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Abstract. In this paper study rationality properties of genus zero stable maps

on the quintic Fano threefold V5 ⊂ P6. We prove the unirationality of the

moduli spaces M
bir
0,0(V5, d) and that V5 is strongly rationally simply connected.
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Introduction

Given a smooth polarised rationally connected variety X over C, we are inter-
ested in studying the Kontsevich moduli spaces M0,m(X, d) of rational curves on
X with sufficiently large degree d. Our main motivation comes from the series of
works by de Jong and Starr (cf. [dJS06b], [dJS06c], [dJS06a], [dJS07], etc.). Start-
ing form the seminal work [GHS03], whose main result guarantees that a rationally
connected fibration over a smooth curve has a section, de Jong and Starr explore
numerical and geometric conditions on the general fibre of a rationally connected
fibration over a surface which guarantee the existence of a rational section.

This deep analysis originated the new notion of rational simple connectedness
and was applied to the case of homogeneous varieties to prove Serre’s Conjecture II
(cf. [dJHS11]). This notion has several variations, but heuristically is the algebraic
analogue of simple connectedness in topology. In this paper we will use the following
simplified definition focusing of the case of Fano varieties of Picard number one.

Let M0,m(X,β) denote the (coarse) moduli space of stable m-pointed rational

curves on X of degree β ∈ Z. Let ev : M0,m(X,β) → Xm denote the evaluation

morphism. We focus our attention on the following moduli subspace in M0,m(X,β).

Let M
bir

0,m(X,β) denote the closure in M0,m(X,β) of the moduli space of morphisms
which are birational onto their image.
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The space M
bir

0,0(X,β) is not irreducible in general Our definition of rational

simple connectedness will require some irreducibility of M
bir

0,0(X,β). Following the
approach of [dJS06a], we provide a weak and a strong version of rationally simply
connectedness.

Definition. Let X be a Fano variety with Picard number 1.

(1) The variety X is rationally simply m-connected if there exists an in-
teger dm > 0 such that, for all d ≥ dm, the following holds:

• the moduli space M
bir

0,0(X, d) ⊂M0,0(X, d) is irreducible;

• the evaluation map evm : M
bir

0,m(X, d)→ Xm is dominant and its gen-
eral fibre is rationally connected.

(2) The variety X is weakly rationally simply connected if X is rationally
simply 2-connected.

(3) The variety X is strongly rationally simply connected if X is ratio-
nally simply m-connected for all m ≥ 2.

The reason why one requires this property for large enough d is that the be-
haviour of moduli spaces of rational curves in low degree can be atypical or, more
simply, these spaces can be empty.

In [dJS06a], the authors also introduce a strong version of rational simple con-
nectedness, which requires the existence of a “very free” ruled surface in X (a so
called very twisting scroll). In this paper we start from the easier notion introduced
in [dJS06a, Section 1] for varieties with Picard-rank one but whe shall implicitly
use ideas coming from twisting scrolls in Section 2

Rational simple connectedness is subtle and very few examples are known; the
picture has been clarified for complete intersections in projective spaces ([dJS06a],
[DeL15]), homogeneous spaces ([dJHS11], [BCMP13]), and hyperplane sections of
Grassmannians ([Fin10]). The first main result of this paper is the following.

Theorem A. (= Theorem 2.1) The Fano threefold V5 ⊂ P6, obtained as linear
section of Gr(2, 5) ⊂ P9, is strongly rationally simply connected.

The importance of this example comes from its very specific geometry: it is a
smooth rational quasi-homogeneous (with respect to a SL2-action) Fano threefold
which is not 2-Fano (cf. [AC12], [AC13]).

To prove this result, we adapt the twisting-surface technique of de Jong and
Starr. One problem is that there is no twisting-scroll: twisting-surfaces rules by
lines. Therefore we need to consider surfaces ruled by conics (see Section 2).

Although rational simple connectedness in not a birational property, the bira-
tional geometry of V5 ⊂ P6 is well known (cf. Section 1) and we use it to developp
another strategy for proving rationality results on moduli spaces of rational curves,
reducing the study of moduli spaces of rational curves on V5 to some special moduli
spaces on the quadric threefold Q3 (cf. Section 3). This method gives unirationality
results for the fibers of the evaluation map at less than two points and also proves
the following unirationality result.

Theorem B. (= Theorem 3.1) For any d ≥ 1 the moduli space M
bir

0,0(V5, d) of
stable maps birational onto their image is irreducible, unirational of dimension 2d.

This paper is organised as follows. In Section 1, we recall the definition of V5 and
its first properties especially the geometry of its lines and conics and the so called
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projection from a line (Lemma 1.3). Section 2 is devoted to the proof of the strong
rational simple connectedness via twisting-surfaces ruled in conics techniques. In
Section 3 we use Lemma 1.3 to prove unirationality results on the moduli space
of stable maps. In the last Section 4, we conclude studying rationality of moduli
spaces of rational curves on V5 in low degree: new proofs of rationality of moduli
spaces of quintic and sextic rational curves are provided, via explicit birational
geometric methods.

Acknowledgement. We like to thank Sasha Kuznetsov, Andrea Petracci and
Francesco Zucconi for interesting comments related to this work. The first-named
author is currently funded by the Fondation Mathématique Jacques Hadamard.

For later use we fix some further notation.

Notation 0.1. Let X be a Fano variety of Picard number 1 and let m ≥ 0 be an
integer. Then we will often consider the fibre of the morphism

(0.A) Ψm := φm × evm : M
bir

0,m(X, d)→M0,m ×Xm,

where φm : M
bir

m (X, d) → M0,m is the natural morphism to the Deligne-Mumford
moduli space of m-marked rational curves.
Let t = (t1, . . . , tm) ∈ (P1)m be a marking on P1. The corresponding class in
M0,m will be also denoted by t, to simplify the notation. Moreover, fix m points
x = (x1, . . . , xm) of X. Assume m ≥ 3. Then the fibre

Ψ−1
m (t,x) ∼=bir Mort→x

d (P1, X)

is birational to the variety of degree d morphisms f : P1 → X such that f(t) = x
which are birational onto the image. If m ≤ 2, the previous relation holds modulo
Aut(P1, t).

1. The Fano threefold V5.

1.1. Definition of V5. We introduce the central object of this section. For more
details one can look at [IP99, pag. 60-61], [San14, Section 2], [CS16, Chapter 7] and
[KPS18, Section 5.1].

Definition 1.1. A smooth Fano threefold X with ρ(X) = 1, Fano index ι(X) = 2
and degree (H3) = 5 is denoted by V5.

From Iskovskikh’s classification of smooth Fano threefolds with ρ = 1 (cf. [IP99,
Section 12.2]) we know that V5 is isomorphic to the linear section of the Grassman-
nian Gr(2, 5) ⊂ P9 by a general linear subspace P6 ⊂ P9.

Since V5 verifies the index condition ι = n− 1, where n is the dimension, in the
literature, sometimes authors refer to V5 as the del Pezzo threefold of degree 5.

Let us look now at the SL2(C)-action on V5: one takes a vector space U with
dimU = 2, chooses a basis of ∧2U to identify U and its dual U∨. Let us de-
note by Sn := Symn(U) the symmetric tensor and consider the Clebsch-Gordan
decomposition of ∧2S4 as SL(U)-module: ∧2S4 ' S2 ⊕ S6.

This shows how to induce a natural SL(U)-action on V5 = Gr(2, S4)∩PS6, which
is the intersection of two SL(U)-invariant varieties.

Using the description provided in [MU83, Section 3], one deduces the orbit struc-
ture V5 with respect to the SL2(C)-action (see also [IP99, pag. 60-61]).
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Lemma 1.2. [MU83, Lemmas 1.5-1.6] There is an action of SL2(C) on V5 with
three orbits with the following description;

• a 1-dimensional orbit σ (with representative [x6] ∈ PS6) which is a rational
normal sextic in P6;

• a 2-dimensional orbit E \ σ (with representative [x5y] ∈ PS6), where E is
a quadric surface which is the tangential scroll of σ. The normalisation
ν : P1 × P1 → E is determined by a (non-complete) system of degree (1, 5);

• a 3-dimensional orbit U (with representative [xy(x4 + y4)] ∈ PS6).

The following construction is essential for our analysis of unirationality in Section
3. This can be found in [IP99, pag 147, Example (i)], [CS16, Section 7.7].

Lemma 1.3. Let l be a line in V5. Then the projection φl : V5 99K P4 from l is
dominant on a quadric threefold Q3 and is birational. In particular V5 is a rational
threefold.

Let Dl be the divisor spanned by the lines in V5 meeting l. Then Dl is a hyper-
plane section of V5 ⊂ P6 and φl(Dl) = γl is a twisted cubic in Q3.

1.2. Lines, conics and first results on rational curves on V5. Let us list some
remarkable properties which hold for some moduli spaces of rational curves on V5.
For more details, see [KPS18, Section 5.1].

The moduli space M0,0(V5, 1) is isomorphic to the Hilbert scheme of lines and
(cf. [Isk79, Proposition 1.6(i)]) F1(V5) := H0,1 ' PS2(' P2). Looking at the
incidence correspondence we have the following diagram:

(1.B) M0,1(V5, 1)
ev1

3:1
//

ϕ

��

V5

F1(V5) ' P2

.

The map ev1 is a 3-to-1 cover ramified on the surface E and fully ramified on the
sextic σ (cf. [Ili94, 1.2.1(3)], [San14, Corollary 2.24]).

Let F2(V5) be the Fano varieties of lines and conics on V5. Then F2(V5) is isomor-

phic to P4 (cf. [Ili94, Proposition 1.22]). Let M = M
bir

0,1(V5, 2) be the Kontsevich
moduli space of genus 0 degree 2 stable maps with one marked point and birational
onto their image. We have the following diagram

(1.C) M
ev //

π

��

V5

F2(V5).

We will consider the moduli spaces M0,m(V5, d) for d ≥ 2 and prove some ra-
tional connectedness, unirationality and rationality results. Quite recently, the
structure of M0,0(V5, d) has been studied in [LT17, Theorem 7.9]. In particular,
its decomposition in irreducible components is deduced. Our approach is different

for V5 and we will give another proof of the irreducibility of M
bir

0,0(V5, d) that also
proves that this variety is unirational of dimension 2d. From this the structure of
the irreducible components of M0,0(V5, d) also follows. This will be discussed in
Section 3. For the moment we state the results of [LT17].
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Definition 1.4. For any d ≥ 1 the closure in M0,0(V5, d) of the moduli space of

morphisms which factor through a line is denoted by M
line

0,0 (V5, d).

Theorem 1.5 ([Isk79][LT17]). For any d ≥ 1 the moduli space M0,0(V5, d) has
pure dimension 2d.

(1) For d = 1, the moduli space M0,0(V5, d) is isomorphic to P2 (see [Isk79]).

(2) For d ≥ 2, the moduli space M0,0(V5, d) has two irreducible components

(see [LT17]): M0,0(V5, d) = M
bir

0,0(V5, d) ∪M line

0,0 (V5, d).

We will later on prove the unirationality of the first component and the ratio-
nality of the seconde one, see Theorem 3.1.

2. Strong rational simple connectedness

In this section, we prove the following theorem.

Theorem 2.1. Let m ≥ 0 and let d ≥ 1.

(1) The moduli space M
bir

m (V5, d) is rationally connected.

(2) If m = 1 and d ≥ 6, the general fibers of the map ev : M
bir

m (V5, d) → V m5
are rationally connected.

(3) If m ≥ 2 and d ≥ 8m− 6 for d even and d ≥ 8m− 1 for d odd, the general

fibers of the map ev : M
bir

m (V5, d)→ V m5 are rationally connected.

Remark 2.2. The above bounds for m ≥ 1 are not optimal.

(1) For m = 1 or m = 2, we will prove in the next Section, see Theorem 3.1,
that the fiber is even unirational for all d ≥ 2.

(2) The dimension of degree d curves passing through m points is given by
2d + 3 + m − 3 − 3m = 2d − 2m = 2(d −m). So a possible bound would
be d = m but Gromov-Witten computations show that this is not possible:
the fiber is finite dimensional but not irreducible for large d.

2.1. Lifting curves through ev.

Lemma 2.3. Let f : P1 → V5 be a general element in M
bir

0 (V5, d) and let W =
C5/V2 where V2 is the tautological subbundle of Gr(2, 5). Then we have

f∗W = OP1(a)⊕OP1(b)⊕OP1(c)

with a+ b+ c = d, a ≥ b ≥ c and a− c ≤ 1.

