on G×X by h · (g, x) = (gh, h−1x).

(1) Then there exists an unique structure of algebraic variety on the set G×H
X of H-classes in G ×X. The morphism G ×X → G ×H X is flat and
separable.

(2) There is an action of G on G×H X.
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(3) There is a G-equivariant morphism G ×H X → G/H which is isotrivial
with fibers isomorphic to X.

Proof. The quotient being the solution of an universal problem. If it exists it is
unique therefore we only need to construct it locally. By uniqueness the resulting
quotients will glue together.

Since the map π : G → G/H it is locally isotrivial, we first consider an open
subset U and an unramified covering φ : U ′ → U such that we have a trivialisation
π−1(U ′) ≃ U ′ ×H and thus we get an isomorphism π−1(U ′) ×X = U ′ ×H ×X.
Furthermore, the action is given by h · (u, h′, x) = (u, h′h, h−1x). In particular on
this open set, there is a quotient isomorphic to U ′×X. Indeed, we have a morphism
ϕ : U ′ ×H ×X → U ′ ×X defined by (u, h, x) 7→ (u, hx). This morphism is contant
on the H-orbits. Furthermore, for any morphism ψ : U ′ × H × X → Z which is
constant on the H-orbits, we may define ψ̄ : U ′ × X → Z simply by composition
with the map U ′ × X → U ′ × H × X given by (u, x) 7→ (u, e, x). This map is a
section of the quotient map ϕ thus ψ̄ factorises ψ.

To prove the existence of the quotient on U , we only need to descent from U ′

to U . But the morphism φ : U ′ → U is an unramified cover. By taking another
covering, we may assume that U = U ′/K withK a finite group (see Lemma A.1.10).
We may thus assume that U ′ → U is given as the quotient by a finite group K.
Therefore the pull-back U ′ ×H → π−1(U) is also given by a quotient of an action
of K. Because of the compatibility with the first projection and the action of H,
the action is given by σ · (u, h) = (σ(u), fσ(u)h) with fσ : U ′ → H a morphism.
We may therefore define an action of K on U ′ ×X by σ · (u, x) = (σ(u), fσ(u) · x).
By our assumption on X there is a quotient of U ′ ×X by K. For this quotient we
have the diagram

U ′ ×H ×X //

��

π−1(U)×X

��
U ′ ×X //

��

(U ′ ×X)/K

��
U ′ // U

that we want to complete with the dashed arrows to get a commutative diagram.
But the composition morphism U ′×H×X → U ′×X → (U ′×X)/K is constant on
the K-orbits thus factors through (U ′ ×H ×X)/K = π−1(U)×X. This gives the
first right vertical arrow. Now because the top square is commutative we get that
the map π−1(U)×X is constant on the H-orbits. We need to check that it satisfies
the universal property of the quotient. If ψ : π−1(U) ×X → Z is constant on the
H-orbits, then the composition U ′ × H × X → π−1(U) × X → Z is constant on
the H-orbits and thus factors through U ′×X. Furthermore the above composition
and therefore the induced map U ′ × X → Z is constant on the K-orbits thus it
factors through (U ′ × X)/K. The existence of the last dashed arrow comes from
the universal property of the quotient U = U ′/K.

Again, because of the universal property of the quotient, the quotients on open
subsets with trivialisation on an unramified covering will patch together to give a
global quotient G×H X which furthermore has a morphism to G/H (because it is
the case locally) which is locally isotrivial.
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Note that the morphism G×G×X → G×X defined by left multiplication on
G is equivariant under the H-action thus by the same construction for the H-action
on G×G×X, this induces a morphism G×G×H X → G×H X and it is easy to
check that this morphism defines an action. □

Remark A.2.12. With the above assumptions.
(1) If H is a parabolic subgroup, then the map G → G/H is locally trivial

for the Zariski topology and the result is even easier.
(2) This result is a special case of faithfully flat descent (see [12]): indeed the

map G→ G/H is faithfully flat and there is a locally trivial fibration with
fiber isomorphic to X over G: the trivial fibration G×X → G therefore
by faithfully flat descent, there exists a fibration G ×H X → G/H with
fibers isomorphic to X such that the following diagram is Cartesian:

G×X //

��

G

��
G×H X // G/H.

Corollary A.2.13. Let X ′ → X be a Galois covering of Galois group K and
let ρ : K → GL(V ) be a representation of K. Consider the action of K on X ′ × V
defined by σ(x, v) = (σ(x), ρ(σ)(v)).

Then the quotient X ′ ×K V := (X ′ ×V )/K is a vector bundle over X ′/K = X
i.e. locally trivial.

