
Minimal rational curves
on complete symmetric varieties

Michel Brion∗, Shin-young Kim†and Nicolas Perrin‡

Abstract

We describe the families of minimal rational curves on any complete symmet-
ric variety, and the corresponding varieties of minimal rational tangents (VMRT).
In particular, we prove that these varieties are homogeneous and that for non-
exceptional irreducible wonderful varieties, there is a unique family of minimal ra-
tional curves, and hence a unique VMRT. We relate these results to the restricted
root system of the associated symmetric space.

1 Introduction

Let X be a projective uniruled variety over the field of complex numbers. An irreducible
family K of rational curves on X is called a covering family if there is a member of K
passing through a general point x ∈ X. If in addition the subfamily Kx of curves in K
passing through x is proper, then K is called a minimal family of rational curves.

These curves play a prominent role in the study of the variety X. There is a rational
map τx : Kx 99K P(TxX) sending a curve to its tangent direction at x and its image
Cx ⊂ P(TxX) is an important invariant ofX called the variety of minimal rational tangents
or VMRT of X, see [Hw01], [HM04] and references therein.

The VMRT of projective rational homogeneous spaces G/P for G reductive and P a
parabolic subgroup are well understood. For example, if G/P has Picard rank 1, then
there is a unique VMRT which characterizes G/P and was used to prove its rigidity
in [HM05], with the unique exception of B3/P2 which admits an explicit degeneration
constructed in [PP10]. If the Picard number of G/P is greater than 1, there are several
minimal families of rational curves.

In [BF15], the authors consider another case whereX has a large Picard group, namely
the wonderful compactifications of adjoint semisimple groups. Suprisingly, they prove that
there is a unique minimal family of rational curves for any such wonderful compactification
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and also that the corresponding VMRT is a rational homogeneous variety. These results
were used in [FL20] to prove the rigidity of wonderful compactifications of groups, under
the condition that the special fiber is Fano.

In this paper we generalize the results of [BF15] and describe the minimal families
of rational curves on any complete symmetric variety. Rigidity of symmetric varieties of
Picard number 1 has already attracted some attention (see [KP19] and [CFL22]), we hope
that our results will open new directions for higher Picard numbers.

To state our main results, we recall basic definitions and properties of complete sym-
metric varieties. Let G be a connected reductive group and let σ be a group involution
of G. A symmetric subgroup is a closed subgroup H ⊂ G such that Gσ,0 ⊂ H ⊂ Gσ. The
homogeneous space G/H is a symmetric space. We denote by g and h the Lie algebras
of G and H. Note the decomposition g = h⊕ p as H-representations, where h = gσ and
p = g−σ.

Consider the normalizer N = NG(H); the quotient G/N is the adjoint homogeneous
space of the symmetric spaceG/H. This last space admits by [deCP83] a unique wonderful
compactification Xad. This is a smooth projective G-variety having an open dense orbit
G · xad = X0

ad ≃ G/N , such that the boundary ∂Xad = Xad \ X0
ad is a simple normal

crossing divisor: ∂Xad = X1
ad ∪ · · · ∪ Xr

ad where X i
ad is a prime G-stable divisor for

all i ∈ [1, r]. Furthermore for any y, z ∈ Xad we have G · y = G · z if and only if
{i |y ∈ X i

ad} = {i |z ∈ X i
ad}. The integer r is the rank of G/N . A complete symmetric

variety is a smooth proper G-variety X having a dense orbit G ·x = X0 ≃ G/H such that
the natural map G/H → G/N ⊂ Xad extends to a G-equivariant morphism π : X → Xad.
The boundary ∂X = X \X0 is also a simple normal crossing divisor with G-stable prime
components.

Let X be a complete symmetric variety with base point x and map π : X → Xad, and
let K be a minimal family of rational curves on X. We will prove the following results.

Theorem 1.1 (Theorem 5.1). Kx is smooth and τx : Kx → Cx is an isomorphism.

In particular, understanding the VMRT as an abstract variety is equivalent to under-
standing Kx. If the map π contracts curves of the family K, then the description of the
VMRT follows easily from the case of toric varieties treated in [CFH14], see Lemma 3.4.

Theorem 1.2. If π contracts a curve of K, then Cx is a linear subspace of P(p).

We are therefore left to consider curves not contracted by π.

Theorem 1.3 (Proposition 3.6). Assume that π contracts no curve in K and let C ∈ K.

1. There exists a unique minimal family of rational curves L in Xad such that π maps
curves of K to curves of L.

2. We have 1 ≤ ∂X · C ≤ ∂Xad · π(C) ≤ 2.

3. If ∂X · C = ∂Xad · π(C) for some C ∈ K, then any component of Kx is isomorphic
to a component of Lxad

.
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One of the key ingredients for proving the above results is what we call highest weight
curves (see Subsection 2.6). Given a Borel subgroup BH of H, the Borel Fixed Point
Theorem implies that any irreducible component of Kx contains a BH-fixed point C.
Moreover, if C is not contracted by π, then C is mapped to a BH-fixed point Cad in Lxad

that determines the associated component of Lxad
. Furthermore, the tangent space at xad

of the highest weight curve Cad in Lxad
is a highest weight line in Txad

(Xad).

In view of the above results, we focus on wonderful compactifications of adjoint sym-
metric spaces. Decomposing G into a product of irreducible σ-stable factors, we obtain
a decomposition of G/N into a product of irreducible symmetric spaces. There are three
possible types for these irreducible factors (since N contains the center of G, we may
assume that G is of adjoint type for this list, see Subsection 2.5 for more details):

1. Group type: (H ×H)/diag(H), where H is simple adjoint.

2. Hermitian type: G/NG(L), where G is simple adjoint and L ⊂ G is a Levi subgroup.

3. Simple type: G/H, where G is simple adjoint and H0 is simple.

Given a highest weight curve C on X, we prove that there is a unique irreducible factor
XC of Xad such that the composition of π : X → Xad with the projection Xad → XC

sends C isomorphically to its image. We may thus replace Xad by XC and assume that
Xad is irreducible. In particular G/N is as in one of the above three cases. To understand
the geometry of the irreducible factors, we use the restricted root system.

There exists a maximal torus Ts, called of split type, such that Ts is σ-stable and
S = {t ∈ Ts | σ(t) = t−1}0 has maximal dimension. The root system R of (G, Ts) is stable
under the action of σ and there is a basis ∆ of R such that, for α ∈ ∆, either σ(α) = α
or σ(α) < 0. Set ∆1 = {α ∈ ∆ | σ(α) < 0} and α = α− σ(α). The set R = {α | α ∈ R}
is a (possibly non-reduced) root system with basis ∆ = {α | α ∈ ∆1} called the restricted
root system of the symmetric space. The rank of R is the rank r of G/H. In Subsection
4.2, we relate curves and divisors in Xad to the restricted root system (the results are
probably well known to the experts but we could not find a convenient reference). Let

R
∨
be the dual root system of R with coroot lattice Z∆∨

and denote by A1(X) the Chow
group of curves modulo rational equivalence. We prove the following result.

Proposition 1.4 (Proposition 4.19). There is a surjective Z-linear map ψ : A1(Xad) →
Z∆∨

such that:

1. The image of the monoid of effective curves is the monoid spanned by coroots.

2. The image of the monoid of curves having non-negative intersection with any compo-
nent of ∂Xad is the intersection of Z∆∨

with the monoid of dominant cocharacters.

If the map ψ is not injective, then Xad is called exceptional. Since the class of a curve
C in a covering family L of rational curves is effective and has non-negative intersection
with any component of ∂Xad, it has to be contained in the intersection of the monoids
spanned by coroots and by the dominant cocharacters. There is a unique minimal such
coroot Θ

∨
, the coroot of the highest root Θ ∈ R. This gives a very natural candidate for

classes of minimal families. Indeed we prove the following result.
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Theorem 1.5 (Corollary 4.20). Assume that Xad is irreducible.

1. If Xad is not exceptional, there is a unique minimal family L and the class of any
Cad ∈ L satisfies ψ([Cad]) = Θ

∨
.

2. If Xad is exceptional, then there are exactly two minimal families L+ and L− and
the class of any C±

ad ∈ L± satifies ψ([C±
ad]) = Θ

∨
.

Note that if Cad is a highest weight curve in Lxad
, then its H-orbit H ·Cad is contained

in Lxad
. We describe the family Lxad

by comparing the dimension of this orbit with the
dimension of the family Lxad

of curves whose class is described by the previous result.
To compute the dimension of the H-orbits, we prove that the tangent line Txad

Cad lies in
very specific nilpotent orbits in g. Let Omin be the minimal non-zero nilpotent orbit in
g and Osum,σ be the nilpotent orbit of eΘ − σ(eΘ), where Θ is the highest root of G and
eΘ ∈ gΘ \ {0}. Let m ∈ Txad

Cad \ {0}, we prove the following in Corollary 4.25.

Proposition 1.6. We have m ∈ Omin if σ(Θ) = −Θ and m ∈ Osum,σ otherwise.

Using results of Kostant and Rallis [KR71] we prove that the orbit H ·m is Lagrangian
in the nilpotent orbit G ·m (equipped with the Kirillov-Kostant-Souriau invariant sym-
plectic structure) and we are able to compute the dimension of these orbits. We obtain:

Theorem 1.7 (Theorem 4.43). If the restricted root system R is not of type Ar, then
∂Xad · Cad = 1 and dimH · Cad = dimLxad

. Otherwise, we have ∂Xad · Cad = 2 and
dimH · Cad = dimLxad

− 1.

1. If R is not of type Ar, then Lxad
= H ·Cad. Furthermore, Lxad

has two components
if X is Hermitian non-exceptional and is irreducible otherwise.

2. If R is of type A1, then Lxad
≃ P(p).

3. If R is of type Ar with r ≥ 2, then there exists a G-equivariant birational morphism
Xad → P(V ), for some irreducible G-representation V , and Lxad

is isomorphic to
the closed G-orbit in P(V ). The orbit H · Cad is a prime divisor in Lxad

.

4. The orbits H · Cad and the variety Lxad
are described in Table 1.

By results of Ruzzi [Ru12], the wonderful compactifications of irreducible symmetric
spaces are weak Fano varieties and most of them are Fano, with exceptions classified in
loc. cit., Table 2 (see also §6.3). As a consequence, the wonderful compactifications of all
Hermitian non-exceptional symmetric spaces are Fano, except in type CI. We thus obtain
the following result.

Corollary 1.8. Let Xad be the wonderful compactification of a Hermitian non-exceptional
symmetric space not of type CI and whose restricted root system is not of type Ar. Then
Xad is Fano and its VMRT has two irreducible components.
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The assumptions of the above corollary hold for four types in the classification: AIII,
BDI, DIII and EVII. This yields examples of Fano varieties with reducible VMRT of
positive dimension, thereby giving a negative answer to a question of Hwang, see [Hw01,
Section 5, Question 2]. Note that these Fano varieties have Picard number at least 2,
whereas there are examples of Fano varieties with Picard group Z and reducible VMRT of
positive dimension, see [IM05, Proposition 3.15] and [MOS14, Remark A.9].

In Table 1, we also give the embedding of Lad ≃ VMRT(Xad) in P(p). All VMRT are
disjoint unions of projective rational homogeneous varieties, which are in turn products
of homogeneous varieties of Picard rank one. In most cases, the embedding is the min-
imal embedding. For two cases (types AI and CI), the embedding is twice the minimal
embedding. There is also a mixed case in type G.

From these results and Theorem 1.3, we obtain a full description of the VMRT of any
complete symmetric variety X. We refer to Theorem 5.2 for more details.
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2 Rational curves and symmetric spaces

In this section, we recall basic results on rational curves on uniruled varieties and then
specialise to the case of almost homogeneous varieties. We also introduce symmetric
homogeneous spaces and their adjoint symmetric space, and we obtain the existence of
highest weight curves and their basic properties.

2.1 Families of rational curves

In this subsection, we recall some notions and results on rational curves, after [Ko96,
II.2.2, II.2.3] and [BK21, §2.1, §2.2].

Let X be a smooth projective variety. Consider the scheme of morphisms Hom(P1, X)
and the open subscheme Hombir(P1, X) consisting of morphisms which are birational onto
their image. The (normalized) space of rational curves RatCurves(X) is the quotient of
the normalization Homn

bir(P1, X) by the free action of Aut(P1) = PGL2 via reparametriza-
tion. We have a universal family

ρ : Univ(X) −→ RatCurves(X)

which is a P1-bundle, and an evaluation map

µ : Univ(X) −→ X

such that the morphism ρ× µ : Univ(X) → RatCurves(X)×X is finite.
Let f ∈ Hombir(P1, X) with image C ⊂ X. We say that C is free if the pull-back

f ∗(TX) is globally generated, where TX denotes the tangent bundle. Every free morphism
yields a smooth point of Hombir(P1, X), and hence of RatCurves(X). Also, we say that
C is embedded if f is an immersion. The free (resp. embedded free) curves form smooth
open subschemes RatCurvesemfr(X) ⊂ RatCurvesfr(X) of the space of rational curves.

A family of rational curves on X is a component K of RatCurves(X). We then have a
universal family ρ : U = ρ−1(K) → K which is again a P1-bundle, and an evaluation map
µ : U → X. For any x ∈ X, let Ux = µ−1(x) and Kx = ρ(Ux); then Kx is the subfamily
of curves through x. The restriction ρx : Ux → Kx is finite, and is an isomorphism above
the smooth open subset of embedded free curves (see [BK21, Lem. 2.1]).
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The familyK is covering ifKx is non-empty for x general. If in additionKx is projective
for x general, we say that K is minimal.

By sending every embedded free curve in Kx to its tangent direction at x, we obtain
a morphism τx : Kemfr,x → P(TxX), where P(TxX) denotes the projectivization of the
tangent space. We will view τ as a rational map Kx 99K P(TxX), defined at every curve
which is smooth at x. The closure of the image of τ is denoted by Cx and called the
variety of tangents of K at x.

Let K be a minimal family of rational curves on X. By [Ke02, Thm. 3.3], for a general
point x, there are only finitely many curves in Kx which are singular at x. Thus, τx is
defined along every positive-dimensional irreducible component of Kx. In view of [Ke02,
Thm. 3.4], τx extends to a finite morphism

τnx : Kn
x −→ P(TxX),

where Kn
x denotes the normalization. Moreover, τnx is birational onto its image by [HM04,

Thm. 1]. The image Cx is called the variety of minimal tangents of K at x (VMRT).

Next, we consider covariance properties of families under a morphism of smooth pro-
jective varieties π : X → Y . Let K be a family of rational curves on X. Assume that some
C ∈ K is represented by a free morphism f : P1 → X which is birational onto its image,
and such that the composition π ◦ f : P1 → Y is free and birational onto its image as
well. Let D be the corresponding rational curve in Y , and L the family on Y containing
the free rational curve D. Finally, let x = f(0) ∈ C and y = π(x) ∈ D.

Lemma 2.1. With the above notation and assumptions, the morphism π : X → Y induces
rational maps

π∗ : K 99K L, π∗,x : Kx 99K Ly

which are defined at C and send C to D. If the differential dπx : TxX → TyY is injective,
then so is the differential of π∗,x at C.

Proof. Composing by π yields a morphism Hom(P1, X) → Hom(P1, Y ) which is Aut(P1)-
equivariant, and hence an equivariant rational map Homfr(P1, X) 99K Homfr(P1, Y ) which
is defined at f . This readily yields the rational map π∗. The rational map π∗,x is obtained
from the analogous morphism Hom(P1, X; 0 7→ x) → Hom(P1, Y ; 0 7→ y) with the notation
of [Ko96, II.1]. By loc. cit., II.2.3, the differential of the above morphism at f is identified
with the natural map H0(P1, (f ∗TX)(−1)) → H0(P1, (f ∗π∗TY )(−1)). This implies the
final assertion as dπ is injective on an open dense subset of X.

In the opposite direction, assume that π contracts a curve C ∈ K, i.e., the composition
ρ−1(C)

µ−→ X
π−→ Y is constant; then π contracts all the curves in K. With this

terminology, we may recall a useful observation ([BK21, Lem. 2.3]):

Lemma 2.2. Consider two smooth projective varieties Y , Z, and let X := Y × Z with
projections p : X → Y , q : X → Z.

1. The pull-back map p∗ : Hom(P1, Y ) × Z → Hom(P1, X), (f, z) → (t 7→ (f(t), z))
induces a closed immersion RatCurves(Y )×Z → RatCurves(X) with image a union
of components.
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2. The map p∗ sends covering (resp. minimal) families to covering (resp. minimal)
families.

3. A family of rational curves K on X is the pull-back of a family on Y if and only if
q contracts some curve in K.

4. Every family of minimal rational curves on X is the pull-back of a unique family of
minimal rational curves on Y or Z.

2.2 Almost homogeneous varieties

We now assume that X is almost homogeneous, i.e., it is equipped with an action of a
connected linear algebraic group G, and contains an open G-orbit X0. We recall and
slightly generalize results from [BF15, §2] and [BK21, §2.3].

Choose a base point x ∈ X0, and denote by H = Gx its isotropy group. Then the
orbit X0 = G ·x is identified with the homogeneous space G/H, and the pair (X, x), with
an equivariant embedding of this homogeneous space. Denoting by g (resp. h) the Lie
algebra of G (resp. H), the tangent space TxX is identified with the quotient g/h as a
representation of H (the isotropy representation).

Since G is a rational variety, X is unirational; as a consequence, covering families exist.
Also, G acts on RatCurves(X) and on Univ(X) so that ρ and µ are equivariant. Since
G is connected, it stabilizes every family K, as well as the open subset K0 consisting of
curves which meet X0. Every such curve is free (see e.g. [BF15, Lem. 2.1(i)]); thus, K0 is
smooth. The subgroup H ⊂ G acts compatibly on Ux, Kx, P(TxX) and Cx.

We now obtain a variant of [BK21, Lem. 2.4]:

Lemma 2.3. A family of rational curves K on X is covering if and only if Ux is non-
empty; equivalently, Kx is non-empty. Under these assumptions, Ux is smooth and its
components are permuted transitively by H.

Proof. The morphism µ restricts to a G-equivariant morphism

µ0 : U0 = µ−1(X0) −→ X0 = G/H

with fiber at x being Ux. This yields an isomorphism U0 ≃ G×H Ux, where the right-hand
side denotes the quotient of G × Ux by the H-action via h · (g, z) = (gh−1, h · z). Since
K0 is smooth, so are U0 and hence Ux. Also, U0 is irreducible; thus, H acts transitively
on the components of Ux.

Next, let π : X → Y be a surjective morphism, where Y is a smooth projective variety.
Assume that Y is equipped with a G-action such that π is equivariant. Let y = π(x) and
Y 0 = G · y; then Y 0 = π(X0) is open in Y . We now have the following variants of [BK21,
Lem. 2.6, Rem. 2.7]:

Lemma 2.4. Keep the above notation and assumptions, and consider a covering family
of rational curves K on X. Assume that there exists C ∈ K0 such that π|C is birational
onto its image D. Then:
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1. D ∈ L for a unique covering family L of rational curves on Y .