Proof. The decomposition holds for any map without the last condition. We only
need to prove that a− c ≤ 1 for a general element. Note that for d ∈ {1, 2, 3}, the
statement holds since V5 contains irreducible conics and twisted cubics. Note that
the statement is equivalent to H1(P1, f∗End(W )) = 0. In particular we only need

to find a stable map f : C → V5 in M
bir

0 (V5, d) with H1(C, f∗End(W )) = 0.
We proceed by induction on d ≥ 4. Consider a stable map f : C → V5 with

C = C1 ∪C2 where C1 and C2 meet in one point p0, such that f |C1 is the inclusion
of a general twisted cubic in V5, deg(f |C2) = d−3 and H1(C2, (f |C2)∗End(W )) = 0.
We use the exact sequence

0→ f∗End(W )|C1
(−p0)→ f∗End(W )→ f∗End(W )|C2

→ 0.

Since C1 is a twisted cubic, we have f∗W |C1
' OP1(1)3 and f∗End(W )|C1

(−p0) '
OP1(−1)9. We get the vanishing of H1(C, f∗End(W )). �
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Proposition 2.4. Let d ≥ 1 and D ≥ bd3c.
Let f : P1 → V5 be a general element in M

bir

0 (V5, d). Then there exists a map

f̃ : P1 →M of bidegree (D, d) with f = f̃ ◦ ev. Furthermore, the set of such liftings
is birational to a projective space of dimension 3D − d+ 2.

Proof. The map ev is the pull-back of the map Fl(2, 4; 5) → Gr(2, 5) along the
closed embedding V5 ⊂ Gr(2, 5). In particular ev is a P2-bundle with C5/V2 as
associated rank 3 vector bundle where V2 is the tautological subbundle on Gr(2, 5).

Finding a lifting f̃ : P1 → M of degree (D, d) of the degree d map f : P1 → V5 is
equivalent to finding a surjective map f∗(C5/V2)→ OP1(D). We have f∗(C5/V2) =
OP1(a)⊕OP1(b)⊕OP1(c) with a+ b+ c = d and a ≥ b ≥ c. Such a surjective map
exists as soon as D = c or D ≥ b. Furthermore, for a general element f , we have
a−c ≤ 1 (see Lemma 2.3) proving that D ≥ a or D = c. The set of such lifting is an
open subset of P(Hom(f∗(C5/V2),OP1(D)) which is a projective space of dimension
3D − d+ 2. �

Corollary 2.5. Let d ≥ 1 and D ≥ bd3c.
(1) The moduli space M0,m(M, (D, d)) contains a unique irreducible compo-

nent, denoted by M
bir

0,m(M, (D, d)), dominating M
bir

m (V5, d). This compo-
nent is of dimension 3D + d+m+ 2.

(2) Let f̃ ∈ M0,m(M, (D, d)) with irreducible source and such that ev ◦f̃ lies

in M
bir

m (V5, d) and satisfies the assumption in Lemma 2.3. Then f̃ lies in

M
bir

0,m(M, (D, d)).

Proof. (1) The map M0,m(M, (D, d)) → M0,m(V5, d) is obtained from the mor-

phism M0,m(Fl(2, 4; 5), (D, d))→ M0,m(Gr(2, 5), d) by base change. Furthermore,
the last two moduli spaces are irreducible, smooth and of expected dimensions
3D + 4d+M + 5 and 5d+m+ 3.

Let φ : M0,m+1(Gr(2, 5), d) → M0,m(Gr(2, 5), d) be the universal curve and

ev : M0,m+1(Gr(2, 5), d) → V5 be the evaluation map. Let M̊ be the open sub-

set of M0,m(Gr(2, 5), d) of maps with irreducible source such that f∗(C5/V2) =
OP1(a) ⊕ OP1(b) ⊕ OP1(c) with a + b + c = d, a ≥ b ≥ c and a − c ≤ 1. Set
E = φ∗(ev∗(C5/V2)∨⊗Oφ(1)⊗D) where Oφ(1) is the relative ample generator over

M̊ . Then E is a vector bundle and the moduli space M0,m(Fl(2, 4; 5), (D, d)) is

birational to an open subset of PM̊ (E). In particular the map M
bir

0,m(M, (D, d))→
M

bir

m (V5, d) is an open subset of the projective bundle P
M

bir
m (V5,d)∩M̊ (E). Since

M
bir

m (V5, d) is irreducible, so is M
bir

0,m(M, (D, d)). The dimension of M
bir

m (V5, d) is
2d+m while the fiber is of dimension 3D − d+ 2 giving the dimension formula.

(2) Let f̃ ∈M0,m(M, (D, d)) with irreducible source and such that ev ◦f̃ satisfies

the assumption in Lemma 2.3. Then ev ◦f̃ ∈ Mbir

m (V5, d) ∩M and f̃ is a point of

the above projective bundle and therefore lies in M
bir

0,m(M, (D, d)). �

Remark 2.6. We make two remarks concerning last proof:

(1) The moduli space M
bir

0,m(M, (D, d)) is actually unirational as a projective

bundle over M
bir

m (V5, d) which we prove to be unirational in Theorem 3.1
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(2) For a projective bundle p : Y → Z the fact that the map between moduli
spaces of stable maps is an open subset of a projective bundle is classical,
see for example [Per02, Proposition 4] or [GPPS18, Lemma 2.1].

2.2. Lifting curves through π.

Proposition 2.7. Let d ≥ 1 and D ≥ bd3c.
Let f : P1 → F2(V5) be a general element in M0,0(F2(V5), D). Then there exists

an f̃ ∈M0,0(M, (D, d)) of bidegree (D, d) with f = f̃ ◦ π if and only if d ≥ 2D− 1.

Furthermore f̃ can be chosen in M
bir

0,0(M, (D, d))

Proof. Since F2(V5) is isomorphic to P4 and since M0,0(P4, D) is irreducible (see

[Tho98, KP01, Per02]), the moduli space M0,0(F2(V5), D) is irreducible and to
prove existence, it is enough to prove that the differential map, which is given by

H0(P1, f̃∗TM )→ H0(P1, f
∗
TF2(V5)),

is surjective. To prove last assertion we compute this map for f̃ ∈Mbir

0,0(M, (D, d)).
We have an exact sequence 0 → Tπ → TM → π∗TF2(V5) → 0 and it therefore

suffices to prove the vanishing of the cohomology group H1(P1, f
∗
Tπ). We therefore

compute Tπ.
Since V5 is a codimension 3 linear section of Gr(2, 5), we have an exact sequence

0 → TV5
→ TGr(2,5) → OV5

(1)3 → 0. By pull-back, we get an exact sequence

0 → TM → TFl(2,4;5) → ev∗OV5
(1)3 → 0. Denote by p and q the morphisms

Fl(2, 4; 5) → Gr(2, 5) and Fl(2, 4; 5) → P4. The map q induces an exact sequence
0→ Tq → TFl(2,4;5) → q∗TP4 → 0 and we get

0→ Tπ → Tq → ev∗OV5
(1)3 → 0.

Note that Tπ is a line bundle so we only need to compute its first Chern class.
Now if V2 and V4 are the tautological subbundles of Gr(2, 5) and Gr(4, 5) = P4,
we have TFl(2,4;5) = Ker(V ∨2 ⊗ (C5/V2) ⊕ (V ∨4 ⊗ (C5/V4) → V ∨2 ⊗ (C5/V4)) and

TGr(4,5) = V ∨4 ⊗ (C5/V4) so that det(Tq) = q∗OP4(−2) ⊗ p∗OGr(2,5)(4) so that

Tπ = π∗OP4(−2) ⊗ ev∗OV5
(1). We get f

∗
Tπ = OP1(d − 2D) and the desired

vanishing for d ≥ 2D − 1.
To prove the converse, first note that we may assume that f has irreducible

source. If f̃ has a non irreducible source, then taking the component that surject

onto the source of f we may assume that f̃ also has an irreducible source. Now since
a general element f has a lift, the map M0,0(M, (D, d)) → M0,0(P4, D) must be
surjective and therefore the differential map must be surjective on an open subset.
By the previous computation this is possible only for d ≥ 2D − 1. �

For f : P1 → F2(V5) a degree D morphism, let πf : Sf = P1 ×F2(V5) M → P1 be
the corresponding conic bundle.

Proposition 2.8. Let d and D such that d ≥ 2D − 1 and D ≥ bd3c.
Let f : P1 → F2(V5) be a general degree D morphism and let f̃ ∈Mbir

0,0(M, (D, d))

of bidegree (D, d) with f = f̃ ◦ π.

(1) The surface Sf is a smooth rational surface its image in V5 has degree 5D.

(2) The conic bundle πf : Sf → P1 has 3D singular fibers (Fi)i∈[1,3D]. Each

Fi is the union of two distinct lines: Fi = Li ∪ L′i.
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(3) The curve Γ = f(P1) meets Fi in a smooth point. Denote by (Li)i∈[1,3D]

the lines meeting Γ and by (L′i)i∈[1,3D] the other lines.

(4) On Sf we have Γ2 = d− 2D.

(5) The map ev : TSf
→ ev∗ TV5

is an injective map of vector bundles outside

of a finite set of points.

Proof. (1) The surface Sf is clearly rational. Furthermore, since M is smooth, by

Kleimann-Bertini Theorem [Kle74], the fiber product Sf is smooth for f general.

Let L ⊂ F2(V5) be a general line. The variety p(q−1(L)) ⊂ Gr(2, 5) is a Schubert
variety of codimension 1 in Gr(2, 5). It is therefore an hyperplane section. Therefore
ev(π−1(L)) is an hyperplane section of V5 and therefore of degree 5. This implies
that ev(Sf ) has degree 5D.

(2) We need to prove that the conic bundle π : M → F2(V5) has singular fibers
over a hypersurface of degree 3 in F2(V5) and non reduced fibers in codimension
at least two. To prove this we consider a line L ⊂ F2(V5) of conics in V5. The
variety p(q−1(L)) ⊂ Gr(2, 5) is a Schubert variety of codimension 1 in Gr(2, 5). It
is therefore an hyperplane section. Therefore ev(π−1(L)) is an hyperplane section
of V5. A general such line defines a general hyperplane section i.e. a Del Pezzo
surface of degree 5. On such a Del Pezzo surface Σ, there are five families of conics.
In fact considering Σ as the blow-up of P2 in four points (xi)i∈[1,4] the families are
given by

• the conics through the four points x1, x2, x3, x4 ;
• the lines through one of the four points (4 families).

The family defined by the image via ev of the fibers of π : π−1(L) → L is one of
these five families. But in each of these families, there is no non-reduced conic and
exactly 3 degenerate conics that are union of two distinct lines: in the first family
we have the three union of lines (xixj) ∪ (xkxl) for {i, j}

∐
{k, l} = {1, 2, 3, 4} a

partition. In the family of lines passing through x1, we have the union of the
exceptional divisor over x1 and one of the line (x1xi) for i ∈ {2, 3, 4}.

(3) This follows from the fact that Γ is a section of πf .

(4) Blowing-down the surface Sf along the lines (Li)i∈[1,3D] defines a rational

ruled surface. In particular, the Picard group Pic(Sf ) of Sf is generated by the

class of Γ, the class F of a general fiber of πf and the classes of the lines (Li)i∈[1,3D].

Let H be class of an effective divisor associated to OV5(1) on Sf and write H in
the previous basis. We get

H = aΓ + bF +

3D∑
i=1

aiLi.

We compute these coefficients. Since ev maps F to a conic in V5, we get a = H ·F =
2. Since ev maps Li to a line in V5, we get 1 = H · Li = a− ai thus ai = 1. Since
ev maps Γ to a curve of degree d in V5, we get H · Γ = d. Since ev maps Sf to

a surface of degree 5D, we have H2 = 5D. Solving the system obtained we get
b = D − d and Γ2 = d− 2D.

(5) The map TFl(2,4;5) → ev∗ TGr(2,5) is always injective along the fibers of the

map p : Fl(2, 4; 5)→ Gr(4, 5) = P4 so that its kernel is mapped isomorphically into
TGr(4,5). Furthermore, at a point (V2, V4) ∈ Fl(2, 4; 5) corresponding to subspaces of
dimension 2 and 4, the kernel of the map TFl(2,4;5) → ev∗ TGr(2,5) seen as a subspace
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of TGr(4,5) is given by the tangent space of the plane P2 = {W4 ∈ Gr(4, 5) | W4 ⊃
V2}.