Proof. Consider the trivial principal GL(V ) bundle X ′ × GL(V ) and the action
of K on it induced by the representation ρ. The quotient X ′ ×K GL(V ) has a
morphism to X ′/K = X and is an isotrivial principal GL(V ) bundle. By the above
result, we may assume that this principal bundle is trivial over X (by restriction
to an open subset). The above fibration X ′ ×K V → X ′/K is obtained from
X ′ ×K GL(V ) → X ′/K as follows:

X ′×K V = (X ′×K GL(V ))×GL(V) V ≃ (X ′/K)× (GL(V )×GL(V) V ) ≃ X ′/K×V.
Proving the result. □

Example A.2.14. A very special case of the above construction is the following.
Let V be a linear representation of H, then G ×H V → G/H is a vector bundle
over G/H with fibers isomorphic to V . This is the very first example of linearised
vector bundle.

Note that if the action of H on V extends to an action of G, then the bundle is
trivial. Indeed, we have the trivialisation morphisms given by (ḡ, v) 7→ (g, g−1 · v)
and (g, v) 7→ (ḡ, g · v).

Note also that we only proved that the fibration G×H V → G/H is isotrivial.
But as GL is special it is locally trivial and thus a vector bundle.





APPENDIX B

Linearisation of line bundles

1. First definitions

Let G be a linear algebraic group and let X be a variety acted on by G.

Definition B.1.1. A G-linearisation of a vector (line) bundle π : L → X is a
G-action on L given by Φ : G× L→ L such that

(1) the morphism π :M → X is G-equivariant and
(2) the action of G on the fibers is linear i.e. for all x ∈ X and g ∈ G, the

map ϕg,x : Lx → Lgx is linear.

We shall mainly consider G-linearised line bundles but in the following lemma
we get G-linearised vector bundles as well.

Lemma B.1.2. Let G be a linear algebraic group

(1) Let V be a representation of H, then G ×H V → G/H is a G-linearised
vector bundle.

(2) In particular for χ ∈ X∗(H) a character of H we get a linearised line
bundle Lχ = G×H k with action h.(g, z) = (gh, χ(h)−1z). Any linearised
line bundle is of that form. We thus have a group morphism

X∗(H) → Pic(G/H)

whose image is the subgroup PicG(G/H) of linearised line bundles.

Proof. (1) As observed in the construction of G ×H V , this variety has a G-
equivariant map to G/H whose fibers are isomorphic to V and furthermore the
local trivialisation shows that the action is linear on the fibers.

(2) Assume conversely that π : L→ G/H is a G-linearised line bundle. Then H
acts linearly on the fiber Le over the class of the identity element e. In particular,
we get a character of H via the action map χ : H → GL(Le) defined by h.l = χ(h)l
for l ∈ Le. Consider the morphism G × Le → L defined by (g, l) 7→ g.l and the
action of H on G×Le defined by h.(g, l) 7→ (gh, χ−1(h)l). The map is then constant
on the H-orbits, thus factors through Lχ → L. The morphism G× Le → L being
surjective, so is Lχ → L and therefore this is an isomorphism of line bundles. □

We denote by pX and pG the projections from G×X to X and G respectively
and by φ : G×X → X and Φ : G×L→ L the action of G on X and a linearisation
of this action on a line bundle L.

85
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Lemma B.1.3. For Φ : G × L → L a linearisation of a line bundle, there is a
commutative diagram:

G× L
Φ //

id×π
��

L

π

��
G×X

φ // X

which is furthermore cartesian. In otherwords, we have an isomorphism of line
bundles

p∗X(L) ≃ φ∗(L).

The restriction of Φ to {e} × L is the identity.

Proof. The commutativity of the diagram is equivalent to the fact that π : L→ X
is equivariant. To prove that the diagram is cartesian, let us check the universal
property of the product. Let α : Z → L and β : Z → G×X such that π ◦α = φ◦β.
We define γ : Z → G × L by γ = (pG ◦ β,Φ(i(pG ◦ β), α)). We need to check
the equalities (id × π) ◦ γ = β and Φ ◦ γ = α. We compute π(Φ(i(pG ◦ β), α)) =
φ(π(Φ(i(pG ◦ β), α))) = φ(i(pG ◦ β), φ(pG ◦ β, pX ◦ β)) = pX ◦ β giving the first
equality. The second equality is obvious.

The last assertion is obvious. □

Proposition B.1.4. Conversely, assume that L is a line bundle together with
a morphism Φ : G× L→ L satisfying the following two conditions:

(1) There is a commutative diagram:

G× L
Φ //

id×π
��

L

π

��
G×X

φ // X

which is furthermore cartesian. In otherwords, we have an isomorphism
of line bundles

p∗X(L) ≃ φ∗(L).