2. π induces a G-equivariant rational map π∗ : K 99K L, which is defined at C and
satisfies π∗(C) = D, and an H-equivariant rational map

π∗,x : Kx 99K Ly, C 7−→ D.

3. We have a commutative diagram of H-equivariant rational maps

Kx
π∗,x //

τx
��

Ly

τy

��
P(TxX)

dπx // P(TyY ).

Proof. (1) Replacing C with a translate g ·C for some g ∈ G, we may assume that x ∈ C.
Then the assertion follows from Lemma 2.3.

(2) This is a consequence of Lemma 2.1, except for the equivariance assertions which
are easily checked.

(3) This follows readily from the definitions.

Remark 2.5. If π is birational (equivalently, it induces an isomorphism X0 → Y 0), then
the assumptions of Lemma 2.4 hold and moreover π∗,x is an immersion. Indeed, π∗,x
is clearly an injective morphism. Moreover, the differential of π∗,x at every C ∈ Kx is
injective by Lemma 2.1.

Still considering a covering family of rational curves K on X, we now assume that π
contracts some curve in K, and hence all curves in K. Let

X
π′
−→ Y ′ η−→ Y

be the Stein factorization of π, where Y ′ is a normal projective variety (possibly singular),
π′ is a contraction (that is, π′

∗(OX) = OY ′), and η is finite surjective. Then there is a
unique action of G on Y ′ such that π′ and η are equivariant. Let y′ = π′(x) and I = Gy′ ;
then H ⊂ I ⊂ G and the orbit G · y′ ≃ G/I is open in Y ′. Also, let F = π′−1(y′); then
F is the connected component of x in the fiber π−1(y), and hence is a smooth projective
variety (by generic smoothness). Moreover, F is stable by I and contains I · x as its open
orbit. Clearly, every curve in Kx is contained in F .

Lemma 2.6. Keep the above notation and assumptions, and assume that I normalizes
H. Then Kx is irreducible and there exists a unique covering family of rational curves L
on F such that Kx = Lx. Moreover, K0 = G · L0.

Proof. Note that H acts trivially on I/H, since H ◁ I. Thus, H acts trivially on F , and
hence on Ux. As U0 ≃ G ×H Ux, we obtain U0 ≃ G/H × Ux. Since U0 is irreducible, so
are Ux and Kx.

The inclusion ι : F → X induces compatible immersions

RatCurvesfr(F ) −→ RatCurvesfr(X), Univfr(F ) −→ Univfr(X),
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since they are injective and their differentials are injective as well. It follows that Kx is
an irreducible component of µ−1

F (x), where µF : Univ(F ) → F denotes the evaluation
map. So Kx is an irreducible component of Lx for a unique family of rational curves L
on F . Since (F, x) is an equivariant embedding of the homogeneous space I0/I0 ∩H and
I0 ∩H ◁ I0, we see that Lx is irreducible. Thus, Kx = Lx and L0 = I0 · Lx = I0 · Kx, so
that K0 = G · Kx = G · Lx = G · L0.

Remark 2.7. The above assignement K 7→ L yields a bijection between covering families
of rational curves on X which are contracted by π, and covering families of rational curves
on F . This restricts to a bijection between minimal families.

2.3 Symmetric spaces

In this subsection, we recall some basic facts on symmetric spaces, after [Ti11, §26] and its
references. We begin with some notation and conventions which will be used throughout
the sequel.

Let G be a connected reductive algebraic group. Let T ⊂ G be a maximal torus, and
B ⊂ G a Borel subgroup containing T . We denote the character group of T by X = X(T ),
and the root system of (G, T ) by R = R(G, T ) ⊂ X. The roots of (B, T ) form the set of
positive roots R+, with basis ∆ (the set of simple roots). The Weyl group of (G, T ) is
denoted by W .

Recall the decomposition of Lie algebras g = t⊕
⊕

α∈R gα. For any α ∈ R, we denote by
Uα the closed subgroup of G with Lie algebra gα, and by Gα the subgroup of G generated
by Uα and U−α. Then Gα is a closed subgroup of G, isomorphic to SL2 or PSL2.

Next, let σ be a group involution of G. Denote by Gσ the fixed point subgroup, and
by Gσ,0 its neutral component. Let H be a subgroup of G such that Gσ,0 ⊂ H ⊂ Gσ;
then we say that H is a symmetric subgroup of G, and the homogeneous space G/H is a
symmetric space.

The group H is reductive; equivalently, the variety G/H is affine. Also, σ induces an
involution of g, still denoted by σ for simplicity. The Lie algebra of H satisfies h = gσ

and g = h⊕ p, where
p = g−σ = {x ∈ g | σ(x) = −x}

is a Gσ-stable complement of h in g.
Recall that σ stabilizes a maximal torus T of G. Thus, σ acts on the character group

X and stabilizes the root system R; it also acts on the Weyl group W by conjugation.
We may choose a scalar product (−,−) on the real vector space XR = X ⊗Z R which is
invariant under W and σ.

Definition 2.8. For α ∈ R, one of the following cases occurs:

1. σ(α) = α and σ fixes pointwise gα. Then α is called a compact imaginary root.

2. σ(α) = α and σ acts on gα by −1. Then α is non-compact imaginary.

3. σ(α) = −α. Then α is real.

4. σ(α) ̸= ±α. Then α is complex.

10



Recall that any two maximal tori of G are conjugate and hence X, R and W are
independent of the choice of T . But the action of σ on these objects depends on the
choice of the σ-stable torus T , up to conjugacy by H. We now consider two special
conjugacy classes of σ-stable maximal tori, that we call of fixed (resp. split) type. These
are constructed as follows.

Maximal tori of fixed type. Choose a maximal torus TH of H; then its centralizer
T = CG(TH) is a σ-stable maximal torus of G and we have TH = T σ,0. Moreover, T is
contained in a σ-stable Borel subgroup B of G; then BH = Bσ,0 is a Borel subgroup of H
(see [Ti11, Lem. 26.7]). Thus, BH = UHTH , where UH = U ∩H is a maximal unipotent
subgroup of H.

The action of σ on the root system R stabilizes R+. In particular, there are no real
roots. The subset of simple roots ∆ is σ-stable as well.

Clearly, the maximal tori obtained in this way are exactly those containing a maximal
σ-fixed torus (i.e., a subtorus S ⊂ G such that σ(s) = s for all s ∈ S); they are all
conjugate under H0 = Gσ,0. We call every such maximal torus of fixed type and denote it
by Tf .

Maximal tori of split type. In the opposite direction, a subtorus S ⊂ G is called
σ-split if σ(s) = s−1 for all s ∈ S. Choose such a torus S maximal for this property; then
L = CG(S) satisfies [L,L] ⊂ H0. As a consequence, every maximal torus of G containing
S is σ-stable. We call every such maximal torus of split type and denote it by Ts. Also,
L is a Levi subgroup of a minimal σ-split parabolic subgroup P , that is, P is a parabolic
subgroup of G which is opposite to σ(P ), and minimal for this property. Denote by Ru(P )
the unipotent radical of P ; then by the Iwasawa decomposition, the morphism

ι : Ru(P )× S/S ∩H −→ G/H, (g, z) 7−→ g · z

is an open immersion with image P/P∩H, the P -orbit of the base point. Moreover, ι is P -
equivariant, where P = Ru(P )⋊L acts on Ru(P )×S/S∩H via (u, l)·(g, z) = (ulgl−1, l·z),
and on G/H via left multiplication. Finally, recall that the maximal split tori are all
conjugate under H0, as well as the minimal split parabolic subgroups and the maximal
tori of split type.

The maximal tori of fixed type will be used in the rest of this section and in Section
3. Those of split type, and the corresponding restricted root system, feature prominently
in the subsequent sections.

2.4 The normalizer of a symmetric subgroup

We keep the notation of §2.3 and denote by Z = Z(G) the center of G, with Lie algebra
z. Since Z is σ-stable, we have z = (z∩ h)⊕ (z∩ p). Also, we denote by N = NG(G

σ) the
normalizer of Gσ in G and by Gad = G/Z the adjoint group.

Lemma 2.9. 1. N = {g ∈ G | σ(g)g−1 ∈ Z}.

2. N = NG(G
σ,0) = NG(h).
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3. N0 = Z0H0.

4. Z0TH is a maximal torus of N for any maximal torus TH of H.

Proof. (1) This is obtained in [Vu90, Lem. 1] (see also [deCP83, I.7]); we recall the
argument for completeness.

Let g ∈ G such that σ(g)g−1 ∈ Z. For any h ∈ Gσ, we have σ(ghg−1) = σ(g)hσ(g)−1 =
ghg−1, that is, ghg−1 ∈ Gσ. So g ∈ N . For the converse, observe that N is reductive
and normalized by σ. The corresponding semi-direct product N ⋊ ⟨σ⟩ is a reductive
algebraic group, which acts linearly on g and stabilizes h. Thus, h has an N ⋊ ⟨σ⟩-stable
complement, which must be p. In particular, p is N -stable; thus, Ad(N) commutes with
σ. So Ad(σ(g)g−1) = σAd(g)σ−1Ad(g)−1 = id for any g ∈ N , that is, σ(g)g−1 ∈ Z.

(2) Clearly, we have N = NG(G
σ) ⊂ NG(G

σ,0) = NG(h). Moreover, NG(h) is reductive
and normalized by σ. Arguing as in the proof of (1), it follows that σ(g)g−1 ∈ Z for any
g ∈ NG(h), and hence g ∈ N .

(3) Denote by n the Lie algebra of N . Then (1) yields that n = {x ∈ g | σ(x)−x ∈ z}.
Using the σ-stable decomposition g = z ⊕ [g, g], it follows that n = z ⊕ [g, g]σ = z + h.
This yields the assertion.

(4) This follows readily from (3).

Lemma 2.10. Let S be a maximal σ-split torus of G.

1. N = Gσ,0(N ∩ S).

2. H = Gσ,0(H ∩ S) and H ∩ S is an elementary abelian 2-group.

3. N = NG(H) and N/H ≃ N ∩ S/H ∩ S. In particular, N/H is diagonalizable.

Proof. (1) Let P be a minimal σ-split parabolic subgroup of G containing S. Then
Pad = P/Z is a minimal σ-split parabolic subgroup of Gad, containing Sad = S/S ∩ Z
which is a maximal σ-split torus of Gad. By the Iwasawa decomposition, the morphism

Ru(Pad)× Sad/S
σ
ad −→ Gad/G

σ
ad, (g, z) 7−→ g · z

is an open immersion. As a consequence, the multiplication map Ru(P ) × SN → G is
an open immersion as well. Its image is Ru(P )SN = PN , the open orbit of P × N
in G. Likewise, PGσ,0 is the open orbit of P × Gσ,0 in G. Let g ∈ N ; then the orbit
PgGσ,0 = PGσ,0g is open in G. So g ∈ PGσ,0, and hence PN = PGσ,0. It follows that
SN = SGσ,0; this yields the assertion.

(2) The first assertion follows readily from (1). For the second assertion, just note
that every g ∈ S ∩H satisfies g−1 = σ(g) = g.

(3) Clearly, we have NG(H) ⊂ NG(H
0) = NG(G

σ,0). Moreover, NG(G
σ,0) = N in view

of Lemma 2.9.2. Also, by combining (1) and (2) above, we see that N normalizes H, since
N ∩ S normalizes Gσ,0 and centralizes H ∩ S. Thus, NG(H) = N . By (1) again, we have
N = H(N ∩ S), and hence N/H ≃ (N ∩ S)/(H ∩ S) is diagonalizable.
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2.5 The adjoint symmetric space

Recall that Gad = G/Z is the adjoint group, and let

q : G −→ Gad

be the quotient homomorphism. Then σ induces an involution of Gad, still denoted by σ
for simplicity. The homogeneous space Gad/G

σ
ad is called an adjoint symmetric space. By

Lemma 2.9, we have N = q−1(Gσ
ad); this yields an isomorphism

G/N ≃ Gad/G
σ
ad.

Moreover, Gσ
ad is its own normalizer in Gad.

By decomposing Gad into a product of indecomposable σ-stable factors, we obtain a
decomposition of G/N into a product of irreducible symmetric spaces. These fall into
three types:

1. (group) (H ×H)/diag(H), where H is simple adjoint.

2. (Hermitian) G/NG(L), where G is simple adjoint and L ⊂ G is a Levi subgroup.

3. (simple) G/H, where G is simple adjoint and H0 is simple.

In type (1), we have σ(x, y) = (y, x) for all x, y ∈ H. Thus, G/N is just the group
H on which H ×H by left and right multiplication. The isotropy representation p is the
adjoint representation of H in h. This is an irreducible representation with highest weight
the highest root Θ.

In type (2), we have L = P ∩ Q, where P and Q are opposite maximal parabolic
subgroups of G. Moreover, σ is the conjugation Int(c), where c ∈ Z(L) and c2 ∈ Z(G).
Denote by α the unique simple root which is not a root of L; then α has coefficient
1 in the expansion of the highest root Θ as a linear combination of simple roots. We
have p = uP ⊕ uQ, where uP (resp. uQ) denotes the Lie algebra of Ru(P ) (resp. Ru(Q)).
Moreover, the representations uP , uQ of L are irreducible and dual to each other (see
e.g. [RRS92, §5.5] for these results). Their highest weights relative to L are Θ, −α; they
are linearly independent unless G = PSL2.

We say that G/NG(L) is (Hermitian) exceptional if P and Q are not conjugate in
G. Then NG(L) = L, and hence G/NG(L) may be identified with the open G-orbit in
G/P × G/Q on which G acts diagonally. In the non-exceptional case, where P and Q
are conjugate in G, the group NG(L)/L has order 2 and exchanges P and Q. Moreover,
G/NG(L) may be identified with the open G-orbit in the symmetric square (G/P )(2) (the
quotient of G/P ×G/P by the involution (y, z) 7→ (z, y)).

In type (3), p is irreducible as a representation of H0, with a non-zero highest weight.

2.6 Highest weight curves

Throughout this subsection, we choose a maximal torus TH ⊂ H and a Borel subgroup
BH ⊂ H containing TH . Recall that T = CG(TH) is a maximal torus of fixed type of G.
We first obtain a generalization of [BF15, Lem. 2.2]:
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Lemma 2.11. Let C be an irreducible BH-stable curve in G/H through the base point x.

1. Either C is contained in Z0 · x, or BH acts non-trivially on C.

2. In the latter case, C is smooth and BH-equivariantly isomorphic to its tangent line
at x, which is the TH-weight space pλ for a unique non-zero highest weight λ of p.
Moreover, λ determines C uniquely, and the stabilizer of C in H equals the stabilizer
of the weight space pλ.

Proof. (1) Assume that C is fixed pointwise by BH . Then the orbit H0 · y is complete
for any y ∈ C. Since G/H is affine, this orbit must be a point, i.e., y is fixed pointwise
by H0. Let g ∈ G such that y = g · x, then g−1H0g · x = x, i.e., g−1H0g ⊂ H. So
g ∈ NG(H

0) = N (Lemma 2.9). Thus, C ⊂ N · x. As C is connected and contains x, it
follows that C ⊂ N0 ·x. But N0 ·x = Z0 ·x by Lemma 2.9 again; this yields the assertion.

(2) This is obtained by arguing as in the proof of [BF15, Lem. 2.2(i)]. We provide
details for the reader’s convenience.

Since C is not fixed pointwise by BH , it contains an open orbit BH · y, where y ̸= x.
Thus, the isotropy group BH,y has codimension 1 in BH . We thus have B0

H,y = UH,y⋊S for
some subtorus S of BH . Replacing y with a BH-translate, we may assume that S ⊂ TH .

If S = TH , then BH · y = UH · y is closed in G/H, since the latter is an affine variety.
But x ∈ BH · y \ {y}, a contradiction. For dimension reasons, it follows that S is a
subtorus of codimension 1 of TH , and UH ⊂ BH,y. As a consequence, C is fixed pointwise
by UH , since the latter is a normal subgroup of BH . Thus, TH · y is open in C.

In particular, x ∈ H · y. So C is contained in the fiber at x of the geometric invariant
theory quotient G/H → H\\G/H of the smooth affine H-variety G/H. By a corollary of
Luna’s slice theorem (see [Lu73, II.1, III.1]), this fiber is H-equivariantly isomorphic to
the nilcone N of p (the fiber at 0 of the quotient p → p//H; it consists of the points z ∈ p
such that 0 ∈ H · z). Thus, C is BH-equivariantly isomorphic to a BH-stable curve D in
N . Moreover, C and D have the same stabilizer in H.

As UH fixes D pointwise, we have D ⊂ N ∩pUH . Also, p = (p∩ z)⊕ (p∩ [g, g]) and the
projection p → p∩ z is H-invariant, hence sends N to 0. it follows that D ⊂ (p∩ [g, g])UH .

So we may assume that G/H is an adjoint symmetric space. Using the product
decomposition of these spaces, we see that D is a highest weight line from a unique
indecomposable factor of G/H, and is uniquely determined by its weight.

We say that a curve C as in Lemma 2.11.2 is a highest weight curve. The corresponding
highest weight λ satisfies λ = α|TH

for some root α, since the non-zero weights of TH in
p are restrictions of non-zero weights of T in g. Let S = Ker(λ)0 = (Ker(α) ∩ TH)

0;
then S is a subtorus of codimension 1 of TH , and fixes C pointwise. Thus, the centralizer
CG(S) is a σ-stable connected reductive subgroup of G containing T . Moreover, CH(S)
is a symmetric subgroup of CG(S) containing TH , and C is a highest weight curve of the
symmetric space CG(S)/CH(S).

Recall the following easy result (see [Sp83, §2] and [Br99, Lem. 2.5]):

Lemma 2.12. With the above notation and assumptions, the adjoint symmetric space of
CG(S)/CH(S) is one of the following:
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(A1) PSL2 /N , where N denotes the normalizer of the diagonal torus in PSL2.

(A1 × A1) (PSL2×PSL2)/diag(PSL2). Then σ(α) is strongly orthogonal to α.

(A2) PSL3 / SO3, where SO3 denotes the special orthogonal group. Then α + σ(α) ∈ R.

Moreover, α is non-compact imaginary in types (A1) and (A2). If the involution σ is
inner (equivalently, TH is a maximal torus of G), then only type (A1) occurs.

Still considering a highest curve C of weight λ, we now obtain a description of C and
its tangent line TxC ⊂ TxG/H (using the identifications TxG/H = g/h = p) in the above
three types.

Proposition 2.13. In type (A1), there is a unique root α such that λ = α|TH
. Moreover,

C = Uα · x and TxC = gα.
In type (A1 × A1), there are exactly two roots α, β such that λ = α|TH

= β|TH
.

Moreover, α and β = σ(α) are the simple roots of (CG(S), T ). We have C = Uα ·x = Uβ ·x
and TxC = C(eα − σ(eα)), where eα ∈ gα \ {0}.

In type (A2), there is a unique root α such that λ = α|TH
. Moreover, α = α1 + α2,

where α1 and α2 = σ(α1) are the simple roots of (CG(S), T ). Also, C = Uα · x and
TxC = gα.