For a given V4 ∈ Gr(4, 5) = F2(V5), we define an hypersurface QV4
⊂ F2(V5)

via QV4
= π(ev−1(ev(π−1(V4)))). Denote by CV4

the conic associated to V4 i.e
CV4

= ev(π−1(V4)). We have

QV4 = q(p−1(CV4) = {W4 ∈ F2(V5) | there exists V2 ∈ CV4 such that W4 ⊃ V2}.
Consider the surface Sf and the map TSf

→ ev∗ TV5 . By the previous discution,

this map is always injective along the fibers of π and is not injective at (V2, V4)
only if the map TP1 = dπ(TSf

) → TF2(V5) is not injective at V4. This is the

case if and only if the tangent of f(P1) at V4 is contained in QV4 . Since f is
chosen general, this occurs on a closed subset of P1. We may also assume that
this occurs outside of the locus where π has singular fibers. Finally, at a point
V4 ∈ f(P1) where this occurs, the tangent line is contained in exactly two planes of
the form P2 = {W4 ∈ Gr(4, 5) | W4 ⊃ V2}. So, over a point V4 ∈ f(P1) where this
occurs, there are exactly two points (V2, V4) and (V ′2 , V4) of the surface Sof where
TSf
→ ev∗ TV5

is not injective. This prove that the map TSf
→ ev∗ TV5

is injective

outside of a finite number of points. �

Proposition 2.9. Let d and D such that d ≥ 2D − 1 and D ≥ bd3c.
Let f : P1 → F2(V5) be a general degree D morphism and let f̃ ∈Mbir

0,0(M, (D, d))

be general of bidegree (D, d) with f = f̃ ◦ π. Let Γ = f̃(P1) and choose m general
fibers F1, · · · , Fm of the map πf : Sf → f(P1). Let (pi)i∈[1,m] be the intersection

points of Γ with Fi: pi = Γ∩Fi. Choose m points (qi)i∈[1,m] such that qi ∈ Fi\{pi}.
Set C ′ = Γ ∪

⋃m
i=1 Fi and let f ′ = (ev : C ′ → V5, (qi)i∈[1,m]) ∈M

bir

m (V5, d).

Then f ′ is a smooth point in its fiber of the map ev : M
bir

m (V5, d)→ V m5 .

Proof. Let Σ =
∑
i qi. It suffices to prove that H1(C ′, ev∗ TV5

(−Σ)) vanishes. Since
we choose general elements, we may assume that ev(Γ) meets the open SL2(C)-orbit
and that the conics Fi are general.

First remark that for a general conic F ⊂ Gr(2, 5), we have TGr(2,5)|V5 =

OF (1)2⊕OF (2) (since there is a unique conic passing through two points in general
position in V5).

Consider the exact sequence

0→
m⊕
i=1

TV5 |Fi(−Σ− pi)→ TV5 |C′(−Σ)→ TV5 |Γ(−Σ)→ 0.

Since Σ is not meeting Γ, we have TV5
|Γ(−Σ) = TV5

|Γ and since TV5
is globaly

generated on an open subset (the open SL2(C)-orbit) we have H1(Γ, TV5 |Γ(−Σ)) =
H1(Γ, TV5 |Γ) = 0. On the other hand, the intersection Σ ∩ Fi contains a unique
point: qi so that TV5

|Fi
(−Σ− pi) = TV5

|Fi
(−qi − pi) = OFi

(−1)⊕O2
Fi

and we get

H1(Fi, TV5
|Fi

(−Σ− pi)) = 0 proving the vanishing. �

2.3. Family of pairs. We study compatible pairs of sections of π. Fix d and m
and define the following integers: d0 = d − 2m, D = bd02 c, dE = 4D − d0 and
h = 2D − dE = d0 − 2D. Finally set m′ = d− 2D −m = m+ h.

Hypothesis 2.10. We assume that the following conditions are satisfied:

(1) m′ ≥ 1,
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(2) d0 ≥ h+ 2,
(3) d ≥ 8m− 6 + 5h.

Remark 2.11. The above definition depends on the parity of d.

(1) We summarise the different values of d0, D, dE , h and m′.

d = 2k d = 2k + 1
d0 2(k −m) 2(k −m) + 1
D k −m k −m
dE 2(k −m) 2(k −m)− 1
h 0 1
m′ m m+ 1

(2) We have d− dE = 2d− 4D − 2m = 2m′.
(3) We have D − ddE3 e ≥ m

′ − 1

(4) We have D > d
3 − 1 and therefore D ≥ bd3c.

(5) We have dE ≥ 2D − 1.

Remark 2.12. Let d and m be non negative integers.

(1) If m = 0, then (d,m) satisfy Hypothesis 2.10 for d ≥ 3.
(2) If m = 1, then (d,m) satisfy Hypothesis 2.10 as soon as d ≥ 6.

(3) If m ≥ 2, then (d,m) satisfy Hypothesis 2.10 for d ≥
{

8m− 6 for d even,
8m− 1 for d odd.

We have seen in Propositions 2.7 and 2.8 that for f ∈M0,m(F2(V5), D) general

(in particular with irreducible source), there exists f̃E ∈ M
bir

0,m(M, (D, dE)) with

irreducible source such that f = f̃E ◦ π. We obtain this way a conic bundle surface

Sf → P1 with a section E = f̃E(P1). This conic bundle has 3D singular fibers,
the section E meets exactly one of these lines in each singular fiber and we have
E2 = dE − 2D = −h.

Lemma 2.13. For E as above, let Sf,E be the ruled surface obtained from Sf by

contraction of the 3D lines in the singular fibers of Sf → P1 not meeting E. Then

Sf,E is a ruled surface and the image E of E in Sf,E is a section with minimal self

intersection. In particular Sf,E is a Hirzebruch surface of type h.

Proof. This is classical geometry of surfaces. �

In the next proposition, we will use the following lemma which is a direct appli-
cation of general techniques (see [Kol96, Theorem II.1.7]).

Lemma 2.14. Let F be a vector bundle of rank r on P1 such that F = ⊕mi=1OP1(ai),
with a1 ≥ · · · ≥ ar ≥ 0. Let m ≥ 0, let (xi)i∈[1,m] be points on P1 and let yi ∈ Fxi

be elements in the stalk of F at xi for all i ∈ [1,m].
Assume such that ar ≥ m− 1, then the space

V = {s ∈ H0(P1,F) | s(xi) = yi for all i ∈ [1,m]}
has dimension dimH0(P1,F)− rm.

Proof. Let π : Y → P1 be the total space of F . The space V is the scheme of
morphisms s : P1 → Y relative over P1 with condition s(xi) = yi for all i ∈
[1,m]. Its obstuction space is H1(P1, s∗Tπ(−m)) = H1(P1,F(−m)) and vanishes
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under our assumption. It is therefore smooth (it is a vector space) of dimension
dimH0(P1, s∗Tπ(−m)) = dimH0(P1,F(−m)). Under our assumption, this last
space has dimension dimH0(P1,F)−mr. �

Set M(d,m) = M
bir

0,m′(M, (D, dE)) ×M0,m′ (F2(V5),D) M0,m′(M, (D, d)). Define

M(d,m) as the open subset of M(d,m) of pairs (f̃E , f̃) such that the stable map

f̃E ∈M
bir

0,m′(M, (D, dE)) has irreducible source and satisfies all properties of Propo-

sition 2.9. We consider a closed subset Md,m ⊂ M(d,m) defined as the closure of
the set

Md,m =
{

(f̃E , f̃) ∈M(d,m)
∣∣∣ [f̃(P1)] = [f̃E(P1)] +m′[F ] in Pic(Sf )

}
where f = f̃ ◦ π = f̃E ◦ π and F is a general fiber of the map π : Sf → P1.

Proposition 2.15. Let m, d, d0, D, dE and m′ as above.

(1) The space Md,m is irreducible of dimension d+ dE +D +m′ + 3.

(2) For (f̃E , f̃) ∈Md,m, we have f̃ ∈Mbir

0,m′(M, (D, d)).

(3) The map Md,m →M
bir

0,m′(M, (D, d)) is surjective.

Proof. (1) We have a morphism Md,m → M
bir

0,m′(M, (D, dE)) whose general fibers

are given by the linear system |f̃E(P1) + m′F |. On the open subset M(d,m), set

E = f̃E(P1) ⊂ Sf and consider Sf,E the ruled surface obtained by contracting

the lines in the singular fibers of Sf → P1 not meeting E. Then the above linear

system is equal to |E + m′F |. where E and F are the images of E and F in
Sf,E . Pushing down along the map Sf,E → P1 we get that this linear system is the

projective space on the cohomology group H0(P1,OP1(m)⊕OP1(m′)). This realises

M(d,m) as an open subset of a projective bundle over M
bir

0,m′(M, (D, dE)) proving
the irreducibility (see below for the construction of this bundle). The dimension is
given by

dimM(d,m) = dimM
bir

0,m′(M, (D, dE)) +m+m′ + 1
= 3D + dE +m′ + 2 + d− 2D + 1
= d+D + dE +m′ + 3.

We describe the above projective bundle on an open subset of the moduli space

M
bir

0,m′(M, (D, dE)). Let M be the image in M0,m′(F2(V5), D) of M(d,m) and let

M be its inverse image in M
bir

0,m′(M, (D, dE)). Let p : C → M be the universal
curve. Define S = C ×F2(V5) M where the map C → F2(V5) is the composition of
the evaluation C → M with π : M → F2(V5). By construction, we have a section
s : C → S of pr : S → C. Furthermore, by definition we have sections σi :M→ C
for all i ∈ [1,m′]. Define the divisor D on S by

D = s(C) +

m′∑
i=1

pr−1(σi(M))

and set E = p∗pr∗OS(D). By the above, this is a vector bundle over M and the
projective bundle is PM(E).
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(2) Note that for a general element f̃E ∈ M
bir

0,m′(M, (D, dE)), the line bundle

OSf,E
(E +m′F ) is globally generated. In particular a general element f̃ such that

(f̃E , f̃) ∈ M(d,m) has for image in Sf,E a general section of H0(Sf,E ,OSf,E
(E +

m′F )) which is irreducible so that f̃ has irreducible source. Furthermore, we have
seen that on Sf , a section H of ev∗OV5(1) has class

H = 2f̃E(P1) + (D − dE)F +

3D∑
i=1

Li

so that its image in Sf,E is H = 2E+(D−dE+3D)F = 2E+d0F . Since d0 ≥ 2+h,

the line bundle H is very ample and the map ev : Sf → V5 is an isomorphism onto

its image except maybe on the 3D lines contrated by the map Sf → Sf,E . In

particular, the map f = ev ◦f̃ is birational onto its image so lies in M
bir

0,m′(V5, d).

Now let M0 be the image of M(d,m) in M
bir

0,m′(V5, d) via the map (f̃E , f̃) 7→
ev ◦f̃ . We want to prove that M0 is M

bir

0,m′(V5, d). Consider the maps

Md,m
α→M0,m′(M, (D, d))

β→M0

defined by (f̃E , f̃) 7→ f̃ 7→ ev ◦f̃ . Let f = f̃ ◦ π and Sf → P1 be the associated
conic bundle.

For f̃ general in the image of α, we may assume that the source f̃ is P1 and if
we contract the 3D lines in the singular fibers of the conic bundle Sf → P1 not

meeting f̃(P1), we get a surface S which is a ruled Hirzebruch surface of type h.
The fiber of α over a general point of its image is given by the choice of a section
of minimal self intersection of the surface S → P1 and is therefore of dimension 1
for d even and 0 for d odd. Using our notation, this fiber of α over a general point
of its image is of dimension 1− h = 2D + 1− d0.

