# Étale cohomology of points and curves 

With an interlude into number theory

Gabriel Ribeiro

École Polytechnique

## Summary

1. Brauer groups
2. Galois cohomology
3. Calculating étale cohomology

Brauer groups

## Central simple algebras

Let $k$ be a field. In this section, a $k$-algebra is a ring morphism $\varphi: k \rightarrow A$, where $A$ is not necessarily commutative, such that $\varphi(k)$ is contained in the center of $A$.

## Central simple algebras

Let $k$ be a field. In this section, a $k$-algebra is a ring morphism $\varphi: k \rightarrow A$, where $A$ is not necessarily commutative, such that $\varphi(k)$ is contained in the center of $A$. If, moreover, every nonzero element of $A$ is invertible, $A$ is a division algebra.

## Central simple algebras

Let $k$ be a field. In this section, a $k$-algebra is a ring morphism $\varphi: k \rightarrow A$, where $A$ is not necessarily commutative, such that $\varphi(k)$ is contained in the center of $A$. If, moreover, every nonzero element of $A$ is invertible, $A$ is a division algebra.

## Definition - Central simple algebra

Let $A$ be a finite dimensional $k$-algebra. We say that $A$ is simple if it has no two-sided ideal other than $\{0\}$ and $A$ itself.

## Central simple algebras

Let $k$ be a field. In this section, a $k$-algebra is a ring morphism $\varphi: k \rightarrow A$, where $A$ is not necessarily commutative, such that $\varphi(k)$ is contained in the center of $A$. If, moreover, every nonzero element of $A$ is invertible, $A$ is a division algebra.

## Definition - Central simple algebra

Let $A$ be a finite dimensional $k$-algebra. We say that $A$ is simple if it has no two-sided ideal other than $\{0\}$ and $A$ itself. Also, $A$ is central if its center equals $k$.

## Examples

## Example - Division algebras

Let $D$ be a division algebra over $k$.

## Examples

## Example - Division algebras

Let $D$ be a division algebra over $k$. As with fields, any nonzero ideal contains 1 and so equals $D$. That is, $D$ is simple.

## Examples

## Example - Division algebras

Let $D$ be a division algebra over $k$. As with fields, any nonzero ideal contains 1 and so equals $D$. That is, $D$ is simple.

Also, if $x \in Z(D)$ is nonzero, then $x$ is invertible.

## Examples

## Example - Division algebras

Let $D$ be a division algebra over $k$. As with fields, any nonzero ideal contains 1 and so equals $D$. That is, $D$ is simple.

Also, if $x \in Z(D)$ is nonzero, then $x$ is invertible. Inverting $x y=y x$, we get that $x^{-1} \in Z(D)$, proving that $Z(D)$ is a field.

## Examples

## Example - Division algebras

Let $D$ be a division algebra over $k$. As with fields, any nonzero ideal contains 1 and so equals $D$. That is, $D$ is simple.

Also, if $x \in Z(D)$ is nonzero, then $x$ is invertible. Inverting $x y=y x$, we get that $x^{-1} \in Z(D)$, proving that $Z(D)$ is a field. Thus, $D$ is a CSA over Z(D).

## Examples

## Example - Division algebras

Let $D$ be a division algebra over $k$. As with fields, any nonzero ideal contains 1 and so equals $D$. That is, $D$ is simple.

Also, if $x \in Z(D)$ is nonzero, then $x$ is invertible. Inverting $x y=y x$, we get that $x^{-1} \in Z(D)$, proving that $Z(D)$ is a field. Thus, $D$ is a CSA over Z(D).

If $D=\mathbb{H}$ is the quaternions, a quick calculation shows that $Z(\mathbb{H})=\mathbb{R}$ and so $\mathbb{H}$ is a CSA over $\mathbb{R}$.

## Examples

## Proposition

Let $D$ be a division algebra over $k$. Then $M_{n}(D)$ is a CSA over $Z(D)$.

## Examples

## Proposition

Let $D$ be a division algebra over $k$. Then $M_{n}(D)$ is a CSA over $Z(D)$.
$M_{n}(D)$ is simple:

## Examples

## Proposition

Let $D$ be a division algebra over $k$. Then $M_{n}(D)$ is a CSA over $Z(D)$.
$M_{n}(D)$ is simple: it suffices to show that if $M \in M_{n}(D)$ is nonzero, then the ideal $\langle M\rangle=M_{n}(D)$.