(2) The restriction of Φ to {e} × L is the identity and Φ(g, ·) : L → L maps
the zero section to itself for all g ∈ G.

Then Φ is a linearisation of L.

Proof. We only need to check that this defines an action which is linear on the
fibers. For g ∈ G, the morphism Φ(g, ·) : Lx → Lgx is bijective and map 0 to 0.
It is therefore a linear isomorphism. We thus has a function f : G×G× L → Gm
such that for all g h ∈ G and z ∈ L we have the equality

Φ(gh, z) = f(g, h, z)Φ(g,Φ(h, z)).

But looking at trivialisations, we easily see that this function is regular.

Lemma B.1.5. The map k[X]× × k[Y ]× → k[X × Y ]× is surjective, for X and
Y irreducible varieties.

Proof. Let x0 and y0 be normal points on X and Y and let f ∈ k[X×Y ]×. We may
define the function F : X × Y → Gm by F (x, y) = f(x0, y0)

−1f(x, y0)f(x0, y). We
only need to prove that f = F . For this it is sufficient to prove that these functions
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coincide in a neighbourhood U × V of (x0, y0). We may therefore assume that X
and Y are affine and normal.

Let X̄ and Ȳ be normal projective compactifications of X and Y , in particular
X and Y are dense open subsets in these compactifications. Consider f and F as
rational functions on X̄ × Ȳ . The support of the divisor div(f/F ) is contained in
((X̄ \X)× Ȳ )∪ (X̄ × (Ȳ \ Y )). It is therefore a sum of divisors of the form D× Ȳ
and X̄ ×D′ with D and D′ irreducible components of the boundary of X and Y .
If f/F has a zero on a divisor D × Ȳ , then it is regular on an open set meeting
D×{y0}. But f(x, y0) = F (x, y0) for all x ∈ X and therefore also on X̄ leading to
a contradiction. The same argument prove that f/F has no pole and is therefore
in k[X̄ × Ȳ ]×. It has to be a constant and the value at (x0, y0) proves that this
constant is 1. □

Exercise B.1.6. Prove the following consequence of this lemma: any invertible
function f ∈ k[G]× over a group G with f(e) = 1 is a character.

This lemma implies that f above has the form f(g, h, z) = r(g)r(h)t(z) for
some functions r ∈ k[G]×, s ∈ k[G]× and t ∈ k[L]×. Now the equality Φ(e, z) = z
gives the equalities

r(e)s(h)t(z) = 1 and r(g)s(e)t(z) = 1.

for all g, h ∈ G and z ∈ L. We then get the equalities

f(g, h, z) = r(g)s(h)t(z) = (r(g)s(h)t(z))(r(e)s(e)t(z))
(r(g)s(e)t(z))(r(e)s(h)t(z)) = 1.

The result follows. □

Corollary B.1.7. A line bundle L over X with a G-action φ : G ×X → X
is linearisable is and only if there exists an isomorphism φ∗(L) ≃ p∗X(L).

Proof. The former Lemma implies that if L is linearisable, then such an isomorphism
exists. Conversely such an isomorphism induces a pull-back diagram

G× L
Φ //

id×π
��

L

π

��
G×X

φ // X

such that for all g ∈ G the map Φ(g, ·) sends the zero section to itself (because
it is a pull-back diagram). Furthermore, the restriction of ϕ to {e} × L is an
isomorphism of L. Therefore there is a regular function λ : X → Gm defined by
λ(π(z)).z = Φ(e, z). Replacing Φ by λ−1Φ we obtain a morphism satisfying the
conditions of the previous proposition and the result follows. □

2. The Picard group of homogeneous spaces

Let us recall the following fact on reductive algebraic groups.

Fact B.2.1. A reductive algebraic group contains an open dense affine subset
isomorphic to Gpa ×G2q

m .
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Proof. Use Bruhat decomposition to write the dense open cell as UTU− where T is
a maximal torus and U a maximal unipotent subgroup with U− its opposite. Then
we have seen that T ≃ Gqm while U ≃ Gqa ≃ U−. □

Remark B.2.2. The fact that an open subset of G is isomorphic to a product of
Ga and Gm is true for any connected algebraic group: by a result of Grothendieck
[9], if G is connected then as variety we have G ≃ R(G)× (G/R(G)) and G/R(G)
is reductive. The group R(G) is unipotent and one can prove that it is isomorphic
to Gsa.

Let us prove the following result.

Lemma B.2.3. Let X be a normal variety with an action of G and let L be a
line bundle on G×X. Then we have an isomorphism

L ≃ p∗G(L|G×{x0})⊗ p∗X(L|{e}×X),

for some x0 ∈ X.

