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Introduction

These notes are meant to be my point of view to modern algebraic geometry. As
usual, the reader should ask why I think there’s room for another such text if there
exist already lots of great books about scheme theory such as [10], [15], and [36]. The
raison d’être of these notes are three simple guiding principles.

• Principle 1. Since there’s only a brief amount of time for a student to learn the
foundations of algebraic geometry before doing research, I think it is unreason-
able to learn any part of it twice. In these notes, I take a hypermodern approach:
whenever it is sensible, I will always try my best to motivate the subjects in their
modern form. For example, we’ll study extensively the geometry of spectra, as
topological spaces, in the part about commutative algebra, andwe’ll learn about
howwe can understandmanifolds using sheaf-theoretical language. In thisway,
the reader will hopefully find schemes intuitive when they arrive in due time.
Similarly, the part about homological algebra uses derived categories right from
the start.

• Principle 2. In my experience, one of the main difficulties most students face
when studying basic algebraic geometry is the need to learn commutative al-
gebra, homological algebra and sheaf theory all at the same time. Possibly the
only reference which tries to explain in detail all those topics is Vakil’s The Rising
Sea [36]. Nevertheless, I believe in the pedagogical advantage of learning each
of these subjects in due time. This is the reason why these notes are divided in
multiple parts.

• Principle 3. Algebraic geometry has deep relations with most other fields in
mathematics. In most books, these interactions are at most briefly outlined.
While filling those gaps may be trivial for the experienced mathematician, my
experience shows that they aren’t for the student. This is the reason why we’ll,
for example, study sheaves (and their cohomology) in a setting which accom-
modates not only schemes but also manifolds and complex analytic spaces.
Similarly, the relation between number fields and function fields is illustrated
throughout the entirety of these notes.

If you notice any errors / typos or have any suggestions, I would be very grateful
to hear about them. Please email me at gabriel.ribeiro@polytechnique.edu.
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1. The spectrum of a ring

The overarching goal of this part (and of a large portion of these notes) is to show that
commutative rings are very geometrical objects. Not only is the geometrical intuition
extraordinarily fruitful, but so are the geometrical methods that we’ll employ.
Since every book has to start somewhere, we assume some basic knowledge of

abstract algebra and category theory. Also, as we’re going to use manifolds as our
prime example of geometrical object, a passing acquaintance of differential geometry
is only going to be useful. The books [23], [32], and the first seven chapters of [1]
provide more than enough preparation.

1.1. Maximal ideals are points of a space
Let M be a (smooth) compact manifold. We begin this chapter investigating how
much geometrical information about M we can recover from its ring A := C∞(M)

of smooth functions. A first observation is that points ofM give rise to ideals of A.
Indeed, if x ∈M, the subset

mx := {f ∈ A | f(x) = 0}

is the kernel of the evaluation map

evx : A→ R
f 7→ f(x).

Since evx is clearly surjective, mx is actually a maximal ideal of A. Even more, all its
maximal ideals are of this form!

Proposition 1.1.1 LetM be a compact manifold. Themap x 7→ mx defines a bĳection
M→ SpecmA, where SpecmA is the set of maximal ideals of A.

Proof. We begin by proving that our map is surjective. Given that every proper ideal
is contained in a maximal ideal, it suffices to prove that if some ideal I is not contained
in any mx, then I = A. If that’s the case, for all x ∈ M there’s a function fx ∈ I such
that f(x) 6= 0. In other words, the sets

D(fx) := {y ∈M | fx(y) 6= 0}

3



1. The spectrum of a ring

formanopen cover ofM. By compactness, there is a finite set of functions f1, . . . , fn ∈ I
such that, for all y ∈M, we have fi(y) 6= 0 for at least some i. It follows that

f :=

n∑
i=1

f2i ∈ I

is nowhere vanishing onM and so is a unit; proving that I = A.
The injectivity follows readily from the smoothUrysohn lemma. Indeed, if x, y ∈M

are different points, there’s a function f ∈ A such that f ∈ mx and f /∈ my. In particular,
mx 6= my.

Naturally, we would love for this to be a homeomorphism. Inspired by open sets
that appeared in the proof above, we define

D(f) := {m ∈ SpecmA | f /∈ m}

for f ∈ A, and we endow SpecmAwith the topology generated by these sets. Observe
that mx ∈ D(f) if and only if f(x) 6= 0.

Corollary 1.1.2 With the topology defined above, the bĳectionM→ SpecmA of the
preceding proposition is a homeomorphism.

Proof. Denote our mapM→ SpecmA by Φ. By the discussion above, we have that

Φ−1(D(f)) = {x ∈M |mx ∈ D(f)} = {x ∈M | f(x) 6= 0}

is an open subset of M. In particular, Φ is continuous. Recall that a continuous
bĳection between a compact and a Hausdorff space is necessarily a homeomorphism,
so it suffices to prove that SpecmA is Hausdorff. In other words, given two different
points x, y ∈M, we need to find disjoint neighborhoods of mx and my.
Let U and V be disjoint neighborhoods of x and y inM. By the smooth Urysohn

lemma, there exists two functions f, g ∈ A satisfying f−1(0) = M \ U and g−1(0) =

M \ V . It follows that D(f) and D(g) are disjoint neighborhoods of mx and my,
respectively.

What about the manifold structure ofM? For that, we need to understand how to
think about smoothmapsM→ N in terms ofR-algebramorphismsC∞(N)→ C∞(M).
Firstly, a smooth map f :M→ N induces a morphism of R-algebras given by

f∗ : C∞(N)→ C∞(M)

g 7→ g ◦ f.

We can also associate a smoothmap to amorphism between the respectiveR-algebras!
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1.1. Maximal ideals are points of a space

Proposition 1.1.3 Let ϕ : C∞(N) → C∞(M) be a morphism of R-algebras. Then
m 7→ ϕ−1(m) defines a continuous map Specmϕ : SpecmC∞(M)→ SpecmC∞(N).
Moreover, under the bĳections of proposition 1.1.1, this map is smooth.

� It’s not true that the preimage of a maximal ideal by a morphism of rings is always
maximal. This need not be true even for morphisms of algebras over a field.

Proof. Let m ∈ SpecmC∞(M). For some x ∈ M, we have that m = ker evx and so
ϕ−1(m) = ker(evx ◦ϕ). We conclude that, in order for ϕ−1(m) to be a maximal ideal,
it suffices for evx ◦ϕ : C∞(N)→ R to be surjective. But this follows from the fact that
evx ◦ϕ is a composition of two morphisms of R-algebras.

The continuity of Specmϕ amounts to the fact that (Specmϕ)−1(D(g)) = D(ϕ(g))

for all g ∈ C∞(N). Indeed, a maximal ideal m is an element of the left-hand side if
ϕ−1(m) ∈ D(g). This means that g /∈ ϕ−1(m), which is equivalent to ϕ(g) /∈ m. And
this happens precisely when m is an element of the right-hand side.

Now, consider the continuous map f :M→ N defined as the composition

M ∼= SpecmC∞(M)
Specmϕ−−−−−→ SpecmC∞(N) ∼= N.

This map sends x ∈M to the unique y ∈ Nwhich satisfies ker evy = my = ϕ−1(mx) =

ker(evx ◦ϕ). If K is this common kernel, both evy and evx ◦ϕ induce isomorphisms

A/K
∼−→ R.

Since there’s only one such isomorphism, this implies that evy = evx ◦ϕ.
In order to prove that f is smooth, we recall the following criterion. [32, Proposition

6.16] Let f : M → N be a continuous map between manifolds. If g ◦ f ∈ C∞(M) for
every g ∈ C∞(N), then f is smooth. It suffices then to prove that g◦f = ϕ(g) ∈ C∞(M).

If g ∈ C∞(N), the function f∗(g) = g ◦ f ∈ C∞(M) sends a point x ∈ M to g(y),
where y is the unique point ofN satisfying evy = evx ◦ϕ. Applying g to this equality
we obtain g(y) = ϕ(g)(x), yielding our claim.

Even more is true. All smooth maps M → N are of the form Specmϕ, for some
morphism of R-algebras ϕ : C∞(N)→ C∞(M).

Corollary 1.1.4 Let CMan be the category of compact manifolds. The contravariant
functor CMan→ R-Alg, given byM 7→ C∞(M), is fully faithful. That is, ifM andN
are compact manifolds, the function

HomMan(M,N)→ HomR-Alg(C
∞(N), C∞(M))

f 7→ f∗

5



1. The spectrum of a ring

is bĳective.

Proof. Let ϕ : C∞(N)→ C∞(M) be a morphism of R-algebras. The preceding propo-
sition associates to ϕ a smooth map M → N, which we’ll denote by ϕ∗. We affirm
that ϕ 7→ ϕ∗ yields an inverse to f 7→ f∗. Indeed, in the proof of the aforementioned
proposition, we saw that (ϕ∗)∗ = ϕ. Conversely, if f : M → N is any smooth map,
the map (f∗)∗ sends x ∈ M to the unique point y ∈ N satisfying evy = evx ◦ f∗. But
y = f(x) is one such point. This finishes the proof.

We remark that this corollary implies that a compact manifold M is completely,
even with its manifold structure, determined by the ring A = C∞(M). Indeed, A
determines entirely the functor HomMan(M,−) which, by the Yoneda lemma, suffices
to determineM itself.

1.2. Localization
Proposition 1.2.1 Let U be an open subset of a manifold M. Let A = C∞(M) and
S = {f ∈ A | f(x) 6= 0 ∀x ∈ U}. Then S−1A ∼= C∞(U) and the canonical morphism
A→ S−1A coincides with the restriction from C∞(M)→ C∞(U).

Proof.

Proposition 1.2.2 Let x be a point of a manifoldM. Let A = C∞(M) and S = {f ∈
A | f(x) 6= 0} = A \ mx. Then S−1A ∼= C∞x (M), the ring of germs of functions at
x, and the canonical morphism A → S−1A coincides with the map which sends a
global function to its equivalence class.

Proof.

Proposition 1.2.3 espaço tangente é m/m2.

Proof.

Definition 1.2.1 — Regular ideal.

Proposition 1.2.4 Seja N um fechado deM. Então N é uma subvariedade fechada
se e somente se IN é um ideal regular de A.

Proof.

6



1.3. The tangent space

1.3. The tangent space

1.4. Modules are vector bundles
Definition 1.4.1 — Locally free module. LetA be a ring andM be aA-module. We say
thatM is locally free if there exist f1, . . . , fn ∈ A generating the unit ideal such that,
for each i,Mfi is a free Afi-module.

Proposition 1.4.1 — Serre-Swan.

7



1. The spectrum of a ring

1.5. The prime spectrum

Proposition 1.5.1 Let I be an ideal of a ringA. Then the projection map π : A→ A/I

induces the following bĳections:

SpecA/I = {p ∈ SpecA | I ⊂ p} and SpecmA/I = {m ∈ SpecmA | I ⊂ m}.

Proof. Both results follow from the fact that

A/I

J/I
∼=
A

J

for every ideal J which contains I. In order to prove this isomorphism, notice that
since I ⊂ J, we obtain a morphism f : A/I → A/J (which is defined explicitly by
a+ I 7→ a+ J) by the universal property of quotients. Its kernel is given by

ker f = {a+ I | a+ J = J} = {a+ I | a ∈ J} = J

I
.

The result now follows from the fact that f is surjective.

A recurrent motif in these notes will be the fact that rings are fundamentally ge-
ometric objects. In fact, we’ll endow the spectrum of a ring with a topology, and
we’ll see the elements of A as functions on SpecA. The value of a function f ∈ A at
a point p ∈ SpecA is defined to be f (mod p). This notion is weird: these functions
have images in different rings. Even worse: their images don’t determine the func-
tion. Nevertheless, we shall see that this is one of the most fruitful ideas in all of
mathematics.

If these functions of SpecA are to be continuous, we should have that their zero-set
is closed. In other words, if S ⊂ A is a collection of functions, we hope that their
vanishing set

V(S) := {p ∈ SpecA | f(p) = 0 for all p ∈ S} = {p ∈ SpecA | S ⊂ p}

is closed. So, in order to define a topology on SpecAwe impose this and nothingmore.
But first we need to check that these sets form a topology. In order to simplify our life,
we observe that if (S) is the ideal generated by a subset S ⊂ A, then V((S)) = V(S).
This allows us to just consider ideals. Moreover, if f is an element of A, we denote by
V(f) the set V((f)).

Lemma 1.5.2 Let A be a ring. Then,

(a) V(0) = SpecA and V(1) = ∅;

8



1.5. The prime spectrum

(b) V(I) ∪ V(J) = V(IJ) for every pair of ideals I, J ⊂ A;

(c)
⋂
i V(Ii) = V(

∑
i Ii) for every family {Ii} of ideals of A.

Proof. The first item is immediate. The second item follows from the fact that IJ ⊂ p

implies I ∈ p or J ∈ p. The last one is just the fact that ideals are subgroups and so if
Ii ⊂ p for every i, then

∑
i Ii ⊂ p.

By this lemma, the sets of the form V(I), where I runs through the ideals ofA, form
the closed sets of a topology on SpecA.
Definition 1.5.1 — Zariski topology. Let A be a ring. The topology on SpecA whose
closed sets are of the form V(S), for some subset S ⊂ A, is called theZariski topology.

We now see some properties of the vanishing set. First of all, it is clear that it is
inclusion-reversing: if S1 ⊂ S2, then V(S2) ⊂ V(S1). Also, since (I ∩ J)2 ⊂ IJ ⊂ I ∩ J,
this implies that V(I ∩ J) = V(IJ). Finally, we have that V(

√
I) = V(I).

If f ∈ A, the complement of V(f) in SpecA is so important that it deserves a name.
Definition 1.5.2 Let A be a ring and f ∈ A. Then the subset D(f) of SpecA defined
by

D(f) := {p ∈ SpecA | f(p) 6= 0} = {p ∈ SpecA | f /∈ p}

is called a distinguished open set.

These subsets are important for the following reason.

Proposition 1.5.3 The distinguished open sets form a basis of the Zariski topology
on SpecA.

Proof. This follows from the fact that the complement of V(S) is
⋃
f∈SD(f).

This implies some important properties of the spectrum SpecA as a topological
space.

Corollary 1.5.4 Let ϕ : A → B be a morphism of rings. Then Specϕ : SpecB →
SpecA is a continuous map.

Proof. We affirm that (Specϕ)−1(D(f)) = D(ϕ(f)). In fact p ∈ (Specϕ)−1(D(f))

means thatϕ−1(p) ∈ D(f). Unraveling the definition of the distinguished open set we
see that this happens precisely when h /∈ ϕ−1(p) ⇐⇒ ϕ(h) /∈ p. But this is the very
definition of p ∈ D(ϕ(f)).

The preceding corollary implies that Spec is a functor from the category of com-
mutative rings to the category of topological spaces. We’ll see eventually that by
endowing Spec with a sheaf of rings we get an equivalence of categories.

9



1. The spectrum of a ring

Corollary 1.5.5 If p ∈ SpecA, then {p} = V(p). In particular, m ∈ SpecA is a closed
point if and only if m is a maximal ideal. Moreover, if A is an integral domain, the
ideal (0) is dense in SpecA. We say that it is the generic point of SpecA.

Proof. The first part follows from the fact that

{p} =
⋂

p∈V(I)

V(I) = V

(∑
I⊂p

I

)
= V(p).

The other two parts are clear.

We see SpecmA as the subset of SpecA composed of the closed points. Themaximal
spectrum inherits the subspace topology as usual. Also, in general we say that a point
p ∈ SpecA is a generic point for a closed subset X if X = {p}.
As we just observed, in a multitude of cases the spectrum of a ring is not Hausdorff.

(Since we may have points which are not closed.) We say that SpecA is quasi-compact
in the following corollary since we reserve the word compact to Hausdorff spaces.

Corollary 1.5.6 The topological space SpecA is quasi-compact.

Proof. Since the distinguished open sets forma basis of theZariski topology, it suffices
to consider a covering of the form SpecA =

⋃
iD(fi). This is equivalent to the fact

that

V

(∑
i

(fi)

)
=
⋂
i

V(fi) = ∅.

In particular,
∑
i(fi) = (1) for any other ideal is contained in a maximal (thus prime)

ideal. We conclude that 1 is a finite linear combination of the fi:

1 = a1fi1 + . . .+ anfin .

Finally, the same argument implies that SpecA =
⋃n
k=1D(fik).

Finally, we see that the bĳection given by proposition 1.5.1 is actually a homeomor-
phism.

Corollary 1.5.7 If I is an ideal of A, then the morphism

Specπ : SpecA/I→ V(I) ⊂ SpecA,

induced by the projection π : A→ A/I, is an homeomorphism.

Proof. The corollary 1.5.4 says that Specπ is a continuous map and the proposition
?? implies that it is a bĳection onto its image V(I). It remains just to prove that it is
a closed map. But this also follows from proposition ?? since the image of V(J/I) by
Specπ is just V(J).

10



1.5. The prime spectrum

In particular, since V(0) = V(
√

(0)), we have that SpecA and SpecA/
√

(0) are
homeomorphic. This shows that the spectrum, as a topological space, is not enough
to determine the ring. We’ll soon see that the situation changes once we endow the
spectrum with a sheaf of rings.

We can verify that the ideals of a product ringA1×A2 are precisely those of the form
I1×I2, where I1 ⊂ A1 and I2 ⊂ A2 are ideals. Furthermore, since (A1×A2)/(I1×I2) ∼=

(A1/I1)× (A2/I2), the ideal I1 × I2 is prime (resp. maximal) if and only if one of the
Ii is the entire ring and the other is prime (resp. maximal). This implies the following
result.

Proposition 1.5.8 If A1 and A2 are rings, then SpecA1 × A2 is homeomorphic to
SpecA1

∐
SpecA2.

Proof. We have morphisms (induced by the projections from the product)

SpecA1 → SpecA1 ×A2 and SpecA2 → SpecA1 ×A2
p 7→ p×A2 p 7→ A1 × p,

which are continuous by the corollary 1.5.4 and well-defined by the previous discus-
sion. By the universal property of coproducts, we get a morphism

SpecA1
∐

SpecA2 → SpecA1 ×A2,

that is a continuous bĳection between quasi-compact spaces. We conclude that it is a
homeomorphism.

In fact, this is the only way in which the spectrum can lack connectedness. This can
be seen by doing messy calculations but it will be clear once we have a structure sheaf
on SpecA.1
We finish this section by calculating some spectra.

Proposition 1.5.9 Let I be a nonzero ideal of a principal ideal domain A. Then I is
prime if and only if it is maximal.

Proof. Let’s suppose that I = (a) is prime. Now, if I ⊂ J for some ideal J = (b), then
a = bc for some c ∈ A. But then b ∈ I or c ∈ I by primality of I. If b ∈ I, then
J = (b) ⊂ I, which means that J = I. Else, if c ∈ I, then c = da for some d ∈ A and so

a = bc = bda.

Since I is nonzero, a 6= 0 and so bd = 1. It follows that b is a unit, and hence J = A.
1For those who know it, if X = SpecA = U ∪ V , with U ∩ V = ∅, then the sheaf axioms imply that
A = OX(X) = OX(U)× OX(V).
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1. The spectrum of a ring

� Example 1.5.1 — Principal ideal domains. Let A be a PID. Since A is, in particular, a
UFD, prime and irreducible elements are one and the same. It follows that

SpecA = {(0)} ∪ {(a) | a ∈ A is irreducible}.

This implies that

SpecZ = {(0)} ∪ {(p) | p is prime}
Spec k[x] = {(0)} ∪ {(x− a) | a ∈ k}
SpecR[x] = {(0)} ∪ {(x− a) | a ∈ R} ∪ {(x2 + ax+ b) | a2 − 4b < 0}

SpecZ[i] = {(0)} ∪ {(1+ i)}

∪ {(p) | p is prime number with p ≡ 3 (mod 4)}

∪
{
(a± bi)

∣∣∣∣ p is a prime number with
p ≡ 1 (mod 4) and a2 + b2 = p

}
.

By proposition 1.5.9, the maximal spectrum of a PID is exactly the same thing minus
{(0)}. Also, the proposition 1.5.1 implies that

SpecZ/(n) = {(p) | p is prime factor of n}
Spec k[x]/(f) = {(x− a) | a ∈ k, f(a) = 0}

for n ∈ Z and f ∈ k[x] nonzero. �

1.6. Examples
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2. Localization

Just as the quotient by an ideal I reduces the amount of prime ideals of A to just
those that contain I, localization will reduce the amount of prime ideals of A to just
those that are contained in a given prime p. This simplification is arguably one of the
fundamental tools in commutative algebra.

On a more geometric standpoint, we saw before that the closed subsets of SpecA
can be identified to the spectrum of some A-algebra. While we can’t do the same
for every open subset of SpecA, in this chapter we’ll define a A-algebra Af whose
spectrum SpecAf is homeomorphic to the distinguished open set D(f) ⊂ SpecA.

2.1. Definition and universal property
The definition of the localization is very similar to that of the ring of fractions of an
integral domain.
Definition 2.1.1 — Localization. Amultiplicative subset S of a ringA is a subset closed
under multiplication containing 1. We define the localization S−1A of A at S as the
quotient of A × S by the equivalence relation defined by (a1, s1) ∼ (a1, s2) if and
only if there is s ∈ S such that

s(s2a1 − s1a2) = 0.

We’ll denote the pair (a, s) as a/s and define ring operations on S−1A in the natural
way:

a1

s1
+
a2

s2
:=
s2a1 + s1a2

s1s2
and a1

s1
· a2
s2

:=
a1a2

s1s2
.

It is easily seen that these operations are independent of any choices. We have a
natural morphism of rings A 7→ S−1A given by a 7→ a/1.

� The condition is not simply s2a1 − s1a2 = 0 to assure transitivity when A is not
an integral domain. We also observe that the localization map A 7→ S−1A is not
necessarily injective. This is the case precisely when S has no zero-divisors.

We can also localize modules (in particular, ideals) and algebras in precisely the
same way. If S is a multiplicative subset of a ring A and M is a A-module, the
localization S−1M is the S−1A-module whose elements are fractionsm/swithm ∈M

13



2. Localization

and s ∈ S such that

m1

s1
=
m2

s2
∈ S−1M ⇐⇒ there is s ∈ S such that s(s2m1 − s1m2) = 0 ∈M.

The module operations are defined as

m1

s1
+
m2

s2
:=
s2m1 + s1m2

s1s2
and a

s1
· m
s2

:=
am

s1s2
.

As before, these operations are independent of any choices. The localization of an
algebra is defined similarly.

There are two kinds of localization that we’ll see all the time. We describe them in
the next examples.

� Example 2.1.1 If p is a prime ideal of a ring A, then A \ p is a multiplicative subset.
(In fact, this is equivalent to p being prime.) We denote the localization of A at
this multiplicative subset by Ap. Similarly, the localization of a A-moduleM at this
multiplicative subset is denoted byMp. �

� Example 2.1.2 If f is an element of a ring A, then {1, f, f2, . . . } is a multiplicative
subset. We denote the localization of A at this multiplicative subset by Af. Similarly,
the localization of a A-moduleM at this multiplicative subset is denoted byMf. �

We emphasize that if f is a prime element of a ring, then Af and A(f) are not the
same ring.

As usual, the localization satisfies a universal property. Just as in the case of the
quotient ring, this universal property characterizes morphisms getting out of S−1A.

Proposition 2.1.1 — Universal property of the localization. Let S be a multiplicative
subset of a ring A. Then, if ϕ : A→ B is a morphism of rings such that ϕ(S) ⊂ B×,
then there exists a unique morphism ϕ̃ : S−1A→ B such that the diagram

A B

S−1A

ϕ

ϕ̃

commutes. In other words, S−1A is initial among the A-algebras B such that every
element of S is sent to a unit in B.

Proof. Since ϕ(s) is always a unit, a/s 7→ ϕ(a)ϕ(s)−1 defines a morphism of rings
S−1A → B which makes the diagram commute. It is clear that this is well-defined.
The unicity follows from the fact that this is an initial object.

It is clear that the localization of modules satisfies a similar universal property.
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2.2. The localization functor

Aswe saw, the localization map need not be injective. Nevertheless, the same proof
thatwe used before to show thatZ ↪→ Q is an epimorphism shows that the localization
map is always an epimorphism.

Proposition 2.1.2 Let S be a multiplicative subset of a ring A. Then the localization
map A 7→ S−1A is an epimorphism.

Proof. Let A ′ be a ring and consider two parallel morphisms ϕ1, ϕ2 : S−1A→ A ′:

A S−1A A ′.
ϕ1

ϕ2

If this diagram commutes, then ϕ1(a/1) = ϕ2(a/1) for every a ∈ A. In particular,
this holds for every s ∈ S. Then,

ϕ1

(a
s

)
= ϕ1

(a
1

)
ϕ1

(s
1

)−1
= ϕ2

(a
1

)
ϕ2

(s
1

)−1
= ϕ2

(a
s

)
for every a/s ∈ S−1A. It follows that A 7→ S−1A is an epimorphism.

We end this section by an easy but useful result.

Proposition 2.1.3 Let S be a multiplicative subset of a ringA. Then, S−1A = 0 if and
only if 0 ∈ S.

Proof. We have that S−1A = 0 if and only if 0/1 = 1/1 in S−1A. That is, if and only if
there exists s ∈ S such that s(1 ·0−1 ·1) = 0 inA. This means precisely that 0 ∈ S.

2.2. The localization functor
Let S be a multiplicative subset of a ring A. We already know to associate a S−1A-
module S−1M to each A-module M. This construction is actually functorial since
to each morphism ϕ : M → N of A-modules we have an induced morphism of
S−1A-modules

S−1ϕ : S−1M→ S−1N

m

s
7→ ϕ(m)

s
.

As usual, it is clear that this definition is independent of representatives. A notable
fact is that this functor is exact.

Just before the proof of this result, we ought to make a simple remark. A functor F
is exact if it sends short exact sequences to short exact sequences. It is clear that, in

15



2. Localization

order to check if a functor is exact, it suffices to show that it sends an exact sequence
of the form

M N P
ϕ ψ

in a exact sequence of the form

F(M) F(N) F(P).
F(ϕ) F(ψ)

What is not so evident is the converse, which is also true. Suppose that F is exact, and
let

M N P
ϕ ψ

be an exact sequence. Now, behold the following diagram.

0 0 0

imϕ P/ imψ

M N P

kerϕ imψ

0 0 0

ϕ

ϕ

ψ

ψ

The diagonal arrows form short exact sequences and the triangles commute. The
image of this diagram by F has short exact sequences in the diagonals since F is exact.
We can then diagram chase to prove that the middle terms are exact as well. The same
argument holds with sequences of any size.

Theorem 2.2.1 — Localization is exact. Let S be a multiplicative subset of a ringA and

M N P
ϕ ψ

be a exact sequence of A-modules. Then,

S−1M S−1N S−1P
S−1ϕ S−1ψ

is an exact sequence of S−1A-modules.

Proof. Notice that imS−1ϕ ⊂ kerS−1ψ since S−1ψ ◦ S−1ϕ = S−1(ψ ◦ϕ) = 0. In order
to show the reverse inclusion, let n ∈ N and s ∈ S such that n/s ∈ kerS−1ψ. This
implies that

ψ(n)

s
=
0

1
∈ S−1P.

16



2.2. The localization functor

In otherwords, that there exists t ∈ S such thatψ(tn) = tψ(n) = 0. Since kerψ = imϕ,
there existsm ∈M such that ϕ(m) = tn. Then,

S−1ϕ
(m
ts

)
=
ϕ(m)

ts
=
n

s
,

which implies that n/s ∈ imS−1ϕ.

This theorem has numerous important corollaries, which we now describe.

Corollary 2.2.2 Let S be a multiplicative subset of a ring A and ϕ : M → N a
morphism of A-modules. Then,

kerS−1ϕ = S−1 kerϕ, cokerS−1ϕ = S−1 cokerϕ, imS−1ϕ = S−1 imϕ.

In particular, ϕ is injective or surjective if and only if S−1ϕ is.

Proof. We only prove that kerS−1ϕ = S−1 kerϕ as the others are similar. Localizing
the exact sequence of A-modules

0 kerϕ M N
ϕ

we get that
0 S−1 kerϕ S−1M S−1N

S−1ϕ

is an exact sequence of S−1A-modules. In particular, kerS−1ϕ = S−1 kerϕ.

Likewise, localizations commute with quotients.

Corollary 2.2.3 If N is a submodule ofM, then S−1(M/N) = (S−1M)/(S−1N).

Proof. Since the following sequence is exact

0 M N M/N 0

the exactness of localization implies that

0 S−1M S−1N S−1(M/N) 0

is exact, which implies our result.

If M = A and I is an ideal of A, we get that S−1(A/I) and (S−1A)/(S−1I) are
isomorphic as A-modules. The next proposition shows that they are isomorphic as
rings. Its proof is a well-played game of universal properties.

17



2. Localization

Proposition 2.2.4 Let I be an ideal and S be a multiplicative subset of a ringA. Then
S−1I is an ideal of S−1A and

S
−1

(A/I) = (S−1A)/(S−1I),

where S is the image of S in A/I.

Proof. Its clear that S−1I is an ideal of S−1A. We define

ϕ : S−1A→ S
−1

(A/I)

a/s 7→ a/s,

where a and s are the images of a and s inA/I. This morphism is well-defined by the
universal property of localization and S−1I is contained in its kernel. The universal
property of quotients then gives a morphism

ϕ̃ : (S−1A)/(S−1I)→ S
−1

(A/I)

a/s 7→ a/s.

On the other hand, the compositionA→ S−1A→ (S−1A)/(S−1I) induces amorphism

ψ : A/I→ (S−1A)/(S−1I)

a 7→ a/1.

The image of S is invertible and so the universal property of localization gives a
morphism

ψ̃ : S
−1

(A/I)→ (S−1A)/(S−1I)

a 7→ a/1,

which is clearly the inverse of ϕ̃. It follows that they are both isomorphisms.

In a similar fashion, we leave to the reader the task of proving that if {Mi} is a
(possibly infinite) collection of A-modules and if M1,M2 are submodules of a A-
moduleM, then

S−1
(⊕

i
Mi

)
=
⊕

i
S−1Mi and S−1(M1 ∩M2) = S

−1M1 ∩ S−1M2.

Nevertheless, localization does not commute with arbitrary products. Moreover, if I
and J are ideals of A, then

S−1(IJ) = (S−1I)(S−1J) and
√
S−1I = S−1

√
I.

In particular, the nilradical of S−1A is S−1
√

(0).
In some cases, we also have a sort of converse of the theorem 2.2.1.
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2.2. The localization functor

Theorem 2.2.5 — Local-global principle. Let A be a ring andM be a A-module. Then
the following are equivalent:

(a) M = 0;

(b) Mp = 0 for all p ∈ SpecA;

(c) Mm = 0 for all m ∈ SpecmA.

Proof. It is clear that (a) =⇒ (b) =⇒ (c), so we prove (c) =⇒ (a). Ifm ∈M \ {0},
then the annihilator ideal

Ann(m) := {a ∈ A | am = 0}

doesn’t contain 1 ∈ A and so is contained in a maximal ideal m ∈ SpecmA. But the
hypothesis thatMm = 0 implies that m/1 = 0/1 and so there exists s ∈ A \ m such
that sm = 0. This contradicts the fact that Ann(m) ⊂ m.

We will often use the local-global principle in the following form.

Corollary 2.2.6 Let ϕ : M → N be a morphism of A-modules. Then the following
are equivalent:

(a) ϕ :M→ N is injective (resp. surjective);

(b) ϕp :Mp → Np is injective (resp. surjective) for all p ∈ SpecA;

(c) ϕm :Mm → Nm is injective (resp. surjective) for all m ∈ SpecmA.

Proof. This follows from corollary 2.2.2 and the preceding theorem applied to the
A-modules kerϕ and cokerϕ.

We finish this section considering how submodules behave in localization.

Proposition 2.2.7 Let N ′ be a submodule of S−1M. Then, N ′ = S−1N for some
submodule N ofM.

In fact, if ρ :M→ S−1M is the localization map, we can take N = ρ−1(N ′).

Proof. We show that S−1N ⊂ N ′. In fact, if n/s ∈ S−1N, then n/s = (1/s)ρ(n) ∈ N ′
since N ′ is a S−1A-module. As for the reverse inclusion, if n ′/s ∈ N ′, then ρ(n ′) =
(s/1) · (n ′/s) ∈ N ′ by the same reason. It follows that n ′ ∈ N and so n ′/s ∈ S−1N.

In particular, the ideals of S−1A are all of the form S−1I for some ideal I ⊂ A.
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2. Localization

2.3. The spectrum of the localized ring
Just as with quotients, we have an order-preserving bĳection between SpecS−1A and
a subset of SpecA.

Proposition 2.3.1 Let S be a multiplicative subset of a ring A. Then the localization
map A→ S−1A induces an order-preserving bĳection

{p ∈ SpecA | p ∩ S = ∅}→ SpecS−1A

given by p 7→ S−1p. In other words, the natural order-preserving map

SpecS−1A→ SpecA

is injective and has image {p ∈ SpecA | p ∩ S = ∅}.

Proof. Let ρ : A→ S−1A be the localization map. As we saw in the proposition 2.2.7,
Spec ρ is injective.1 It suffices then to show that its image is {p ∈ SpecA | p ∩ S = ∅}.
Now, if p ∈ SpecA, the proposition 2.2.4 implies that

(S−1A)/(S−1p) = S
−1

(A/p).

Since A/p is an integral domain, S−1(A/p) is either contained in a field, in which case
S−1p is prime, or is zero. The latter case happens precisely when S contains 0. That
is, when p ∩ S 6= ∅.

With this, we can describe the spectra of the two main flavors of localization.

Corollary 2.3.2 If p ∈ SpecA, we have a bĳection

{q ∈ SpecA | q ⊂ p}→ SpecAp

q 7→ qAp.

Proof. This follows directly from the previous proposition.

Corollary 2.3.3 If f ∈ A, we have a homeomorphism

D(f)→ SpecAf
p 7→ pf = pAf.

Proof. Let ρ : A → Af be the localization map. By the previous proposition, this
Spec ρ : SpecAf → D(f) is a bĳection. Since it is automatically continuous, it suffices
1The equation p = S−1(ρ−1(p)) implies that Spec ρ has a left-inverse and so is injective.
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2.3. The spectrum of the localized ring

to show that it is open. Now, letD(a/fn) ∈ SpecAf be a distinguished open set. Since
a/1 and a/fn differ by a unit, D(a/fn) = D(a/1). By the proof of corollary 1.5.4 and
the fact that Spec ρ is injective, we have that the image ofD(a/1) in SpecA is precisely
D(a). This implies our result.

This establishes what we promised in the introduction of this chapter. If p ∈ SpecA,
we have that

SpecA/p = {q ∈ SpecA | q ⊃ p}

SpecAp = {q ∈ SpecA | q ⊂ p}.

In this way, combining localizations and quotients, we can "filter" any set of primes
that we with to study. We’ll now rephrase this observation to obtain a very useful
result. But for that we need a definition.
Definition 2.3.1 — Dimension and height. Let A be a ring. The Krull dimension of A,
denoted dimA, is the size n of the biggest chain of prime ideals (numbered from 0

to n)
p0 ( p1 ( p2 ( · · · ( pn.

If there are arbitrarily big chains of prime ideals in A, we say that dimA = ∞. If
p ∈ SpecA, we say that its height is ht p := dimAp. In other words, the height of a
prime ideal p ⊂ A is the size n of the biggest chain of prime ideals

p0 ( p1 ( p2 ( · · · ( pn = p

which are contained in p.

� Observe that the size of a chain of prime ideals is not the number of prime ideals, but
the number of inclusions!

We gather a couple of examples.

� Example 2.3.1 If k is a field, then dimk = 0 since (0) is a maximal chain of primes. As
we saw in example 1.5.1, if A is a PID that is not a field, then dimA = 1. In particular,
dimZ = dimk[x] = 1. In that same example, we saw that dimZ/(n) = dimk[x]/(f) = 0
for n ∈ Z and f ∈ k[x] nonzero.

In general, the dimension of k[x1, . . . , xn] is n, as expected. But we’ll have to wait
awhile to prove it. �

As promised, our preceding discussion yields the following corollary.

Corollary 2.3.4 Let A be a ring and p ∈ SpecA. Then,

dimA > ht p + dimA/p.
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2. Localization

Proof. Concatenating the biggest chains of prime ideals in Ap and in A/p we obtain
a chain of prime ideals in A. The biggest ought to be at least as big as this one.

2.4. Radical ideals and spectra
In this section, we introduce a function I(·) which takes subsets of SpecA to ideals of
A. It is, in some sense, the inverse of the vanishing set function. As we shall see, their
interplay will yield lots of algebraically and geometrically important results.
Definition 2.4.1 Let A be a ring and S be a subset of SpecA. We define I(S) to be the
set of functions vanishing on S. In other words,

I(S) =
⋂
p∈S

p ⊂ A.

It is clear that I(S) is an ideal ofA, that I(·) is inclusion-reversing and that I(S) = I(S).

An ideal J ⊂ A is said to be radical if
√
J = J. A important fact is that I(S) is always

radical. In fact, if f ∈
√
I(S), then fn vanishes on S for some n > 0. This implies that f

vanishes on S and so f ∈ I(S). The fact that I(S) ⊂
√
I(S) is clear. As a matter of fact,

the nilradical of a ring can be written using this function. Behold a clever proof!

Proposition 2.4.1 Let A be a ring. Then,

I(SpecA) =
⋂

p∈SpecA

p =
√
(0).

Proof. Since 0 is in every prime ideal, it is clear that
√
(0) is contained in the inter-

section of all the primes. Conversely, if f is in the intersection of all primes, then Af
has no prime ideals. This implies that Af is the zero-ring and so 0 = 1 in Af. In other
words, there exists n > 0 such that fn = 0.

We now begin to see that I(·) is some sort of inverse of V(·).

Corollary 2.4.2 If J is an ideal of A, then

I(V(J)) =
⋂
J⊂p

p =
√
J.

Proof. Since an element f ∈ A/J is nilpotent if and only if f ∈
√
J, it follows that the

nilradical of A/J is
√
J/J. We then apply the preceding proposition to A/J:

I(SpecA/J) =
⋂

p∈SpecA/J

p =

√
J

J
.
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2.4. Radical ideals and spectra

The result now follows from the correspondence between the ideals of A/J and of A
and the fact that SpecA/J = V(J) under this correspondence.

Continuing on the idea that I(·) is some sort of inverse of V(·), we get the result
below.

Proposition 2.4.3 Let S be a subset of SpecA. Then V(I(S)) = S.

Proof. This follows direct from the fact that

S =
⋂

S⊂V(J)

V(J) = V

 ∑
J⊂I(S)

J

 = V(I(S)),

where we observe that S ⊂ V(J) means that J ⊂ p for every p ∈ S. Thus J ⊂ I(S).

We finally obtain our desired result.

Theorem 2.4.4 Let A be a ring. Then we have a one-on-one, inclusion-reversing,
correspondence

Radical
ideals of A

Closed subsets
of SpecA

V(·)

I(·) .

Proof. This is just a reinterpretation of the two previous results.

We have a couple of corollaries of this result.

Corollary 2.4.5 Let A be a ring, J1, J2 be ideals of A and f, g ∈ A. Then,

V(J1) ⊂ V(J2) ⇐⇒
√
J2 ⊂

√
J1 ⇐⇒ J2 ⊂

√
J1

and
D(f) ⊂ D(g) ⇐⇒

√
(f) ⊂

√
(g) ⇐⇒ f ∈

√
(g).

Proof. If V(J1) ⊂ V(J2), we have that√
J2 = I(V(J2)) ⊂ I(V(J1)) =

√
J1.

For the converse,
√
J2 ⊂

√
J1 implies that

V(J1) = V(
√
J1) ⊂ V(

√
J2) = V(J2)

since V reverses inclusions. Also, if J2 ⊂
√
J1, then

V(J1) = V(
√
J1) ⊂ V(J2).

The first part now implies that
√
J2 ⊂

√
J1. The converse is obvious as J2 ⊂

√
J2. As for

the results involving the distinguished open sets, they follow from what we already
proved applied to J1 = (g) and J2 = (f).
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2. Localization

In the rest of this section,we’ll see thatwe can restrict the correspondence of theorem
2.4.4 to obtain two other interesting correspondences. For that we need a topological
definition.
Definition 2.4.2 — Irreducible space. A topological space is said to be irreducible if it
is nonempty, and it is not the union of two proper closed subsets. In other words,
a nonempty topological space X is irreducible if whenever X = Y ∪ Zwith Y and Z
closed in X, we have that Y = X or Z = X.

Moreover, an irreducible component of a topological space is a maximal subspace
that is irreducible for the induced topology.

These topological spaces have numerous peculiar properties. For example, in an
irreducible space X, every nonempty open set is dense. In fact, if there were a
nonempty open set which was not dense, then we could take its complement as Y and
its closure as Z, contradicting the definition of irreducibility.
We can prove that if T ⊂ X is irreducible, then so is its closure in X. In partic-

ular, irreducible components are closed. Also, it is clear that any irreducible space
is connected (as the intersection of two nonempty open subsets is necessarily not
empty). This implies that the irreducible components are included in the connected
components.

Since the irreducible components of a Hausdorff space are the singletons (if a irre-
ducible component had twopoints, thennoopen setwould separate them), irreducible
spaces are ubiquitous in algebraic geometry but not very popular outside of it.

We present our main example and a counter-example.
� Example 2.4.1 Let A be an integral domain. Then SpecA is irreducible. In fact, if
SpecA = V(I)∪V(J), then (0) ought to be in one of those vanishing sets. If (0) ∈ V(I)
we have that I ⊂ (0) which implies that V(I) = SpecA. Similarly, (0) ∈ V(J) implies
that V(J) = SpecA. �

� Example 2.4.2 Let k be a field and consider the ring A = k[x, y]/(xy). If p ∈ SpecA,
then xy = 0 ∈ p. In other words, x ∈ p or y ∈ p. This means that

SpecA = V(x) ∪ V(y) = Spec
k[x, y]

(x)
∪ Spec

k[x, y]

(y)
.

We conclude that SpecA is reducible as it is the union of two proper closed subsets.
As each of those closed subsets is homeomorphic to Spec k[x], they are the irreducible
components of SpecA. �

In general, since SpecA = SpecA/
√
(0) we have no hope that irreducibility of the

spectrum implies that the ring is an integral domain. However, we have the next best
thing.
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2.4. Radical ideals and spectra

Lemma 2.4.6 If SpecA is irreducible andA is reduced, thenA is an integral domain.

Proof. Suppose that we have fg = 0with f and g nonzero. Notice that corollary 2.4.5
implies thatD(f) is empty if and only if f is nilpotent, which is not the case here since
f 6= 0 and A is reduced. Similarly, D(g) 6= ∅ but D(f) ∩D(g) = D(fg) = D(0) = ∅.
This contradicts the fact that SpecA is irreducible, since in an irreducible space the
intersection of two nonempty subsets is not empty.

Corollary 2.4.7 Let A be a ring. Then we have a one-on-one, inclusion-reversing,
correspondence

Prime
ideals of A

Irreducible closed
subsets of SpecA

V(·)

I(·) .

In other words, we have bĳection between points of SpecA and irreducible closed
subsets which is given by p 7→ {p}. This shows that each irreducible closed subset
has precisely one generic point.

Proof. We have to prove that V(J), where J is radical, is irreducible if and only if J
is a prime ideal. Since V(J) is homeomorphic to SpecA/J, which is reduced by the
assumption that J is radical, this follows from the preceding lemma.

This corollary allows us to define dimension in a more general setting.
Definition 2.4.3 — Dimension of a topological space. Let X be a topological space. The
dimension of X, denoted dimX, is the size n of the biggest chain of irreducible closed
subsets (numbered from 0 to n)

Z0 ( Z1 ( Z2 ( · · · ( Zn.

If there are arbitrarily big chains of irreducible closed subsets in X, we say that
dimX =∞.

From the inclusion-reversing correspondence between prime ideals of A and irre-
ducible closed subsets of SpecA, it follows that dimA = dimSpecA.

It’s possible to restrict our correspondence yet one more time to obtain another nice
result. We need another definition for that.
Definition 2.4.4 — Minimal primes. A prime ideal is a minimal prime if it is minimal
with respect to inclusion.

For example, in an integral domain (0) is a minimal prime. Also, we know that
the nilradical of a ring is the intersection of all its prime ideals. It is clear from the
definition that we can take only the minimal ones in this intersection.
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2. Localization

We get another correspondence!

Corollary 2.4.8 Let A be a ring. Then we have a one-on-one, inclusion-reversing,
correspondence

Minimal prime
ideals of A

Irreducible com-
ponents of SpecA

V(·)

I(·) .

Proof. Since this correspondence is inclusion-reversing,maximal elements in one side
become minimal elements in the other. The result now follows from the fact that the
irreducible components are the maximal subspaces that are irreducible.

An important fact about minimal primes, proved by Emmy Noether, is that a
Noetherian ring only has a finite number of minimal prime ideals. As we shall
see, this is, surprisingly, a geometric result.
Definition 2.4.5 — Noetherian space. A topological space X is said to be Noetherian
if it satisfies the descending chain condition for closed subsets. That is, for any
sequence

Z1 ⊃ Z2 ⊃ Z3 ⊃ · · ·

of closed sets in X, there’s an integer n such that Zm = Zn for allm > n.

Similarly to the case of Noetherian rings, a topological space X is Noetherian if and
only if every nonempty set of closed subsets of X has a minimal element relative to
inclusion.

This nomenclature can be explained by the fact that the spectrum of a Noetherian
ring A is Noetherian. In fact, if

Z1 ⊃ Z2 ⊃ Z3 ⊃ · · ·

is a sequence of closed subsets of SpecA, then

I(Z1) ⊂ I(Z2) ⊂ I(Z3) ⊂ · · ·

is an ascending chain of ideals of A. Since A is Noetherian, this sequence stabilizes.
But, since the Zi are closed, V(I(Zi)) = Zi and so our original sequence also stabilizes.
Nevertheless, there are non-Noetherian rings with Noetherian spectrum.

� Example 2.4.3 Let k be a field and consider

A =
k[x1, x2, . . . ]

(x21, x
2
2, . . . )

.

Since eachvariable is nilpotent, everyprimemust contain I = (x1, x2, . . . ). ButA/I = k
and so this ideal is maximal. It follows that SpecA has only one point, thus is trivially
a Noetherian space. But I is not finitely generated, hence A is not Noetherian. �
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2.5. Local rings and Nakayama’s lemma

The most important property of Noetherian topological spaces is the following.

Proposition 2.4.9 Let X be a Noetherian topological space. Then every nonempty
closed subset Z can be expressed uniquely as a finite union

Z = Z1 ∪ · · · ∪ Zn

of irreducible closed subsets, none contained in any other.

Proof. Let S be the set of all nonempty closed subsets of Xwhich cannot be expressed
as a finite union of irreducible closed subsets. We’ll show that S is empty. Lets suppose
it’s nonempty and let Z ∈ S be a minimal element. Since Z is not irreducible, we write
Z = Z1 ∪ Z2, where Z1 and Z2 are proper closed subsets of Z. By minimality, both Z1
and Z2 can be written as a finite union of irreducible closed subsets, thus so can Z.
This contradicts the minimality of Z. We conclude that every nonempty closed subset
of X can be written as a finite union of irreducible closed subsets. By throwing away
a few, if necessary, we can suppose that none are contained in any other.

We now show uniqueness. Suppose that

Z = Z1 ∪ · · · ∪ Zn = Z ′1 ∪ · · · ∪ Z ′m

are two such representations. Since Z ′1 ⊂ Z1 ∪ · · · ∪ Zn, we have that

Z ′1 = (Z1 ∩ Z ′1) ∪ · · · ∪ (Zn ∩ Z ′1).

But Z ′1 is irreducible, so one of these factors is Z ′1 itself. Without loss of generality
we suppose that it is Z1 ∩ Z ′1. Thus Z ′1 ⊂ Z1. Similarly, Z1 ⊂ Z ′r for some r. As
Z ′1 ⊂ Z1 ⊂ Z ′r, and Z ′1 is contained in no other Z ′i, we must have r = 1 and Z ′1 = Z1.
The result follows.

Last but not least, we prove Noether’s result as promised.

Corollary 2.4.10 — Noether. Let A be a Noetherian ring. Then A has a finite number
of minimal prime ideals.

Proof. Since A is Noetherian, SpecA is a Noetherian topological space and so has
a finite number of irreducible components. As these irreducible components are in
bĳection with the minimal primes, the result follows.

2.5. Local rings and Nakayama’s lemma
Let p be a prime ideal of a ringA. By the order-preserving bĳection between the prime
ideals of Ap and the prime ideals of Awhich are contained in p, it follows that Ap has
precisely one maximal ideal. Namely, pAp. These kind of rings which only have one
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2. Localization

maximal ideal are ubiquitous in algebraic geometry and in number theory, so we’ll
study them now.
Definition 2.5.1 A ring A is said to be local if it has a single maximal ideal m. In this
case, the field A/m is said to be the residue field of A. Moreover, if A and B are local
rings withmaximal idealsm and n, respectively, we say that a morphismϕ : A→ B

is local if ϕ(m) ⊂ n.

Observe that Specϕ(n) = ϕ−1(n) is a prime ideal of A and so is contained in m. If
ϕ is local, thenm ⊂ ϕ−1(n) and so Specϕ(n) = m. This is an equivalent way to define
local morphisms. We also notice that a local morphism induces a morphism between
the residue fields

A/m→ B/n

a mod m 7→ ϕ(a) mod n.

In other words, A/m ↪→ B/n is a field extension.
The following is a useful criterion to identifying local rings.

Proposition 2.5.1 A ring A is local if and only if the set A \A× is an ideal, in which
case it is the unique maximal ideal.