## Examples

## Proposition

Let $D$ be a division algebra over $k$. Then $M_{n}(D)$ is a CSA over $Z(D)$.
$M_{n}(D)$ is simple: it suffices to show that if $M \in M_{n}(D)$ is nonzero, then the ideal $\langle M\rangle=M_{n}(D)$. Since the $E_{i j}$ generate the $D$-module $M_{n}(D)$, it suffices to show that $E_{i j} \in\langle M\rangle$.

## Examples

## Proposition

Let $D$ be a division algebra over $k$. Then $M_{n}(D)$ is a CSA over $Z(D)$.
$M_{n}(D)$ is simple: it suffices to show that if $M \in M_{n}(D)$ is nonzero, then the ideal $\langle M\rangle=M_{n}(D)$. Since the $E_{i j}$ generate the $D$-module $M_{n}(D)$, it suffices to show that $E_{i j} \in\langle M\rangle$. Actually, we can do even less: as $E_{i j} E_{j k} E_{k l}=E_{i l}$, we may only show that $E_{i j} \in\langle M\rangle$ for some $i, j$.

## Examples

## Proposition

Let $D$ be a division algebra over $k$. Then $M_{n}(D)$ is a CSA over $Z(D)$.
$M_{n}(D)$ is simple: it suffices to show that if $M \in M_{n}(D)$ is nonzero, then the ideal $\langle M\rangle=M_{n}(D)$. Since the $E_{i j}$ generate the $D$-module $M_{n}(D)$, it suffices to show that $E_{i j} \in\langle M\rangle$. Actually, we can do even less: as $E_{i j} E_{j k} E_{k l}=E_{i l}$, we may only show that $E_{i j} \in\langle M\rangle$ for some $i, j$. Now, if $M_{i j} \neq 0$, it follows that $E_{i j}=M_{i j}^{-1} E_{i j} M E_{j j} \in\langle M\rangle$, and we're done.
$Z\left(M_{n}(D)\right)=Z(D):$

## Examples

## Proposition

Let $D$ be a division algebra over $k$. Then $M_{n}(D)$ is a CSA over $Z(D)$.
$M_{n}(D)$ is simple: it suffices to show that if $M \in M_{n}(D)$ is nonzero, then the ideal $\langle M\rangle=M_{n}(D)$. Since the $E_{i j}$ generate the $D$-module $M_{n}(D)$, it suffices to show that $E_{i j} \in\langle M\rangle$. Actually, we can do even less: as $E_{i j} E_{j k} E_{k l}=E_{i l}$, we may only show that $E_{i j} \in\langle M\rangle$ for some $i, j$. Now, if $M_{i j} \neq 0$, it follows that $E_{i j}=M_{i j}^{-1} E_{i j} M E_{j j} \in\langle M\rangle$, and we're done.
$Z\left(M_{n}(D)\right)=Z(D)$ : if $M$ in $Z\left(M_{n}(D)\right)$, then $E_{i j} M=M E_{i j}$ for all $i, j$.

## Examples

## Proposition

Let $D$ be a division algebra over $k$. Then $M_{n}(D)$ is a CSA over $Z(D)$.
$M_{n}(D)$ is simple: it suffices to show that if $M \in M_{n}(D)$ is nonzero, then the ideal $\langle M\rangle=M_{n}(D)$. Since the $E_{i j}$ generate the $D$-module $M_{n}(D)$, it suffices to show that $E_{i j} \in\langle M\rangle$. Actually, we can do even less: as $E_{i j} E_{j k} E_{k l}=E_{i l}$, we may only show that $E_{i j} \in\langle M\rangle$ for some $i, j$. Now, if $M_{i j} \neq 0$, it follows that $E_{i j}=M_{i j}^{-1} E_{i j} M E_{j j} \in\langle M\rangle$, and we're done.
$Z\left(M_{n}(D)\right)=Z(D)$ : if $M$ in $Z\left(M_{n}(D)\right)$, then $E_{i j} M=M E_{i j}$ for all $i, j$. This implies that $M=d \cdot$ id, for some $d \in D$.