Proof. In type (A1), there are two highest weight curves in CG(S)/CH(S), namely, Uα ·x
and U−α · x.

In type (A1 × A1), recall that the adjoint symmetric space of CG(S)/CH(S) is the
group (PSL2×PSL2)/diag(PSL2) = PSL2. So the roots of (CG(S), T ) are ±α, ±σ(α).
Moreover, Uα · x is the unique highest weight curve; it is identified with the standard
unipotent subgroup U ⊂ PSL2, and likewise for Uσ(α) · x.

In type (A2), the adjoint symmetric space of CG(S)/CH(S) is PSL3 / SO3; one checks
that the highest weight of its isotropy representation is (α1+α2)|TH

, where α1, α2 are the
simple roots of PSL3. It follows that α = α1 + α2, and σ(α1) = α2. Finally, Uα · x is an
irreducible curve in G/H, stable by TH and fixed by UH (since the latter commutes with
Uα and fixes x). Thus, Uα · x is the highest weight curve in CG(S)/CH(S).

This yields the assertions on roots and highest weight curves. Those on their tangent
lines are readily verified.

Corollary 2.14. Let C be a highest weight curve of weight λ. Then there exists α ∈ R
such that λ = α|TH

and C = Uα · x.

Corollary 2.15. We have the following alternative for a simple group G:

1. TxC = gα for a long root α, or

2. TxC = gα for a short root α, or

3. TxC is spanned by eα−σ(eα), where α ∈ R is strongly orthogonal to σ(α). Moreover,
G is simply-laced.
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Proof. In view of Proposition 2.13, we only have to show that G is simply laced in case
(3). Then σ(α) ̸= α, and hence σ acts non-trivially on R. As σ stabilizes the set ∆ of
simple roots, it induces a non-trivial automorphism of the Dynkin diagram. But this only
occurs for G simply-laced.

Remark 2.16. The three cases in Corollary 2.15 do occur (see Table 1 for the notation
on types):

1. In type AI with G = SLn and H = SOn, then TxC = gΘ with Θ the highest root.

2. In type BII with G = SO2n+1 and H = S(O1 × O2n), then TxC = gθ with θ the
highest short root.

3. In type AII with G = SL2n and H = Sp2n, then TxC is spanned by eΘ−α1 −eΘ−α2n−1

where Θ is the highest root and α1 and α2n−1 are simple roots labeled as in [Bo68].

4. Clearly, case (2) does not occur for simply-laced groups.

5. In type G2, none of cases (2) and (3) do occur. Indeed σ(α) = α for any root α ∈ R.
Therefore, every root is imaginary. An easy computation shows that the highest
non-compact root must be long.

Next, we assume that G/H is irreducible; in particular, G is simple or G = H × H
with H simple. We show that TxC is contained in a nilpotent orbit of a very special type,
defined as follows:

Definition 2.17. Let G/H be an irreducible symmetric space.

1. If G = H × H, then set Omin = G · (e,−e) ⊂ g = h ⊕ h where e ∈ h is a highest
weight vector for H.

2. If G is simple, define a nilpotent orbit Omin and a type of nilpotent orbits Osum in g
as follows.

(a) Omin = G · e where e is a highest weight vector in g.

(b) A nilpotent orbit O is of type Osum if O = G · (e1 + e2), where ei ∈ gαi
is a

root vector with α1 and α2 two strongly orthogonal long roots.

Remark 2.18. There is a unique nilpotent orbit of type Osum except for G of type Bn

or Dn, in which case there are two possible nilpotent orbits.

Proposition 2.19. With the above notation, TxC \ {0} is contained in Omin or in a
nilpotent orbit of type Osum.

This follows by combining Corollary 2.15, Remark 2.16.5 and the next result.

Lemma 2.20. Assume that G is not simply-laced and not of type G2. Let eα ∈ gα \ {0}
with α a short root. Then eα belongs to a nilpotent orbit of type Osum.
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Proof. Since all short roots are in the same orbit under the action of the Weyl group, we
may assume that α is the highest short root θ.

There exists a simple root β such that θ+ β is a root; then θ+ β must be a long root.
We claim that ⟨β∨, θ+ β⟩ = 2. Indeed, since θ is a dominant weight, we have ⟨β∨, θ⟩ ≥ 0
and we get ⟨β∨, θ + β⟩ ≥ ⟨β∨, β⟩ = 2. Since G is not of type G2, we must have equality:
⟨β∨, θ + β⟩ = 2.

We get sβ(θ+β) = θ−β; thus, θ−β is a long root. Denote by (−,−) a scalar product
on XR which is invariant under W and σ, and such that long roots have length 2. We
have (θ − β, θ − β) = 2 = (θ + β, θ + β). This gives (θ, β) = 0 and (θ, θ) = 1 = (β, β), so
both θ and β are short roots. We also get (θ − β, θ + β) = (θ, θ) − (β, β) = 0, so θ − β
and θ + β are long orthogonal roots. We check that they are strongly orthogonal: their
sum is θ − β + θ + β = 2θ which is not a root, and their difference θ + β − (θ − β) = 2β
is not a root either.

We are left to prove that eθ and eθ−β + eθ+β are in the same G-orbit in g. The group
Gβ (generated by U±β) acts on g and stabilizes the subspace V = gθ−β ⊕ gθ ⊕ gθ+β on
which it acts via the adjoint representation. Moreover, Gβ acts with two orbits in the
projective space P(V ): the minimal orbit and its complement. The point [eθ] is in this
last orbit, which also contains [eθ−β + eθ+β]. This yields the assertion, since nilpotent
orbits are stable under non-trivial homotheties.

Remark 2.21. In Proposition 4.23 and Corollary 4.25, we will give a more precise state-
ment describing the nilpotent orbit containing TxC for C ∈ Kx with K a minimal family.

3 Complete symmetric varieties

In this section, we recall the definitions of wonderful symmetric varieties and complete
symmetric varieties and we describe their relations, especially how to compare their re-
spective minimal families. We then recall the result of [BF15] on minimal families on
wonderful compactifications of groups. We end the section by a description of the min-
imal families on complete symmetric varieties in the group type, in the Hermitian type,
and in some cases of simple type.

3.1 Wonderful and complete symmetric varieties

We use the notation of Subsections 2.3 and 2.4. In particular, G denotes a connected re-
ductive group, H a symmetric subgroup relative to an involution σ, and N the normalizer
of H in G. We denote by x (resp. xad) the base point of the homogeneous space G/H
(resp. G/N). The natural morphism

π : G/H −→ G/N, x 7−→ xad

is a principal bundle under N/H. Moreover, N/H is diagonalizable by Lemma 2.10. We
have the “Stein factorization” of π as

G/H
π′
−→ G/N0H

η−→ G/N,
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where π′ is a principal bundle under the torus N0H/H ≃ Z0/H ∩ Z0 (Lemma 2.9), and
η is a principal bundle under N/N0H, a finite abelian group (Lemma 2.10).

By [deCP83], the adjoint symmetric space G/N = Gad/G
σ
ad admits a wonderful equiv-

ariant embedding that we denote by Xad, with base point xad. We say that Xad is a
wonderful symmetric variety.

We now recall from [LP90, §3.3] how to obtain Xad from the wonderful Gad × Gad-
equivariant embedding Gad of Gad = (Gad × Gad)/diag(Gad). We begin with a general
construction: the morphism

G −→ G, g 7−→ σ(g)g−1

factors through a closed immersion ι : G/Gσ → G which sends the base point x to the
neutral element e. The image of ι is a connected component of the fixed locus G−σ,
where −σ denotes the involution g 7→ σ(g−1) of G (viewed as a variety). Note that ι is
equivariant for the natural action of G on G/Gσ, and the G-action on itself via twisted
conjugation, defined by g1 · g2 := σ(g1)g2g

−1
1 . Also, the differential of ι at x is identified

with the inclusion p ↪→ g.
This construction applies to the involution σ of Gad; moreover, −σ extends uniquely

to an involution of Gad that we still denote by −σ, and ι extends uniquely to a closed
immersion

ι : Xad ↪→ Gad

which identifies Xad with a component of (Gad)
−σ.

Definition 3.1. A complete symmetric variety is a smooth projective equivariant em-
bedding (X, x) of G/H such that the morphism π : G/H → G/N extends to a morphism
X → Xad; equivalently, X is toroidal in the sense of [Ti11, §29]).

We still denote by π : X → Xad this extension, which is of course unique and hence
G-equivariant. The boundary ∂X = X \ X0 is a divisor with simple normal crossings.
We will use the following relation between the canonical divisors of X and Xad:

Lemma 3.2. With the above notation, we have the equality of divisor classes

KX + ∂X = π∗(KXad
+ ∂Xad).

Proof. Recall from [deCP83] that Xad is isomorphic to the G-orbit closure of h in the
Grassmannian of subspaces of g. Moreover, KXad

+∂Xad is the hyperplane class H in the
corresponding Plücker embedding (see [Ti11, Prop. 30.8]). Also, KX + ∂X = π∗(H) by
loc. cit.

We will also use the following description of the general fibers of π; by equivariance, it
suffices to describe the fiber at x. In view of the Stein factorization, π is the composition
of a contraction π′ : X → X ′ as discussed after Remark 2.5, and a finite surjective
equivariant morphism η : X ′ → Xad. The pair (X ′, x′ := π′(x)) is a normal projective
equivariant embedding (possibly singular) of G/N0H = G/Z0H (a symmetric space under
G/Z0). Moreover, the fiber of π at x is isomorphic to the associated bundle N ×N0H F ,
where F denotes the fiber of π′ at x. The group N0H acts on F via its quotient torus
N0H/H ≃ N0/H∩N0 ≃ Z0/H∩Z0 (where the second isomorphism follows from Lemma
2.9), and F is a smooth projective toric variety under that torus.
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3.2 Relation between minimal families

In this subsection, we consider a complete symmetric variety X with base point x. We
will reduce somehow the description of minimal families of rational curves on X to the
cases where X is a smooth projective toric variety or a wonderful symmetric variety. A
key notion is that of a highest weight curve, i.e., an irreducible curve C ⊂ X through x
which is stable under the Borel subgroup BH ; equivalently, C ∩ X0 is a highest weight
curve in the sense of §2.6.

By Corollary 2.14, we have C = Uα · x for some root α. In view of [BF15, Lem. 2.1
(i), Lem. 2.4], this yields:

Lemma 3.3. Let C be a highest weight curve. Then C is an embedded free rational curve.

We now obtain an alternative for minimal families:

Lemma 3.4. Let K be a family of minimal rational curves on X.

1. Either K is contracted by π, or Kx contains a highest weight curve.

2. In the former case, Kx is a minimal family of rational curves on the toric variety
F . Moreover, the tangent map τx is an isomorphism of Kx with a linear subspace
of P(p ∩ z).

Proof. (1) This follows from Lemma 2.11 together with Borel’s fixed point theorem, which
yields the existence of a BH-fixed point in Kx.

(2) The first assertion is a consequence of Lemma 2.6. The second assertion follows
from [CFH14, Cor. 2.5].

Proposition 3.5. Let X = Xad be a wonderful symmetric variety, and K a family of
rational curves on X. Then K is minimal if and only if Kx contains a highest weight
curve.

If X is irreducible, then it has a unique minimal family unless X is Hermitian excep-
tional; in that case, there are two minimal families.

Proof. If K is minimal, then Kx contains a highest weight curve by Lemma 3.4.
For the converse, using Lemma 2.2 and the structure of adjoint symmetric spaces

(§2.5), we may assume that X is irreducible.
For X not Hermitian, there is a unique highest weight curve C. Let L be a minimal

family of rational curves on X. Then C ∈ L by the above step, and hence K = L.
For X Hermitian, there are two highest weight curves, with highest weights Θ and −α.

Consider a Chevalley involution of (G, T ), i.e., an involution τ of G such that τ(t) = t−1

for all t ∈ T . Then τ commutes with σ = Int(c), since τ(c) = c−1 = cz for some z ∈ Z.
Thus, τ induces an involution ι of X fixing x. Also, τ sends every root to its opposite; in
particular, τ(Θ) = −Θ. Choose a representative g ∈ NL(T ) of the longest element of the
Weyl group of (L, T ). Then g ◦ ι is an automorphism of X which fixes x and exchanges
the two highest weight curves. So each of these curves is contained in a minimal family,
and hence K is minimal.
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This completes the proof of the first assertion. For the second assertion, it only remains
to show that there are two minimal families if X is Hermitian exceptional. But then the
open immersion G/N → G/P ×G/Q extends to a morphism X → G/P ×G/Q, and the
resulting projection X → G/P contracts the highest weight curve with weight Θ but not
the other one. So these two curves cannot be in the same family. (In the non-exceptional
case, they are exchanged by any element of NG(L) \ L).

Proposition 3.6. Let K be a minimal family of rational curves on X containing a highest
weight curve C.

1. Kx consists of embedded free curves; it is smooth and equidimensional, of dimension
−KX · C − 2.

2. There is a unique minimal family of rational curves L on Xad and a commutative
diagram of H-equivariant rational maps

Kx
π∗,x //

τx
��

Lxad

τxad
��

P(TxX)
dπx // P(Txad

Xad)

where τx and τxad
are finite and birational onto their image, and π∗,x is a finite

morphism. If π is birational, then π∗,x is finite and birational onto its image as
well.

3. We have 1 ≤ ∂X ·C ≤ ∂Xad · π(C). Moreover, ∂X ·C = ∂Xad · π(C) if and only if
the image of π∗,x is a union of components of Lxad

.

4. If each connected component of Lxad
is a unique N0-orbit, then π∗,x sends each

component of Kx isomorphically to a component of Lxad
.

Proof. (1) The open subset Kemfr,x is BH-stable, and contains every BH-fixed point by
Lemma 2.11.2 and Lemma 3.3. Using Borel’s fixed point theorem, it follows that Kemfr,x

is the whole Kx. Thus, Kx is smooth; it is equidimensional by Lemma 2.3. The assertion
on its dimension follows from [Ko96, II.3.2].

(2) By Lemma 2.11.2 again, π|C is birational to its image D. In view of Lemma 2.1,
this yields a commutative diagram of rational maps

Kx
π∗,x //

τx
��

Lxad

τxad
��

P(TxX)
dπx // P(Txad

Xad)

for a unique covering family of rational maps L on Xad. Since Kx is smooth, τx is finite
and birational onto its image. Also, π∗,x is a morphism since it is BH-equivariant and
defined at every BH-fixed point. Moreover, L contains the highest weight curve D, and
hence is minimal by Proposition 3.5. Thus, τxad

is also a morphism, and is finite and
birational onto its image as well.
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The rational map dπx : P(TxX) 99K P(Txad
Xad) is a linear projection, and hence yields

an affine morphism on its domain of definition. As a consequence, the fibers of π∗,x are
affine; thus, π∗,x is a finite morphism.

The final assertion follows from Remark 2.5.
(3) Since X0 is affine, C intersects ∂X and hence ∂X · C ≥ 1.
By (1), we have dim(Kx) = −KX · C − 2 and dim(Lxad

) = −KXad
· π(C) − 2. Since

π∗,x : Kx → Lxad
is finite, it follows that

KX · C ≥ KXad
· π(C),

with equality if and only if the image of π∗,x is a union of components of Lxad
. Moreover,

(KX + ∂X) · C = (KXad
+ ∂Xad) · π(C)

by Lemma 3.2 and the projection formula. This yields the remaining statements.
(4) By assumption, each component of Lxad

is homogeneous under N0, and hence
under H0 (Lemma 2.9). The corresponding isotropy group is a parabolic subgroup of H0;
thus, it is connected. As π∗,x is finite and H0-equivariant, this yields the assertion.

Example 3.7. Let G = SOn, where n ≥ 3, and let σ be the conjugation by c =
diag(1, . . . , 1,−1) ∈ On. Let H = Gσ,0 = SOn−1. Then N = Gσ = On−1 embedded
in SOn via g 7→ (g, det(g)), and p = Cn−1 on which On−1 acts via its standard represen-
tation. Also, G/H has a unique smooth projective equivariant embedding: the quadric
Qn−1 ⊂ Pn = P(Cn⊕C), where SOn acts on P(Cn⊕C) via its standard representation on
Cn. Moreover, Xad = Pn−1 = P(Cn) and π : X → Xad is a ramified double cover induced
by the linear projection P(Cn ⊕ C) 99K P(Cn).

If n ≥ 4 then X has a unique minimal family of rational curves K; it consists of the
lines in Qn−1. Moreover, π∗ sends K to the family L of lines in Pn−1, and π∗;x : Kx → Lxad

is identified with the inclusion Qn−3 ⊂ Pn−2 = P(p), compatibly with the action of
On−1 = N .

If n = 3 then X = Q2 ≃ P1×P1 has two minimal families of rational curves, the fibers
of the two projections to P1. For both families, π∗,x identifies Kx with a point in P1.

3.3 Minimal families of group and Hermitian types

We still consider a complete symmetric variety X with base point x, and a minimal
family of rational curves K on X; we assume that K contains a highest weight curve C.
As explained above, there is a unique indecomposable factor XC of Xad such that the
composition of π : X → Xad with the projection Xad → XC sends C isomorphically to
its image. In this subsection, we will handle in details the cases where XC is of group or
Hermitian types.

We first handle the group type, where XC is the wonderful completion of an adjoint
simple group HC . The Lie algebra of HC is denoted by hC , and we still denote by C the
highest weight curve inXC . By the main result of [BF15], XC has a unique minimal family
of rational curves L. Moreover, the tangent map τxC

: LxC
→ P(hC) is an HC-equivariant

isomorphism to its image CxC
. If HC is of type Ar with r ≥ 2, i.e., HC ≃ PGL(V ) where
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V is a vector space of dimension r+1 ≥ 3, then hC ≃ End(V )/Cid and CxC
is isomorphic

to P(V )× P(V ∨) embedded in P(hC) via the Segre embedding

P(V )× P(V ∨) ↪→ P(V ⊗ V ∨) = P(End(V ))

followed by the linear projection P(End(V )) 99K P(End(V )/Cid). In all other types, we
have CxC

= P(OC,min), the projectivization of the minimal nilpotent orbit in P(hC).

Proposition 3.8. If XC is of group type, then ∂X ·C equals 1 or 2. In the former case,
every component of Kx is isomorphic to P(OC,min). In the latter case, we have HC ≃
PGL(V ), where dim(V ) ≥ 3, and every component of Kx is isomorphic to P(V )×P(V ∨).

Proof. Recall from Proposition 3.6 that 1 ≤ ∂X · C ≤ ∂Xad · π(C). Moreover, the line
bundle onXad associated with the divisor ∂Xad equals LXad

(α1+· · ·+αr) with the notation
of [BF15, §3]. By combining [BF15, Lem. 3.3, Lem. 3.4], it follows that ∂Xad · π(C) = 2
if HC is of type Ar where r ≥ 2; otherwise, ∂Xad · π(C) = 1.

In the latter case, we must have ∂X · C = ∂Xad · π(C). So every component of Kx is
isomorphic to the orbit HC ·C, by Proposition 3.6 again. Moreover, HC ·C = P(OC,min).