Proof. If A is a local ring with maximal ideal m, corollary ?? says precisely that
m = A \A×. Conversely, suppose that A \A× is an ideal of A. Every proper ideal of
A does not contain any units and so is contained in A \A×. This shows that A \A× is
the unique maximal ideal of A.

Also, given a ring A and a prime ideal p ∈ SpecA, there are two natural associated
fields: the residue field of Ap and the fraction field of A/p. It’s reassuring to know
that they are one and the same.

Proposition 2.5.2 Let A be a ring and p ∈ SpecA. Then the residue field of Ap

coincides with the fraction field of A/p.

Proof. Since pAp = S−1p, where S = A \ p, we have that

Ap

pAp

=
S−1A

S−1p
= S(A/p),

where S is the image of A \ p in A/p. In other words, S is the set of nonzero elements
of A/p, which implies that S(A/p) = Frac(A/p).

Definition 2.5.2 LetA be a ring and p ∈ SpecA. The residue field of A at p isAp/pAp =

Frac(A/p). We denote it by κ(p).
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2.5. Local rings and Nakayama’s lemma

We now present some fundamental examples of local rings, along with their main
properties.
� Example 2.5.1 Every field k is a local ring. Moreover, for every n > 0, the ring
A = k[x]/(xn) is local. In fact, a maximal ideal of A would be a maximal ideal I of
k[x] containing (xn). Since (x)n ⊂ I and I is prime, it follows that (x) ⊂ I. But (x) is a
maximal ideal of k[x]. It follows that I = (x) is the only maximal ideal of A. �

� Example 2.5.2 — Formal power series. Let A be a ring. The define the ring of formal
power series AJxK by the limit

AJxK := lim←−
A[x]

(xn)
,

indexed by the natural numbers as usually ordered, with morphisms A[x]/(xn+m)→
A[x]/(xn) given by the natural projections. In other words,

AJxK =

{
(fn) ∈

∞∏
n=1

A[x]

(xn)

∣∣∣∣∣ fm ≡ fn mod xm for all n > m
}
.

The elements of AJxK are of the form

(a0 mod x, a0 + a1x mod x2, a0 + a1x+ a2x2 mod x3, . . . )

and so are usually denoted by a0 + a1x + a2x2 + · · · . We’ll now study some of the
properties of this important ring.

First of all, of A is an integral domain, then so is AJxK. In fact, given two nonzero
elements

∑
anx

n and
∑
bnx

n in AJxK, let i, j be the smallest indices so that ai 6= 0

and bj 6= 0. Then the coefficient of xi+j in the product (
∑
anx

n)(
∑
bnx

n) is aibj,
which is nonzero if A is an integral domain.
Also, the group of units of AJxK is precisely

AJxK× = {a0 + a1x+ a2x
2 + · · · ∈ AJxK | a0 ∈ A×}.

In fact, an element
∑
anx

n ∈ AJxK is a unit if and only if there are bi’s such that

1 = (a0 + a1x+ a2x
2 + · · · )(b0 + b1x+ b2x2 + · · · )

= a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x
2 + · · · .

From the first term, we can see that if
∑
anx

n is a unit, then a0 ∈ A×. Conversely, if
a0 ∈ A×, thenwe can recursively solve this equation: we letb0 = a−1

0 , b1 = −a−1
0 a1b0,

and so on.
Iterating the construction of this ring, we obtain the ring of formal power series in

multiple variablesAJx1, . . . , xnK which is defined byAJx1K · · · JxnK. The two previous
properties generalize in the same way to this ring: if A is an integral domain, then
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2. Localization

so is AJx1, . . . , xnK and the group AJx1, . . . , xnK× is constituted by those power series
which have units in the first coefficient.

We now specialize to the case A = k, where k is a field. In this case it is clear
that kJxK \ kJxK× = (x) and so kJxK is a local ring with maximal ideal (x). Similarly,
kJx1, . . . , xnK is a local ring with maximal ideal (x1, . . . , xn).

A final important property of kJxK is the fact that it is a principal ideal domain. For
that we observe that every nonzero element f ∈ kJxK can be written in a unique way
as

f = xn × (an + an+1x+ an+1x
n + · · · )︸ ︷︷ ︸

a unit

, where an 6= 0.

This is the factorization of f into irreducible elements. Now, let I be a nonzero ideal
of kJxK and let n be the smallest positive integer such that xn ∈ I. Clearly (xn) ⊂ I.
We’ll show the reverse inclusion. If f ∈ I, then f = uxm, where u is a unit andm > n.
This implies that f is a multiple of xn and so f ∈ (xn). In other words, kJxK is a PID
and every ideal is of the form (xn) for some n. �

An arithmetical counterpart of the ring of formal power series is the ring of p-adic
integers.
� Example 2.5.3 — p-adic integers. Let p ∈ Z be a prime number. We define the ring of
p-adic integers Zp by the limit

Zp := lim←−
Z

(pn)
=

{
(an) ∈

∞∏
n=1

Z
(pn)

∣∣∣∣∣ am ≡ an mod pm for all n > m
}
.

We note that this is not the localization of Z at the element p ∈ Z. The context usually
makes clear what ring we’re talking about. This ring Zp has a natural morphism (as
it should, since Z is initial in Ring)

Z→ Zp
a 7→ (a mod pn)n>1.

This ring is injective since the only integer that is divisible by arbitrarily large powers
of p is 0. We can then think of Z as the subring of Zp which contains only finitely
nonzero terms.

By the same proofs as before, the units in Zp are the elements with nonzero first
component and Zp is a PIDwhose ideals are of the form (pn) for some n. In particular
Zp is a local ring with maximal ideal (p). �

We now present the main result of this section. Its significance lies within its
corollaries, which allows us to study some properties of finitely generated modules
over local rings as if they were vector spaces over the residue field.
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2.5. Local rings and Nakayama’s lemma

Theorem 2.5.3 — Nakayama’s lemma. Let M be a finitely generated module over A
and let I be an ideal of A. If IM =M then there exists i ∈ I such that im = m for all
m ∈M.

Proof. Letm1, . . . ,mn be generators forM. By the hypothesis, there are aij ∈ I such
that 

m1 = a11m1 + a12m2 + · · ·+ a1nmn
m2 = a21m1 + a22m2 + · · ·+ a2nmn

...
mn = an1m1 + an2m2 + · · ·+ annmn.

In other words, if A = (aij) and I is the n× n identity matrix, we have that

(I−A)


m1
m2
...
mn

 =


0

0
...
0

 .
Multiplying by the adjoint of I−Awe get that det(I−A)mi = 0 for all i. Since themi
generateM, it follows that det(I − A)m = 0 for all m ∈ M. But the fact that aij ∈ I
implies that det(I−A) ≡ det(I) ≡ 1 mod I and so the determinant of I−A is 1− i for
some i ∈ I. The result follows.

The idea of this proof is usually called the determinant trick. We’ll use it to prove
other results in the following chapters. The following corollaries are so related to
Nakayama’s lemma that they are usually called by the same name.

Corollary 2.5.4 LetM be a finitely generatedA-module andϕ :M→M a surjective
endomorphism. Then ϕ is an isomorphism.

Proof. Consider M as a A[x]-module via the action given by f · m := ϕ(f)(m) for
all f ∈ A[x]. Now, since ϕ is surjective, we have that (x)M = M and so there exists
f ∈ (x) such that ϕ(f)(m) = m for allm ∈M. In particular, this equation shows that
ifm ∈ kerϕ thenm = 0. Thus, ϕ is injective.

Corollary 2.5.5 Let A be a local ring, I an ideal of A andM be a finitely generated
A-module. Then IM =M implies thatM = 0.

Proof. Nakayama’s lemma implies the existence of i ∈ I such that (1 − i)m = 0 for
allm ∈M. If 1 − i weren’t a unit, it would be in the maximal ideal of A and then so
would 1, which is absurd. It follows that 1− i is a unit and thenM = 0.
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2. Localization

Corollary 2.5.6 Let A be a local ring, I an ideal of A andM be a finitely generated
A-module. If N is a submodule ofM such thatM = N+ IM, thenM = N.

Proof. We apply the previous corollary to the A-moduleM/N.

The next two corollaries make precise our claim that Nakayama’s lemma allows us
to get information about finitely generated modules over local rings by working with
vector spaces.

Corollary 2.5.7 Let A be a local ring, I an ideal of A andM,N be A-modules where
M is finitely generated. Also, let ϕ : N → M be a morphism of A-modules. Then
the induced morphism

ϕ̃ :
N

IN
→ M

IM

is surjective if and only if ϕ is.

Proof. Observe that ϕ̃ is surjective if and only if M = ϕ(N) + IM. The result now
follows from the previous corollary.

Corollary 2.5.8 LetA be a local ring with maximal idealm and residue field k. Also,
letM be a finitely generated A-module. Thenm1, . . . ,mn ∈M generateM if and
only ifm1, . . . ,mn generateM/mM as a k-vector space. In particular, any minimal
set of generators ofM has exactly dimkM/mM elements.

Proof. Observe thatm1, . . . ,mn generateM if and only if the morphism

An →M

(a1, . . . , an) 7→ a1m1 + . . .+ anmm

is surjective. By the previous corollary, this happens if and only if the induced
morphism

kn →M/mM

(a1, . . . , an) 7→ a1m1 + . . .+ anmm

is surjective. This, in turn, happens if and only if m1, . . . ,mn generateM/mM as a
k-vector space.

� This last result doesn’t work without the assumption thatM is finitely generated! In
particular, if we want to show thatM is finitely generated, it does not suffice to show
thatM/mM is finite dimensional as a k-vector space.
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3. Tensor and Hom
The tensor product is a construction which allows us to study bilinear maps, which
are abundant, as if they were linear. Thus enabling the use of all the machinery that
we developed so far. It also formalizes the notion of base change and will allow us to
study the spectra of more general rings.
Also, we’ll see that the functor defined by the tensor product and the Hom functors

are closely intertwined by an adjunction, which lies at the heart of much of the theory
that follows.

3.1. Bilinear maps and the tensor product
Let A be a commutative ring andM,N be A-modules. As we know, the direct sum
M⊕N is both the product and the coproduct ofM andN. As a setM⊕N is justM×N,
where the A-module structure is defined componentwise. Since it is a coproduct, a
morphism

M⊕N→ P,

where P is another A-module, is determined by morphismsM→ P and N→ P. But
there is another way to map M × N to P which is compatible with the A-module
structures.
Definition 3.1.1 — Bilinear maps. Let M, N and P be A-modules. A function ϕ :

M×N→ P is said to be bilinear if for allm ∈M the function

N→ P

n 7→ ϕ(m,n)

is a A-module morphism and for all n ∈ N the function

M→ P

m 7→ ϕ(m,n)

is also a A-module morphism. We denote by HomA(M,N;P) the set of all bilinear
mapsM×N→ P.

Althoughwe know lots of things aboutmorphisms ofA-modules, we knownothing
about bilinear maps. So there ought to be some way to deal with them as if they were
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3. Tensor and Hom

in fact linear. Formally, we want a A-moduleM⊗A N and a bilinear map

t :M×N→M⊗A N

such that every bilinear map ϕ :M×N→ P factors uniquely through t

M×N P

M⊗A N

ϕ

t ϕ̃

in such a way that the map ϕ̃ is a A-module morphism. In other words, we want the
functorHomA(M,N;−) to be representable by aA-moduleM⊗AN. Fortunately, it is.

Proposition 3.1.1 LetM and N be A-modules. Then the functor HomA(M,N;−) is
representable.

Proof. Consider the module A⊕(M×N). This is the free module generated byM ×N
and so, by the universal property of free modules, has a natural function

j :M×N→ A⊕(M×N)

which is universal with respect to all functions fromM×N to any A-module P. Our
first task is to transform j into a bilinear map. The natural approach is clearly to
quotient everything: let K be the submodule of A⊕(M×N) generated by the elements

j(m,a1n1 + a2n2) − a1j(m,n1) − a2j(m,n2)

and
j(a1m1 + a2m2, n) − a1j(m1, n) − a2j(m2, n),

wherem,m1,m2 ∈M, n,n1, n2 ∈ N and a1, a2 ∈ A. In this way the composition of
jwith the natural projection

M×N→ A⊕(M×N) → A⊕(M×N)

K

becomes a bilinear map. We denote this map by t and its domain byM ⊗A N. The
image of (m,n) by t is usually denoted bym⊗ n.
We now verify that this satisfies the desired universal property. Letϕ :M×N→ P

be a bilinear map. By the universal property of the free module, there exists a unique
R-linear map A⊕(M×N) → P such that the diagram

M×N P

A⊕(M×N)

ϕ

j
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3.1. Bilinear maps and the tensor product

commutes. We can readily verify that K is contained in the kernel of this map and so,
by the universal property of quotients, it factors uniquely through

M×N P

A⊕(M×N) M⊗A N

ϕ

j
t

ϕ̃

and we obtain our A-module morphism ϕ̃ :M⊗A N→ P.

Definition 3.1.2—Tensor product. LetM andNbeA-modules. TheA-moduleM⊗AN
that represents the functor HomA(M,N;−) is the tensor product ofM and N.

Concretely, the elements ofM⊗AN are finite linear combinations of the pure tensors
m⊗ n, which satisfy

m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2
(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n
m⊗ (an) = a(m⊗ n) = (am)⊗ n

for all m,m1,m2 ∈ M, n,n1, n2 ∈ N and a ∈ A. This is precisely the fact that the
map (m,n) 7→ m⊗n is bilinear. Pure tensors are very useful in concrete calculations.
For example, if we want to show that two morphisms M ⊗A N → P are equal, it
suffices to show that they coincide on pure tensors. We now describe some natural
isomorphisms, which we’ll use all the time.

Proposition 3.1.2 — Identity element. Let A be a ring and N be a A-module. Then
A⊗A N ∼= N.

Proof. Let t : A×N→ N be the map that sends (a, n) to an. Then, if ϕ : A×N→ P

is a bilinear map, it is clear that

ϕ̃ : N→ P

n 7→ ϕ(1, n)

is the only A-linear map that makes the diagram

A×N P

N

ϕ

t ϕ̃

commute. The result now follows from the unicity of universal objects.
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3. Tensor and Hom

Proposition 3.1.3 — Comutativity. Let A be a ring and M,N be A-modules. Then
M⊗A N ∼= N⊗AM.

Proof. Let ϕ :M×N→ P be a bilinear map. Then ϕ factors as

M×N N×M P,

ϕ

ψ

where ψ(n,m) := ϕ(m,n). Since ψ is also bilinear, it factors uniquely through
N⊗AM.

M×N N×M P

N⊗AM

ϕ

ψ

But then ϕ also factors uniquely through N⊗AM. Once again, the result follows by
the unicity of universal objects.

Let N be a fixed A-module. If ϕ :M1 →M2 is a morphism of A-modules, then we
obtain a map

M1 ×N M2 ×N M2 ⊗A N
(m,n) (ϕ(m), n) ϕ(m)⊗ n

which is bilinear and so induces a linear map

ϕ⊗N :M1 ⊗A N→M2 ⊗N

which is defined on pure tensors by m ⊗ n 7→ ϕ(m) ⊗ n and extended by linearity.
Now, if ψ :M2 →M3 is another morphism, then (ψ ◦ϕ)⊗N and (ψ⊗N) ◦ (ϕ⊗N)

both map pure tensors m ⊗ n to ψ(ϕ(m)) ⊗ n and so they coincide everywhere. In
other words, −⊗A N is a covariant functor from the category of A-modules to itself.

Now, there’s another natural covariant functor from the category of A-modules
to itself. We associate to each A-module P the A-module HomA(N,P) and to each
morphism ϕ : P1 → P2 the morphism HomA(N,P1) → HomA(N,P2) given by ψ 7→
ϕ ◦ψ.

P1 P2

N

ϕ

ψ ϕ◦ψ
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3.1. Bilinear maps and the tensor product

This assignment is functorial since putting two commutative diagrams side-by-side
yields a new commutative diagram.

P1 P2 P3

N

Somewhat surprisingly, the functors − ⊗A N and HomA(N,−) form a beautiful ad-
junction!

Theorem 3.1.4 — Tensor-Hom adjunction. Let N be a A-module. Then we have an
adjunction

A-Mod A-Mod

−⊗AN

HomA(N,−)

a
In other words, there is an isomorphism of A-modules

HomA(M,HomA(N,P)) ∼= HomA(M⊗A N,P)

which is natural inM and P.

Proof. This result follows from the simple observation thatHomA(M,HomA(N,P)) is
nothing butHomA(M,N;P). In fact, lets see what it means for a functionϕ :M×N→
P be bilinear. First of all, for allm ∈M, the function n 7→ ϕ(m,n) ought to be linear.
In other words, we have a function

M→ HomA(N,P).

Also, for all n ∈ N, the function m 7→ ϕ(m,n) is linear. This precisely means that
our morphismM → HomA(N,P) is also linear. That is, ϕ is naturally an element of
HomA(M,HomA(N,P)). Since HomA(M,N;P) ∼= HomA(M⊗A N,P), it follows that

HomA(M,HomA(N,P)) ∼= HomA(M⊗A N,P).

We leave to the reader the (boring) task of verifying that this isomorphism is natural
inM and P.

There’s a useful mnemonic for remembering this result. The word tensor comes to
the left of the tensor-hom adjunction and so − ⊗A N is the left-adjoint. Similarly, the
word hom comes to the right and so HomA(N,−) is the right-adjoint.

We then have a natural Pavlovian reaction: since right adjoints preserve limits1, so
does HomA(N,−). Similarly, −⊗AN preserves colimits. In particular, HomA(N,−) is
1Another mnemonic: right adjoints preserve limits. RAPL!
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3. Tensor and Hom

left-exact and−⊗AN is right-exact. By commutativity of the tensor product,M⊗A−

is also right-exact. Numerous results follow from these considerations. For nowwe’ll
focus on those related to the tensor product.

Corollary 3.1.5 — Associativity. Let A be a ring and M,N, P be A-modules. Then
(M⊗A N)⊗A P ∼=M⊗A (N⊗A P).

Proof. Let Q be a A-module. Then multiple applications of the theorem 3.1.4 yield

HomA((M⊗A N)⊗A P,Q) = HomA(M⊗A N,HomA(P,Q))

= HomA(M,HomA(N,HomA(P,Q)))

= HomA(M,HomA(N⊗A P,Q))

= HomA(M⊗A (N⊗A P), Q).

Since this holds for everyQ, the Yoneda lemma implies our desired isomorphism.

Corollary 3.1.6 — Distributivity. Let {Mi} be a collection of A-modules and N be a
A-module. Then (⊕

i
Mi

)
⊗A N ∼=

⊕
i
Mi ⊗A N.

In particular, for finitely generated free modules this says that A⊕n ⊗A A⊕m ∼=

A⊕mn.

Proof. This follows from the fact that −⊗A N preserves colimits.

Corollary 3.1.7 Let I be an ideal of A and N be a A-module. Then

A

I
⊗A N ∼=

N

IN
.

Proof. Since −⊗A N is right-exact, the exact sequence

0 I A
A

I
0

induces an exact sequence

I⊗A N A⊗A N
A

I
⊗A N 0.

The image of I⊗AN inA⊗AN ∼= N is generated by the image of the pure tensors a⊗n
with a ∈ I and n ∈ N. This is precisely IN. It follows that this sequence identifies
N/IN with (A/I)⊗A N.
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As an interesting particular case of this last result we consider N = A/J, where J is
an ideal of A. It then follows that

A

I
⊗A

A

J
=

A/J

I(A/J)
=

A/J

(I+ J)/J
=

A

I+ J
.

by the third isomorphism theorem.

3.2. Base change
In order to understand how tensor products formalizes the idea of changing the base
ring, we have to upgrade our universal property, yielding a stronger adjunction that
the one we’ve just studied. In fact we’ll see that the tensor product is capable of
factoring a larger class of maps: balanced maps.
Definition 3.2.1 — Balanced maps. LetM,N be modules over a commutative ring A
and G be an abelian group. A function ϕ :M×N→ G is said to be balanced if it is
Z-bilinear and satisfies

ϕ(am,n) = ϕ(m,an)

for allm ∈M, n ∈M and a ∈ A.

In fact, if A is not commutative, M is a right-module and N is a left-module, then
the same construction works. Everything is this sections also works in the non-
commutative case. Nevertheless, it is simpler to just work in the commutative case so
that’s what we’ll do.

Observe that if G is a A-module, then bilinear mapsM×N→ G are automatically
balanced. But balanced maps are surely more general so it would seem that we need
another object to factor such maps. Luckily, the tensor product does this job as well.

Proposition 3.2.1 Let M and N be A-modules and G be an abelian group. Then,
if ϕ : M × N → G is a balanced map, there exists a unique group morphism
ϕ̃ :M⊗A N→ G such that the diagram

M×N G

M⊗A N

ϕ

t ϕ̃

commutes.

Proof. Recall that every element of M ⊗A N can be written as a finite sum of pure
tensors. In other words, the morphism of groups

Z⊕(M×N) →M⊗A N
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given on generators by (m,n) 7→ m ⊗ n is surjective. Its kernel KB is generated by
elements of the form

(m,n1 + n2) − (m,n1) − (m,n2)

(m1 +m2, n) − (m1, n) − (m2, n)

(am,n) − (m,an)

for all m,m1,m2 ∈ M, n,n1, n2 ∈ N and a ∈ A. It follows that we have an isomor-
phism of abelian groups

Z⊕(M×N)

KB
∼=M⊗A N.

But the abelian group on the left-hand side of this equation is manifestly a solution of
our universal problem. The result follows.

As before, this can be reinterpreted by saying that the functor that associates to each
abelian groupG the set of all balanced mapsM×N→ G is represented by the tensor
productM⊗A N. Its clear that this set of balanced maps is actually an abelian group
and that the bĳection

{balanced mapsM×N→ G} ∼= HomAb(M⊗A N,G)

is an isomorphism of abelian groups.
Our previous universal property is then recovered as the statement that if G is a

A-module and ϕ is linear, then the induced group morphism ϕ̃ :M ⊗A N → G is in
fact a morphism of A-modules.

Since we want to change the base ring of modules, we need a notion of a module
which has two compatible structures.
Definition 3.2.2 — Bimodules. Let A and B be two commutative rings. A (A,B)-
bimodule is an abelian groupN endowedwith compatibleA-module and B-module
structures in the sense that

a(bn) = b(an)

for all a ∈ A, b ∈ B and n ∈ N.

IfM is a A-module and N is a (A,B)-bimodule, then the tensor productM ⊗A N
acquires a B-module structure. In fact, b ∈ B acts on pure tensors by

b(m⊗ n) := m⊗ (bn).

This action is then extended by linearity. This endowsM⊗ANwith a (A,B)-bimodule
structure.

Similarly, if N is a (A,B)-bimodule and P is a B-module, then HomB(N,P) inherits
a A-module structure given by

(aϕ)(n) := ϕ(an)
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for all a ∈ A,ϕ ∈ HomB(N,P) and n ∈ N. This makesHomB(N,P) a (A,B)-bimodule.
As expected, this generalizes our adjunction.

Theorem 3.2.2 — Tensor-Hom adjunction. Let N be a (A,B)-bimodule. Then we have
an adjunction

A-Mod B-Mod

−⊗AN

HomA(N,−)

a

In other words, there is an isomorphism of abelian groups

HomA(M,HomB(N,P)) ∼= HomB(M⊗A N,P)

which is natural inM ∈ A-Mod and P ∈ B-Mod.

Proof. As we saw in the proof of the original adjunction, the elements of the abelian
group HomA(M,HomB(N,P)) are in bĳection with balanced maps

M×N→ P

with respect to the A-module structures ofM and N. For any such map, we have an
unique induced morphism of abelian groups

M⊗A N→ P.

The B-linearity on HomB(N,P) implies that this map is actually B-linear. In other
words, we have a bĳection

HomA(M,HomB(N,P)) ∼= HomB(M⊗A N,P).

It is clear that this is actually an isomorphism of abelian groups. Moreover, as usual
the reader can verify that it is natural.

For this next part, we fix a morphism f : A→ B of commutative rings. We’ll study
how this ring allows us to change the base ring of a module. In other words, we’ll
study functors between A-Mod and B-Mod which are induced by f.
Seeing B as an A-algebra allows us to form the tensor productM ⊗A B. Since B is

not only a A-module but a ring, it is naturally a (A,B)-bimodule and so, as we saw,
the tensor product inherits the structure of a B-module. This defines our first functor.
Definition 3.2.3 — Extension of scalars. Let f∗ : A-Mod → B-Mod be the functor de-
fined by f∗(M) := M ⊗A B. If ϕ : M1 → M2 is a morphism of A-modules, the
induced map f∗(ϕ) : f∗(M1) → f∗(M2) is simply ϕ ⊗ B. We say that f∗ is the
extension of scalars functor.
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When dealing with the viewpoint that an A-algebra is a ring B with a compatible
A-module structure, we’ll usually denote the extension of scalars f∗(M) byMB and
the associated morphism f∗(ϕ) as ϕB.

We can understand this nomenclature in the following way. Let

A⊕P → A⊕Q →M→ 0

be a presentation ofM. Since the tensor functor is right-exact, tensoring by B gives

B⊕P → B⊕Q → f∗(M)→ 0.

In other words, f∗(M) is the module defined by the same generators and relations as
M, but with coefficients in B.
� Example 3.2.1 Let K/k be a field extension and V be a finite-dimensional k-vector
space. The precedent discussion implies that VK is a K-vector space with

dimK VK = dimk V.

By far, the most important case is the complexification of a real vector space. �

The case where f is the usual quotient map sheds some light into Nakayama’s
lemma.

Proposition 3.2.3 — Nakayama’s lemma. Let A be a local ring with maximal ideal m
and residue field k. Also, letM be a finitely generatedA-module. Then,M⊗Ak = 0

impliesM = 0.

Proof. This follows from the isomorphism

M⊗A k =M⊗A
A

m
=

M

mM

and corollary 2.5.5.

We can also do the opposite operation of extension of scalars: restriction. Recall
that a B-module structure on an abelian group N is nothing but a morphism of rings

B→ EndAb(N).

Precomposing with our morphism of rings f : A→ Bwe obtain aA-module structure
on N

A→ B→ EndAb(N).

Explicitly, if a ∈ A and n ∈ N, the action of a in n is defined by

a · n = f(a)n.

Since a B-linear morphism is automatically A-linear, we obtain a functor B-Mod →
A-Mod. The next definition summarizes this discussion.
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3.2. Base change

Definition 3.2.4 — Restriction of scalars. Let f∗ : B-Mod → A-Mod be the functor
which associates to each B-module N the A-module with the same underlying
abelian group and A-module structure given by a · n = f(a)n for all a ∈ A and
n ∈ N. The functor f∗ acts as the identity on morphisms. We say that f∗ is the
restriction of scalars functor.

If f : A → B is the inclusion of A as a subring of B, then all we’re doing is viewing
N as a module on a restricted range of scalars, hence the terminology.

Actually, there’s yet another natural functor A-Mod→ B-Mod.
Definition 3.2.5 — Coextension of scalars. Let f! : A-Mod → B-Mod be the functor
which associates to each A-module M the B-module HomA(B,M). As before,
f!(M) = HomA(B,M) has a natural B-module structure given by (b1ϕ)(b2) :=

ϕ(b1b2) for all ϕ ∈ f!(M) and b1, b2 ∈ B. We say that f! is the coextension of scalars
functor.

All these functors now coalesce to form an even prettier adjunction.

Theorem 3.2.4 Let f : A → B be a morphism of commutative rings. Then f∗ is
right-adjoint to f∗ and left-adjoint to f!.

A-Mod

B-Mod

f!f∗ f∗ a

`
In particular, f∗ is exact, f∗ is right-exact, and f! is left-exact.

Proof. LetM be a A-module and N be a B-module. Note that HomB(B,N) is canoni-
cally isomorphic to N as a B-module and to f∗(N) as a A-module. Thus,

HomA(M, f∗(N)) ∼= HomA(M,HomB(B,N)) ∼= HomB(f∗(M), N)

by the tensor-hom adjunction. Since these isomorphisms (of abelian groups) are
natural, this proves that f∗ is left-adjoint to f∗.

Similarly, f∗(N) ∼= N⊗B B as A-modules and so

HomA(f∗(N),M) ∼= HomA(N⊗B B,M) ∼= HomB(N, f!(M))

by the same adjunction as before. In other words, f! is right-adjoint to f∗.

A very important case of extension by scalars is that of a localization, where f : A→
S−1A is the usual localization map.
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Corollary 3.2.5 Let S be a multiplicative subset of a commutative ring A and let
f : A → S−1A be the localization map. Then f∗ is naturally isomorphic to the
localization functor S−1. In particular, M ⊗A S−1A ∼= S−1M for every A-module
M.

This is follows directly from a general lemma.

Lemma 3.2.6 Let F,G : A-Mod → Ab be right-exact functors. If F → G is a natural
transformationwhich is an isomorphism on freemodules, then it is an isomorphism
of functors.

Proof. We apply the functors F and G to a presentation A⊕P → A⊕Q →M→ 0 ofM:

F(A⊕P) F(A⊕Q) F(M) 0

G(A⊕P) G(A⊕Q) G(M) 0.

The first two vertical arrows are isomorphisms by supposition. The result now follows
by a simple diagram chase.

Proof of the corollary 3.2.5. Both functors are left-adjoints and so preserve colimits.
The result then follows by the previous lemma and the fact that they agree on A.

As we saw, ifM is a A-module and B is an A-algebra, the tensor productM⊗A B is
not only a A-module but also a B-module. Carrying this one step further, if C is also
a A-algebra, the tensor product B⊗A C inherits a natural multiplication given by

(b1 ⊗ c1) · (b2 ⊗ c2) := (b1b2)⊗ (c1c2),

granting B⊗A C a A-algebra structure.
The tensor product of algebras is a richer version of its module counterpart. That

being so, we hope that it satisfies a powered up universal property. In the case of
modules, the maps B ⊗A C → D are in bĳection with the bilinear maps B × C → D.
Now, themorphisms ofA-algebrasB⊗AC→ D are in bĳectionwith pairs ofA-algebra
morphisms B→ D and C→ D:

HomA(B⊗A C,D) ∼= HomA(B,D)× HomA(C,D).

In other words, the tensor product B⊗AC is the coproduct of B and C in the category
of commutative A-algebras.

Since we’ll later see Spec(B ⊗A C) as the fibered product of SpecB → SpecA and
SpecC → SpecA (in the category of affine schemes), we prefer to see an algebra as a
morphism to rings and say that the tensor product B⊗A C is the fibered coproduct in
the category of commutative rings.
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Its also useful to observe that we finally solved a problem that we posed long ago!
Since Z is initial in Ring, every ring is naturally a Z-algebra and so the coproduct of A
and B in the category of commutative rings is the tensor product A⊗Z B, which we’ll
often denote simply by A⊗ B.

Theorem 3.2.7 — Fibered coproduct. Let f : A→ B and g : A→ C be two morphisms
of commutative rings. Then the tensor product B ⊗A C, along with the natural
morphisms

B→ B⊗A C C→ B⊗A C
b 7→ b⊗ 1 c 7→ 1⊗ c

form the fibered coproduct of f and g

B⊗A C C

B A
f

g

in the category of commutative rings. In other words, B⊗A C is the coproduct of B
and C in the category of commutative A-algebras.

Proof. The fact that our diagram commutes follows from the equation a⊗ 1 = 1⊗ a
for every a ∈ A. Now, letD be a commutative ring, along with morphisms α : B→ D

and β : C→ D, such that the diagram

D C

B A

β

α

f

g

commutes. We have to show that there exists a unique morphism B⊗A C → D such
that the diagram

D

B⊗A C C

B A

β

α

f

g

commutes. The map B×C→ D given by (b, c) 7→ α(b)β(c) is manifestly bilinear and
thus factors uniquely into a map B⊗A C→ D. It is clear that our diagram commutes
and so we’re done.
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3.3. Fibers of a map between spectra

3.4. Flat modules

3.5. Exterior and symmetric powers

3.6. Hom and duality

3.7. Projective and injective modules
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4.1. Noetherian modules

4.2. Artinian modules

4.3. The structure of artinian rings

4.4. The length of a module
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5. Integral extensions

In this chapter we will study the ring-theoretic concepts which generalize the notions
of finite and algebraic field extensions. As we’ll see, if A ⊂ B is an integral extension,
the associated spectrummap SpecB→ SpecA is as simple as we can hope it to be: its
a closed map and it is surjective with finite fibers. In this way, we can interpret SpecB
as a finite covering of SpecA.

5.1. Definitions and basic properties

We begin our journey with finite morphisms, which are a even simpler class of mor-
phisms.
Definition 5.1.1 — Finite morphism. Let ϕ : A → B be a morphism of rings. We say
thatϕ is finite if B is a finitely generatedA-module. If a finite morphismϕ : A ↪→ B

is an inclusion of rings, then we say that A ⊂ B is a finite extension.

As a source of examples, we have that surjectivemorphisms are automatically finite.
In fact, if ϕ : A → B is surjective, then 1 ∈ B is a generator of B as a A-module. In
particular, quotient maps are always finite.

We now prove two simple results about finite morphisms: namely that the class of
finite morphisms is closed under composition and base change.

Proposition 5.1.1 If ϕ : A → B and ψ : B → C are finite morphisms, then so is
ψ ◦ϕ : A→ C.

Proof. Ifb1, . . . , bm generateB as aA-module and c1, . . . , cn generateC as aB-module,
then

C =

n∑
i=1

ciB =

n∑
i=1

ci

(
m∑
j=1

bjA

)
=

n∑
i=1

m∑
j=1

cibjA

and so C is also finitely generated as a A-module.

Proposition 5.1.2 If ϕ : A → B is a finite morphism and f : A → C is any ring
morphism, then the base change f∗(ϕ) : C→ B⊗A C is also finite.
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Proof. If b1, . . . , bm generate B as a A-module, then

B⊗A C =

(
m∑
j=1

bjA

)
⊗A C ∼=

m∑
j=1

bjC

and so B⊗A C is a finitely generated C-module.

Below we have the main definition of this chapter.
Definition 5.1.2 — Integral extension. Let A ⊂ B be an extension of rings. An element
b ∈ B is said to be integral overA if it is a root of a monic polynomial inA[x]. We say
that the extension A ⊂ B is integral if every element of B is integral over A. More
generally, we say that a morphism of rings ϕ : A → B is integral is the extension
ϕ(A) ⊂ B is.

In practice, the definition of an integral element is quite difficult to work with. For
example, it is not at all obvious that if b1 and b2 are integral over A then so is b1 + b2
and b1b2. The following result solves beautifully this problem.

Theorem 5.1.3 Let A ⊂ B be an extension of rings. Then b1, . . . , bn ∈ B are all
integral over A if and only if A[b1, . . . , bn] is a finite A-algebra.

Proof. Let b ∈ B be integral over A. If

f = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ A[x]

is a monic polynomial such that f(b) = 0, then we can use the fact that

bn = −an−1b
n−1 − · · ·− a1b− a0

to recursively write bn+i, for all i > 0, as a linear combination of 1, b, . . . , bn−1. That
being so, the A-algebra A[b] is generated, as a A-module, by these elements. More
generally, if b1, . . . , bn ∈ B are all integral over A, then we prove that A[b1, . . . , bn] is
a finite A-algebra by induction using proposition 5.1.1.

Conversely, assume thatm1, . . . ,mr are generators ofA[b1, . . . , bn] as anA-algebra.
Then, for any b ∈ A[b1, . . . , bn] we have that

bm1 = a11m1 + a12m2 + · · ·+ a1rmr
bm2 = a21m1 + a22m2 + · · ·+ a2rmr

...
bmr = ar1m1 + ar2m2 + · · ·+ arrmr

for some aij ∈ A. Then b is a root of the characteristic polynomial of the matrix (aij),
which is monic and in A[x].
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Observe that, according to this theorem if b1, . . . , bn ∈ B are integral over A, then
so is any b ∈ A[b1, . . . , bn]. Indeed, this can be concluded from its proof but it also
follows from the fact that A[b1, . . . , bn, b] = A[b1, . . . , bn].
Let’s see how this solves our problem. If b1 and b2 are integral overA, thenA[b1, b2]

is finite as an A-algebra. But both b1 + b2 and b1b2 lie in A[b1, b2] and so our last
result shows that they are integral over A. Quite magical, isn’t it?

Corollary 5.1.4 — Finite = integral + finite-type. Let A ⊂ B be an extension of rings.
If A ⊂ B is finite, then it is integral. Conversely, if A ⊂ B is integral and B is a
finite-type A-algebra, then A ⊂ B is finite.

Proof. If A ⊂ B is finite and b ∈ B, then we can proceed in exactly the same way as
in the proof of the theorem to find that b is a root of the characteristic polynomial of
a matrix with coefficients in A. The converse is a particular case of the theorem.

Corollary 5.1.5 If A ⊂ B and B ⊂ C are integral extensions, then so if A ⊂ C.

Proof. Let c ∈ C. Since c is integral over B, it satisfies a relation of the form

cn + bn−1c
n−1 + · · ·+ b0 = 0,

where bi ∈ B for all i. This shows that c is integral over R := A[b0, . . . , bn−1]. In
other words, R[c] is a finite R-algebra. But all the bi are integral over A, so R is a
finite A-algebra. The result now follows from proposition 5.1.1 and the previous
theorem.

5.2. Fibers of integral extensions

5.3. Normal rings

5.4. Noether normalization lemma

5.5. Nullstellensätze
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6. Abelian categories

Homological algebra deals extensively with the notions of kernel, image, exact se-
quences, chain complexes, and the like. This chapter will explain the most general
setting, that of abelian categories, in which these concepts make sense. Certainly, the
category ofA-modules has all the needed characteristics. Going even further, it is true
that every abelian category has a fully faithful embedding on A-Mod for some (not
necessarily commutative) ringA. However, when it is not too troublesome,we’ll study
abelian categories "on their own" for we believe that understanding arrow-theoretic
arguments and not becoming dependent on a difficult theorem can only be beneficial.

6.1. Additive categories

We begin our quest of understanding which properties a category should have in
order for exact sequences to make sense. A first problem is that our category should
have a distinguished object corresponding to the trivial module in A-Mod. In order to
allow for exact sequences, this object should be initial and final at the same time. We
arrive at our first definition.
Definition 6.1.1 Let A be a category. A zero-object is an object of Awhich is both initial
and final. We’ll always denote zero-objects as 0.

The reader should notice that even reasonable categories may fail to have initial
or final objects (the category of fields, for example, has neither). And even if they
exist, they may not coincide (as in Set or Ring). Nevertheless, Grp, Ab, and A-Mod are
examples of categories possessing zero-objects.

The existence of zero-objects in a category allows us to talk about zero-morphisms.
Definition 6.1.2 Let A be a category with a zero-object 0. A morphism ϕ : M → N

is called a zero-morphism if it factors through the zero-object 0. We’ll also denote
zero-morphisms by 0.

We observe that in a categorywith a zero-object, there is exactly one zero-morphism
from each objectM to each object N: it’s just the composite of the unique morphism
M → 0 with the unique morphism 0 → N. In any of the aforementioned categories
which possess zero-objects, the zero morphismM→ N is the one sending every ele-
ment ofM to 0 ∈ N. Moreover, the composition of a zero-morphismwith an arbitrary
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morphism is again a zero-morphism. Indeed, the composition factors through 0.
In an abstract category, we have no means of defining kernels set-theoretically as

the subobjects composed of the elements which are sent to zero. Instead, we define a
kernel as a morphism by a suitable universal property.
Definition 6.1.3 — Kernel. Let ϕ : M → N be a morphism in a category A with a
zero-object 0. The kernel of ϕ is the equalizer of ϕ and the zero-morphism. In
other words, it is a morphism ι : K → M such that, whenever ζ : Z → M satisfies
ϕ ◦ ζ = 0, there exists a unique morphism Z→ Kmaking the diagram

K M N

Z

ι ϕ

0

ζ

commute. We denote both K and ι : K→M by kerϕ.

Once again, we observe that kernels are not guaranteed to exist even in reasonable
categories. For example, kernels may fail to exist in the category of finitely generated
A-modules whenever A is not noetherian.
In any of the previouslymentioned categorieswith zero-objects, the universal prop-

erty of the kernel is satisfied by the inclusion map from the set-theoretic kernel. This
generalizes nicely to the categorical kernel. For that, we need another piece of nomen-
clature.
Definition 6.1.4 — Subobject. Let M be an object in a category A. We say that two
monomorphisms s : S → M and t : T → M are equivalent if there exists an
isomorphism S→ T making the diagram

S T

M

∼

s t

commute. In other words, s and t are equivalent if they are isomorphic in the
slice category A ↓M. A subobject ofM is an equivalence class for this equivalence
relation.

The universal property of kernels implies that all kernels of a morphismM → N

belong to the same isomorphism class in A ↓ M. Thus, in order to prove that the
kernel ofM→ N is a subobject ofM it suffices to show that kernels are monic.

Proposition 6.1.1 Letϕ :M→ N be a morphism in a category Awith a zero-object 0
and suppose that kerϕ : K→M is its kernel. Then kerϕ is a monomorphism and
so defines a subobject ofM.
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The reader should notice that the same proof shows that every equalizer is monic.

Proof. Let α,β : Z → K be two morphisms such that (kerϕ) ◦ α = (kerϕ) ◦ β and
let ζ be their common compositions. By the universal property of kernels, there is a
unique morphism Z→ Kmaking the diagram

K M N

Z

kerϕ ϕ

0

ζ

commute. But α and β are two such morphisms. It follows that α = β.

In most categories in algebra, kernels measure how far a morphism is from being
injective. The following propositions shows that the categorical kernel still, in some
sense, encodes this information.

Proposition 6.1.2 Let ϕ : M → N be a monomorphism in a category A with a
zero-object 0. Then kerϕ is the zero-morphism 0→M.

Proof. Suppose ζ : Z→M is a morphism such that ϕ ◦ ζ = 0. Since ϕ is a monomor-
phism, ϕ ◦ ζ = 0 = ϕ ◦ 0 means that ζ = 0 and so ζ factors uniquely through the
zero-object, making the diagram

0 M N

Z

ϕ

0

ζ

commute. This means that 0→M is the, necessarily unique, kernel of ϕ.

Proposition 6.1.3 Letϕ :M→ N be amorphism in a category Awith a zero-object 0.
Then ϕ is a zero-morphism if and only if kerϕ is, up to isomorphism, the identity
onM.

Proof. Supposeϕ is the zero-morphism. Thenϕ◦idM = 0◦idM and so anymorphism
ζ : Z → M factors uniquely through idM. Conversely, if idM is a kernel of ϕ, then
ϕ = ϕ ◦ idM = 0.

Themain problems of the categorical kernel are the fact that theymay not exist and,
even when they exist, it is not necessarily true that every monomorphism is a kernel,
as in A-Mod. For example, in the category of groups, kernels are normal subgroups
but monomorphisms correspond to all subgroups. All these problems will be solved
in the next section. For now, we observe that the dual notion (which inverses all the
arrows) of kernel is just as useful.
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Definition 6.1.5 — Cokernel. Let ϕ : M → N be a morphism in a category A with a
zero-object 0. The cokernel of ϕ is the coequalizer of ϕ and the zero-morphism. In
other words, it is a morphism π : N → C such that, whenever β : N → Z satisfies
β ◦ϕ = 0, there exists a unique morphism C→ Zmaking the diagram

Z

M N C
ϕ

0

π

β

commute. We denote both C and π : N→ C by cokerϕ.

Before we prove any properties of the cokernel, we present how it works in some
categories, since the reader may be unfamiliar with it.

� Example 6.1.1 — Cokernels in A-Mod. Let ϕ : M → N be a morphism of A-modules.
Here, the cokernel of ϕ is the quotient map π : N→ N/ imϕ, where imϕ is the usual
set-theoretic image. Indeed, if β : N → P satisfies β ◦ ϕ = 0, then imϕ ⊂ kerβ and
the universal property of the quotient induces a unique morphism β̃ : N/ imϕ → P

which makes the diagram

P

M N N/ imϕ
ϕ

0

π

β
β̃

commute. In other words, π : N → N/ imϕ satisfies the universal property of the
cokernel. �

� Example 6.1.2 — Cokernels in Grp. Letϕ : G→ H be amorphism of groups. The same
argument as in A-Mod doesn’t work as the set-theoretical image may not be a normal
subgroup of H. Nevertheless, we may consider the smallest normal subgroup of H
containing imϕ, which we denote byN. Then the cokernel ofϕ becomes the quotient
map π : H → H/N. Indeed, if β : H → H ′ satisfies β ◦ ϕ = 0, then imϕ ⊂ kerβ and,
since kerβ is a normal subgroup of H containing imϕ, N ⊂ kerβ. Now the same
argument as before works, showing that π : H→ H/N satisfies the universal property
of the cokernel. �

� Example 6.1.3 — Cokernels in the category of Banach spaces. The same problem as
before happens frequently in topological settings. In the category of Banach spaces
with bounded (continuous) linear maps as morphisms, not every subspace defines a
quotient, only the closed ones. A similar reasoning as before shows that the cokernel
of a morphism T : X→ Y is the quotient map Y → Y/N, where N is the closure of the
set-theoretical image im T in Y. �
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It is actually the case that, whenever it exists, the cokernel of amorphismϕ :M→ N

is a quotient ofN just as the kernel is a subobject ofM. In order to make sense of that
in an arbitrary category, we invert the arrows in the definition 6.1.4.
Definition 6.1.6 — Quotient object. Let N be an object in a category A. We say that
two epimorphisms p : N → S and q : N → T are equivalent if there exists an
isomorphism S→ T making the diagram

N

S T

p q

∼

commute. In other words, p and q are equivalent if they are isomorphic in the
coslice category N ↓ A. A quotient object of N is an equivalence class for this
equivalence relation.

As before, it is clear by the universal property that all cokernels of a morphism
M→ N belong to the same isomorphism class inN ↓ A. So, by proving that cokernels
are epic, we prove that every cokernel is a quotient object.

Proposition 6.1.4 Let ϕ : M → N a morphism in a category A with a zero-object 0
and suppose that π : N → C is its cokernel. Then π is an epimorphism and so
cokerϕ is a quotient object of N.

Proof. We could do basically the same argument as in the proof of proposition 6.1.1,
but we’ll use this as an opportunity to understand a powerful idea: the duality
principle. Let α,β : C → D be morphisms such that α ◦ π = β ◦ π. Inverting all the
arrows, we see that πop : C→ N is the kernel ofϕop : N→M and πop ◦αop = πop ◦βop.
Since πop is a monomorphism by proposition 6.1.1, αop = βop and so α = β, proving
that π is an epimorphism.

By inverting all the arrows as above, we can easily prove dual versions of the
propositions 6.1.2 and 6.1.3, which we state below.

Proposition 6.1.5 Let ϕ : M → N be an epimorphism in a category A with a zero-
object 0. Then cokerϕ is the zero morphism N→ 0.

Proposition 6.1.6 Let ϕ :M→ N be a morphism in a category A with a zero-object.
Thenϕ is a zero-morphism if and only if cokerϕ is, up to isomorphism, the identity
on N.

Everything we did so far only makes sense given the existence of zero-morphisms
in the category under consideration. There’s a natural way in which a category may
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6. Abelian categories

be endowed with such morphisms.
Definition 6.1.7 — Preadditive category. A category A is said to be preadditive if each
set of morphismsHomA(M,N) is endowedwith an abelian group structure, in such
a way that the composition maps are bilinear.

The exquisite readermay recognize that this is nothing but a category enriched over
Ab. Explicitly, in a preadditive category it makes sense to add or subtract morphisms
and this operation satisfies

ϕ ◦ (ψ1 +ψ2) = ϕ ◦ψ1 +ϕ ◦ψ2 and (ϕ1 +ϕ2) ◦ψ = ϕ1 ◦ψ+ϕ2 ◦ψ,

whenever those compositions exist.
A preadditive category A may still lack zero-objects. But, given a zero-object, we

have two natural notions of zero-morphismM → N: the unique morphismM → N

which factors through the zero object and the identity ofHomA(M,N). It is reassuring
to know that they coincide.

Proposition 6.1.7 In a preadditive category A, the following conditions are equiva-
lent:

(a) A has an initial object;

(b) A has a final object;

(c) A has a zero-object.

In that case, the zero-morphisms are exactly the identities for the group structure
of the hom-sets.

Proof. Clearly, (c) implies both (a) and (b). Since the dual of a preadditive category is
also preadditive, it suffices to prove that (a) implies (c). Let I be an initial object. The
group HomA(I, I) has only one element and so idI coincides with the group identity
of HomA(I, I). Now, if ϕ :M→ I is any morphism, then

ϕ = idI ◦ϕ = (idI+ idI) ◦ϕ = idI ◦ϕ+ idI ◦ϕ = ϕ+ϕ

and so HomA(M, I) is the trivial group. This proves that I is also a final object. Finally,
if A has a zero-object 0, then the groups HomA(M,0) and HomA(0,N) are reduced to
their identities and so, by the fact that composition is bilinear, the zero-morphism
M→ 0→ N is the identity of HomA(M,N).

Observe that, in a preadditive category, twomorphisms are equal if and only if their
difference in the corresponding hom-set is 0. This implies that amorphismϕ :M→ N

in a preadditive category is a monomorphism if and only if for all α : Z→M,

ϕ ◦ α = 0 =⇒ α = 0.
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Similarly, it is an epimorphism if and only if for all β : N→ Z,

β ◦ϕ = 0 =⇒ β = 0.

We are now in a position to prove a converse to the propositions 6.1.2 and 6.1.5.

Proposition 6.1.8 Let ϕ :M→ N be a morphism in a preadditive category A. Then
ϕ is a monomorphism if and only if kerϕ is the zero-morphism 0→M. Dually, ϕ
is an epimorphism if and only if cokerϕ is the zero morphism N→ 0.