## Examples

## Proposition

Let $D$ be a division algebra over $k$. Then $M_{n}(D)$ is a CSA over $Z(D)$.
$M_{n}(D)$ is simple: it suffices to show that if $M \in M_{n}(D)$ is nonzero, then the ideal $\langle M\rangle=M_{n}(D)$. Since the $E_{i j}$ generate the $D$-module $M_{n}(D)$, it suffices to show that $E_{i j} \in\langle M\rangle$. Actually, we can do even less: as $E_{i j} E_{j k} E_{k l}=E_{i l}$, we may only show that $E_{i j} \in\langle M\rangle$ for some $i, j$. Now, if $M_{i j} \neq 0$, it follows that $E_{i j}=M_{i j}^{-1} E_{i j} M E_{j j} \in\langle M\rangle$, and we're done.
$Z\left(M_{n}(D)\right)=Z(D)$ : if $M$ in $Z\left(M_{n}(D)\right)$, then $E_{i j} M=M E_{i j}$ for all $i, j$. This implies that $M=d \cdot$ id, for some $d \in D$. Moreover, since $M$ commutes with every matrix of the form $d^{\prime}$. id, it follows that $d \in Z(D)$.

## Wedderburn's theorem

## Theorem - Wedderburn

Let $A$ be a simple algebra over $k$. Then there's a unique integer $n \geq 1$ and a division algebra $D$ over $k$ such that $A \cong M_{n}(D)$.

## Wedderburn's theorem

## Theorem - Wedderburn

Let $A$ be a simple algebra over $k$. Then there's a unique integer $n \geq 1$ and a division algebra $D$ over $k$ such that $A \cong M_{n}(D)$. Moreover, $D$ is uniquely determined up to isomorphism.

## Wedderburn's theorem

## Theorem - Wedderburn

Let $A$ be a simple algebra over $k$. Then there's a unique integer $n \geq 1$ and a division algebra $D$ over $k$ such that $A \cong M_{n}(D)$. Moreover, $D$ is uniquely determined up to isomorphism.

We won't have time to prove this today, but please check the proof in [GS, Theorem 2.1.3]. It's absolutely wonderful.

## Corollaries of Wedderburn's thm

## Corollary

The center of a finite-dimensional simple algebra is a field.

## Corollaries of Wedderburn's thm

## Corollary

The center of a finite-dimensional simple algebra is a field.
Indeed, $A \cong M_{n}(D)$ and $Z(A) \cong Z(D)$, which is a field.

## Corollaries of Wedderburn's thm

## Corollary

The center of a finite-dimensional simple algebra is a field.
Indeed, $A \cong M_{n}(D)$ and $Z(A) \cong Z(D)$, which is a field.
Corollary
If $k=\bar{k}$, every CSA over $k$ is isomorphic to $M_{n}(k)$ for some $n \geq 1$.

## Corollaries of Wedderburn's thm

## Corollary

The center of a finite-dimensional simple algebra is a field.
Indeed, $A \cong M_{n}(D)$ and $Z(A) \cong Z(D)$, which is a field.

## Corollary

If $k=\bar{k}$, every CSA over $k$ is isomorphic to $M_{n}(k)$ for some $n \geq 1$.
It suffices to show that the only (finite-dimensional) division algebra $D$ over $k$ is $k$ itself.

## Corollaries of Wedderburn's thm

## Corollary

The center of a finite-dimensional simple algebra is a field.
Indeed, $A \cong M_{n}(D)$ and $Z(A) \cong Z(D)$, which is a field.

## Corollary

If $k=\bar{k}$, every CSA over $k$ is isomorphic to $M_{n}(k)$ for some $n \geq 1$.
It suffices to show that the only (finite-dimensional) division algebra $D$ over $k$ is $k$ itself. If there exists some $a \in D \backslash k, k[a]$ is a finite extension of $k$.

## Corollaries of Wedderburn's thm

## Corollary

The center of a finite-dimensional simple algebra is a field.
Indeed, $A \cong M_{n}(D)$ and $Z(A) \cong Z(D)$, which is a field.

## Corollary

If $k=\bar{k}$, every CSA over $k$ is isomorphic to $M_{n}(k)$ for some $n \geq 1$.
It suffices to show that the only (finite-dimensional) division algebra $D$ over $k$ is $k$ itself. If there exists some $a \in D \backslash k, k[a]$ is a finite extension of $k$. Absurd!