Proof. Let M = L−1 ⊗ p∗G(L|G×{x0})⊗ p∗X(L|{e}×X).
Let us assume first that X is smooth. The Picard group of G × X is then

isomorphic to the group of Weil divisors Cl(G × X) (cf. [13, Chapter II, Section
6]). By loc. cit. Proposition II.6.6, the pull-back gives identifications Cl(Ga×X) ≃
Cl(X) and Cl(Gm × X) ≃ Cl(X). Therefore on an affine open space U of G, we
have M |U ≃ OU .

Therefore the divisor class corresponding to M is represented by a divisor D
supported in (G \U)×X. Therefore we have D = p−1

G (D′) with D′ a divisor in G.
We thus have

M ≃ p∗G(MG×{x0})

but MG×{x0} is trivial therefore so is M .
If X is normal but not necessarily smooth, then Xsm the smooth locus of X

has complementary in codimension 2 and every function defined on Xsm extends
to a regular function on X. By the previous argument M |Xsm is trivial therefore
so is M . □

Proposition B.2.4. Let L be a line bundle on G and denote by L× the com-
plement of the zero section. Then L× has a structure of a linear algebraic group
such that the following two conditions hold.

(1) The projection p : L→ G induces a group morphism L× → G with kernel
central in L× and isomorphic to Gm.

(2) The line bundle L is L×-linearisable.

Proof. We need to define the multiplication map µ : L× → L×. Let us denote
by m : G × G → G the multiplication in G and by p1 and p2 the two projections
on G × G. We know by the previous lemma that there is an isomorphism ψ :
p∗1(L) ⊗ p∗2(L) → m∗(L). We construct via ψ a morphism µ : L × L → L as the
composition:

L× L

p×p
��

// p∗1(L)⊗ p∗2(L)

��

ψ // m∗(L)

��

// L

p

��
G×G

id // G×G
id // G×G

m // G.
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If M is the locally free k[G]-module corresponding to L, then this map is given as
follows

M
m♯
// M ⊗mk[G] k[G×G]

ψ♯

// M ⊗p1k[G] k[G×G]⊗k[G×G] M ⊗p2k[G] k[G×G] // M ⊗kM

where ⊗fk[G]k[G×G] is the tensor product using the map f : G×G→ G and where
m♯ is given by the formula m♯((m⊗ (a⊗ b))⊗ (m′ ⊗ (a′ ⊗ b′))) = aa′m⊗ bb′m′.

We want to modify ψ so that µ will induce the desired multiplication map. Let
us fix an identification Le ≃ Ga and fix 1 ∈ Le be the element corresponding to
the unit in Ga. The composition L → L × {1} µ→ L is an isomorphism (check on
the modules!) inducing the identity on G i.e. an isomorphism of vector bundles.
Therefore there is an invertible function r ∈ k[G]× with

µ(l, 1) = r(p(l))l

for all l ∈ L. The same argument gives an invertible function s ∈ k[G]× with

µ(1, l′) = s(p(l′))l′

for all l′ ∈ L. Let us replace ψ by ψ ◦ (r−1 ⊗ s−1) and denote by ∆ : L × L → L
the corresponding morphism. Then 1 ∈ Le is a unit for this morphism:

∆(l, 1) = µ(r−1(p(l))l, 1) = l and ∆(1, l′) = µ(1, s−1(p(l′))l′) = l′.

Let us now prove that ∆ is associative. Indeed, by linearity (use the same arguments
as in Proposition B.1.4) of the maps, there is an invertible function t ∈ k[G×G×G]×
with

∆(id ×∆)(l, l′, l′′) = t(p(l), p(l′), p(l′′))∆(∆× id(l, l′, l′′)).
As usual we can write t(g, g′, g′′) = u(g)v(g′)w(g′′) with u, v, w ∈ k[G]×. We have
(because 1 is a unit) the equality t(e, e, e) = 1 therefore we may assume u(e) =
v(e) = w(e) (replace u by u(e)−1u and do the same for v and w). Because 1 is a
unit we have t(g, e, e) = t(e, g′, e) = t(e, e, g′′) = 1. We obtain the equalities u(g) =
v(g′) = w(g′′) = 1 for all g, g′, g′′ ∈ G therefore ∆ is associative. Furthermore the
morphism ∆ being bilinear, the subset L× is contained in the locus of invertible
elements this proves the existence of the group structure on L×.

Furthermore by construction the map p : L → G induces a group morphism
L× → G. The kernel of this map is L×

e ≃ Gm. This groups acts by scalar multipli-
cation on the fibers and is therefore in the center of L×.

Finally, the restriction of ∆ give a group action L××L→ L which is a lineari-
sation of the action of L× on G (L× acts on G via G and the map L× → G), in
other words the central kernel L×

e ≃ Gm acts trivially on G. □

Corollary B.2.5. Let G be a linear algebraic group and let L ∈ Pic(G). There
exists a finite covering π : G′ → G such that π∗L is trivial.