Proof. The fact that amonomorphismhas the zero-morphismas its kernelwas proved
in proposition 6.1.2. Conversely, suppose that 0→M is a kernel for ϕ :M→ N, and
let ζ : Z → M be a morphism such that ϕ ◦ ζ = 0. The universal property implies
that ζ factors through 0→M and so ζ = 0, proving that ϕ is a monomorphism. The
statement about epimorphisms follows by duality.

In some sense, life is simpler in the world of modules, since finite products and
coproducts coincide. Fortunately, this is already the case in preadditive categories.

Theorem 6.1.9 LetM and N be two objects in a preadditive category. Given a third
object P, the following are equivalent:

(a) there exist natural projections πM : P → M and πN : P → N such that P
satisfies the universal property ofM×N;

(b) there exist natural injections ιM :M→ P and ιN : N→ P such that P satisfies
the universal property ofM

∐
N;

(c) there exist morphisms πM : P →M, πN : P → N, ιM :M→ P and ιN : N→ P

such that

πM ◦ ιM = idM, πN ◦ ιN = idN, πM ◦ ιN = 0, πN ◦ ιM = 0,

ιM ◦ πM + ιN ◦ πN = idP .

Moreover, under these conditions we have that

ιM = kerπN, ιN = kerπM, πM = coker ιN, πN = coker ιM.

If P satisfies any of the conditions above, we say that P is the direct sumM⊕N.

Proof. By duality, it suffices to prove the equivalence of (a) and (c). Given (a), we
use the universal property of products to obtain our desired morphisms ιM and ιN as
the unique morphisms that satisfy πM ◦ ιM = idM, πN ◦ ιN = idN, πM ◦ ιN = 0 and
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6. Abelian categories

πN ◦ ιM = 0:

M

M P

N

idM

0

ιM

πM

πN

and

M

N P

N.

0

idN

ιN

πM

πN

We then affirm that ιM ◦ πM + ιN ◦ πN = idP. Indeed, observe that the left-hand side
satisfies

πM ◦ (ιM ◦ πM + ιN ◦ πN) = πM ◦ ιM ◦ πM + πM ◦ ιN ◦ πN = πM + 0 = πM

πN ◦ (ιM ◦ πM + ιN ◦ πN) = πN ◦ ιM ◦ πM + πN ◦ ιN ◦ πN = 0+ πN = πN.

But then both ιM ◦πM+ ιN ◦πN and idP fit in the place of the dotted morphismwhich
makes the diagram

M

P P

N

πM

πN

πM

πN

commute. The uniqueness part of the universal property of products then implies
that they are equal, proving (c).

Now, given (c) and an object Q with morphisms γM : Q→M and γN : Q→ N, we
need to show that there is a unique morphism γ : Q→ P making the diagram

M

Q P

N

γM

γN

γ
πM

πN

commute. For the existence, we define γ := ιM ◦ γM + ιN ◦ γN. The diagram above
then commutes since

πM ◦ γ = πM ◦ ιM ◦ γM + πM ◦ ιN ◦ γN = γM + 0 = γM,

πN ◦ γ = πN ◦ ιM ◦ γM + πN ◦ ιN ◦ γN = 0+ γN = γN.
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Moreover, if γ ′ : Q→ P is another morphism making the diagram commute, then,

γ ′ = idP ◦γ ′ = (ιM ◦ πM + ιN ◦ πN) ◦ γ ′

= ιM ◦ πM ◦ γ ′ + ιN ◦ πN ◦ γ ′

= ιM ◦ γM + ιN ◦ γN = γ.

This proves (a). Assuming all the equivalent conditions for P to be the direct sum
M⊕N, we now show that ιM = kerπN. Since πN ◦ ιM = 0, it suffices to prove that if
ζ : Z → P satisfies πN ◦ ζ = 0, then there exists a unique morphism Z → M making
the diagram

M P N

Z

ιM
πN

0

ζ

commute. We affirm that πM ◦ζ is the desiredmorphism Z→M. Indeed, we observe
that

πM ◦ (ιM ◦ πM ◦ ζ) = πM ◦ ζ
πN ◦ (ιM ◦ πM ◦ ζ) = 0 = πN ◦ ζ

since πM ◦ ιM = idM and πN ◦ ιM = 0. As before, using the uniqueness part of
the universal property of products, we have that ιM ◦ πM ◦ ζ = ζ, proving that the
diagram above commutes. This is the unique morphismmaking it commute because,
as πM ◦ ιM = idM, ιM is a monomorphism.

We can prove that ιN = kerπM in the same way and then πM = coker ιN and
πN = coker ιM follow by duality.

A perk from the fact that direct sums in preadditive categories have both canonical
projections and canonical injections is that it allows us to write morphisms using
a matrix notation. If M1,M2, N1, N2 are four objects in a preadditive category, a
morphism

ϕ :M1 ⊕M2 → N1 ⊕N2
is completely determined by the four morphisms

ϕ11 = π1 ◦ϕ ◦ ι1 :M1 → N1

ϕ12 = π1 ◦ϕ ◦ ι2 :M2 → N1

ϕ21 = π2 ◦ϕ ◦ ι1 :M1 → N2

ϕ22 = π2 ◦ϕ ◦ ι2 :M2 → N2.

Henceforth we will represent such a morphism ϕ by the matrix(
ϕ11 ϕ12
ϕ21 ϕ22

)
.
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6. Abelian categories

Using the correspondence between A-module morphisms A→ A and elements of A,
this is nothing but the matrix notation used in linear algebra to describe A-module
morphisms A⊕n → A⊕m. Given another morphism

ψ : N1 ⊕N2 → P1 ⊕ P2,

the matrix representation of the compositionψ◦ϕ is simply the matrix product of the
individual matrices. Similarly, the sum of two morphisms M1 ⊕M2 → N1 ⊕ N2 is
represented by the sum of the individual matrices. It is clear that this notation allows
us to describe morphisms of the form

n⊕
i=1

Mi →
m⊕
j=1

Nj

for any positive integers n,m.
Finally, we impose the existence of zero-objects and binary products. This suffices

to guarantee the existence of finite products and coproducts, which coincide by the
theorem 6.1.9.
Definition 6.1.8 — Additive category. A preadditive category A is additive if it has a
zero-object and binary products.

The prototypical example of an additive category surely is A-Mod but Ab and the
category of Banach spaces with continuous linear maps are also examples of additive
categories. Nevertheless, Grp is not additive since finite products and coproducts do
not coincide, and neither is the category of Banach spaces with linear contractions as
finite products and coproducts are not isometric.

Even though additive categories do not suffer from some of the problems we met
before, they may still fail to have kernels or cokernels. For example, the category of
finitely generatedA-modules,whenA is not noetherian, is additivebuthasmorphisms
without kernels. Furthermore, even when the additive category in consideration has
kernels and cokernels, the usual first isomorphism theoremmay not hold. We discuss
those questions in the next section.

We finish this section with another interesting consequence of the theorem 6.1.9:
the preadditive structure in an additive category is unique.

Proposition 6.1.10 Let A be a category with a zero-object and binary products. Then
A has at most one abelian group structure on its hom-sets.

Proof. We endow A with any preadditive structure, and then we’ll show that the
addition of morphisms is actually determined by the limit-colimit structure of A.

Let ϕ1, ϕ2 : M → N be two morphisms in A. We define a map α : M → M ⊕M
by the universal property of products and a map β : N ⊕ N → N by the universal
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property of coproducts:

M

M M⊕M

M

idM

idM

α

π ′M

πM

and

N

N⊕N N.

N

ιN

idN

β

ι ′N

idN

We observe that, by the theorem 6.1.9 and the uniqueness of the universal property
of products, the equations

πM ◦ (ιM + ι ′M) = πM ◦ ιM + πM ◦ ι ′M = idM+0 = idM = πM ◦ α,
π ′M ◦ (ιM + ι ′M) = π ′M ◦ ιM + π ′M ◦ ι ′M = 0+ idM = idM = π ′M ◦ α

imply that α = ιM + ι ′M. The same exact reasoning shows that β = πN + π ′N.
Now, we affirm that the compositionM→M⊕M→ N⊕N→ N, where the map

ψ :M⊕M→ N⊕N in the middle is given by(
ϕ1 0

0 ϕ2

)
,

is the sum ϕ1 +ϕ2. Indeed, the composition is

β ◦ψ ◦ α = (πN + π ′N) ◦ψ ◦ (ιM + ι ′M)

= πN ◦ψ ◦ ιM + π ′N ◦ψ ◦ ιM + πN ◦ψ ◦ ι ′M + π ′N ◦ψ ◦ ι ′M
= ϕ1 + 0+ 0+ϕ2 = ϕ1 +ϕ2

by the very definition of ψ.

6.2. Abelian categories
As we saw, whenever kernels and cokernels exist, they behave reasonably well. How-
ever, their possible lack of existence prevents us from going further. Moreover, despite
the fact that kernels are always monomorphisms and cokernels are always epimor-
phisms, there’s no guarantee that every monomorphism is a kernel and that every
epimorphism is a cokernel. It just so happens that demanding these properties is
enough for us to have the first isomorphism theorem.
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6. Abelian categories

Definition 6.2.1 — Abelian category. An additive category A is abelian if it possesses
kernels and cokernels, if every monomorphism is the kernel of some morphism
and if every epimorphism is the cokernel of some morphism.

For now, our only real example of an abelian category isA-Mod and its variants, such
as Ab, the category of finitely generated modules over a noetherian ring, the category
of finite abelian groups, their opposites, and so forth. But the reader shouldn’t worry
about having few examples; a plethora of abelian categories lie ahead.

In an abelian category, every monomorphism is the kernel of some morphism. We
can actually be more precise.

Proposition 6.2.1 In an abelian category A, every monomorphism is the kernel of its
cokernel and every epimorphism is the cokernel of its kernel.

Proof. Let ϕ : M → N be a monomorphism which is the kernel of some morphism
β : N→ Z. Since A is abelian, ϕ has a cokernel π : N→ C. The universal property of
the cokernel shows that β factors through π.

Z

M N C
ϕ π

β

We show that ϕ satisfies the universal property defining the kernel of π. Let K → N

be a morphism whose composition with π is the zero-morphism.

Z

M N C

K

ϕ π

β

0

By the commutativity of the diagram, K→ N→ Z is also the zero-morphism. But ϕ
is the kernel of β and so there exists a unique induced morphism K → M, proving
our claim. The statement about epimorphisms follows by duality.

This proposition implies a quick criterion for deciding when a full subcategory of
an abelian category is abelian.

Corollary 6.2.2 Let A be an abelian category and letC be a full subcategory. Suppose
that the zero-object of A is in C and that C is closed under binary sums, kernels,
and cokernels. Then C is also abelian.
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Proof. The only thing we have to verify is that every monomorphism is the kernel of
some morphism and that every epimorphism is the kernel of some morphism. Now,
letϕ be a monomorphism in C. This implies that its kernel in C is the zero-morphism
but, since kernels in C and A coincide, ϕ is also a monomorphism in A. We observe
that, as C is closed under cokernels, ψ := cokerϕ is a morphism in C. Since A is
abelian, the preceding proposition implies that ϕ satisfies the universal property of
kerψ inA and, a fortiori, inC. This proves that everymonomorphism inC is the kernel
of some morphism in C. The result about epimorphisms follows by duality.

Recall that in any category, isomorphisms are both monic and epic. The converse
may fail to hold even in usual categories, such as Ring, where the inclusion Z→ Q is a
monomorphism and an epimorphism but is clearly not an isomorphism. Luckily, the
proposition 6.2.1 also implies that the converse holds in abelian categories.

Corollary 6.2.3 Let ϕ : M → N be a morphism in an abelian category A. Then ϕ is
an isomorphism if and only if it is both a monomorphism and an epimorphism.

Proof. If ϕ is both monic and epic, its kernel is 0 → M and its cokernel is N → 0.
Furthermore, by proposition 6.2.1,ϕ is the kernel ofN→ 0 and the cokernel of 0→M.
Now consider the diagram below.

N

0 M N 0

idN

ϕ

Since N → N → 0 is the zero morphism and ϕ is the kernel of N → 0, we obtain a
unique morphism ψ : N→Mmaking the diagram

N

0 M N 0

idN
ψ

ϕ

commute. Asϕ◦ψ = idN, this shows thatϕ has a right-inverse. Similarly, the fact that
ϕ is the cokernel of 0 → M implies the existence of a unique morphism η : N → M

such that the diagram
M

0 M N 0
ϕ

idM
η

commutes. It follows that ϕ has both a left-inverse η and a right-inverse ψ. Thus,
η = ψ is a two-sided inverse of ϕ and so ϕ is an isomorphism. The converse holds in
every category.
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We observe that this corollary implies that the category of Banach spaces with
bounded linear maps is not abelian. A bounded linear map T : X→ Y is a monomor-
phism if it’s injective and an epimorphism if im T is dense in Y. But there ex-
ists monomorphisms with dense image which are not isomorphisms; the inclusion
`1 → `2, for example.
Earlier, we said that demanding every monomorphism to be a kernel and every

epimorphism to be a cokernel is enough to guarantee the first isomorphism theorem.
In order to understand how we should even enunciate such a result, we have to make
sense of images in abelian categories. As with kernels and cokernels, this is best done
via a suitable universal property.

Let’s translate our intuitive notion of the image of a morphism ϕ :M→ N in Set to
a purely arrow-theoretic statement. The main point in Set is that imϕ is the smallest
subset of N to which we can restrict the codomain of ϕ to. In other words, we can
factor ϕ :M→ N as

M imϕ N,

where imϕ → N is injective and imϕ is the smallest subset of N which allows this
decomposition. Switching to categorical terms, we arrive at the following universal
property: the image of ϕ : M → N is a monomorphism ι : K → N such that ϕ
factors through ι and that is initial with these properties. That is, if L→ N is another
monomorphism throughwhichϕ also factors, then it exists a uniquemorphismK→ L

such that the diagram
L

M K N
ϕ

ι

commutes. In an arbitrary category, it could very well happen that no morphism
ι : K→ N satisfies this universal property. Luckily, this is never the case in the realm
of abelian categories.

Proposition 6.2.4 Let ϕ : M → N be a morphism in an abelian category, and let
ι : K → N be the kernel of cokerϕ. Then ι is a monomorphism through which ϕ
factors, and it is initial with these properties.

Proof. It is clear that ι is a monomorphism by the fact that it is a kernel. Since
ι : K→ N is the kernel of cokerϕ : N→ Cϕ, the diagram

M N Cϕ

K

ϕ cokerϕ

0

ι
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commutes. The universal property of the kernel then implies the existence of a
morphism M → K factoring ϕ through ι. We now show that ι satisfies the desired
universal property. Let λ : L → N be another monomorphism through which ϕ
factors, and consider its cokernel N→ Cλ.

L

M K N

Cλ

λ

ϕ

ι

cokerλ

Sinceϕ factors through λ, the compositionM→ N→ Cλ is 0. The universal property
of cokerϕ induces a morphism Cϕ → Cλ:

L

M K N Cϕ

Cλ.

λ

ϕ

ι

cokerλ

cokerϕ

Observe that since K → N → Cϕ is the zero-morphism, so is K → N → Cλ. But
λ is a monomorphism, which implies that it is the kernel of coker λ. Its universal
property then implies the existence of a uniquemorphism K→ Lmaking the diagram
commute.

Since all there is to know about the image of a morphism ϕ is encoded in the
imϕ = ker(cokerϕ) mantra, we use it to define images from now on.
Definition 6.2.2 — Image. Let ϕ :M → N be a morphism in an abelian category. Its
image, denoted imϕ, is the kernel of cokerϕ.

As it is probably clear by now, the image of amorphismϕ :M→ N ofA-modules is
simply the inclusion I→ N, where I is the set-theoretical image of ϕ. Indeed, cokerϕ
is simply N→ N/I and its kernel is nothing but I→ N.

Inverting all the arrows, we arrive at the dual notion of the image of a morphism.
Definition 6.2.3 — Coimage. Let ϕ : M → N be a morphism in an abelian category.
Its coimage, denoted coimϕ, is the cokernel of kerϕ.

By duality, the proposition 6.2.4 gives a universal property for the coimage of a
morphism ϕ :M → N in an abelian category: it is an epimorphism π :M → C such
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that ϕ factors through π and such that if M → D is another epimorphism through
which ϕ also factors, then it exists a unique morphism D→ Cmaking the diagram

M C N

D

π

ϕ

commute.
Now, our sought-for first isomorphism theorem is simply a particular relation be-

tween the image and the coimage of a given morphism. In A-Mod, the coimage of a
morphism ϕ :M → N is the quotient mapM →M/K, where K is the set-theoretical
kernel of ϕ. The first isomorphism theorem in this context amounts to the fact that
we can factor ϕ :M→ N as

M M/K I N,
coimϕ

ϕ

imϕ

where the morphism in the middle, induced by ϕ, is an isomorphism. In this form,
the result holds in arbitrary abelian categories.

Theorem 6.2.5 — First isomorphism theorem. Let ϕ : M → N be a morphism in an
abelian category. Then ϕ can be decomposed as

M C K N,

ϕ

∼

whereM→ C is the coimage ofϕ,K→ N is its image andC→ K is an isomorphism.

Proof. The universal properties of the image and of the coimage give two decompo-
sitions of ϕ as follows:

K

M N.

C

imϕ

ϕ

α

coimϕ β

In order to use the universal property of imϕ to obtain an induced morphism K→ C,
we must prove that β is a monomorphism. (Similarly, we could prove that α is an
epimorphism and use the universal property of coimϕ.) Since every monomorphism
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is the kernel of its cokernel, ker(coimβ) = ker(coker(kerβ)) = kerβ. It suffices then to
show that ker(coimβ) = 0. We observe that the composition of coimβ and coimϕ

M C N ′ N
coimϕ

ϕ

β

coimβ

is an epimorphism through which ϕ factors. The universal property of coimϕ then
implies that coimβ is an isomorphism, concluding that kerβ = 0 and so β is a
monomorphism.

As we said above, the universal property of imϕ induces a morphism ψ : K → C

making the diagram
K

M N

C

imϕ

ψ

coimϕ

α

β

commute. Since β ◦ ψ = imϕ is a monomorphism, so is ψ. Similarly, the fact that
ψ ◦ α = coimϕ is an epimorphism implies that ψ has the same property. It follows
that ψ is an isomorphism, and so it suffices to consider its inverse to be our desired
morphism C→ K.

As we’ll see, this theorem even gives an alternative definition of abelian category.
For now, suppose thatϕ :M→ N is amorphism in an additive category that possesses
kernels and cokernels. In this context, it is not true that ker(cokerϕ) : K→ N satisfies
the universal property of the image of ϕ1 but, since (cokerϕ) ◦ ϕ = 0, the universal
property of kernels implies that ϕ factors through ker(cokerϕ).

M N

K

ϕ

ker(cokerϕ)

Similarly, the universal property of cokernels implies that M → K factors through

1For a counterexample, consider themorphismϕ : Z→ Z given bymultiplication by 2 in the category
of torsion-free abelian groups. The reader may verify that this is an additive category, with kernels
and cokernels, and that ker(cokerϕ) = id : Z → Z. Then ϕ is another monomorphism through
which ϕ factors, but there’s no morphism induced by the universal property of images.
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coker(kerϕ) :M→ C via a morphism ϕ : C→ K.

M N

C K

ϕ

coker(kerϕ)

ϕ

ker(cokerϕ)

Our previous theorem shows that ϕ is an isomorphism whenever we’re dealing with
an abelian category. Conversely, this property suffices to define an abelian category.

Proposition 6.2.6 Let A be an additive category that possesses kernels and cokernels.
Then A is abelian if and only if for every morphism ϕ : M → N, the induced
morphism ϕ : C→ K is an isomorphism.

Proof. One direction was shown in the previous theorem. Conversely, suppose that
ϕ :M→ N is a monomorphism. Then kerϕ = 0 and so ϕ factors as

M N

M K.

ϕ

idM

ϕ

ker(cokerϕ)

This implies that ϕ satisfies the universal property of ker(cokerϕ). (Since ϕ and
ker(cokerϕ) define the same subobjects of N.) By duality, it follows that every epi-
morphism is a cokernel.

6.3. Unions and intersections
LetM be an object in a (not necessarily abelian) categoryA. Aswe saw in the beginning
of this chapter, a subobject ofM is an equivalence class ofmonomorphisms s : S→M.
Given another subobject defined by t : T → M, we say that s is smaller than t if there
exists a morphism S→ T , automatically monic, making the diagram

S T

M

s t

commute. This is independent of the representatives chosen for each equivalence
class. Also, the morphism S → T is unique whenever it exists. This endows the
collection of all subobjects of M with the structure of a partially ordered class.2 In
particular, we are able to define the union and the intersection of a family of subobjects.
2It need not be a set, even when the category in question is abelian. We say that a category is
well-powered if the subobjects of every object constitute a set.
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Definition 6.3.1 LetM be an object of a category A. The union, if it exists, of a family
of subobjects ofM is their supremum in the partially ordered class of subobjects.
Similarly, the intersection of a family of subobjects is their infimum.

We’ll often use the customary symbols ∪ and ∩ to denote the union and the inter-
section of subobjects, leaving their target implicit.

In A-Mod, the union of two submodules S and T of a given module M is simply
their sum S+ T . In other words, it’s the image of the canonical morphism S⊕ T →M,
which sends (s, t) to s+ t. This description generalizes to arbitrary abelian categories.

Proposition 6.3.1 Let A be an abelian category and Si → M be a finite collection of
subobjects. The union of those subobjects exists and is given by the image of the
natural map

⊕
i Si →M.

Proof. Factoring each Si →M through the coproduct and then factoring the resulting
morphism through its image we obtain the diagram below.

Si

⊕
i Si K M

In particular, K → M is a subobject which is greater than all of the Si → M. Now,
suppose that T → M is another subobject through which all the Si → M factor. The
universal property of coproducts induces a dashed morphism making the diagram

Si

T⊕
i Si K M

commute. (The lower triangle commutes by the unicity of the induced morphism⊕
i Si → M.) Finally, the universal property of images induces a morphism K → T ,

proving that K→M is indeed the supremum of the Si →M.

The same proof shows that the preceding description also works for infinite unions,
replacing the direct sums by coproducts, whenever those coproducts exist.

In a wide range of cases (even for some categories very dissimilar to A-Mod, such
as Top), the proposition below describes binary intersections.

Proposition 6.3.2 Let A be a category with pullbacks. The intersection of two sub-
objects S→M and T →M exists and is given by their pullback.
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6. Abelian categories

Proof. We recall that, in absolute generality, pullbacks preserve monomorphisms. [3,
Proposition 2.5.3] That is, if

P T

S M
s

tt ′

s ′

is a cartesian diagram and s is a monomorphism, then so is s ′. Similarly for t and t ′,
of course. In particular, P →M is a subobject which is less than S→M and T →M.
Moreover, P →M is their infimum, due to the universal property of pullbacks.

Once again, the same proof shows that the intersection of a family of subobjects
Si →M exists and is given by the limit of the diagram constituted of thosemorphisms,
as long as such limit exists.

Fortunately, abelian categories possess pullbacks and they have simple descriptions.
In A-Mod, the pullback of two morphisms ϕ : M → P and ψ : N → P is given by
submodule of M ⊕ N determined by the elements (m,n) satisfying ϕ(m) = ψ(n).
Basically the same description works more generally. In particular, the collection of
subobjects of every object in an abelian category form a lattice.

Proposition 6.3.3 Let s : S → M and t : T → M be two morphisms in an abelian
category A. The kernel of the morphism

(s,−t) : S⊕ T →M

satisfies the universal property of the pullback S ×M T . Dually, if s ′ : N → S and
t ′ : N→ T are two morphisms in A, the cokernel of(

s ′

−t ′

)
: N→ S⊕ T

satisfies the universal property of the pushout S
∐
N T .

Proof. Let πS : S⊕ T → S and πT : S⊕ T → T be the canonical projections. Moreover,
denote the kernel of (s,−t) by κ : P → S⊕ T , and pose s ′ := πT ◦ κ, t ′ := πS ◦ κ. Being
more precise, the first statement is that the square

P T

S M

t

s

t ′

s ′

is cartesian. We observe that

(s,−t) = (s,−t) ◦ idS⊕T = (s,−t) ◦
(
πS
πT

)
= s ◦ πS − t ◦ πT .
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This implies the commutativity of the square above, given that

s ◦ t ′ − t ◦ s ′ = s ◦ πS ◦ κ− t ◦ πT ◦ κ = (s,−t) ◦ κ = 0.

We now prove that the square satisfies the universal property of pullbacks. Let
ϕ : Q→ S and ψ : Q→ T be such that s ◦ϕ = t ◦ψ. Since

(s,−t) ◦
(
ϕ

ψ

)
= s ◦ϕ− t ◦ψ = 0,

the universal property of kernels gives a unique morphism µ : Q → P making the
diagram

Q P

S⊕ T

ϕ
ψ



µ

κ

commute. Moreover, we have that

s ′ ◦ µ = πT ◦ κ ◦ µ = πT ◦
(
ϕ

ψ

)
= ψ

and, similarly, that t ′ ◦ µ = ϕ. The unicity of these factorizations follows from the
unicity in the universal properties of kernels and of products. As usual, the other
statement follows by duality.

As we recalled in the proof of proposition 6.3.2, pullbacks preserve monomor-
phisms. Dually, pushouts preserve epimorphisms. In abelian categories we have
even more.

Corollary 6.3.4 Let A be an abelian category. Suppose that

P T

S M
s

tt ′

s ′

is a cartesian diagram in A, and that s is an epimorphism. Then s ′ is also an epimor-
phism and the square is also a pushout. Dually, the pushout of a monomorphism
is a monomorphism, and the corresponding square is also a pullback.

Proof. We keep the same notations as in the proof of the previous proposition, and
begin by proving that (s,−t) is an epimorphism. Let ρ :M→ N be a morphism such
that ρ ◦ (s,−t) = 0. Then, denoting by ιS : S→ S⊕ T the natural injection, we have

0 = ρ ◦ (s,−t) ◦ ιS = ρ ◦ (s ◦ πS − t ◦ πT ) ◦ ιS = ρ ◦ s.
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6. Abelian categories

This implies that ρ = 0, for s is an epimorphism. In particular, (s,−t) = cokerκ due
to proposition 6.2.1.

Now, let σ : T → Z be a morphism such that σ ◦ s ′ = 0. Since s ′ = πT ◦ κ, the
universal property of cokernels gives a morphism ζ :M→ Zmaking the diagram

P S⊕ T M

T Z

κ (s,−t)

πT

σ

ζ
s ′

commute. But the equation

ζ ◦ s = ζ ◦ (s,−t) ◦ ιS = σ ◦ πT ◦ ιS = 0

implies that ζ = 0, since s is an epimorphism. Finally, the fact that πT is epic and
satisfies σ ◦ πT = 0 implies that σ = 0, proving that s ′ is an epimorphism as well.

We now show that our cartesian square is also cocartesian. Let η : S → Q and
λ : T → Q be two morphisms making the diagram

P T

S M

Q

t ′

s

t

s ′

λ

η

commute. Observe that, by the universal property of pullbacks, there exists a dashed
morphism making the diagram

K

P T

S M

Q

t ′

s

t

s ′

λ

η

kers

0

commute. This implies that η ◦ ker s = 0, and so the universal properties of cokernels
(since s is the cokernel of ker s) gives a morphism ξ : M → Q satisfying η = ξ ◦ s.
Moreover, we have that

λ ◦ s ′ = η ◦ t ′ = ξ ◦ s ◦ t ′ = ξ ◦ t ◦ s ′.
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It follows that λ = ξ ◦ t, since s ′ is an epimorphism. In other words, ξ makes the
diagram

P T

S M

Q

t ′

s

t

s ′

λ

η

ξ

commute. Such a morphism is unique, due to s being an epimorphism. We conclude
the result. The other statement follows by duality.

Given two subobjects S→M and T →M, we can naturally form the commutative
diagram below.

S ∩ T T

S S ∪ T

Since we can always complete this square into a diagram of the form

S ∩ T T

S S ∪ T

M,

the proposition 6.3.2 implies that our original square is always cartesian. The explicit
description of pullbacks, along with the explicit description of unions, allows us to go
further.

Corollary 6.3.5 Let s : S → M and t : T → M be two subobjects in an abelian
category. The commutative diagram

S ∩ T T

S S ∪ T

s ′

t ′

is cartesian and cocartesian.

Proof. The discussion above proves that our commutative diagram is cartesian. In
order to show that it’s also cocartesian, let σ : S→ Q and τ : T → Q be twomorphisms

77
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making the diagram
S ∩ T T

S S ∪ T

Q

s ′

t ′

σ

τ

commute. The key to proving the existence and uniqueness of an induced morphism
S ∪ T → Q is the calculation of the kernel of (s, t). For now, assume it to be(

s ′

−t ′

)
: S ∩ T → S⊕ T,

and let’s see how this solves the problem. The proposition 6.3.1 implies that S ∪ T is
the target of the coimage of (s, t) (i.e., the cokernel of the morphism above). Since
σ ◦ s ′ = τ ◦ t ′, the universal property of cokernels gives our desired morphism.

Q

S ∩ T S⊕ T S ∪ T

 s ′
−t ′


coim (s,t)

(σ,τ)

Now, let’s prove that the kernel of (s, t) is the one we described by showing that it
satisfies the universal property. First of all, the commutativity of the diagram giving
S ∩ T as the pullback of s and t implies that

(s, t) ◦
(
s ′

−t ′

)
= s ◦ s ′ − t ◦ t ′ = 0.

If ζ : Z→ S⊕ T is any other morphism satisfying 0 = (s, t) ◦ ζ = (s ◦ πS + t ◦ πT ) ◦ ζ,
the diagram

Z

S ∩ T T

S M

−πT◦ζ

πS◦ζ s ′

s

t

t ′

commutes and the universal property of pullbacks gives a morphism ζ ′ : Z → S ∩ T
satisfying πS ◦ ζ = s ′ ◦ ζ ′ and πT ◦ ζ = −t ′ ◦ ζ ′. This implies that

ζ =

(
s ′

−t ′

)
◦ ζ ′,

and finishes the proof.
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6.3. Unions and intersections

Thepreceding result is usually phrased as themotto binary unions in abelian categories
are effective. This means that, in order to define a morphism S ∪ T → P, it suffices to
find morphisms S→ P and T → P which agree on the intersection S ∩ T .

A final interesting result, which will be the soul of the next few propositions, can
also be proved using the same circle of ideas.

Proposition 6.3.6 Let A be an abelian category. Given a commutative square

P T

S M
s

tt ′

s ′

in A, consider the induced morphisms k : K ′ → K and c : C ′ → C between the
kernels and cokernels of s ′ and s:

K ′ P T C ′

K S M C.

t

s ′

s

t ′

kers

kers ′

k

cokers

cokers ′

c

If the original square is cartesian, then k is an isomorphism and c is a monomor-
phism. Dually, if the original square is cocartesian, then k is an epimorphism and
c is an isomorphism.

Proof. Suppose that our square is cartesian. We prove that k is an isomorphism. The
universal property of pullbacks gives a dashed morphism, making the diagram

K

P T

S M

t

s ′

s

t ′
kers

0

p

commute. Then, since K → P → T is zero, the universal property of kernels gives a
dashed morphism k ′ : K→ K ′ making the diagram

K ′ P T

K S M

t

s ′

s

t ′

kers

p

kers ′

k ′
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commute. Checking the commutativity of the previous diagrams, we remark that

t ′ ◦ (ker s ′) ◦ k ′ ◦ k = t ′ ◦ p ◦ k = (ker s) ◦ k = t ′ ◦ (ker s ′)
s ′ ◦ (ker s ′) ◦ k ′ ◦ k = s ′ ◦ p ◦ k = 0 ◦ k = s ′ ◦ (ker s ′).

In other words, ker s ′ and (ker s ′) ◦ k ′ ◦ k are two morphisms making the diagram

K ′

P T

S M

t

s ′

s

t ′

kers ′

(kers ′)◦k ′◦k

commute. The uniqueness in the universal property of pullbacks implies that they’re
equal. Since ker s ′ is a monomorphism, k ′ ◦ k = idK ′ . Furthermore,

(ker s) ◦ k ◦ k ′ = t ′ ◦ (ker s ′) ◦ k ′ = ker s.

As ker s is monic, we have k ◦ k ′ = idK; proving that k is an isomorphism.
We now suppose our original square to be cocartesian and prove that k is epic. A

first observation is that the left square in

P I ′ T

S I M,

tt ′

coims ′ ims ′

coims ims

is also cocartesian. (The vertical arrow on the middle exists by the universal property
of kernels, using that im s = ker(coker s), and the left square commutes by the fact that
im s is monic.) Indeed, let I ′ → Q and S→ Q be two maps making the natural square
commute and consider the pushout of Q← I ′ → T :

P I ′ T

S I M

Q Q ′.

t ′

coims ′ ims ′

t

imscoims

The universal property of pushouts then induces a mapM→ Q ′. The commutativity
of the diagram below implies that K → S → Q → Q ′ is the zero-morphism. Since
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Q→ Q ′ is monic, by the corollary 6.3.4, K→ S→ Q is already zero.

K ′ P I ′ T

K S I M

Q Q ′

t ′

coims ′ ims ′

t

imscoimskers

kers ′

As coim s = coker(ker s), the universal property of cokernels induces a unique mor-
phism I→ Qmaking the triangle (1), below, commute.

P I ′ T

S I M

Q Q ′

ims ′

t

ims
(2)

coims

t ′

coims ′

(3)(1)

SinceQ→ Q ′ is monic, to see if the triangle (2) commutes, it suffices to post-compose
with Q → Q ′. But I ′ → Q → Q ′ coincides with I ′ → I → M → Q ′, so it suffices
to see that the square (3) commutes. As coim s is epic, it suffices to pre-compose
with it. Finally the commutativity of the triangle (1), already known, implies the
commutativity of (2). We conclude the proof that our square is a pushout.

Now, let h : K→ L be a morphism satisfying h ◦ k = 0 and consider the diagram

K ′ P I ′

K S I

L N,

t ′

kers

kers ′

k

coims

coims ′

h

whose lower square is a pushout. We recall that, by the corollary 6.3.4, the morphism
L → N is monic. The commutativity of the diagram implies that K ′ → P → S → N

is the zero-morphism and so, since coim s ′ = coker(ker s ′), the universal property of
cokernels yields a morphism I ′ → Nmaking

K ′ P I ′

S

N

t ′

kers ′ coims ′
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6. Abelian categories

commute. But then, the universal property of pushouts gives a dashed morphism
making the diagram

K ′ P I ′

K S I

L N

t ′

kers ′

kers

k

coims ′

coims

h

commute. Since K→ S→ I is the zero-morphism, the commutativity of the diagram
implies that so is K → L → N. Finally, the fact that L → N is monic gives that h = 0.
The other statements follow by duality.

We defined an abelian category by imposing the first isomorphism theorem. Some-
what surprising, all the other isomorphism theorems are also true in this generality.

If t : T →M is a subobject, we’ll denote the target of coker t byM/T , as it would be
inA-Mod. We remark that if S→M is a subobject containing t, then S/T is naturally a
subobject ofM/T . That is, there exists a dashed monomorphismmaking the diagram

T

S M

S/T M/T

commute. Indeed, theuniversal property of the cokernel on the left gives the existence,
and the universal property of the cokernel on the right implies that the trapezoid above
is a pushout; proving that the dashed morphism is monic.

Proposition 6.3.7 Let t : T →M be a subobject in an abelian category. Then,

u : {subobjects ofM containing t}→ {subobjects ofM/T }
(S→M) 7→ (S/T →M/T)

is a lattice isomorphism. Moreover, if S→M is a subobject containing t, the objects

(M/T)/(S/T) and M/S

are isomorphic.

Before we begin the proof, recall that a partially ordered class may be seen naturally
as a category. In this context, a lattice is a partially ordered class with binary products
and coproducts. Similarly, a morphism of lattices can be seen as a functor preserving
such (co)products.
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Proof. We define an explicit inverse to u. Consider the function v, which sends a
subobject Q→M/T to the top arrow in the pullback

P M

Q M/T.

Since T → M → M/T is zero, the universal property of pullbacks gives a dashed
morphism making the diagram

T

P M

Q M/T

coker t

t

0

commute, proving that P → M contains T → M. It’s clear that both u and v are
order-preserving. In other words, they are functors. Applying u to the subobject
P →M, we obtain the commutative diagram below.

T

P M

P/T

Q M/T

Observe that the composition T → P → Q →M/T is zero, due to the commutativity
of the diagram. Actually, T → P → Q is already zero, as Q → M/T is monic. Then,
the universal property of cokernels gives a morphism P/T → Qmaking the diagram
above commute. This morphism is both monic and epic, by the commutativity of the
triangles on its sides. In other words, u ◦ v is the identity functor.

Now, let S→M be a subobject containing t : T →M. We recall that the square

S M

S/T M/T

is cocartesian. The corollary 6.3.4 implies that it’s also cartesian, proving that v ◦ u is
also the identity functor. Since u is an equivalence of categories, it preserves products
and coproducts. In particular, it’s an isomorphism of lattices.
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The isomorphism between (M/T)/(S/T) and M/S follows from the proposition
6.3.6, applied to the cocartesian square above.

The last isomorphism theorem also follows from the machinery developed in this
section.

Proposition 6.3.8 Let S→M and T →M be subobjects in an abelian category. Then
the objects

(S ∪ T)/T and S/(S ∩ T)

are isomorphic.

Proof. Since binary unions in abelian categories are effective, the commutative dia-
gram

S ∩ T T

S S ∪ T
is a pushout. The result then follows from the same proposition 6.3.6.

6.4. Exactness in abelian categories
After all this foundational work, we can at long last understand how exact sequences
work in an abelian category.
Definition 6.4.1 — Exact sequence. Consider a sequence of objects and morphisms in
an abelian category:

· · · M N P · · · .ϕ ψ

We say that this sequence is exact at N if kerψ and imϕ define the same subobject
of N. It is exact if it’s exact at every object.

As it is the case in A-Mod, most properties about morphisms can be stated in terms
of exact sequences. For example,

0 M N
ϕ

is an exact sequence if and only if ϕ is a monomorphism. Likewise,

0 M N P
ϕ ψ

is an exact sequence if and only if ϕ is a kernel of ψ. Also,

0 M N P 0.
ϕ ψ
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is exact if and only if ϕ is a kernel of ψ and ψ is cokernel of ϕ. These last exact
sequences are so important that they deserve a name.
Definition 6.4.2 — Short exact sequence. An exact sequence of the form

0 M N P 0.
ϕ ψ

is said to be a short exact sequence.

Another reason for the importance of short exact sequences is that we can check
the exactness of an arbitrary sequence by intertwining it with short exact sequences.
Let’s illustrate this procedure with a sequence of the form

M1 M2 M3 M4.
ϕ1 ϕ2 ϕ3

Using the theorem 6.2.5, we can enlarge our diagram to be

C2 C4

M1 M2 M3 M4

C1 C3 C5.

imϕ1 imϕ3

ϕ1

coimϕ1

ϕ2

coimϕ2

ϕ3

coimϕ3

cokerϕ3kerϕ1
imϕ2

Using that kernels and images are monic and that cokernels and coimages are epic,
we obtain a yet larger diagram which is exact at all the Ci, atM1, and atM4.

0 0 0 0

C2 C4

M1 M2 M3 M4

C1 C3 C5

0 0 0 0

imϕ1 imϕ3

ϕ1

coimϕ1

ϕ2

coimϕ2

ϕ3

coimϕ3

cokerϕ3kerϕ1
imϕ2

Now, we affirm that our original sequence is exact if and only if those four diagonal
sequences are exact. Indeed, the only place where the diagonal sequences could lack
exactness is atM2 andM3. Being exact atM2 means that ker(coimϕ2) = im(imϕ1)
which is equivalent to kerϕ2 = imϕ1. The same holds for exactness atM3, and it’s
clear that this procedure generalizes to sequences of arbitrary length.
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A particularly frequent kind of short exact sequence appears when we consider the
direct sum of two objectsM and N. SinceM⊕N fulfills both the role of the product
and the coproduct of M and N, we have a natural injection ι : M → M ⊕ N and a
natural projection π :M⊕N→ N. These objects fit nicely into a sequence

0 M M⊕N N 0,
ι π

which is exact since ι is the kernel of π and π is the cokernel of ι. (Theorem 6.1.9.)
This is the prototypical example of a split exact sequence.
Definition 6.4.3 — Split exact sequence. A short exact sequence

0 M N P 0

is split if there’s a commutative diagram

0 M N P 0

0 M ′ M ′ ⊕ P ′ P ′ 0

∼ ∼ ∼

ι π

in which all the vertical maps are isomorphisms, ι is the natural injection and π is
the natural projection.

Understandingwhich exact sequences are splitwill allowus to characterize injective
and projective objects, to prove a criterion for when a morphism has a right- or left-
inverse, and to gain a refined version of the first isomorphism theorem. The following
theorem takes care of these last two tasks.

Theorem 6.4.1 — Splitting lemma. A short exact sequence of the form

0 M N P 0
ϕ ψ

is split if and only if one of the conditions below is satisfied:

(a) there exists a morphism σ : P → N such that ψ ◦ σ = idP;

(b) there exists a morphism ρ : N→M such that ρ ◦ϕ = idM.

Proof. If the sequence is split, then by composing the natural injections/projections
with the vertical maps in the definition 6.4.3 we obtain the desiredmorphisms σ : P →
N and ρ : N→M.

Conversely, we suppose that (a) holds and prove that the sequence is split. Our
approach will be based on the construction of a morphism ρ : N → M as in (b) such

86
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that

ρ ◦ϕ = idM, ψ ◦ σ = idP, ρ ◦ σ = 0, ψ ◦ϕ = 0,

ϕ ◦ ρ+ σ ◦ψ = idN .

This is enough for the theorem 6.1.9 to imply that N is isomorphic to the direct sum
ofM and P. We already have two of the equations: ψ ◦ σ = idP and ψ ◦ϕ = 0.

In order to find a morphism ρ such that ϕ ◦ ρ + σ ◦ ψ = idN, we consider the
morphism idN−σ ◦ψ. Observe that

ψ ◦ (idN−σ ◦ψ) = ψ−ψ ◦ σ︸ ︷︷ ︸
idP

◦ψ = 0.

The universal property of kernels, by the fact thatϕ = kerψ, implies the existence of a
unique morphism ρ : N→M such thatϕ◦ρ = idN−σ◦ψ, proving another equation.

Finally, we observe that, since ϕ is a monomorphism,

ϕ ◦ ρ ◦ϕ = (idN−σ ◦ψ) ◦ϕ = ϕ− σ ◦ψ ◦ϕ︸ ︷︷ ︸
0

= ϕ

implies that ρ ◦ϕ = idM. Similarly,

ϕ ◦ ρ ◦ σ = (idN−σ ◦ψ) ◦ σ = σ− σ ◦ψ ◦ σ︸ ︷︷ ︸
idP

= 0

and so ρ ◦ σ = 0, proving the last equation.
The proof that (b) implies that the sequence is split is basically the same.

As promised, the splitting lemma gives a necessary and sufficient condition for a
morphism to have a right- or left-inverse. We recall that a morphism that has a right-
inverse is necessarily an epimorphism and that a morphism that has a left-inverse is
necessarily a monomorphism.

Corollary 6.4.2 Let ϕ :M→ N be a morphism in an abelian category. Then ϕ has a
left-inverse if and only if the sequence

0 M N C 0
ϕ cokerϕ

is split, and it has a right-inverse if and only if the sequence

0 K M N 0
kerϕ ϕ

is split.
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The splitting lemma also provides a refinement of the first isomorphism theorem.
For that, we observe that a morphism ϕ :M→ N determines a sequence

0 K M I 0,
kerϕ coimϕ

which is exact since kerϕ is the kernel of coimϕ = coker(kerϕ) (everymonomorphism
is the kernel of its cokernel) and coimϕ is the cokernel of kerϕ. We also recall that,
due to the first isomorphism theorem, I is isomorphic to the source of imϕ.

Corollary 6.4.3 Let ϕ : M → N be a morphism in an abelian category, let kerϕ :

K→M be its kernel and coimϕ :M→ I be its coimage. If there exists a morphism
σ : I → M such that (coimϕ) ◦ σ = idI or a morphism ρ : M → K such that
ρ ◦ kerϕ = idK, thenM ∼= K⊕ I.

In the category of finite-dimensional vector spaces over a field, this result holds
unconditionally, since two such vector spaces are isomorphic if and only if they have
the same dimension. Thus, this corollary follows from the rank-nullity theorem. But,
in general abelian categories, the decompositionM ∼= K⊕ I need not hold.3

6.5. Functors on abelian categories

Just as all the useful morphisms on a group must preserve its structure, so must the
useful functors on a preadditive category.
Definition 6.5.1 — Additive functor. Let A and B be two preadditive categories. A
functor F : A→ B is said to be additive if, for all objectsM,N in A, the induced map

HomA(M,N)→ HomB(F(M), F(N))

ϕ 7→ F(ϕ)

is a morphism of groups.

Basically all the functors defined between preadditive categories that we’ll en-
counter are additive. Some examples are HomA(M,−) and, in A-Mod, the tensor
product functorM⊗A −.
There’s an interesting criterion for a functor to be additive. For that, we observe that

if F : A→ B is a functor between additive categories andM,N are two objects ofA, then

3Just take the projection Z→ Z/2Z in the category of abelian groups, for example.
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the universal property of products induces a morphism F(M⊕N)→ F(M)⊕ F(N):

F(M)

F(M⊕N) F(M)⊕ F(N)

F(N),

F(πM)

F(πN)

where F(M) ⊕ F(N) → F(M) and F(M) ⊕ F(N) → F(N) are the natural projections.
Similarly, the universal property of coproducts induces a morphism F(M) ⊕ F(N) →
F(M⊕N).

Proposition 6.5.1 Let F : A → B be a functor between additive categories. Then the
following are equivalent:

(a) F is additive;

(b) the natural map F(M)⊕ F(N)→ F(M⊕N) is an isomorphism for everyM,N
in A;

(c) the natural map F(M⊕N)→ F(M)⊕ F(N) is an isomorphism for everyM,N
in A.

Proof. Due to the fact that an additive functor preserves composition and addition of
morphisms, the theorem 6.1.9 gives automatically that (a) implies (b) and (c). Also,
(b) and (c) are equivalent since the uniqueness part of the universal property of the
coproduct

F(M)

F(M)⊕ F(N) F(M⊕N) F(M)⊕ F(N)

F(N)

F(ιM)

F(ιN)
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6. Abelian categories

implies that F(M)⊕ F(N)→ F(M⊕N)→ F(M)⊕ F(N) is the identity map. (Then one
of the morphisms is an isomorphism if and only if the other is, in which case they’re
each other’s inverses.)

Now, we assume (b) and (c) and prove (a). Recall from the proof of the proposi-
tion 6.1.10 that the sum of two morphisms ϕ1, ϕ2 : M → N can be written as the
composition

M M⊕M N⊕N N.

ϕ1+ϕ2

ϕ1 0

0 ϕ2



We apply the functor F and consider the following diagram

F(M) F(M⊕M) F(N⊕N) F(N),

F(M)⊕ F(M) F(N)⊕ F(N),

F

ϕ1 0

0 ϕ2


F(ϕ1) 0

0 F(ϕ2)



which we claim to be commutative. Observe that the composition of the morphisms
on the top is F(ϕ1 + ϕ2) and the composition of the morphisms on the bottom is
F(ϕ1) + F(ϕ2). The commutativity of the diagram then implies (a).

Both triangles commute by the very definition of the morphisms F(M) ⊕ F(M) →
F(M⊕M) and F(N⊕N)→ F(N)⊕F(N). The commutativity of the inner square is just
as natural, but a little notationally awkward. Let’s denote the morphisms involved as
follows:

F(M⊕M) F(N⊕N)

F(M)⊕ F(M) F(N)⊕ F(N).

F(ψ)

β

ψ̃

α

Recall that ψ :M⊕M→ N⊕N is the unique morphism such that

π1 ◦ψ ◦ ι1 = ϕ1 π1 ◦ψ ◦ ι2 = 0
π2 ◦ψ ◦ ι1 = 0 π2 ◦ψ ◦ ι2 = ϕ2.

By applying the functor F to these relations and recalling that F(ιi) = α ◦ ι̃i and
F(πi) = π̃i ◦ β, where ι̃i : F(M) → F(M) ⊕ F(M) and π̃i : F(N) ⊕ F(N) → F(N) are
the natural inclusions and projections, we get that β ◦ F(ψ) ◦ α satisfies the defining
equations for (

F(ϕ1) F(0)

F(0) F(ϕ2)

)
.

90



6.5. Functors on abelian categories

The commutativity of the square (and the end of this proof) then reduces to the fact
that F(0) = 0 on morphisms. We only prove that F(0) is final, for the proof that it’s
initial is similar.

A first observation is that, since 0 ∈ A is terminal, the twoprojectionsπ1, π2 : 0⊕0→
0 are equal. Our assumption then implies that F(0⊕0) satisfies the universal property
of F(0)⊕ F(0) with F(π1) and F(π2) as projections. In particular, F(π1) = F(π2).
Now, for every object P of B, there’s at least the zero morphism P → F(0). So,

suppose that there are two such morphisms γ and δ. We have that

γ− δ = (F(π1) − F(π2)) ◦
(
γ

δ

)
= 0 ◦

(
γ

δ

)
= 0,

finishing the proof.

Our next goal is to prove that if C is a small category and A is an abelian category,
then the category of all functors and natural transformations Fun(C,A) is also abelian.
This is a generalization of a fact that will become very important to us in the future:
the category of presheaves with values in an abelian category is abelian.

�

The reader might wonder the raison d’être of the set-theoretic condition above. If C
is not small, then the objects of Fun(C,A) doesn’t even form a class. If it were a class,
then a functor C → A would be a set, since a set is defined to be a collection that is
a member of some class. But then we could use the axiom of replacement to deduce
that the class of objects of C is a set.