## Stability under tensor product

## Theorem

Let $A$ and $B$ be $k$-algebras. Then $Z\left(A \otimes_{k} B\right)=Z(A) \otimes_{k} Z(B)$. In particular, if $A$ and $B$ are central, so is $A \otimes_{k} B$.

## Stability under tensor product

## Theorem

Let $A$ and $B$ be $k$-algebras. Then $Z\left(A \otimes_{k} B\right)=Z(A) \otimes_{k} Z(B)$. In particular, if $A$ and $B$ are central, so is $A \otimes_{k} B$. If, moreover, they're simple, then $A \otimes_{k} B$ is a CSA.

## Stability under tensor product

## Theorem

Let $A$ and $B$ be $k$-algebras. Then $Z\left(A \otimes_{k} B\right)=Z(A) \otimes_{k} Z(B)$. In particular, if $A$ and $B$ are central, so is $A \otimes_{k} B$. If, moreover, they're simple, then $A \otimes_{k} B$ is a CSA.

That's another cool proof, you should check out! (My favorite proof is, of course, the one in my notes about Brauer groups. © )

## More important corollaria

## Corollary

Let $K / k$ be a field extension and $A$ a finite dimensional $k$-algebra.
Then $A$ is a CSA iff $A_{K}=A \otimes_{k} K$ is.

## More important corollaria

## Corollary

Let $K / k$ be a field extension and $A$ a finite dimensional $k$-algebra.
Then $A$ is a CSA iff $A_{K}=A \otimes_{k} K$ is.
One direction follows from the preceding theorem.

## More important corollaria

## Corollary

Let $K / k$ be a field extension and $A$ a finite dimensional $k$-algebra.
Then $A$ is a CSA iff $A_{K}=A \otimes_{k} K$ is.
One direction follows from the preceding theorem. Conversely, if $A_{K}$ is simple central, the formula for the center implies that $A$ is central. (For $Z(A) \otimes_{k} K=K$.)

## More important corollaria

## Corollary

Let $K / k$ be a field extension and $A$ a finite dimensional $k$-algebra.
Then $A$ is a CSA iff $A_{K}=A \otimes_{k} K$ is.
One direction follows from the preceding theorem. Conversely, if $A_{K}$ is simple central, the formula for the center implies that $A$ is central. (For $Z(A) \otimes_{k} K=K$.) Also, if $I$ is a non-trivial two-sided ideal of $A$, then $I \otimes_{k} K$ is a non-trivial two-sided ideal of $A_{K}$ by faithful flatness of $K$; finishing the proof.

## More important corollaria

Let $A$ be a finite dimensional $k$-algebra. If $K / k$ is a field extension such that $A_{K} \cong M_{n}(K)$ for some $n \geq 1$, we say that $K$ is a splitting field for A, or that A splits over K.

## More important corollaria

Let $A$ be a finite dimensional $k$-algebra. If $K / k$ is a field extension such that $A_{K} \cong M_{n}(K)$ for some $n \geq 1$, we say that $K$ is a splitting field for A, or that A splits over K.

## Corollary

Let $A$ be a finite dimensional $k$-algebra. Then $A$ is a CSA iff it splits over some finite Galois extension of $k$.

## More important corollaria

Let $A$ be a finite dimensional $k$-algebra. If $K / k$ is a field extension such that $A_{K} \cong M_{n}(K)$ for some $n \geq 1$, we say that $K$ is a splitting field for A, or that A splits over K.

## Corollary

Let $A$ be a finite dimensional $k$-algebra. Then $A$ is a CSA iff it splits over some finite Galois extension of $k$.

Sufficiency follows from the previous corollary.

## More important corollaria

Let $A$ be a finite dimensional $k$-algebra. If $K / k$ is a field extension such that $A_{K} \cong M_{n}(K)$ for some $n \geq 1$, we say that $K$ is a splitting field for A, or that A splits over K.

## Corollary

Let A be a finite dimensional $k$-algebra. Then $A$ is a CSA iff it splits over some finite Galois extension of $k$.

Sufficiency follows from the previous corollary. For necessity, observe that $A_{\bar{k}} \cong M_{n}(\bar{k})$ for some $n \geq 1$.