We now want to compute the fibers of β. Let (f̃E , f̃) ∈ Md,m general and set

f = π◦ f̃ = π◦ f̃E . We may assume that f has irreducible source and let (pi)i∈[1,m′]

be the m′ marked points on P1 associated to f . Set Fi = π−1(pi). Then Ci = ev(Fi)

is a conic in V5 and set C0 = P1∪
⋃m′
i=1 Fi. Let f̃0 : C0 →M be the map defined by

f̃E on P1 and by the inclusion of Fi in M for i ∈ [1,m′]. Then (f̃E , f̃0) ∈Md,m. Set

f0 = ev ◦f̃0. We compute the dimension of Hom(f̃∗0 ev∗(C5/V2), f̃∗0π
∗OF2(V5)(1)) =

H0(C0, f̃
∗
0 (ev∗(C5/V2)∨⊗π∗OF2(V5)(1))). Set F = ev∗(C5/V2)∨⊗π∗OF2(V5)(1), we

want to compute H0(C0, f̃
∗
0F). Let (qi)i∈[1,m′] be the intersection points of f̃E(P1)

with the fibers (Fi)i∈[1,m′]. Any global section s ∈ H0(C0, f̃
∗
0F) is determined by

a global section sE ∈ H0(f̃∗E(P1), f̃∗EF) and by global section si ∈ H0(Fi,FFi) for
all i ∈ [1,m′] together with the conditions s(qi) = si(qi) for all i ∈ [1,m′]. Since Fi
is a conic (that can be chosen general), we have

FFi
= (OFi

⊕OFi
(1)2)∨ ⊗OFi

= OFi
⊕OFi

(−1)2

so that dimH0(Fi,F|Fi) = 1. On the other hand we have

f̃∗EF = O1
P(D − a)⊕O1

P(D − b)⊕O1
P(D − c)
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with a + b + c = dE and a ≥ b ≥ c. Since (f̃E , f̃) is general in Md,m and since

f̃E ∈M
bir

0,m′(M, (D, dE))) we may also assume that a− c ≤ 1. Our conditions on d

and m imply that D ≥ bdE3 c thus D ≥ c so that dimH0(P1, f̃∗EF) = 3D − dE + 3.

Our assumptions on d imply D− a = D−ddE3 e ≥ m
′− 1 (see Remark 2.11.(3)). In

particular, the linear conditions s(qi) = si(qi) are linearly independent (see Lemma

2.14) so that dimH0(C0, f̃
∗
0F) = dimH0(P1, f̃∗EF) +

∑m′

i=1 dimH0(Fi,F|Fi
)) −

3m′ = 3D − dE + 3 − 2m′ = 3D − d + 3. We thus proved that for the point

(f̃E , f̃0) ∈ Md,m, we have dimH0(C0, f̃
∗
0F) = 3D − d + 3. In particular for any

general point (f̃E , f̃) ∈ Md,m with f̃ : C → M , we have dimH0(C0, f̃
∗F) ≤

3D − d + 3. Since Md,m is irreducible, so is its image by α. Furthermore this

image contains morphisms f̃ with irreducible source, so these morphisms form a
dense subset of this image. In particular, the general fiber of β will contain a

dense subset of morphisms f̃ with irreducible source and for such a morphism,

the elements of the fiber are given by an open subset of PH0(P1, f̃∗F) which is of
dimension at most 3D−d+2. The dimension of the general fiber of the composition
β ◦α is therefore equal to 3D− d+ 2 + 2D+ 1− d0. If M0 is a proper closed subset

of M
bir

0,m′(V5, d), we get

dimMd,m < dimM
bir

m (V5, d) + 3D − d+ 2 + 2D + 1− d0

< 2d+m′ + 5D − d+ 3− d0

≤ d+m′ +D + dE + 3 = dimMd,m,

a contradiction. Therefore we have M0 = M
bir

0,m′(V5, d). Since M
bir

0,m′(M, (D, d))

is the unique irreducible component of M0,m′(M, (D, d)) dominating M
bir

0,m′(V5, d)
this proves (2).

(3) We have seen that the map α : Md,m → M
bir

0,m′(M, (D, d)) has fibers of
dimension 2D + 1− d0 so that its image has dimension

d+D +m′ + dE + 3− (2D + 1− d0) = 3D + d+m′ + 2 = dimM
bir

0,m′(M, (D, d)),

proving the result. �

Remark 2.16. The space Md,m is even unirational: it is an open subset of a

projective bundle overM
bir

0,m′(M, (D, dE)) which is unirational (see Remark 2.6.(1)).

2.4. Proof of Theorem 2.1. Fix m ≥ 0 and let d ≥ 1 satisfying the conditions
of Hypothesis 2.10.
d ≥ 8m− 8 for d even and d ≥ 8m− 3 for d odd. Recall the definition of d0, D,

dE and m′.

Lemma 2.17. For f ∈ M
bir

m (V5, d), there exists f̃ ∈ M
bir

0,m(F, (D, d)) with f =

ev ◦f̃ .

Proof. Since D ≥ bd3c (see Remark 2.11.(4)), this follows from Corollary 2.5. �

Lemma 2.18. Let f ∈ Mbir

m (V5, d) general and f̃ ∈ Mbir

0,m(F, (D, d)) general with

f = ev ◦f̃ . In particular assume that both sources of f and f̃ are P1 and denote by

(xi)i∈[1,m] the marked points. Set f = π ◦ f̃ .
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If m ≥ 1, then there exists f̃0 ∈M0,m(M, (D, d0)) and m fibers (Fi)i∈[1,m] of the

map π with qi = f̃(xi) ∈ Fi such that setting Γ = f̃0(P1), setting C = Γ ∪
⋃m
i=1 Fi

and setting g = (ev : C ′ → V5, (qi)i∈[1,m]) ∈M
bir

m (V5, d), we have:

(1) g is a smooth point in the fiber ev−1((xi)i∈[1,m]) of ev : M
bir

m (V5, d)→ V m5 .

(2) The maps f and g are contained in a P1 inside ev−1((xi)i∈[1,m]).

Proof. Let f̃ ′ be obtained from f̃ by choosing one more marked point for d odd

(and f̃ ′ = f̃ for d even). Then f̃ ′ ∈ M
bir

0,m′(M, (D, d)) and by Proposition 2.15,

there exists f̃E ∈M
bir

0,m′(M, (D, dE)) such that (f̃E , f̃
′) ∈Md,m. Since f and f̃ are

general, so is f . Furthermore both conditions D ≥ bd3c ≥ b
d0
3 c (Remark 2.11.(4))

and d0 ≥ 2D−1 (Remark 2.11.(5)) are satisfied so we may use Proposition 2.8 and
Proposition 2.9. In particular by Proposition 2.9 we get the first assertion.

We now prove the second assertion. Consider the conic bundle π : Sf → P1 and

E = f̃E(P1). Let Sf,E → P1 be the ruled Hirzebruch surface of type h obtained
by contracting the lines in the singular fibers of the conic bundles not meeting

E. For d even, we set f̃0 = f̃E . For d odd, we have m′ = m + 1 marked points
(xi)i∈[1,m′] in P1 where xm′ is the added marked point. Let Fm′ = π−1(xm′). The
above Hirzebruch surface is of type 1 and a general element in the linear system
|E+Fm′ | is irreducible. Therefore a general element in the linear system |E+Fm′ | is
irreducible. Let Γ be such an element and f0 : P1 → Γ its (eventual) normalisation.

In both cases (d even or d odd), we have by construction that f̃(P1) is an element

of the linear system |Γ+mF | on Sf and the curves C and f̃(P1) pass through the m

marked points (f̃(xi))i∈[1,m]. Any element in the line generated by these elements
in the linear system |Γ +mF | on Sf passes through these points. By composition

with ev we get a rational family in ev−1((xi)i∈[1,m]) containing f and g. �

For m ≥ 1, let ∆2,d−2 be the image of the map M
bir

0,2(V5, 2)×V5
M0,m(V5, d−2)→

M
bir

m (V5, d) obtained by gluing the last marked points on each component.

Lemma 2.19. For m ≥ 1, if the general fiber Z ′ = ev−1((xi)i∈[1,m−1]) of the

morphism ev : M
bir

0,m(V5, d − 2) → V m−1
5 obtained by evaluating on the first m −

1 marked points is rationally connected, then the general fiber of the map ev :
∆2,d−2 → V m5 is rationally connected.

Proof. Let Z be a general fiber of the map ev : ∆2,d−2 → V m5 . Forgeting the first

component, we have a map Z → M0,m(V5, d − 2). Since any two points lie on a
conic in V5, this map is surjective onto the fiber Z ′ = ev−1((xi)i∈[1,m−1]) which is
rationally connected. The general fiber of the map Z → Z ′ is given by all conic
passing through 2 given points. There is a unique such conic so that the map
Z → Z ′ is birational. �

Lemma 2.20. If M
bir

0,m(V5, d−2) is rationally connected, then ∆2,d−2 is rationally
connected.

Proof. We have a map M
bir

0,2(V5, 2)×V5 M
bir

0,m(V5, d− 2) → M
bir

0,m(V5, d− 2). Since
any two points lie on a conic in V5, this map is surjective and the general fiber
of the map is given by all 2-pointed conic maping one point to a given point in
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V5. This fiber is therefore rationnally connected and the result follows by the main
Theorem in [GHS03]. �

We now prove the following result which is a variant of [DeL15, Lemma 7.9]

Lemma 2.21. Let Y ⊂ Z be projective varieties such that

(1) Y is rationally connected;
(2) for z ∈ Z general, there exists a P1 ⊂W containing z and meeting Y along

a smooth point of Z.

Then Z is rationally connected.

Proof. We adapt the proof of [DeL15, Lemma 7.9] and use the existence of the

MRC quotient for a strong resolution Z̃ of Z (see [Kol96]). The MRC quotient is

a rational map φ : Z̃ 99K Q such that a general fiber of the map is an equivalence

class for the relation “being connected by a rational curve on Z̃”. By definition,

there is some open set U of Z̃ such that the restriction of φ to U is regular, proper,

and any rational curve in Z̃ intersecting U is contained in U . Since the resolution is
an isomorphism over the smooth locus of Z, the strict transform of a rational curve

through a generic point of Z meeting Y in a smooth point will meet Ỹ the strict

trnsform of Y . By definition of φ, this means that φ(Ỹ ) is dense in Q. But since Y
is rationally connected we get that Q is a point thus Z is rationally connected. �

To prove Theorem 2.1.(1), it is enough to prove that M
bir

0,1(V5, d) is rationally

connected since there is a surjective map M
bir

0,1(V5, d) → M
bir

0 (V5, d). So we set
m = 1 and proceed by induction on d. For d = 1 or d = 2, the result is well
know (see Subsection 1.2). We want to apply Lemma 2.21 to Y = ∆2,d−2 and

Z = M
bir

0 (V5, d). By induction and Lemma 2.20, we obtain that Y is rationally
connected and by Lemma 2.18 a general point of z is on a P1 in Z meeting Y
along a smooth point of Z. We can therefore apply Lemma 2.21 and get that Z is
rationally connected.

To prove Theorem 2.1.(2), we proceed by induction on m. The result is true
for m = 0 by Theorem 2.1.(1). We want to apply Lemma 2.21 to Y the general
fiber of the map ev : ∆2,d−2 → V m5 and Z the corresponding fiber of the map ev :

M
bir

m (V5, d)→ V m5 . By induction, the general fiber of the map ev : M
bir

0,m−1(V5, d−
2)→ V m−1

5 is rationally connected. By Lemma 2.19 we obtain that Y is rationally
connected and by Lemma 2.18 a general point of z is on a P1 in Z meeting Y
along a smooth point of Z. We can therefore apply Lemma 2.21 and get that Z is
rationally connected.

3. Unirationality

In this section we prove the following result.

Theorem 3.1. Let d ≥ 1 and m ≥ 0.

(1) For any d ≥ 1 the moduli space M0,0(V5, d) has pure dimension 2d. More-

over, for d ≥ 2, the moduli space M0,0(V5, d) has two irreducible compo-
nents:

M0,0(V5, d) = M
bir

0,0(V5, d) ∪M line

0,0 (V5, d).

Furthermore,
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• M
bir

0,0(V5, d) is unirational;

• M
line

0,0 (V5, d) is rational.
(2) For m ∈ {0, 1} and d ≥ 2, the general fiber of the evaluation map ev :

M
bir

m (V5, d)→ V m5 is unirational.

Remark 3.2. The statement for m = 1 in Theorem 3.1.(2) follows from the same
result for m = 2 so we will focus on the m = 2 case.

3.1. Preliminary results on Pn and Qn ⊂ Pn+1. In this subsection we study
rational simple connectedness for the projective space and the smooth quadric.

For these varieties, the moduli spaces M0,0(X, d) are irreducible (cf. [Tho98],

[KP01]). As a consequence the spaces M
bir

0,0(X, d) are irreducible, so verifying ra-
tional simple connectedness reduces to the study of the evaluation morphisms.