For that, we have to understand how some limits and colimits work in a functor
category. The general statement is that "limits and colimits in a functor category are
computed pointwise". We prefer to understand concretely the particular cases we’re
interested in, but the reader can find the general theorem in [3] (proposition 2.15.1) or
in [23] (theorem 6.2.5).

We begin by a simple observation: the functor C → A which sends every object of
C to the zero-object of A is a zero-object of Fun(C,A). Moreover, if F,G are objects of
Fun(C,A), a natural transformation F → G is a zero-morphism if and only if all its
components F(C)→ G(C) are zero-morphisms in A.
Now, let’s deal with kernels. Suppose that ϕ : F → G is a natural transformation

in Fun(C,A). For each C ∈ C, the morphism ϕC : F(C) → G(C) has a kernel kerϕC :

K(C) → F(C). We observe that this assignment is functorial. If f : C → D is a
morphism in C, then the diagram

K(C) F(C) G(C)

K(D) F(D) G(D)

F(f) G(f)

ϕC

ϕD

kerϕC

kerϕD
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is commutative and so the universal property of kernels will induce a morphism
K(C)→ K(D) making the diagram commute as long as the morphism

K(C) F(C) G(C)

K(D) F(D) G(D)

F(f) G(f)

ϕC

ϕD

kerϕC

kerϕD

is zero. But this is evident since the commutativity of the diagram implies that this
morphism is equal to

K(C) F(C) G(C)

K(D) F(D) G(D)

G(f)

ϕC

ϕD

kerϕC

kerϕD

0

Moreover, the uniqueness part of the universal property of kernels shows that if
G : D→ E is another morphism in C, then the bigger diagram

K(C) F(C) G(C)

K(D) F(D) G(D)

K(E) F(E) G(E)

kerϕC

F(f)

ϕC

G(f)

kerϕD ϕD

F(g) G(g)

kerϕE ϕE

commutes. We conclude that C 7→ K(C) defines a functor C → A and that K → F is a
morphism in Fun(C,A)whose composition with ϕ : F→ G is zero. Does it satisfy the
universal property of kerϕ? Let ζ : Z → F be another natural transformation which
satisfiesϕ◦ζ = 0. By the universal property of kernels, there exist uniquemorphisms
Z(C)→ K(C) for every object C of C making the diagram

K(C) F(C) G(C)

Z(C)

kerϕC ϕC

0

ζC

commute. These morphisms form a natural transformation since, if f : C → D is a
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morphism in C, then the diagram

K(C) F(C)

K(D) F(D)

Z(C)

Z(D)

kerϕC

K(f) F(f)

ζC

kerϕD

Z(f)

ζD

commutes since kerϕD is a monomorphism. This proves that K→ F satisfies the uni-
versal property of kerϕ. Since Fun(C,A) is a preadditive category (with the addition
of morphisms given pointwise), this implies that a morphism ϕ : F→ G in Fun(C,A)
is a monomorphism if and only if kerϕ is the zero-morphism 0 → F and if and only
if it is a monomorphism pointwise.

It should be clear that the same argument shows that cokernels4 in Fun(C,A) exist
and are computed pointwise. Moreover, a morphism ϕ : F → G in Fun(C,A) is an
epimorphism if and only if cokerϕ is the zero-morphism G → 0 and if and only if it
is an epimorphism pointwise.

Finally, basically the same arguments show that, if F and G are two objects of
Fun(C,A), the functor F⊕G defined by

(F⊕G)(C) := F(C)⊕G(C) and (F⊕G)(f) :=
(
F(f) 0

0 G(f)

)
satisfies the universal property of products and coproducts in Fun(C,A), with the
natural injections and projections being given by the respective pointwise injections
and projections.

We’re now ready to prove our desired result.

Proposition 6.5.2 Let C be a small category and A be an abelian category. Then the
category of all functors and natural transformations Fun(C,A) is abelian.

Proof. After all our preliminary work, all there’s left to prove is that every monomor-
phism is the kernel of its cokernel and that every epimorphism is the cokernel of
its kernel. This also follows quickly from our previous discussion: if ϕ : F → G is
a monomorphism then its components ϕC : F(C) → G(C), for every object C of C,
are monic. Since A is abelian, each ϕC is the kernel of its cokernel. But kernels and
cokernels are computed pointwise and so ϕ is also the kernel of its cokernel. The
same argument shows that every epimorphism is the cokernel of its kernel.
4Or even more general limits and colimits.
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6. Abelian categories

The preceding proposition is one of the main results in Grothendieck’s seminal
paper Sur Quelques Points d’Algèbre Homologique5. Taking C to be the discrete category
with two objects, we obtain that the product category A × A is abelian. Many other
families of abelian categories that we’ll encounter on the rest of these notes arise in
similar fashion.

We illustrate how to apply the corollary 6.2.2 byproving that the category of additive
functors is also abelian.

Corollary 6.5.3 Let C be a small additive category and A be an abelian category.
Then the full subcategory Add(C,A) of Fun(C,A), composed of additive functors
and natural transformations, is abelian.

Proof. It is clear that the zero-object of Fun(C,A) is additive, and so it is also the
zero-object of Add(C,A). If F andG are two additive functors, their direct sum acts on
morphisms by

(F⊕G)(f) =
(
F(f) 0

0 G(f)

)
.

Since the sum of morphisms is represented by the sum of matrices, the additivity of
both F andG implies that of F⊕G. Finally, we show that, ifϕ : F→ G is a morphism in
Add(C,A) and kerϕ : K→ F is its kernel in Fun(C,A), K is an additive functor. Indeed,
if f, g : C→ D are two morphisms in C,

kerϕD ◦ K(f+ g) = F(f+ g) ◦ kerϕC = (F(f) + F(g)) ◦ kerϕC
= F(f) ◦ kerϕC + F(g) ◦ kerϕC
= kerϕD ◦ K(f) + kerϕD ◦ K(g) = kerϕD ◦ (K(f) + K(g)),

and so K(f + g) = K(f) + K(g) by the fact that kerϕD is a monomorphism. The same
argument shows that the target of cokerϕ is also additive.

We’ll now delve into the relationship between functors and exact sequences. Unfor-
tunately, being additive does not guarantee that a functor preserves exact sequences.6
For example, consider the exact sequence of abelian groups

0 Z Z
Z
2Z

0,
·2

where the map Z → Z is multiplication by two. Upon tensorization by Z/2Z we get
the sequence

0
Z
2Z

Z
2Z

Z
2Z

0,
0

5This paper was published in the Tohoku Mathematical Journal and, even though this journal exists
for more than a century, many people refer to this precise paper as being "the Tohoku paper".

6Or perhaps that’s a blessing, for this issue is at the heart of homological algebra.
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which is not exact since the zero-morphism Z/2Z → Z/2Z is not a monomorphism.
The additive functors that indeed preserve some kind of exact sequences are so special
that they deserve a name.
Definition 6.5.2 — Exact functor. Let F : A→ B be an additive functor between abelian
categories. Then F is said to be left exact when it preserves exact sequences of the
form

0 M N P,

right exactwhen it preserves exact sequences of the form

M N P 0,

and exactwhen it preserves short exact sequences.

We observe that our discussion right after the definition 6.4.2 implies that an exact
functor preserves exact sequences of any length, not only short exact sequences.

Proposition 6.5.4 Let F : A → B be an additive functor between abelian categories.
The following equivalences hold:

(a) F is left exact if and only if it preserves finite limits;

(b) F is right exact if and only if it preserves finite colimits;

(c) F is exact if and only if it preserves finite limits and finite colimits.

Proof. By duality, it suffices to prove (a). We observe that a sequence of the form

0 M N P
ϕ ψ

is exact if and only if ϕ = kerψ. This implies right away that if F preserves finite
limits, then it preserves kernels and so it is left exact. For the converse, recall that
finite limits can be built up from binary products, terminal objects and equalizers.
(Proposition 2.8.2 in [3].) Since F is additive, it preserves binary products and zero-
objects. Moreover, if F is left exact, then it preserves kernels. It suffices then to show
that F preserves equalizers. But the equalizer of a pair ϕ,ψ : M → N is simply the
kernel of ϕ−ψ. The result follows.

More often than not, what we’ll use to prove that a functor is left or right exact is
the corollary below, which follows from the good old mottos "right adjoints preserve
limits" and its dual "left adjoints preserve colimits".7

7We remember that right adjoints preserve limits by the mnemonic RAPL.
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6. Abelian categories

Corollary 6.5.5 Let F : A→ B be an additive functor between abelian categories. If F
is a right adjoint then it is left exact and if F is a left adjoint then it is right exact.

6.6. Diagram chasing
In the abelian category A-Mod of modules over a ring A, exact sequences have simple
characterizations in terms of elements. Indeed, the sequence of A-modules

M N P
ϕ ψ

is exact if and only if ψ(ϕ(m)) = 0 for all m ∈ M and if ψ(n) = 0, for some n ∈ N,
implies the existence of m ∈ M such that n = ϕ(m). Using this, proofs involving
exact sequences can usually be done by pointing fingers to a diagram and observing
the fate of some elements. This technique is called diagram chasing.
To illustrate this technique, we prove the following result in two ways; first using

universal properties and then, in A-Mod, using diagram chasing.

Proposition 6.6.1 — Four lemma. Consider the following diagram with exact rows in
an abelian category A:

M1 M2 M3 M4

N1 N2 N3 N4.

α β γ δ

If β and δ are monomorphisms and α is an epimorphism, then γ is a monomor-
phism. Dually, if α and γ are epimorphisms and δ is a monomorphism, then β is
an epimorphism.

As usual, we prove only the first part of the result, since the second part follows by
duality.

Proof using universal properties. Let ρ : P →M3 be a morphism such that γ◦ρ = 0.
Our goal is to prove that ρ = 0. Since the diagram commutes, the morphism

M1 M2 M3 M4

N1 N2 N3 N4

P

α β γ δ

ρ
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6.6. Diagram chasing

is zero and, as δ is monic, so is P → M3 → M4. The universal property of kernels
then implies that ρ factors through the kernel K→M3 ofM3 →M4, which coincides
with the image ofM2 →M3 by exactness.

M1 M2 K M3 M4

N1 N2 N3 N4

P

α β γ δ

ρ

We consider the pullback M2 ×K P and observe that the commutativity of the
diagram implies that the morphism below is zero.

M1 M2 K M3 M4

N1 N2 N3 N4

PM2 ×K P

α β γ δ

ρ

By the universal property of kernels,M2×KP →M2 → N2 factors through the kernel
K ′ → N2 of N2 → N3, which coincides with the image of N1 → N2 by exactness.

M1

N1 K ′ N2

M2 K M3 M4

PM2 ×K P

N3 N4

α β γ δ

ρ

We consider the pullbackM1×K ′ (M2×KP) and observe that, sinceβ is amonomor-
phism, the upper square (in black below) commutes.

M1

N1 K ′ N2

M2 K M3 M4

PM2 ×K P

N3 N4

M1 ×K ′ (M2 ×K P)

α β γ δ

ρ
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Remark that bothM2 → K andM1 → N1 → K ′ are epimorphisms. The corollary
6.3.4 then implies that so are the arrows in black below.

M1

N1 K ′ N2

M2 K M3 M4

PM2 ×K P

N3 N4

M1 ×K ′ (M2 ×K P)

α β γ δ

ρ

The composition of the arrows above with ρ is zero, sinceM1 → M2 → M3 is. But
the fact that they are epic implies ρ = 0, finishing the proof.

We now redo this proof, whenA = A-Mod, using diagram chase. Observe that, since
we’re now proving this result for only one category, we can’t use a duality argument.
(The opposite category of A-Mod is rarely a category of modules.) Nevertheless, we’ll
still only prove the first part below, for our last proof took care of both parts.

Proof by diagram chasing. Letm be an element ofM3 such that γ(m) = 0. Our goal
is to prove thatm = 0. Observe thatm is sent to 0 in N4 by the composition

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m

0 0.

γ

Since the diagram commutes, m is also sent to 0 by going through the other side of
the square

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m ?

0.

δ

But δ is injective, som is in the kernel of the morphismM3 →M4. (That is, our "?"
above is actually zero.) By exactness of the top row, there exists m ′ ∈ M2, which is
sent tom byM2 →M3.

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m

0 0

0m ′
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Since the middle square commutes, n := β(m ′) is in the kernel of N2 → N3. So, by
exactness of the lower row, there exists n ′ ∈ N1 whose image through N1 → N2 is n.

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m

0 0

0m ′

nn ′

β

The morphism α is epic, so there existsm ′′ ∈M1 which is sent to n ′. This element
is actually sent tom ′ viaM1 →M2 due to the fact that β is monic. We conclude that
m is the image ofm ′′ under the compositionM1 →M2 →M3.

M1 M2 M3 M4

N1 N2 N3 N4

α β γ δ

m

0 0

0m ′

nn ′

m ′′

But this composition is zero, proving the result.

By gluing both versions of the four lemma, we obtain the corollary below.

Corollary 6.6.2 — Five lemma. Consider the following diagramwith exact rows in an
abelian category A:

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5.

α β γ δ ε

If β and δ are isomorphisms, α is an epimorphism, and ε is a monomorphism, then
γ is an isomorphism.

Proof. The first part of the four lemma, applied to the diagram

M1 M2 M3 M4

N1 N2 N3 N4,

α β γ δ

yields that γ is a monomorphism. Similarly, the second part of the four lemma,
applied to the diagram

M2 M3 M4 M5

N2 N3 N4 N5,

β γ δ ε
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yields that γ is an epimorphism. This concludes the proof.

The preceding discussion hopefully conveyed that proofs by diagram chasing are
often simpler than their arrow-theoretic counterparts. It would be great if we could
use the same technique even when dealing with abelian categories other than A-Mod.
The theorem below establishes precisely that.

Theorem 6.6.3 — Freyd-Mitchell. Let A be a small abelian category. Then there exists
a fully faithful exact embedding of A into A-Mod for some (not necessarily commu-
tative) ring A.

While all the necessary prerequisites for the (unfortunately long) proof of this result
were alreadydiscussed,weprefer todirect the interested reader to thewonderful proof
in [4] and confine ourselves to an explanation of how this result is used in practice.

LetV : A→ A-Mod be the functor given by the Freyd-Mitchell theorem. For now, we
define a pseudo-elementm of an objectM ∈ A to be an element of V(M). We shall abuse
notation and write m ∈ M for this relation. The action of a morphism ϕ : M → N,
denoted as ϕ(m), on a pseudo-element m is given simply by V(ϕ)(m). We gather a
few properties of those notions.

Proposition 6.6.4 Let A be a small abelian category. If ϕ :M→ N is a morphism in
A, we have that:

(a) ϕ is monic if and only if for allm ∈M, ϕ(m) = 0 impliesm = 0;

(b) ϕ is epic if and only if for all n ∈ N, there existsm ∈M such that ϕ(m) = n;

(c) we may construct a morphismϕ by describing its action of pseudo-elements.

Moreover,

(d) two morphisms ϕ1, ϕ2 :M → N are equal if and only if ϕ1(m) = ϕ2(m) for
allm ∈M;

(e) a sequenceM ϕ−→ N
ψ−→ P is exact if and only if ψ(ϕ(m)) = 0 for all m ∈ M

and if ψ(n) = 0, for some n ∈ N, implies the existence of m ∈ M such that
n = ϕ(m).

Proof. The item (c) translates the fullness of the functor V in theorem 6.6.3, and the
item (d) translates its faithfulness. Since V is exact, it preserves finite limits and
colimits; this gives one direction on the items (a), (b) and (e). The other direction
follows from the fact that a fully faithful functor reflects limits and colimits, which is
clear from their universal properties.

Finally, we address the elephant in the room: most abelian categories are not small.
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This is not as bad as it seems, and we explain why. Let A be an abelian category and
D be a diagram in A. Consider the sequence

B0 ⊂ B1 ⊂ · · · ⊂ Bn ⊂ · · · ,

where B0 is the full subcategory of A generated byD and Bn+1 is the full subcategory
of A generated by the limits and colimits of all finite diagrams in Bn. Then

B :=

∞⋃
n=0

Bn

is a full subcategory of A stable under finite limits and colimits. In particular, B is an
abelian category due to the corollary 6.2.2. If the diagram D is small (which is the
case in basically all applications), so is the abelian category B, and then we can apply
the theorem 6.6.3 in B.
In a nutshell, the Freyd-Mitchell theorem allows us prove basically every result

about exact sequences in abelian categories as if we were in a category of modules.
And we may even use duality arguments!

Henceforth, we’ll prefer arrow-theoretic constructions whenever they aren’t too
troublesome, but we will freely use elements when they simplify or shed light on
some arguments.

We end this section with arguably the most important diagram chase: the snake
lemma. Its statement involves a diagram of the form

M1 M2 M3 0

0 N1 N2 N3,

α β γ

whose rows are exact, where we expand the kernels and cokernels of the vertical
morphisms and insert the natural morphisms induced from the universal properties:

Kα Kβ Kγ

M1 M2 M3 0

0 N1 N2 N3

Cα Cβ Cγ.

kerα kerβ kerγ

α β γ

cokerα cokerβ cokerγ

We’re now in a position to state this important result.
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Theorem 6.6.5 — Snake lemma. Consider the following commutative diagram with
exact rows in an abelian category:

M1 M2 M3 0

0 N1 N2 N3.

α β γ

We denote by Kα, Kβ and Kγ the sources of kerα, kerβ and kerγ. Similarly, Cα, Cβ
and Cγ denote the targets of the cokernels thereof. Then, there exists a morphism
δ : Kγ → Cα making the sequence

0 K Kα Kβ Kγ

Cα Cβ Cγ C 0

δ

exact, where K is the source of the kernel of M1 → M2 and C is the target of the
cokernel of N2 → N3.

Before we delve into the proof, we observe that, even though there may be many
morphisms δ : Kγ → Cα which satisfy the conclusion above8, there’s a canonical one
that will be the one in consideration whenever we talk about the snake lemma.

We construct the morphism δ using elements as follows: letm be an element of Kγ.
Since kerγ is a monomorphism, we can viewm naturally as an element ofM3. Due to
the fact thatM2 →M3 is an epimorphism, there exists a liftm ′ ofm toM2, which we
thenmap toN2 as β(m ′). By the commutativity of the diagram, the image of β(m ′) to
N3 is zero, proving that β(m ′) is in the image of N1 → N2. Since the latter is monic,
we denote the element ofN1 whose image byN1 → N2 is β(m ′) by the same symbol.
Finally, δ(m) is the image of β(m ′) in the cokernel of α.

Kα Kβ Kγ

M1 M2 M3

N1 N2 N3

Cα Cβ Cγ

0

0

m

mm ′

β(m ′)β(m ′)

δ(m)

kerα kerβ kerγ

α β γ

cokerα cokerβ cokerγ

kerγ

β

cokerα

8If δ satisfies the conclusion of the snake lemma, then so does −δ.
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In order for this morphism to be well-defined, we need to check whether a different
choice for the lift m ′ would change the image δ(m). If m ′′ is another choice, then
m ′ −m ′′ is in the kernel ofM2 →M3 and so in the image ofM1 →M2. Let m̃ ∈M1

be one element mapping tom ′ −m ′′. Its image in Cα is zero, sinceM1 → N1 → Cα
is the zero-morphism.

M1 M2 M3

N1 N2 N3

Cα Cβ Cγ

0

0

0m ′ −m ′′m̃

α(m̃)

0

α β γ

cokerα cokerβ cokerγ

α

cokerα

The commutativity of the diagram then implies that δ(m) is independent of the choice
of the lift.

Proof of theorem 6.6.5.
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In the previous chapter, we saw that only the most distinguished additive functors
turns out to be exact. Nevertheless, the image of an exact sequence

M N P
ϕ ψ

by an additive functor F is still special, for it satisfies F(ψ)◦F(ϕ) = F(ψ◦ϕ) = F(0) = 0.
The sequences of objects andmorphisms in which the composition of two consecutive
morphisms is zero are called complexes and compose the main topic of the present
chapter. We’ll see that there are many contexts in which associating a particular
complex to a mathematical object provides useful information about the aforesaid
object.

7.1. Basic definitions
We begin with the precise definition of a complex.
Definition 7.1.1 — Complex. Let A be a (not necessarily abelian) category. A cochain
complex (M•, d•) in A is a sequence of objects and morphisms

· · · Mi−1 Mi Mi+1 · · ·di−2 di−1 di di+1

such that di ◦ di−1 = 0 for all i. The morphisms di :Mi →Mi+1 are said to be the
differentials of the complex.

In some applications, it is useful for the indices to be descending. In this case, the
indices are usually written as subscripts

· · · Mi+1 Mi Mi−1 · · ·di+2 di+1 di di−1

and the corresponding object is said to be a chain complex. Since most of the complexes
that we’ll encounter are cochain complexes, we’ll just call them complexes and denote
them byM•. Of course, we can always setMi :=M−i and see a chain complexM• as
the cochain complexM−•.
Also important are the ways complexes can interact with each other. For that, we

gather all the complexes in A in a new category C(A).
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7. Complexes and cohomology

Definition 7.1.2—Category of complexes. LetA be a category. An object in the category
of complexes C(A) is a complex in A and a morphism ψ• :M• → N• is a collection of
morphisms ψi :Mi → Ni making the diagram

· · · Mi−1 Mi Mi+1 · · ·

· · · Ni−1 Ni Ni+1 · · ·

di−1
M•

ψi−1

diM•

ψi ψi+1

di−1
N• diN•

commute in A.

Other usual variants of the category C(A) may be concocted by considering com-
plexes which are bounded in some sense. For example, we let C+(A) denote the
full subcategory of C(A) composed of the complexesM• which are bounded below,
i.e., for which Mi = 0 for all i � 0. Similarly, we consider the categories C−(A) of
bounded-above complexes and Cb(A) of complexes which are bounded above and
below. A shorthand notation for all these categories is C∗(A).

Proposition 7.1.1 Let A be an abelian category. Then the categories of complexes
C∗(A) are abelian.

Proof. Due to the corollary 6.2.2, it suffices to prove that C(A) is abelian. Consider
the category Z, which has an object for each integer and a single non-trivial morphism
between each consecutive integers (from the smallest to the biggest). Then C(A) is a
full subcategory of Fun(Z,A), which is abelian by the proposition 6.5.2. Appealing
once again to the corollary 6.2.2, it suffices to see that the category of complexes is
closed under direct sums, kernels and cokernels.

Binary direct sums of complexes form another complex since, for all i, the compo-
sition

Mi−1 ⊕Ni−1 Mi ⊕Ni Mi+1 ⊕Ni+1

is simply given by (
diM• ◦ di−1M• 0

0 diN• ◦ di−1N•

)
= 0.

Moreover, if ψ• : M• → N• is a morphism of complexes, we have a commutative
diagram

Ki−1 Ki Ki+1

Mi−1 Mi Mi+1

kerψi−1 kerψi kerψi+1

di−1
M• diM•

By the complex condition, Ki−1 → Ki → Ki+1 → Mi+1 is the zero-morphism and,
since kerψi+1 is a monomorphism, Ki−1 → Ki → Ki+1 is also already zero, proving
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that the category of complexes is closed under kernels. A dual argument shows that
it is closed under cokernels.

We now observe some natural functors which involve the category of complexes.
First of all, our categoryA can be embedded inC∗(A). Indeed, the functor ι : A→ C∗(A)
which sends an object A of A to the complex

· · · 0 0 A︸︷︷︸
degree 0

0 0 · · ·

is fully faithful (it is also exact when A is abelian). Another natural functor on C∗(A)
is the shift functor:

C∗(A)→ C∗(A)
M• 7→M[n]•,

defined by M[n]i := Mn+i and diM[n]• := (−1)ndn+iM• . The sign on the differential
doesn’t change the isomorphism class of the complex but simplifies some other equa-
tions.

� It’s important to observe that the functor [1] shifts a complex to the left, contrary to
what may seem natural. This is a very common source of confusion for most people.

Also, an additive functor between additive categories F : A → B determines a
functor between the categories of complexes

C∗(F) : C∗(A)→ C∗(B)

given by setting the image of M• to be the complex defined by F(Mi) and F(diM•).
Whenever there’s no risk of confusion, we’ll denote this functor simply by F.

There’s another, evenmore interesting, functor definedon the categoryof complexes
C∗(A)whenA is abelian. Consider a complexM•. The complex condition di◦di−1 = 0
and the universal property of kernels imply that di−1 factors through kerdi:

· · · Mi−1 Mi Mi+1 · · · .

Ki

di−2 di−1 di di+1

kerdi

But kerdi is amonomorphism and so the universal property of images yields a unique
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factorization of imdi−1 through kerdi:

Ii−1

· · · Mi−1 Mi Mi+1 · · · .

Ki

imdi−1

di−2 di di+1

kerdi

The induced morphism Ii−1 → Ki is always a monomorphism (for imdi−1 is) and is
epic if and only if the complex is exact atMi. Thus, its cokernel measures the lack of
exactness of the complex atMi.
Definition 7.1.3 — Cohomology. LetM• be a complex in an abelian category A. Its i-th
cohomology, denotedHi(M•), is the target of the cokernel of the induced morphism
Ii−1 → Ki as above.

Weaffirm that the assignmentM• 7→ Hi(M•)defines an additive functorC∗(A)→ A.
Indeed, let ψ• :M• → N• be a morphism of complexes. By the universal property of
kernels and cokernels, we have induced morphisms

KiM• Mi Mi+1 CiM•

KiN• Ni Ni+1 CiN•.

kerdiM• diM•

ψi ψi+1

cokerdiM•

kerdiN• diN• cokerdiN•

In order for the universal property of cokernels to induce a morphism Hi(ψ•) :

Hi(M•)→ Hi(N•) making the diagram

Ii−1M•

Hi(M•) KiM• Mi Mi+1

Hi(N•) KiN• Ni Ni+1

Ii−1N•

imdi−1
M•

Hi(ψ•)

kerdiM• diM•

ψi ψi+1

kerdiN• diN•

imdi−1
N•

commute, we have to show that the morphism Ii−1M• → KiM• → KiN• → Hi(N•) is zero.
Since Ii−1N• → KiN• → Hi(N•) is the zero-morphism, it suffices to construct a morphism
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Ii−1M• → Ii−1N• which factors Ii−1M• → KiM• → KiN• . This morphism is induced by the
universal property of kernels using the fact that im = ker(coker):

Ki−1M• Mi−1 Ii−1M• Mi Ci−1M•

Ki−1N• Ni−1 Ii−1N• Ni Ci−1N• .

kerdi−1
M• coimdi−1

M•

ψi−1

imdi−1
M•

ψi

cokerdi−1
M•

kerdi−1
N• coimdi−1

N• imdi−1
N• cokerdi−1

M•

The left-hand side of the diagram commutes due to the universal property of cokernels
and the fact that coim = coker(ker). The uniqueness of the induced morphism on
cohomology implies right-away thatHi preserves the composition of morphisms and
that it is additive.

In A-Mod, the i-th cohomology of a complex is simply given by kerdi/ imdi−1 and,
for a morphism ψ• :M• → N• of complexes, the induced morphism on cohomology
is nothing but

Hi(ψ•) : [m] 7→ [ψi(m)].

As it will become clear in the next sections, the morphisms of complexesψ• :M• →
N• which induce an isomorphism in cohomology are important and deserve a name.
Definition 7.1.4 — Quasi-isomorphism. A morphism of complexes ψ• : M• → N• is
said to be a quasi-isomorphism if, for all i, the inducedmorphismHi(ψ•) : Hi(M•)→
Hi(N•) is an isomorphism.

We observe that we can also see cohomology as a functor C∗(A) → C∗(A), where
the image of a complex M• is a complex H•(M•) which has Hi(M•) as objects and
zero-morphisms as differentials.

An important property of cohomology is that it commutes with exact functors.

Proposition 7.1.2 Let F : A → B be an exact functor between abelian categories and
M• a complex in A. Then H•(F(M•)) = F(H•(M•)).

Proof. We construct the i-th cohomology of F(M•). Since F is additive,

· · · F(Mi−1) F(Mi) F(Mi+1) · · ·F(di−1) F(di)

is indeed a complex. Due to the fact that F preserves finite limits and finite colimits,
F(imdi−1) is the image of F(di−1) and F(kerdi) is the kernel of F(di).

F(Ii−1)

· · · F(Mi−1) F(Mi) F(Mi+1) · · ·

F(Ki)

F(imdi−1)

F(di)

F(kerdi)
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Moreover, by the uniqueness in the universal property of images, the induced mor-
phism F(Ii−1)→ F(Ki) coincides with the image of the induced morphism Ii−1 → Ki

by F. Then, since F preserves finite colimits, the cokernel of F(Ii−1)→ F(Ki) is simply
the image of the cokernel of Ii−1 → Ki by F, proving thatHi(F(M•)) = F(Hi(M•)).

Before we move on, we observe that our definition of the cohomology of a complex
is somewhat asymmetrical. Instead of factoring di−1 through kerdi, we could have
factorized di through cokerdi−1. Then the universal property of coimages induces a
morphism Ci−1 → Ii making the diagram

Ii

· · · Mi−1 Mi Mi+1 · · ·

Ci−1

di−2 di−1

cokerdi−1

coimdi

di+1

commute. Dually to our previous situation, this morphism is always an epimorphism
(for coimdi is) and is monic if and only if the complex is exact atMi. Not surprisingly,
the source of its kernel is nothing but Hi(M•).

Proposition 7.1.3 Let M• be a complex in an abelian category. Then, for every i,
there exists a natural morphism Hi(M•)→ Ci−1 making the diagram

Ii−1 Ii

Mi−1 Mi Mi+1

Ki Ci−1

Hi(M•)

imdi−1

cokerdi−1

coimdi

kerdi

commute and satisfying the universal property of the kernel of Ci−1 → Ii.

Proof. Let µ : Ki → Ci−1 be the composition cokerdi−1 ◦ kerdi. By the first iso-
morphism theorem (theorem 6.2.5), the source of imµ and the target of coimµ are
isomorphic. Thus, it suffices to show that Ii−1 → Ki is its kernel and Ci−1 → Ii is its
cokernel.

The composition Ii−1 → Ki → Ci−1 is zero, for it coincides with cokerdi−1 ◦ imdi−1.
Moreover, if ζ : Z → Ki is another morphism whose composition with µ is zero,
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then (cokerdi−1) ◦ (kerdi) ◦ ζ = 0 and so the universal property of kernels (using
that imdi−1 = ker(cokerdi−1)) induces a morphism Z → Ii−1 making the diagram
commute. This shows that Ii−1 → Ki is the kernel of µ. That Ci−1 → Ii is its cokernel
follows by duality.

Beyond satisfying our desire for symmetry, the preceding proposition also gives a
very useful exact sequence linking cohomologies of different degrees for free.

Corollary 7.1.4 LetM• be a complex in an abelian category. Then, for every i, the
sequence

0 Hi(M•) Ci−1 Ki+1 Hi+1(M•) 0,

where the morphism in the middle is the composition Ci−1 → Ii → Ki+1, is exact.

Proof. We already know that the sequence is exact at Hi(M•) and at Hi+1(M•).
Exactness at the other objects means that the kernel ofCi−1 → Ki+1 isHi(M•)→ Ci−1

and that its cokernel is Ki+1 → Hi+1(M•).
For the first statement, let Z → Ci−1 be a morphism whose composition with

Ci−1 → Ki+1 is zero. Since the Ci−1 → Ki+1 is the composition of Ci−1 → Ii and
Ii → Ki+1, and the latter is a monomorphism, it follows that Z → Ci−1 → Ii is zero.
But then, sinceHi(M•)→ Ci−1 is the kernel of Ci−1 → Ii, there’s a unique morphism
Z→ Hi(M•)making the diagram commute. The other statement follows in the same
way.

7.2. Exact triangles
One of the main ideas that will motivate our study of homological algebra is the
fact that the cohomology functor is not exact, but that somehow we can correct this
defect. Let’s understand in detail what this means. Consider a short exact sequence
of complexes in an abelian category:

0 L• M• N• 0.
ϕ• ψ•

We recall that, since kernels and cokernels on the category of complexes are computed
pointwise, this means that all the components

0 Li Mi Ni 0.
ϕi ψi

are exact. By the functoriality of Hi, we get a complex

0 Hi(L•) Hi(M•) Hi(N•) 0,
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7. Complexes and cohomology

which is exact at Hi(M•) but need not be at the extremities. The first statement will
emerge as a particular case of our next theorem, but we can see right away that the
cohomology functor need not be exact. Indeed, let L• = ι(Z)[−1],M• be the complex
whose only non-zero objects areM1 = Z andM0 = Z, and N• be the complex whose
only non-zero objects are N1 = Z/2Z and N0 = Z. These complexes fit into the
commutative diagram

0 0 Z Z 0

0 Z︸︷︷︸
L1

Z︸︷︷︸
M1

Z/2Z︸ ︷︷ ︸
N1

0,

idZ

idZ

·2

whose rows are exact. Then the complex induced by the functoriality of H0 is

0 0 0 2Z 0,

which is not exact on the right, and the complex induced by H1 is

0 Z 0 0 0,

which is not exact on the left.
Considering the lack of exactness of Hi, the next best thing we can hope for is to be

able to measure how far it is from being exact at each side. Surprisingly, the objects
that measure this lack of exactness are the cohomology objects itself shifted in degree.
What follows is arguably the most useful result in homological algebra.

Theorem 7.2.1 — Long exact sequence in cohomology. Consider the following exact
sequence of complexes in an abelian category:

0 L• M• N• 0.
ϕ• ψ•

There exist morphisms δi : Hi(N•)→ Hi+1(L•) making the diagram

· · · Hi(L•) Hi(M•) Hi(N•)

Hi+1(L•) Hi+1(M•) Hi+1(N•) · · ·

δi

a long exact sequence. The δi are said to be connecting morphisms.

Proof. First of all, we observe that the snake lemma (theorem 6.6.5) implies that the
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top row in the diagram

0 Ki+1L• Ki+1M• Ki+1N•

0 Li+1 Mi+1 Ni+1 0

0 Li+2 Mi+2 Ni+2 0

kerdi+1
L• kerdi+1

M• kerdi+1
N•

ϕi+1

di+1
L•

ψi+1

di+1
M• di+1

N•

ϕi+2 ψi+2

is exact. Similarly, it implies that the bottom row in the diagram

0 Li−1 Mi−1 Ni−1 0

0 Li Mi Ni 0

Ci−1L• Ci−1M• Ci−1N• 0

ϕi−1

di−1
L•

ψi−1

di−1
M• di−1

N•

ϕi

cokerdi−1
L•

ψi

cokerdi−1
M• cokerdi−1

N•

is exact.
Now, we fit the morphisms Ci−1 → Ki+1 described in the corollary 7.1.4 into a

commutative diagram

Ci−1L• Ci−1M• Ci−1N• 0

0 Ki+1L• Ki+1M• Ki+1N• ,

whose rows are exact. One more application of the snake lemma (theorem 6.6.5)
provides the desired connecting morphisms.

As we argued in the proof of the snake lemma (theorem 6.6.5), even though there
may be many morphisms Hi(N•) → Hi+1(L•) inducing a long exact sequence, there
are distinguished ones which are defined as follows: for a class [n] ∈ Hi(N•), letm be
an element ofMi such that ψi(m) = n. Then diM•(m) is in the image of ϕi+1 and we
denote its preimage by the same symbol.

Li Mi Ni

Li+1 Mi+1 Ni+1

nm

diM•(m)diM•(m)

ϕi ψi

ϕi+1 ψi+1

diL• diM• diN•
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Finally, δi is the map which sends [n] to [diM•(m)]. Whenever we talk about con-
necting morphisms, it should be understood that these are the morphisms under
consideration.

One important property of the connecting morphisms is that they satisfy a certain
naturality condition, which we describe below.

Corollary 7.2.2 Consider the following commutative diagram of complexes in an
abelian category

0 L• M• N• 0

0 L ′• M ′• N ′• 0,

whose rows are exact. Then, for every i, the diagram induced by functoriality and
the connecting morphisms

Hi(N•) Hi+1(L•)

Hi(N ′•) Hi+1(L ′•)

δi

δ ′i

commutes.

Proof. Let A be the abelian category in question and consider a category Ã, the arrow
category, whose objects are morphisms in A and whose morphisms between A → B

and A ′ → B ′ are commutative diagrams

A B

A ′ B ′.

Since Ã is nothing but Fun(T,A), where T is a category with two objects and only one
non-trivial morphism between them, the proposition 6.5.2 implies that Ã is abelian.

A complex in Ã is nothing but a morphism of complexes in A. Denoting the
morphism L• → L ′• in C(A) by L̃•, and similarly for the other morphisms, we obtain
a short exact sequence

0 L̃• M̃• Ñ• 0

in C(Ã). Then the previous theorem yields morphisms δ̃i : Hi(Ñ•)→ Hi+1(L̃•). Since
kernels and cokernels are computed pointwise in a functor category (due to the proof
of the aforementioned proposition), a morphism δ̃i : Hi(Ñ•) → Hi+1(L̃•) is nothing
but a commuting square as desired.
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Due to its somewhat contrived construction, the connecting morphisms doesn’t
seem to arise in the same fashion as the other morphisms, which are induced from
the functoriality of the cohomology functor. This couldn’t be further from the truth.
We would argue that the long exact sequence in cohomology is simply a shadow of
a, perhaps more fundamental, long sequence of complexes. In an ideal world, we
would have a morphism of complexes N• → L[1]• and the long exact sequence in
cohomology would be nothing but the image of the sequence

· · · L• M• N• L[1]• M[1]• · · ·ϕ• ψ• ϕ[1]•

under the cohomology functor. This doesn’t work.1 The next best thing would be to
find a complex P•, along with a quasi-isomorphism ρ• : P• → N•making the diagram

Hi(L•) Hi(M•) Hi(P•) Hi(L[1]•)

Hi(L•) Hi(M•) Hi(N•) Hi+1(L•)

Hi(ϕ•) Hi(ι•) Hi(π•)

Hi(ρ•)

Hi(ϕ•) Hi(ψ•) δi

commute. In this way, the long exact sequence in cohomology arises, up to isomor-
phism, as the image of

· · · L• M• P• L[1]• M[1]• · · ·ϕ• ι• π• ϕ[1]•

under the cohomology functor and connecting morphism δi can be described as
Hi(π•) ◦Hi(ρ•)−1.

All our hopes and dreamswill come true. The readermay recall that there is indeed
a natural complex P• which fits in a short exact sequence

0 M• P• L[1]• 0.
ι• π•

It is the direct sum P• =M•⊕L[1]•, with its natural injections and projections. We also
have a natural morphism ρ• : P• → N• defined as the composition of the projection
M• ⊕ L[1]• →M• with the given morphism ψ• :M• → N•.

Ay, there’s the rub! The natural morphism ρ• : P• → N• need not induce an isomor-
phism on cohomology. For example, consider the following short exact sequence of
complexes of abelian groups

0 ι(Z) ι(Z) ι(Z/2Z) 0,
ϕ•

1For example, consider the exact sequence of complexes we used to prove that the cohomology
functor is not exact. A morphism of complexes N• → L[1]• inducing the connecting morphism
H0(N•)→ H1(L•) would correspond to a morphism of abelian groups Z→ Z whose restriction to
2Z is an isomorphism 2Z→ Z. Such a morphism does not exist.
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where ι is the embedding of Ab into C(Ab) and ϕ• is the multiplication by 2 map. In
this case, the naive direct sum is simply the complex

· · · 0 Z Z︸︷︷︸
degree 0

0 · · ·0

whose 0-th cohomology is Z, instead of Z/2Z. The problem, of course, is that our
definition of P• carries no information about morphisms involved in the original exact
sequence. If, in the place of the zero-morphism Z → Z above, it was ϕ0, no such
problem would arise: the 0-th cohomology would be Z/2Z and all the other degrees
would be zero.

The preceding discussion suggests that it may be useful to consider a complex with
the same objects asM• ⊕ L[1]• but whose i-th differential is given by(

diM• −ϕ[1]i

0 diL[1]•

)
=

(
diM• −ϕi+1

0 −di+1L•

)
.

As we shall see, it is this object that will solve all our problems.
Definition 7.2.1 — Mapping cone. Let ϕ• : L• → M• be a morphism of complexes in
an additive category. Themapping cone ofϕ• is the complexMC(ϕ)• whose objects
are MC(ϕ)i :=Mi ⊕ Li+1 and whose i-th differential isa(

diM• −ϕi+1

0 −di+1L•

)
.

aThere are different sign conventions in the literature.

Since the composition of morphisms represented by matrices is given by the mul-
tiplication of the respective matrices, we have that diMC(ϕ)• ◦ d

i−1
MC(ϕ)• is represented

by (
diM• −ϕi+1

0 −di+1L•

)(
di−1M• −ϕi

0 −diL•

)
=

(
diM• ◦ di−1M• ϕi+1 ◦ diL• − diM• ◦ϕi

0 di+1L• ◦ diL•

)
= 0,

proving that MC(ϕ)• is indeed a complex. In an abelian category, the mapping cone
inherits a short exact sequence

0 M• MC(ϕ)• L[1]• 0
ι• π•

where the natural injections and projections are still morphisms of complexes, even
with the new differential. Moreover, there’s an induced long sequence of complexes

· · · L• M• MC(ϕ)• L[1]• M[1]• · · · .ϕ• ι• π• ϕ[1]•
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In order to properly deal with such long sequences of complexes, we introduce
some notation. We denote a long sequence of complexes of the form

· · · L• M• N• L[1]• M[1]• · · ·ϕ• ψ• ϕ[1]•

as a triangle
L•

N• M•,

ϕ•+1

ψ•

where the arrow marked by +1 indicates that the morphism shifts the degree by one,
representing the imposing diagram

Li+1

Ni+1 Mi+1

Li

Ni Mi

Li−1

Ni−1 Mi−1.

diN•

di−1
N•

diN• diM•

di−1
N• di−1

M•

A morphism of triangles consists of morphisms λ•, µ•, and ν•, making the diagram

L• M• N• L[1]•

L ′• M ′• N ′• L ′[1]•

ϕ•

λ•

ψ•

µ• ν• λ[1]•

ϕ ′• ψ ′•

commute. Moreover, a triangle is said to be exact if it arises from a long exact
sequence.2

In this notation, the plan we outlined before can be encapsulated as the fact that,
given a short exact sequence of complexes

0 L• M• N• 0,
ϕ• ψ•

2Some references define an exact triangle to be what we’ll soon call a distinguished triangle.
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the cohomology functor H• takes the triangle induced by MC(ϕ)• and outputs an
exact triangle

H•(L•)

H•(MC(ϕ)•) H•(M•),

H•(ϕ•)+1

which is isomorphic to the triangle arising from the long exact sequence in cohomol-
ogy

H•(L•)

H•(N•) H•(M•).

H•(ϕ•)+1

H•(ψ•)

We now prove this fact.

Proposition 7.2.3 Consider the following exact sequence of complexes in an abelian
category:

0 L• M• N• 0.
ϕ• ψ•

There exists a quasi-isomorphism ρ• : MC(ϕ)• → N• making the diagram

Hi−1(L[1]•) Hi(M•) Hi(MC(ϕ)•) Hi(L[1]•)

Hi(L•) Hi(M•) Hi(N•) Hi+1(L•)

Hi(ι•) Hi(π•)

Hi(ρ•)

Hi(ϕ•) Hi(ψ•) δi

commute. In particular, the top row is exact.

Proof. As before, ρ• is simply the composition of the projection MC(ϕ)• →M• with
the given morphism ψ• : M• → N•. This morphism makes the middle square
commute due to the fact that the composition M• → MC(ϕ)• → M• is the identity
(theorem 6.1.9) and so the diagram below

M• MC(ϕ)•

M•

M• N•

ι•

ρ•

ψ•

ψ•

commutes. The commutativity of the square on the right means that the composition
δi◦Hi(ρ•) sends [(m, l)] ∈ Hi(MC(ϕ)•) to [l] ∈ Hi+1(L•). Now,Hi(ρ•) sends [(m, l)] to
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[ψi(m)] and δi sends this element to [l ′], where l ′ is some element satisfyingϕi+1(l ′) =
diM•(m). But l itself is one such element, due to the fact that (m, l) ∈ kerdiMC(ϕ)• .

All that remains is to prove that Hi(ρ•) is an isomorphism for all i. We begin by
showing that it’s surjective. If [n] ∈ Hi(N•), let m ∈ Mi by any element satisfying
ψi(m) = n. (Such an element indeed exists, for ψi is surjective.) The commutativity
of the right square

Li Mi Ni

Li+1 Mi+1 Ni+1

ϕi ψi

ϕi+1 ψi+1

diN•diM•diL•

implies that diM•(m) is in the kernel of ψi+1, and so diM•(m) = ϕi+1(l) for some
l ∈ Li+1. Since the diagram

Li Mi

Li+1 Mi+1

Li+2 Mi+2

ϕi

ϕi+1

diM•diL•

di+1
M•di+1

L•

ϕi+2

commutes, di+1L• (l) is in the kernel ofϕi+2. Butϕi+2 is injective, proving thatdi+1L• (l) =

0. We conclude that

diMC(ϕ)•(m, l) = (diM•(m) −ϕi+1(l),−di+1L• (l)) = 0,

which implies that [(m, l)] is an element of Hi(MC(ϕ)•) that is sent to [n] by Hi(ρ•).
In order to see that Hi(ρ•) is also injective, suppose that [(m, l)] ∈ Hi(MC(ϕ)•) is

such that ψi(m) ∈ imdi−1N• . Then, choose n ∈ Ni−1 satisfying di−1N• (n) = ψi(m) and
m ′ ∈ Mi−1 satisfying ψi−1(m ′) = n. (The latter exists by surjectivity of ψi−1.) The
commutativity of the diagram

Li−1 Mi−1 Ni−1

Li Mi Ni

ϕi−1 ψi−1

ϕi ψi

di−1
N•di−1

M•di−1
L•

shows that m and di−1M• (m ′) are sent to the same element in Ni by ψi. It follows that
there exists l ′ ∈ Li satisfying

ϕi(l ′) = di−1M• (m
′) −m.

Now, both−diL•(l ′) and l are sent todiM•(m) byϕi+1. The injectivity ofϕi+1 yields that
they’re equal. We conclude that (m, l) = di−1MC(ϕ)•(m

′, l ′); showing that [(m, l)] = 0 in
Hi(MC(ϕ)•) and finishing the proof.
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Beyond being conceptually enlightning, the last proposition also provides us with
a criterion for a morphism of complexes to be a quasi-isomorphism.

Corollary 7.2.4 Let ϕ• : L• → M• be a morphism of complexes. Then ϕ• is a
quasi-isomorphism if and only if its mapping cone MC(ϕ)• is an exact complex.

Proof. If MC(ϕ)• is an exact complex, then its cohomology is zero and so the long
exact sequence in cohomology

Hi−1(MC(ϕ)•)︸ ︷︷ ︸
=0

Hi(L•) Hi(M•) Hi(MC(ϕ)•)︸ ︷︷ ︸
=0

Hi(ϕ•)

implies thatϕ• is a quasi-isomorphism. Conversely, ifϕ• is a quasi-isomorphism, the
long exact sequence in cohomology

Hi(L•) Hi(M•) Hi(MC(ϕ)•) Hi+1(L•) Hi+1(M•)
Hi(ϕ•) α β Hi+1(ϕ•)

implies that kerα = idHi(M•), that imα = kerβ and that imβ is the zero-morphism.
Thefirst and the last pieces of informationmean that bothα andβ are zero-morphisms,
and imα = kerβ implies that β is a monomorphism. But then kerβ is both the
identity on Hi(MC(ϕ)•) and the zero-morphism 0 → Hi(MC(ϕ)•). It follows that
Hi(MC(ϕ)•) = 0.

This corollary allows us to prove that quasi-isomorphisms are preserved by exact
functors.

Corollary 7.2.5 Let F : A → B be an exact functor between abelian categories and
ϕ• : L• →M• be a morphism of complexes in A. Ifϕ• is a quasi-isomorphism, then
so is F(ϕ•).

Proof. Due to the last corollary, it suffices to prove that MC(F(ϕ•)) = F(MC(ϕ•)) is
an exact complex. But this follows from the fact that F is exact.

One aspect of mapping cone of a morphism ϕ• : L• → M• that we have not yet
addressed is the fact that, even thoughMC(ϕ)• is always a complex, the long sequence
induced

· · · L• M• MC(ϕ)• L[1]• M[1]• · · ·ϕ• ι• π• ϕ[1]•

need not be. This means that our triangles aren’t elements of C(C(A)). Indeed, the
composition

L• →M• → MC(ϕ)•
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sends l ∈ Li to (ϕi(l), 0) ∈ Mi ⊕ Li+1, which isn’t always zero unless ϕi is the zero
morphism. Moreover, the composition

MC(ϕ)• → L[1]• →M[1]•

sends (m, l) ∈Mi ⊕ Li+1 to ϕi+1(l) ∈Mi+1, which also isn’t always zero unless ϕi+1
is the zero morphism.

Notwithstanding the fact that these compositions are usually not zero, they do
indeed map to the zero-morphism in cohomology. And they do so for a good reason,
which will be the main focus of the next section.

7.3. The homotopic category
The main line of attack in homological algebra to understanding some mathematical
object consists of associating some interesting complex to this object and then taking
its cohomology. For example, given a smoothmanifoldM, we associate to it a complex

0 Ω0M Ω1M Ω2M · · · ,d d d

where ΩiM is the R-vector space of differential i-forms on M and d is the exterior
derivative. The i-th cohomology of this complex HidR(M) is said to be the de Rham
cohomology of M and is an important invariant of a manifold. Of a more algebraic
nature are the modules TorAi (M,N) which are computed in the following way: we
find an exact sequence of A-modules

· · · P3 P2 P1 P0 M 0,

where each Pi is a projective module, we tensor by N and take the −i-th cohomology
of the complex

· · · P3 ⊗A N P2 ⊗A N P1 ⊗A N P0 ⊗A N.