## More important corollaria

Let $A$ be a finite dimensional $k$-algebra. If $K / k$ is a field extension such that $A_{K} \cong M_{n}(K)$ for some $n \geq 1$, we say that $K$ is a splitting field for A, or that A splits over K.

## Corollary

Let A be a finite dimensional $k$-algebra. Then $A$ is a CSA iff it splits over some finite Galois extension of $k$.

Sufficiency follows from the previous corollary. For necessity, observe that $A_{\bar{k}} \cong M_{n}(\bar{k})$ for some $n \geq 1$. By flatness,

$$
A_{\bar{k}}=A \otimes_{k} \bar{R}=\bigcup_{K} A \otimes_{k} K=\bigcup_{K} A_{K},
$$

where $K$ ranges over all finite extensions of $K$ contained in $\bar{k}$.

## More important corollaria

Let $A$ be a finite dimensional $k$-algebra. If $K / k$ is a field extension such that $A_{K} \cong M_{n}(K)$ for some $n \geq 1$, we say that $K$ is a splitting field for A, or that A splits over K.

## Corollary

Let A be a finite dimensional $k$-algebra. Then $A$ is a CSA iff it splits over some finite Galois extension of $k$.

Sufficiency follows from the previous corollary. For necessity, observe that $A_{\bar{k}} \cong M_{n}(\bar{k})$ for some $n \geq 1$. By flatness,

$$
A_{\bar{k}}=A \otimes_{k} \bar{R}=\bigcup_{K} A \otimes_{k} K=\bigcup_{K} A_{K},
$$

where $K$ ranges over all finite extensions of $K$ contained in $\bar{k}$. Some $K$ large enough contains a basis $\left(e_{i}\right)$ of $M_{n}(\bar{k})$, so we may map $\left(e_{i}\right)$ to the standard basis of $M_{n}(K)$; yielding an isomorphism $A_{K} \cong M_{n}(K)$.

## More important corollaria

Let $A$ be a finite dimensional $k$-algebra. If $K / k$ is a field extension such that $A_{K} \cong M_{n}(K)$ for some $n \geq 1$, we say that $K$ is a splitting field for A, or that A splits over K.

## Corollary

Let A be a finite dimensional $k$-algebra. Then $A$ is a CSA iff it splits over some finite Galois extension of $k$.

Sufficiency follows from the previous corollary. For necessity, observe that $A_{\bar{k}} \cong M_{n}(\bar{k})$ for some $n \geq 1$. By flatness,

$$
A_{\bar{R}}=A \otimes_{k} \bar{R}=\bigcup_{K} A \otimes_{k} K=\bigcup_{K} A_{K},
$$

where $K$ ranges over all finite extensions of $K$ contained in $\bar{k}$. Some $K$ large enough contains a basis $\left(e_{i}\right)$ of $M_{n}(\bar{k})$, so we may map $\left(e_{i}\right)$ to the standard basis of $M_{n}(K)$; yielding an isomorphism $A_{K} \cong M_{n}(K)$. Proving that $K$ may be taken Galois is a little harder.

## Noether-Skolem

The last fundamental theorem on central simple algebras is the following.

## Theorem - Noether-Skolem

All automorphisms of a central simple algebra are inner.

## Noether-Skolem

The last fundamental theorem on central simple algebras is the following.

## Theorem - Noether-Skolem

All automorphisms of a central simple algebra are inner.
I have two interesting proofs of this in my notes. You should take a look at 'em!

## Reduced norm

Let's put all these theorems to use!

## Reduced norm

Let's put all these theorems to use! Let A be a CSA over $k$. We define its reduced norm to be the composition

$$
\text { Nrd }: A \rightarrow A_{\bar{k}} \cong M_{n}(\bar{k}) \xrightarrow{\operatorname{det}} \bar{k} .
$$

## Reduced norm

Let's put all these theorems to use! Let A be a CSA over $k$. We define its reduced norm to be the composition

$$
\text { Nrd }: A \rightarrow A_{\bar{k}} \cong M_{n}(\bar{k}) \xrightarrow{\operatorname{det}} \bar{k} .
$$

## Proposition

The image of Nrd is contained in $k$.