In the former case, LxC
= P(V ) × P(V ∨) consists of two orbits of HC = PGL(V ):

a closed orbit of codimension 1 (the incidence variety, isomorphic to P(OC,min)), and an
open orbit isomorphic to SLr+1 /GLr, and hence simply connected.

If ∂X · C = 2, then by Proposition 3.6 again, we get a finite surjective H-equivariant
morphism π∗,x : Kx → P(V )×P(V ∨). Since the open orbit in the right-hand side is simply
connected, it follows that π∗,x is birational on each component, and hence an isomorphism
in view of Zariski’s main theorem.

On the other hand, if ∂X · C = 1, then the image of π∗,x is the closed orbit and we
conclude as above.

Example 3.9. Assume that π : X → Xad is birational and Xad is the wonderful comple-
tion of PGL(V ), where dim(V ) ≥ 3. Then the highest weight curve Cad ∈ Xad intersects
a unique PGL(V )× PGL(V )-orbit O1,r of codimension 2 in Xad (see [BF15, Lem.3.4]).

If π is an isomorphism over O1,r, then the minimal family K on X satisfies ∂X ·C = 2
and Kx = P(V ) × P(V ∨). Indeed, π is an isomorphism over an open neighborhood of
O1,r in Xad, stable by PGL(V ) × PGL(V ), and every curve in Lxad

intersects such a
neighborhood.

On the other hand, if π is not an isomorphism over O1,r, then ∂X ·C = 1 and Kx is the
incidence variety P(Omin); moreover, we have ∂Xad · Cad = 2 and Lxad

= P(V ) × P(V ∨).
Indeed, π factors through the blow-up φ : X ′ → Xad of O1,r in Xad. Using Proposition
3.6, we may thus assume that X = X ′. Then KX = π∗(KXad

) + E, where E denotes the
exceptional divisor. Thus,

KX · C = KXad
· Cad + E · C > KXad

· Cad,

since C intersects E. It follows that dim(Kx) < dim(Lxad
), and we conclude by Proposition

3.6 again.

Next, we handle the Hermitian type, where XC is the wonderful completion of the
symmetric space GC/NGC

(LC) for a simple factor GC of Gad with a Levi subgroup LC ⊂
GC . We may then assume that G = GC .
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Proposition 3.10. If XC is of Hermitian type but not of type PGL2/N , then ∂X ·C = 1
and every component of Kx is isomorphic to the orbit LC · C.

Proof. By Proposition 3.6, we may assume that X = XC . We now view X as a subvariety
of G (as recalled in §3.1), and use the description of minimal rational curves in G, as in
the proof of Proposition 3.8.

With the notation of §2.6, the highest weight curves are CΘ := UΘ · x and C−α :=
U−α · x (indeed, these curves are irreducible, stable by BL and distinct). As observed in
the proof of Proposition 3.5, these curves are exchanged by an automorphism of X fixing
x; thus, we may assume that C = CΘ.

By [RRS92, §5.5], σ is the inner involution Int(c), where c ∈ T satisfies α(c) = −1 and
β(c) = 1 for all simple roots β ̸= α. In particular, the roots Θ and −α are non-compact
imaginary. Thus, the closed immersion

ι : G/NG(L) −→ G, gNG(L) 7−→ σ(g)g−1

induces isomorphisms
UΘ · x ∼−→ UΘ, U−α · x ∼−→ U−α.

So ι : X → G sends CΘ, C−α isomorphically to the corresponding root curves considered
in [BF15, §3]. Since Θ and −α are long roots, these root curves are minimal; hence ι
sends Kx to the unique family LG,e of minimal rational curves through e in G. Moreover,
ι(Kx) is contained in the fixed locus L−σ

G,e
.

If G is not of type Ar, where r ≥ 2, then the tangent map τe identifies LG,e with
P(Omin). Since dιx identifies TxX with p, we see that

ι(Kx) ⊂ P(Omin ∩ p) ⊂ P(Omin)
σ.

By [Ri82, Thm. A], the right-hand side is a finite union of closed orbits of Gσ,0 = L. We
conclude that the component of C in Kx is L · C.

Otherwise, G = PGL(V ) where dim(V ) = r + 1, and τe yields an isomorphism

LG,e ≃ P(V )× P(V ∨) ⊂ P(End(V )/Cid) = P(g),

equivariantly for the action of−σ. Consider the σ-eigenspace decomposition V = V1⊕V−1.
Then L is the image of GL(V1)×GL(V−1) in PGL(V ); also, P(V )σ = P(V1)⊔ P(V−1) and
likewise for P(V ∨)σ. Moreover, the image of ι(C) under τe is contained in

P(p) = P(Hom(V1, V−1)⊕ Hom(V−1, V1)).

It follows that ι(Kx) is contained in (P(V ∨
1 )×P(V−1))⊔(P(V ∨

−1)×P(V1)). As a consequence,
the component of C in Kx is L · C in this case, too.

We now show that ∂X · C = 1. Consider first the exceptional case, where H = L =
P ∩ Q. Then we have a G-equivariant birational morphism φ : X → G/P × G/Q =: Y
which sends x to the base point y = (P,Q). Since P is a maximal parabolic subgroup
of G associated with a long root, G/P has a unique family of minimal rational curves L.
Moreover, denoting by P the base point of the homogeneous space G/P and by D the
Schubert line in that space (i.e., the unique irreducible B-stable curve), we have that LP =
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L ·D (see e.g. [BK21, Prop. 3.3]). The projection p : X → G/P sends C isomorphically
to D, and yields an isomorphism p∗ : L ·C → L ·D which identifies L ·C with the variety
of lines in G/P through its base point. Since dim(L · C) = dim(Kx) = −KX · C − 2 and
dim(L ·D) = −KG/P ·D − 2, we obtain

KX · C = KG/P ·D = KY · φ(C) = φ∗(KY ) · C

by using the projection formula. On the other hand, we have KX = φ∗(KY ) +
∑

i aiEi,
where the Ei are the exceptional divisors of φ and the ai are positive integers. Since C is
not contained in any Ei, it follows that Ei ·C = 0 for all i. Also, the boundary of Y is an
irreducible divisor E, and ∂X = E ′ +

∑
iEi, where E

′ denotes the strict transform of E.
This yields ∂X ·C = E ′ ·C = E ·D by the projection formula again. SinceD ⊂ G/P×{Q},
where we still denote by Q the base point of G/Q, and E∩ (G/P ×{Q}) is identified with
the Schubert divisor in G/P , we obtain E ·D = 1. This yields the assertion in that case.

Next, we consider the non-exceptional case, where H = NG(L) contains L as a sub-
group of index 2. Then there exists a smooth toroidal equivariant embedding X ′ of G/L
such that the natural map G/L→ G/H extends to a morphism ψ : X ′ → X. By Lemma
3.2, we have KX′ + ∂X ′ = ψ∗(KX + ∂X). Moreover, C lifts uniquely to a highest weight
curve C ′ ⊂ X ′, and the corresponding minimal families have isomorphic components by
Proposition 3.6. Taking dimensions, we obtain KX′ · C ′ = KX · C = ψ∗(KX) · C ′. As a
consequence, we have ∂X ′ · C ′ = ψ∗(∂X) · C ′ = ∂X · C = 1.

Proposition 3.10 leaves out the case of type PGL2/N , which is easily treated:

Lemma 3.11. If XC is of type PGL2/N , then ∂X · C equals 1 or 2. In the former case,
Kx is finite. In the latter case, every component of Kx is a projective line.

Proof. Note that PGL2/N has a unique projective equivariant embedding, namely, P2 on
which PGL2 acts via the projectivization of its adjoint representation. Thus, ∂XC is a
conic, with C as a tangent line so that ∂XC ·C = 2. Also, the minimal rational curves on
XC are just lines, and those through a given point form a P1. This yields the statement
by using Proposition 3.6 as in the proof of the above proposition.

Corollary 3.12. Let G be a simple adjoint group, and X the wonderful embedding of a
Hermitian symmetric space G/NG(L). Denote by CΘ and C−α the highest weight curves
in X, indexed by their weight.

1. If X is exceptional, then it has two minimal families of rational curves K+, K−.
Moreover, K+

x = L · CΘ and K−
x = L · C−α.

2. If X is non-exceptional, then it has a unique minimal family K. Moreover, Kx =
NG(L) · CΘ = L · CΘ ⊔ L · C−α unless G/NG(L) = PGL2/N .

3.4 Some cases of simple type

In this subsection we use previous techniques and the results in the group case to briefly
describe the unique minimal family in some of the cases of simple type. We refer to Table
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1 for the different cases of the classification. A different approach, working in all cases is
developed in Section 4.

Consider a highest weight curve C of simple type, and denote by λ its weight relative
to BH . Then λ is the highest weight of the representation of H0 in p, and hence is the
restriction to TH of some α ∈ R+ (not necessarily unique). Moreover, S := ker(λ)0 is
a subtorus of codimension 1 in TH , and C is an irreducible curve in (G/H)S through x,
stable by the Borel subgroup CBH

(S) of CH(S). So C is a highest weight curve of the
symmetric space CG(S)/CH(S) = (CG(S)/S)/(CH(S)/S), where CH(S)/S has rank 1.
We now apply Lemma 2.12: the adjoint symmetric space of CG(S)/S is of type (A1),
(A1 × A1) or (A2). If σ is inner, then only type (A1) may occur.

Lemma 3.13. Assume that λ = α|TH
for a unique root α (i.e., type (A1×A1) is excluded),

and α is long. Then the component of Kx containing C admits a finite equivariant mor-
phism to K−σ

Gad,id
.

Proof. By assumption, C = Uα · x, where α is non-compact imaginary. Thus, the image
of C under the morphism ψ : X → Gad, obtained by composing ϕ : X → Xad with
ι : Xad → Gad, is just the closure of Uα; since α is long, this is a minimal rational curve
on Gad. This yields the assertion by arguing as in the proof of Proposition 3.6.

The assumptions of the lemma hold if and only if TxC \ {0} is contained in Omin (as
follows by combining Proposition 2.13, Corollary 2.15 and Lemma 2.20).

Proposition 3.14. Assume that TxC \ {0} ⊂ Omin.

1. If ∂X · C = 1, then the component of Kx containing C is H0 · C.

2. If ∂X · C = 2, then X is of type AI with G = PGLr+1 and Kx ≃ Pr.

Proof. If G is not of type Ar or if X is Hermitian (but not of type PGL2/N), we may
argue as in the proof of Proposition 3.10 proving that the component of Kx containing C
is H0 · C and that ∂X · C = 1.

If G is of type Ar and X is not Hermitian, then X is of type AI, with G = PGL(V )
such that dimV = r+1, r ≥ 2 and σ(g) = (gt)−1. In this case, the minimal family KGad,id

identifies with P(V )×P(V ∨) and the involution −σ acts via (−σ)([v], [H]) = ([H⊥], [v⊥])
where the orthogonality is taken with respect to the standard scalar product. We thus
have K−σ

Gad,id
≃ P(V ). If ∂X · C = 1, then dimKx = dimP(V ) − 1 = dimH · C and the

result follows as above. If ∂X · C = 2, then dimKx = dimP(V ) proving the result.

Remark 3.15. In Table 1, we list the nilpotent orbits containing TxC \ {0} (see the
column“σ(Θ) = −Θ”, the condition TxC \ {0} ⊂ Omin being equivalent to σ(Θ) = −Θ by
Corollary 4.25). In particular, the above proposition settles all cases except the following
symmetric spaces: AII, BII, CII, DII, EIV and FII. We will deal with all cases in the next
section.
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4 Minimal families on wonderful symmetric varieties

In this section we deal with wonderful embeddings of adjoint irreducible symmetric spaces.
We may therefore assume that G is semisimple and replacing G by its universal cover, we
may further assume that G is simply connected. Note that in this case Gσ is connected,
so that the group H satisfies Gσ ⊂ H ⊂ NG(G

σ) and NG(G
σ)/Gσ is finite (Lemma 2.9).

Set N = NG(G
σ); then N = NG(H) by Lemma 2.10.

Since G/H is irreducible, σ acts transitively on the simple factors of G. Therefore,
G/N is of group, Hermitian, or simple type. We will consider its wonderful embedding
X = Xad.

We start with reminders on restricted root systems (Subsection 4.1) and their connec-
tion to curves and divisors on X (Subsection 4.2). Many results on these topics are well
known but we could not find a good reference, so we included proofs for the convenience
of the reader. From this we obtain an explicit description of the classes of curves in min-
imal families on X (Subsection 4.3). We then compute the dimension of these minimal
families K using the contact structures on projectivised nilpotent orbits (Subsection 4.4).
It turns out that in all cases except for X of restricted type Ar, the family Kx has the
same dimension as the orbit N ·C where C ∈ Kx is a highest weight curve, which in turn
implies that Kx = N · C. We deal with X of restricted type Ar separately (Subsection
4.5). We conclude with a full description of Kx (Subsection 4.6).

4.1 Restricted root system

Let us first recall a few facts on the restricted root system; we refer to [Vu90] and [Ti11]
for details. Let Ts be a maximal torus of split type and S ⊂ Ts be its maximal split
subtorus: S = {t ∈ Ts | σ(t) = t−1}0. Let R be the root system associated to the pair
(G, Ts). Then σ acts on R. Set S = S/Sσ, X = X(S) and χ = χ − σ(χ) for χ ∈ X(Ts).
We have an identification X = {χ | χ ∈ X(Ts)}. Define the subset R ⊂ X via

R = {α | α ∈ R}.

Then R is an irreducible root system called the restricted root system. It may be non-
reduced (see Remark 4.1 below).

Recall that L = CG(S) is the Levi subgroup containing Ts of a parabolic subgroup
P ⊂ G and that σ(P ) is the opposite parabolic subgroup to P with common Levi subgroup
L. Let Bs ⊂ P be a Borel subgroup and let ∆ ⊂ R+ ⊂ R be the sets of simple roots
and positive roots defined by Bs. Then for α ∈ R+, we have σ(α) = α if and only if α is
a root of L; moreover, if σ(α) ̸= α, then σ(α) < 0. Set ∆1 = {α ∈ ∆ | σ(α) < 0} and
∆0 = ∆ \∆1. Then σ(α) = α for any α ∈ ∆0. Define ∆ ⊂ X via

∆ = {α | α ∈ ∆1}.

Then ∆ is a basis of R ⊂ X. In particular |∆| = rk(X) = dimTs = r is the rank of
X. Furthermore, there exists a length-preserving involution σ on ∆, preserving ∆1 and
acting trivially on ∆0, such that for any α ∈ ∆1, we have

σ(α) + σ(α) = −
∑
β∈∆0

cββ
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with cβ ∈ Z≥0. In particular, if σ(α) ̸= α, then ⟨α∨, σ(α)⟩ ≥ 0. Note that for α, β ∈ ∆1,
we have α = β ⇔ (β = α or β = σ(α)).

A root α ∈ ∆1 such that σ(α) ̸= −α and ⟨α∨, σ(α)⟩ ≠ 0 is called exceptional. If α is
exceptional, then β = σ(α) ̸= α is also exceptional and one of the following two conditions
is satisfied: either σ(α) ̸= −β, or σ(α) = −β and ⟨α∨, β⟩ ≠ 0 (see [deCS99, Lemma 4.3]).
If there exists an exceptional root, then R and X are called exceptional. This definition
is equivalent to the one given in Subsection 2.5, see for example [deCS99, Lemma 4.7].
Note that by [deCS99, Lemma 4.7], there are at most two exceptional roots (thus, of the
form α and σ(α)).

Remark 4.1. If R is exceptional, it is non-reduced. In fact, for α exceptional, we have
⟨α∨, σ(α)⟩ ≠ 0. As α and σ(α) are different but of the same length, we have ⟨α∨, σ(α)⟩ =
1. Thus, γ = α− σ(α) ∈ R and γ = 2α. In particular, α, 2α ∈ R and R is non-reduced.

Example 4.2. There are non-reduced restricted root systems which are non-exceptional
(actually only two families: types CII and FII, see Appendix). For example, if G = Sp6,
there exists an involution σ such that Gσ = Sp2×Sp4 and with the labeling of the simple
roots as in Bourbaki [Bo68], we have ∆0 = {α1, α3} and ∆1 = {α2}. Set α = α2, then
σ(α) = α, σ(α) = −(α1 + α2 + α3) and α = α1 + 2α2 + α3 = γ ∈ R. We have γ = 2α;
thus, R = {−2α,−α, α, 2α} but G/Gσ is not exceptional.

Let α ∈ R+ such that σ(α) < 0. The roots α and σ(α) have the same length. As
explained in [Vu90, Lemme 2.3], three cases occur and the coroot α∨ is defined accordingly:

1. If σ(α) = −α, then α∨ = 1
2
α∨.

2. If ⟨α∨, σ(α)⟩ = 0, then α∨ = 1
2
(α∨ − σ(α)∨).

3. If ⟨α∨, σ(α)⟩ = 1, then α∨ = α∨ − σ(α)∨.

Case (3) above actually occurs if and only if R is non-reduced, see Proposition 4.3.5
below. In the next proposition, we summarise the results on restricted root systems
needed for the study of curves and divisors on X. These results might be well known to
the experts but we could not find a good reference, so we included a proof and further
results on restricted root systems in Subsection 6.1 in the Appendix.

Proposition 4.3. Let Θ be the highest root of R and w0 ∈ W be the longest element.

1. Θ is the highest root of R, the actions of σ and w0 on roots commute, and we have
w0(Θ) = −Θ.

2. If σ(Θ) ̸= −Θ, then Θ and σ(Θ) are strongly orthogonal long roots.

3. If α ∈ ∆1 is exceptional, its coefficient in the expansion of Θ in simple roots is 1.

4. If R is not of type A1, then there exists α ∈ ∆ with ⟨Θ∨
, α⟩ = 1 and 2Θ

∨
is an

indivisible cocharacter of S.

5. For α ∈ ∆1, we have the equivalence: α, 2α ∈ R ⇔ ⟨α∨, σ(α)⟩ = 1.
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Proof. (1) This is Lemma 6.1, Lemma 6.2 and Corollary 6.3. (2) This is Proposition
6.12.4. (3) This is the last statement in Corollary 6.9. (4) This is Proposition 6.12.2-3.
(5) This is Proposition 6.4.

We end this subsection with a piece of notation. For α ∈ ∆, we denote by α̂∨ the
simple root of R

∨
colinear to α∨. Note that if 2α ̸∈ R, then α̂∨ = α∨ but if 2α ∈ R, we

have α̂∨ = 1
2
α∨ = (2α)∨. In particular, for α ∈ ∆1, Proposition 4.3.5 above implies that

α̂∨ =

{
α∨ if ⟨α∨, σ(α)⟩ ≠ 1,
1
2
α∨ if ⟨α∨, σ(α)⟩ = 1.

We will also need the following result proved in Lemma 6.11.

Lemma 4.4. Assume that α ∈ ∆1 is an exceptional root. Then the coefficient of α̂∨ in
the expansion of Θ

∨
in terms of simple coroots of R is equal to 1.