(All the omitted objects are supposed to be zero.) Surprisingly, the final result is
independent of the choice of the projective modules Pi. We could even take the Pi to
be flat modules and the result wouldn’t change.

Butwe can do better! Instead of taking the cohomology of the associated complexes,
we can consider them "up to quasi-isomorphism". In this way we retain all the
cohomological information while being able to use the tools available for dealing
with complexes. Somewhat more formally, we would like to find a category D(A),
with the same objects as C(A) but where all the quasi-isomorphisms become genuine
isomorphisms.
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7. Complexes and cohomology

This category, along with its bounded variants D∗(A) for ∗ = +,−, b, indeed exists3
and it’s called the derived category of A. This category satisfies a universal property
alike that of the localization of modules: it is endowed with an additive functor
C(A) → D(A) such that quasi-isomorphisms in C(A) are mapped to isomorphisms in
D(A) and which is initial with respect to this property.

It is the derived category that is the natural place to study homological algebra.
Nevertheless, there is an intermediate category, the homotopic category, that will not
only simplify thedescription of themorphisms in thederived category but also furnish
a substitute thereof in important cases. We begin its study now.
Definition 7.3.1 — Homotopy. Let ϕ•, ψ• : L• →M• be two morphisms of complexes
in an additive category. A homotopy betweenϕ• andψ• is a collection ofmorphisms
hi : Li →Mi−1 such that

ψi −ϕi = di−1M• ◦ hi + hi+1 ◦ diL•

for all i. If there exists a homotopy between ϕ• and ψ•, we say that they are
homotopic, and we denote it by ϕ• ∼ ψ•.

We observe that this is indeed an equivalence relation: reflexivity and symmetry
are immediate, and it suffices to sum the homotopies to prove that it is transitive. We
also emphasize that the hi need not form a morphism of complexes L• →M[−1]•. In
particular, the diagram

· · · Li−1 Li Li+1 · · ·

· · · Mi−1 Mi Mi+1 · · ·

ϕi−1 ψi−1

di−1
L•

ϕi ψi

diL•

hi

ϕi+1 ψi+1
hi+1

di−1
M• diM•

need not commute. The next proposition explains how homotopy interacts with the
additive structure of C(A). The reader may remember its first part as saying that
"morphisms homotopic to zero form an ideal".

Proposition 7.3.1 Let ϕ•1, ϕ•2 : L• → M• and ψ•1, ψ•2 : M• → N• be morphisms of
complexes in an additive category. The following holds.

(a) If ϕ•1 ∼ 0 and ϕ•2 ∼ 0, then ϕ•1 +ϕ•2 ∼ 0, ϕ•1 ◦ α• ∼ 0 and β• ◦ϕ•1 ∼ 0whenever
those compositions exist;

(b) if ϕ•1 ∼ ϕ•2 and ψ•1 ∼ ψ•2, then ψ•1 ◦ϕ•1 ∼ ψ•2 ◦ϕ•2.

Proof. If ϕ•1 ∼ 0 and ϕ•2 ∼ 0, then there exists collections of morphisms hi, ki : Li →
3Up to some set-theoretic subtleties, which will be discussed in the next chapter.
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Mi−1 such that

ϕi1 = d
i−1
M• ◦ hi + hi+1 ◦ diL• and ϕi2 = d

i−1
M• ◦ ki + ki+1 ◦ diL•.

Summing these equations, we see that the morphisms hi + ki form a homotopy
between ϕ•1 +ϕ•2 and zero. By composing on the left with α• : P• → L• we get that

ϕi1 ◦ αi = di−1M• ◦ hi ◦ αi + hi+1 ◦ diL• ◦ αi

= di−1M• ◦ (hi ◦ αi) + (hi+1 ◦ αi+1) ◦ diP•,

proving that hi ◦αi is a homotopy betweenϕ•1 ◦α• and 0. The same argument proves
that β• ◦ϕ•1 ∼ 0. This establishes (a).

Now, (b) follows from (a) by noticing that

0 ∼ ψ•1 ◦ (ϕ•1 −ϕ•2) = ψ•1 ◦ϕ•1 −ψ•1 ◦ϕ•2
0 ∼ (ψ•1 −ψ

•
2) ◦ϕ•2 = ψ•1 ◦ϕ•2 −ψ•2 ◦ϕ•2

and adding the two equations.

There’s an important definition which encodes the notion of "isomorphism up to
homotopy".
Definition 7.3.2 — Homotopy equivalence. Amorphism of complexesϕ• : L• →M• is
said to be a homotopy equivalence if there exists a morphism ψ• :M• → L• such that
ϕ• ◦ψ• ∼ idM• and ψ• ◦ϕ• ∼ idL• . If there exists a homotopy equivalence between
two complexes, they are said to be homotopy equivalent.

Once again, this defines an equivalence relation: reflexivity and symmetry are clear
and transitivity follows from the preceding proposition. We observe that, from this
point of view, the notion of homotopy equivalence is better behaved then that of quasi-
isomorphism as the latter doesn’t define an equivalence relation between complexes.
Indeed, in C(Ab) the morphism of complexes

· · · 0 Z Z 0 · · ·

· · · 0 0 Z/2Z 0 · · ·

·2

is a quasi-isomorphism which does not possess an inverse (as there are no non-trivial
morphisms Z/2Z→ Z), proving that quasi-isomorphism is not a symmetric relation.

Even though the above is only one of the multiple reasons why homotopy equiv-
alence is a more tractable notion than that of quasi-isomorphisms, it would all be
for nothing if homotopy weren’t a stepping stone to the derived category. The next
proposition begins to describe how our plan works.
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7. Complexes and cohomology

Proposition 7.3.2 Let ϕ•, ψ• : L• → M• be homotopic morphisms of complexes in
an abelian category. Then ϕ• and ψ• induce the same morphism on cohomology.
In particular, every homotopy equivalence is a quasi-isomorphism.

Proof. We prove that ψ• −ϕ• induces the zero-morphism in cohomology, i.e., that it
sends elements of kerdiL• to elements of imdi−1M• . But this is clear since

ψi(l) −ϕi(l) = di−1M• (h
i(l)) + hi+1(diL•(l)),

and the last term vanishes whenever l ∈ kerdiL• .

This is why the long sequence induced by the mapping cone of a morphism "has a
good reason" to become a complex in cohomology: the composition of two consecutive
morphisms is not necessarily zero, but they are homotopic to zero. This proposition, in
the form of the corollary below, also describes why the line of attack described in the
beginning of this section works: often we’ll associate non-isomorphic complexes to a
mathematical object, but they’ll turn out to be homotopy equivalent.

Corollary 7.3.3 Let L• and M• be homotopy equivalent complexes in an abelian
category. Then H•(L•) ∼= H•(M•).

Proof. Due to the preceding proposition, the morphisms which define a homotopy
equivalence between L• andM• induce inverse morphisms in cohomology.

There is another aspect where homotopy equivalences are simpler than quasi-
isomorphisms: while the latter is only4 preserved by an exact functor (corollary
7.2.5), the former is preserved by arbitrary additive functors.

Proposition 7.3.4 Let F : A → B be an additive functor between additive categories,
and let ϕ•, ψ• : L• →M• be homotopic morphisms in C(A). Then F(ϕ•) and F(ψ•)
are homotopic in C(B). Moreover, if L• andM• are homotopy equivalent in C(A),
then F(L•) and F(M•) are homotopy equivalent in C(B).

Proof. The second assertion follows immediately from the first. As for the first,
observe that if h is a homotopy between ϕ• and ψ•, then

F(ψi) − F(ϕi) = F(di−1M• ) ◦ F(hi) + F(hi+1) ◦ F(diL•)
= di−1F(M•) ◦ F(h

i) + F(hi+1) ◦ diF(L•).

This proves that themorphisms F(hi)define ahomotopybetween F(ϕ•) and F(ψ•).
4Indeed, if F is not exact, there exists a three-term exact sequence whose image is not exact. But a
three-term complex is exact if and only if it is quasi-isomorphic to zero.
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This validates our strategy: beginning with a mathematical object to which we
associate some interesting complex, we apply some additive functor and then see the
result in the derived category. The proposition 7.3.4 and the corollary 7.3.3 shows that
any other homotopy equivalent complex would yield the same result at the end.

By identifying homotopic morphisms, we obtain the homotopic category.
Definition 7.3.3 — Homotopic category. Let A be an additive category. The homotopic
category K(A) is the category whose objects are complexes in A and whose mor-
phisms are homotopy classes of morphisms of complexes. We define likewise
bounded variants K∗(A), for ∗ = +,−, b, thereof.

The part (b) of proposition 7.3.1 implies that indeed K∗(A) satisfy the axioms of a
category, and the part (a) shows that they are moreover preadditive. Since they have a
zero-object and binary products, they are even additive. They aren’t, through, almost
never abelian even if A is. Indeed, we’ll soon see that if K∗(A) is abelian then every
short exact sequence in A splits.

We observe that if F : A→ B is an additive functor between additive categories, then
we have a natural functor F : K(A) → K(B) by the proposition 7.3.4 and the universal
property of quotients.

The readermay recall that our long-term goal is to understand the derived category,
which is constructed from C(A) by inverting all the quasi-isomorphisms. In defining
the homotopic category, we have determined a functor

C(A)→ K(A)

which sends every object to itself and every morphism to its homotopy class. This
functor sends every homotopy equivalence to an isomorphism and, as the proposition
below shows, is a stepping stone to the derived category.

Proposition 7.3.5 Let F : C∗(A) → D be an additive functor such that F(ϕ•) is an
isomorphism whenever ϕ• is a quasi-isomorphism. Then there exists a unique
additive functor K∗(A)→ D making the diagram

C∗(A) D

K∗(A)

F

commute.

� We remark that the natural functor C∗(A) → K∗(A) doesn’t always sends quasi-
isomorphisms to isomorphisms. In other words, K∗(A) need not satisfy the universal
property of the derived category D∗(A).
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Proof. We begin by remarking that F sends an exact complex P• ∈ C∗(A) to the zero-
object ofD. In this case, 0 : P• → P• is a quasi-isomorphismand so F(0) : F(P•)→ F(P•)

is an isomorphism. But we may write the identity of F(P•) as F(0) ◦ F(0)−1 = 0. Since
every morphism going to or out of F(P•) factors through the identity, this implies that
F(P•) is both initial and final. That is, F(P•) = 0.

Now, we need to show that ifϕ•, ψ• : L• →M• are homotopic morphisms in C∗(A),
then F(ϕ•) = F(ψ•). Since F is additive, we may assume ψ• = 0. Moreover, since
− idL• is a quasi-isomorphism, the corollary 7.2.4 implies thatMC(− idL•)• is exact. In
particular, it suffices to prove that ϕ• factors through MC(− idL•)•.

We already possess the natural injection L• → MC(− idL•)• sowe only have to define
a morphism of complexes π• : MC(− idL•)• →M• making the diagram

L• M•

MC(− idL•)•

ϕ•

π•

commute. With that in mind, consider a homotopy hi : Li → Mi−1 between ϕ• and
the zero-morphism. We then define our desired morphism πi : Li ⊕ Li+1 → Mi as
(ϕi, hi+1). It is clear that thismakes the diagramabove commute. It being amorphism
of complexes means that

(
di−1M• ◦ϕi−1 di−1M• ◦ hi

)
=
(
ϕi hi+1

)(di−1L• idLi
0 −diL•

)
=
(
ϕi ◦ di−1L• ϕi − hi+1 ◦ diL•

)
is verified for all i. The first coordinates are equal due to the fact that ϕ• : L• → M•

is a morphism of complexes, and the second are equal for the hi define a homotopy
between ϕ• and zero. This completes the proof.

Since the cohomology functors Hi : C∗(A) → A send quasi-isomorphisms to bona
fide isomorphisms, they descend to well-defined functors K∗(A) → A which will still
be denoted byHi. In particular, it makes sense to ask whether a morphism in K∗(A) is
a quasi-isomorphism or not, and we can construct the derived category by inverting
the quasi-isomorphisms in the homotopic category. This will turn out to be simpler than
going straight from C∗(A).

7.4. The triangulated structure
As hinted before, even if A is an abelian category, the homotopic category K∗(A) need
not be. So, in order to be able to do homological algebra, we need some sort of
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substitute in K∗(A) for short exact sequences. It turns out that triangles behave even
better in K∗(A) than they do in C∗(A).
The shift functor [n] : C∗(A) → C∗(A) preserves homotopies and so descends to a

functor K∗(A)→ K∗(A) denoted by the same symbol. As before, a triangle in K∗(A)

L•

N• M•,

ϕ+1

ψ

or even
L• M• N• L[1]•,

ϕ ψ

is a shorthand for a long sequence of the form

· · · L• M• N• L[1]• M[1]• · · · ,ϕ ψ ϕ[1]

where the morphisms involved are now those of K∗(A). Similarly, a morphism of
triangles consists of morphisms λ, µ, and ν in K∗(A), making the diagram

L• M• N• L[1]•

L ′• M ′• N ′• L ′[1]•

ϕ

λ

ψ

µ ν λ[1]

ϕ ′ ψ
′

commute. As in C∗(A), the triangles arising from mapping cones have a prominent
role.
Definition 7.4.1—Distinguished triangles. A triangle inK∗(A) is said to be distinguished
if it is isomorphic to some triangle of the form

L•

MC(ϕ)• M•

ϕ+1

for a morphism ϕ• : L• →M• in C∗(A).

As a first sign that triangles work better in K∗(A) than they do in C∗(A), we observe
that the identitymorphism and the zero-object always defines a distinguished triangle
in K∗(A). This means that even though the mapping cone of the identity morphism is
not zero, it is homotopy equivalent to zero.
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Lemma 7.4.1 LetM• be a complex in an additive category A. Then the triangle

M•

0 M•

idM•+1

is distinguished.

Proof. Consider the collection of morphisms hi :Mi ⊕Mi+1 →Mi−1 ⊕Mi given by
the matrices (

0 0

− idMi 0

)
.

The composition di−1MC(idM•)•
◦ hi + hi+1 ◦ diMC(idM•)•

is represented by the matrix(
di−1M• − idMi

0 −diM•

)(
0 0

− idMi 0

)
+

(
0 0

− idMi+1 0

)(
diM• − idMi+1

0 −di+1M•

)
,

which is nothing but the identity ofMC(idM•)i. It follows that the identity morphism
on MC(idM•)• is homotopic to zero, and so the natural morphism 0 → MC(idM•)• is
an isomorphism in K∗(A).

Another useful property of distinguished triangles in K∗(A) is that they remain
distinguished upon rotation. We observe that, while the proof is basically only the
definition of a homotopy equivalence, there are a lot of things that need to be verified,
and we won’t shy away.

Lemma 7.4.2 Let A be an additive category. Consider the following triangles in
K∗(A):

L•

N• M•

ϕ

+1

ρ

ψ

and

M•

L[1]• N•.

ψ

+1

−ϕ[1]•

ρ

Then one of the triangles is distinguished if and only if the other is.

Proof. We first suppose that the triangle on the left is of the form

L•

MC(ϕ)• M•.

ϕ+1

ι
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Since the mapping cone of ι• :M• → MC(ϕ)• is naturally endowed with morphisms
MC(ϕ)• → MC(ι)• and MC(ι)• →M[1]•, it suffices to prove the existence of a homo-
topy equivalence L[1]• → MC(ι)• making the diagram

M• MC(ϕ)• L[1]• M[1]•

M• MC(ϕ)• MC(ι)• M[1]•

ι −ϕ[1]•

ι

commute for the triangle on the right to be distinguished. We define a morphism
Li+1 →Mi ⊕ Li+1 ⊕Mi+1 by  0

idLi+1
−ϕi+1

 .
This indeed describes a morphism of complexes L[1]• → MC(ι)• sincedi−1M• −ϕi − idMi

0 −diL• 0

0 0 −diM•


︸ ︷︷ ︸

di−1MC(ι)•

 0

idLi
−ϕi

−

 0

idLi+1
−ϕi+1

diL[1]• = 0.

In order to prove that this is a homotopy equivalence, we define a morphism Mi ⊕
Li+1 ⊕Mi+1 → Li+1, given by projecting onto the middle coordinate. This is also a
morphism of complexes MC(ι)• → L[1]• for

(
0 idLi+1 0

)di−1M• −ϕi − idMi

0 −diL• 0

0 0 −diM•

− di−1L[1]•
(
0 idLi 0

)
= 0.

The composition Li+1 →Mi ⊕ Li+1 ⊕Mi+1 → Li+1 is

(
0 idLi+1 0

) 0

idLi+1
−ϕi+1

 = idLi+1 ,

and the compositionMi ⊕ Li+1 ⊕Mi+1 → Li+1 →Mi ⊕ Li+1 ⊕Mi+1, 0

idLi+1
−ϕi+1

(0 idLi+1 0
)
=

0 0 0

0 idLi+1 0

0 −ϕi+1 0

 ,
is homotopic to the identity via the homotopyhi :Mi⊕Li+1⊕Mi+1 →Mi−1⊕Li⊕Mi

given by  0 0 0

0 0 0

idMi 0 0

 .
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Indeed, the morphism di−1MC(ι)• ◦ hi + hi+1 ◦ diMC(ι)• is represented bydi−1M• −ϕi − idMi

0 −diL• 0

0 0 −diM•

 0 0 0

0 0 0

idMi 0 0

+

 0 0 0

0 0 0

idMi+1 0 0

diM• −ϕi+1 − idMi+1

0 −di+1L• 0

0 0 −di+1M•


=

− idMi 0 0

0 0 0

−diM• 0 0

+

 0 0 0

0 0 0

diM• −ϕi+1 − idMi+1

 =

− idMi 0 0

0 0 0

0 −ϕi+1 − idMi+1

 .
This proves that we have our desired homotopy equivalence. The square on the right
commutes (even in C∗(A)) by the very definition of the morphism L[1]• → MC(ι)•. As
for the one in the middle, we observe that the difference between the two morphisms
MC(ϕ)i → MC(ι)i is idMi 0

0 0

0 ϕi+1

 ,
which is homotopic to zero via the homotopy hi :Mi⊕Li+1 →Mi−1⊕Li⊕Mi given
by  0 0

0 0

− idMi 0

 .
Indeed, the morphism di−1MC(ι)• ◦ hi + hi+1 ◦ diMC(ϕ)• is represented bydi−1M• −ϕi − idMi

0 −diL• 0

0 0 −diM•

 0 0

0 0

− idMi 0

+

 0 0

0 0

− idMi+1 0

(diM• −ϕi+1

0 −di+1L•

)

=

idMi 0

0 0

diM• 0

+

 0 0

0 0

−diM• ϕi+1

 =

idMi 0

0 0

0 ϕi+1

 ,
which is equal to the difference calculated above. This completes the proof that the
triangle on the right is distinguished if the left one is. For the converse, we observe that
by applying what we just proved to the triangle on the right, supposed distinguished,
five times, we arrive at the triangle

L[2]•

N[2]• M[2]•,

ϕ[2]

+1

ρ[2]

ψ[2]

which is distinguished if and only if the triangle on the left is.
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The next result shows that the mapping cone "almost" defines a functor from the
category of morphisms (as seen in the proof of corollary 7.2.2) in K∗(A) to K∗(A) itself.

Lemma 7.4.3 Consider the following commutative diagram in K∗(A)whose rows are
distinguished triangles:

L• M• N• L[1]•

L ′• M ′• N ′• L ′[1]•.

ϕ

λ

ψ

µ

ϕ ′ ψ
′

It exists a (not necessarily unique) morphism ν : N• → N ′• making the diagram

L• M• N• L[1]•

L ′• M ′• N ′• L ′[1]•

ϕ

λ

ψ

µ ν λ[1]

ϕ ′ ψ
′

commute. That is, defining a morphism of triangles.

Proof. By composing with some isomorphisms, if necessary, wemay assume that our
original diagram is of the form

L• M• MC(ϕ)• L[1]•

L ′• M ′• MC(ϕ ′)• L ′[1]•.

ϕ

λ µ

ϕ ′

Since the square on the left commutes in K∗(A), let hi : Li →M ′i−1 be a collection of
morphisms satisfying

µi ◦ϕi −ϕ ′i ◦ λi = di−1M ′• ◦ hi + hi+1 ◦ diL•

for all i. We then define our desired morphism νi :Mi ⊕ Li+1 →M ′i ⊕ L ′i+1 as(
µi −hi+1

0 λi+1

)
.

This is indeed a morphism of complexes since νi ◦ di−1MC(ϕ)• − d
i−1
MC(ϕ ′)• ◦ νi−1 is repre-

sented by (
µi −hi+1

0 λi+1

)(
di−1M• −ϕi

0 −diL•

)
−

(
di−1M ′• −ϕ ′i

0 −diL ′•

)(
µi−1 −hi

0 λi

)
=

(
µi ◦ di−1M• −µi ◦ϕi + hi+1 ◦ diL•

0 −λi+1 ◦ diL•

)
−

(
di−1M ′• ◦ µi−1 −di−1M ′• ◦ hi −ϕ ′i ◦ λi

0 −diL ′• ◦ λi

)
,
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which is nothing but the zero matrix. This morphismmakes the square on the middle
commute due to the fact that(

µi −hi+1

0 λi+1

)(
idMi

0

)
=

(
µi

0

)
is equal to the composition of µi : Mi → M ′i with the natural injection M ′i →
M ′i ⊕ L ′i+1. Similarly, the square on the right commutes as

(
0 idL ′i+1

)(µi −hi+1

0 λi+1

)
=
(
0 λi+1

)
coincides with the composition of the natural projection Mi ⊕ Li+1 → Li+1 with
λi+1 : Li+1 → L ′i+1.

For an example of the lack of uniqueness, let ν : M• ⊕ L[1]• → M• ⊕ L[1]• be the
morphism defined by (

idM• ϕ

0 idL[1]•

)
,

where ϕ• is any morphism L[1]• → M•. This morphism makes the diagram, whose
rows are distinguished triangles,

L• M• M• ⊕ L[1]• L[1]•

L• M• M• ⊕ L[1]• L[1]•

0

ν

0

commute. This lack of uniqueness was the main motivation behind Grothendieck’s
unpublished 1991 manuscript Les Dérivateurs, which has almost 2000 pages.

Somewhat surprisingly, the lemmata that precedes amounts to essentially all the
information needed to do homological algebra in K∗(A). In our context, this was
first formalized in Jean-Louis Verdier’s 1967 thesis as the notion of triangulated category,
which we now present.

We begin with an additive category K endowed with an additive isomorphism of
categories5 T : K→ K modeling the shift functor in K∗(A). As before, a triangle in K is
a diagram of the form

L M N T(L),
ϕ ψ ρ

5In some texts the functor T is only required to be an equivalence of categories, instead of a genuine
isomorphism. The resulting theory is more complicated as it is 2-categorical.
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and a morphism of triangles is simply a commutative diagram

L M N T(L)

L ′ M ′ N ′ T(L ′).

λ µ ν T(λ)

We also specify a set of distinguished triangles that should satisfy the axioms below.6

(TR1) (a) Every triangle that is isomorphic to a distinguished triangle is also distin-
guished.

(b) For every morphism ϕ : L→M in K there is a distinguished triangle

L M N T(L).
ϕ ψ ρ

(c) For every objectM the triangle

M M 0 T(M)
idM

is distinguished.

(TR2) A triangle
L M N T(L)

ϕ ψ ρ

is distinguished if and only if the triangle

M N T(L) T(M)
ψ ρ −T(ϕ)

is distinguished.

(TR3) Given a commutative diagram in K

L M N T(L)

L ′ M ′ N ′ T(L ′),

λ µ

whose rows are distinguished triangles, there’s a morphism ν : N→ N ′making
the diagram

L M N T(L)

L ′ M ′ N ′ T(L ′)

λ µ ν T(λ)

commute.
6Actually TR3 and half of TR2 follow from the rest of the axioms. The interested reader can check
[26].
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(TR4) Suppose we are given these three distinguished triangles:

L M P T(L),
ϕ

M N R T(M),
ψ

L N Q T(L).
ψ◦ϕ

Then there exists a distinguished triangle

P Q R T(P)

making the diagram

L N R T(P)

M Q T(M)

P T(L)

ϕ

ψ◦ϕ

ψ

commute.

The object we’re left with is a triangulated category.
Definition 7.4.2—Triangulated category. A triangulated category is an additive category
K, endowed with an additive automorphism T : K → K and a set of distinguished
triangles satisfying the axioms TR1 to TR4 above.

By now, the reader probably wonders what is the axiom TR4 for. We affirm that
it is a sort of palliative solution to the lack of uniqueness in the induced morphism
of axiom TR3. Indeed, for every morphism ϕ : L → M, the axiom TR1(b) gives an
abstract mapping cone P defining a distinguished triangle

L M P T(L).
ϕ

Similarly, this axiom gives an abstract mapping cone R to a morphism ψ : M → N,
and an abstract mapping cone Q to the composition ψ ◦ ϕ : L → N. Naturally, we
wonder how Q relates to P and R. The axiom TR4 affirms simply that they fit into a
distinguished triangle

P Q R T(P).

We leave a study of triangulated categories for the next section and end this one by
proving that indeed K∗(A) are triangulated categories. Once again, this isn’t difficult
at all, but there are a myriad of things that need to be verified.
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Theorem 7.4.4 Let A be an additive category. Then the homotopic categories K∗(A)
are triangulated.

Proof. After our preliminary work, the only axiom that remains to be proven is the
last one. For that wemay suppose P• = MC(ϕ)•, R• = MC(ψ)• andQ• = MC(ψ◦ϕ)•.
We define morphisms αi : Pi → Qi and βi : Qi → Ri as(

ψi 0

0 idLi+1

)
and

(
idNi 0

0 ϕi+1

)
,

respectively. The αi define a morphism of complexes since αi ◦ di−1P• − di−1Q• ◦ αi−1 is
represented by(

ψi 0

0 idLi+1

)(
di−1M• −ϕi

0 −diL•

)
−

(
di−1N• −ψi ◦ϕi
0 −diL•

)(
ψi−1 0

0 idLi

)
=

(
ψi ◦ di−1M• −ψi ◦ϕi

0 −diL•

)
−

(
di−1N• ◦ψi−1 −ψi ◦ϕi

0 −diL•

)
=

(
0 0

0 0

)
.

Similarly, the βi define a morphism of complexes since βi ◦ di−1Q• − di−1R• ◦ βi−1 is
represented by(

idNi 0

0 ϕi+1

)(
di−1N• −ψi ◦ϕi
0 −diL•

)
−

(
di−1N• −ψi

0 −diM•

)(
idNi−1 0

0 ϕi

)
=

(
di−1N• −ψi ◦ϕi
0 −ϕi+1 ◦ diL•

)
−

(
di−1N• −ψi ◦ϕi
0 −diM• ◦ϕi

)
=

(
0 0

0 0

)
.

We also define a morphism γ• : R• → P[1]• as the composition R• → M[1]• → P[1]•.
We must now verify that

P• Q• R• P[1]•.
α• β• γ•

is a distinguished triangle and that thosemorphisms fit into the commutative diagram
of the axiomTR4. For clarity, we number the relevant parts of this diagramand rewrite
it here.

L• (1) N• (3) R• (6) P[1]•

M• (2) Q• (5) M[1]•

P• (4) L[1]•

ϕ•

ψ•◦ϕ• γ•

ψ• β•

α•
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The triangles (1) and (6) commute by the very definition of the morphisms involved.
The square (2) commutes since(

idNi
0

)
ψi =

(
ψi 0

0 idLi+1

)(
idMi

0

)
.

The triangle (3) commutes since(
idNi 0

0 ϕi+1

)(
idNi
0

)
=

(
idNi
0

)
.

The triangle (4) commutes since(
0 idLi+1

)(ψi 0

0 idLi+1

)
=
(
0 idLi+1

)
.

Finally, the square (5) commutes since(
0 idMi+1

)(idNi 0

0 ϕi+1

)
= ϕi+1

(
0 idLi+1

)
.

In order to show that the triangle we defined is distinguished we’ll define morphisms
ρ• : MC(α)• → R• and σ• : R• → MC(α)• determining an isomorphism of triangles

P• Q• R• P[1]•

P• Q• MC(α)• P[1]•.

α• β• γ•

σ•

α•

ρ•

The morphisms ρi : Ni ⊕ Li+1 ⊕Mi+1 ⊕ Li+2 → Ni ⊕Mi+1 and σi : Ni ⊕Mi+1 →
Ni ⊕ Li+1 ⊕Mi+1 ⊕ Li+2 are defined as

(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)
and


idNi 0

0 0

0 idMi+1

0 0

 ,
respectively. They define morphisms of complexes since ρi+1 ◦ diMC(α)• − d

i
R• ◦ ρi is

represented by

(
idNi+1 0 0 0

0 ϕi+2 idMi+2 0

)
diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −di+1L• 0 − idLi+2
0 0 −di+1M• ϕi+2

0 0 0 di+2L•


−

(
diN• −ψi+1

0 −di+1M•

)(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)
=(

diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −ϕi+2 ◦ di+1L• −di+1M• 0

)
−

(
diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −di+1M• ◦ϕi+1 −di+1M• 0

)
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and σi+1 ◦ diR• − diMC(α)• ◦ σi is represented by
idNi+1 0

0 0

0 idMi+2

0 0


(
diN• −ψi+1

0 −di+1M•

)
−


diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −di+1L• 0 − idLi+2
0 0 −di+1M• ϕi+2

0 0 0 di+2L•



idNi 0

0 0

0 idMi+1

0 0

 =


diN• −ψi+1

0 0

0 −di+1M•
0 0

−


diN• −ψi+1

0 0

0 −di+1M•
0 0

 .
In both cases the result is the zero matrix. We now affirm that the morphisms ρ• and
σ• define a homotopy equivalence. The composition ρ• ◦ σ• is equal to the identity
morphism on R• as

(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)
idNi 0

0 0

0 idMi+1

0 0

 =

(
idNi 0

0 idMi+1

)
,

and the morphism σ• ◦ ρ• − idMC(α)• , represented by
idNi 0

0 0

0 idMi+1

0 0


(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)
−


idNi 0 0 0

0 idLi+1 0 0

0 0 idMi+1 0

0 0 0 idLi+2



=


0 0 0 0

0 − idLi+1 0 0

0 ϕi+1 0 0

0 0 0 − idLi+2

 ,
is homotopic to zero via the homotopy hi : Ni ⊕ Li+1 ⊕Mi+1 ⊕ Li+2 → Ni−1 ⊕ Li ⊕
Mi ⊕ Li+1 given by the matrix 

0 0 0 0

0 0 0 0

0 0 0 0

0 idLi+1 0 0

 .
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Indeed, the composition di−1MC(α)• ◦ hi + hi+1 ◦ diMC(α)• is represented by the matrix
di−1N• −ψi ◦ϕi −ψi 0

0 −diL• 0 − idLi+1
0 0 −diM• ϕi+1

0 0 0 di+1L•



0 0 0 0

0 0 0 0

0 0 0 0

0 idLi+1 0 0



+


0 0 0 0

0 0 0 0

0 0 0 0

0 idLi+2 0 0



diN• −ψi+1 ◦ϕi+1 −ψi+1 0

0 −di+1L• 0 − idLi+2
0 0 −di+1M• ϕi+2

0 0 0 di+2L•

 =


0 0 0 0

0 − idLi+1 0 0

0 ϕi+1 0 0

0 di+1L• 0 0

+


0 0 0 0

0 0 0 0

0 0 0 0

0 −di+1L• 0 − idLi+2

 =


0 0 0 0

0 − idLi+1 0 0

0 ϕi+1 0 0

0 0 0 − idLi+2

 ,
which coincides with the one representing σ• ◦ ρ• − idMC(α)• . It remains only to
show that ρ• defines a morphism of triangles. That is, that the associated diagram
commutes. The composition of the natural injection Q• → MC(α)• with ρ• is given
by

(
idNi 0 0 0

0 ϕi+1 idMi+1 0

)
idNi 0

0 idLi+1
0 0

0 0

 =

(
idNi 0

0 ϕi+1

)
,

which is nothing but βi. Since σ• is the inverse of ρ• in K∗(A), it suffices to show that
the composition of σ• with the natural projection MC(α)• → P[1]• is γ•. This holds
since (

0 0 idMi+1 0

0 0 0 idLi+2

)
idNi 0

0 0

0 idMi+1

0 0

 =

(
0 idMi+1

0 0

)
,

which is equal to γi. The proof is at long last over.

7.5. Triangulated categories
After proving that the homotopic categories are triangulated in the last section, we
now delve into the world of triangulated categories. The formal results we’ll obtain
will not only be valid and useful for the homotopic categories, but also for the derived
category in the next chapter.

We begin by understanding what are the natural functors between triangulated
categories, preserving their extra structure.
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Definition 7.5.1 — Triangulated functor. Let (K, T) and (K ′, T ′) be triangulated cate-
gories. A triangulated functor from K to K ′ is an additive functor F : K→ K ′, together
with a natural isomorphism τ : F ◦ T → T ′ ◦ F, such that for every distinguished
triangle

L M N T(L),
ϕ ψ ρ

in K, the triangle

F(L) F(M) F(N) T ′(F(L))
F(ϕ) F(ψ) τL◦F(ρ)

is distinguished in K ′.

Whenever we say that two triangulated categories are equivalent, it is to be under-
stood that the functor defining the equivalence of categories is triangulated. Also, if
F : A→ B is an additive functor between additive categories, then the induced functor
F : K(A) → K(B) is triangulated. Indeed, an additive functor commutes both with
mapping cones and with the shift functor.

Recall that, given a morphism ϕ : L → M in a triangulated category K, the axiom
TR1 gives a distinguished triangle

L M N T(L).
ϕ ψ ρ

As in the homotopy category, we say that N is the cone of ϕ. We’ll soon see that it is
unique up to isomorphism. For now, this will allow us to define the natural notion of
a triangulated (full) subcategory.
Definition 7.5.2 — Triangulated subcategory. Let (K, T) be a triangulated category. A
triangulated subcategory of K is a full additive subcategory C ⊂ K, which is closed
under cones and under the action of T . That is, the cone of a morphism in C is in C
and T(L) ∈ C whenever L ∈ C.

Surely, if C is a triangulated subcategory of (K, T), the restriction of T to C and the
collection of distinguished triangles in K whose objects are in C gives a structure of
triangulated category to C. Moreover, the inclusion functor C→ K is triangulated.

As we observed before, the long sequence induced by the mapping cone of a mor-
phism is a complex in the homotopic category (but not in the category of complexes).
This generalizes to triangulated categories. In particular, it follows that the category of
complexes cannot be triangulated (with respect to the usual shift functor andmapping
cones).
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Proposition 7.5.1 Let K be a triangulated category and

L M N T(L)
ϕ ψ ρ

be a distinguished triangle. Then the compositions ψ ◦ ϕ, ρ ◦ ψ and T(ϕ) ◦ ρ are
zero.

Proof. The axiom TR1 says that the cone of the identity morphism idL is zero. So, by
the axiom TR3, we have a dashed arrow making the diagram

L L 0 T(L)

L M N T(L)

idL

idL ϕ T(idL)

ϕ ψ ρ

commute. This proves that ψ ◦ϕ = 0. Now, the axiom TR2 says that the triangles

M N T(L) T(M)
ψ ρ −T(ϕ)

and
N T(L) T(M) T(N)

ρ −T(ϕ) −T(ψ)

are distinguished. So, by applying what we just proved to these triangles, we obtain
ρ ◦ψ = 0 and T(ϕ) ◦ ρ = 0.

Duality arguments abound in category theory, as we clearly saw in the chapter
about abelian categories. In order to use such arguments in our present context, we
need to know that the opposite of a triangulated category is also triangulated.

Proposition 7.5.2 Let K be a triangulated category and let D : K → Kop be the
contravariant functor sending each object to itself and inverting all the arrows. We
define an additive isomorphism of categories T op : Kop → Kop asD ◦ T−1 ◦D−1 and
we say that a triangle of Kop is distinguished if it is of the form

N M L T op(N),
D(ψ) D(ϕ) D(−T−1(ρ))

where
L M N T(L)

ϕ ψ ρ

is a distinguished triangle in K. Then Kop is a triangulated category.

Considering that the proof of this result amounts only to a formal verification of
the axioms, and that it won’t add new useful ideas or techniques to the arsenal of the
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reader, we won’t write it here. In case the reader wants to see it anyway, a full proof
is available online on [27].

We also remark that the collection of distinguished triangles in Kop is motivated by
the fact that the axiom TR2 says that a triangle

L M N T(L)
ϕ ψ ρ

is distinguished if and only if its "reverse rotation"

T−1(N) L M N
−T−1(ρ) ϕ ψ

is. By inverting the triangle above, we obtain a distinguished triangle in the opposite
category.
In the lingo of triangulated categories, the content of the proposition 7.2.3 is that

the functor H• : K∗(A) → C∗(A) sends distinguished triangles to exact triangles. We
axiomatize this behavior.
Definition 7.5.3 Let K be a triangulated category and A be an abelian category. We
say that an additive functor H : K → A is cohomological is, for every distinguished
triangle

L M N T(L),
ϕ ψ ρ

the sequence

H(L) H(M) H(N)
H(ϕ) H(ψ)

is exact in A.

Since we can use the axiom TR2 to rotate our distinguished triangles, we obtain a
(infinite) sequence of distinguished triangles

L M N T(L)

M N T(L) T(M)

N T(L) T(M) T(N)

T(L) T(M) T(N) T2(L).

ϕ ψ ρ

ψ ρ −T(ϕ)

ρ −T(ϕ) −T(ψ)

−T(ϕ) −T(ψ) −T(ρ)

Moreover, we can make sure that in each triangle the first two morphisms don’t
have a minus sign. For example, the commutative diagram

N T(L) T(M) T(N)

N T(L) T(M) T(N)

ρ

idN

−T(ϕ)

idT(L)

−T(ψ)

− idT(M) T(idN)

ρ T(ϕ) T(ψ)
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shows that the third triangle is isomorphic to a triangle with the same objects but
whose first two morphisms "don’t have a minus sign". By applying a cohomological
functorH, we obtain a long exact sequence associated with our original distinguished
triangle

· · · H(L) H(M) H(N)

H(T(L)) H(T(M)) H(T(N)) · · · .

H(ϕ) H(ψ)

H(ρ)

H(T(ϕ)) H(T(ψ))

As we just hinted, the functor Hi : K∗(A) → A, for all i, is cohomological. But it
isn’t by all means the only one. The proposition below gives two other cohomolog-
ical functors which will allow the use of the Yoneda lemma to study triangulated
categories.

Proposition 7.5.3 Let K be a triangulated category. Then, the functors

HomK(P,−) : K→ Ab and HomK(−, P) : Kop → Ab,

for every object P of K, are cohomological.

Proof. We’ll only prove the covariant statement, for HomK(−, P) = HomKop(P,−) im-
plies the other. Consider the following distinguished triangle in K:

L M N T(L).
ϕ ψ ρ

In order to show thatHomK(P,−) is cohomological, we need to prove that the induced
sequence

HomK(P, L) HomK(P,M) HomK(P,N)

is exact. Sinceψ ◦ϕ = 0, due to the proposition 7.5.1, it suffices to show that for every
α : P →M such thatψ◦α = 0, there exists a morphism β : P → L such that α = ϕ◦β.
Now, consider the diagram below:

P 0 T(P) T(P)

M N T(L) T(M).

α

− idT(P)

T(α)

ψ ρ −T(ϕ)

Its lower row is a distinguished triangle, since it is nothing but our original triangle
rotated with help of the axiom TR2. The upper row is also a distinguished triangle by
the axioms TR1 and TR2. The axiom TR3 gives a morphism T(P) → T(L) making it
commute which, since T is fully-faithful, is of the form T(β) for exactly one β : P → L.
Since the square on the right commutes, T(α) = T(ϕ) ◦ T(β) = T(ϕ ◦ β). This implies
that α = ϕ ◦ β and finishes the proof.
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We now prove a couple of interesting corollaries. The one below is a form of the
five lemma for triangulated categories.

Corollary 7.5.4 Consider the following morphism of distinguished triangles in a
triangulated category K:

L M N T(L)

L ′ M ′ N ′ T(L ′).

λ µ ν T(λ)

If two of the vertical morphisms λ, µ and ν are isomorphism, then so is the third.

Proof. Without loss of generality, we may suppose that λ and µ are isomorphisms.
Let P be an object of K and H := HomK(P,−). By applying H, we get a commutative
diagram of abelian groups

H(L) H(M) H(N) H(T(L)) H(T(M))

H(L ′) H(M ′) H(N ′) H(T(L ′)) H(T(M ′))

H(λ) H(µ) H(ν) H(T(λ)) H(T(µ))

which, due to the proposition above and its preceding discussion, has exact rows. The
five lemma (proposition 6.6.2) then implies that H(ν) is an isomorphism of abelian
groups and, in particular, of sets. Since this holds for every P, the Yoneda lemma
implies that ν is an isomorphism.

If the readerprefers to avoid theYoneda lemma,we can arrive at the same conclusion
in a direct way. Since

H(ν) : HomK(P,N)→ HomK(P,N
′)

α 7→ ν ◦ α

is an isomorphism for all P, we can take P = N ′ and conclude that there is some
α : N ′ → N such that ν ◦ α = idN ′ . That is, ν has a right inverse. The same argument
with the contravariant hom functor gives a left inverse to ν, proving that it is an
isomorphism.

One corollary of the result above is that the cone of a morphism is unique up to
isomorphism.

Corollary 7.5.5 Let K be a triangulated category and ϕ : L → M be a morphism in
K. Then the cone N of ϕ is unique up to isomorphism.
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Proof. Suppose that N ′ is another cone of ϕ. The axiom TR3 gives a morphism
ν : N→ N ′ making the diagram

L M N T(L)

L M N ′ T(L)

ϕ

idL

ψ

idM

ρ

ν T(idL)

ϕ

commute. The preceding corollary then implies that ν is an isomorphism.

We observe that the non-uniqueness in the induced morphism of the axiom TR3
implies that the isomorphism ν above is not necessarily unique. In particular, the
cone ofϕ is not functorial inϕ. As discussed right after the definition 7.4.2, this is the
raison d’être of the axiom TR4.

Corollary 7.5.6 Let K be a triangulated category and

L M N T(L)
ϕ ψ ρ

be a distinguished triangle. Thenϕ is an isomorphism if and only ifN is isomorphic
to the zero object.

Proof. Suppose that ϕ is an isomorphism, and let ϕ−1 :M → L be its inverse. Since
two of the vertical morphisms in the diagram (induced by the axiom TR3)

L M N T(L)

L L 0 T(L)

ϕ

idL

ψ

ϕ−1

ρ

T(idL)

idL

are isomorphisms, so isN→ 0. Conversely, suppose thatN is isomorphic to zero. By
rotating backwards our distinguished triangle, we obtain the diagram below

T−1(N) L M N

0 L L 0,

−T−1(ρ) ϕ

idL

ψ

idL

whose rows are distinguished triangles. The dashedmorphism, induced by the axiom
TR3, is an isomorphism by the proposition above. The commutativity of the diagram
then implies that so is ϕ.

We’re now in position to explain why the homotopic category (and the derived
category) are usually not abelian. The reader may remember the next result as saying
that "in a triangulated category, monomorphisms and epimorphisms split".
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Proposition 7.5.7 LetK be a triangulated category. Ifϕ : L→M is amonomorphism,
then there exists ρ : M → L such that ρ ◦ ϕ = idL. Dually, if ψ : M → N is an
epimorphism, then there exists σ : N→M such that ψ ◦ σ = idN.

Proof. Suppose that ϕ : L→M is a monomorphism. By the axioms TR1(b) and TR2,
there exists a distinguished triangle of the form

T−1(N) L M N.
ϕ

Due to the proposition 7.5.1, the composition T−1(N) → L → M is zero. But, since
ϕ is a monomorphism, it follows that T−1(N) → L is also zero. As HomK(−, L) is
cohomological, we get an exact sequence

HomK(M,L) HomK(L, L) HomK(T
−1(N), L),

0

which implies that HomK(M,L)→ HomK(L, L) is surjective. In particular, there exists
ρ :M→ L such that ρ ◦ϕ = idL. The other statement follows by duality.

The proposition above says, in particular, that if K(A) is abelian, then every exact
sequence splits, due to the splitting lemma (theorem 6.4.1). In fact, this also implies
that every exact sequence in A splits.

Corollary 7.5.8 Let A be an abelian category and suppose that K(A) is abelian. Then
every exact sequence in A splits.

Proof. Let ϕ : A→ B be a monomorphism in A and see this morphism in K(A). Since
we suppose that the homotopy category is abelian, we can factor ϕ as imϕ ◦ coimϕ
in K(A). As imϕ is a monomorphism and coimϕ is an epimorphism, the preceding
proposition gives morphisms ρ and σ such that ρ ◦ imϕ = id and (coimϕ) ◦ σ = id.

Let α = σ ◦ ρ : B → A. Observe that α is in A, since A embeds fully faithfully in
K(A), and that

ϕ ◦ α ◦ϕ = (imϕ ◦ coimϕ) ◦ (σ ◦ ρ) ◦ (imϕ ◦ coimϕ)
= imϕ ◦ (coimϕ ◦ σ)︸ ︷︷ ︸

id

◦ (ρ ◦ imϕ)︸ ︷︷ ︸
id

◦ coimϕ

= imϕ ◦ coimϕ = ϕ.

But ϕ is a monomorphism in A and so α ◦ ϕ = idA. The result then follows by the
splitting lemma.

This result was proved only for the homotopy category, since we are yet to see the
formal definition of the derived category. But the reader will realize in due time that
the same argument also proves that if D(A) is abelian, then every exact sequence in A
splits.7
7An abelian category where every exact sequence splits is said to be semisimple.
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8. The derived category
As hinted in the previous chapter, our goal is to eventually study the derived category
D(A), which will be constructed from the homotopy category K(A) by inverting all
the quasi-isomorphisms. Unlike homotopy equivalences, quasi-isomorphisms does
not define an equivalence relation, precluding us from defining D(A) by quotienting
the hom-sets as we did in the homotopy category. We shall need more powerful
machinery; the localization of categories.

8.1. Localization of categories
The main idea of this section is very simple: given a category C and a collection of
morphisms S in C, we will define a category S−1C, along with a functorQ : C→ S−1C
sending all elements of S to isomorphisms in S−1C, and such thatQ is universal with
this property. In other words, we’ll establish the following theorem.

Theorem 8.1.1 Let C be a category and S a collection of morphisms in C. Then
there exists a category S−1C and a functor Q : C → S−1C satisfying the following
properties:

(a) for every s ∈ S, Q(s) is an isomorphism in S−1C;

(b) if F : C→ D is a functor such that F(s) is an isomorphism for every s ∈ S, there
exists a unique functor S−1C→ D making the diagram

C D

S−1C

F

Q

commute.

Moreover, S−1C is unique up to a unique isomorphism.

We say that S−1C is the localization of C with respect to S. Before going on to the
proof of this result, it is useful to understand how the explicit construction of S−1C
works. Let’s begin by posing that S−1C should have the same objects as C. As for the
morphisms, ifM andN are objects of C, we define a path fromM toN to be a diagram
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8. The derived category

of the form

M L1 L2 · · · Ln N,
f0 s1 s2 fn−1 sn

where L1, . . . , Ln are objects of C, the arrows fi to the right are morphisms of C, and
the arrows si to the left are elements of S. We denote such a path symbolically as
s−1n ◦ fn−1 ◦ · · · ◦ s−12 ◦ s−11 ◦ f0. Now, in order for this representation to function as
it should, we define an equivalence relation on paths by imposing that compositions
behave well

Li−1 Li Li+1
fi−1 fi is equivalent to Li−1 Li+1,

fi◦fi−1

that we may ignore identities

Li−1 Li Li Li+1
fi−1 idLi fi is equivalent to Li−1 Li Li+1,

fi−1 fi

and that arrows to the left correspond to inverses

M N M

N M N

s s

s s

are equivalent to
M M

N N.

idM

idN

We then define amorphismM→ N in the localization S−1C to be an equivalence class
of paths fromM to N. Composition of morphisms is given simply by concatenation.
Moreover, the identity morphism idM in S−1C of an objectM is the equivalence class
of the path

M M.
idM

Finally, the functor Q : C → S−1C is given by the identity on objects and sends a
morphism f :M→ N to the equivalence class of the path

M N.
f

We now verify all the formal details for the proof of our theorem.

Proof of theorem 8.1.1. First and foremost, we remark that we have indeed defined
an equivalence relation on paths and that S−1C is indeed a category. Also, the image
Q(s) of any morphism s : M → N in S is indeed an isomorphism in S−1C, whose
inverse is represented by

N M.
s

As for the universal property, let F : C → D be a functor such that F(s) is an isomor-
phism for every s ∈ S. We define a functor G : S−1C → D which is equal to F on
objects and sends the equivalence class of a path

M L1 L2 · · · Ln N
f0 s1 s2 fn−1 sn
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8.1. Localization of categories

to the composition

F(M) F(L1) F(L2) · · · F(Ln) F(N).
F(f0) F(s1)

−1 F(s2)
−1 F(fn−1) F(sn)

−1

Since functors preserve composition and identities, this is independent of the choice
of representative. This functor indeed satisfies F = G ◦ Q and, by construction, is
uniquely determined by F. The uniqueness of the localization follows as usual from
universal properties.

As a quick corollary, we observe that localization behaves well with relation to the
opposite category.

Corollary 8.1.2 Let C be a category and S a collection of morphisms in C. The
category (S−1C)op is isomorphic to the localization of Cop with respect to Sop.

Proof. Consider the functorQop : Cop → (S−1C)op. It is clear thatQop sends elements
of Sop to isomorphisms. Now, if F : Cop → D is a functor sending elements of Sop to
isomorphisms, its opposite Fop : C → Dop sends elements of S to isomorphisms and
so factors through the localization S−1C:

C Dop

S−1C.