## Reduced norm

Let's put all these theorems to use! Let A be a CSA over $k$. We define its reduced norm to be the composition

$$
\text { Nrd }: A \rightarrow A_{\bar{k}} \cong M_{n}(\bar{k}) \xrightarrow{\operatorname{det}} \bar{k} .
$$

## Proposition

The image of Nrd is contained in $k$.
Let $\psi \in \operatorname{Aut}\left(M_{n}\left(\bar{k} \otimes_{k} \bar{k}\right)\right)$ be defined by the commutative diagram

$$
\begin{array}{cc}
A \otimes_{k} \bar{k} \otimes_{k} \bar{k} \xrightarrow{\sim} M_{n}\left(\bar{k} \otimes_{k} \bar{k}\right) \\
\downarrow & \downarrow \psi \\
\bar{k} \otimes_{k} A \otimes_{k} \bar{k} & \sim M_{n}\left(\bar{k} \otimes_{k} \bar{k}\right),
\end{array}
$$

where the arrow on the left is $x \otimes a \otimes y \mapsto a \otimes x \otimes y$.

## Reduced norm

By Noether-Skolem, $\psi$ is inner and so $\operatorname{det}(A)=\operatorname{det}(\psi(A))$ for all $A \in M_{n}\left(\bar{k} \otimes_{k} \bar{R}\right)$.

## Reduced norm

By Noether-Skolem, $\psi$ is inner and so $\operatorname{det}(A)=\operatorname{det}(\psi(A))$ for all $A \in M_{n}\left(\bar{k} \otimes_{k} \bar{k}\right)$. In particular, if $\alpha: A \otimes_{k} \bar{k} \rightarrow M_{n}(\bar{k})$ is the natural isomorphism,

$$
\operatorname{det}(\alpha(a \otimes 1)) \otimes 1=1 \otimes \operatorname{det}(\alpha(a \otimes 1)) \in \bar{k} \otimes_{k} \bar{k}
$$

## Reduced norm

By Noether-Skolem, $\psi$ is inner and so $\operatorname{det}(A)=\operatorname{det}(\psi(A))$ for all $A \in M_{n}\left(\bar{k} \otimes_{k} \bar{k}\right)$. In particular, if $\alpha: A \otimes_{k} \bar{k} \rightarrow M_{n}(\bar{k})$ is the natural isomorphism,

$$
\operatorname{det}(\alpha(a \otimes 1)) \otimes 1=1 \otimes \operatorname{det}(\alpha(a \otimes 1)) \in \bar{k} \otimes_{k} \bar{k}
$$

But the second fundamental lemma of last week says that the sequence

$$
0 \longrightarrow k \longrightarrow \bar{k} \xrightarrow{\delta} \bar{k} \otimes_{k} \bar{k},
$$

where $\delta(x)=x \otimes 1-1 \otimes x$, is exact.

## Reduced norm

By Noether-Skolem, $\psi$ is inner and so $\operatorname{det}(A)=\operatorname{det}(\psi(A))$ for all $A \in M_{n}\left(\bar{k} \otimes_{k} \bar{k}\right)$. In particular, if $\alpha: A \otimes_{k} \bar{k} \rightarrow M_{n}(\bar{k})$ is the natural isomorphism,

$$
\operatorname{det}(\alpha(a \otimes 1)) \otimes 1=1 \otimes \operatorname{det}(\alpha(a \otimes 1)) \in \bar{k} \otimes_{k} \bar{k}
$$

But the second fundamental lemma of last week says that the sequence

$$
0 \longrightarrow k \longrightarrow \bar{k} \xrightarrow{\delta} \bar{k} \otimes_{k} \bar{k},
$$

where $\delta(x)=x \otimes 1-1 \otimes x$, is exact. It follows that

$$
\operatorname{Nrd}(a)=\operatorname{det}(\alpha(a \otimes 1)) \in k
$$

## Reduced norm

Basically the same idea shows that we may take any splitting field in the definition of Nrd.

## Reduced norm

Basically the same idea shows that we may take any splitting field in the definition of Nrd. We actually have even more: we may associate a reduced characteristic polynomial to elements of $A$, which has coefficients in $k$.

## Reduced norm

Basically the same idea shows that we may take any splitting field in the definition of Nrd. We actually have even more: we may associate a reduced characteristic polynomial to elements of $A$, which has coefficients in $k$.