Proof. We may assume G to be connected since all the connected components of
G are isomorphic.

We consider L× as a linear algebraic group and denote by L×
e the kernel of the

map L× → G. Choose a representation V of L× such that L×
e does not act trivially

(for example take a faithful representation, see [25, Theorem 2.3.7]). Replacing V
by a submodule W , we may assume that L×

e acts by a nontrivial scalar on W (take
an eigenspace Vχ of V with χ a non trivial character of L×

e ≃ Gm, because L×
e

is central, this is again a sub-L×-module). We may furthermore assume that the
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representation V is also faithful on the Lie algebra level (i.e. deρ : Lie(L×) → gl(V )
is injective, see [25, Lemma 5.5.1]). The character χ corresponds to an integer n, the
action is t.v = χ(t)v = tnv. By the condition on the Lie algebra, the integer n has
to be prime to p = char(k). Denote by ρ : L× → GL(W ) this new representation.

Let G′ be the identity component of ρ−1(SL(W )). Then the restriction π :
G′ → G of p : L× → G is surjective and with finite fibers (the dimension of G′ is
dimL×− 1 = dimG and G is connected). The map π is quasi-finite and affine thus
finite. Note that the kernel of the map π : G′ → G is isomorphic to the intersection
Gm ∩ ρ−1(SL(W )) and therefore is isomorphic to the finite group of n-th root of
the unit and therefore is a reduced finite group K and the map π is unramified.

Now the restriction of the action of L× to G′ induces a G′-linearisation of L.
Therefore the line bundle π∗L is G′-linearised on G′ and by Lemma B.1.2 it is
trivial. □

Corollary B.2.6. The Picard group Pic(G) is finite.

Proof. Let L ∈ Pic(G) and let π : G′ → G be a covering such that L is linearised
and π∗(L) is trivial. If K is the kernel of π, then K acts on L and if n is the order
of K, the action of K on L⊗n is trivial. Therefore G acts on L⊗n and thus L⊗n is
G-linearisable. As above we get that L⊗n is trivial. Therefore Pic(G) is a torsion
group.

We are left to prove that Pic(G) is of finite type. But we have seen that there
is an open subset U of G isomorphic to Gpa × Gqm. We thus have Pic(U) = 0
and the non trivial elements in Pic(G) are supported by divisors corresponding to
irreducible components of G \ U . There are only finitely many of them concluding
the proof (note that we use here the fact that G is smooth and thus that Pic(G)
coincides with Cl(G) the group of Weil divisors. □

Corollary B.2.7. There is a finite covering π : G′ → G such that Pic(G′) = 0.
In particular if G is simply connected, then Pic(G) = 0.

Proof. Again we may assume that G (and G′) are connected.
By what we proved, it is enough to check that if π : G′ → G is a finite covering,

then the morphism π∗ : Pic(G) → Pic(G′) is surjective. Let L′ ∈ Pic(G′) and let
ϕ : G′′ → G′ be a finite covering such that L′ is G′′-linearisable and ϕ∗(L′) is trivial.
Let K be the kernel of ϕ. As L′ is G′′-linearisable, there exists a representation kχ
of K such that L′ ≃ G′′ ×K kχ.

Let K ′ be the kernel of the composition π ◦ϕ : G′′ → G. Then K is a subgroup
of K ′. But K ′ is finite and abelian, thus we may extend the representation of
K in kχ in a K ′-representation kη (we act by roots of the unit). We may set
L = G′′ ×K′

kη. Then L′ = π∗L and the result follows.
If G is simply connected, then there are only trivial finite coverings. □

Remark B.2.8. Note that we used here the fact that any non trivial covering
of G comes from an abelian kernel or equivalentely that the fundamental group of
G is abelian. Here is a proof for char(k) = 0.

Let f : [0, 1] → G and g : [0, 1] → G be loops in G with f(1) = g(1) = e. Define
the product f · g of loops by (f · g)(t) = f(t)g(t) and the concatenation of loops by:

(f ·̃ g)(e2πix) :=
{
f(e4πix) , 0 ≤ x ≤ 1

2
g(e4πix) , 1

2 ≤ x ≤ 1 .
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We construct a homotopy of loops f ·̃ g ≈ f · g ≈ g ·̃ f . For each −1 ≤ ϵ ≤ 1,
let pϵ : [0, 1] → [0, 1] × [0, 1] be a path in the unit square starting at (0, 0) and
ending at (1, 1), such that p−1 goes along the left and top boundaries, p0 goes
along the diagonal, and p1 goes along the bottom and right boundaries. Define
H : [0, 1]× [0, 1] → K by H(x1, x2) := f(e2πix1) g(e2πix2). Then defining hϵ : S1 →
K by hϵ(e