Fop

Q

The image of the diagram above by the opposite category functor gives the existence
of a unique functor (S−1C)op → D making the diagram

Cop D

(S−1C)op

F

Qop

commute. The uniqueness of the localization then yields the desired result.

The homotopy category K(A) is already the localization of C(A) with respect to the
collection of homotopy equivalences. In addition, we’ll define the derived category
D(A) as the localization of C(A) (or, as we’ve seen, K(A)) with respect to the collection
of quasi-isomorphisms. Before going any further, let’s check another interesting
example.
� Example 8.1.1 — Lie’s third theorem. Let LieGrp be the category of connected Lie groups
and LieAlg be the category of finite-dimensional Lie algebras. The tangent space at the
identity functor

LieGrp→ LieAlg
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8. The derived category

is faithful and essentially surjective, but it isn’t an equivalence of categories. Indeed,
if ϕ : G → G ′ is a covering map, its differential at the identity deϕ : g ′ → g is an
isomorphism.

There are twoways of turning this functor into an equivalence of categories. Perhaps
the simplest way is to restrict its domain to the full subcategory of simply connected
Lie groups. But another way is to simply localize LieGrp with respect to all covering
maps.1 Then the universal property of localization gives an equivalence of categories
between this localization and LieAlg. �

A huge collection of examples are of the following form.
� Example 8.1.2 — Reflective localization. Let D be a full subcategory of C. We say
that D is a reflective subcategory if the inclusion functor i : D → C admits a left adjoint
r : C→ D. Let S be the collection of morphisms inCwhich are sent to an isomorphism
by r. Then D is equivalent to the localization S−1C. (Proposition 5.3.1 in [3].)
A plethora of examples of localization are of this form. The functor Grp → Ab

sending a group to its abelianization identifies Ab as a localization of Grp. Similarly,
the fraction field functor IntDom → Fld, from the category of integral domains and
injective morphisms to the category of fields, identifies Fld as a localization of IntDom.
The reader which already has some knowledge of algebraic geometry may appreciate
that both the sheafification functor and the functor

Sch→ Aff
X 7→ Spec Γ(X,OX),

from the category of schemes to the category of affine schemes, are examples of
reflective localization. �

There are two issues with our notion of localization that ought to be addressed.
Firstly, the localization of a locally small category need not be locally small.2 This may
be a problem for applying the Yoneda lemma, for example. Fortunately, almost all the
localizations we are interested in will be locally small. (We’ll soon see that the derived
category of a Grothendieck abelian category is locally small.)
Another problemwith our notion of localization is that, if C is additive, it isn’t clear

if S−1C is also additive or not. Indeed, how can we sum paths? We can solve this
problem by forcing every path fromM to N to be equivalent to a path of the form

L

M N,

f s

1The reader may wonder if the composition of covering maps is still a covering map. Somewhat
surprisingly, this is false in general, but it holds for manifolds due to the theorem 2.11 in [19].

2Or, using the formalism of Grothendieck universes, the localization of a category need not exist in
our fixed universe.
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8.1. Localization of categories

which we call a roof. We’ll then conclude that any two roofs can be written with the
same morphism s on the right, allowing their sum.
Definition 8.1.1 — Multiplicative system. Let C be a category and S be a collection of
morphisms in C. We say that S is a left multiplicative system if it satisfies:

(LMS1) S is stable under composition and contains all the identities of C.

(LMS2) For any pair of morphisms f : L→ N in C and s : L→M in S, there exists
g :M→ L ′ in C and t : N→ L ′ in Smaking the diagram

L ′

M L N

g

s f

t

commute.

(LMS3) For every pair of morphisms f, g : L → L ′ in C and s : M → L in S such
that f ◦ s = g ◦ s, there exists t : L ′ → N in S such that t ◦ f = t ◦ g.

The conditions for a right multiplicative system, denoted RMS, are the same with all
the arrows reversed. We say that S is a multiplicative system if it’s both a right and a
left multiplicative system.

While the axiom LMS3 may seem somewhat technical, the other two axioms are
precisely what we need in order for every morphism in S−1C to be represented by a
roof. Indeed, if S is a left multiplicative system, the axiom LMS2 allows us to gather
all the inverse arrows on the right side of the path and the axiom LMS1 says that all
these inverse arrows become one single element of S.
Even better, we can detect equivalence of paths without ever leaving the realm of

roofs. Formally, there exists an equivalence relation ∼L on roofs which induces a
dashed isomorphism making the diagram

{roofs fromM to N} {paths fromM to N}

{roofs fromM to N}/ ∼L HomS−1C(M,N)
∼

commute. We say that two roofs

L1

M N

f1 s1 and
L2

M N

f2 s2
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8. The derived category

are∼L equivalent if there exists an objectL inC andmorphismsp1 : L1 → L, p2 : L2 → L

making the diagram

L

L1 L2

M N

p1 p2

f1 f2 s1
s2

commute and such that p2 ◦ s2 = p1 ◦ s1 is in S. We observe that, if S is a right
multiplicative system, every morphism in S−1C can be represented by a trough

M N

L

s f

and we have a similar relation ∼R for such diagrams. The next proposition proves all
these claims. Since a right multiplicative system on C is nothing but a left multiplica-
tive system on Cop, we’ll henceforth only cite and prove results for left multiplicative
systems, for analogous results hold by duality.

Proposition 8.1.3 Let S be a left multiplicative system in a category C, and letM,N
be two objects of C. Then ∼L is an equivalence relation on the collection of roofs
fromM to N. Moreover, the canonical morphism sending a roof to a morphism in
S−1C descends to the quotient defining an isomorphism

HomS−1C(M,N) ∼= {roofs fromM to N}/ ∼L .

Proof. The relation ∼L is clearly reflexive and symmetric. As for transitivity, suppose
that

L1

M N

f1 s1 ∼L

L2

M N

f2 s2 and
L2

M N

f2 s2 ∼L

L3

M N.

f3 s3

This means that there exists objects L12 and L23, alongwithmorphisms p1, p2, p ′2, and
p3 making the diagrams

L12

L1 L2

M N

p1 p2

f1 f2 s1
s2

and

L23

L2 L3

M N

p ′2 p3

f2 f3 s2
s3
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8.1. Localization of categories

commute. Moreover, p2 ◦ s2 = p1 ◦ s1 and p3 ◦ s3 = p ′2 ◦ s2 are in S. In particular, the
axiom LMS2 gives the existence of the dashed morphisms making the diagram

L

L12 L23

N

p2◦s2 p ′2◦s2

p s

commute. Now, the axiom LMS3 gives an object L ′ and a morphism t : L → L ′ in S
such that t ◦ p ◦ p2 = t ◦ s ◦ p ′2. This morphism makes the diagram

L ′

L1 L3

M N

t◦p◦p1 t◦s◦p3

f1 f3 s1
s3

commute. Indeed,

t ◦ p ◦ p1 ◦ f1 = t ◦ p ◦ p2 ◦ f2 = t ◦ s ◦ p ′2 ◦ f2 = t ◦ s ◦ p3 ◦ f3

and
t ◦ p ◦ p1 ◦ s1 = t ◦ p ◦ p2 ◦ s2 = t ◦ s ◦ p ′2 ◦ s2 = t ◦ s ◦ p3 ◦ s3.

Moreover, t ◦ s ◦ p3 ◦ s3 is in S since p3 ◦ s3, s, and t are. This finishes the proof that
∼L is transitive.

We now prove that the natural morphism sending a roof from M to N to the
associated morphismM→ N in S−1C descents to the quotient by ∼L. Let

L1

M N

f1 s1 and
L2

M N

f2 s2

be ∼L equivalent roofs. This means that there exists p1 and p2 such that

p1 ◦ f1 = p2 ◦ f2
p1 ◦ s1 = p2 ◦ s2
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8. The derived category

and such that the latter is in S. Then, denoting by ∼ the equivalence of paths, we have
that

s−11 ◦ f1 ∼ (p2 ◦ s2)−1 ◦ (p1 ◦ s1) ◦ s−11 ◦ f1
∼ (p2 ◦ s2)−1 ◦ p1 ◦ f1
∼ (p2 ◦ s2)−1 ◦ p2 ◦ f2
∼ (p2 ◦ s2)−1 ◦ p2 ◦ s2 ◦ s−12 ◦ f2 = s−12 ◦ f2,

proving that s−11 ◦ f1 and s−12 ◦ f2 define the same morphism in S−1C. In other words,
we have a dashed map making the diagram

{roofs fromM to N} {paths fromM to N}

{roofs fromM to N}/ ∼L HomS−1C(M,N)

commute. As we already saw, every morphism in S−1C can be represented by a roof,
meaning that this map is surjective. In order to prove that it’s injective as well, it
suffices to find a left inverse.

Consider a path fromM to N like this:

M • • • • • • N.

As a first step, we compose all the composable morphisms; yielding something like
the path below.

M • • • • N

Then, we apply successively the axiom LMS2 to all pairs of arrows of the form • ←
• → •.

•

• •

M • • • • N

Finally, we compose the outermost arrows to yield a roof. We want to declare this
roof as the image of a morphism

{paths fromM to N}→ {roofs fromM to N}/ ∼L .

Since the axiom LMS2 only gives the existence, but not the unicity, of the morphisms
that we used, we need to verify that our definition is independent of any choices. In
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8.1. Localization of categories

other words, ifM s←− L f−→ N is a path and we have two commutative diagrams

L1

M L N

g1 t1

s f

and
L2

M L N

g2 t2

s f

coming from the axiom LMS2, we need to show that the roofs t−11 ◦ g1 and t−12 ◦ g2
are ∼L-equivalent.
By the same axiom LMS2, there exists p1 : L1 → P in C and p2 : L2 → P in Smaking

the diagram
P

L1 N L2

p1 p2

t1 t2

commute. Since p1 ◦ t1 = p2 ◦ t2, we have that

p1 ◦ g1 ◦ s = p1 ◦ t1 ◦ f = p2 ◦ t2 ◦ f = p2 ◦ g2 ◦ s,

and so the axiomLMS3gives amorphism t : P → Q inS satisfying t◦p1◦g1 = t◦p2◦g2.
In other words, making the diagram

Q

L1 L2

M N

g1 g2 t1
t2

t◦p1 t◦p2

commute. This proves that the roofs t−11 ◦ g1 and t−12 ◦ g2 are ∼L-equivalent.
We now prove that this morphism descends to the quotient, defining a morphism

HomS−1C(M,N)→ {roofs fromM to N}/ ∼L,

which is clearly the desired left inverse. Since the equivalence relation ∼ on paths is
generated by four simple equivalences, it suffices to verify that the roofs assigned to
those equivalent paths coincide. Now, it’s manifest that the roofs assigned to

Li−1 Li Li+1
fi−1 fi and Li−1 Li+1

fi◦fi−1

coincide, and that the roofs assigned to

Li−1 Li Li Li+1
fi−1 idLi fi and Li−1 Li Li+1

fi−1 fi
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coincide. Indeed, the first step is to compose all composable morphisms. The roofs
assigned to

M N M
s s and M M

idM

are ∼L equivalent due to the commutativity of the diagram

N

N M

M M.

s idM

idN s

idM s

Finally, we finish the proof by proving that the roofs assigned to

N M N
s s and N N

idN

are ∼L equivalent. The axiom LMS2 gives morphisms g : N → L and t : N → L,
with the latter in S, satisfying g ◦ s = t ◦ s. Then, the axiom LMS3 gives a morphism
p : L→ P in S satisfying p ◦ g = p ◦ t. In particular, the diagram

P

L N

N N

idN idNg
t

p p◦t

commutes and p ◦ t ◦ idN is in S; yielding the result.

In a similar vein, the composition of morphisms can also be seen without leaving
the realm of roofs. Indeed, given two roofs

L1

M N

f1 s1 and
L2

N P,

f2 s2

we may use the axiom LMS2 to find morphisms g : L1 → L in C and t : L2 → L in S
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8.2. Localization of additive and abelian categories

making the diagram

L

L1 L2

M N P

f1 s1 f2 s2

g t

commute. The composition of our given roofs is none other than the roof (t ◦ s2)−1 ◦
(g ◦ f1) concocted from the outermost arrows.

8.2. Localization of additive and abelian categories

The categories which interested us in the previous two chapters were often endowed
with some extra structure or satisfied some good properties. This section is then
dedicated to the study the localizations of (pre)additive and abelian categories.

Our first task is to understand how can we sum two roofs in a preadditive category.
In precisely the same way that we sum fractions by writing them with a common
denominator, we can write any two roofs with a single morphism s on the right.

Proposition 8.2.1 Let S be a left multiplicative system in a category C. Every two
morphisms M → N in S−1C may be written as the equivalence classes of s−1 ◦ f
and s−1 ◦ g for suitable morphisms f, g in C and s ∈ S.

Proof. Consider the following two roofs fromM to N:

L1

M N

p1 s1 and
L2

M N.

p2 s2

The axiom LMS2 gives morphisms q : L1 → Q in C and t : L2 → Q in S making the
diagram

Q

L1 N L2

q t

s1 s2

commute. We affirm that the choice s = t◦s2, f = q◦p1, and g = t◦p2works. Indeed
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8. The derived category

the diagrams

Q

L1 Q

M N

p1 f ss1

idQq

and

Q

L2 Q

M N

p2 g ss2

idQt

commute.

Besides allowing the sum of two morphisms in a localization of a preadditive
category, the above writing also allows us to easily decide whether two morphisms in
the localization are equal. We claim that two morphisms in S−1C represented by the
roofs

L

M N

f1 s and
L

M N

f2 s

are equal if and only if there exists a morphism q : L→ L in C such that q ◦ s ∈ S and
q ◦ f1 = q ◦ f2. Indeed, both roofs are equivalent if and only if there exist morphisms
p1 : L→ L ′ and p2 : L→ L ′ making the diagram

L ′

L L

M N

p1 p2

f1 f2 s s

commute and such that p2 ◦ s = p1 ◦ s is in S. If there exists such a morphism q, we
may take p1 = p2 = q. Conversely, the axiom LMS3 gives a morphism t ∈ S such that
t ◦ p2 = t ◦ p1 and we may take q to be this common morphism.

Corollary 8.2.2 Let S be a leftmultiplicative system in a preadditive categoryA. Then
S−1A is also preadditive, and the localization functor Q : A → S−1A is additive.
Moreover, if B is another preadditive category and F : A→ B is an additive functor
such that F(s) is an isomorphism for every s ∈ S, the induced functor S−1A→ B is
also additive. If A is additive, then so is S−1A.

Proof. Given two roofs s−1◦f :M→ N and s−1◦g :M→ N, we define their sum to be
s−1◦(f+g). In order for this operation to descend toHomS−1A(M,N), we need to show
that ∼L-equivalent roofs give rise to the same sum. Now, by the preceding discussion,
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8.2. Localization of additive and abelian categories

if we change s−1 ◦ g to s−1 ◦ h, there exists a morphism q in A such that q ◦ g = q ◦ h
and q ◦ s ∈ S. But then the same discussion implies that s−1 ◦ (f+ g) ∼L s−1 ◦ (f+ h),
for

q ◦ (f+ g) = q ◦ (f+ h) and q ◦ s ∈ S.
This same criterion shows readily that composition is bilinear. Since the localization
functor Q sends a morphism f :M → N in A to id−1

N ◦f, our definition of sum makes
Q additive.

If B is another preadditive category and F : A → B is an additive functor such that
F(s) is an isomorphism for every s ∈ S, the induced functor S−1A → B sends a roof
s−1 ◦ f to F(s)−1 ◦ F(f). Its additivity then follows from the additivity of F.

Finally, if A is additive, the localization functor Q sends the zero-object of A to a
zero-object of S−1A. Also, the theorem 6.1.9 gives that the image byQ of a direct sum
in A defines a direct sum in S−1A.

We’re finally able to explain the rationale behind the nomenclature and notation
used in this section.
� Example 8.2.1 — Localization of noncommutative rings. LetA be a (not necessarily com-
mutative) ring. We define a category A which only has one object ∗ and such that
HomA(∗, ∗) = A. This is a preadditive category and, in this context, a leftmultiplicative
system S on A is a subset of A such that
(a) S is multiplicatively closed and contains 1;

(b) for every a ∈ A and s ∈ S, the set As ∩ Sa is nonempty;

(c) for every a ∈ A and s ∈ S, if as = 0, then ta = 0 for some t ∈ S.
A particular case of the preceding corollary proves the existence of localizations for left
multiplicative systems on any ring. This is a very important result on noncommutative
ring theory. �

For our next result, let C be a category and S be a left multiplicative system on C.
Given an objectN inC, we define a categoryN/Swhose objects aremorphismsN→ L

in S and whose morphisms are commutative diagrams

N

L1 L2,

where the arrow L1 → L2 is inC. A reasonable explanation for the axiomLMS3, which
seemed technical at first glance, is that it makes the categoryN/S filtered. While finite
limits don’t usually commute with colimits; in Set3 they do whenever the colimit in
question is filtered.
3Or in any algebraic category.
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8. The derived category

Proposition 8.2.3 Let S be a left multiplicative system in a category C. Then we may
write HomS−1C(M,N) as the filtered colimit

colim
(N→L)∈N/S

HomC(M,L).

In particular, the localization functorQ : C→ S−1C commutes with finite colimits.
Similarly, if S is a right multiplicative system, Q commutes with finite limits.

Proof. The category N/S being filtered means that: it has at least one object, that
for any two objects N → L1 and N → L2 in N/S we have a third object N → L with
morphisms

N

L1 L

and
N

L2 L,

and that for every pair of morphisms L1 ⇒ L2 inN/S, there exists a morphism L2 → L

in N/Smaking the diagram

N

L1 L2 L

commute. All those properties follow readily from the axioms of a left multiplica-
tive system. Now, recall that filtered colimits in the category of sets have simple
descriptions. Namely,

colim
(N→L)∈N/S

HomC(M,L) =

 ∐
(N→L)∈N/S

HomC(M,L)

/ ∼,

whereM → L1 is equivalent toM → L2 if there’s morphisms L1 → L ← L2 in N/S
making the diagram

L1

M L

L2

commute. This is precisely the equivalence relation on roofs; proving that the map
sending a roof to the associated equivalence class in the colimit is injective. It’s clear
that this map is also surjective.
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8.2. Localization of additive and abelian categories

Now, let D : I→ C be a finite diagram whose colimit exists. Then,

HomS−1C

(
Q

(
colim
I∈I

D(I)

)
, N

)
= colim

(N→L)∈N/S
HomC

(
colim
I∈I

D(I), L

)
= colim

(N→L)∈N/S
lim
I∈I

HomC(D(I), L)

= lim
I∈I

colim
(N→L)∈N/S

HomC(D(I), L)

= lim
I∈I

HomS−1C (Q(D(I)), N) ,

and the Yoneda lemma gives that Q (colimI∈ID(I)) = colimI∈IQ(D(I)). The other
statement follows by duality.

� The fact that we may write the hom-sets as a filtered colimit may lead us to think that
the localization functor should commute with arbitrary colimits and finite limits,
where it’s actually the opposite.

Since Ab has all filtered colimits, this gives another proof that the localization S−1A
is additive, whenever A is additive and S is a left multiplicative system. If A is actually
abelian and S is a "two-sided" multiplicative system, we have even more.

Corollary 8.2.4 Let S be a multiplicative system in an abelian category A. Then S−1A
is also abelian, and the localization functor Q : A → S−1A is exact. Moreover, if B
is another abelian category and F : A → B is an exact functor such that F(s) is an
isomorphism for every s ∈ S, the induced functor S−1A→ B is also exact.

Proof. The corollary 8.2.2 implies that S−1A is additive. We affirm that it has kernels
(that it has cokernels then follows by duality). Let

L

M N

f s

be a morphism in S−1A. Since Q(s) is an isomorphism, the kernel of this roof exists
if and only if the kernel of Q(f) exists. (In this case, the kernel of the roof coincides
with kerQ(f).) But the preceding proposition gives that Q(ker f) = kerQ(f); proving
that S−1A has kernels.

For completeness sake, let us be precise about what happens with cokernels. Let
ϕ : M → N be the roof above, and let L → C be the cokernel of Q(f). (Which is
also Q(coker f), due to the preceding proposition.) Since Q(s) is an isomorphism, we
obtain that

N L C
Q(s) cokerQ(f)
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8. The derived category

satisfies the universal property of cokerϕ. Alternatively, we could work with troughs
and write the cokernel of ϕ = g ◦ t−1 simply as cokerQ(g).

In order to finish the proof that S−1A is abelian, we’ll use the proposition 6.2.6. We
remark that the previous discussion implies that

ker(cokerQ(f)) = Q(s) ◦ ker(cokerϕ)
coker(kerQ(f)) = coker(kerϕ).

In particular, we apply the localization functorQ to the square in proposition 6.2.6 to
obtain the commutative diagram

M L

N

C ′ K ′.

coker(kerϕ)

Q(f)

Q(f)

ker(cokerϕ)

Q(s)

ker(cokerQ(f))

By reordering, we conclude that the diagram

M N

C ′ K ′

coker(kerϕ)

Q(f)

ker(cokerϕ)

ϕ

commutes and that Q(f) is an isomorphism, for f is. The same proposition 6.2.6 then
implies the result.

The localization functor Q : A → S−1A is exact since it commutes with finite
(co)limits (by the preceding proposition). If F : A → B is an exact functor such that
F(s) is an isomorphism for every s ∈ S, we have an induced functor H : S−1A→ B by
the universal property of localization. We affirm that it’s, moreover, exact. Let

0 M N P 0
ϕ ψ

be an exact sequence in S−1A, where ϕ = s−1 ◦ f and ψ = t−1 ◦ g. Since ψ is an
epimorphism, cokerQ(g) is the zero-morphism and so Q(img) = ker(cokerQ(g)) is
an isomorphism. The universal property of kernels induces a morphism α : M → K

in S−1A making the diagram

0 M N P 0

L ′

0 K N I 0

ϕ ψ

Q(coimg)Q(kerg)

Q(t)

Q(img)−1

α
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8.2. Localization of additive and abelian categories

commute, and the snake lemma implies that it’s an isomorphism. In other words, our
exact sequence is isomorphic to the image under Q of a short exact sequence in A.
Finally, the fact that F = H ◦Q is exact implies that so is H.

There’s another point of view which is often used when dealing with localizations
of abelian categories. For that we need the definition below.
Definition 8.2.1 — Thick subcategory. Let A be an abelian category. We say that a
non-empty full subcategory C of A is thick if for any short exact sequence in A

0 M N P 0,

N is in C if and only ifM and P are.

Due to the corollary 6.2.2, a thick subcategory is always abelian. The discussion
after the definition 6.4.2 implies that if C is a thick subcategory of A and

M N P

is an exact sequence, then N is in C ifM and P are. Conversely, let C be a non-empty
full subcategory of Awhere, for every exact sequence as above,N is in CwheneverM
and P are. If Q is any object of C, the sequence

Q 0 Q

is exact, and so 0 ∈ C. Then, we may split a short exact sequence into three even
shorter exact sequences and obtain that C is thick. We’ll use both characterizations
interchangeably.

The raison d’être of such subcategories is the result below.

Proposition 8.2.5 Let A be an abelian category. Given a multiplicative system S in A,
the full subcategoryCS, composed of the objects which are isomorphic to 0 in S−1A,
is thick. Conversely, given a thick subcategoryC, the collection SC of all morphisms
ϕ in A such that kerϕ and cokerϕ are in C is a multiplicative system.

Proof. Let S be a multiplicative system in A and consider a short exact sequence

0 M N P 0

in A. Since the localization functor Q is exact, the sequence

0 Q(M) Q(N) Q(P) 0

in S−1A is also exact. Now, by exactness,Q(N) is zero precisely when bothQ(M) and
Q(P) are. In other words, N is in CS if and only if M and P are; proving that CS is
thick.

163



8. The derived category

Conversely, let C be a thick subcategory of A. By duality, it suffices to show that
SC satisfies the axioms of a left multiplicative system. Since 0 ∈ C, SC contains all
identities. Also, if f : M → N and g : N → P are morphisms in SC, the snake lemma
applied to the diagram

M N coker f 0

0 P P 0
idP

f

gg◦f

yields a long exact sequence

0 ker f ker(g ◦ f) kerg

coker f coker(g ◦ f) cokerg 0.

Then, the fact that C is thick implies that ker(g ◦ f) and coker(g ◦ f) are in C, proving
that g ◦ f ∈ SC, and so SC satisfies LMS1.
Given a pair of morphisms f : L → N in A and s : L → M in SC, we consider their

pushout
L M

N L ′.

f

s

g

t

The axiom LMS2 will follow as soon as we prove that t is in SC. The proposition 6.3.6
gives an isomorphism coker s → coker t and an epimorphism ker s → ker t, implying
that ker t, coker t ∈ C.
In order to obtain the axiom LMS3, consider morphisms f : L → L ′ in A and

s : M → L in SC satisfying f ◦ s = 0. As in proposition 7.1.3, there’s a natural
epimorphism

coker s→ coim f,

proving that coim f ∈ C. We recall that, as objects of A, coim f = im f by the first
isomorphism theorem. Then, we may define t as the natural quotient L ′ → coker f,
which is in SC for ker t = im f and coker t = 0.

Given a thick subcategory C, the collection of morphisms SC is no ordinary multi-
plicative system. It satisfies an even stronger property; namely, the morphisms in A
that are sent to isomorphisms in S−1C A are precisely the elements of SC. Indeed, suppose
that Q(f) is an isomorphism, and let t−1 ◦ g be an inverse to it. Since t−1 ◦ g ◦ f is the
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8.2. Localization of additive and abelian categories

identity morphism, there exists morphisms h in A and s in SC making the diagram

L ′

L M

M M

g◦f
tidM

idM

h s

commute. That is, satisfying s = h ◦ t and s = h ◦ g ◦ f. We apply the first equation
to the long exact sequence used in the proof of the preceding proposition to conclude
that h ∈ SC. Then, the same exact sequence applied to the other equation implies that
ker f ∈ C. Finally, we may write the inverse of Q(f) as a trough and do exactly the
same reasoning to conclude that coker f ∈ C. façam essa conta pls

Themultiplicative systems Swhich satisfy the property thatQ(f) is an isomorphism
in S−1A if and only if f ∈ S are said to be saturated. Such multiplicative systems are in
one-to-one correspondence with thick subcategories.

Corollary 8.2.6 The operations C 7→ SC and S 7→ CS define a bĳection between thick
subcategories and saturated multiplicative systems.

Proof.

Motivated by the results above, we define the quotient A/C of an abelian category
A by a thick subcategory C as the localization S−1C A. These quotients are often called
Serre quotients in the literature.

Given an exact functor F : A → B between abelian categories, its kernel is the full
subcategory of A composed of the objects whose image by F is zero. It’s clear that
the kernel of an exact functor is thick. As in basically every algebraic category, the
existence of quotients gives the converse. In this case, our last results imply that every
thick subcategory C of A is the kernel of some exact functor. Namely, the quotient /
localization functor Q : A→ A/C.

Wemayalso rephrase theuniversal property of localization obtained in the corollary
8.2.4 using the point of view of quotients. If F : A→ B is an exact functor whose kernel
contains C, then F factors uniquely through the quotient A/C.

In due time, we’ll see that many interesting abelian categories are Serre quotients of
A-Mod, for some (not necessarily commutative) ring A. (Theorem 10.3.1.) We present
two other examples of Serre quotients.
� Example 8.2.2 Let S be a multiplicative subset of a ring A and C be the category of
A-modules whose elements are annihilated by some element of S. (These A-modules
are often said to have S-torsion.) It’s clear that C is a thick subcategory of A-Mod. We
affirm that S−1A-Mod is canonically equivalent to A-Mod/C.
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8. The derived category

Let f : A → S−1A (resp. Q : A-Mod → A-Mod/C) be the localization map (resp.
functor). The functor f∗ : A-Mod→ S−1A-Mod, which sendsM toM⊗AS−1A ∼= S−1M,
is exact and maps elements of C to zero. The universal property then implies that it
descends to an exact functor f̃∗ : A-Mod/C→ S−1A-Mod.

Denoting by f∗ : S−1A-Mod → A-Mod the restriction of scalars functor, the adjunc-
tion f∗ a f∗ gives rise to another adjunction f̃∗ a Q ◦ f∗. The unit of the latter is a
natural isomorphism, which proves that f̃∗ is fully faithful. Finally, it’s also essen-
tially surjective since the restriction of scalars of a S−1A-module N to A is sent to an
isomorphic copy of N. This finishes the proof.

In particular, the quotient of Ab by the thick subcategory of torsion groups is
equivalent to Q-Vect. �

The reader that already knows some algebraic geometry may be pleased to know
that the basic theory of quasicoherent sheaves on projective schemes may be phrased
using Serre quotients.
� Example 8.2.3 Let A be a N-graded ring, which is finitely generated by A1 as an A0-
algebra, and X = ProjA. We denote by A-GrMod the category of graded A-modules
M such that

⊕
d>nMd is finite for some n. The usual tilde functor

r : A-GrMod→ QCoh(X)

M 7→ M̃

is exact and its kernel, denoted byA-GrMod0, is composedby themodulesM satisfying
Md = 0 for all d large enough. [16, Proposition 2.7.3] The tilde functor r admits a
right adjoint Γ•, defined by

Γ•(F ) :=
⊕
n∈Z

Γ(X,F (n)),

which is fully faithful due to the fact that the counit

Γ̃•(F )→ F

is a natural isomorphism. Then, the formalism of example 8.1.2 implies that r factors
through the quotient and that

A-GrMod/A-GrMod0 → QCoh(X)

is an equivalence of categories. �

8.3. Localization of triangulated categories
As we just saw, in good cases, the localization of an abelian category is still abelian. A
similar theory exists for triangulated categories, and it forms the basis for the study
of derived categories.
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If (K, T) is a triangulated category and S is amultiplicative system, we already know
that S−1K is additive. In order for T : K→ K to descend to the localization making the
diagram

K K

S−1K S−1K

T

QQ

commute, we need to impose that T(s) ∈ S for all s ∈ S. We denote the induced
functor S−1K → S−1K by TS. If, moreover, T−1(s) lies in S whenever s ∈ S, then T−1
also descends to S−1K and defines an inverse to TS : S−1K → S−1K; proving that it’s
an additive isomorphism of categories. This motivates the first part of the definition
below.
Definition 8.3.1 Let (K, T) be a triangulated category and consider the following
axioms on a collection of morphisms S in K:

(TMS1) We have that T i(s) ∈ S for all i ∈ Z, whenever s ∈ S.

(TMS2) Given a commutative diagram

L M N T(L)

L ′ M ′ N ′ T(L ′),

λ µ

whose rows are distinguished triangles and whose columns are in S,
there’s a morphism ν : N→ N ′ in Smaking the diagram

L M N T(L)

L ′ M ′ N ′ T(L ′)

λ µ ν T(λ)

commute.

A multiplicative system S satisfying the axioms above is said to be compatible with
the triangulated structure.

The secondpart of this definition, a twisted formof the axiomTR3, will be necessary
to prove that the localization S−1K still satisfies the axioms of a triangulated category.
We remark in the next proposition that the axioms for a multiplicative system are not
all independent.
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8. The derived category

Proposition 8.3.1 Let (K, T) be a triangulated category and S be a collection of mor-
phisms in K. If S satisfies the axioms LMS1, TMS1 and TMS2, then it also satisfies
LMS2. Similarly, if it satisfies RMS1, TMS1 and TMS2, it also satisfies RMS2.

Proof.

Since we want the localization functor Q : K → S−1K to be triangulated, we have
no choice but to declare a triangle in S−1K to be distinguished if it’s isomorphic to the
image by Q of a distinguished triangle in K.

Proposition 8.3.2 Let (K, T) be a triangulated category and S be a multiplicative
system compatible with the triangulated structure in K. Then the aforementioned
structure makes S−1K a triangulated category and Q : K → S−1K a triangulated
functor.

Proof.

As with (pre)additive and abelian categories, the localization of a triangulated
category also inherits a better universal property.

Corollary 8.3.3 Let F : K → K ′ be a triangulated functor and S be a multiplicative
system in K compatible with the triangulated structure. If F(s) is an isomorphism
whenever s ∈ S, then the induced functor S−1K→ K ′ is also triangulated.

Proof.

We remark that the proof of the corollary 8.1.2 now implies that (S−1K)op is isomor-
phic to the localization of Kop with respect to Sop.

The localization of a triangulated category also inherits a universal property with
respect to cohomological functors.

Corollary 8.3.4 Let K be a triangulated category, A be an abelian category, and
H : K→ A be a cohomological functor. Suppose that S be a multiplicative system in
K compatible with the triangulated structure. If H(s) is an isomorphism whenever
s ∈ S, then the induced functor S−1K→ A is also cohomological.

Proof.

Recall that a multiplicative system S in a category C is said to be saturated if the
morphisms in C that are sent to isomorphisms in S−1C are precisely the elements
of S. The next proposition gives a source of (saturated) multiplicative systems in
triangulated categories.

168
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Proposition 8.3.5 Let (K, T) be a triangulated category, A be an abelian category, and
H : K→ A be a cohomological functor. The collection

S :=
{
smorphism in K

∣∣H(T i(s)) is an isomorphism for all i ∈ Z
}

is a saturated multiplicative system compatible with the triangulated structure.

Proof.

As with abelian categories, there’s another point of view to the localization of
triangulated categories that’s occasionally useful.
Definition 8.3.2 — Thick subcategory. Let K be a triangulated category. We say that
a triangulated subcategory C of K is thick if wheneverM ⊕ N is isomorphic to an
object of C, so areM and N.

Notice that the kernel (the full subcategory composed of the objects whose image is
isomorphic to zero) of a triangulated functor F is always thick. Indeed, if F(M⊕N) =

F(M)⊕ F(N) is zero, so are F(M) and F(N).
Somewhat similarly to the proposition 8.2.5, we have a dictionary between trian-

gulated subcategories and multiplicative systems compatible with the triangulated
structure. This next proposition is the only place, so far, where we need the axiom
TR4 and it’s Verdier’s original motivation for it. [37, §2.2.12]

Proposition 8.3.6 Let K be a triangulated category. Given a multiplicative system
compatible with the triangulation S in K, the kernel CS of the localization functor
Q : K→ S−1K is a triangulated subcategory of K. Conversely, given a triangulated
subcategory C of K, the collection SC of all morphisms in K whose cone is in C is a
multiplicative system compatible with the triangulation.

Proof.

Since the kernel of a triangulated functor is always a thick subcategory, there’s no
chance for the preceding proposition to yield a one-to-one correspondence between
triangulated subcategories and multiplicative systems compatible with the triangula-
tion. It does, however, yield a bĳection when restricted to thick subcategories.

Corollary 8.3.7 We use the notations of the proposition above. If S is saturated,
then CS is thick. Moreover, the operations C 7→ SC and S 7→ CS define a bĳection
between thick subcategories and saturated multiplicative systems compatible with
the triangulation.

Proof.
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8. The derived category

As with abelian categories, we define the quotient K/C of a triangulated category K
by a (not necessarily thick) triangulated subcategoryC as the localization S−1C K. These
quotients are often called Verdier quotients in the literature.

� We remark that the kernel of the localization / quotient functor Q : K → K/C need
not beC. It’s actually the smallest thick subcategory of K containingC. In particular,
the kernel is C if the latter is thick.

The universal properties of corollaries 8.3.3 and 8.3.4 may be translated naturally
to this point of view. A triangulated functor F : K → K ′ whose kernel contains C
factors uniquely through the quotient K/C. A similar universal property holds for
cohomological functors.

8.4. The derived category
Definition 8.4.1 cat derivada

� Example 8.4.1 — Semisimple categories. �

Proposition 8.4.1 provar que a inclusão natural A → D(A) identifica A com a sub-
categoria plena de D(A) composta pelos complexos com cohomologia só em grau
0.

Proof.

Proposition 8.4.2 seq exatas curtas em C(A) (em particular em A) viram triângulos
em D(A)

Proof.

Definition 8.4.2 DB(A)

Proposition 8.4.3 DB(A) é uma subcategoria triangulada plena de D(A).

Proof.
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8.5. Resolutions
Ourmainmotivation for the definition of the homotopy category is that it is a stepping
stone to the derived category, where all quasi-isomorphisms become invertible. Since
homotopy equivalences are already invertible in the homotopy category, wemaywon-
der if there are complexes for which quasi-isomorphisms and homotopy equivalences
coincide.

We begin by recalling in the context of abelian categories the notions of projective
and injective objects.
Definition 8.5.1 Let A be an abelian category. We say that an object P ofA is projective
if the functor HomA(P,−) is exact. Similarly, an object Q is said to be injective if the
functorHomA(−, Q) is exact. We denote byProj(A), resp. Inj(A), the full subcategory
of A composed by the projective, resp. injective, objects.

Asprojective objects become injective in the opposite category,we’llmainly consider
injective objects in this section; the statements about projective objects will follow by
duality. We remark, however, that projective and injective objects in a given abelian
category may behave very differently.

There are two usual ways to rephrase the definition above. For the first, recall that
the Hom functor preserves limits in both variables. (Proposition 6.2.2 in [23].) The
proposition 6.5.4 then implies that both its covariant and contravariant forms are left
exact. In particular, an object Q is injective if and only if HomA(−, Q) is right exact.
This yields the proposition below.

Proposition 8.5.1 An object Q of an abelian category A is injective if and only if, for
every monomorphism ϕ : A→ B, any morphism A→ Q factors through ϕ:

Q

0 A B.ϕ

Proof. By our discussion above, Q is injective if and only if whenever a sequence

0 A B
ϕ

is exact, then so is its image through HomA(−, Q)

HomA(B,Q) HomA(A,Q) 0.

But epimorphisms inAb are precisely the surjectivemaps. This is exactly the condition
of the proposition.
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8. The derived category

The splitting lemma (theorem 6.4.1) gives yet another characterization of injective
objects.

Corollary 8.5.2 An object Q of an abelian category A is injective if and only if every
short exact sequence of the form

0 Q B C 0
ϕ ψ

splits.

Proof. The splitting lemma says that our short exact sequence splits if and only if
there exists a morphism ρ : B → Q such that ρ ◦ ϕ = idQ. If Q is injective, the
preceding proposition gives the desired ρ : B→ Q:

Q

0 Q B.ϕ

idQ
ρ

Conversely, let A→ B be a monomorphism and A→ Q be any morphism. By taking
their pushout P (and using the corollary 6.3.4), we obtain the commutative diagram
with exact rows

0 Q P

0 A B.

SinceQ→ P fits into a short exact sequence (with its cokernel), we obtain a morphism
P → Q giving us the condition of the proposition above.

Definition 8.5.2 K-injective / projective complexes

Proposition 8.5.3

Theorem 8.5.4 os Hom da cat derivada são iguais aos da cat de homotopia.

Proposition 8.5.5 injetivo implica k-injetivo

Definition 8.5.3 Resolution

Theorem 8.5.6 existencia de resoluções para D(A) onde A é Grothendieck; logo D(A)
é equivalente a K(K-injetivos)
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Corollary 8.5.7 nesse contexto D(A) é localmente pequena (talvez eu tenha que
provar isso antes)
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9. Derived functors

9.1. The 2-categorical point of view

9.2. Derived functors

9.3. Deformations

9.4. Tor and Ext

9.5. Spectral sequences
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10. Existence of resolutions

10.1. Grothendieck categories

10.2. Brown representability

10.3. Gabriel-Popescu
Theorem 10.3.1 — Gabriel-Popescu.

10.4. Existence of resolutions for modules

10.5. Existence of resolutions in general
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11. Sheaves and presheaves

Sheaf theory was conceived by the French mathematician Jean Leray while he was
held captive in the German camp Oflag XVII as a prisoner of war. There he gave a
course in algebraic topology introducing the ideas of sheaves and spectral sequences.
In loose terms, a sheaf is a tool for systematically tracking locally defined data attached
to the open sets of a topological space.
Sheaf theory forms an abstract machinery which describes much of modern math-

ematics. We’ll be able to put topological and smooth manifolds, complex manifolds,
schemes, topological coverings, vector bundles and a myriad of other objects in the
same standpoint.

11.1. Presheaves

Before any abstract definitions, let us consider the prototypical example of a sheaf:
the sheaf of continuous maps on a topological space X. For every open set U ⊂ X,
our space has a naturally associated ring C(U) consisting of the continuous functions
U → R. Note that if V is an open set contained in U, then the restriction f|V of
a continuous function f : U → R is again continuous. In other words, we have a
morphism of rings given by

resU,V : C(U)→ C(V)

f 7→ f|V .

Moreover, if W ⊂ V ⊂ U are three open sets, it is clear that restricting a function
f ∈ C(U) to V and then restricting to W is the same thing as restricting directly to
W. In other words, the restriction maps satisfy resU,W = resV,W ◦ resU,V . The data
of all the rings C(U) along with their restriction maps resU,V constitutes the sheaf of
continuous functions on X.

Generalizing these notions we obtain the concept of a presheaf.
Definition 11.1.1 — Presheaf. Let X be a topological space. We denote by OpenX
the category whose objects are open sets U ⊂ X, and whose morphisms are the
inclusion maps. Then, a presheaf F over X with values in a concrete category C is
a contravariant functor F : OpenX → C.
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11. Sheaves and presheaves

Let’s unpack this definition. If U is an open set in X, then we are given an object
F (U) of C whose elements will usually be called sections of F over U. Moreover, if
V ⊂ U is a pair of nested open sets, we have a morphism resU,V : F (U) → F (V) in
C which is called a restriction map. The functor axioms amount to the conditions that
resU,U ought to be the identity map of F (U) and that, ifW ⊂ V ⊂ U are three nested
open sets, then resU,W = resV,W ◦ resU,V .

Naturally, if s ∈ F (U)we’ll usually write s|V for resU,V(s). We’ll also write Γ(U,F )

for the object F (U) of C and we’ll say that an element of Γ(X,F ) is a global section.
All this terminology can be explained by the following example.

� Example 11.1.1—Vector bundle. Letπ : E→ X be a vector bundle of topological spaces
andU an open set of X. A section s of π overU is a continuous function s : U→ E such
that π ◦ s = idU. The data of all the sections s over all open sets U forms a presheaf of
rings on X. �

There’s a key aspect of our prototypical example which is not present in the defini-
tion of a presheaf: the fact that being continuous is a local property. More precisely, if
{Ui} is an open cover of an open set U ⊂ X, then functions fi ∈ C(Ui) which coincide
on the intersections Ui ∩ Uj can be glued to a unique function f ∈ C(U) such that
f|Ui = fi for all i. Indeed, it suffices to define f(x) as being fi(x) whenever x ∈ Ui.
This is the content of the definition below.
Definition 11.1.2 — Sheaf. A presheaf F over a topological space X with values in a
concrete category with products C is a sheaf if, whenever U ⊂ X is an open set and
{Ui} is an open cover of U, the product of the restrictions α : F (U)→

∏
iF (Ui) is

the equalizer of ∏
iF (Ui)

∏
ijF (Ui ∩Uj),

β1

β2

where β1, β2 are defined by β1((si)i) = (si|Ui∩Uj)i,j and β2((si)i) = (sj|Ui∩Uj)i,j.

Before we go any further, our abstract formalism deserves a categorical digression.
In basically all interesting cases, we’ll deal with categories of models of algebraic theo-
ries. An algebraic theory is characterized by the existence of one or several operations
which are defined everywhere and satisfy axioms expressed by equalities. In partic-
ular, Set, Grp, Ab, Ring, CRing, A-Mod and A-Alg are categories of models of algebraic
theories but the categories of fields or of integral domains aren’t. These categories
satisfy a myriad of important properties which we know axiomatize.
Definition 11.1.3 — Algebraic category. An algebraic category is a concrete category C
whose underlying set functor u creates limits, filtered colimits and reflects isomor-
phisms.

In other words, limits and filtered colimits always exist in C and are given by any
construction that maps to the usual construction in Set. Particularly, C has a final
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object {∗} whose underlying set is a singleton. Also, a presheaf F is a sheaf if and
only if the underlying presheaf of sets (that is, u ◦F ) is a sheaf. Indeed, suppose that
u ◦F is a sheaf of sets. I.e., that

u(F (U))
∏
i u(F (Ui))

∏
ij u(F (Ui ∩Uj))

u(α) u(β1)

u(β2)

is an equalizer diagram. If E is the equalizer of β1 and β2 in C, there’s a canonical
morphismF (U)→ Eby theuniversal property of the equalizer. Butu(F (U))→ u(E)

is an isomorphism and u reflects isomorphisms. We conclude that F is a sheaf.
The converse follows simply by functoriality. One can read about all of this in [4].
Hereafter, we’ll deal exclusively with algebraic categories.

Now,without further ado, let’s understandhow this definition encodes our intuition
that a sheaf should be defined by local data. If {∗} is the final object of C, then the
diagram

F (U)
∏
iF (Ui)

∏
ijF (Ui ∩Uj)

{∗}

α
β1

β2

γ

commutes precisely when the sections in the image of ∗ by γ coincide on the intersec-
tions. Accordingly, the existence of a map {∗}→ F (U) which makes the diagram

F (U)
∏
iF (Ui)

∏
ijF (Ui ∩Uj)

{∗}

α
β1

β2

γ

commute means that there exists a section s ∈ F (U) (the image of ∗ in F (U)) such
that s|Ui = si for all i. The section is unique exactly when there is a unique such
morphism. In other words, a presheaf F is a sheaf when given sections si ∈ F (Ui)

which coincide on the intersections, there is a unique s ∈ F (U) such that s|Ui = si for
all i.

More often than not, the verification that a presheaf is indeed a sheaf comes in two
steps: we first verify that sections which coincide on the intersections glue and we
verify that there’s at most one way of doing so. This translates in the following axioms
which a sheaf must satisfy.

i. (Identity axiom) if s, t ∈ F (U) coincide over Ui for all i, then s = t;

ii. (Gluability axiom) if si ∈ F (Ui) coincide on the intersectionsUi∩Uj, then there
is some s ∈ F (U) such that s|Ui = si for all i.
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11. Sheaves and presheaves

We make some final observations. Firstly, since the empty product is a final object
of C, the equalizer diagram associated with the empty covering shows that a sheaf
necessarily satisfies thatF (∅) is the final object ofC. In particular,F (∅) is a singleton.
Also, when C is an abelian category, we can rephrase the definition of a sheaf slightly
by saying that a presheaf F over X is a sheaf if and only if the sequence

0 F (U)
∏
iF (Ui)

∏
ijF (Ui ∩Uj),α β

where β = β1 − β2, is exact whenever U ⊂ X is an open set and {Ui} is an open cover
of U. The identity axiom is encoded by imposing α to be a monomorphism and the
gluability axiom is encoded by kerβ = imα.

It is clear that the presheaves of continuous maps on a topological space and of
sections of a vector bundle are indeed sheaves. We now present some other examples
and non-examples.
� Example 11.1.2 — Constant presheaf. Let X be a topological space, and S a set. We
define a presheaf of setsF over X by declaringF (U) to be S for every open setU ⊂ X.
It is a presheaf where the restriction maps are simply the identity function.

If S is not a singleton, this is not a sheaf since F (∅) is not a final object of Set. This
fails to be a sheaf even if we declare F (∅) = {∗}, where {∗} is a one-element set. In
fact, consider X = {a, b}with the discrete topology and suppose that S has more than
one element. Since {a} and {b} form an open cover of X,

F (X) F ({a})×F ({b}) ∅

should be an equalizer diagram. In other words, we should have that F ({a} ∪ {b}) =

F ({a})×F ({b}), which does not happen. �

Let’s see how we could define a sheaf over X = {a, b}. Giving a presheaf of sets on
X amounts to choosing sets F (∅), F ({a}), F ({b}) and F (X) and restriction maps

F (X) F ({b})

F ({a}) F (∅)

(All the other restrictionmaps are determined by those four.) IfF is to be a sheaf, then
F (∅) has to be a singleton {∗}. This determines the restrictionmapsF ({a}),F ({b})→
{∗}. Now, let F ({a}) = S1 and F ({b}) = S2. As before, this forces F (X) to be S1 × S2.
The construction below is what we get setting S = S1 = S2.
� Example 11.1.3 — Constant sheaf. We endow Swith the discrete topology and define
a sheaf S whose sections over an open set U ⊂ X are the continuous maps U → S.
This is the constant sheaf associated with S. More generally, if S is an object in some
concrete category C, then S is a sheaf with values in C. �
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We now see how nonlocal notions lead to presheaves which are not sheaves.
� Example 11.1.4 — Presheaf of bounded functions. Let X be a topological space. For
every open setU ⊂ X, we define B(U) to be the set of bounded functionsU→ R. This
determines a presheaf of sets on X. Nevertheless, it usually isn’t a sheaf. For example,
when X = R the inclusions (−n,n) ↪→ R, for n > 1, are bounded but don’t glue in
order to form a bounded function on X. �

The same exact phenomenon arises in the presheaf of L1 functions on the real line,
with its usual Lebesgue measure. This presheaf satisfies the identity axiom but fails
to satisfy the gluability axiom.

For a more exotic example, where the restrictionmaps are not exactly the restriction
of functions, we turn to the theory of distributions. The interested reader may check
the beautiful book [7].
� Example 11.1.5 — Sheaf of distributions. Let X = Rn. Recall that, for every open set
U ⊂ Rn, D(U) is the set C∞c (U), of all compactly supported smooth functions on U,
with its natural locally convex topology. Assigning D ′(U), the continuous dual of
D(U), to each open set U ⊂ Rn defines a presheaf where the restriction is given by

resU,V : D ′(U)→ D ′(V)

u 7→ u ◦ EU,V ,

where EU,V : D(V) → D(U) is the operator which extends by zero a given smooth
function compactly supported in V to a smooth function compactly supported in U.