Remark 3.3. For these varieties, our notion of rational simple connectedness co-
incide with rational simple connectedness in [dJS06a]. In particular Pn and Qn are
strongly rationally simply connected (cf. [dJS06a, Theorems 1.2]).

Before analysing examples, we should point out that the results on rational sim-
ple connectedness we present here for these first examples are well-known. Nonethe-
less, we push forward the analysis and obtain more precise information on some
moduli spaces of rational curves.

3.1.1. The projective space. For the projective space Pn it is easy to obtain the
strongest possible statement for rational simple connectedness.

Proposition 3.4. The projective space Pn is strongly rationally simply connected.

Before proving the result, let us list some extra properties which hold for the
moduli spaces of rational curves on the projective space:

• its VMRT is isomorphic to Pn−1;
• the evaluation morphism evx from the universal P1-bundle over the VMRT

P(OPn−1 ⊕OPn−1(−1))
evx //

πx

��

Pn

Pn−1

σx

ZZ

coincides with the blow up if x ∈ Pn.

Let f : P1 → Pn be a degree d morphism, with d ≥ 1, defined by [P 0 : . . . : Pn],
with P i ∈ C[u, v]d degree d homogeneous polynomials for i ∈ [0, n], fix m = d + 1
distinct points t0, . . . , td ∈ P1 and m arbitrary points x0, . . . , xd ∈ Pn. We denote by
Mort→x

d (P1,Pn) the variety of degree d morphisms f : P1 → Pn such that f(ti) = xi
for all i ∈ [0, d].

Lemma 3.5. Keep the notation as above. Then Mort→x
d (P1,Pn) is rational and

isomorphic to

(3.D) Ud = {[λ0 : . . . : λd] | λi 6= 0 for all i ∈ [0, d]} ⊂ Pd.

Proof. For d = 1, the variety Mort→x
1 (P1,Pn) coincides with the automorphism

group of P1 with two marked points (since there is a unique line through two points
in Pn), which is isomorphic to the multiplicative group Gm and is then rational.
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Assume now d ≥ 2 and thus m ≥ 3. In particular, the automorphism group of P1

preserving m distinct points is trivial. Let f : P1 → Pn be a degree d morphism and
choose coordinates on P1 such that ti = [zi : 1] and choose vectors vi ∈ Cn+1 such
that xi = [vi] for all i ∈ [0, d]. In these coordinates we can write f(t) := f([z : 1]) =
[P 0(z) : . . . : Pn(z)]. We impose now the conditions f(ti) = xi for all i ∈ [0, d], i.e.
that there exist non-zero scalars λi, i ∈ [0, d] such that

P (zi) := (P 0(zi), . . . , P
n(zi)) = λivi.

Define

Li(z) :=
∏
j 6=i

z − zj
zi − zj

,

for all i ∈ [0, d]. We therefore have

(3.E) P (z) =

d∑
i=0

λiLi(z)vi.

The variety the variety Mort→x
d (P1,Pn) is therefore described by (3.D). �

We prove some more results on projective spaces that can be useful for example
in the study of rational simple connectedness on del Pezzo surfaces.

We fix m = d + 1 and let m′ ≥ 0 be an integer. Let evm+m′ be the evaluation
map

evm+m′ : M0,m+m′(Pn, d)→ (Pn)m+m′ .

As in Notation 0.1, we consider the map

Ψm+m′ : M0,m+m′(Pn, d)→M0,m+m′ × (Pn)m+m′ .

Let x = [v] ∈ (Pn)m+m′ be a fixed point, i.e. we write xi = [vi] with vi ∈ Cn+1 for
all i ∈ [0,m + m′]. The following lemma provides the numerical condition which
guarantees that the general fibre of Ψm+m′ is non-empty and rational. It will be
useful to study rationality for moduli spaces of rational curves on del Pezzo surfaces.

Lemma 3.6. Let Um+m′ ⊂ M0,m+m′ the open subset of pairwise distinct points.
Assume that the following two conditions hold:

(1) d ≥ nm′;
(2)

rk

v0 ∧ vj v1 ∧ vj · · · vd ∧ vj


= rk

v0 ∧ vj · · · vi−1 ∧ vj vi+1 ∧ vj · · · vd ∧ vj


for all i ∈ [0, d] and j ∈ [d+ 1,m′].

Then for any (t,x) ∈ Um+m′ × (Pn)m+m′ the fibre Ψ−1
m+m′(t,x) is non-empty and

rational.

Proof. The case m′ = 0 is simply Lemma 3.5. More precisely, a morphism f : P1 →
Pn sending the first m pairwise distinct points (t0, . . . , td) to (x0, . . . , xd) is de-
scribed by (3.E) and the variety Mort→x

d (P1,Pn) is rational of dimension d. Let
(zd+1, . . . , zd+m′) be the coordinates of the last m′ points in P1. If we impose the
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extra condition (i.e. f(tj) = xi for all j ∈ [d + 1, d + m′]), we obtain the following
condition on the coefficients λλλ = (λ0, . . . , λd):

(3.F)


P 0(zj)
P 1(zj)

...
Pn(zj)

 =


v0
j

v1
j
...
vnj


for all j ∈ [d+ 1, d+m′]. These impose at most nm′ linear conditions on the λ’s.
We only need to check that these linear conditions are not of the form λi = 0 for
some i, since these would give an empty fibre Ψ−1

m+m′(t,x). Here we need condition
(2) in the hypothesis. For any j ∈ [d+ 1, d+m′], one can develop (3.F) and obtain:

A · λλλ :=

L0(zj)v0 ∧ vj L1(zj)v1 ∧ vj · · · Ld(zj)vd ∧ vj



λ0

λ1

...
λd

 =

0
...
0

 .

Condition (2) guarantees that Ker(A) is not contained in any of the hyperplanes
λi = 0, since L0(zj) 6= 0 for all j ∈ [d+ 1, d+m′]. �

Remark 3.7. The condition (2) of Lemma 3.6 holds if we assume that the points
(x0, . . . , xm+m′) are general: indeed, since d ≥ n, we can choose the first n + 1
vectors to be the standard basis, i.e. vi = ei for i ∈ [0, n]. Since for any v ∈ Cn+1,
the matrix (e0 e1 · · · en) ∧ v has rank at most n, the same holds for the matrix
(e0 e1 · · · en vn+1 · · · vd) ∧ v. Choosing vn+1, . . . , vd and v general, condition (2)
is verified.

Corollary 3.8. Let X := Pn be the n-dimensional projective space, with n ≥ 2.
Then

m− 1−
⌊

2(m− 2)

n+ 1

⌋
≤ dX(m) ≤ m− 1−

⌊
m− 1

n+ 1

⌋
.

Proof. The lower bound is given by dimension count while the upper bound is a
direct consequence of Remark 3.7. �

Proof of Proposition 3.4. We know that all moduli spaces M0,0(Pn, d) are irre-
ducible (cf. [FP97, Section 4]). We consider the following diagram:

(3.G) M0,d+1(X, d)

g

��

evd+1 // Xd+1

M0,d+1

.

Lemma 3.5 implies that the general fibre Mx := ev−1
d+1(x) is dominant on M0,d+1

and that g|Mx
is birational to a Pd-fibration over M0,d+1. Since the base of g|Mx

is

rational (cf. [Kap93]), we deduce the unirationality of Mx := ev−1
d+1(x). �

3.1.2. The quadric hypersurface. Also for this example, we obtain rational simple
connectedness in the strongest possible sense. Nonetheless, the proof requires more
care, since we need to distinguish two cases, depending on some parity condition.
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Proposition 3.9. The quadric hypersurface Qn ⊂ Pn+1, with n ≥ 2, is strongly
rationally simply connected.

Remark 3.10. The case of Q2 = P1 × P1 is slightly different with respect to the
others, since ρ(Q2) = 2. Nonetheless, we will always fix the diagonal polarisation
β = H1+H2, where the Hi’s are the two rulings. With this choice, all the arguments
of this section apply also for n = 2.

As for Pn let us recall that, for any x ∈ Qn ⊂ Pn+1, the VMRT is isomorphic to
Qn−2, which is then rational, if n > 2, or two reduced points if n = 2.

As for the previous case, let f : P1 → Qn ⊂ Pn+1 be a degree d morphism, with
d ≥ 1, defined by [P 0 : . . . : Pn+1], with P i ∈ C[u, v]d for i ∈ [0, n+1], fix m = d+1
distinct points t0, . . . , td ∈ P1 and m arbitrary points x0, . . . , xd ∈ Qn. Keeping the
analogous notation as before, we denote by Mort→x

d (P1,Qn) the variety of degree
d morphisms f : P1 → Qn such that f(ti) = xi for all i ∈ [0, d].

For this case, we need some more notation. Let V be a C-vector space of di-
mension n + 2 and q be a non-degenerate quadratic form on V which defines the
quadric Qn ⊂ P(V ), i.e.

Qn = {[v] ∈ P(V ) | q(v) = 0}.
Moreover, let B be the non-degenerate bilinear form associated to q.

As in the proof of Lemma 3.5, choose coordinates on P1 such that ti = [zi : 1]
and choose vectors vi ∈ V such that xi = [vi] for all i ∈ [0, d].

Definition 3.11. Keep the notation as above. The rescaled skew-symmetric matrix
A := AQn,z→v associated to (z0, . . . , zd) and (v0, . . . , vd) is defined as

AQn,z→v :=

(
B(vi, vj)

zj − zi

)
i,j∈[0,d]

.

The previous definition depends on the choice of coordinates on P1, but this will
not affect our arguments. Let us recall some properties of the Pfaffian of skew-
symmetric matrices.

Remark 3.12. Let A = {aij} be an (m×m) skew-symmetric matrix. The Pfaffian
pf(A) of A is defined as

(3.H) pf(A) :=

{
0 if m is odd;∑
σ∈Fm

sgn(σ)
∏k
i=1 aσ(2i−1),σ(2i) if m = 2k is even.

where Fm is the set of permutations in Sm satisfying the following:

• σ(1) < σ(3) < . . . < σ(2k − 1); and
• σ(2i− 1) < σ(2i) for 1 ≤ i ≤ k.

One can check that the set F2k is in 1:1 correspondence with partitions of the set
{1, 2, . . . , 2k} into k disjoint subsets with 2 elements:

σ ∈ F2k
1:1←−→ {(i1, j1), . . . , (ik, jk)}

where i1 < i2 < . . . < ik and il < jl for all 1 ≤ l ≤ k. In particular,

|F2k| =
(2k)!

2kk!
= (2k − 1)!!

So, pf(A) is a degree k polynomial in the entries of A and is linear in its lines
and columns. Moreover the following formal properties of pf(A) hold:
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• pf(A)2 = det(A);
• pf(BABt) = det(B) pf(A) for any (m×m)-matrix B.

Moreover a change of coordinates on P1 will change the Pfaffian by a non-zero
scalar and the vanishing of pf(A) will not depend on the choice of coordinates. For
further details on pfaffians, see [Nor84, Section 5.7].

We can prove an analogue of Proposition 3.4 for quadric hypersurfaces.
Let us recall some known facts. In our notation, given a matrix A = (ai,j), the i-th
row (resp. the j-th column) is denoted by Ai (resp. by Aj).

Lemma 3.13. Let A = (ai,j) be an (m×m)-skew-symmetric matrix, with indices
i, j ∈ {0, 1, . . . , d}. Let A(i) (resp. A(i, j)) denote the skew-symmetric matrix ob-
tained from A by removing the i-th row and column (resp. the i-th and the j-th rows
and columns).

(1) if m is odd and A has rank m − 1, then Ker(A) is spanned by the vector
((−1)1 pf(A(0)), · · · , (−1)d+1 pf(A(d)))t .

(2) If m = 2k is even and A has rank m− 2, then Ker(A) is spanned by the m
vectors

Ni = ((−1)i+j pf(A(i, j)))j ;

Proof. We prove (1): let us define vA := ((−1)1 pf(A(0)), · · · , (−1)d+1 pf(A(d))).
Let A[i] denote the following matrix:

A[i] :=

(
A Ai

Ai 0

)
,

which is skew-symmetric of dimension (m + 1) × (m + 1), and by construction
pf(A[i]) = 0. Using the formal properties of the Pfaffian (see [IW99, Lemma 2.3]),
we obtain:

0 = pf(A[i]) =

d∑
j=0

(−1)i+jai,j pf(A(j)) = (−1)i−1Ai · vtA.