2πix) := H(pϵ(x)) gives a continuous family of loops with h−1 = f ·̃ g,
h0 = f · g, and h1 = g ·̃ f . □

Proposition B.2.9. Let G be a connected algebraic group and let H be a
closed subgroup and denote by π : G → G/H the quotient map. Let us also denote
by ψ : X∗(H) → Pic(G/H) the group morphism defined in Lemma B.1.2. Then we
have an exact sequence

X∗(G)
res // X∗(H)

ψ // Pic(G/H)
π∗
// Pic(G).

Recall that the image of ψ is the subgroup of linearisable line bundles.

Proof. Let us start with the exactness at X∗(H). If χ is a character of G, then
we have already seen that the line bundle Lχ = G ×H kχ is trivial (see Example
A.2.14). Conversely, if χ is a character of H such that Lχ = G ×H kχ is trivial,
then we have a trivialisation ψ : G/H × k ≃ Lχ but G acts on G ×H kχ therefore
it acts on k and this action extends the action of H.

Consider the exactness at Pic(G/H). Let L ∈ Pic(G/H) and denote by φ :
G × G/H → G/H the action of G. By Lemma B.2.3 we have an isomorphism
φ∗L ≃ p∗GM ⊗ p∗G/HN with M = φ∗L|G×{ē} = π∗L and N = φ∗L|{e}×G/H = L.
In other words, we have an isomorphism

φ∗L ≃ p∗Gπ
∗(L)⊗ p∗G/HL.

The image of ψ is composed of the G-linearisable line bundles. We know that
L is linearisable if and only if there is an isomorphism φ∗L ≃ p∗G/HL which in turn
is equivalent to the fact that π∗(L) is trivial. □

Corollary B.2.10. Assume that G is semisimple and simply connected. Let
P be a parabolic subgroup of G, then we have Pic(G/P ) ≃ X∗(P ).

In particular rank(Pic(G/B)) = rank(G) for B a Borel subgroup of G.

Proof. If G is semisimple, then X∗(G) = 0 (we have G = D(G) for example) and if
it is semisimple then Pic(G) = 0. The result follows from the above exact sequence.
□

3. Existence of linearisations and a result of Sumihiro

In this section we present a result of Sumuhiro [26] and [27].

Proposition B.3.1. Let L be a line bundle on a normal G-variety. There
exists a positive integer n such that L⊗n is G-linearisable.

Proof. By Lemma B.2.3 we have an isomorphism φ∗L ≃ p∗XM ⊗ p∗GN (this uses
the normality assumption). Note that we have M = φ∗L|{e}×X = L.

But the Picard group ofG is finite therefore there exists a positive integer n such
that N⊗n is trivial. We get an isomorphism φ∗(L⊗n) ≃ p∗X(M⊗n) ⊗ p∗G(M

⊗n) ≃
p∗G(L

⊗n). Therefore L⊗n is linearisable. □
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Lemma B.3.2. Let L be a G-linearisable line bundle on X. Then G acts on
H0(X,L) via

g.σ(x) = g(σ(g−1.x))

for all g ∈ G, σ ∈ H0(X,L) and x ∈ X. Furthermore this representation is locally
finite and rational.

Recall that a representation V of G is locally finite and rational if for all v ∈ V ,
there is a finite dimensional G-subspace W of V containing v such that the action
is given by an algebraic group morphism G→ GL(W ).
Proof. Note that there is an isomorphism H0(G × X, p∗XL) ≃ k[G] ⊗ H0(X,L)
defined by s 7→ (f, σ) with σ(x) = s(e, x) and s(g, x) = f(g)s(e, x) (such an f
exists because we take the pull-back of a line bundle on X). The inverse is defined
by f ⊗ σ 7→ [(g, x) 7→ (g, f(g)σ(x))].

But because L is G-linearisable, the linearisation Φ : G × L → L proves that
p∗XL is also isomorphic to φ∗L. Pulling back sections, we get a morphism

Φ∗ : H0(X,L) → H0(G×X,φ∗L) ≃ H0(G×X, p∗X(L)) ≃ k[G]⊗H0(X,L)

defined by σ 7→ s with s(g, x) = g−1.σ(gx) = Φ(g−1, σ(gx)). We may write Φ∗(σ) =∑
i fi ⊗ σi with fi ∈ k[G] and σi ∈ H0(X,L), the sum being finite. We get

g.σ =
∑
i fi(g

−1)σi and the result follows. □

Definition B.3.3. (ı) A G-variety is called linear if there exists a represen-
tation V of G and a G-equivariant isomorphism of X to a G-stable locally closed
subvariety of P(V ).