One can prove thatD ′ is indeed a sheaf of locally convex topological vector spaces.
Similarly, the tempered distributions S ′ form a presheaf. Observe that S ′ is a sub-
presheaf of D ′ when both are regarded as presheaves of vector spaces but it is not a
subpresheaf when they are regarded as presheaves of locally convex spaces since the
topology of S ′(U) is not the topology inherited byD ′(U). The tempered distributions
also don’t form a sheaf, since being in the Schwartz space is not a local property. �

Those interested in knowingmore about the interpretation of distributions (inRn or
even in manifolds) as presheaves can check [6], which has everything that one might
ever want.

11.2. Morphisms and stalks
In this section we’ll define morphisms of presheaves and sheaves, establishing their
categories. Our definition of a presheaf as a functor makes it clear what a morphism
of presheaves should be.
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Definition 11.2.1 — Morphism of (pre)sheaves. Let F and G be presheaves over a
topological space X with values in a category C. A morphism ϕ : F → G is
nothing but a natural transformation of functors. Explicitly, it is the data of maps
ϕU : F (U)→ G (U), for all open sets U ⊂ X, such that the diagram

F (U) G (U)

F (V) G (V)

ϕU

resU,V resU,V

ϕV

commutes whenever V ⊂ U is a pair of nested open sets. We denote the category
of presheaves over X with values in C by Cpre

X . A morphism of sheaves is just
a morphism of the underlying presheaves. In other words, sheaves over X with
values in C form a full subcategory CX of Cpre

X .

As usual, a map ϕ : F → G between presheaves is an isomorphism if it has a
two-sided inverse. That is, if there exists a map ψ : G → F such that ϕ ◦ ψ = idG

and ψ ◦ϕ = idF . In this case we can evaluate these identities at an open set U ⊂ X to
obtain that if ϕ is an isomorphism then so is ϕU for each U. Conversely, if each ϕU is
an isomorphism, let ψU be their corresponding inverses. Then the diagram

G (U) F (U)

G (V) F (V)

resU,V

ψU

resU,V

ψV

commutes since ϕV ◦ resU,V = resU,V ◦ϕU implies that resU,V ◦ψU = ψV ◦ resU,V by
composing on the left byψV and on the right byψU. In other words, we conclude that
ϕ : F → G is an isomorphism if and only if ϕU : F (U) → G (U) is an isomorphism
for every open set U ⊂ X. We shall investigate later the extent to which this result is
true with regard to monomorphisms and epimorphisms.

For the next definition, we observe that we can naturally restrict presheaves in the
following way: if F is a presheaf over a topological space X andU ⊂ X is an open set,
then we can define F |U(V) = F (V) for every open set V ⊂ U.
Definition 11.2.2 — (Pre)sheaf Hom. Let F and G be presheaves over a topological
space Xwith values in a category C. We define a presheaf Hom(F ,G ) as

Γ(U,Hom(F ,G )) = Hom(F |U,G |U),

where the right side is composed by the morphisms of presheaves between F |U
and G |U. If ϕ ∈ Γ(U,Hom(F ,G )), its restriction to an open set V ⊂ U is defined to
be the data of maps ϕW : F (W)→ G (W) for every open setW ⊂ V .
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� The definition of Γ(U,Hom(F ,G )) is notHomC(F (U),G (U)). The latter does not
admit natural restriction maps so this is not even a presheaf.

We could prove right away that Hom(F ,G ) is a sheaf if G is, and we encourage the
reader to do it. But we’ll leave it to the future, where this result fits nicely within the
theory.

There’s also the natural notion of subpresheaf.
Definition 11.2.3 — Subpresheaf. Let F be a presheaf over a topological space X. A
subpresheaf of F is a presheaf G such that G (U) is a subobject of F (U) for every
open set U ⊂ X and such that the diagram

G (U) F (U)

G (V) F (V)

resU,V resU,V

commutes for every pair of nested open sets V ⊂ U. In other words, the restriction
mapsofG are the restrictionof the restrictionmapsofF . A subsheaf is a subpresheaf
which satisfies the same conditions and is moreover a sheaf.

We present a simple example.

� Example 11.2.1 Let X = R, and let Cr be the subsheaf of the sheaf of continuous
functions on X consisting of the functions which are r times continuously differen-
tiable. The differential operatorD = d/dx defines amap of sheaves ofR-vector spaces
D : Cr → Cr−1. We observe that this is not a morphism of sheaves of R-algebras. �

By its very definition, sections on a sheaf are defined by local data. We will explore
this property using the notion of stalk, which capture all the important information in
a neighborhood of a point.
Definition 11.2.4 — Stalk. Let F be a presheaf over a topological space Xwith values
in an algebraic category C. We define the stalk of F at p ∈ X as the (filtered) colimit
of all F (U) over open sets U ⊂ X containing p:

Fp := colimF (U).

The elements of Fp are called germs. If p ∈ U and s ∈ F (U), the image sp of s in
Fp is said to be the germ of s at p.

Concretely, under our supposition over C, the filtered colimit which defines the
stalk can be constructed as (∐

U3x

F (U)

)/
∼,
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11. Sheaves and presheaves

where (s,U) ∼ (t, V)1 if there exists an open set W ⊂ U ∩ V containing p such that
s|W = t|W . Indeed, this is nothing but the construction of a filtered colimit in Set.

The stalks illustrate clearly the interest of considering sheaves instead of presheaves.
For example, sections of a sheaf are determined by its germs. Precisely, this means
that if s, t ∈ F (U) are such that sp = tp for all p ∈ U, then s = t. Indeed, if sp = tp,
then s and t coincide over a neighborhood of p. If this happens for every p ∈ U, then
there’s an open cover {Ui} of U such that s|Ui = t|Ui for every i. The identity axiom
then implies that s = t. In other words, the natural map

F (U)→
∏
p∈U

Fp

is injective (in particular, it is monic).
Now, if ϕ : F → G is a morphism of presheaves, the very definition of morphism

implies that the diagram

F (U) G (U)

Fp Gp

F (V) G (V)

ϕU

ϕV

commutes and so, by the universal property of colimits, there is a unique induced
map ϕp : Fp → Gp, which is given in our construction by

ϕp : Fp → Gp

(s,U) 7→ (ϕU(s), U).

The assignmentF 7→ Fp andϕ 7→ ϕp defines a functorCpre
X → C. Also, by restriction

we obtain a functor CX → C.
We now answer a question that we left open not long ago.

Proposition 11.2.1 Let ϕ : F → G be a morphism of sheaves over X with values in
C. Then the following are equivalent:

(a) ϕ is a monomorphism in CX;

(b) ϕp is a monomorphism in C for every p ∈ X;

(c) ϕU is a monomorphism in C for every open set U ⊂ X.

1Formally this should be denoted as (s,F (U)) but (s,U) is the usual notation.
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11.2. Morphisms and stalks

Proof. Recall that ϕ : F → G is a monomorphism if and only if

F F

F G

idF

idF

ϕ

ϕ

is a pullback square. Since filtered colimits commutewithfinite limits2, this shows that
(a) implies (b). Supposing (b), letU ⊂ X be an open set and consider the commutative
diagram

F (U) G (U)

∏
p∈UFp

∏
p∈U Gp,

ϕU

where the arrow at the bottom is the product of the stalks of ϕ. By supposition, the
vertical arrows and the bottom one are monomorphisms. It follows that ϕU is monic,
proving (c). Finally, we suppose that (c) holds and consider the parallel morphisms

H F G .
ψ

ψ ′

ϕ

Since ϕU is a monomorphism in C for every open set U ⊂ X, it follows that

H (U) F (U) G (U)
ψU

ψ ′U

ϕU

are parallel morphisms in C and so ψ ′U = ψU for every U. Then we have that ψ ′ = ψ
and so ϕ is a monomorphism in CX.

In the preceding proof, we used in an essential way the fact that F (U)→
∏
p∈UFp

is amonomorphism. This suggests that itmay not be true that ifϕp is an epimorphism
for every p ∈ X then ϕU is an epimorphism for every open set U ⊂ X.

Proposition 11.2.2 Let ϕ : F → G be a morphism of sheaves over X with values in
C. Then the following are equivalent:

(a) ϕ is an epimorphism in CX;

(b) ϕp is an epimorphism in C for every p ∈ X.

Proof. As in the last proposition, recall that ϕ : F → G is an epimorphism if and
only if

F G

G G

ϕ

ϕ idG

idG

2This is true in Set and thus in C under our hypothesis.
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is a pushout square. Since colimits commute with colimits, this shows that (a) implies
(b). Conversely, let

F G H .
ϕ

ψ

ψ ′

be parallel morphisms. Taking stalks we obtain that ψ ′p = ψp for every p ∈ X. Since
the diagram

F (U)
∏
p∈UFp

G (U)
∏
p∈U Gp,

ψ ′U ψU

where the arrow on the right is the product of theψ ′p = ψp for every p ∈ U, commutes
for every U ⊂ X, it follows that ψ ′U = ψU and so ψ ′ = ψ.

� Monomorphisms and epimorphisms in Cpre
X have somewhat different descriptions.

As we’ll later see, a morphism ϕ of presheaves is monic (resp. epic) if and only if ϕU
is monic (resp. epic) for every open set U.

We now observe that the same proof that we used in proposition 11.2.1 shows that
if ϕU is an epimorphism in C for every open set U ⊂ X, then ϕ is an epimorphism in
CX. Nevertheless, there do exist epimorphisms ϕ such that ϕU is not epic for some
U ⊂ X.
� Example 11.2.2 Let F be the sheaf of sets constituted of nonvanishing continuous
functions onC and consider the morphismϕ : F → F which sends a function f to its
square f2. Since exp : C→ C \ {0} is the universal cover of C \ {0}, ϕU : F (U)→ F (U)

is an epimorphism when U is simply connected. In particular, locally every function
has a square root and so ϕp is an epimorphism for every p ∈ C. It follows that ϕ is
an epimorphism but ϕU is not necessarily epic. For example, when U = C \ {0}. �

We’ll soon see that this "failure" is precisely where sheaf cohomology is born.

11.3. Sheafification
When dealing with sheaves of abelian groups, A-modules or, more generally, with
values in any abelian category, we’ll wish to extend some natural notions to the
category of sheaves. For example, if F and G are sheaves of abelian groups, then

(F ⊕ G )(U) := F (U)⊕ G (U) for every open set U

defines a sheaf. Most other constructions don’t have the same luck. The presheaf
defined by F (U) ⊗ G (U) may not be a sheaf even if F and G are. Images, quotients
and infinite direct sums also suffer from the same fate. For dealingwith all those cases,

190



11.3. Sheafification

we need a systematic way of constructing sheaves from presheaves. The following
universal property describes this process.
Definition 11.3.1— Sheafification. LetF be a presheaf over a topological spaceXwith
values in C. The sheafification of F is the initial map among the morphisms F → G

where G is a sheaf. In otherwords, the sheafification is amorphismF → F̃ , where
F̃ is a sheaf, such that for every other sheaf G and every morphism F → G there
exists a unique morphism F̃ → G such that the diagram

F F̃

G

commutes.

As usual, if it exists, the sheafification is unique up to a unique isomorphism. If F

is already a sheaf, the identity morphism id : F → F clearly satisfies the universal
property of the sheafification. Finally, we observe that the assignmentF 7→ F̃ defines
a functor. Indeed, ifF → G is amorphism of presheaves, the universal property gives
a induced morphism

F F̃

G G̃

Hereafter, we’ll refer to both the morphism F → F̃ and the sheaf F̃ as the sheafifi-
cation of F .

Even before we construct the sheafification, let’s understand what may preclude
a presheaf from being a sheaf. First of all, a presheaf can possibly not satisfy the
gluability axiom. That is, it can have local sections that don’t glue to form a global
section.

� Example 11.3.1 Let S1 be the unit circle and p, q ∈ S1 two distinct points. Consider
the presheaf of continuous functions on S1 which have the same image at p and q. If
U is a neighborhood of p not containing q, the sections over U are nothing but the
continuous functions on U. In this fashion, we can have two sections f and g, defined
respectively over neighborhoods of p and q, such that f(p) 6= g(q). These sections
cannot possibly glue to a global section. �

Whenever this happens, what the sheafification does is simply to add the missing
sections. For example, the sheafification of the presheaf considered above is the sheaf
of continuous functions on S1. Similarly, the sheafification of the presheaf of bounded
functions in example 11.1.4 is the sheaf constituted of locally bounded functions.
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The only other possibility for a presheaf to not be a sheaf is if it does not satisfy the
identity axiom. That is, if there are distinct sections which are locally equal.

� Example 11.3.2 Let X be a topological space. We define a presheaf F over X by
imposing F (X) = {a, b} and F (U) = {a}, whenever U 6= X. A restriction map
resU,V : F (U) → F (V) is simply the constant function if V 6= X and, of course,
resX,X = idX. If {Ui} is an open cover of X composed by proper subsets, then a and b
are different global sections which coincide over Ui, for all i. In other words, F fails
the identity axiom. �

Here the sheafification removes the unnecessary sections. This last case is a little
less relevant since it is the gluability axiom that often fails. For example, if F is a
presheaf whose sections over an open set U are functions from U to a fixed set Y and
whose restriction maps are the restrictions of those functions, then F satisfies the
identity axiom.

In order to explicitly construct the sheafification, we observe that if F is a sub-
presheaf of a sheaf H , then its sheafification is almost tautological.

Lemma 11.3.1 Let F be a subpresheaf of a sheaf H . Then the sheafification of F is
the subsheaf of H defined by

F̃ (U) = {s ∈H (U) | s locally lies in F },

where we say that a section s ∈H (U) locally lies in F if there exists an open cover
{Ui} of U such that s|Ui ∈ F (Ui) for every i.

Proof. First of all, we observe that F̃ is indeed a sheaf. The identity axiom is satisfied
since it is satisfied by H . Furthermore, if {Ui} is an open cover of U and we have
sections si ∈ F̃ (Ui)which coincide on the intersections, then there is some s ∈H (U)

such that s|Ui = si for all i. But s locally lies inF and so s ∈ F̃ (U). Thus the gluability
axiom is also verified.

Now, we show that the inclusion F ↪→ F̃ satisfies the universal property. Indeed,
let G be a sheaf and ϕ : F → G be a morphism. If U is an open set and s ∈ F̃ (U),
there’s an open cover {Ui} of U such that s|Ui ∈ F (Ui) for every i. But then we have
induced sections ϕUi(s|Ui) ∈ G (Ui) which glue uniquely into a section of G (U). This
defines the unique induced morphism F̃ → G .

While not every presheaf is a subpresheaf of a sheaf (such a presheaf always satisfies
the identity axiom, for example), there’s a canonical map from any presheaf to a sheaf.
Indeed, we can associate to any presheaf F a sheaf Π(F )whose sections are given by

Γ(U,Π(F )) :=
∏
p∈U

Fp
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and whose restriction maps are defined as the natural projections

resU,V :
∏
p∈U

Fp →
∏
p∈V

Fp

which throws away the components at points of U not lying in V . We show that this
is truly a sheaf. If U = U1 ∩U2 and

s1 = (s1,p)p∈U1 ∈ Γ(U1, Π(F )), s2 = (s2,p)p∈U2 ∈ Γ(U2, Π(F ))

coincide over U1 ∩ U2, then s1,p = s2,p for all p ∈ U1 ∩ U2. It follows that we can
concatenate s1 and s2 to obtain a unique section over U. It is clear that this procedure
works with an arbitrary open cover of U. This is called the Godement sheaf associated
to F .
The canonical map κF : F → Π(F ) is the one sending a section s ∈ F (U) to the

element (sp)p∈U ∈
∏
p∈UFp. This construction is functorial in F , for if ϕ : F → G

is a morphism of presheaves, one has stalkwise maps ϕp : Fp → Gp and, by taking
appropriate products of these, we obtain a map Π(ϕ) : Π(F ) → Π(G ) which makes
the diagram

F Π(F )

G Π(G )

ϕ

κF

Π(ϕ)

κG

commute. Moreover, the images of κF and κG are naturally subpresheaves of Π(F )

and Π(G ), respectively. Restricting Π(ϕ) to im κF we obtain a morphism between the
images with makes the diagram

F im κF Π(F )

G im κG Π(G )

ϕ

κF

Π(ϕ)

κG

commute. It is clear that Π(idF ) = idΠ(F) and that Π(ψ ◦ ϕ) = Π(ψ) ◦ Π(ϕ). Thus Π
defines a functor from the category of presheaves on X to the category of sheaves on
X. This construction allow us to sheafify arbitrary presheaves.

Proposition 11.3.2 Let F be a presheaf over a topological space X with values in C.
Then the image of κF : F → Π(F ) is a subpresheaf of Π(F ) whose sheafification
coincides with the sheafification of F .

Proof. Let G be a sheaf and ϕ : F → G be a morphism. Since G is a sheaf, the
canonical map κG : G → im κG is an isomorphism. Then, by the lemma 11.3.1, we
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have a unique induced morphism making the diagram

F im κF ĩm κF

G im κG

ϕ

∼

commute. In otherwords, the compositionF → im κF → ĩm κF satisfies theuniversal
property of sheafification.

This proposition gives an explicit formula for the sheafification of F . For every
open set U ⊂ X, the sheafification F̃ of F is given by

F̃ (U) = {s ∈ Γ(U,Π(F )) | s locally lies in im κF }

=

(sp)p∈U ∈
∏
p∈U

Fp

∣∣∣∣∣∣
for every p ∈ U, there exists a neighbor-
hood V ⊂ U of p and a section t ∈ F (V)

such that sq = tq for every q ∈ V


and the restriction maps are induced from those of Π(F ). Nevertheless, it isn’t very
practical to use this explicit characterization of the sheafification so what we’ll often
use are the two results below.

Proposition 11.3.3 Let F be a presheaf over a topological space X with values in C.
The sheafification map F → F̃ induces an isomorphism of stalks Fp

∼→ F̃p for
every p ∈ X.

Proof. We construct an inverse to the natural morphism Fp → F̃p. Let (s,U) ∈ F̃p.
By the construction above, there exists a neighborhood V ⊂ U of p and a section
t ∈ F (V) whose stalks coincide with the components of s|V . We let (t, V) ∈ Fp be
the image of (s,U). It is clear that this is indeed an inverse of Fp → F̃p.

The following result is a simple reformulation of the universal property of sheafi-
fication but is marked as a theorem since it will allow us to understand the role of
sheafification in the category of sheaves.

Theorem 11.3.4 The sheafification functor is left adjoint to the forgetful functor from
sheaves to presheaves.

This clarifies many things. Since the inclusion of the category of sheaves in the
category of presheaves is right adjoint, it preserves limits. That is, a limit in the
category of sheaves, when it exists, must be the corresponding limit in the category
of presheaves. But more is true! This functor is also fully faithful, which implies that
it also creates limits. In other words, a limit in the category of sheaves exists precisely
when it exists in the category of presheaves, in which case they coincide. That’s why,
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when we’ll deal with sheaves with values in an abelian category, kernels and finite
direct sums won’t need to be sheafified.

It gets even better! The sheafification functor is left adjoint and so preserves colimits.
This implies that, in order to construct a colimit of sheaves, we can construct the same
colimit in the category of presheaves and then sheafify. That’s why, in an abelian
category, the sheafification of cokernels (in particular, quotients), images, and infinite
direct sums will all satisfy their respective universal properties in the category of
sheaves.

In fact, the sheafification functor also preserves finite limits. We won’t prove this
now but it follows from Grothendieck’s plus construction, which defines the sheafifi-
cation as a filtered colimit, which then commutes with finite limits. This is the content
of proposition 13.4.1.

11.4. Direct and inverse images

So far we were dealing with presheaves on a fixed topological space X. In this section
we’ll see how, given a continuous map f : X → Y, we can transfer presheaves from X

to Y and conversely. Indeed, we’ll define functors

Cpre
X Cpre

Y

f∗

f−1

and CX CY .
f∗

f−1

Moreover, we’ll see that in both cases they are adjoint. We beginwith the direct image.
Definition 11.4.1 — Direct image. Let f : X → Y be a continuous map between topo-
logical spaces and F be a presheaf on X. We define the direct image of F by f to be
the presheaf f∗F on Y whose sections over an open set U ⊂ Y are

Γ(U, f∗F ) := Γ(f−1(U),F )

and whose restriction maps are those of F .

This presheaf is also called the pushforward of F by f. We observe that, as a functor,
f∗F is nothing but the restriction of F : OpenX → C to the full subcategory of OpenX
whose objects are the preimages of open sets in Y. In particular, if F is a sheaf, then
so is f∗F .

Here are two simple examples which appear frequently.

� Example 11.4.1 — Skyscraper sheaf. Let ip : {p} ↪→ X be the inclusion of a point in X.
If S is a set, the direct image of the constant sheaf S by ip is the skyscraper sheaf ip,∗S.
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11. Sheaves and presheaves

If U ⊂ X is an open set, the sections of ip,∗S over U are given by

ip,∗S(U) =

{
S if p ∈ U
{∗} if p /∈ U

,

where {∗} is any singleton. (Strictly speaking, ∗ should be the unique map ∅→ S but
it doesn’t really matter.) Its stalks are simply

(ip,∗S)q =

{
S if q ∈ {p}

{∗} if q /∈ {p}
.

When S is an object of a category C, the same descriptions apply by changing {∗} to
the final object of C. �

Dually, we have the following example.
� Example 11.4.2 Let {∗} be a one-point topological space and f : X → {∗} the only
possible continuous map. A sheaf on {∗} is nothing but the data of an object of C. This
shows that the category of sheaves over {∗} is equivalent to C. Under this equivalence,
f∗ is nothing but the global sections functor. Indeed, if F is a sheaf we have that

Γ({∗}, f∗F ) = Γ(X,F ).

In other words, f∗F = Γ(X,F ) as sheaves over {∗}. �

If ϕ : F → G is a morphism of presheaves over X, then we have an induced
morphism f∗ϕ : f∗F → f∗G of presheaves over Y. Indeed, its components are
simply ϕf−1(U) for all open sets U ⊂ Y. It is clear that f∗ idF = idf∗F and that
f∗(ϕ ◦ ψ) = f∗ϕ ◦ f∗ψ, so f∗ indeed defines a functor Cpre

X → Cpre
Y which restricts to a

functor CX → CY .
The direct image is not only functorial in F but also in f. Indeed, if g : Y → Z

is another continuous map, we have that g∗(f∗F ) = (g ◦ f)∗F and that g∗(f∗ϕ) =

(g ◦ f)∗ϕwhenever F is a presheaf over X and ϕ is a morphism of presheaves over X.
In other words, (g ◦ f)∗ is the composition of the functors g∗ and f∗.
Also, if p ∈ X and V ⊂ U is a pair of nested neighborhoods of f(p) ∈ Y we have a

commutative diagram

Γ(U, f∗F )

(f∗F )f(p) Fp

Γ(V, f∗F )

resU,V
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which induces a morphism (f∗F )f(p) → Fp. In general, it is neither injective nor
surjective. But there’s one simple case where it is indeed an isomorphism: when
f is an embedding of topological spaces. Indeed, in this case there’s an inverse
g : f(X)→ X of f : X→ f(X) which yields a morphism

Fp = (g∗(f∗F ))g(f(p)) → (f∗F )f(p)

that is the inverse of (f∗F )f(p) → Fp.
We give a last example which illustrates the usefulness of this construction.

� Example 11.4.3 LetM andN be smoothmanifolds alongwith their respective sheaves
of smooth functions C∞M and C∞N. If f :M→ N is a smooth map and s ∈ C∞N(U), then
the composition

f−1(U) U Rf s

is a smooth function on f−1(U) ⊂ M. That is, a section of f∗C∞M(U). In this way, f
induces a morphism of sheaves

f] : C∞N → f∗C
∞
M.

But more is true! If f is hereafter only supposed continuous and the composition s ◦ f
is in f∗C∞M(U) whenever U ⊂ N is open and s ∈ C∞N(U), then f is smooth. Indeed, if
p ∈M, it suffices to choose si to be the coordinates of a chart about f(p) in N. In this
case, si ◦ f ∈ f∗C∞M(U) implies that there exists a chart (V, t) around p such that

si ◦ f ◦ t−1 : t(f−1(U) ∩ V)→ R

is smooth at t(p). This is precisely what it means to say that f is smooth at p. �

As for the inverse image, we would wish to do something similar to the direct
image. Unfortunately for us, if G is a presheaf on Y, assigning G (f(U)) to every open
set U ⊂ X does not define a presheaf on X since f(U) may not be open. Nevertheless,
we can approximate f(U) by open sets.
Definition 11.4.2 — Inverse image presheaf. Let f : X → Y be a continuous map be-
tween topological spaces and G be a presheaf on Y. We define the inverse image of
G by f to be the presheaf f−1G on Xwhose sections over an open set U ⊂ X are

Γ(U, f−1G ) := colimG (V),

where the (filtered) colimit is taken over the open sets V ⊂ Y containing f(U). The
restriction maps are those induced from G .

� Most books define the inverse image to be the sheafification of what we’ve defined.
So before the reader begins screaming in anger, rest assured that we’ll eventually do
the same. But for now this definition will suffice.
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We explain in more detail how the restriction maps from G induce those of f−1G .
If V ⊂ U is a pair of nested open sets in X, then any open setW ⊂ Y containing f(U)
automatically contains f(V). Thus, ifW ′ ⊂W are open sets in Y containing f(U), the
universal property of the colimit yields an induced morphism

G (W)

Γ(U, f−1G ) Γ(V, f−1G ),

G (W ′)

resW,W ′

which is our desired restriction map resU,V : Γ(U, f−1G )→ Γ(V, f−1G ).
Similarly, the universal property of the colimit shows the functoriality of this con-

struction. Ifϕ : G → F is a morphism of presheaves over Y andU ⊂ X is an open set,
we have a commutative diagram

G (W) F (W)

Γ(U, f−1G ) Γ(U, f−1F ),

G (W ′) F (W)

ϕW

ϕW ′

wheneverW ′ ⊂ W ⊂ Y is a pair of nested open sets containing f(U), which induces
a unique morphism f−1ϕ : Γ(U, f−1G ) → Γ(U, f−1F ). Once again, the unicity of the
induced morphism implies that f−1 idG = idf−1G and that f−1(ϕ ◦ ψ) = f−1ϕ ◦ f−1ψ,
so f−1 indeed defines a functor Cpre

Y → Cpre
X .

Let’s check some examples.

� Example 11.4.4 Let ip : {p} ↪→ X be the inclusion of a point in X. If G is a presheaf on
X, its inverse image by ip is given by

Γ({p}, i−1p G ) = Gp and Γ(∅, i−1p G ) = G (∅).

This is basically the constant presheaf of example 11.1.2. �

Somewhat more generally, we can use the inverse image to restrict a presheaf to an
arbitrary subset.

� Example 11.4.5 Let S be a subset of a topological space X and iS : S ↪→ X be its
inclusion. If G is a presheaf over X, we say that i−1S G is its restriction to S. This names
comes from the fact if S is open, i−1S G is precisely the restriction G |S. �
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We now prove the main result of this section. It says that, if f : X → Y is a
continuous map, giving a morphism f] : G → f∗F is the same thing as giving a
morphism f[ : f−1G → F . These sharps and flats, which will be systematically used
once we begin talking about ringed spaces, explain whywe call this theorem amusical
adjunction.

Theorem 11.4.1 — Musical adjunction. Let f : X → Y be a continuous map between
topological spaces. Then we have an adjunction

Cpre
X Cpre

Y .

f∗

f−1

a
In other words, if F is a presheaf on X and G is a presheaf on Y, there is an
isomorphism

HomX(f−1G ,F ) ∼= HomY(G , f∗F )

which is natural in F and G .

Proof. If f[ : f−1G → F is a morphism of presheaves on X, we define the correspond-
ing morphism f] : G → f∗F of presheaves on Y by letting f]V , for an open set V ⊂ Y,
be the composition

G (V) Γ(f−1(V), f−1G ) Γ(f−1(V),F ) = f∗F (V),
f[
f−1(V)

where the first arrow is the natural map of the colimit. Conversely, let f] : G → f∗F

be a morphism of presheaves on Y. We fix U ⊂ X and let V ′ ⊂ V be a pair of nested
open sets in Y containing f(U). The universal property of colimits then induces our
morphism f[ : f−1G → F .

G (V) f∗F (V)

f−1G (U) F (U)

G (V ′) f∗F (V ′)

f
]
V

res
f−1(V),U

f
]

V ′
res
f−1(V ′),U

By taking V = f(U) in the diagram above, we get that

G (V) f∗F (V)

Γ(f−1(V), f−1G )

f
]
V

f[
f−1(V)
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commutes, proving that f] 7→ f[ 7→ f] is indeed the identity. Conversely, let f[ :

f−1G → F be a morphism of presheaves on X, U ⊂ X be an open set and V ′ ⊂ V be
a pair of nested open sets in Y containing f(U). By the very definition of morphism,
the diagram

Γ(f−1(V), f−1G ) f∗F (V)

f−1G (U) F (U)

Γ(f−1(V ′), f−1G ) f∗F (V ′)

f[
f−1(V)

f[U

f[
f−1(V)

commutes and then so does

G (V) Γ(f−1(V), f−1G ) f∗F (V)

f−1G (U) F (U)

G (V ′) Γ(f−1(V ′), f−1G ) f∗F (V ′).

f
]
V

f[
f−1(V)

f[U

f
]

V ′

f[
f−1(V)

It now follows from the unicity of the induced morphism from the colimit that f[ 7→
f] 7→ f[ is also the identity.

After any adjunctionwehave our usual Pavlovian reaction: since f∗ is a right adjoint,
it preserves limits and so, in an abelian category, is left-exact. Similarly, f−1 preserves
colimits and, in an abelian category, is right-exact.

In case the reader has trouble remembering which functor is the left and which
functor is the right adjoint, here’s a useful mnemonic: the inverse image is defined as
a colimit and we have a handle on the morphisms going out of a colimit. That is, f−1
has to be a left-adjoint.3

Here are some other corollaries that follow easily from this adjunction. Firstly we
observe that, as before, the inverse image is functorial not only on G but also on f.
3There is a particular case in which f−1 is also a right adjoint. But I hope the reader gets the point...
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Corollary 11.4.2 Let f : X→ Y and g : Y → Z be continuous maps between topologi-
cal spaces. Then the functors f−1 ◦ g−1 and (g ◦ f)−1 are isomorphic.

Proof. Recall the equality of functors g∗ ◦ f∗ = (g ◦ f)∗. Then, if F is a presheaf on X
and H is a presheaf on Z, we have that

HomX((g ◦ f)−1H ,F ) ∼= HomZ(H , g∗(f∗F ))

∼= HomY(g−1H , f∗F )

∼= HomX(f−1(g−1H ),F ).

Since this holds naturally in F and H , the Yoneda lemma implies our result.

While the definition of the inverse image is more complicated than that of the direct
image, now we have isomorphic stalks without further conditions.

Corollary 11.4.3 Let f : X → Y be a continuous map between topological spaces on
Y and G be a presheaf on Y. Then the stalks Gf(p) and (f−1G )p are isomorphic.

Proof. Letting the maps in the previous corollary be ip : {p} ↪→ X and f : X → Y, we
have that

(f−1G )p = Γ({p}, i−1p (f−1G )) ∼= Γ({p}, (f ◦ ip)−1G ) = Gf(p)

by the calculation that we did in example 11.4.4.

Another reason why the inverse image is more complicated than the direct image
is that the inverse image of a sheaf is not necessarily a sheaf as we can see in the next
example.

� Example 11.4.6 Let Y be a topological space, X be the disjoint union of two copies of Y
and f : X→ Y be the quotient map which identifies the two copies of Y. Let also G be
a sheaf on Y. If V ⊂ Y is an open set andU = f−1(V), we have that Γ(U, f−1G ) = G (V).
SinceU is the disjoint union of two copies V1 and V2 of V , if f−1G is a sheaf, we should
have that

G (V) = Γ(U, f−1G ) = Γ(V1, f
−1G )× Γ(V2, f−1G ) = G (V)× G (V).

As this need not be true, f−1G is usually not a sheaf. �

This prompts the definition below.
Definition 11.4.3 — Inverse image sheaf. Let f : X → Y be a continuous map between
topological spaces and G be a sheaf on Y. We define the inverse image f−1G of G by f
to be the sheafification of the inverse image presheaf of definition 11.4.2. Since both
notions are denoted in the same way and have the same name, unless explicitly
stated, from now on this will be what we mean by the inverse image of a sheaf.
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11. Sheaves and presheaves

The inverse image so defined is the composition of the functors

CY Cpre
Y Cpre

X CX,

where the leftmost arrow is the inclusion of the category of sheaves in the category
of presheaves, the next one is our old definition of inverse image, and the rightmost
arrow is the sheafification functor. As one could expect, the musical adjunction still
holds.

Theorem 11.4.4 — Musical adjunction. Let f : X → Y be a continuous map between
topological spaces. Then we have an adjunction

CX CY .
f∗

f−1

a
In other words, if F is a sheaf on X and G is a sheaf on Y, there is an isomorphism

HomX(f−1G ,F ) ∼= HomY(G , f∗F )

which is natural in F and G .

Proof. Since the sheafification functor is a left adjoint of the inclusion functor, this
follows from the musical adjunction on presheaves.

We observe that it is still true that the functors f−1◦g−1 and (g◦f)−1 are isomorphic.
Indeed, the proof of corollary 11.4.2 used nothing but the adjunction and the fact
that the analogous result for direct images holds. Moreover, the stalks Gf(p) and
(f−1G )p are still naturally isomorphic since the sheafification functor preserves stalks.
(Proposition 11.3.3.)

As the category of sheaves over a singleton is equivalent to C, the particular case
f = ip : {p} ↪→ X of the musical adjunction is already interesting by itself.

Corollary 11.4.5 Let X be a topological space and p ∈ X. Then the stalk functor is
left adjoint to the skyscraper sheaf functor.

C CX

ip,∗(−)

(−)p

a

In particular, the stalk functor preserves colimits.

Proof. This follows from the examples 11.4.1 and 11.4.4.
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11.5. Sheaves on a base
Defining a presheaf over a topological space X with values in C involves giving a
plethora of information. Namely, an object of C for every open set U ⊂ X. Since
sheaves are somewhat more constrained, wemay hope that it suffices to define a sheaf
by giving the images of the open sets in a base of the topology. This suggests the
following notion.
Definition 11.5.1 — Presheaf on a base. Let X be a topological space and B be a base
of its topology. We denote by OpenB the full subcategory of OpenX whose objects
are the elements of B. Then, a presheaf F on B with values in C is a contravariant
functor F : OpenB → C.

As before, the restrictionmaps satisfy the conditions imposed by the functor axioms
and we say that the elements of F(B) are sections. Also, we define the stalk of F at
p ∈ X as the (filtered) colimit of all F(B) over the basic open sets B ∈ B containing p:

Fp := colim F(B).

Naturally, the elements of Fp are called germs.
The only definition that has to be slightly modified is that of a sheaf, since the

intersection of basic open sets need not be in the base.
Definition 11.5.2 — Sheaf on a base. Let X be a topological space and B be a base of
its topology. A presheaf F on B with values in C is a sheaf if, whenever B ∈ B, {Bi}
is a cover of B by basic open sets and Bij are basic open sets contained in Bi ∩ Bj,
the product of the restrictions α : F(B)→

∏
i F(Bi) is the equalizer of

∏
i F(Bi)

∏
ij F(Bij),

β1

β2

where β1, β2 are defined by β1((si)i) = (si|Bij)i,j and β2((si)i) = (sj|Bij)i,j.

Just as one could expect, asking a presheaf F onB to be a sheaf is precisely the same
thing as demanding the following axioms whenever B ∈ B and {Bi} is a cover of B by
basic open sets:

i. (Identity axiom) if s, t ∈ F(B) coincide over Bi for all i, then s = t;

ii. (Gluability axiom) if si ∈ F(Bi) coincide on any basic open set Bij ⊂ Bi∩Bj, then
there is some s ∈ F(B) such that s|Bi = si for all i.

It is clear that ifB is closed by intersections, which will be the case quite frequently,
these follow from the usual sheaf axioms applied to coverings of basic open sets by
other basic opens.
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We now prove our desired result. The main idea behind it is the fact that in order
to determine the image of a sheaf over an open set, it suffices to know the images of
basic open sets. Indeed, if F is a sheaf, our concrete construction of the sheafification
gives an isomorphism between F (U) and

F̃ (U) =

(sp)p∈U ∈
∏
p∈U

Fp

∣∣∣∣∣∣
for every p ∈ U, there exists a basic neigh-
borhood B ⊂ U of p and t ∈ F (B) such that
sq = tq for every q ∈ B

 .
This will be used to define the sheaf associated with a given sheaf on a base. We also
observe that, as in the section about sheafification, there’s a Godement sheaf Π(F)
associated to a presheaf on a base F by the same rule as before

Γ(U,Π(F)) :=
∏
p∈U

Fp.

This is a sheaf defined on every open set; not just the basic ones.

Theorem 11.5.1 Let X be a topological space, B be a base of its topology and F be a
sheaf on B with values in C. Then there is a unique, up to unique isomorphism,
sheaf F over X which coincides with F over B. Also, both sheaves have the same
stalks.

Proof. As we’ve just said, we define the extended sheaf F to be the subpresheaf of
Π(F) given by

F (U) :=

(sp)p∈U ∈
∏
p∈U

Fp

∣∣∣∣∣∣
for every p ∈ U, there exists a basic neigh-
borhood B ⊂ U of p and t ∈ F(B) such that
sq = tq for every q ∈ B


for every open setU ⊂ X. Since Π(F) is a sheaf, it suffices to show that gluing sections
inF weobtain a section ofΠ(F) that is actually inF . For that, let {Ui} be an open cover
of U and let si = (si,p)p∈Ui ∈ F (Ui) be sections which agree on the intersections. As
Π(F) is a sheaf, we find an element s = (sp)p∈U ∈

∏
p∈U Fp which restricts to si on

Ui. We show that s ∈ F (U). Pick p ∈ U. Then p ∈ Ui for some i. Since si ∈ F (Ui),
there exists a basic neighborhood B ⊂ Ui ⊂ U of p and t ∈ F(B) such that si,q = tq
for every q ∈ B. As sq = si,q, it follows that s ∈ F (U). In other words, F is a sheaf.
Now, if B is a basic open set, the natural morphism F(B)→ F (B) is injective by the

identity axiom and surjective by the gluability axiom. It follows that it is a bĳection
and then an isomorphism, since C reflects isomorphisms.
Finally, if F ′ is another sheaf extending F, then F ′(B) = F(B) = F (B) for every

B ∈ B and so F ′ = F , since the basic open sets determine the sheaves. The proof
that both sheaves have the same stalks is identical to showing that the sheafification
has the same stalks.
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As one could hope, we can not only extend sheaves on a base but also morphisms
of sheaves on a base. For that, we need the definition of a morphism of presheaves on
a base.
Definition 11.5.3 — Morphism of (pre)sheaves on a base. Let X be a topological space
and B be a base of its topology. Also, let F and G be presheaves on B. A morphism
ϕ : F → G is nothing but a natural transformation of functors. Explicitly, it is the
data of mapsϕB : F(B)→ G(B), for all basic open sets B ⊂ X, such that the diagram

F(B) G(B)

F(B ′) G(B ′)

ϕB

resB,B ′ resB,B ′

ϕ ′B

commutes whenever B ′ ⊂ B is a pair of nested basic open sets. As usual, a
morphism of sheaves is nothing but a morphism of the underlying presheaves.

Now we indeed have a relative version of theorem 11.5.1.

Theorem 11.5.2 Let X be a topological space and B be a base of its topology. If
ϕ : F → G is a morphism of sheaves on B, then there exists a unique morphism
ϕ̃ : F → G between the induced sheaves which coincides with ϕ over the basic
open sets.

Proof. We affirm that the restriction of Π(ϕ) : Π(F) → Π(G) to F is the desired ϕ̃.
First of all, we verify that its image is contained in G . If U ⊂ X is an open set and
s = (sp)p∈U ∈ F (U), we need to show that Π(ϕ)U(s) = (ϕp(sp))p∈U is in G (U). Fix
p ∈ X. Since s ∈ F (U), there exists a basic neighborhood B ⊂ U of p and t ∈ F(B)
such that sq = tq for every q ∈ B. But thenϕB(t) ∈ G(B) is such thatϕq(sq) = ϕB(t)q
for every q ∈ B, establishing our result.

Now, we observe that ϕ̃ coincides with ϕ over a basic open set B. More precisely, it
fits into the commutative diagram below.

F(B) F (B)

G(B) G (B)

ϕB

∼

ϕ̃B

∼

Indeed, this is nothing but the fact that ϕB(s)p = ϕp(sp) for every p ∈ B. Finally,
the unicity follows by noticing that the stalks determine the morphism and that the
induced sheaves have the same stalks as the sheaves on a base.

In other words, the natural restriction functor from the category of sheaves over
X to the category of sheaves on B is an equivalence of categories. The quasi-inverse
functor was given by theorem 11.5.1.
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As an application of this equivalence of categories, we’ll learn how to glue sheaves
and morphisms thereof. We begin with the latter, whose proof doesn’t really needs
the theory that we’ve just did but which we’ll be useful in gluing sheaves.

Proposition 11.5.3 Let {Ui} be an open cover of a topological space X. Also, let F

be a presheaf and G be a sheaf over X. If ϕi : F |Ui → G |Ui are morphisms which
restrict to the same map on the intersections, then there exists a unique morphism
ϕ : F → G whose restriction to Ui agrees with ϕi for every i.

Proof. Let V ⊂ X be an open set. The sets Vi := V ∩ Ui cover V and so we have a
diagram

F (V)
∏
iF (Vi)

∏
ijF (Vi ∩ Vj)

G (V)
∏
i G (Vi)

∏
ij G (Vi ∩ Vj).

(ϕi)Vi

It commutes precisely because the ϕi restrict to the same map on the intersections.
The universal property of the equalizer gives a unique induced morphism. This
defines our unique ϕ : F → G . If V is a subset of Ui, the fact that the square on the
left commutes implies that ϕV = (ϕi)V and so ϕ|Ui = ϕi.

Just as a quick digression, this proposition is precisely a result we had promised
not long ago.

Corollary 11.5.4 Let F be a presheaf and G be a sheaf over a topological space X.
Then Hom(F ,G ) is a sheaf.

We now delve into gluing sheaves. For that we define the rigorously what it really
means to glue sheaves.
Definition 11.5.4 — Gluing data. Let {Ui} be an open cover of a topological space X.
For each i, let Fi be a sheaf over Ui. Also, for each i, j, let

ϕij : Fi|Ui∩Uj → Fj|Ui∩Uj

be an isomorphism of sheaves overUi∩Uj. Assume in addition that for every i, j, k
the following diagram (this is called the cocycle condition)

Fi|Ui∩Uj∩Uk Fj|Ui∩Uj∩Uk

Fk|Ui∩Uj∩Uk

ϕij

ϕik
ϕjk

commutes. We say that the collection of (Fi, ϕij) is a gluing data for the cover {Ui}.
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The plan for the following proposition is simple: the collection B of the open sets
U ⊂ X which are contained in one of the Ui forms a base for the topology of X. If
U ∈ B, we wish to define a sheaf on B by setting F(U) = Fi(U) whenever U ⊂ Ui.
The isomorphisms ϕij imply that different choices of i yield isomorphic objects. The
problem, of course, is that giving an isomorphism class for each U is not enough to
define a presheaf.

Proposition 11.5.5 Let {Ui} be an open cover of a topological space X. If (Fi, ϕij) is
a gluing data for this cover, then there exists a unique sheaf F over X together with
isomorphisms ϕi : F |Ui → Fi such that the diagram

F |Ui∩Uj Fi|Ui∩Uj

Fj|Ui∩Uj

ϕj

ϕi

ϕij

commutes for every i, j.

Proof. As we’ve just said, let B the collection of the open sets U ⊂ X which are
contained in one of the Ui. For each p ∈ X, we choose an k such that p ∈ Uk
and then define Fp to be the stalk of Fk at p. The maps ϕki induce isomorphisms
ϕi,p : Fp → (Fi)p for every i such that p ∈ Ui. We observe that the cocycle condition
implies that ϕj,q = (ϕij)q ◦ϕi,q for all q ∈ Ui ∩Uj.

Now, we define a sheaf F over B to be

F(U) :=

(sp)p∈U ∈
∏
p∈U

Fp

∣∣∣∣∣∣
for every p ∈ U, there exists a neighborhood
V ⊂ Uofp and t ∈ Fi(V) such thatϕi,q(sq) =
tq for every q ∈ V


whenever U ⊂ Ui for some i. This is independent of the choice of i. Indeed, if
U ⊂ Ui ∩ Uj and t ∈ Fi(V) is such that ϕi,q(sq) = tq for every q ∈ V , then
t ′ := (ϕij)V(t) ∈ Fj(V) is such that

t ′q = (ϕij)q(tq) = (ϕij)q(ϕi,q(sq)) = ϕj,q(sq)

for every q ∈ V .
We let F be the extension of F given by theorem 11.5.1. If U ⊂ Ui for some i, the

product of ϕi,p : Fp → (Fi)p for every p ∈ U∏
p∈U

Fp →
∏
p∈U

(Fi)p

(sp)p∈U 7→ (ϕi,p(sp))p∈U
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restricts to give an isomorphism F(U) → F̃i(U) ∼= Fi(U). The equivalence of cate-
gories studied in this section then gives our isomorphism ϕi : F |Ui → Fi. The same
construction shows that ϕj,q = (ϕij)q ◦ ϕi,q for all q ∈ Ui ∩ Uj implies the desired
commutative diagram.

Finally, if there exists another sheaf G with isomorphismsψi : G |Ui → Fi satisfying
the given conditions, the isomorphisms ψ−1

i ◦ ϕi : F |Ui → G |Ui restrict to the same
map on the intersections since the diagram

F |Ui∩Uj Fi|Ui∩Uj

Fj|Ui∩Uj G |Ui∩Uj

ϕi

ϕj
ϕij

ψi

ψj

commutes. Proposition 11.5.3 then implies that the ψ−1
i ◦ϕi glue to form an isomor-

phism F → G .

11.6. Sheaves with values in an abelian category
In this section we’ll learn how to deal with the categories of presheaves and sheaves
when they have values in an abelian category. The reader who is uneasy with the
notion of an abelian category shouldn’t worry. We’ll run over the main points as they
are needed. Of course, the part on homological algebra contains more information
about these ideas.

We begin with the notion of an additive category.
Definition 11.6.1 — Additive category. A locally small category C is said to be additive
if it has an object 0which is both initial and final (hereafter called a zero-object), if it
has finite products and finite coproducts, and if each set of morphismsHomC(A,B)

is endowed with an abelian group structure, in such a way that the composition
maps are bilinear. A functor between additive categories is additive if it preserves
the abelian group structures.

Explicitly, in an additive category it makes sense to add or subtract morphisms and
this operation satisfies

ϕ ◦ (ψ1 +ψ2) = ϕ ◦ψ1 +ϕ ◦ψ2 and (ϕ1 +ϕ2) ◦ψ = ϕ1 ◦ψ+ϕ2 ◦ψ

whenever those compositions exist. Moreover, there is a zero-morphism, also denoted
0, between any two objects and so two morphisms ϕ and ψ are equal if and only if
ϕ−ψ = 0. This allows us to define kernels by a universal property.
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11.6. Sheaves with values in an abelian category

Definition 11.6.2 — Kernel. Let ϕ : A→ B be a morphism in an additive category C.
The kernel of ϕ is the equalizer of ϕ and the zero-morphism. In other words, it is a
morphism i : K→ A such that, whenever ζ : Z→ A satisfies ϕ ◦ ζ = 0, there exists
a unique morphism Z→ Kmaking the diagram

K A B

Z

i ϕ

0

ζ

commute. We denote both K and i : K→ A by kerϕ.

�
In a general one cannot talk about inclusions in an arbitrary category. That’s why
the kernel is indeed a morphism. We also observe that kernels are not guaranteed
to exist in an additive category. For example, kernels not necessarily exist in the
category of finitely generated A-modules, which is additive.

While it doesn’t make sense to say that i : K → A is injective, it is indeed a
monomorphism.4 By the bilinearity of composition, it suffices to prove that if j : Z→ K

is such that i ◦ j = 0, then j = 0. In this case, ϕ ◦ (i ◦ j) = 0 and so there exists a unique
induced morphism Z→ K such that the diagram

K A B

Z

i ϕ

i◦j

commutes. But both j : Z → kerϕ and 0 are such morphisms. The unicity then
implies that j = 0. Thus i is always a monomorphism.

Let’s see how this works in a concrete case.

� Example 11.6.1 — Kernels in A-Mod. The prototypical example of an additive category
is surely the category of modules over a ringA. In this case, the kernel of a linear map
ϕ :M→ N is the inclusion kerϕ→ A of the usual kernel in A. Indeed, if ζ : P →M

is a linear map such that ϕ ◦ ζ = 0, then ζ(p) ∈ kerϕ for all p ∈ P. This implies that
ζ : P →M factors through kerϕ→ A, showing that kerϕ→ A satisfies the universal
property of the kernel. �

Recall that in A-Mod a morphism ϕ :M→ N is monic if and only if kerϕ = 0. This
generalizes to additive categories, given that the morphism possesses a kernel.

Proposition 11.6.1 Let ϕ : A→ B be a morphism in an additive category. Then ϕ is
a monomorphism if and only if 0→ A is its kernel.

4As every equalizer is.
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Proof. Suppose thatϕ is a monomorphismwith a kernel i : K→ A. Sinceϕ ◦ i = 0, it
follows that i = 0. We affirm that 0→ A satisfies the universal property of the kernel.
Indeed, let ζ : Z → A be a morphism such that ϕ ◦ ζ = 0. As i is a kernel, ζ factors
through i = 0, proving that ζ = 0 and so, in particular, it factors uniquely through
0→ A.