In particular vtA is in the kernel of A and since A has co-rank one, at least one of
the entries of vtA is non-zero and so vA generates the kernel.

To prove part (2), we apply part (1) to deduce that all vectors Ni are in the
kernel of A (recall that pf(A(i, i)) = 0). Furthermore, the vectors Ni and Nj are
linearly independent as soon as pf(A(i, j)) 6= 0. But the condition on the rank
implies that at least one of these Pfaffians is non-zero and that the Ni’s span the
kernel of A. �

Remark 3.14. The same methods can be used to deduce similar results on the
kernel of skew-symmetric matrices for higher co-ranks.

Applying the formal properties of pfaffians to our setting, we deduce the following
lemma.

Lemma 3.15. Keep the notation of Definition 3.11. Let u, v ∈ V be vectors such
that q(u) = q(v) = 0 and B(u, v) = 1. Let v = (v0, . . . , vd) be defined via

vi =

{
u for i even;

v for i odd

with i ∈ [0, d]. Let Um ⊂ M0,m the open subset of pairwise distinct points. Then
for any t ∈ Um (with coordinates z) the matrix A = AQn,z→v has maximal rank.
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Proof. The associated matrix A has the form

A =

(
δi+j≡1

zj − zi

)
,

where δi+j≡1 equals 1 if i+j is odd and 0 otherwise. For d even, we have pf(A) = 0
while for d = 2k − 1 odd, we prove the following formula:

pf(A) =

∏
i<j, i+j even(zi − zj)∏
i<j, i+j odd(zi − zj)

.

Indeed, keeping the notation as in Remark 3.12, let Fodd
2k ⊂ F2k be the subset of

partitions σ = {(i1, j1), . . . , (ik, jk)} such that il + jl is odd for all l ∈ [1, k]. Using
formula (3.H), one has:

(3.I) pf(A) =
∑

σ∈Fodd
2k

k∏
l=1

1

zjl − zil
.

Factorising this expression, we deduce:

pf(A) =
P (z0, z1, . . . , zd)∏
i<j, i+j odd(zj − zi)

.

The denominator has degree k2 and the polynomial P (z0, z1, . . . , zd) has degree
at most k2 − k. If we evaluate P in zi = zj for i < j and i + j even, the
numerator vanishes, so there exists a constant C for which P (z0, z1, . . . , zd) =
C
∏
i<j, i+j even(zj − zi). One determines the value of C = 1 looking at the residue

at (z0 − z1). �

The following lemma is the quadratic version of Lemma 3.5.

Lemma 3.16. Keep the notation as above. Then the variety Mort→x
d (P1,Qn),

with for d ≥ 2, is either empty or rational and isomorphic to the open subset of Pd
defined by

(3.J) Ud,A = {[λ0 : . . . : λd] | λi 6= 0 for all i ∈ [0, d] and (λ0, . . . , λd) ∈ Ker(A)}.

Proof. Since Qn is contained in the projective space Pn+1 we can apply Lemma 3.5
to write down the parametrisation of morphisms in f : P1 → Pn+1 as in (3.E).
We only need to impose the condition that f factors through Qn. Let us define

(3.K) Q(z) := q(P (z)) = B(P (z), P (z)).

By assumption, we have that F (zi) = 0 for all i, so imposing that f factors through
Qn is equivalent to requiring that Q vanishes with multiplicity at least 2 at the zi’s.
Computing the differential dQ(z) = 2B(dP (z), P (z)) we have

dQ(z) = 2

d∑
i,j=0

dLi(z)Lj(z)λiλjB(vi, vj) = 2

d∑
i,j=0, i 6=j

dLi(z)Lj(z)λiλjB(vi, vj),

where the last equality holds because B(vi, vi) = 0. An easy computation shows
the following formula, for any l 6= i:

dLi(zl) =
1

zl − zi
ζl
ζi
,
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where ζi =
∏
k 6=i(zi − zk). So evaluating the differential dQ(z) in zl’s we obtain:

dQ(zl) = 2

d∑
i=0, i 6=l

dLi(zl)λlλiB(vi, vl)

= 2λlζl

d∑
i=0, i 6=l

λi
ζi

B(vi, vl)

zl − zi
= 2λlζlAl ·

(
λ0

ζ0
, · · · , λd

ζd

)t
,

where Al is the l-th row of A. So dQ vanishes in the zl’s if and only if the vector
(λ0/ζ0, · · · , λd/ζd) is in Ud,A. �

Our final aim in this section is to prove rational connectedness of the general
fibre of some evaluation morphisms for Qn: for this, it is enough to look at the
spaces Mort→x

d (P1,Qn) for general z and x and for sufficiently large d. Nonetheless,
in Section 1 we will need some more punctual information about special fibres of
evaluation maps for Qn.

Assume that m = d+ 1 and consider the evaluation map

evm : M
bir

m (Qn, d)→ (Qn)m,

as in Notation 0.1. The following lemma describes the general fibres of Ψm.

Lemma 3.17. Keep the notation as above.

(1) If d is odd and t and x are general, Mort→x
d (P1,Qn) is empty;

(2) if d is even and t and x are general, Mort→x
d (P1,Qn) is a point.

Proof. Let us consider the matrix A = AQn,z, where we chose coordinates ti = [zi :
1] on P1. Then the result follows from Lemma 3.16 and the following claim (in
italics).

(1) if d is odd and t and x are general, the matrix A has maximal rank;
(2) If d is even and t and x are general, the matrix A has rank d and Ker(A)

is spanned by a vector with non-zero coordinates.

Part (1) is a consequence of Lemma 3.15. Let us show Part (2). Since A is of
odd dimension m = d + 1, it is degenerate. Let A(0), · · · , A(d) denote the skew-
symmetric matrices as in Lemma 3.13. Using Part (1) of the claim, for general t
and x, we have pf(A(i)) 6= 0 for all i. In particular A has rank d = m− 1 and, by
Lemma 3.13, its kernel is spanned by ((−1)1 pf(A(0)), · · · , (−1)d+1 pf(A(d))) which
is a vector with non-zero coordinates. This proves (2). �

Corollary 3.18. Let X := Qn be a n-dimensional quadric. Then dX(2) = 2 and
for m ≥ 3,

m− 1−
⌊
m− 3

n

⌋
≤ dX(m) ≤ m− 1.

Proof. The first inequality follows by dimension count. For m = 2, it is well known
that there is no line but a conic through two general points on Qn.
Assume m ≥ 3 and fix m points on Qn and let d = m−1. If m is odd, Lemma 3.17
gives the result. For even m ≥ 4, let us define m′ := m− 1 and d′ := d− 1. For a
general x′ := (x1, . . . , xm′) ∈ (Qn)m

′
, again Lemma 3.17 implies that there exists a

degree d′ morphism f : P1 → Qn through x′. Now let xm be a general point in Qm.
Then the hyperplane Hxm

dual to xm meets f(P1) in at least a point y and the line
l passing through xm and y is contained in Qm by construction. In particular the
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points (x1, . . . , xm′ , xm) are on the image of a degree d morphism g : P1∪P1 → Qm
with image f(P1) ∪ l. Since the moduli space of stable maps to Qn is irreducible
(cf. [KP01, Corollary 1]) and it has a dense open subset of maps from an irreducible
curve, we may find a degree d irreducible rational curve passing through general
x1, . . . , xm in Qn. �

The following proposition can be seen as a refinement of Lemma 3.17 and will
be crucial in Section 1.

Proposition 3.19. Let γ be an integral curve in Qn which is non-degenerate in
Pn+1, i.e. 〈γ〉 = Pn+1. For the product Z := γm ⊂ (Qn)m, consider the fi-
bre M := ev−1

m (Z). Then, for any irreducible component M ′ of M , the image
Ψm(M ′) contains a point (t,x) ∈ M0,m × Z such that the corresponding matrix

A = AQn,z→v, has rank at least 2
⌈
d−1

2

⌉
.

Proof. First, notice that by Lemma 3.17, the value 2
⌈
d−1

2

⌉
is the maximal possible

rank for the matrix AQn,z→v, with (t,x) ∈ Ψm(M).

Since the variety M0,m(Qn, d) = M
bir

0,m(Qn, d) is irreducible of dimension (n +
1)(d + 1) − 3 (cf. [KP01, Corollary 1]) and M is locally defined by (n − 1)(d + 1)
equations, coming from the local equations of γ in Qn, the irreducible component
M ′ has dimension at least 2d− 1.

Assume that for a general element p ∈M ′, the matrix A = AQn,z→v associated
to (t,x) = Ψm(p) has rank 2r.
By Lemma 3.16 the general fibre of Ψm : M ′ → Ψm(M ′) has dimension d− 2r and
Ψm(M ′) has dimension at least d+ 2r − 1. Consider the projection on Z

pr2 : Ψm(M ′)→ Z,

and let us look at the dimension of its (nonempty) fibres.
Let K := {κ1, . . . , κ2r} ⊂ [0, d] with κ1 < · · · < κ2r be indices such that

pf(AKK) 6= 0 where AKK is the matrix obtained form A by the removing the lines
and columns of indices outside of K.
Fix κ0 ∈ [0, d] \K and reorder [0, d] so that [0, d] = {κ0, κ1, . . . , κ2r, κ2r+1, . . . , κd}.
Let us define K0 := [0, 2r] and Ks := K0∪{κs} for any s ∈ [2r+1, d]. By definition,
the element (t,x) satisfies the equations

(Es) pf(AKs

Ks
) = 0 for all s ∈ [2r + 1, d].

If B(vκ0
, vκs

) 6= 0, expanding pf(AKs

Ks
) with respect to the line κs, we get (cf. the

notation of Lemma 3.13 and [IW99, Lemma 2.3]):

0 =

2r∑
j=0

(−1)κs+jaκsj pf(AK0

K0
(j))

= (−1)κsaκsκ0
pf(AKK) + (−1)κs

2r∑
j=1

(−1)jaκsj pf(AK0

K0
(j))

= (−1)κs
B(vκs

, vκ0
)

zκ0
− zκs

pf(AKK) + (−1)κs

2r∑
j=1

(−1)j
B(vκs , vj)

zj − zκs

pf(AK0

K0
(j)).

So the previous equation is nontrivial and the term aκsκ0 pf(AKK) is the only term
contributing for a pole along (zκ0

− zκs
). So all the nontrivial equations (Es) with
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s ∈ [2r+ 1, d], are independent, since the equation (Es) only involves the variables
(zκi)i∈K0 and zκs .

Let l is the number indices s ∈ [2r + 1, d] such that B(vκ0 , vκs) = 0. Since γ is
non-degenerate, we get this way d− 2r − l independent equations and hence

dim pr−1
2 (pr2(t,x)) ≤ (d− 2)− (d− 2r − l) = 2r + l − 2.

Up to reordering the indices, we can choose κ0 so that l is minimal. In particular
for each κ̃ ∈ [0, d] \ K, there are at least l vanishings B(vκ̃, vκs

) = 0 for s ∈
{0}∪ [2r+1, d]. This in particular implies that we have at least l(d+1−2r)

2 equations
of the form

B(vi, vj) = 0 for i, j ∈ [0, d] \K and i 6= j.

This in turn implies that the dimension of the image pr2(Ψm(M ′)) verifies

dim(pr2(Ψm(M ′))) ≤ dimZ − l(d+ 1− 2r)

2
= d+ 1− l(d+ 1− 2r)

2
,

and finally that

dim(Ψm(M ′)) ≤ d+ 1− l(d+ 1− 2r)

2
+ 2r + l − 2 = d+ 2r − 1− l d− 1− 2r

2
.

Since Ψm(M ′) has dimension at least d+2r−1, we get l(d−1−2r) ≤ 0, i.e. either

• rk(A) ≥ 2
⌈
d−1

2

⌉
; or

• l = 0.

We need to treat the second case, so let assume that l = 0. The above estimates
imply that pr2 is surjective. We now produce an element x ∈ Z such that for any
t ∈ M0,m, the corresponding matrix A has maximal rank. Indeed, since γ is non-
degenerate, we can find two vectors u, v ∈ V such that [u], [v] ∈ γ and B(u, v) = 1.
We conclude applying Lemma 3.15.