(ıı) A G-variety is called locally linear if there exists a covering of X by linear
G-stable open subsets.

The next result proves that normal G-varieties are locally linear.

Theorem B.3.4 (Sumihiro’s Theorem). Let X be a normal variety with an
action of an algebraic group G. Let Y be a G-orbit in X.

There exists a finite dimensional representation V of G and a G-stable neig-
bourhood U of Y in X such that U is G-equivariantly isomorphic to a G-stable
locally closed subvariety in P(V ).

Proof. Let U0 be an affine open subset in X meeting Y non trivially. Consider the
divisor D = X \ U0 and the invertible sheaf OX(mD). Recall that OX(mD) is the
sheaf of rational functions with pole of order at most m at D.

Let f0 = 1, f1, · · · , fn be generators of the algebra k[U0] ⊂ k(X) and let N
be the linear span of these elements in k(X). Then for some m ≥ 0, we have the
inclusion N ⊂ H0(X,OX(mD)).

Now there exists an integer n ≥ m such that OX(nD) is linearisable. Therefore
we have a locally finite and rational action of G on H0(X,OX(nD)). The space
N is contained in H0(X,OX(nD)) and we denote by W the (finite dimensional)
subspace spaned by all the G-translates of N . We get a rational map

ψ : X 99K P(W∨)

defined by x 7→ [ℓx] with ℓx(s) = s(x) and where [ℓx] is the class in the projective
space of ℓx. This map is G-equivariant. Indeed, we have (g.ℓx)(s) = ℓx(g

−1.s) =
ℓx(g

−1sg) = g−1s(gx) = g−1ℓgx(s). But g acts by scalar multiplication thus there
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exists an invertible function (it is even a character) f ∈ k[G]× with g.ℓx = f(g)ℓgx(s)
therefore [g.ℓx] = [ℓgx].

The map ψ induces an isomorphism on U0 and by G-equivariance on U = GU0

concluding the proof. □

Remark B.3.5. The normality assumption is important as shows the following
example. Consider X a plane nodal cubic. It has a Gm action with 2 orbits: the
node and the complement of the node.

But the closure of any non trivial Gm-orbit in a projective space is isomorphic
to P1 with 3 orbits. Therefore X does not satisfy the conclusion of the previous
proposition.





APPENDIX C

Finite generation of U-invariants

In this appendix, we want to prove for char(k) = 0 the following result proved
in full generality in [8]. Recall that G is a reductive group. Denote by B a Borel
subgroup of G and by U ⊂ B its unipotent radical. The subgroup U is a maximal
unipotent closed connected subgroup in G.

Theorem C.0.1. Let X be an affine G-variety, then k[X]U is finitely generated.

1. Isotypical decomposition

Definition C.1.1. Let G be a reductive group.
(1) For V and W two G-module. Denote by HomG(V,W ) the group of mor-

phisms of G-module from V to W .
(2) Let X and Y be G-varieties. Denote by MorG(X,Y ) the set of G-equiva-

riant morphisms from X to Y .

Fact C.1.2. For X a G-variety and V a G-module, we have isomorphisms
HomG(V, k[X]) ≃ (k[X]⊗ V ∨)G ≃ MorG(X,V

∨).

Proof. Let (ei)i∈[1,n] be a basis of V and (e∨i )i∈[1,n] be the dual basis. Define the
map f 7→

∑
i f(ei)⊗ e∨i . One easily checks that this does not depend on the choice

of the base. The action on the tensor product is given by the diagonal action:
g.
∑
i f(ei)⊗ e∨i =

∑
i(g.f)(ei)⊗ (g.e∨i ) =

∑
i f(g.ei)⊗ (g.e∨i ) =

∑
i f(ei)⊗ e∨i thus

we get an invariant. The converse map is
∑
i ai ⊗ li 7→ f with f(x) =

∑
i aili(x)

(complete the li in a basis of V ∨ and take the dual basis to get the expression as∑
i f(ei)⊗ e∨i ). This proves the first isomorphism.

For the second map, define HomG(V, k[X]) → MorG(X,V
∨) by f 7→ ϕf with

ϕf (x) = (v 7→ f(v)(x)) and the converse map ϕ 7→ fϕ with fϕ(v)(x) = ϕ(x)(v).
One easily checks the compatibility of the actions. □

Note that the group HomG(V, k[X]) is a k[X]G-module with action given by
(ϕ.f)(v) = ϕ.[f(v)]. Let Ĝ be the set of irreducible representations of G.