Conversely, suppose that 0 → A is a kernel for ϕ : A → B, and let ζ : Z → A be a
morphism such that ϕ ◦ ζ = 0. The universal property implies that ζ factors through
0→ A and so ζ = 0, proving that ϕ is a monomorphism.

Inverting all the arrows, we have the dual definition of a cokernel.
Definition 11.6.3 — Cokernel. Let ϕ : A → B be a morphism in an additive category
C. The cokernel ofϕ is the coequalizer ofϕ and the zero-morphism. In other words,
it is a morphism π : B→ C such that, whenever β : B→ Z satisfies β ◦ϕ = 0, there
exists a unique morphism C→ Zmaking the diagram

Z

A B C
ϕ

0

π

β

commute. We denote both C and π : B→ C by cokerϕ.

As before, cokernels are automatically epimorphisms (as every coequalizer). Once
again, let’s see how this works in A-Mod.
� Example 11.6.2 — Cokernels in A-Mod. Let ϕ :M→ N be a morphism of A-modules.
Here, the cokernel of ϕ is the quotient map π : N→ N/ imϕ, where imϕ is the usual
set-theoretic image. Indeed, if β : N → P satisfies β ◦ ϕ = 0, then imϕ ⊂ kerβ and
the universal property of the quotient induces a unique morphism β̃ : N/ imϕ → P

which makes the diagram

P

M N N/ imϕ
ϕ

0

π

β
β̃

commute. In other words, π : N → N/ imϕ satisfies the universal property of the
cokernel. �

In A-Mod, a morphism ϕ : M → N is an epimorphism if and only if N/ imϕ
vanishes. As expected, this generalizes to morphisms which possess cokernels in
additive categories.
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11.6. Sheaves with values in an abelian category

Proposition 11.6.2 Let ϕ : A→ B be a morphism in an additive category. If ϕ has a
cokernel, then it is an epimorphism if and only if B→ 0 is its cokernel.

Proof. We could do a similar proof to the one in proposition 11.6.1 but this result
actually follows from it. Indeed, the opposite category of an additive category is still
additive. Now ϕ is an epimorphism if and only if the opposite arrow ϕop : B → A

is a monomorphism. By proposition 11.6.1 this happens precisely when 0 → B is
the kernel of ϕop in the opposite category. Reversing all the arrows once again, this
happens if and only if B→ 0 is the cokernel of ϕ.

Going one step further, we arrive at the main definition of this section.
Definition 11.6.4 — Abelian category. An additive category C is abelian if kernels and
cokernels exist in C, if every monomorphism is the kernel of some morphism, and
if every epimorphism is the cokernel of some morphism.

As we saw, in an additive category kernels are monomorphisms and cokernels are
epimorphisms. But there is no guarantee that monomorphisms should necessarily be
kernels and epimorphisms should be cokernels, as it happens with modules. In the
end, we simply demand these additional features explicitly.

� Example 11.6.3 As usual the category of A-modules is abelian. If A is Noetherian,
then so is everyA-module, proving that the category of finitely generatedA-modules
is also abelian in this case. In particular the categories of abelian groups, of vector
spaces and of finite dimensional vector spaces are abelian. �

We now imposed that every monomorphism should be the kernel of some mor-
phism. A priori this could be anything. Luckily we can describe it explicitly.

Proposition 11.6.3 In an abelian category C, every monomorphism is the kernel of
its cokernel and every epimorphism is the cokernel of its kernel.

Proof. Let ϕ : A → B be a monomorphism which is the kernel of some morphism
β : B → Z. Since C is abelian, ϕ has a cokernel π : B → C. The universal property of
the cokernel shows that β factors through π.

Z

A B C
ϕ π

β

We show that ϕ satisfies the universal property defining the kernel of π. Let K → B
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11. Sheaves and presheaves

be a morphism whose composition with π is the zero-morphism.

Z

A B C

K

ϕ π

β

0

By the commutativity of the diagram, K → B → Z is also the zero-morphism. But ϕ
is the kernel of β and so there exists a unique induced morphism K→ A, proving our
claim. The statement about epimorphisms follows in the same way.

After this long digression, we get back to our main goal of understanding how this
all works in categories of presheaves. If C is an abelian category and X is a topological
space, we’ll see that Cpre

X is also abelian. The main point behind this statement is the
fact that "limits and colimits in a functor category are computed pointwise". Let’s see
what this means.

For now, we fix small categories I and O and a locally small category C. We denote
by Fun(O,C) the category whose objects are functors O → C and whose morphisms
are natural transformations. Given an object U of O, we have a functor

evU : Fun(O,C)→ C
F 7→ F(U)

called evaluation at U. This allows us to precisely state what it means for limits in a
functor category to be computed pointwise.

Theorem 11.6.4 — Limits in a functor category. Let D : I → Fun(O,C) be a diagram,
and suppose that for eachU ∈ O, the diagram evU ◦D : I→ C has a limit. Then there
is a cone on D whose image under evU is a limit cone on evU ◦D for each U ∈ O.
Moreover, any such cone on D is a limit cone.

We won’t prove this result, but it isn’t particularly difficult. As usual in category
theory, it’s just a matter of unwinding definitions. The reader can check [23] for a
proof. We’ll use the particular case where O is the category OpenX of open sets of a
topological space X. In this context, the theorem implies, for example, that if C has
binary products then so does Cpre

X . Moreover, the product of two presheaves F and
G is the one given by

(F × G )(U) = F (U)× G (U).

This same procedure works with all limits. Of course, theorem 11.6.4 has a dual,
stating that colimits in a functor category are also computed pointwise. In particular,
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11.6. Sheaves with values in an abelian category

these theorems prove that the category of presheaves with values in an additive
category is also additive. Indeed, terminal objects, finite products and finite products
are instances of limits and colimits. Furthermore, the abelian group structure on
Hom(F ,G ) is given pointwise by that of HomC(F (U),G (U)).

Finally, if ϕ : F → G is a morphism of presheaves with values in an abelian
category C, these same results also imply that the morphisms kerϕU → F (U) and
G (U) → cokerϕU define morphisms of presheaves which satisfy the respective uni-
versal properties inCpre

X . Let’s dig a little deeper in the innerworkings of these notions.
Let V ⊂ U be a pair of nested open sets. This gives the commutative diagram below.

kerϕU F (U) G (U)

kerϕV F (V) G (V)

iU ϕU

resU,V resU,V

iV ϕV

We’ll obtain the restriction map kerϕU → kerϕV using the universal property of the
kernel of ϕV . It suffices then to show that this composition

kerϕU F (U)

F (V) G (V)

iU

resU,V

ϕV

is the zero-morphism. But, by the commutativity of our diagram, this is the same as

kerϕU F (U) G (U)

G (V).

iU

0

ϕU

resU,V

The universal property then yields the restriction map

kerϕU F (U) G (U)

kerϕV F (V) G (V),

iU ϕU

resU,V resU,V

iV ϕV

which shows that, not only U 7→ kerϕU defines a presheaf but that the collection of
all the kerϕU → F (U) defines a morphism of presheaves. In the same fashion, the
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universal property of the cokernel gives the restriction maps below

F (U) G (U) cokerϕU

F (V) G (V) cokerϕV ,

ϕU

resU,V resU,V

πU

ϕV πV

which shows that U 7→ cokerϕU defines a presheaf and the collection of all the
G (U) → cokerϕU defines a morphism of presheaves G → cokerϕ which satisfies the
universal property of the cokernel in Cpre

X .
We now finish the proof of the theorem below.

Theorem 11.6.5 Let C be an abelian category and X be a topological space. Then the
category Cpre

X of presheaves is also abelian.

Proof. All that remains is to show that every monomorphism in Cpre
X is the kernel

of some morphism, and that every epimorphism is the cokernel of some morphism.
Once again, this follows from theorem 11.6.4 and its dual counterpart.

We first observe that a morphism ϕ : F → G is monic if and only if all the
components ϕU are monomorphisms. Indeed, if all the ϕU are monomorphisms we
can apply the definition of a monomorphism pointwise to see that ϕ is also monic.
Conversely, if ϕ is monic, then

F F

F G

idF

idF

ϕ

ϕ

is a pullback square and so

F (U) F (U)

F (U) G (U)

idF(U)

idF(U)

ϕU

ϕU

is a pullback square for every open set U since limits are computed pointwise.
Now, if ϕ : F → G is monic then all the ϕU are the kernels of their cokernels. If

V ⊂ U is a pair of nested open sets, we have the following commutative diagram

F (U) G (U) cokerϕU

F (V) G (V) cokerϕV

ϕU

resU,V resU,V

πU

resU,V

ϕV πV

which shows that ϕ is the kernel of π : G → cokerϕ. The same arguments show that
every epimorphism is the cokernel of its kernel.
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11.6. Sheaves with values in an abelian category

We go back to general abelian categories for a while, since there are two important
properties of these categories that we want to talk about. The first one is the fact that
being an isomorphism is equivalent to being both monic and epic.

Proposition 11.6.6 Let ϕ : A → B be a morphism in an abelian category C, and
assume that ϕ is both a monomorphism and an epimorphism. Then ϕ is an
isomorphism.

Proof. Since ϕ is both monic and epic, its kernel is 0 → A and its cokernel is B → 0.
Furthermore, by proposition 11.6.3, ϕ is the kernel of B → 0 and the cokernel of
0→ A. Now consider the diagram below.

B

0 A B 0

idB

ϕ

Since B → B → 0 is the zero morphism and ϕ is the kernel of B → 0, we obtain a
unique morphism ψ : B→ Amaking the diagram

B

0 A B 0

idB
ψ

ϕ

commute. As ϕ ◦ ψ = idB, this shows that ϕ has a right-inverse. Similarly, the fact
thatϕ is the cokernel of 0→ A implies the existence of a unique morphism η : B→ A

such that the diagram
A

0 A B 0
ϕ

idA
η

commutes. It follows that ϕ has both a left-inverse η and a right-inverse ψ. Thus,
η = ψ is a two-sided inverse of ϕ and so ϕ is an isomorphism.

This evidently holds in all the categories of example 11.6.3 since in every one of
them monomorphisms are injective and epimorphisms are surjective. Therefore ϕ
is bĳective and, as in any algebraic category, bĳective morphisms are isomorphisms.
Nevertheless, it is reassuring to know that this is true in any abelian category. We also
observe that this statement does not hold even in fairly mundane categories, such as
Ring, for example.
The secondproperty thatwewant to talk about is the fact that, in an abelian category,

finite products and finite coproducts coincide. We enunciate this as a proposition,
where we denote coproducts as direct sums.
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Proposition 11.6.7 Let A and B be two objects in an abelian category C. Then A× B
and A⊕ B are naturally isomorphic.

Sketch of proof. Let’s understand how this works. By its very definition, a coproduct
is endowed with morphisms

A A⊕ B B.
iA iB

In general,A⊕B can’t satisfy the universal property of the coproduct sincemorphisms
πA : A ⊕ B → A and πB : A ⊕ B → B need not exist. But in an abelian category we
can obtain such morphisms using zero-morphisms and the universal property of
coproducts:

A

A⊕ B A

B

iA

idA

πA

iB

0

and

A

A⊕ B B.

B

iA

0

πB

iB

idB

Then the universal property of products shows that there exists a unique morphism
A⊕ B→ A× Bmaking the diagram

A

A⊕ B A× B

B

πA

πB

commute. This is the desired isomorphism. We won’t prove that but, as usual, it’s
nothing but awhole lot of universal properties. The reader is encouraged to prove that
πB is the cokernel of iA, iA is the kernel of πB, and to use that to show that 0→ A⊕B
is the kernel of A⊕B→ A×B, concluding that it is a monomorphism. Similarly, one
can show that it is an epimorphism, establishing the result. The interested reader can
also check theorem 6.1.9 for a (different) complete proof.

We now explore how we can define the arrow-theoretic image of a morphism in an
abelian category. For that, let’s translate our intuitive notion of imϕ in Set to a purely
arrow-theoretic statement. The main point in Set is that imϕ is the smallest subset
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of B to which we can restrict the codomain of ϕ to. In other words, we can factor
ϕ : A→ B as

A imϕ B,

where imϕ → B is injective and imϕ is the smallest subset of B which allows this
decomposition. Switching to categorical terms, we arrive at the following universal
property: the image of ϕ : A → B is a monomorphism i : K → B such that ϕ
factors through i and that is initial with these properties. That is, if L→ B is another
monomorphism throughwhichϕ also factors, then it exists a uniquemorphismK→ L

such that the diagram
L

A K B
ϕ

i

commutes. In an abelian category, it could well happen that no morphism i : K → B

satisfies this universal property. Luckily, this is never the case.

Proposition 11.6.8 Let ϕ : A → B be a morphism in an abelian category, and let
i : K → B be the kernel of cokerϕ. Then i is a monomorphism through which ϕ
factors, and it is initial with these properties.

Proof. It is clear that i is amonomorphismby the fact that it is a kernel. Since i : K→ B

is the kernel of the cokernel πϕ : B→ Cϕ of ϕ, the diagram

A B Cϕ

K

ϕ
πϕ

0

i

commutes. The universal property of the kernel then implies the existence of a
morphism A → K factoring ϕ through i. We now show that i satisfies the desired
universal property. Let λ : L → B be another monomorphism through which ϕ
factors, and consider its cokernel πλ : B→ Cλ.

L

A K B

Cλ

λ

ϕ

i

πλ
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Since ϕ factors through λ, the composition A→ B→ Cλ is 0. The universal property
of cokerϕ induces a morphism Cϕ → Cλ:

L

A K B Cϕ

Cλ.

λ

ϕ

i

πλ

πϕ

Observe that since K → B → Cϕ is the zero-morphism, so is K → B → Cλ. But λ is a
monomorphism, which implies that it is the kernel of πλ. Its universal property then
implies the existence of a uniquemorphismK→ Lmaking the diagram commute.

This motivates the definition below.
Definition 11.6.5 — Image. Let ϕ : A → B be a morphism in an abelian category. Its
image, denoted imϕ, is the kernel of cokerϕ.

Just as a reality-check, we verify that this works as intended in the concrete case of
A-modules.

� Example 11.6.4 — Images in A-Mod. Let ϕ : M → N be a morphism of A-modules.
Recall that the cokernel of ϕ is the projection map N → N/ imϕ, where imϕ is the
usual set-theoretic image. The kernel of this morphism is surely imϕ → N, which is
the inclusion of the set-theoretic image in N. �

We now have everything we need to talk about exact sequences.
Definition 11.6.6 — Exact sequence. Consider a sequence of objects and morphisms
in an abelian category:

· · · A B C · · · .ϕ ψ

We say that this sequence is exact at B if ψ ◦ϕ = 0 and cokerϕ ◦ kerψ = 0.

Let’s see that this definition indeed encodes what we know about exact sequences.
The first condition ψ ◦ϕ = 0 implies that ϕ factors through kerψ.

· · · A B C · · ·

kerψ

ϕ ψ

Since kerψ is a monomorphism, the universal property of imϕ yields a unique fac-
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torization of imϕ through kerψ.

imϕ

· · · A B C · · · .

kerψ

ψ

Similarly, the second condition tells us that kerψ factors through ker(cokerϕ) = imϕ,
proving that imϕ = kerψ. Conversely, if imϕ = kerψ, then ψ ◦ ϕ : A → C is the
zero-morphism since kerψ→ B→ C is. Also, in this case we have that cokerϕ ◦ kerψ
is nothing but cokerϕ ◦ imϕ, which is 0 since imϕ = ker(cokerϕ). In other words, we
have proved the result below.

Proposition 11.6.9 Consider a sequence of objects and morphisms in an abelian
category:

· · · A B C · · · .ϕ ψ

Then this sequence is exact at B if and only if ψ has a kernel that is an image of ϕ.

Once again, we go back to understanding how this all works in the category of
presheaves. Let F and G be presheaves over a topological space X with values in an
abelian category C. One more time, theorem 11.6.4 and its dual counterpart are all
that we need to know. The presheaf F ⊕ G defined pointwise by

(F ⊕ G )(U) := F (U)⊕ G (U)

satisfies the universal property of both the product and the coproduct inCpre
X . A priori

there’s no reason for C to have infinite products or coproducts but, if they exist then
Cpre
X also has infinite products or coproducts, and they are still computed pointwise,

even though they may not coincide.

If ϕ : F → G is a morphism of presheaves, then the assignment U 7→ imϕU
defines a presheaf which satisfies the universal property of imϕ in Cpre

X . Since imϕ =

ker(cokerϕ), the restriction maps of precisely those of the kernel presheaf. Namely, if
V ⊂ U is a pair of nested open sets in X, precisely the same argument that we used to
describe the restriction maps of the kernel presheaf show the existence of a induced
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morphism imϕU → imϕV making the diagram

F (U) imϕU G (U) cokerϕU

F (V) imϕV G (V) cokerϕV

resU,V

ϕU

resU,V resU,V

ϕV

commute. Surely, ifC is also an algebraic category5 thenmonomorphisms are injective,
and we can identify imϕU and imϕV as subsets of G (U) and G (V). In this case, the
restriction maps become precisely those of G .

Exact sequences of presheaves are even simpler. Consider a sequence of presheaves
with values in an abelian category:

· · · F G H · · · .ϕ ψ

Aswe saw in proposition 11.6.9, this sequence is exact at G if and only if imϕ = kerψ.
But images and kernels are computed pointwise, so this holds if and only if imϕU =

kerψU for every open set U ⊂ X. In other words, our original sequence is exact at G

if and only if

· · · F (U) G (U) H (U) · · ·ϕU ψU

is exact at G (U) whenever U is an open set of X.
We pass our attention to the category of sheaves. In particular, we’ll prove the

theorem below.

Theorem 11.6.10 Let C be an abelian algebraic category and X be a topological space.
Then the category CX of sheaves is also abelian.

Now the answer to all our prayers will be the theorem 11.3.4, which says that the
sheafification functor is left adjoint to the forgetful functor from sheaves to presheaves.
As we remarked in the section about the sheafification, not only the inclusion of the
category of sheaves in the category of presheaves preserves limits, but it also creates
limits, since this functor is fully faithful. In other words, a limit in CX exists if and
only if it exists in Cpre

X , in which case they coincide. As an example, if F and G are
sheaves then presheaf defined as

(F ⊕ G )(U) = F (U)⊕ G (U)

5It does not suffice that C is concrete.
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for every open set U ⊂ X, satisfies not only the universal property of products in Cpre
X

but also in CX. In particular, it is also a sheaf. Similarly, if ϕ : F → G is a morphism
of sheaves, the presheaf kernel kerϕ is also a sheaf and satisfies its universal property
in CX.

Also, the sheafification functor preserves colimits. This implies that, in order to
construct a colimit of sheaves, we can construct the same colimit in the category
of presheaves and then sheafify. In particular, the sheafification of the cokernels,
direct sums and images that we constructed in this section all satisfy their respective
universal properties in the category of sheaves. Hereafter, when dealingwith sheaves,
we’ll denote by cokerϕ the sheafification of the presheaf cokernel and similarly to all
the other notions that need to be sheafified.

All that remains to prove in order to obtain theorem 11.6.10 is the fact that every
monomorphism is the kernel of its cokernel and that every epimorphism is the cok-
ernel of its kernel. For that, we’ll need to talk about stalks. The main result is the
proposition below, which basically says that filtered colimits are exact.

Proposition 11.6.11 Let C be an abelian algebraic category and X be a topological
space. Then, for every p ∈ X, the stalk functor

(−)p : CX → C
F 7→ Fp

is exact.

� We observe that, since the image sheaf is the sheafification of the image presheaf, exact
sequences in CX and in Cpre

X are different things.

Proof. Consider a short exact sequence of sheaves:

0 F G H 0.
ϕ ψ

The fact that this sequence is exact amounts precisely to imposing thatϕ is amonomor-
phism, ψ is an epimorphism and kerψ = imϕ. Propositions 11.2.1 and 11.2.2 imply
that ϕp is also a monomorphism and ψp is also an epimorphism. Also, since fil-
tered colimits commute with finite limits and colimits in an algebraic category, taking
kernels and images commute with taking stalks, proving that

kerψp = (kerψ)p = (imϕ)p = imϕp.

In other words, the sequence of stalks

0 Fp Gp Hp 0.
ϕp ψp
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11. Sheaves and presheaves

is also exact.

Actually, more is true. If the induced sequence on the stalks is exact for every p ∈ X,
then the original sequence is also exact. Indeed, the same propositions 11.2.1 and
11.2.2 imply that ϕp is a monomorphism and ψp is an epimorphism if and only if ϕ
andψ are. Similarly, kerψ = imϕ holds if and only if kerψp = imϕp for every p. This
allows us to generalize the previous proposition.

Corollary 11.6.12 Let f : X→ Y be a continuousmap. Then the inverse image functor
f−1 : CY → CX is exact.

Proof. Consider a short exact sequence of sheaves over Y:

0 F G H 0.
ϕ ψ

Taking stalks at f(p) yields another exact sequence:

0 Ff(p) Gf(p) Hf(p) 0.

Now, recall that Ff(p)
∼= (f−1F )p and that this isomorphism is natural in F (by

corollary 11.4.2). In other words, the sequence

0 (f−1F )p (f−1G )p (f−1H )p 0.

is also exact. Since this holds for every p ∈ X, the result follows by the previous
discussion.

We now finish our proof of the theorem 11.6.10 by showing that indeed every
monomorphism is the kernel of its cokernel and that every epimorphism is the cok-
ernel of its kernel.

Proof of theorem 11.6.10. Let ϕ : F → G be a monomorphism of sheaves. Being a
kernel of its cokernel is equivalent to demanding the sequence

0 F G cokerϕϕ

to be exact. Since the sequence induced on the stalks is indeed exact, so is the
sequence above. The same argument proves that every epimorphism is the cokernel
of its kernel.

As some last remarks, we observe that since a sequence of the form

0 F G Hϕ ψ
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11.6. Sheaves with values in an abelian category

is exact if and only if ϕ = kerψ. In particular, right adjoints preserve such exact
sequences. As usual, we say that a functor that preserves exact sequences of this form
is left exact. This should become another Pavlovian reaction: right adjoints are left
exact. Similarly, a sequence of the form

F G H 0
ϕ ψ

is exact if and only if ψ = cokerϕ. A functor that preserves such a sequence is said to
be right exact. Particularly, left adjoints are right exact.
A notable case is the direct image functor f∗ which is left exact. Somewhat more

interesting is the case of the functor Γ(U,−)which takes a sheaf to its sections over an
open setU. Since the inclusion of the category of sheaves in the category of presheaves
is right adjoint to the sheafification functor, an exact sequence of sheaves of the form

0 F G Hϕ ψ

is still exact in the category of presheaves. But kernels and images are computed
pointwise in the category of presheaves, so this means that the sequence

0 F (U) G (U) H (U)
ϕU ψU

is exact whenever U is an open set. In other words, the functor Γ(U,−) is left exact.
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12. Ringed spaces

Nowadays it has become clear that most "geometric spaces" are best described as
objects in a certain category that are locally isomorphic to a class of standard geometric
spaces. For instance, a smooth manifold is nothing but a topological space which is
locally diffeomorphic to an open set ofRn. In this chapter we’ll construct the category
of ringed spaces which will contain basically all the geometric objects that we want to
study in these notes.

12.1. Basic definitions
Definition 12.1.1 — Ringed space. A ringed space is a pair (X,OX), where X is a topo-
logical space and OX is a sheaf of rings over X, hereafter called structure sheaf. A
morphism of ringed spaces (X,OX) → (Y,OY) is a pair (f, f]), where f : X → Y is
a continuous map and f] : OY → f∗OX is a morphism of sheaves. We denote the
category of ringed spaces by RS.

We’ll often denote a ringed space (X,OX) simply by X and a morphism (f, f]) by f
when there’s no possibility of confusion. Recall that the musical adjunction (theorem
11.4.4) says that the datum of a morphism of sheaves f] : OY → f∗OX is equivalent to
the datum of a morphism f[ : f−1OY → OX.

We remark that a morphism f : X → Y of ringed spaces induces morphisms on
the stalks of the structure sheaves as follows. If p ∈ X, we use the identification
(f−1OY)p = OY,f(p) to obtain a morphism

f[p : OY,f(p) = (f−1OY)p → OX,p.

Somewhat more explicitly, if V ⊂ U is a pair of nested open sets containing f(p) in Y,
then the universal property of the coproduct induces a morphism OY,f(p) → OX,p

OY(U) Γ(U, f∗OX)

OY,f(p) OX,p

OY(V) Γ(V, f∗OX).

f
]
U

f
]
V
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12. Ringed spaces

The proof of the musical adjunction shows that this coincides with the morphism f[p
described above.

The simplest examples of ringed spaces are a topological space with its sheaf of
continuous functions and a singleton endowedwith the constant sheaf. We talk about
a more interesting example below.

� Example 12.1.1 — Manifolds as ringed spaces. A smooth manifold, endowed with its
natural sheaf of smooth functions is a ringed space. Moreover, the example 11.4.3
shows that a morphism of smooth manifolds is always a morphism of ringed spaces.
In other words, the category of smooth manifolds is a subcategory of RS.

But this is not a full subcategory! In other words, there are morphisms of ringed
spaces between manifolds which are not smooth maps. Indeed, in a morphism (f, f])

of ringed spaces, the morphism of sheaves f] need not be composition by the map f.
In the sequence, we will impose a condition on morphisms of ringed spaces that will
solve this problem. �

Other examples of ringed spaces that will appear eventually in these notes are
schemes, formal schemes, analytic spaces and other classes of manifolds, such as
topological and complex manifolds. These notions will be dealt with in due time.

In some sense, ringed spaces are not the geometric spaces that we wish to work
with. In such space we want to think about the sections of the structure sheaf as
functions. A reasonable property to ask of such functions is that those which do not
vanish at a point p should be invertible in some neighborhood of p. In other words,
all the elements of the stalk not contained in the ideal of functions vanishing at p are
units. This implies that the stalk is a local ring. (Proposition 2.5.1.) We arrive at the
definition below.
Definition 12.1.2— Locally ringed space. A locally ringed space is a ringed space (X,OX)
such that for all p ∈ X the stalk OX,p is a local ring. We denote by mp the maximal
ideal of OX,p and by κ(p) the residue field OX,p/mp. A morphism of locally ringed
spaces (X,OX) → (Y,OY) is a morphism of ringed spaces (f, f]) such that for all
p ∈ X the induced morphism on stalks

f[p : OY,f(p) → OX,p

is a morphism of local rings. We denote by LRS the category of locally ringed
spaces.

We recall that the morphism of rings f[p : OY,f(p) → OX,p is said to be local if
f[p(mf(p)) ⊂ mp. In our intuitive image, this means that if a function on Y vanishes on
f(p), then its image in X must vanish at p, which indeed holds when f] is defined by
composing with f.

All the examples of ringed spaces (with perhaps the exception of a singleton with a
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constant sheaf of rings) that we described above are indeed locally ringed spaces.
One could hope that the morphisms of locally ringed spaces between smooth man-

ifolds now correspond precisely to smooth maps. This is not the case, the main
problem being that the structure sheaves of manifolds are not only rings but R- or
C-algebras. This brings us to the definition below.
Definition 12.1.3 Fix a locally ringed space S. A locally ringed space over S is a locally
ringed space X endowed with a morphism X → S. A morphism X → Y of locally
ringed spaces over S is a morphism of locally ringed spaces X → Y such that the
diagram

X Y

S

commutes. We denote by LRS/S the category of locally ringed spaces over S. In
other words, LRS/S is the slice category LRS ↓ S.

Let’s see how this works. Suppose that (X,OX) is a locally ringed space. Saying
that OX is a sheaf of k-algebras means that, whenever U ⊂ X is an open set, we have
a natural morphism of rings k → OX(U) compatible with the restriction maps. In
particular, the diagram

OX(X)

k

OX(U)

resX,U

commutes, proving that all the morphisms k → OX(U) are actually determined by
k → OX(X). We can rephrase this condition in yet another way. If we consider k
as the locally ringed space whose underlying topological space is a singleton {∗} and
whose structure sheaf is the constant sheaf k, such a morphism is precisely the data
of a morphism of locally ringed spaces X → k. Indeed, there is a single continuous
map f : X→ {∗} and a morphism

f] : k→ f∗OX

is simply a morphism of rings A → OX(X) by example 11.4.2. We finally get our
desired result.

Proposition 12.1.1 LetMan be the category of smooth manifolds. Then the inclusion
Man→ LRS/R is fully faithful. In other words,Man is a full subcategory of LRS/R.
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12. Ringed spaces

Proof. Let (f, f]) : (M,C∞M) → (N,C∞N) be a morphism of locally ringed spaces over
R. By our discussion in example 11.4.3, it suffices to show that f] : C∞N → f∗C

∞
M is

given by composition with f. We observe that the maximal ideal of the stalk C∞M,p is
composed by the functions which vanish at p. It follows that

C∞M,p → R
s 7→ s(p)

is a surjective morphism of R-algebras which induces an isomorphism κ(p) → R.
Similarly, κ(f(p)) is also isomorphic to R. Now, let s be a section of C∞N(U) and
observe the commutative diagram below.

s C∞N(U) C∞M(f−1(U)) f]U(s)

sf(p) C∞N,f(p) C∞M,p (f]U(s))p

s(f(p)) R R f]U(s)(p)

f
]
U

f[p

Since the identity is the only morphism of R-algebras R → R, it follows that f]U(s) =
s ◦ f, concluding the proof.

Similarly, the category of topological manifolds is a full subcategory of LRS/R and
the category of complex manifolds is a full subcategory of LRS/C. The proof is
precisely the same.

This result allows us to define a smooth manifold as a locally ringed space X over R,
whose underlying topological space is both Hausdorff and second countable, which
satisfies the following condition: every point p ∈ X has a neighborhood U ⊂ X

that is isomorphic to an open set of Rn, endowed with its natural sheaf of smooth
functions, as locally ringed spaces over R. Topological and complex manifolds admit
descriptions akin to this one.

In order to check that some locally ringed space is a manifold, we have to construct
some isomorphisms. Fortunately, there is an useful criterion for that.

Proposition 12.1.2 Let X and Y be locally ringed spaces and f : X→ Y be an isomor-
phism of ringed spaces. Then f is also an isomorphism of locally ringed spaces.

Proof. We have to prove that if f[p : OY,f(p) → OX,p is an isomorphism of rings, then
f[p(mf(p)) ⊂ mp. Or, equivalently, that mf(p) = (f[p)

−1(mp). Since f[p is surjective, the
preimage of mp is a maximal ideal of OY,f(p). The result follows as mf(p) is the only
such ideal.
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In other words, in order to verify that a morphism f : X→ Y between locally ringed
spaces is an isomorphism, it suffices to show that the underlying continuous map is
an homeomorphism and that f] : OY → f∗OX is an isomorphism of sheaves.
Another useful result gives a criterion for a morphism of ringed spaces to be a

monomorphism. For that, recall that a monomorphism in the category of topological
spaces is simply an injective continuous function.

Proposition 12.1.3 Let f : X → Y be a morphism of ringed spaces such that the
underlying map of topological spaces is a monomorphism and such that either
f[ : f−1OY → OX or f] : OY → f∗OX is an epimorphism. Then f is a monomorphism
in the category of ringed spaces.

Proof. Let (g1, g]1), (g2, g
]
2) : (Z,OZ) → (X,OX) be morphisms of ringed spaces such

that the diagram

(Z,OZ) (X,OX) (Y,OY)
(g1,g

]
1)

(g2,g
]
2)

(f,f])

commutes. Passing to the diagram of underlying continuous maps, we get that
g1 = g2. Henceforth, we’ll denote both g1 and g2 by g. By the musical adjunction,
the diagram of sheaves over Z

(f ◦ g)−1OY g−1OX OZ

is also commutative. Passing to the stalks we obtain the commutative diagram

OY,f(g(p)) OX,g(p) OZ,p.
f[g(p)

If f[ is an epimorphism, then so are its stalks. Therefore, the morphisms on the right
coincide, proving that so do the morphisms

g−1OX OZ

Another application of the musical adjunction implies that g]1 = g
]
2. We’ll now show

that if f] is an epimorphism, then so is f[, reducing this case to the one already
proved. Since f is injective, the direct image functor f∗ is fully faithful. By the musical
adjunction, we have isomorphisms

HomX(F ,G ) ∼= HomY(f∗F , f∗G ) ∼= HomX(f−1f∗F ,G )

which are natural in F ,G ∈ RingX. The Yoneda lemma then implies that the counit
ε : f−1f∗ → id is an isomorphism. Finally, the fact that f−1 is left adjoint and so
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preserves colimits implies that if f] is an epimorphism, then so is

f−1OY f−1f∗OX OX.
f−1f]

f[

εOX

The result follows.

In particular, the same result holds for morphisms of locally ringed spaces, locally
ringed spaces over S, manifolds, schemes, etc.

12.2. The structure sheaf of an affine scheme

In this section we’ll construct a natural structure sheaf on the spectrum of a ring.
One of Grothendieck’s most fruitful ideas was to observe that elements of a ring A

are naturally "functions" on SpecA. We consider the image of p ∈ SpecA by f ∈ A to
be f mod p. For example, the image of (x − a) ∈ SpecC[x] by f ∈ C[x] is simply f(a)
mod (x− a). More generally, we want the elements of Af to be functions on D(f).
As the distinguished open sets form a base of the Zariski topology, we can define

a presheaf on X = SpecA by declaring its values only on those sets, where it would
be desirable to define OX(D(f)) to be Af. The only hindrance is that OX(D(f)) should
not depend on f but only on D(f). It is indeed true that if D(f) = D(g) then Af is
isomorphic toAg. Nevertheless, as in proposition 11.5.5, giving an isomorphism class
for each open set is not enough to define a presheaf. This is solved by the lemma
below.

Lemma 12.2.1 Let A be a ring and f ∈ A. If SD(f) is the multiplicative set composed
by those s ∈ A such that D(f) ⊂ D(s), then S−1D(f)A is isomorphic to Af.

Proof. Since f ∈ SD(f), the universal property of localization induces a map ϕ : Af →
S−1D(f)A, that we’ll show to be an isomorphism. If ϕ(a/fn) = 0, then sa = 0 for some
s ∈ SD(f). Corollary 2.4.5 implies that fm = cs, for some c ∈ A and some positive
integerm. But then fma = csa = 0, which implies that a/1 = 0 inAf. In other words,
ϕ is injective. To see that it is surjective, take any a/s ∈ S−1D(f)A. As before we have
that fm = cs, for some c ∈ A and some positive integerm. This implies that

a

s
=
ca

cs
=
ca

fm

is the image of ca/fm ∈ Af by ϕ.
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We then define a presheaf on the base of distinguished open sets by declaring
OX(D(f)) to be S−1D(f)A. If D(g) ⊂ D(f), then SD(f) ⊂ SD(g) and so OX(D(g)) is a
further localization of OX(D(f)). We define the localization map

OX(D(f))→ OX(D(g))

to be the restriction map. It is clear that this defines a presheaf on the base. Hereafter
we’ll systematically use the isomorphisms OX(D(f)) ∼= Af and

resD(f),D(g) : Af → (Af)g = Ag.

Finally, we verify that OX is indeed a sheaf on the base of distinguished open sets.

Theorem 12.2.2 The presheaf OX just defined is a sheaf on the base of distinguished
open sets. Thus, it determines a sheaf on X = SpecA.

Proof. Since D(f) is naturally identified to SpecAf, it suffices to consider the case of
an open covering {D(fi)}i∈I of SpecA. We then suppose that SpecA =

⋃
i∈ID(fi) or,

equivalently, that the ideal generated by the fi is the entire ring A.
Let’s verify the identity axiom. By quasi-compactness, there’s a finite subset of

I, which we name {1, . . . , n}, such that SpecA =
⋃n
i=1D(fi). Let s ∈ A be a global

section such that s|D(fi) = 0 in Afi for every i = 1, 2, . . . , n. We want to show that
s = 0. For every such i, there exists an integermi such that fmi

i s = 0. By considering
the maximum of all these integers, there existsm satisfying fmi s = 0 for i = 1, . . . , n.
Since SpecA =

⋃n
i=1D(fmi ), there are ri ∈ A such that

∑n
i=1 rif

m
i = 1. Then,

s =

(
n∑
i=1

rif
m
i

)
s =

n∑
i=1

ri(f
m
i s) = 0.

We now show the gluability axiom. For now, let’s suppose I = {1, . . . , n} finite. Let
ai/f

li
i ∈ Afi be a collection of sections that coincide over Afifj . We’ll do a couple of

simplifications. Firstly we define gi := flii . Using that D(fi) = D(gi), we can simplify
the notation by considering our sections to be ai/gi ∈ Agi . The fact that those sections
coincide over Agigj means that there exist positive integersmij such that

(gigj)
mij(gjai − giaj) = 0

for every i, j. Taking the maximumm of all these integers, we simplify again:

(gigj)
m(gjai − giaj) = 0.

Let bi := aig
m
i and hi := gm+1

i . Since D(hi) = D(gi) = D(fi), we can do one last
simplification: our sections are bi/hi ∈ Ahi such that

hjbi = hibj.
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Since SpecA =
⋃n
i=1D(hi), there are ri ∈ A such that

∑n
i=1 rihi = 1. Then,

r :=

n∑
i=1

ribi

is the element of A that restricts to bj/hj on Ahj . Indeed,

rhj =

n∑
i=1

ribihj = bj

n∑
i=1

rihi = bj.

Finally, if I is infinite, we can use the quasi-compactness of SpecA to choose a finite
subcover SpecA =

⋃n
i=1D(fi). By our preceding construction, there exists a global

section r ∈ Awhose restriction toAfi isai/f
li
i for every i = 1, . . . , n. If k ∈ I\{1, . . . , n},

we apply the same construction to obtain a global section r ′ ∈ A whose restriction to
Afi is ai/f

li
i for every i ∈ {1, . . . , n, k}. By the identity axiom, r = r ′. We conclude that

r restricts to ai/flii for all i ∈ I as desired.

It may seem that it’s difficult to obtain an explicit description of OX(U) when U is
not a distinguished open set. Fortunately, this is not the case.
� Example 12.2.1 — Affine plan minus the origin. mostrar que a gente consegue calcular
isso só usando a base �

Proposition 12.2.3 Let A be a ring and X = SpecA. Then the stalk of OX at a prime
ideal p is Ap. In particular, it is a local ring.

Proof.

Definition 12.2.1 — Affine scheme. An affine scheme is a locally ringed spaceXwhich is
isomorphic to SpecA for some ring A. We define the category Aff of affine schemes
as the full subcategory of LRS whose objects are affine schemes.

Proposition 12.2.4 Let A be an integral domain. We define F to be the presheaf of
rings given by

F (U) :=
⋂
p∈U

Ap,

wheneverU is a nonempty open subset of SpecA. IfV ⊂ U, we define the restriction
resU,V : F (U) → F (V) to be the inclusion. Then F is a sheaf isomorphic to the
structure sheaf of SpecA.

Proof.
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Theorem 12.2.5 — Tate. Let X be a locally ringed space andA a ring. Then the natural
map

HomLRS(X, SpecA)→ HomRing(A, Γ(X,OX)),

which maps f : X → SpecA to f]SpecA : A → OX(X), is bĳective. This bĳection is
natural in X and A, proving that the global section functor is left adjoint to Spec.

Proof.

Corollary 12.2.6 Let X be a locally ringed space. Then, the canonical map X →
Spec Γ(X,OX) is universal among the maps from X to affine schemes. That is, if
X→ SpecA is a morphism of locally ringed spaces, there exists a uniquemorphism
Spec Γ(X,OX)→ SpecA such that the diagram

X SpecA

Spec Γ(X,OX)

commutes.

Proof.

Corollary 12.2.7 The category of affine schemes is anti-equivalent to the category of
rings.

Proof.

Corollary 12.2.8 Let A → B and A → C be morphisms of rings. Then the fibered
product

SpecB×SpecA SpecC

is given by Spec(B ⊗A C) in Aff. In particular, the product of SpecB and SpecC in
Aff is Spec(B⊗ C). Moreover, the products and fiber products in LRS are the same
as in Aff.

Proof.

Corollary 12.2.9 Let X be a locally ringed space and suppose that X is the coproduct
U
∐
V , where U and V are open in X. If U and V are affine schemes, then so is X.

Proof.
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Definition 12.2.2 — Scheme.

12.3. Limits and colimits of ringed spaces

12.4. Open and closed immersions

Proposition 12.4.1 Let X and Y be locally ringed spaces and {Ui} an open cover of
X. If fi : Ui → Y are morphisms of locally ringed spaces which restrict to the same
map on the intersections, then there exists a unique morphism f : X → Y whose
restriction to Ui agrees with fi for every i.

Proof.

Definition 12.4.1 — Gluing data.

Proposition 12.4.2 gluing (locally) ringed spaces (over S?)

Proof.

Corollary 12.4.3 Gluing schemes

Proof.

Corollary 12.4.4 gluing manifolds

12.5. OX-modules

12.6. Tangent spaces
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reescrever essa merda toda KKK fazer toda a cohomologia como um caso particular
dos 4 funtores.

13.1. Derived functor cohomology

Proposition 13.1.1 Let X be a ringed space. The category of sheaves of OX-modules
on X has enough injectives.

Proof.

mas não tem projetivos o suficiente!
Definition 13.1.1 — Sheaf cohomology. Let X be a ringed space. We denote by D∗(X),
for ∗ = ∅,+,−, b, the derived category of the category of OX-modules. If U is an
open subset of X, the functor Γ(U,−) is left exact and so gives rise to

RΓ(U,−) : D+(X)→ D+(Γ(U,OX)),

whose i-th cohomology is denoted by Hi(U,−).

We observe that, even though we’ll often apply Hi(U,−) to a single sheaf of OX-
modules, this functor takes bounded below complexes of sheaves (objects ofD+(X)) as
input. In the past, the cohomology of complexes of sheaveswas called hypercohomology
but, since the formalism of derived categories deals just as well with complexes as
with single sheaves, we’ll not need to differentiate between sheaf cohomology and
hypercohomology. The example below provides some motivation for considering the
cohomology of complexes of sheaves.
� Example 13.1.1 — De Rham cohomology. LetM be a smooth manifold. For every open
set U ⊂ M, we denote by ΩiM(U) the R-vector space of differential i-forms over U.
These vector spaces form a sheafΩiM and, together with the exterior derivative, they
coalesce into the de Rham complexΩ•M. The i-th de Rham cohomology,HidR(M), is defined
as being Hi(M,Ω•M).
We’ll soon see that the existence of partitions of unity implies that the sheavesΩiM

are acyclic and so the de Rham cohomology may be computed as Hi(Γ(M,Ω•M)),
which is its usual definition in differential geometry. Nevertheless, when dealing
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with complex manifolds or schemes, partitions of unity may not exist and we’ll be
obliged to consider the cohomology of the de Rham complex. �

The reader should recall that the derived functor RΓ(U,−) is a triangulated func-
tor. That is, it sends distinguished triangles in D+(X) to distinguished triangles in
D+(Γ(U,OX)), which in turn are sent to exact triangles in Γ(U,OX)-Mod by Hi. In
particular, a short exact sequence of bounded below complexes of OX-modules

0 F • G • H • 0

induces a long exact sequence of Γ(U,OX)-modules

· · · Hi(U,F •) Hi(U,G •) Hi(U,H •)

Hi+1(U,F •) Hi+1(U,G •) Hi+1(U,H •) · · · .

Before we continue our adventure into the world of sheaf cohomology, we remark
that there are two possible ambiguities in the definition 13.1.1. The first is that
we have considered Γ(U,−) as a functor OX-Mod → Γ(U,OX)-Mod, while it also
makes sense to view it as a functor AbX → Ab. Another possible ambiguity is that,
for a bounded below complex of OX-modules F •, it is not a priori obvious that
Hi(U,F •) = Hi(U,F |•U).1

None of these ambiguities pose real threats. The former will be addressed in the
next section while we deal with the latter now.

Proposition 13.1.2 Let X be a ringed space and let F • be a bounded below complex
of OX-modules. If U is an open subset of X, the complexes

RΓ(U,F •) and RΓ(U,F |•U)

coincide. In particular, Hi(U,F •) = Hi(U,F |•U) for all i.

Proof.

falar que se V ⊂ U, então existe uma aplicação de restrição natural Hi(U,F •) →
Hi(V,F •), dando a U 7→ Hi(U,F •) a estrutura de um prefeixe de OX-módulos.
Definition 13.1.2 — Flasque sheaf. Let X be a topological space. A presheaf F over X
with values in a concrete category is said to be flasque if, whenever V ⊂ U is a pair
of nested open sets in X, the restruction map F (U)→ F (V) is surjective.

1For that we have to prove that if I • → F • is an injective resolution, then so is I |•U → F |•U.
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Proposition 13.1.3 Let X be a ringed space and let U ⊂ X be an open subset. Any
injective OX-module is flasque and any flasque OX-module is acyclic for RΓ(U,−).

Proof.

Definition 13.1.3—Higher direct image. Let f : X→ Y be amorphism of ringed spaces.
The functor f∗ is left exact and so gives rise to the derived direct image

Rf∗ : D+(X)→ D+(Y).

The i-th cohomology of Rf∗F •, where F • is a bounded below complex of OX-
modules, is denoted by Rif∗F • and is called the i-th higher direct image.

a gente pode descrever as imagens diretas superiores usando cohomologia

Proposition 13.1.4 Let f : X → Y be a morphism of ringed spaces and let F • be a
bounded below complex of OX-modules. The sheafification of the presheaf

U 7→ Hi(f−1(U),F •)

coincides with the higher direct image Rif∗F •.

Proof.

dar exemplos de pq que isso não é um feixe
talvez falar aqui que módulos flasque são acíclicos para a imagem direta derivada.

13.2. Functoriality of cohomology
explicar pq que o resultado abaixo é útil.

Proposition 13.2.1 Let f : X→ Y be a morphism of ringed spaces. Then the diagram

D+(X) D+(Γ(X,OX))

D+(Y) D+(Γ(Y,OY))

Rf∗

RΓ(X,−)

RΓ(Y,−)

commutes.

Proof.
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Corollary 13.2.2 tanto faz derivar o funtor seção global OX-Mod → Γ(X,OX)-Mod
ou o funtor seção global AbX → Ab. O mesmo pra imagem direta superior. (E isso
vale pra complexos)

Proof.

Corollary 13.2.3 Let f : X → Y and g : Y → Z be morphisms of ringed spaces. Then
Rg∗ ◦ Rf∗ = R(g ◦ f)∗ as functors D+(X)→ D+(Z).

Proof.

Corollary 13.2.4 — Leray spectral sequence. Let f : X → Y be a morphism of ringed
spaces and F • be a bounded below complexes of OX-modules. There is a spectral
sequence whose second page is

(RpΓ ◦ Rqf∗)(F •) = Hp(Y,Rqf∗F •)

and which converges to Rp+q(Γ ◦ f∗)(F •) = Hp+q(X,F •).

Proof.

Corollary 13.2.5 Let f : X → Y be a morphism of ringed spaces and let F be a
OX-module. If Rif∗F = 0 for all i > 0, then the natural map

Hi(Y, f∗F )→ Hi(X,F )

is an isomorphism for all i.

Proof.

Corollary 13.2.6—Mayer-Vietoris. LetX be a ringed space and suppose thatX = U∪V
is the union of two open subsets. For every OX-module F , there exists a long exact
sequence

· · · Hi(X,F ) Hi(U,F )⊕Hi(V,F ) Hi(U ∩ V,F )

Hi+1(X,F ) Hi+1(U,F )⊕Hi+1(V,F ) Hi+1(U ∩ V,F ) · · · ,

which is functorial in F .

Proof.

dar exemplos (provavelmente ainda não dá pra calcular nada, mas pelo menos
explicar pq que isso é útil)
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13.3. Torsors, extensions and invertible sheaves

Proposition 13.3.1 Let X be a ringed space and F be a OX-module. There is a
canonical isomorphism of abelian groups

Ext1OX(OX,F )→ H1(X,F )

which associates to the extension

0 F G OX 0

the image of 1 ∈ Γ(X,OX) in H1(X,F ) given by the long exact sequence in coho-
mology.

Proof.

explicar a relação entre torsores e fibrados principais
(explicar que simply transitive = transitive + free)
Definition 13.3.1 — Torsor. LetX be a topological space and G be a sheaf of groups on
X. A G -torsor is a sheaf of sets F on X, whose stalks are non-empty, and endowed
with simply transitive actions

G (U)×F (U)→ F (U),

for every open set U ⊂ X, compatible with the restriction maps. A morphism of
G -torsors is a morphism of sheaves of sets compatible with the G -actions. We say
that G , endowed with action by left-multiplication, is the trivial G -torsor.

explicar que todo morfismo é um isomorfismo e que um G -torsor F é trivial se e
somente se ele possui uma seção global.

explicar a operação de grupo no conjunto de classes de isomorfismo de G torsores.

Proposition 13.3.2 Let X be a ringed space and F be a OX-module. There is a
canonical isomorphism of abelian groups between H1(X,F ) and the group of
isomorphism classes of F -torsors.

Proof.

Proposition 13.3.3 Let X be a ringed space. There is a canonical isomorphism of
abelian groups between H1(X,O∗X) and the Picard group Pic(X).

Proof.
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13.4. Čech cohomology
Essa seção é meio padrão também. A única peculiaridade provavelmente vai ser que
eu vou usar cohomologia de Cech para ilustrar a construção ++ de Grothendieck, que
é útil pois prova que o funtor de feixeficação não só preserva colimites (pois é adjunto
à esquerda) como também preserva limites finitos.

Proposition 13.4.1 The sheafification functor preserves colimits and finite limits.
In particular, when dealing with sheaves with values in an abelian category, the
sheafification functor is exact.

Proof.
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14. Verdier Duality

14.1. Separated locally proper maps

14.2. Proper direct image

14.3. Proper inverse image

14.4. Constructible sheaves
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