We have proved that any component M ′ of M is such that Ψ(M ′) contains an
elements whose associated matrix A has rank at least 2

⌈
d−1

2

⌉
. �

Proof of Proposition 3.9. Using Corollary 3.18, we see that, for m = d + 1 the
evaluation maps are dominant. To show that the general fibre Mx = ev−1

m (x) is
rationally connected, we have two cases. If d is even, Lemma 3.17 implies that
the map ψm : Mx → ψm(Mx) = M0,m is birational. This implies that Mx is
rational (cf. [Kap93]). If d is odd, we use Lemma 3.15 and Lemma 3.16 and
deduce that the general fibre of ψm : Mx → ψm(Mx) = M0,m is birational to P1.
Moreover, Lemma 3.13 implies that this morphism has a rational section given by
N0 = ((−1)j pf(A(0, j)))j . So Mx is rational also in this case. �

3.2. Proof of Theorem 3.1. In order to exploit the quasi-homogeneity of V5, we
need few lemmas.

Lemma 3.20. Let C be a curve in V5. Then:

(1) there exists a line l with l ∩ C = ∅;
(2) If C is reduced of degree d and meets the dense orbit U , there exists a line

l with l ∩C = ∅ and such that its intersection with the divisor Dl (spanned
by the lines in V5 meeting l) is a union of d reduced points.

Proof. Looking at the incidence correspondence (1.B), we notice that he locus of
lines meeting C is given by ϕ(ev−1

1 (C)), which is a curve in P2. This proves (1).
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For a general line, the surfaceDl meets properly the SL2(C)2-orbits. By Kleiman-
Bertini’s theorem (cf. [Kle74, Theorem 2(ii)]), we get that there exists a line l such
that C ∩Dl is a finite reduced union of points. �

Lemma 3.21. Any irreducible component of M0,0(V5, d) contains stable curves
whose image meets U , the dense SL2(C)-orbit.

Proof. Since any irreducible component of M0,0(V5, d) has dimension at least 2d,
the morphisms that factor through the orbits E \ σ and σ cannot form irreducible
components. Indeed, the subscheme of stable maps that factor through the rational
sextic curve σ, is isomorphic to M0,0(P1, d/6), when d is a multiple of 6 and empty
otherwise. In particular is has dimension d/3 − 2 < 2d, when non-empty. Recall
that the closure E of the two-dimensional orbit is a denormalisation of P1 × P1

with associated map ν : P1 × P1 → S of degree (1, 5), cf. Lemma 1.2. A similar
computation shows that the dimension of stable map that factor through E has
dimension 2d − 1 < 2d when nonempty: when d is a multiple of 6, this moduli
space is given byM0,0(P1×P1, d6 (1, 5)). So any irreducible component ofM0,0(V5, d)
contains stable maps whose image meet the dense orbit in V5. �

The key result is the following.

Proposition 3.22. For any d ≥ 1 the moduli space M
bir

0,0(V5, d) is irreducible,
unirational of dimension 2d.

Proof. Since every irreducible component M of M
bir

0,0(V5, d) has dimension dimM ≥
2d (cf. [Kol96, Theorem II.1.2]), let f : P1 → V5 be a general element of the dense
subset in M . Since f(P1)∩U 6= ∅, the pull-back f∗TV5

of the tangent bundle of V5 is
globally generated (cf. [Deb01, Example 4.15(2)]). We thus have H1(P1, f∗TV5

) = 0

and dimH0(P1, f∗TV5
) = 2d. This proves that M

bir

0,0(V5, d) has dimension 2d.

We now prove that M
bir

0,0(V5, d) is irreducible and unirational. Lemma 3.21 im-

plies that there exists a map [f0] ∈M such that f0(P1) meets the dense orbit U and
therefore Lemma 3.20(1) implies that there exists a line l such that l ∩ f0(P1) = ∅.
In particular, projecting from l as described in Lemma 1.3, we obtain a rational
map at the level of moduli spaces:

Φl : M 99KM
bir

0,[d](Q3, d)

[f ] 7→ [φl ◦ f ],

where M
bir

0,[d](Q3, d) is the quotient of M
bir

0,d(Q3, d) by the action of the symmetric
group. Since the projection φl is birational, note that Φl is birational onto its
image Φl(M). Let us study this image: for a general f ∈ M , its image verifies

f(P1) ∩ l = ∅, by Lemma 3.20(1) and the image [φl(f)] in M
bir

0,d(Q3, d) is a stable
map of degree d. Furthermore φl(f) meets the hyperplane section Dl covered by
lines meeting l in d distinct reduced points by Lemma 3.20(2), therefore Φl(f)(P1)
meets the twisted cubic γl in d distinct reduced points.

In particular, let evd : M
bir

0,d(Q3, d) → Qd3 be the evaluation map. We have that

ev−1
d (γdl ) dominates Φl(M), via the quotient by the symmetric group Sd. To prove

unirationality of M it is therefore enough to show that ev−1
d (γdl ) is unirational of

dimension 2d.
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Let ϕd+1 : M
bir

0,d+1(Q3, d) → M
bir

0,d(Q3, d) the map forgetting the last marked

point and evd+1 : M
bir

0,d+1(Q3, d)→ Qd+1
3 the evaluation at all marked point. Then

ϕd+1 : ev−1
d+1(γdl ×Q3)→ ev−1

d (γdl ) is dominant and since the fibres of the last map

have dimension one, it is enough to prove that M := ev−1
d+1(γdl ×Q3) is irreducible

and unirational of dimension 2d+ 1.
We prove that M is actually rational. Let M

′
be an irreducible component of

M ; following Notation 0.1, consider the map

Ψd+1 : M
′ →M0,d+1 × γdl ×Q3.

Since M is locally defined by 2d equations, coming from the local equations of γl
in Q3, the irreducible component M

′
has dimension at least 2d+ 1.

Proposition 3.19 implies that Ψd+1(M
′
) contains an elements whose associated

matrix A has rank at least 2
⌈
d−1

2

⌉
. We study separately two cases.

• If d = 2k even, a general element in Ψd+1(M
′
) defines a matrix A of rank

2k and the fibre is a point, by Lemma 3.17. The map Ψd+1 is therefore
birational to its image and has to be dominant since M0,d+1× γdl ×Q3 has

dimension 2d + 1. In particular M
′

is rational and there is a unique such
irreducible component.

• For d = 2k + 1 odd, a general element in Ψd+1(M
′
) defines a matrix A of

rank 2k, the fibre is an open subset in P1 and even an open subset of a P1

bundle over Ψd+1(M
′
). Indeed, by Lemma 3.13, we have a rational section

given by the vector N0 = ((−1)j pf(A(0, j)))j . The image Ψd+1(M
′
) is then

given by the locus

Ψd+1(M
′
) = {(t,x) ∈M0,d+1 × γdl ×Q3 | pf(A) = 0}.

Consider the map θ : Ψd+1(M
′
)→M0,d+1×γdl obtained by projection. This

map is surjective and its fibre is a linear section of Q3 therefore a (rational)

2-dimensional quadric. Since θ has a rational section (take Ψd+1(M
′
) ∩

(M0,d+1 × (γl)
d × L) where L is a general line in Q3), we see that M

′
is

rational and there is a unique such irreducible component.

This concludes the proof. �

Proof of Theorem 3.1. We first prove that M
line

0,0 (V5, d) is rational. We have the
following isomorphism given by composition of stable maps:

M0,0(P1, d)×M0,0(V5, 1)→M
line

0,0 (V5, d).

It is well known that the moduli space M0,0(P1, d) is rational of dimension 2d− 2

(cf. [KP01, Corollary 1]) and M
line

0,0 (V5, 1) is isomorphic to P2 so that M
line

0,0 (V5, d)
is rational of dimension 2d.

We prove by induction on d that M0,0(V5, d) has two irreducible components

M
bir

0,0(V5, d) and M
line

0,0 (V5, d), both of dimension 2d. Indeed, if there exists an

irreducible component not contained in M
bir

0,0(V5, d)∪M line

0,0 (V5, d), then it is covered
by the images of the gluing maps:

M0,1(V5, d1)×V5
M0,1(V5, d2)→M0,0(V5, d)
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with d1 + d2 = d. By induction assumption, this space has dimension at most
(2d1 + 1) + (2d2 + 1) − 3 = 2d − 1 < 2d. Contradiction. So the theorem is a
consequence of Proposition 3.22. �

This argument can be easily adapted to obtain rational simple connectedness.

Theorem 3.23. The Fano threefold V5 is rationally simply connected.

Proof. Let ev2 : M
bir

0,2(V5, d) → V 2
5 be the evaluation map. We want to prove that

the general fibre Mx = ev−1
2 (x) is rationally connected of dimension 2d − 4. We

will actually prove that Mx is unirational.

Since M
bir

0,2(V5, d) is irreducible of dimension 2d+ 2, any irreducible component
M ′ ofMx contains a curve with smooth source and [Deb01, Proposition 4.14] implies
that M ′ has expected dimension 2d− 4.

Let l be a line passing through x1 but not though x2. By composition with the
projection φl : V5 99K Q3 (cf. Lemma 1.3 for the notation), a stable map [f ] ∈Mx

with multiplicity one in x1 is sent to a stable map φl ◦f in Q3 of degree d−1 whose
image meets the twisted cubic γl in d−2 points and which passes through the fibre
` := φ−1

l (x1) over x1. So, we obtain a rational map at the level of moduli spaces:

Φl : M
′ 99KM

bir

0,[d](Q3, d− 1)

[f ] 7→ [φl ◦ f ],

birational onto its image, Here, M
bir

0,[d](Q3, d− 1) is the quotient of M
bir

0,d(Q3, d− 1)
by the action of the symmetric group. We look at the image: by construction,
` is a line meeting γl. Furthermore, since x2 is in general position, it is outside
the indeterminacy locus of φl, we deduce that the image Φl(Mx) is dominated

(via the quotient by the symmetric group Sd) by ev−1
d (γd−2

l × `×{φl(x2)}), where

evd : M0,d(Q3, d− 1)→ Qd3 is the usual evaluation map.

It is therefore enough to prove that M := ev−1
d (γd−2

l × `× {φl(x2)}) is irreducible
and unirational of dimension 2d− 4.

As in Proposition 3.22 we prove that M is actually rational. Let M
′

be an

irreducible component of M
′
; following Notation 0.1, we look at the map

Ψd : M
′ →M0,d × γd−2

l × L× {φl(x2)}.

The same argument of Proposition 3.22 implies that M
′

has dimension at least
2d− 4.

Since the points x = (x1, x2) are in general position, we can apply Proposi-

tion 3.19 which implies that Ψd(M
′
) contains an elements whose associated matrix

A has rank at least 2
⌈
d−2

2

⌉
. We study separately two cases.

• If d = 2k + 1 odd, a general element in Ψd(M
′
) defines a matrix A of rank

2k and we conclude by Lemma 3.17 that Ψd is birational onto M0,d×γd−2
l ×

L× {φl(x2)}, which is rational.

• For d = 2k even, a general element in Ψd(M
′
) defines a matrix A of rank

2k − 2, the fibre is an open subset in P1 and even an open subset of a P1

bundle over Ψd+1(M
′
), by Lemma 3.13. We conclude as in Proposition 3.22.

This concludes the proof. �
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4. Rationality in low degree

In this final part we give some explicit construction for Hilbert schemes of ratio-

nal curves in V5, which imply rationality results for low-degree M
bir

0,0(V5, d). These
are well-known results, especially up to degree 5. The case d = 6 of sextic curves
has been studied in [TZ12b] and the authors prove that this space is rational
(cf. [TZ12a], [TZ12b, Theorems 1.1-5.1]).

For any integer d ≥ 1, the Hilbert scheme of degree d rational curves in V5 is
denoted by H0,d = H0,d(V5).

Up to cubic curves, the description of H0,d is classical.
Lines in V5. H0,1 ' PS2 (cf. [Isk79, Proposition 1.6(i)], [FN89, Theorem 1]).
Conics in V5. H0,2 ' PS4 (cf. [Ili94, Proposition 1.22]).
Cubics in V5. H0,3 ' Gr(2, S4) (cf. [San14, Proposition 2.46]).

This implies that M
bir

0,0(V5, d) is rational for 1 ≤ d ≤ 3.

4.1. Quartics in V5. Although the following results are well-known to experts, we
provide here geometric proofs.

Proposition 4.1. The moduli space M
bir

0,0(V5, 4) is rational of dimension 8.

Proof. A rational quartic C in V5 is clearly non-degenerate, so its linear span is
a linear subspace HC isomorphic to P4 ⊂ P6. This linear subspace HC intersects
V5 along a degree 5 curve and, by adjunction formula, this is an elliptic curve.
Therefore HC ∩ V5 is the union of C and a line lC bisecant to C. We therefore
obtain a rational map

M
bir

0,0(V5, 4) 99KM
bir

0,0(V5, 1).