4.2 Divisors and restricted root system

We relate the Picard group of X (viewed as the group of divisors up to linear equivalence),
to the restricted root system R. We will need some definitions from the theory of spherical
varieties, we refer to [Pe14] for further details. The variety X is spherical: it is a normal
G-variety such that Bs has a dense orbit. This implies that Bs acts on X with finitely
many orbits. In particular there are finitely many prime Bs-stable divisors in X. The
boundary ∂X = X1 ∪ · · · ∪ Xr with r the rank of X is the union of the prime G-stable
divisors. The prime Bs-stable divisors which are not G-stable are called colors. We denote
by DX the set of colors and by VX = {X1, . . . , Xr} the set of prime G-stable divisors.

We start with a description of prime G-stable divisors. Let i : Y → X be the inclusion
of the closed G-orbit in X. Recall that Y = G/P and that for any character λ of P ,
we have a homogeneous line bundle LY (λ) = G ×P C−λ on G/P , where C−λ is the 1-
dimensional P -representation of weight −λ. Let B−

s be the Borel subgroup containing
Ts opposite to Bs and let z ∈ Y be the unique B−

s -stable point in Y . By [deCP83,
Proposition 8.1 and Corollary 8.2], we have the following result.

Proposition 4.5. 1. The map i∗ : Pic(X) → Pic(Y ) is injective.

2. For any i ∈ [1, r], the torus Ts acts on TzX/TzXi with weight αi ∈ ∆.

3. We have OX(Xi)|Y = LY (αi).

4. The map VX → ∆, Xi 7→ αi is bijective.

Remark 4.6. We set Xαi
:= Xi for i ∈ [1, r] so that Xβ is well defined for β ∈ ∆.

Next we want to relate colors and restricted roots. This is more difficult, since there
may be more colors than restricted roots as Propositions 4.7 and 4.8 below show. The
following proposition holds for any projective spherical variety with a unique closed orbit
(see [Pe14, Theorem 3.2.4])

Proposition 4.7. We have Pic(X) =
⊕

D∈DX
Z[D].
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The rank of the Picard group is determined as follows (see [deCP83, Theorem 7.6]).

Proposition 4.8. We have Pic(X) = Zr+s where r is the rank of X and s is the number
of restricted simple roots γ ∈ ∆ such that there exists a pair of exceptional simple roots
α, β = σ(α) with α = γ = β.

Remark 4.9. In particular we have the following formula:

rk(Pic(X)) =

{
r if X is not exceptional,
r + 1 if X is exceptional.

The proof of Proposition 4.8 in [deCP83, Theorem 7.6]) suggests a correspondence
between colors and restricted roots. We give a description of this using results of Luna.
For α ∈ ∆, recall that Gα denotes the subgroup of G generated by Uα and U−α, and set
DX(α) = {D ∈ DX | Gα ·D ̸= D}. Note that if σ(α) = α, then DX(α) = ∅ (see [Lu01]).

Proposition 4.10. For any α ∈ ∆1, the set DX(α) consists of a unique element. More-
over, for α, β ∈ ∆1, we have DX(α) = DX(β) only if ⟨α∨, β⟩ = 0 and σ(α) = −β.

Proof. This is a consequence of a result of Luna which holds true for any wonderful variety
(see [Lu01, Section 1.4]). Luna proves that three cases, called (a), (a′) and (b), occur. In
cases (a′) and (b), the set DX(α) consists of a unique element, while in case (a) the set
DX(α) consists of two elements. We prove that case (a) does not occur: in this case, we
have α = γ = γ − σ(γ) for some γ ∈ ∆. Thus, σ(α) = −α and α = 2α = 2γ ∈ ∆. In
particular, γ, 2γ ∈ ∆, which contradicts the fact that ∆ is a basis of R.

For α, β ∈ ∆1, there are, according to [Lu01, Proposition 3.2], the following possibili-
ties to have DX(α) ∩ DX(β) ̸= ∅:

• Both α and β are in ∆, in which case we may have |DX(α) ∪ DX(β)| = 3.

• ⟨α∨, β⟩ = 0 and α + β ∈ ∆ or 1
2
(α + β) ∈ ∆.

The first case does not occur by the above argument. If ⟨α∨, β⟩ = 0 and 1
2
(α+ β) ∈ ∆ or

α+β ∈ ∆, then there exists γ ∈ ∆1 such that γ = γ−σ(γ) = 1
2
(α+β) or γ = γ−σ(γ) =

α + β. Write

σ(γ) + σ(γ) = −
∑
δ∈∆0

cδδ.

Then, we have

1

2
(α + β) = γ + σ(γ) +

∑
δ∈∆0

cδδ or α + β = γ + σ(γ) +
∑
δ∈∆0

cδδ.

In the first case, this implies α = β and γ + σ(γ) ≤ α, which is impossible. In the
second case, we get that γ equals α or β. Assume for example that γ = α, then we have
σ(α) = σ(γ) = β and cδ = 0 for all δ ∈ ∆0. We thus have σ(α) = σ(γ) = −σ(γ) = −β.
Note that α = β.
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Remark 4.11. If X is not the wonderful compactification of an adjoint symmetric space,
then there may be some simple roots α ∈ ∆1 with |DX(α)| = 2. A typical example is the
case G = SL2 and H = T a maximal torus. Then N = NG(T ) is the normalizer of the
torus. There is a unique projective compactification of G/H given by P1×P1 with two B-
stable divisors D+ and D− and both are such that SL2 ·D± = X. We thus have DX(α) =
{D+, D−}, where α is the unique simple root of G. The wonderful compactification Xad of
G/N is the quotient of X by the involution exchanging the two factors and is isomorphic
to P2 with a unique B-stable divisor D, so that DXad

(α) = {D}.
The restricted root system is R = {−α, α} in both cases. But for a maximal split

torus Ts, we have α ∈ X(Ts/H ∩ Ts) while α ̸∈ X(Ts/N ∩ Ts) but 2α ∈ X(Ts/N ∩ Ts).

By Proposition 4.10, we may define a map ζ : ∆1 → DX by ζ(α) = D withD ∈ DX(α).

Lemma 4.12. The map ζ : ∆1 → DX is surjective.

Proof. For D ∈ DX , there exists α ∈ ∆1 such that D ∈ DX(α). Indeed, since G is
generated by the Gα for α ∈ ∆ and since D is not G-stable, there exists at least one
α ∈ ∆ with Gα ·D ̸= D. Furthermore, by [Lu01], we have α ̸∈ ∆0; thus, α ∈ ∆1.

Corollary 4.13. The map τ : DX → ∆, D 7→ α, with α ∈ ∆1 such that D ∈ DX(α), is
well defined and surjective.

Proof. The restricted root α does not depend on the choice of α with D ∈ DX(α): if
D ∈ DX(α)∩DX(β), then β = −σ(α) and β = α by Proposition 4.10. For the surjectivity,
note that the composition τ ◦ ζ is surjective since τ ◦ ζ(α) = α.

Proposition 4.14. The map τ is injective except if X is exceptional, in which case the
only non-trivial fiber is τ−1(α) = {ζ(α), ζ(β)}, where α, β are the exceptional roots.

Proof. Assume first that α is exceptional and set β = σ(α). Then τ(ζ(α)) = α = β =
τ(ζ(β)). If ζ(α) = ζ(β), then DX(α) ∩ DX(β) ̸= ∅. We thus have β = −σ(α) and
⟨α∨, σ(α)⟩ = −⟨α∨, β⟩ = 0, a contradiction with the fact that α is exceptional. Therefore,
ζ(α) ̸= ζ(β) and τ is not injective.

On the other hand, the map τ is surjective and |DX | = rk(Pic(X)) = r + s = |∆|+ s
with s the number of pairs of exceptional roots (α, σ(α)). The result follows from this.

Corollary 4.15. Let α, β ∈ ∆1 with α ̸= β. Then ζ(α) = ζ(β) if and only if β = −σ(α)
and ⟨α∨, β⟩ = 0.

Proof. Assume that ζ(α) = ζ(β), then DX(α) ∩ DX(β) ̸= ∅ and the result follows from
Proposition 4.10. Conversely, if β = −σ(α) and ⟨α∨, β⟩ = 0, then α = β. If ζ(α) ̸= ζ(β),
then (α, β) is a pair of exceptional roots. In particular, we would have 0 ̸= ⟨α∨, σ(α)⟩ =
−⟨α∨, β⟩ = 0, a contradiction. Thus ζ(α) = ζ(β).

Remark 4.16. We get a characterisation of simple roots having the same restricted root:
For α, β ∈ ∆1 with α ̸= β, we have α = β if and only if either ((α, β) is a pair of
exceptional roots with σ(α) = β), or (β = −σ(α) and ⟨α∨, β⟩ = 0).
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We now compute the restrictions i∗OX(D) for D ∈ DX . The next proposition is a
direct application of results in [Lu97]. For α ∈ ∆, let ϖα be the fundamental weight
associated to α.

Proposition 4.17. Let α ∈ ∆1 and let λα ∈ X(Ts) be such that i∗OX(ζ(α)) = LY (λα).
Then we have

λα =


2ϖα if σ(α) = −α,
ϖα +ϖ−σ(α) if σ(α) = −σ(α) and ⟨α∨, σ(α)⟩ = 0,
ϖα otherwise.

Proof. For β ∈ ∆1, let Yβ ⊂ Y be the Schubert curve dual to OY (ϖβ). Then by [Lu97,
Lemma 3.1.1 and Lemma 3.1.2], we have

Yβ · i∗ζ(α) =
{

2δα,β if σ(α) = −α,
δζ(α),ζ(β) otherwise.

The result follows from this and from the facts that if |ζ−1(ζ(α))| > 1, then ζ−1(ζ(α)) =
{α, σ(α)} and that, by Corollary 4.15, this occurs if and only if σ(α) = −σ(α) and
⟨α∨, σ(α)⟩ = 0.

The above proof implicitly uses the fact that there exists a family of irreducible B-
stable curves (CD)D∈DX

such that the classes [CD] ∈ A1(X) form the dual basis to the
basis ([D])D∈DX

of Pic(X) (see [Lu97, Lemma 3.1.2]). Recall the definition of α̂ for α ∈ ∆
and the notation Xβ for β ∈ ∆ from Remark 4.6.

Corollary 4.18. We have Xβ · Cζ(α) = ⟨α̂∨, β⟩ for all α, β ∈ ∆1.

Proof. Recall that i∗OX(Xβ) = LY (β). Note that we have β =
∑

γ∈∆⟨γ∨, β⟩ϖγ. We get

Xβ · Cζ(α) =

{
1
2
⟨α∨, β⟩ if σ(α) = −α,

⟨α∨, β⟩ otherwise.

Note that ⟨α∨, β⟩ = ⟨−σ(α)∨, β⟩ so that if σ(α) = −σ(α) and ⟨α∨, σ(α)⟩ = 0, we have
⟨α∨, β⟩ϖα + ⟨−σ(α)∨, β⟩ϖ−σ(α) = ⟨α∨, β⟩λα.

We now compare the above values to ⟨α̂∨, β⟩. If σ(α) = −α, then α̂∨ = α∨ = 1
2
α∨

proving the first case. If σ(α) ̸= −α, we have two possibilities: either ⟨α∨, σ(α)⟩ =
0 or ⟨α∨, σ(α)⟩ = 1. In the former case, we have α̂∨ = α∨ = 1

2
(α∨ − σ(α)∨); thus,

⟨α̂∨, β⟩ = 1
2
(⟨α∨, β⟩+ ⟨−σ(α)∨, β⟩) = ⟨α∨, β⟩. Finally, if ⟨α, σ(α)⟩ = 1, then α̂∨ = 1

2
α∨ =

1
2
(α∨ − σ(α)∨) and the result follows as before.

Recall that Pic(X) = ⊕D∈DX
Z[D]. Furthermore, by [Pe14, Theorem 3.2.9] the monoid

Nef(X) of nef divisors is given by Nef(X) = ⊕D∈DX
Z≥0[D]. It coincides with the monoid

of globally generated divisors. On the curve side, we have A1(X) = ⊕D∈DX
Z[CD] and

the monoid of effective classes of curves NE(X) is given by NE(X) = ⊕D∈DX
Z≥0[CD] (see

[Pe18] for more on curves on spherical varieties). Furthermore, we have a Z-linear map

ψ : A1(X) → Z∆∨

defined by ψ(CD) = α̂∨, for D ∈ DX(α). By Corollary 4.18, we have Xβ · C = ⟨ψ(C), β⟩
for all [C] ∈ NE(X).
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Proposition 4.19. The map ψ : A1(X) → Z∆∨
is surjective.

1. The image of the monoid of effective curves is the monoid spanned by coroots.

2. The image of the monoid of curves having non-negative intersection with any compo-
nent of ∂Xad is the intersection of Z∆∨

with the monoid of dominant cocharacters.

Proof. The surjectivity follows from the surjectivity of τ . The monoid of effective curves
is spanned by the set {CD | D ∈ DX} whose image by ψ is ∆

∨
; this proves (1). Part (2)

follows from Corollary 4.18

Recall that a curve class γ ∈ A1(X) is covering if there exists a curve C of class γ
passing through a general point x ∈ X. Note that this implies that γ · Xβ ≥ 0 for all

β ∈ ∆. We call a class γ ∈ NE(X) virtually covering if Xβ · γ ≥ 0 for all β ∈ ∆.

Corollary 4.20. 1. If X is non-exceptional, then there is a unique virtually covering
curve class γ0 ∈ NE(X) which is minimal in this monoid. Moreover, we have

ψ(γ) = Θ
∨
.

2. If X is exceptional, then there are exactly two minimal virtually covering curve
classes γ+0 , γ

−
0 ∈ NE(X) and we have ψ(γ+0 ) = Θ

∨
= ψ(γ−0 ).

Proof. The image by ψ of an effective and virtually covering curve class is in the inter-
section of the monoid generated by coroots in R and the dominant chamber. There is a
unique minimal such element: the coroot of the highest root of R. Since Θ is the highest
root of R by Proposition 4.3.1, the element Θ

∨
is the smallest possible image by ψ of an

effective and virtually covering curve class.
If X is non-exceptional, then ψ is injective and this proves (1). To prove (2), we are

left to prove that if X is exceptional, there are exactly two classes γ+ and γ− in NE(X)

such that ψ(γ+) = Θ
∨
= ψ(γ−). But the kernel of ψ is Z([CDα ] − [CDσ(α)

]) with α an

exceptional root. Since the coefficient of α̂∨ in Θ
∨
is 1 by Lemma 4.4, there are exactly

two classes in NE(X) that are mapped to Θ
∨
via ψ, namely, γ+ with coefficient 1 in Cα

and 0 on Cσ(α), and γ
− with coefficient 0 in Cα and 1 on Cσ(α).

4.3 Curves classes of the minimal families

In this subsection, we prove that the curve classes γ0, γ
+
0 and γ−0 are covering and are

therefore the classes of minimal rational curves on X.
We will need a few more results on X. Recall that x ∈ X0 is our base point and

that r is the rank of X. The G-orbits in X are indexed by the subsets I ⊂ [1, r] via
OI = {x′ ∈ X | x′ ∈ Xi ⇔ i ∈ I}.

The local structure theorem associated to the closed orbit Y gives the following: there
exists an affine P -stable open subset XY,B ⊂ X containing x with XY,B ∩ Y ̸= ∅ and
a P -equivariant isomorphism XY,B ≃ Ru(P ) × Ar. The closure of Ts · x = S · x in
XY,B is Ts-equivariantly isomorphic to Ar, where the torus Ts acts linearly with weights
∆ = (αi)i∈[1,r]. The prime G-divisor Xαi

is defined in XY,B by the vanishing of the
coordinate with weight αi in Ar.
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Recall that i : Y → X denotes the inclusion of the closed G-orbit and that the map
i∗ : Pic(X) → Pic(Y ) is injective. Let

XX(Ts) = {λ ∈ X(Ts) | LY (λ) ∈ Im i∗Pic(X) ⊂ Pic(Y )}.

For λ ∈ XX(Ts), we write LX(λ) for the line bundle such that i∗LX(λ) = LY (λ) (see
[deCP83, End of 8.1] for these results).

Given a cocharacter η∨ : Gm → S = S/Sσ, we say that η∨ is dominant if ⟨η∨, α⟩ ≥ 0
for all α ∈ ∆. A cocharacter η∨ defines a map C× → X, t 7→ η∨(t) · x. This map extends
to a morphism η∨ : P1 → X.

The following lemma generalizes [BF15, Lemma 3.1] to the case of wonderful com-
pactifications of adjoint irreducible symmetric spaces.

Lemma 4.21. Let η∨ : Gm → S be a dominant cocharacter, η∨ : P1 → X the correspond-
ing morphism, and Cη∨ its image.

1. We have η∨(0) ∈ OI , where I := {i ∈ [1, r] | ⟨η∨, αi⟩ ≠ 0}.

2. We have η∨(∞) ∈ OJ , where J := {j ∈ [1, r] | ⟨η∨, w0(αj)⟩ ≠ 0}.

3. The morphism η∨ : P1 → Cη∨ is an isomorphism if and only if there exists i ∈ [1, r]
such that ⟨η∨, αi⟩ = 1.

4. For λ ∈ XX(Ts), we have deg(η∨)∗LX(λ) = ⟨η∨, λ− w0λ⟩.

Proof. (1) Since η∨ is dominant, its extends to a morphism A1 → XY,B ∩ T defined
by t 7→ (t⟨η

∨,αi⟩)i∈[1,r], where XY,B ∩ T is identified with Ar as above. In particular,
η∨(0) ∈ XY,B and vanishes on the coodinates with indices in {i ∈ [1, r] | ⟨η∨, αi⟩ ̸= 0}.
Moreover, the morphism η∨ : P1 → Cη∨ is a local isomorphism at η∨(0) if and only if
there exists i such that ⟨η∨, αi⟩ = 1.

(2) Consider the open affine subset w0 ·XY,B of X. It is isomorphic to Ru(P )
w0 × Ar

with a linear action of Ts on Ar with weights w0(∆). All these weights are non-negative
linear combinations of negative roots. In particular, the one-parameter subgroup −η∨
acts with non-negative weights on Ar, and hence extends to a morphism A1 → w0 ·XY,B,
t 7→ (t⟨η

∨,−w0(αi)⟩)i∈[1,r]. It follows that η∨(∞) = (−η∨)(0) ∈ w0 · XY,B and as above,
η∨(∞) ∈ OJ . Moreover, the morphism η∨ : P1 → Cη∨ is a local isomorphism at η∨(∞) if
and only if there exists i such that ⟨η∨,−w0(αi)⟩ = 1. Note that −w0(αi) = −w0(αi) +
w0(σ(αi)) = −w0(αi) and since −w0 permutes ∆1, by Proposition 4.3.1, the previous
condition is true if and only if there exists i such that ⟨η∨, αi⟩ = 1.

3. Follows from the above conditions at η∨(0) and η∨(∞).
4. The pull-back of LX(λ) to XY,B (resp. w0 ·XY,B) has a trivializing section of weight

λ (resp. w0(λ)). As a consequence, the line bundle (η∨)∗LX(λ) is a Gm-linearized line
bundle on P1 with weights ⟨η∨, λ⟩ at 0 and ⟨η∨, w0λ⟩ at ∞. Since the degree of such a
line bundle is the difference of its weights, this yields our assertion.