We also remark that $a \in A$ is invertible iff $\operatorname{Nrd}(a) \neq 0$, and that $N_{A / k}(a)=\operatorname{Nrd}(a)^{n}$, where $\operatorname{dim}_{k} A=n^{2}$.

## Brauer group

Our theorems will also allow us to define a group classifying division algebras over $k$.

## Brauer group

Our theorems will also allow us to define a group classifying division algebras over $k$.
Definition - Brauer equivalence
Two CSAs are said to be Brauer equivalent if their underlying division algebras are isomorphic.

## Brauer group

Our theorems will also allow us to define a group classifying division algebras over $k$.

## Definition - Brauer equivalence

Two CSAs are said to be Brauer equivalent if their underlying division algebras are isomorphic.

This notion has interesting characterizations.

## Proposition

Let $A$ and $B$ be two CSAs over $k$. TFAE:

- $A$ and $B$ are Brauer equivalent;


## Brauer group

Our theorems will also allow us to define a group classifying division algebras over $k$.

## Definition - Brauer equivalence

Two CSAs are said to be Brauer equivalent if their underlying division algebras are isomorphic.

This notion has interesting characterizations.

## Proposition

Let $A$ and $B$ be two CSAs over $k$. TFAE:

- $A$ and $B$ are Brauer equivalent;
- $M_{n}(A)=A \otimes_{k} M_{n}(k) \cong B \otimes_{k} M_{m}(k)=M_{m}(k)$ for some $n, m ;$


## Brauer group

Our theorems will also allow us to define a group classifying division algebras over $k$.

## Definition - Brauer equivalence

Two CSAs are said to be Brauer equivalent if their underlying division algebras are isomorphic.

This notion has interesting characterizations.

## Proposition

Let $A$ and $B$ be two CSAs over $k$. TFAE:

- $A$ and $B$ are Brauer equivalent;
- $M_{n}(A)=A \otimes_{k} M_{n}(k) \cong B \otimes_{k} M_{m}(k)=M_{m}(k)$ for some $n, m ;$
- $A$ and $B$ are Morita equivalent.


## Brauer group

Our theorems will also allow us to define a group classifying division algebras over $k$.

## Definition - Brauer equivalence

Two CSAs are said to be Brauer equivalent if their underlying division algebras are isomorphic.

This notion has interesting characterizations.

## Proposition

Let $A$ and $B$ be two CSAs over $k$. TFAE:

- $A$ and $B$ are Brauer equivalent;
- $M_{n}(A)=A \otimes_{k} M_{n}(k) \cong B \otimes_{k} M_{m}(k)=M_{m}(k)$ for some $n, m ;$
- $A$ and $B$ are Morita equivalent.


## Brauer group

Our theorems will also allow us to define a group classifying division algebras over $k$.

## Definition - Brauer equivalence

Two CSAs are said to be Brauer equivalent if their underlying division algebras are isomorphic.

This notion has interesting characterizations.

## Proposition

Let $A$ and $B$ be two CSAs over $k$. TFAE:

- $A$ and $B$ are Brauer equivalent;
- $M_{n}(A)=A \otimes_{k} M_{n}(k) \cong B \otimes_{k} M_{m}(k)=M_{m}(k)$ for some $n, m ;$
- $A$ and $B$ are Morita equivalent.

By the 2nd point, every equivalence class contains precisely one division algebra.

## Brauer group

The following def motivates much of the theory.

## Brauer group

The following def motivates much of the theory.

## Definition - Brauer group

The Brauer group of a field $k$ is the group $\operatorname{Br}(k)$ composed by the equivalence classes of CSAs over $k$, under the tensor product.

## Brauer group

The following def motivates much of the theory.

## Definition - Brauer group

The Brauer group of a field $k$ is the group $\operatorname{Br}(k)$ composed by the equivalence classes of CSAs over $k$, under the tensor product.

As we saw, if $k=\bar{k}$, every CSA over $k$ is isomorphic to $M_{n}(k)$ for some $n \geq 1$; yielding that $\operatorname{Br}(\bar{R})=0$.

## Brauer group

The following def motivates much of the theory.

## Definition - Brauer group

The Brauer group of a field $k$ is the group $\operatorname{Br}(k)$ composed by the equivalence classes of CSAs over $k$, under the tensor product.