Lemma C.1.3. Let M be a G-module M . The assigment f ⊗ v 7→ f(v) induces
a G-module isomorphism ⊕

V ∈Ĝ

HomG(V,M)⊗ V ≃M

In particular for any G-variety X, we have a G-module isomorphism

k[X] ≃
⊕
V ∈Ĝ

MorG(X,V
∨)⊗ V

and each of the k[X]G-modules MorG(X,V
∨) are finitely generated.
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Proof. Because M is a rational representation, it has to be the direct sum of its
irreducible finite dimensional sub-G-modules. We therefore only have to deal with
M a simple module. The first assertion is then easy to verify.

For the second assertion, recall the isomorphism MorG(X,V
∨) ≃ (k[X]⊗V ∨)G.

But the algebra k[X × V ]G is isomorphic to

k[X × V ]G ≃
⊕
n≥0

(k[X]⊗ SnV ∨)G.

Therefore this algebra is finitely generated as a k-algebra and has a grading. Let
f1, · · · , fn be generators of this algebra. The algebra k[X]G is generated by the
elements fi of degree 0 while the k[X]G-module (k[X] ⊗ V ∨)G = (k[X × V ]G)1 is
generated by the elements of degree 1. □

Corollary C.1.4. There is a canonical decomposition as G×G-module

k[G] ≃
⊕
V ∈Ĝ

V ⊗ V ∨ =
⊕
V ∈Ĝ

Endk(V ).

Proof. Lemma C.1.3 gives the G×G-equivariant decomposition

k[G] =
⊕
V ∈Ĝ

MorG(G,V
∨)⊗ V.

We claim that there is a G-module isomorphism MorG(G,V
∨) ≃ V ∨. Indeed, the

direct map is given by ϕ 7→ ϕ(eG) while the inverse map is defined by f 7→ (g 7→ g·f).
Both maps are G-equivariant. □

Assume that G is connected and let B be a Borel subgroup, T a maximal torus
in B and U be the unipotent part of B. We can write B = TU and U being normal
we have an exact sequence

1 → U → B → T → 1

giving on the level of characters the identification X(B) = X(T ) since U has no
nontrivial character (being unipotent). Denote by R the root system associated to
T and by R+ the set of positive roots associated to B. Recall the following result
from the representation theory of G.

Theorem C.1.5. Let G be a reductive group.
(1) If V be a simple G-module, then V U is of dimension 1 on which B acts

by a character λ ∈ X(T ) and V is uniquely determined by λ.
(2) The set X(T )+ of all possible characters λ as above for simple G-module

is the set of dominant characters:

X(T )+ = {λ ∈ X(T ) | ⟨λ, α∨⟩ ≥ 0 for all α ∈ R+}.
(3) In particular X(T )+ is a finitely generated monoid.

Definition C.1.6. Let λ ∈ X(T )+.
(1) Denote by V (λ) the simple G-module of highest weight λ .
(2) For M a G-module, denote by M

(B)
λ the subspace of semi-B-invariants

where B acts by λ: M (B)
λ = {m ∈M | b.m = λ(b)m for all b ∈ B}.

Corollary C.1.7. Let M be a G-module.
(1) We have a G-equivariant isomorphism M ≃

⊕
λ∈X(T )+ M

(B)
λ ⊗ V (λ).
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(2) We have isomorphisms HomG(V (λ),M) ≃M
(B)
λ for all λ ∈ X∗(G)+.

Corollary C.1.8. The G-module M is determined by the T -module MU .

2. U-invariants

We are now in position to prove the following result.

Theorem C.2.1. For X an affine G-variety, k[X]U is finitely generated.

Proof. We first reduce this problem to the case where X = G. Indeed, consider
the principal U -bundle π : G → G/U and the action of G on X ×G/U defined by
h.(x, [g]) = (h.x, [hg]). We claim that there is an isomorphism

k[X]U ≃ k[X ×G/U ]G.

Indeed, define the map f 7→ φf by φf (x, [g]) = f(g−1x). It is well defined since f
is U -invariant thus (x, g) 7→ f(g−1x) is constant on U -orbits. The converse map is
defined by φ 7→ fφ with fφ(x) = φ(x, [e]).

By Theorem 3.1.1, we only need to check that k[X ×G/U ] is finitely generated
i.e. that k[G/U ] is finitely generated or that k[G]U is finitely generated. Recall the
decomposition k[G] = ⊕V ∈ĜV ⊗ V ∨ as G×G-module. This induces the following
decomposition

k[G]U =
⊕
V ∈Ĝ

V ∨ ≃
⊕
V ∈Ĝ

V =
⊕

λ∈X(T )+

V (λ).

But the monoid X(T )+ of dominant character is finitely generated, this concludes
the proof because the span of V (λ)V (µ) is a G-module contained in V (λ+ µ) and
therefore equal to that module. □