We now apply the above result to η∨ = Θ
∨
.

Corollary 4.22. Consider the morphism Θ
∨
: P1 → X.
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1. If R is not of type A1, then Θ
∨
is an isomorphism onto its image.

2. If R is of type A1, then Θ
∨
has degree 2 over its image.

3. The push-forward class is given as follows:

Θ
∨
∗ [P1] =

{
2γ0 if X is non-exceptional,
γ+0 + γ−0 if X is exceptional.

Proof. (1) If R is not of type A1, then Proposition 4.3.4 implies that there exists a simple

root α ∈ ∆ such that ⟨Θ∨
, α⟩ = 1. Therefore, Θ

∨
: P1 → X is an isomorphism onto its

image.
(2) If R is of type A1, then Θ

∨
induces a map Gm → XY,B ∩ T = A1, t 7→ t2 which is

of degree 2 onto its image.
(3) For λ ∈ XX(Ts), we have [LX(λ)] · Θ

∨
∗ [P1] = deg(Θ

∨
)∗LX(λ) = ⟨Θ∨

, λ− w0(λ)⟩ =
⟨Θ∨

, λ⟩ − ⟨w0(Θ)∨, λ⟩ = 2⟨Θ∨
, λ⟩ by Proposition 4.3.1. This proves the result for X non-

exceptional, since Xβ ·C0 = ⟨Θ∨
, β⟩, OX(Xβ) = LX(β) and (β)β∈∆ generates XX(Ts)⊗ZQ.

If X is exceptional, then by the same argument, we have that the class of the image
and the class γ+0 +γ−0 agree on all boundary divisors. We therefore only need to check that
they agree on Dα for α an exceptional simple root. Assume that γ+0 is dual to Dα while

γ−0 is dual to Dσ(α). We get 2⟨Θ∨
, λα⟩ = ⟨Θ∨, λα⟩ = 1 = Dα · (γ+0 + γ−0 ) by Proposition

4.3.3. Similarly, we have 2⟨Θ∨
, λσ(α)⟩ = ⟨Θ∨, λσ(α)⟩ = 1 = Dσ(α) · (γ+0 + γ−0 ).

Recall the definitions of the nilpotent orbits Omin and of type Osum from Definition
2.17. For G simple with maximal torus Ts of split type such that σ(Θ) ̸= −Θ, define the
nilpotent orbit Osum,σ by Osum,σ = G · (eΘ − σ(eΘ)) with eΘ ∈ gΘ \ {0}. Note that by
Proposition 4.3.3, the nilpotent orbit Osum,σ is indeed of type Osum.

Proposition 4.23. There exists a smooth rational curve C in X such that x ∈ C and
[C] = γ, γ+0 or γ−0 .

Furthermore, we have TxC \ {0} ⊂ Omin if σ(Θ) = −Θ, and TxC \ {0} ⊂ Osum,σ

otherwise.

Proof. If σ(Θ) = −Θ, pick e = eΘ ∈ gΘ \ {0}. If σ(Θ) ̸= −Θ, pick e = eΘ − σ(eΘ) with
eΘ as above. Note that e ∈ Omin for σ(Θ) = −Θ and that, by Proposition 4.3.2, e is in
a nilpotent orbit of type Osum for σ(Θ) ̸= −Θ. Set f = σ(e). We may choose e so that

h = [e, f ] = 2Θ
∨
. Then (e, h, f) is a sl2-triple. The cocharacter h induces a morphism

h : P1 → X which factors through Θ
∨
: P1 → X

P1

h

  
2:1
��

P1 Θ
∨
// X

so that the vertical map is a double cover. Note in particular that both maps h and Θ
∨

have the same image C ′ in X.
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Denote by G(h) the closed subgroup of G with Lie algebra ⟨e, h, f⟩. Then G(h) is
isomorphic to SL2 or PGL2, and σ acts non-trivially on G(h). In particular, we have an
isogeny SL2 → G(h) and σ lifts to a unique involution on SL2. Let T ′ be a maximal
torus of SL2 fixed pointwise by σ and let X ′ be the closure of G(h) · x in X. Then X ′

is either isomorphic to P1 × P1 (the unique proper embedding of SL2 /T
′) or to P2 (the

unique proper embedding of SL2 /NSL2(T
′)). Note that in any case x ∈ X ′; thus, X ′ ∩X0

is non-empty. In the first case, the curve C ′ is linearly equivalent to the diagonal curve
D. In the second case, the curve C ′ is a line in P2. In both cases, there exists a line L
through x in X ′ so that TxL is equal to ⟨e⟩, as a subset of TxX identified to p.

If R is of type A1, then X is non-exceptional and Θ
∨
has degree 2 onto its image C ′.

In particular [C ′] = 1
2
Θ

∨
∗ [P1] = γ and by minimality, γ0 has to be the class of a line in X ′.

Note that this implies that we are in the case X ′ = P2.
Assume that R is not of type A1. Then Θ

∨
: P1 → X is an isomorphism onto its image

C ′. Note also that h ∈ X∨ is indivisible as a cocharacter of Ts by Proposition 4.3.4; thus,
h(−1) is non-central in G. Since h(−1) is central in G(h), this group is isomorphic to SL2

and since h(−1) is non-central in G, we have G(h)σ = T ′ and X ′ = P1 × P1. Therefore,
[C ′] = [D]. Define [C+] and [C−] to be the classes of the two rulings in P1×P1 ⊂ X. Then
[C+] + [C−] = [D] = [C ′]. Since any ruling meets X ′ ∩X0 = X ′ \D, the classes [C+] and
[C−] are virtually covering. This implies that [C+] = [C−] = γ0 if X is non-exceptional
and (up to exchanging the two rulings) [C+] = γ+0 and [C−] = γ−0 if X is exceptional.

We may now complete Proposition 3.5 by computing the classes of curves in minimal
families.

Corollary 4.24. 1. If X is non-exceptional, there exists a unique family K of minimal
rational curves and for C ∈ K, we have [C] = γ0.

2. If X is exceptional, there exists two families K+ and K− of minimal rational curves
and for C ∈ K±, we have [C] = γ±0 .

Proof. Follows from Proposition 3.5, Corollary 4.20 and Proposition 4.23.

Corollary 4.25. Let K be a minimal family, and C ∈ Kx. If σ(Θ) = −Θ, then we have
TxC \ {0} ⊂ Omin. Otherwise, TxC \ {0} ⊂ Osum,σ.

We now compute the dimensions of the minimal families K and K± and of the nilpotent
orbitsOmin andOsum,σ. Let ρ be the half-sum of positive roots in G and ρP be the half-sum
of positive roots in P . Set κ = 2ρ− 2ρP . We have κ =

∑
α∈R+,σ(α)<0 α. Let Σ =

∑
α∈∆ α

be the sum of all restricted simple roots.

Theorem 4.26. Let K be a minimal family, let C ∈ Kx and m ∈ TxC \ {0}. We have

dimKx = ⟨Θ∨
, κ+ Σ⟩ − 2 and dimG ·m = 2⟨Θ∨

, κ⟩.

In particular, dimKx = 1
2
dimG ·m− 1 + (⟨Θ∨

,Σ⟩ − 1).

Remark 4.27. Note that the value of ⟨Θ∨
,Σ⟩ depends on the type of R as follows:

∂X · C = ⟨Θ∨
,Σ⟩ =

{
2 if R is of type Ar with r ≥ 1,
1 otherwise.

35



Proof. Recall from Proposition 3.6 that dimKx = −KX · C − 2. By adjunction formula,
we have (−KX)|Y = −KY + ∂X|Y . Since LY (−KY ) = LY (κ) and i

∗LX(∂X) = LY (Σ),

we get i∗LX(−KX) = LY (κ+ Σ) and dimKx = ⟨Θ∨
, κ+ Σ⟩ − 2.

We now compute the dimension of G ·m. Assume first that σ(Θ) = −Θ, then G ·m =
Omin. It is a classical result that dimOmin = 2⟨Θ∨, ρ⟩ (see for example [CP11] or [BF15,

Lemma 4.1]). On the other hand, we have Θ
∨
= 1

2
Θ∨. Thus, ⟨Θ∨

, κ⟩ = ⟨Θ∨, ρ⟩−⟨Θ∨, ρP ⟩.
Since σ(ρP ) = ρP , we get ⟨Θ∨, ρP ⟩ = ⟨σ(Θ), σ(ρP )⟩ = −⟨Θ∨, ρP ⟩ thus ⟨Θ∨, ρP ⟩ = 0 and

dimG ·m = 2⟨Θ∨, ρ⟩ = 2⟨Θ∨
, κ⟩.

Assume now that σ(Θ) ̸= −Θ, then we have G·m = Osum,σ. To compute the dimension
of the orbit Osum,σ, we recall some facts on nilpotent elements obtained as sums of weight
vectors (see [Pa99] and [FR08]). We may assume m = e ∈ g is a nilpotent element which
can be written as a sum e = eΘ + e−σ(Θ) with eΘ ∈ gΘ \ {0} and e−σ(Θ) ∈ g−σ(Θ) \ {0}.
Recall that Θ and −σ(Θ) are strongly orthogonal long roots. Let f, h ∈ g such that

(e, h, f) is a sl2-triple. We may assume that h = Θ∨ − σ(Θ)∨ = 2Θ
∨
and f = σ(e). Then

h induces a grading on g = g(−2) ⊕ g(−1) ⊕ g(0) ⊕ g(1) ⊕ g(2), where f ∈ g(−2) and
e ∈ g(2). Furthermore, if Q is the subgroup of G with Lie algebra g(0) ⊕ g(1) ⊕ g(2),
then Q is a parabolic subgroup and if L is the subgroup of G with Lie algebra g(0), then
L is a Levi subgroup of Q and the orbit L · e is dense in g(2). In addition, we have
G · e = G×Q (L · e) so that dimG · e = dim(G/Q) + dim g(2) = dim g(1) + 2 dim g(2).

If σ(α) = α, then ⟨Θ∨−σ(Θ∨), α⟩ = ⟨Θ∨, α⟩−⟨Θ∨, σ(α)⟩ = 0 and ⟨Θ∨−σ(Θ∨), ρP ⟩ =
0. If α ∈ R+ is such that gα ⊂ g(i) for i ≥ 0, then ⟨Θ∨ − σ(Θ∨), α⟩ = i, thus

⟨Θ∨ − σ(Θ∨), κ⟩ = ⟨Θ∨ − σ(Θ∨), 2ρ⟩ =
2∑

i=0

∑
α∈R+, gα⊂g(i)

i = dim g(1) + 2 dim g(2).

This proves the result, since ⟨Θ∨ − σ(Θ∨), κ⟩ = 2⟨Θ∨
, κ⟩.

4.4 Contact structure

In this subsection, we compute the dimension of H · m for m ∈ TxC \ {0}, C ∈ Kx

and K a minimal family. We first gather some facts on orbits associated with symmetric
spaces, and in particular prove that orbits of symmetric subgroups of G are Lagrangian
subvarieties in nilpotent G-orbits. Recall the following general definitions.

Definition 4.28. Let M̂ be a smooth complex variety of dimension 2n+2 and let M be
a smooth complex variety of dimension 2n+ 1.

1. A symplectic structure on M̂ is a closed symplectic form ω : TM̂ × TM̂ → M̂ × C.

2. A contact structure on M is an everywhere non-vanishing map η : TM → L, where
L is a line bundle, such that the bilinear form θη : D × D → TM/D defined by
(u, v) 7→ [u, v] (mod D) on D := Ker η is non-degenerate for all m ∈M .

If η : TM → L is a contact structure onM , then there is a natural symplectic structure
ω defined by ω = d(p∗η) on M̂ = L×, where L× is the C×-bundle over M with structure

map p : M̂ →M , associated to L.
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Definition 4.29. A symplectic structure ω on M̂ is induced by a contact structure
η : TM → L on M if M̂ = L× and ω = d(p∗η).

The most famous examples of the above structures are given by coadjoint orbits in
the dual g∨ of the Lie algebra g of a connected reductive group G. For later purposes,
we present a (non-canonical) version of Kostant-Kirillov form which takes place in g the
Lie algebra and not g∨. If g is semisimple, the Killing form identifies g with g∨ and the
construction is canonical.

Example 4.30. Choose an invariant non-degenerate bilinear form B on g. Let m be a
non-zero element in g and let M̂m = G · m and Mm = G · [m] ⊂ P(g) be the orbits of
m ∈ g and of [m] ∈ P(g) under the adjoint action. Let Gm be the isotropy subgroup
of G at m, with Lie algebra gm. Define the anti-symmetric bilinear form Bm on g by
Bm(y, z) = B(m, [y, z]). We have KerBm = gm; thus, Bm descends to a symplectic form
ωm : g/gm × g/gm → C at m ∈ g. By the Jacobi identity, the form ωm is closed.

If m is such that the orbit M̂m = G.m is the cone in g over Mm = G · [m] ⊂ P(g) (i.e.,
the affine cone minus the origin), then the arguments in [Be98, Proposition 2.2] adapt
verbatim and yield a contact structure η on Mm which induces the symplectic form ωm.
In particular, if m is a nilpotent element in g, then the existence of an sl2-triple containing
m ensures that M̂m is the cone over Mm (see [Be98, Paragraph (2.4)]).

Given a symplectic structure on a variety M̂ or a contact structure on a variety M ,
it is natural to ask for Lagrangian or Legendrian subvarieties; we recall their definitions.
A Lagrangian subspace in a symplectic vector space V of dimension 2m is an isotropic
subspace of maximal dimension, i.e., of dimension m.

Definition 4.31. Let M̂ have a symplectic structure ω. A smooth subvariety L̂ ⊂ M̂
is called Lagrangian if, for all m ∈ L̂, the subspace TmL̂ ⊂ TmM̂ is Lagrangian for the
symplectic form ωm on TmM̂ .

Definition 4.32. LetM have a contact structure η and let p : M̂ →M be the C×-bundle
L× associated to the line bundle L with symplectic form ω = d(p∗η). A smooth subvariety

L ⊂M is called Legendrian if L̂ = p−1(L) is Lagrangian in M̂ .

Example 4.33. Let G be simple and g its Lie algebra. Let m ∈ g be a highest weight
vector. Set Omin = G ·m and P(Omin) = G · [m] ⊂ P(g). The latter is called the adjoint
variety of G. It is the unique closed orbit of G in P(g) under the adjoint action. Let
LG be the set of lines passing through a given point of P(Omin). Then LG is a smooth
Legendrian variety in its linear span and is homogeneous under the isotropy subgroup Gm

(see [LM07]). This Legendrian variety LG is called the subadjoint variety. Note that in
type Cn we have LG = ∅: the subadjoint variety is empty, since P(Omin) is the second
Veronese embedding of P2n−1 and hence contains no line. We will see in §6.3 that LG can
be recovered as the VMRT of a specific wonderful adjoint symmetric variety for G.

Let H ⊂ G be a symmetric subgroup with group involution σ. The following result is
well known, we include a proof for the convenience of the reader.
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Proposition 4.34 ([KR71, Proposition 5]). Let m ∈ p. Set L̂m := H · m and Lm :=

H · [m]. Then the variety L̂m is Lagrangian in M̂m; in particular, dimG ·m = 2dimH ·m.

If L̂m is the cone over Lm (or equivalently is stable by non-trivial homotheties), then
the variety Lm is Legendrian in Mm, in particular dimG · [m] = 2 dimH · [m] + 1.

Proof. Since σ(m) = −m, the action of σ on g restricts to an action on gm. Since σ is
semisimple, we thus have gm = hm ⊕ pm and g/gm = h/hm ⊕ p/pm with hm = h∩ gm and
pm = p ∩ gm. Let u, v ∈ h/hm (resp. u, v ∈ p/pm) and let y and z in h (resp. in p) be
representatives of u and v. In Example 4.30, the form B can be chosen to be σ-invariant
so that we get

ωm(u, v) = ωm(dσ(u), dσ(v))
= B(m, [dσ(y), dσ(z)])
= −B(dσ(m), [dσ(y), dσ(z)])
= −B(dσ(m), dσ[y, z])
= −B(m, [y, z])
= −ωm(u, v).

Hence ωm(u, v) = 0 and both h/hm and p/pm are isotropic and therefore Lagrangian in
g/gm. This proves the first part. If H ·m is stable under nontrivial homotheties, then the
same holds true for G ·m. The result follows from this and the first part.

Corollary 4.35. Let K be a minimal family, let C ∈ Kx and let m ∈ TxC \ {0}. Then

L̂m is the cone over Lm, in particular dimH · [m] = 1
2
dimG ·m− 1.

Proof. Since the H-weight of m is non-trivial, the orbit H ·m is the cone over H · [m].
The result follows.

Assume that R is not of type Ar and let C ∈ Kx with K a minimal family. We obtain
the following description of Kx.

Theorem 4.36. We have Kx = H · C. Furthermore, if X is Hermitian non-exceptional,
then Kx has two components. Otherwise, Kx is irreducible.

Proof. Since R is not of type Ar, we have ∂X · C = 1 (see Remark 4.27). By Theorem
4.26 and Corollary 4.35, we have dimH ·C = dimKx. If C is not Hermitian or Hermitian
exceptional, then there exists a unique highest weight curve and Kx is irreducible, proving
the result. If X is Hermitian non-exceptional, then Kx contains two highest weight curves
which are exchanged by H; the result follows.

In Proposition 4.34, the condition that L̂m is the cone over Lm is non-empty.

Example 4.37. There are non-nilpotent elements m ∈ p for which H ·m is not invariant
under non-trivial homotheties. For example, let G = SLn and σ(g) = tg−1. Then g = sln
is the Lie algebra of traceless matrices, h is the Lie subalgebra of antisymmetric matrices,
and p is the subspace of traceless symmetric matrices. Define m ∈ p as block-matrix as
follows:

m =

(
A 0
0 0

)
with A =

(
0 1
1 0

)
∈ sl2.

For λ ∈ C×, if λm ∈ H ·m, then λ = ±1. Thus, H ·m is not the cone over H · [m].
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We conclude this subsection by the following related result, which follows from [Ri82,
Theorem A]; we provide a direct proof for the reader’s convenience.

Lemma 4.38. The orbit H ·m (resp. H · [m]) is open in (G ·m)−σ (resp. (G · [m])σ).
In particular, H · m (resp. H · [m]) is a union of connected components of (G · m)−σ

(resp. (G·[m])σ). Moreover, dim(H ·m) = dim(G·m)−σ and dim(H ·[m]) = dim(G·[m])σ.

Proof. Note that m is fixed for −σ; therefore, σ([m]) = [m]. We thus have inclusions
H ·m ⊂ (G ·m)−σ and H · [m] ⊂ (G · [m])σ. To prove the openness, we only need to check
that the tangent spaces agree. We deal with H · [m], the other case works in a similar way.
Since σ is semisimple, we have Tm(G · [m])σ = (g · [m])σ = gσ · [m] = h · [m] = Tm(H · [m]).