Furthermore, if l ⊂ V5 is a line and H is a general codimension 2 linear subspace
in P6 with l ⊂ H, then H ∩ V5 is the union of l and a degree 4 rational curve. This

proves that M
bir

0,0(V5, 4) is birational to the variety Z obtained via the following
fibre product:

Z //

��

Fl(2, 5; 7)

��
M

bir

0,0(V5, 1) // Gr(2, 7),

where Gr(2; 7) is the grassmannian of lines in P6 and Fl(2, 5; 7) is the partial flag
variety of pairs (l,H) with l a line in P6 and H ⊃ l a linear subspace of codimension
2 in P6. Since the right vertical map is locally trivial in the Zariski topology, the
same is true for the left vertical map. The fibres of both vertical maps are rational

(isomorphic to Gr(3, 5)) and M
bir

0,0(V5, 1) is rational, proving the result. �

We recall some notation on (projective) normality (cf. [SR49, Definition I.4.52]).

Definition 4.2. Let X be an integral variety and let X ⊂ Pn be a non-degenerate
embedding. One says that X is a normal subvariety in Pn if it is not a projection
of a subvariety of the same degree in PN , with N > n.
One says that X is linearly normal if the restriction map

H0(Pn,OPn(1))→ H0(X,OX(1))

is surjective.
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Remark 4.3. Let X ⊂ Pn be non-degenerate. Then one can show the following
implications (cf. [Dol12, Proposition 8.1.5]):

• X is a normal subvariety in Pn ⇒ X is linearly normal;
• X is linearly normal and normal ⇒ X is a normal subvariety in Pn.

4.2. Bisecants in V5. In order to study moduli spaces of quintic and sextic curves,
we need to look at bisecant lines. Let C ⊂ V5 be a smooth connected curve of degree
d and genus g. The set of bisecants to C (i.e. the lines in V5 meeting C in two points)
is expected to be of codimension two in PS2, that is, finite.

Lemma 4.4. Keep the notation as above.
The number of bisecants to C is

(
d−2

2

)
− 3g.

Proof. We compute the genus g′ of the inverse image C ′ of C in the incidence
correspondence M0,1(V5, 1) (cf. (1.B)) and the degree δ of the projection C ′ → PS2.

The projectionM0,1(V5, 1)→ V5 is 3-to-1 and ramifies exactly on E (cf. the notation
of Lemma 1.2 and [FN89, Lemma 2.3]), which is a section of OV5

(2), Hurwitz
formula implies

2g′ − 2 = 3(2g − 2) + 2d,

giving g′ = 3g + d− 2. Moreover, δ = d, since the image in V5 of the inverse image
in M0,1(V5, 1) of a line ` in PS2 is the hyperplane section Hl ∩ V5 swept out by
the lines which intersect the line l, where l is the line of V5 corresponding in PS2

to the orthogonal of `. The expected number is the double locus of the projection
C ′ → PS2 which is

(
d−1

2

)
− g′. �

4.3. Quintics in V5 via Desargues configurations. For any smooth rational
quintic C in V5, one sees it is linearly normal, i.e. it is contained in a unique
hyperplane HC ⊂ PS6. Let us consider the surface S = SC := HC ∩ V5. The
surface S is either non-normal, or a (possibly singular) del Pezzo surface of degree
5.
If S is non-normal, then S = V5∩Hl, where l is a line in V5 and Hl is the hyperplane
containing the first infinitesimal neighbourhood Spec(OV5

/I2
l/V5

) of l in V5, since

the non-normal locus is a line (cf. [BS07, Proposition 5.8]). In this case, S is the
union of lines in V5 meeting l (cf. [PS88, Proposition 2.1], [FN89, Corollary 1.3]) and
contains a 6-dimensional family of rational normal quintics (excluding the particular
case of hyperplane sections of S). For such a quintic, the line l is a triple point
of the scheme (of length 3) of bisecant lines to C (cf. Lemma 4.4). Varying the
line l, we obtain a 8-dimensional family of quintic curves, which is smaller than the
expected dimension 10.

Let us study now the normal case. Let S̃ be the anticanonical model of S, then
the class OS̃(C) of C in S̃ is given by α−KS̃ , for some root α ∈ Pic(S̃) (cf. [Dol12,

Section 8.2.3]). We recall that the roots of Pic(S̃), i.e. the orthogonal lattice to

KS̃ in Pic(S̃) (of type A4) are the differences πi − πj , with i 6= j, where πi are the
markings of the del Pezzo surface.

One can see the roots in Pic(S̃) via a self-conjugate (with respect to the funda-
mental conic) Desargues configuration in PS2. This it a very geometric interpre-
tation of the root system A4. Assume that S is smooth (i.e. it contains ten lines,
which are points in PS2). The lines of S are the sums KS +πi +πj , indexed by the
2-subsets {i, j} ⊂ [1, 5] and we denote them by `ij . Let Mij be the corresponding
point in PS2. Moreover, two lines `ij and `kl meet if and only if Mij and Mkl are
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conjugate (with respect to the fundamental conic) in PS2. This is the case if and
only if {i, j} ∩ {k, l} = ∅. So the ten points Mij and their polar lines M⊥ij form a
Desargues configuration, i.e. a line contains three points and a point lies in three
lines. This configuration contains twenty triangles indexed by the roots of Pic(S̃):
a root is an ordered pair (i, j) and we associate to it a triangle in the following way.
Take for instance (1, 2): we associate to it the triangle M13M14M15, which is in
perspective from M12 to its conjugate M23M24M25.

Proposition 4.5. The moduli space M
bir

0,0(V5, 5) is rational of dimension 10.

Proof. Let C be a smooth rational quintic curve in V5. We can assume it is con-
tained a normal hyperplane section S = SC of V5, in fact we may assume the
smoothness of S, since the map C 7→ S is a P4-fibration: this can be seen comput-
ing H0(S̃, α−KS̃) = 5 on the canonical model of S.
We know that the class OS̃(C) in Pic(S) is α−KS for some root α which we choose
labeled as (1, 2). We obtain:

(C · lij) =


0 if i = 1, j = 3, 4, 5;

2 if i = 2, j = 3, 4, 5;

1 otherwise.

the bisecants to C form the triangle M23M24M25 (in the Desargues configuration
explained above) associated to the root (2, 1). Furthermore, we remark that the
triangles correspond exactly to the sets of three lines on S generating a hyperplane.
We obtained this way a rational map associating to a rational quintic its set of
bisecant lines:

Ψ = Ψ5 : M
bir

0,0(V5, 5) 99K H
C 7→ [M23,M24,M25]

where H := Hilb(3,PS2).
We study the fibres of Ψ: choose a general point of H := Hilb(3,PS2): the corre-
sponding set τ of three lines in V5 generates a hyperplane H. Consider the smooth
surface S := V5 ∩H. There exists exactly one root α ∈ Pic(S) whose intersection
product with the lines corresponding to τ is 1. The quintic rational curves in V5

whose set of bisecants is τ are exactly the sections of the invertible sheaf α −KS̃

on S and they form a 4-dimensional projective space. Therefore the map Ψ, is
(birationally) a P4-fibration.
We remark that the construction is still meaningful over the field of rational func-
tions of H, i.e. Ψ is Zariski-locally trivial: in fact, the generic point η of H gives a
divisor of a del Pezzo surface Sη defined over K = C(H), with three lines defined
over K. So also the root is defined over K, i.e. α ∈ Pic(Sη).
To conclude, the variety H is rational: it is easy to see that Hilb(3,P1 × P1) is ra-
tional since, once we fix a ruling P1×P1 → P1, there is a birational correspondence
between the conics on P1 × P1 and the set of three rules. �

4.4. Sextics in V5 via the Segre nodal cubic. We conclude studying sextic
curves in V5.

Remark 4.6. First, we recall the classical and sporadic isomorphism Spin5 ∼ Sp4.
The group G = Sp4 has two sets of maximal parabolic subgroups. One of those can
be identified with the quadric Q3 (the closed orbit of the standard representation
of G viewed as Spin5); the other one is the projective space P3 (the closed orbit of
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the standard representation of G viewed as Sp4).
The variety B of Borel subgroups of G, viewed inside Q3 × P3, is the incidence
correspondence (line, point), when we view Q3 as the set of isotropic lines in P3

with respect to the standard symplectic form. More precisely, the fibre in B of a
point P ∈ P3 is a line `p ⊂ Q3 and the fibre in B of a point Q ∈ Q3 is an isotropic
line lQ ⊂ P3. The relations Q ∈ `P and P ∈ lQ are equivalent.

We provide here a new geometric proof of the following result by Takagi and
Zucconi (cf. [TZ12b, Theorem 5.1]).

Proposition 4.7. The moduli space M
bir

0,0(V5, 6) is rational of dimension 12. More
precisely, the rational map

Ψ6 : M
bir

0,0(V5, 6) 99K Hilb(6,PS2)

sending a general rational sextic curve to its set of bisecants is birational.

Proof. Lemma 4.4 implies that a rational sextic in V5 has six bisecant lines, so it
remains to prove that for 6 lines in V5 in general position li, with i ∈ [0, 5], there
exists a unique rational sextic which is bisecant to them. Let us fix one of these
lines l0 and consider the projection from it, which we saw in Lemma 1.3:

φl0 : V5 99K Q3

which is birational. The rational sextics in V5 which are bisecant to l0 are in 1-to-1
correspondence with the rational quartics in Q3 which are bisecant to γl0 (keeping
the notation of Lemma 1.3). Moreover the strict transforms of the lines l1, . . . l5
in Q3 are lines l′i ⊂ Q3 which are secant to γl0 . Our problem is then reduced to
counting rational quartics in Q3 which are bisecant to the l′i’s and to γl0 .

The correspondence in Remark 4.6 provides a birational correspondence between
the variety parametrising the smooth non-degenerate rational quartics in Q3, and
the variety parametrising the twisted cubics in P3. Indeed, a rational quartic curve
δ ∈ Q3 is the ruling of a quartic scroll Σδ ⊂ P3 whose double locus is the corre-
sponding twisted cubic γ ⊂ P3. Conversely, the datum of γ allows to reconstruct δ
as the locus of isotropic lines in P3 which are bisecant to γ.

Moreover, the marked twisted cubic γl0 corresponds to the ruling of a cubic scroll
Σγl0 . Since each line `i ∈ Q3, with i ∈ [1, 5] meets γl0 , the cubic scroll Σγl0 contains
the points Pi defined by `i := `Pi . So our problem is now reduced to enumerating
the twisted cubics γ ∈ P3 through the points Pi ∈ P3 and bisecant to two rules
Σγl0 .

We perform now another birational transformation: let P ⊂ P3 be the union of
the five points Pi’s and consider the linear system of quadrics passing through P.
This defines a birational map

ϕP : P3 99K S3 ⊂ P4,

where S3 is the 10-nodal Segre cubic primal (cf. [Dol16, Section 2]) and the inde-
terminacy locus of ϕP coincides with P. This map can be seen as the composition

ϕP = pr ◦ v2 : P3 ↪→ v2(P3) 99K S3 ⊂ P4,

where v2 : P3 → P9 is the second Veronese map and pr = pr〈v2(P)〉 is the projection

from the 4-dimensional linear space spanned by v2(P).
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Recall that the system of twisted cubics through P is transformed into one of
the six two-dimensional systems of lines in S3 (the other five are the transforms of
the systems of lines through the pi’s).

The image v2(Σγl0 ) is a conic bundle over γl0 ' P1. The normal model of Σγl0
is P(OP1(1)⊕OP1(2)), while the scroll given by union of the planes spanned by the
conics (the fibres) of v2(Σγl0 ) is V := P(OP1(2)⊕OP1(3)⊕OP1(4)). One sees that

deg V = 9 and V ∩ 〈v2(P)〉 = v2(P). Its projection W := pr(V ) is therefore of
degree 4 and so is its dual W∨, a ruled surface in (P4)∨. By the formula in [Bak60,
Chapter IV, Example 2, p. 174], this surface has one singular point T in which
two rules meet. The corresponding hyperplane H of P4 contains two planes on W
meeting along a line lT and containing two conics on the transformed surface Σγl0 .
The line lT is the transform of the requested twisted cubic γ. �
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Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay,
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