Since every H-orbit in (G ·m)−σ is open, there are only finitely many such orbits and
these orbits are also closed, proving the last statement.

4.5 Wonderful symmetric varieties of type Ar

As the above discussion shows, the case of symmetric spaces whose restricted root system
is of type Ar with r ≥ 1 will present a different feature: the family Kx has dimension
one more than the orbit H · C for C ∈ Kx. In this section we prove that Kx is a rational
projective homogeneous space.

Assume that the restricted root system R is of type Ar and let (αi)i∈[1,r] be the simple
roots of R (labeled as in Bourbaki [Bo68]). For i ∈ [1, r], let αi ∈ R be a simple root
such that αi − σ(αi) = αi. For β ∈ ∆, let ϖβ be the associated fundamental weight of R.
For each i ∈ [1, r], recall the definition of the dominant weight λi := λαi

from Proposition
4.17:

λi =


2ϖαi

if σ(αi) = −αi,
ϖαi

+ϖσ(αi) if σ(αi) = −σ(αi) and ⟨α∨
i , σ(αi)⟩ = 0,

ϖαi
otherwise.

We now list the different symmetric spaces (up to finite cover) whose restricted
root system is of type Ar, the corresponding dominant weights λ1, the irreducible G-
representations Vλ1 (which will feature prominently in the rest of this section), and the
corresponding H-representations p.

G/H Rank λ1 Vλ1 p
SLr+1× SLr+1 / SLr+1 r (ϖ1, 0) + (0, ϖr) End(Cr+1) slr+1

SLr+1 /SOr+1 r 2ϖ1 S2(Cr+1) S2(Cr+1)0
SL2r+2 /Sp2r+2 r ϖ2 Λ2(C2r+2) Λ2(C2r+2)0

SOn/S(O1 ×On−1) 1 ϖ1 Cn Cn−1

E6/F4 2 ϖ1 C27 C26

Here S2(Cr+1)0 denotes the SOr+1-stable complement of Cq in S2(Cr+1) with q being
the standard quadratic form, and Λ2(C2r+2)0 denotes the Sp2r+2-stable complement of
Cω in Λ2(C2r+2) with ω being the standard symplectic form. As a consequence of this
classification, we see that Vλ1 = p⊕ C as H-representations.

Note that since R is reduced, none of the symmetric spaces we consider is exceptional.
Let R

∨
be the dual root system, let (α∨

i )i∈[1,r] be the simple coroots and let C∨ be the
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dominant chamber of R
∨
. Then the weights (λi)i∈[1,r] are the fundamental weights of R.

The cone C∨ is thus generated by the fundamental coweights (λ∨i )i∈[1,r].
Next, using the above list, we obtain a geometric construction of the wonderful com-

pactification:

Proposition 4.39. Let G/H be an adjoint irreducible symmetric space with restricted
root system of type Ar and let λ1 be as above.

1. The group G acts on P(Vλ1) with r + 1 orbits whose closures (Zi)i∈[1,r+1] satisfy the
following inclusions: Z1 ⊊ Z2 ⊊ · · · ⊊ Zr+1 = P(Vλ1). The open orbit is isomorphic
to G/H.

2. The join J(Z1, Zi) (i.e., the union of lines joining Z1 and Zi) equals Zi+1 for all i.

3. The wonderful compactification X is equipped with a birational G-equivariant mor-
phism f : X → P(Vλ1). If r = 1, then f is an isomorphism. If r ≥ 2, then f is the
composition of the blow-ups of the strict transforms of the orbit closures Z1, . . ., Zr

in this order. Moreover, these strict transforms are smooth.

Proof. (1) and (2) In all cases except the last one, the G-orbits are given by the rank
of matrices (plain matrices, symmetric matrices or skew-symmetric matrices) and the
assertions follows from this. The case of E6/F4 is a classical result (see e.g. [LM01,
Proposition 4.1]).

(3) This is again a classical result in the first three cases, see [Va84, Theorem 1]
for SLr+1× SLr+1 / SLr+1 (then X is the moduli space of complete collineations) and
[Th99, Theorems 10.1, 11.1] for SLr+1 / SOr+1 and SL2r+2 /Sp2r+2 (complete quadrics and
complete skew forms). The next case of SOn /S(O1 × On−1) is easy, as we then have
X = Pn−1 = P(Vλ1).

For E6/F4, we have Z1 ⊂ Z2 ⊂ Z3 = P(Vλ1), where Z1 is smooth and Z2 is a prime
divisor. Denote by φ : X ′ → P(Vλ1) the blow-up along Z1. Then X ′ is a smooth
projective equivariant compactification of G/H, and its boundary is the union of two
prime divisors: the exceptional divisor X ′

1 and the strict transform X ′
2 of Z2. Moreover,

X ′
2 \X ′

1 = Z2 \ Z1 is a unique G-orbit. It suffices to show that X ′
1 \X ′

2 and X ′
1 ∩X ′

2 are
G-orbits as well: then X ′ is a smooth projective embedding of G/H with a unique closed
orbit of codimension 2, and hence is isomorphic to X by the classification of embeddings
of G/H. We identify Z1 to G/P1, where P1 is the maximal parabolic subgroup of G
associated with the fundamental weight λ1 = ϖ1. Denote by M the normal space to
Z1 in P(Vλ1) at the base point of G/P1. Then M is a representation of P1, and the
G-variety X ′

1 is isomorphic to the homogeneous projective bundle G ×P1 P(M). Thus,
the G-orbits in P(Vλ1) correspond bijectively to the P -orbits in P(M). So it suffices in
turn to show that P1 acts on P(M) with two orbits. But the Levi subgroup L1 of P1 is
isomorphic to SO10×C∗ up to finite cover, andM = C10 where SO10 acts via its standard
representation and C∗ acts by scalar multiplication. Therefore, L1 acts on P(M) with two
orbits: a quadric and its complement. As P1 does not act transitively on P(M), it acts
with two orbits as well.
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Remark 4.40. The above statements (1) and (2) can be proved in a uniform way using
Jordan algebras: the representation Vλ1 has the structure of a Jordan algebra with struc-
ture group G and the stabiliser of the unit element is H. The above orbit structure is then
explained by the notion of rank for elements in a Jordan algebra. We refer to [Sp98] and
[BP22] for more on Jordan algebras. We were however not able to fully relate symmetric
spaces with restricted root systems of type Ar to Jordan algebras without using a case by
case check, so we refrained from using them.

Theorem 4.41. Let X be the wonderful compactification of an adjoint irreducible sym-
metric space with restricted root system of type Ar.

1. There is a unique minimal family K.

2. The tangent map Kx → Cx is an isomorphism.

3. If r = 1, then Cx ≃ P(p).

4. If r ≥ 2, then Kx is isomorphic to the closed G-orbit in P(Vλ1).

Proof. If r = 1, then X = P(Vλ1) with Vλ1 = p⊕ C and x = [C]. Thus there is a unique
minimal covering family K and it consists of lines in X. The result follows in this case.

If r ≥ 2, because of the description of X as a successive blow-up in Proposition 4.39
and arguing as in [BF15, Proposition 5.1] for the group case of type Ar, the result follows
from Proposition 9.7 in [FH12]: the family Kx is the set of lines in P(Vλ1) passing through a
general point and meeting the closed orbit. The tangent map Kx → Cx is an isomorphism
and the VMRT is therefore isomorphic to the closed orbit in X.

4.6 Minimal families on wonderful compactifications

We summarise our results. Let X be the wonderful compactification of an adjoint irre-
ducible symmetric space G/H with base point x and let K be a minimal family.

Theorem 4.42. The tangent map Kx → Cx is an isomorphism.

Theorem 4.43. 1. Any irreducible component of Kx contains a unique highest weight
curve C. Moreover, Kx is equidimensional, of dimension ⟨Θ∨

, κ⟩ + ∂X · C − 1 =
dimH · C + ∂X · C − 1.

2. We have ∂X · C ∈ {1, 2}. Moreover, ∂X · C = 2 if and only if the restricted root
system is of type Ar.

3. Assume that ∂X · C = 1. Then Kx = H · C. Furthermore, if X is Hermitian
non-exceptional, then Kx has two components. Otherwise, Kx is irreducible.

4. Assume that ∂X · C = 2, so that the restricted root system of X is of type Ar.

(a) If r = 1, then Kx ≃ P(p).
(b) If r ≥ 2, then there exists a G-equivariant birational morphism X → P(V )

for some irreducible G-representation V and Kx is isomorphic to the closed
G-orbit in P(V ). The orbit H · C is a prime divisor in Kx.
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5. The orbits H · C are described in Table 1.

Proof. We start with Theorem 4.43.
(1) Follows from Theorem 4.26.
(2) Follows from Remark 4.27.
(3) Follows from Theorem 4.36.
(4) Follows from (2) and Theorem 4.41.
Next, we prove Theorem 4.42. This result follows from (4) for R of type Ar. Assume

that R is not of type Ar. By Proposition 3.6, the tangent map τx : Kx → Cx is H-
equivariant, finite and birational. Furthermore by (3), the variety Kx is H-homogeneous.
Thus, Cx is H-homogeneous as well, and τx is bijective.

5 Minimal families on complete symmetric varieties

We are now in position to prove our main results. Let X be a complete symmetric variety
and let K be a family of minimal rational curves on X. Let π : X → Xad be the map
from X to the wonderful compactification of the associated adjoint symmetric space.

Theorem 5.1. The tangent map Kx → Cx is an isomorphism and Kx is smoth.

Theorem 5.2. Let C ∈ Kx.

1. If C is contracted by π, then Kx is isomorphic to a linear subspace of P(p ∩ z).

Assume that π does not contract C.

2. The map π induces an isomorphism between C and its image D := π(C) and there
exists a unique indecomposable factor XC of Xad such that the composition map
πC : X → Xad → XC does not contract C.

3. We have ∂XC · C ∈ {1, 2}.

4. If ∂X · C = 1, then Kx = H · C. Moroever, the components of Kx are isomorphic
to the components of H ·D.

5. If ∂X · C = 2, then the restricted root system of XC is of type Ar.

(a) If r = 1, then Kx ≃ P(pC).
(b) If r ≥ 2, then there is a G-equivariant birational morphism XC → P(V ) for

some irreducible G-representation V and Kx is isomorphic to the closed G-orbit
in P(V ). The orbit H · C is a prime divisor in Kx.

6. The orbits H ·D are described in Table 1.

Proof. We start with the proof of Theorem 5.2.
(1) Follows from Lemma 3.4.
(2) Follows from Proposition 3.6.
(3) Follows from Proposition 3.6 and Theorem 4.43.
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(4) If ∂X · C = 1 and XC is not of type Ar, then ∂X · C = ∂XC · D. Moreover,
there is a unique minimal family of rational curves L containing D = π(C) and a finite
H-equivariant map π∗,x : Kx → LπC(x) (Proposition 3.6 again). By Theorem 4.43, we have
LπC(x) = H ·D; in particular, every component of LπC(x) is homogeneous under H0. Using
Proposition 3.6 once more, it follows that π∗,x induces an isomorphism on components.

If XC is of type Ar, then ∂XC ·D = 2. Thus, the image of Kx in LπC(x) has codimension
1 and must be equal to H ·D. The result follows from this by a similar argument as in
the previous case.

(5) If ∂X · C = 2, then the restricted root system of XC is of type Ar and ∂X · C =
∂XC ·D. Again, there is a unique minimal family of rational curves L containing D, and a
finite H-equivariant map π∗,x : Kx → LπC(x). Moreover, LπC(x) is irreducible and has the
same dimension as Kx; thus, π∗,x is surjective. As XC is not Hermitian, Kx is irreducible
as well. So π∗,x is an isomorphism.

Proof of Theorem 5.1. By Proposition 3.6, Kx is smooth and the tangent map Kx → Cx
is finite, birational and H-equivariant, therefore an isomorphism if Kx = H · C. If Kx is
not H-homogeneous, then XC is of type Ar and the result follows from (5).

6 Appendix

The goal of this appendix is twofold: we first prove basic results on restricted root systems
used to describe curves and divisors on wonderful compactifications. We also obtain char-
acterisations of exceptional wonderful varieties useful to establish Table 1. We then give
an easy way to describe, using the Kac diagram of the symmetric space, the components
of the H-orbit H ·C in Kx, where C is a highest weight curve. Finally, in Table 1, we give
a list, based on the classification of symmetric spaces, of minimal families and VMRT of
wonderful symmetric varieties.

6.1 Restricted root systems

In this subsection we prove useful results on restricted root systems that might be well
known to experts, but for which we could not find a good reference.

Lemma 6.1. The restricted root Θ is the highest root of R.

Proof. For α ∈ R, write α =
∑

β∈∆ cββ with all the cβ of the same sign. We have

α = α− σ(α) =
∑

β∈∆1
cβ(β − σ(β)) =

∑
β∈∆1

cββ and the result follows from this.

Lemma 6.2. Let w0 ∈ W be the longest element, then the actions of σ and w0 on roots
commute. In particular, σ(w0) = w0.

Proof. Note that −w0 is an involution and preserves R+ and thus ∆. Furthermore, if
−w0 ̸= Id, then σ is either equal to Id or to −w0 since there is at most one non-trivial
such involution. Therefore, in any case, σ and −w0 commute; thus, σ and w0 commute.
In particular w0(∆0) = −∆0 and w0(L) = L.

Recall that σ = −wLσ where wL is the longest element in the Weyl group WL of the
pair (L, Ts), for this see [Ti11, Page 149]. Therefore w0σ = −w0wLσ = −ww0(L)w0σ =
−wLσw0 = σw0. The result follows.
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Corollary 6.3. We have w0(Θ) = −Θ.

Proof. We have w0(Θ) = w0(Θ)−w0(σ(Θ)) = w0(Θ)−σ(w0(Θ)) = −Θ+σ(Θ) = −Θ.

We now prove a characterisation of non-reduced restricted root systems.

Proposition 6.4. Let α ∈ ∆1. We have the equivalence: α, 2α ∈ R ⇔ ⟨α∨, σ(α)⟩ = 1.

Proof. (1) If ⟨α∨, σ(α)⟩ = 1, then β = α−σ(α) = α is a root of R and σ(β) = −β. Thus,
β = 2β = 2α ∈ R.

Conversely, assume that α, 2α ∈ R. As above, there are three possibilities: σ(α) = −α,
⟨α∨, σ(α)⟩ = 0 or ⟨α∨, σ(α)⟩ = 1. We rule out the first two cases.

If σ(α) = −α, then α = 2α and 2α = 4α ∈ R. In particular, we should have a root
γ ∈ R with γ − σ(γ) = γ = 2α = 4α. This implies that γ = λα +

∑
β∈∆0

cββ with λ > 0
and cβ ≥ 0. But σ(γ) = −λα+

∑
β∈∆0

cββ and since γ is a root, we have cβ = 0 for all β
and γ = 2α ̸∈ R, a contradiction.

Assume that ⟨α∨, σ(α)⟩ = 0 and write σ(α) = −σ(α)−
∑

β∈∆0
cββ. Then we have

0 = ⟨α∨, σ(α)⟩ = −⟨α∨, σ(α)⟩ −
∑
β∈∆0

cβ⟨α∨, β⟩.

If σ(α) ̸= α, then all terms of the RHS of the above equation are non-negative, thus
vanish. In particular, ⟨α∨, β⟩ = 0 for all β ∈ ∆0 with cβ ̸= 0. We get ⟨σ(α)∨, β⟩ = 0 and
⟨σ(α)∨, β⟩ = 0 for all β with cβ ̸= 0. Denoting by (−,−) a σ-invariant scalar product,
we have (σ(α) + σ(α), σ(α) + σ(α)) = (σ(α) + σ(α),−

∑
β cββ) = 0; thus, σ(α) = −σ(α).

Let γ ∈ R such that γ = 2α. Then γ−σ(γ) = 2(α+σ(α)). Therefore, γ = λα+µσ(α)+∑
β∈∆0

dββ with λ, µ, dβ ≥ 0 and λ + µ > 0. Then σ(γ) = −λσ(α)− µα +
∑

β∈∆0
dββ is

a root; thus, dβ = 0 for all β ∈ ∆0 and γ = λα+ µσ(α) with λ+ µ = 2. However there is
no such root γ, since ⟨α∨, σ(α)⟩ = −⟨α∨, σ(α)⟩ = 0, thus, α and σ(α) are not adjacent in
the Dynkin diagram and the support of γ is therefore disconnected.

Finally, assume that σ(α) = α. Then σ(α) = −α −
∑

β∈∆0
cββ ̸= −α. Again, let

γ ∈ R with γ = 2α. Then γ − σ(γ) = 2(α − σ(α)). We have (γ, γ) = 4(α, α) = 8(α, α).
On the other hand, we have

(γ, γ) =


4(γ, γ) if σ(γ) = −γ,
2(γ, γ) if ⟨γ∨, σ(γ)⟩ = 0,
(γ, γ) if ⟨γ∨, σ(γ)⟩ = 1.

We get

(γ, γ) =


2(α, α) if σ(γ) = −γ,
4(α, α) if ⟨γ∨, σ(γ)⟩ = 0,
8(α, α) if ⟨γ∨, σ(γ)⟩ = 1.

Since R is a reduced root system, only the first case can occur; thus, σ(γ) = −γ, the
root γ is long and α is short. We thus have 2γ = γ = 2α; thus, γ = α. By Lemma 6.7
below, the root γ is dominant on its support and α is non-orthogonal to γ. Furthermore,
γ is long and α is short, so the support of γ generates a non-simply laced root system.
Therefore, γ is the highest root of a root system of type Bn, Cn, F4 or G2. Since α is
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short and is the unique simple root which is non-orthogonal to γ, the above root system
must be of type Cn with α = α1 and σ(α1) = −(α1 + 2α2 + · · ·+ 2αn−1 + αn). Note that
σ(αi) = αi for i > 1. However, if δ = α1 + · · ·+ αn, then σ(δ) = −(α1 + · · ·+ αn−1) and
δ + σ(δ) = αn. Let xδ ∈ gδ be non-zero and set x = [xδ, xσ(δ)]. Then x ∈ gxαn

is non-zero
and σ(x) = −x, which is impossible since Ts is of split type.

Corollary 6.5. We have the equivalences:

R is non-reduced ⇔ ∃α ∈ ∆1, ⟨α∨, σ(α)⟩ = 1 ⇔ ∃α ∈ R, ⟨α∨, σ(α)⟩ = 1.

Proof. If R is non-reduced then it is of type BCr and there exists α ∈ ∆1 with α, 2α ∈ R.
The second implication from left to right is clear. If α ∈ R is such that ⟨α∨, σ(α)⟩ = 1,
then α = α− σ(α) = γ is a root and γ = 2γ = 2α ∈ R; thus, R is non-reduced.

Corollary 6.6. Let α ∈ ∆1 such that α, 2α ∈ R.

1. The root α is the unique root of ∆ with α, 2α ∈ R.

2. The variety X is exceptional if and only if σ(α) ̸= α.

Proof. (1) Assume that α ∈ ∆1 is such that α, 2α ∈ R. Then α ∈ ∆ is the unique simple
root whose double is a root in the root system BCr and is therefore unique.

(2) If X is exceptional, then σ(α) ̸= α by definition. If σ(α) ̸= α, then since
⟨α∨, σ(α)⟩ = 1 by Proposition 6.4, the result follows from [deCS99, Lemma 4.3].

IfX is exceptional then for α ∈ ∆1 an exceptional root, we have σ(α) ̸= α by definition
and α, 2α ∈ R by Remark 4.1. If α ∈ ∆1 is such that α, 2α ∈ R, then ⟨α∨, σ(α)⟩ = 1. If
furthermore σ(α) ̸= α then α is exceptional by [deCS99, Lemma 4.3] again.

For α ∈ ∆1, write α = α− σ(α) = α+ σ(α) +
∑

β∈∆0
cββ and define the support of α

by Supp(α) = {α, σ(α), β | β ∈ ∆0 with cβ > 0}.

Lemma 6.7. Let α ∈ ∆1, then α is dominant on Supp(α). More precisely, we have

⟨α∨, α⟩ > 0, ⟨σ(α)∨, α⟩ > 0 and ⟨β∨, α⟩ = 0 for β ∈ Supp(α) ∩∆0.

Proof. For β ∈ ∆0, we have ⟨β∨, α⟩ = ⟨σ(β)∨, σ(α)⟩ = ⟨β∨,−α⟩; thus, ⟨β∨, α⟩ = 0. We
have ⟨α∨, α⟩ = ⟨α∨, α − σ(α)⟩ = 2 − ⟨α∨, σ(α)⟩ and since α and σ(α) have the same
length, we have ⟨α∨, σ(α)⟩ ≤ 1 proving the result.

Recall that Θ denotes the highest root of R, and θ the highest short root (if R is
simply laced, then Θ = θ and all roots are long and short).

Lemma 6.8. We have the following equivalences

1. σ(Θ) = −Θ ⇔ there exists a long root α with σ(α) = −α.

2. σ(θ) = −θ ⇔ there exists a short root α with σ(α) = −α.
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Proof. The implications from left to right in (1) and (2) are clear. We prove the converse
implications. The proofs in both cases are similar.

We first prove that the converse implications in (1) and (2) are implied by the following
claim: if σ(α) = −α and there exists β ∈ ∆ with sβ(α) > α, then there exists w ∈ W
with σ(w) = w such that w(α) > α (recall that σ acts on W by conjugaison).

Assume that the above claim is true. We prove the converse implications in (1) and
(2) by induction on roots for the natural order on roots: if α is a positive root such that
σ(α) = −α and α is not maximal, we produce a root α′ > α with the same length as α
and such that σ(α′) = −α′. Indeed, if α is not maximal, then there exists β ∈ ∆ with
sβ(α) > α. By the above claim, there exists w ∈ W with σ(w) = w and w(α) > α. We
thus have σ(w(α)) = σ(w)(σ(α)) = w(−α) = −w(α) with w(α) > α. Therefore, if the
claim is true, we get by induction that σ(α′) = −α′ for α′ the highest short root with the
same length as α, proving the implication from right to left of (1) and (2).

We now prove our claim, so let α ∈ R such that σ(α) = −α and β ∈ ∆ with
sβ(α) > α. In particular ⟨β∨, α⟩ < 0. We have four possible cases: σ(β) = β, σ(β) = −β,
⟨β∨, σ(β)⟩ = 0 or ⟨β∨, σ(β)⟩ = 1.

If σ(β) = β, then ⟨β∨, α⟩ = ⟨σ(β)∨, σ(α)⟩ = −⟨β∨, α⟩; thus, ⟨β∨, α⟩ = 0 a contradic-
tion, so this case does not occur.

If σ(β) = −β, then w = sβ works since σ(w) = w.
If ⟨β∨, σ(β)⟩ = 0, then set w = sβsσ(β). Since sβ and sσ(β) commute, we have σ(w) = w.

Furthermore, we have w(α) = α−⟨β∨, α⟩β−⟨σ(β)∨, α⟩σ(β) = α−⟨β∨, α⟩β+⟨β∨, α⟩σ(β).
But since σ(β) ̸= β, we have σ(β) < 0 and w(α) > α.

Finally, if ⟨β∨, σ(β)⟩ = 1, define δ = sσ(β)(β) = β − σ(β) = β; then δ is a root.
Let w = sδ. We have σ(δ) = −δ; thus, σ(w) = w. Furthermore, we have w(α) =
α− ⟨δ∨, α⟩δ = α− ⟨sσ(β)(β)∨, α⟩(β − σ(β)) and ⟨sσ(β)(β)∨, α⟩ = ⟨β∨, sσ(β)(α)⟩ = ⟨β∨, α−
⟨σ(β)∨, α⟩σ(β)⟩ = ⟨β∨, α⟩ − ⟨σ(β)∨, α⟩ = 2⟨β∨, α⟩. Thus, w(α) = α− 2⟨β∨, α⟩(β − σ(β))
and since σ(β) < 0, we get w(α) > α.

Corollary 6.9. Assume that R is non-reduced. We have the equivalences:

X is exceptional ⇔ σ(Θ) = −Θ ⇔ R is simply laced.

Furthermore, if X is exceptional and α is an exceptional root, then its coefficient in the
expansion of Θ as a linear combination of simple roots is equal to 1.

Proof. Assume that R is non-reduced and let α ∈ ∆1 such that α, 2α ∈ R. Then
⟨α∨, σ(α)⟩ = 1 and γ = α − σ(α) = α is a root such that σ(γ) = −γ. Therefore we
either have σ(Θ) = −Θ or σ(θ) = −θ.

If X is exceptional, then σ(α) ̸= α by Corollary 6.6 thereforen σ is a non-trivial
involution of the Dynkin diagram and this implies that R is simply laced. In particular
σ(Θ) = −Θ (since Θ = θ). If α ∈ ∆1 is exceptional, then σ(α) ̸= α and the coefficients
of such roots in Θ are always equal to 1.

On the other hand ifX is non-exceptional, then σ(α) = α and γ = α−σ(α) is dominant
on its support and bigger than 2α. If γ is long then it is the highest root of Supp(γ),
but this is impossible by the discussion on pages 150–151 in [Ti11]. Therefore, γ is short
and R is not simply laced. Assume that σ(Θ) = −Θ and let (−,−) be a (W,σ)-invariant
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scalar product on XR such that long roots have length 2. We have (Θ,Θ) = 4(Θ,Θ) = 8
and γ = 2γ = 2α is such that (γ, γ) = 4(γ, γ) = 4. A contradiction since in R all roots
which are the double of another root have the same length. Therefore, σ(Θ) ̸= −Θ.

Corollary 6.10. G/H is exceptional if and only if G is simply laced and R is non-reduced.

Recall the definition of α̂ from the end of Subsection 4.1.

Lemma 6.11. Assume that α ∈ ∆1 is an exceptional root, then the coefficient of α̂∨ in
the expansion of Θ

∨
is terms of simple coroots of R is equal to 1.

Proof. Note that R is simply laced, so α and Θ have the same length. Since α is excep-
tional, we have α, 2α ∈ R and α̂∨ = 1

2
α∨ = 1

2
(α∨ − σ(α)∨). On the other hand, since X

is exceptional, we have σ(Θ) = −Θ so that Θ
∨
= 1

2
Θ∨. Since the coefficient of α in the

expansion of Θ in terms of simple roots is equal to 1, then same is true for the coefficient
of α̂∨ in the expansion of Θ

∨
in terms of simple coroots.

Note that if R is not of type A1, there always exists a simple root αadj ∈ ∆ such that
⟨Θ∨, αadj⟩ = 1. Such a simple root αadj is unique if R is not of type Ar. In type Ar with
r ≥ 2, there are two such simple roots: α1 and αr with simple roots labeled as in [Bo68].

Proposition 6.12. Assume that R is not of type A1 and let αadj ∈ ∆ be any simple root
such that ⟨Θ∨, αadj⟩ = 1.

1. We have the equivalences: σ(Θ) ̸= −Θ ⇔ σ(αadj) = αadj ⇔ ⟨Θ∨, σ(Θ)⟩ = 0.

2. If R is not of type A1, there exists a simple root α ∈ ∆ such that ⟨Θ∨
, α⟩ = 1.

3. If R is not of type A1, then 2Θ
∨
is indivisible as a cocharacter of Ts.

4. If σ(Θ) ̸= −Θ, then −σ(Θ) is the highest root of a connected component of the
subsystem R⊥ of R generated by simple roots orthogonal to Θ.

Proof. (1) Note that since Θ is dominant and since σ(Θ) < 0 (otherwise P = G and σ is
trivial), we have ⟨Θ∨, σ(Θ)⟩ ≤ 0 and therefore either σ(Θ) = −Θ or ⟨Θ∨, σ(Θ)⟩ = 0. We
therefore only need to prove the first equivalence. If σ(Θ) = −Θ, then ⟨Θ∨, σ(αadj)⟩ =
⟨σ(Θ∨), αadj⟩ = −⟨Θ∨, αadj⟩ = −1 therefore σ(αadj) < 0. Conversely, if ⟨Θ∨, σ(Θ)⟩ = 0,
then αadj does not occur in the support of σ(Θ). Since σ(Θ) is a negative root we have
⟨α∨

adj, σ(Θ)⟩ ≥ 0 and thus ⟨σ(Θ)∨, αadj⟩ ≥ 0. We get ⟨Θ∨, σ(αadj)⟩ = ⟨σ(Θ)∨, αadj⟩ ≥ 0;
thus, σ(αadj) > 0 and σ(αadj) = αadj.

(2) If R is reduced then the result follows, since Θ is the highest root of R: take

α = αadj ∈ ∆ a simple root such that ⟨Θ∨
, αadj⟩ = 1.

If R is non-reduced, then Θ is the highest root; therefore, there exists a root β such
that Θ = 2β. We have ⟨Θ∨

, β⟩ = 1
2
⟨Θ∨

,Θ⟩ = 1. Since Θ
∨
is dominant, this implies the

result.
(3) If σ(Θ) = −Θ, then 2Θ

∨
= Θ∨ and we have ⟨2Θ∨

, αadj⟩ = 1. If ⟨Θ∨, σ(Θ)⟩ = 0,

then ⟨2Θ∨
, αadj⟩ = ⟨Θ∨ − σ(Θ)∨, αadj⟩ = ⟨Θ∨, αadj⟩ = 1 (we use (4) below for the last

equality).
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(4) If σ(Θ) ̸= −Θ, then ⟨Θ∨, σ(Θ)⟩ = 0 and −σ(Θ) ∈ R⊥ (the subsystem generated by
simple roots orthogonal to Θ). Let α ∈ R⊥. If σ(α) = α, then ⟨−σ(Θ)∨, α⟩ = −⟨Θ∨, α⟩ =
0. If α ∈ ∆1, then σ(α) < 0 and ⟨−σ(Θ)∨, α⟩ = −⟨Θ∨, σ(α)⟩ ≥ 0; thus, −σ(Θ) is
dominant in R⊥ and the result follows, since −σ(Θ) and Θ are long roots.

6.2 Marked Kac diagrams

Our description of the components of H ·C is based on the fact that H ·C ≃ H ·[m] ⊂ P(p)
for m ∈ TxC \ {0} (Lemma 2.11) together with the following result.

Lemma 6.13 (Lemma 26.8 of [Ti11]). The simple roots of H0 and the lowest weights of
p with respect to the H0-representation form a affine simple root system.

Furthermore, the lowest weights of p together with the Dynkin diagram of H0 can be
encoded in the so-called Kac diagram of G/H. We refer to [Ti11, Sections 26.3 and 26.5]
for more on these diagrams.

Proposition 6.14. Let X be the wonderful compactification of an adjoint irreducible
symmetric space. The irreducible components of the orbits H · C, where C runs over the
highest weight curves on X, are exactly the homogeneous spaces H0/Qδ, where δ is a white
node in the Kac diagram, and Qδ denotes the parabolic subgroup of H0 associated to the
set of simple roots of H not adjacent to δ.

Proof. The result follows from the fact that m is a highest weight vector of p, because
this highest weight is conjugate in H0 to a lowest weight of p corresponding to a white
node δ.

Remark 6.15. We make the following observations.

1. There are two white nodes in the Kac diagram if and only if X is Hermitian.

2. If X is Hermitian, the two corresponding parabolic subgroups are conjugated by an
automorphism of G. This automorphism is an outer automorphism if and only if X
is exceptional.

We call a Kac diagram with a marked white node a Marked Kac Diagram.

Example 6.16. We illustrate the above proposition by a few examples. We picture the
Kac diagram on the left and on the right we picture the Dynkin diagram of H0 with the
simple roots that are not roots of H0

C crossed.

1. G/H = SL8× SL8 /(Z(G) · SL8) and H
0/H0

C ≃ Flag(1, 6) as H0-varieties.d
����� PPPPPt t t t t t t - × ×t t t t t

2. G/H = F4/B4 and H0/H0
C ≃ OG(4, 9) as H0-varieties.

<d t t t t - <× t t t
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3. G/H = SL8 /S(GL3 ×GL5) and H
0/H0

C ≃ P2 × P4 as varieties..d
����� PPPPPt t d t t t t - t t× ×t tt t× × t t

P2 × P4∨
P2∨ × P4

4. G/H = Sp12/GL6 and H0/H0
C ≃ P5 as varieties.

> <d t t t t t d -
t t t tt t t t××

P5∗

P5

6.3 Some examples

We describe some families of examples. Recall that Gad = G/Z(G).

Hermitian types. Assume that G/H is of Hermitian type. The involution σ is given on
Gad by conjugation with respect toϖ∨

α(−1), where α is a simple cominuscule root (appear-
ing with coefficient 1 in Θ). In this case, σ(Θ) = −Θ and any irreducible component of
H ·C is a smooth irreducible Schubert variety in P(Omin), of dimension 1

2
(dimOmin − 1).

The exceptional cases correspond to the simple cominuscule roots α which are sent to
different simple cominuscule roots by a Dynkin diagram involution.

Subadjoint case. Let ℵ = {α ∈ ∆ | ⟨Θ∨, α⟩ ≠ 0}. Then |ℵ| = 1 except in type Ar with
r ≥ 2, where |ℵ| = 2. Let ϖ∨(−1) =

∏
α∈ℵϖ

∨
α(−1). Define the involution σ on Gad by

conjugation by ϖ∨(−1). Note that G/Gσ is not Hermitian, except in type Ar. We have
h = gσ = gΘ ⊕ k where gΘ = ⟨e, h, f⟩ with e ∈ gΘ \ {0}, f ∈ g−Θ \ {0} and h = [e, f ] (in
particular, gΘ ≃ sl2), and k is a reductive Lie subalgebra of g. Let GΘ and K be the closed
connected subgroups of G with Lie algebras gΘ and k. Then GΘ is isomorphic to SL2 or
PSL2; moreover, Gσ,0 = GΘK and GΘ ∩K is finite. Furthermore, we have p = C2 ⊗ VK ,
where C2 is the standard representation of sl2, and VK is a K-representation which is
irreducible in all cases except in type Ar. In type Ar, we have VK = V +

K ⊕ V −
K which

are dual irreducible representations. Let u+, u− ∈ C2 be a highest and a lowest weight
vector for GΘ and let v ∈ VK be a highest weight for K. We identify VK to the subspace
⟨u−⟩ ⊗ VK of p.

We have Omin = G · e. We will use the following isomorphism of T -representations:
TeOmin = ⟨f, h⟩⊕VK ⊂ g. Note that the symplectic form ωe on TeOmin restricts to orthog-
onal symplectic forms on ⟨f, h⟩ and VK . Recall the definition of the subadjoint variety
LG as the set of lines in P(Omin) passing through [e]. In particular, LG ⊂ P(TeOmin). We
have LG = P(Omin) ∩ P(V ). In particular LG = ∅ in type Cr, since P(Omin) ∩ P(p) = ∅ in
this case. In the other cases, LG = K · [v] is the closed K-orbit in P(VK), and spans this
projective space. Note that in type Ar, the variety LG has two connected components
given by the closed K-orbits in P(V +

K ) and P(V −
K ). Let lG = T[v]LG, then lG is a La-

grangian subspace in VK . We will recover this fact using the VMRT of Xad, the wonderful
compactification of the adjoint symmetric space G/NG(G

σ).
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Assume that G is not of type Cr. Set M = VMRT(Xad) and let M̂ be the cone over
M in p ⊂ g. We have M = P(Omin) ∩ P(p): the highest weight m+ = u+ ⊗ v of p lies in
Omin and M = (GΘ ×K) · [m] = P1 × LG. We get that LG =M ∩ P(VK).

Let m = u− ⊗ v ∈ V . Note that [m] ∈ LG ⊂ M . There exists a Weyl group element
s ∈ W such that [m] = s · [e] and s(VK) = VK . Thus, TmOmin = ⟨s(f), s(h)⟩ ⊕ VK .
Furthermore, ωs(e) restricts to orthogonal symplectic forms on ⟨s(f), s(h)⟩ and VK . We

have TmM̂ = TmOmin ∩ p and this space is Lagrangian for ωs(e). On the other hand, we

have TmM̂ = ⟨s(f)⟩ ⊕ lG. This implies that lG is a Lagrangian subspace of VK .

Non-Fano cases. The wonderful compactificationsXad of adjoint irreducible symmetric
spaces are not always Fano. The Fano and non-Fano cases have been classified in [Ru12,
Theorem 2.1, Table 2]. We summarise the results here: The types for which Xad is not
Fano are CI, DI, EI, EV, EVIII, FI and G. An easy way to find them is to use both the
restricted root sytem and the Satake diagram (see [Ti11, Table 26.3]): the non-Fano cases
are those for which the restricted root system is not of type A nor of type B and the
Satake diagram has only white nodes and no arrow.

6.4 Classification table

We list all symmetric spaces G/H (up to finite coverings) with Xad irreducible, their vari-
eties of minimal rational tangents Cx and the restriction of OP(p)(1) to the VMRT giving
the embedding Cx ⊂ P(p). For C1

⊔
C2, the notation O(1) corresponds to the embedding

in P(H0(C1,OC1(1))⊕H0(C2,OC2(1))). The penultimate column describes the orbit G ·m
for m ∈ TxC \ {0} with C ∈ Kx and K a minimal family.

Some notations. H.n.e = Hermitian non-exceptional. H.e = Hermitian exceptional.
Qn = smooth quadric of dimension n. Gr(a, b) = Grassmannian of vector subspaces of
dimension a in Cb. OG(a, b) = closed subset of Gr(a, b) of isotropic subspaces for a non-
degenerate quadratic form on Cb (with a < 2b). OG(b, 2b) = a connected component of
the Grassmannian of maximal isotropic subspaces in C2b for a non-degenerate quadratic
form. IG(a, 2b) = closed subset of Gr(a, b) of isotropic subspaces for a non-degenerate
symplectic form on C2b. LG(b, 2b) = Grassmannian of maximal isotropic subspaces in C2a

for a non-degenerate symplectic form. Flag(1, r) = nested subspaces of dimension 1 and
r in Cr+1.
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