As we saw, if $k=\bar{k}$, every CSA over $k$ is isomorphic to $M_{n}(k)$ for some $n \geq 1$; yielding that $\operatorname{Br}(\bar{k})=0$. We'll also consider a relative variant.

## Definition - Brauer group

Let $K / k$ be a field extension and consider the restriction map

$$
\text { res: } \begin{aligned}
\mathrm{Br}(k) & \rightarrow \mathrm{Br}(K) \\
{[A] } & \mapsto\left[A_{K}\right] .
\end{aligned}
$$

The relative Brauer group $\operatorname{Br}(K / k)$ is the kernel of res.

## $C_{1}$ fields

We can actually give a better reason for the fact that $\operatorname{Br}(\bar{k})=0$ !

## $C_{1}$ fields

We can actually give a better reason for the fact that $\operatorname{Br}(\bar{k})=0$ !

## Definition

A field $k$ is said to be $C_{1}$ if every homogeneous $f \in k\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$ has a nontrivial zero.

## $C_{1}$ fields

We can actually give a better reason for the fact that $\operatorname{Br}(\bar{k})=0$ !

## Definition

A field $k$ is said to be $C_{1}$ if every homogeneous $f \in k\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$ has a nontrivial zero.

Algebraically closed fields are $C_{1}$.

## $C_{1}$ fields

We can actually give a better reason for the fact that $\operatorname{Br}(\bar{k})=0$ !

## Definition

A field $k$ is said to be $C_{1}$ if every homogeneous $f \in k\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$ has a nontrivial zero.

Algebraically closed fields are $C_{1}$. The reason d'être of this condition is the following result.

## Proposition <br> Let $k$ be a $C_{1}$ field. Then $\operatorname{Br}(k)=0$.

## $C_{1}$ fields

We can actually give a better reason for the fact that $\operatorname{Br}(\bar{k})=0$ !

## Definition

A field $k$ is said to be $C_{1}$ if every homogeneous $f \in k\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$ has a nontrivial zero.

Algebraically closed fields are $C_{1}$. The reason d'être of this condition is the following result.

## Proposition <br> Let $k$ be a $C_{1}$ field. Then $\operatorname{Br}(k)=0$.

Let's prove this!

## $C_{1}$ fields

Let $D$ be a division algebra of dimension $n^{2}$ over $k$.

## $C_{1}$ fields

Let $D$ be a division algebra of dimension $n^{2}$ over $k$. Given a basis $e_{1}, \ldots, e_{n^{2}}$ of $D$ over $k$, the polynomial

$$
f\left(x_{1}, \ldots, x_{n^{2}}\right):=N\left(x_{1} e_{1}+\cdots x_{n^{2}} e_{n^{2}}\right)
$$

is homogeneous with degree $n$ in $n^{2}$ variables with no non-trivial zeros.

## $C_{1}$ fields

Let $D$ be a division algebra of dimension $n^{2}$ over $k$. Given a basis $e_{1}, \ldots, e_{n^{2}}$ of $D$ over $k$, the polynomial

$$
f\left(x_{1}, \ldots, x_{n^{2}}\right):=N\left(x_{1} e_{1}+\cdots x_{n^{2}} e_{n^{2}}\right)
$$

is homogeneous with degree $n$ in $n^{2}$ variables with no non-trivial zeros. If $n>1$ this contradicts the $C_{1}$ condition.

## Chevalley-Warning

## Theorem - Chevalley-Warning

Let $k=\mathbb{F}_{q}$ be a finite field of characteristic $p$ and $f \in k\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$. The number of solutions of $f=0$ is divisible by $p$.

## Chevalley-Warning

## Theorem - Chevalley-Warning

Let $k=\mathbb{F}_{q}$ be a finite field of characteristic $p$ and $f \in k\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$. The number of solutions of $f=0$ is divisible by $p$.

Since $x^{q-1}=1$ for all $x \in k \backslash\{0\}$, the number mod $p$ of solutions is

$$
\sum_{x \in k^{n}}\left(1-f(x)^{q-1}\right) .
$$

## Chevalley-Warning

## Theorem - Chevalley-Warning

Let $k=\mathbb{F}_{q}$ be a finite field of characteristic $p$ and $f \in k\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$. The number of solutions of $f=0$ is divisible by $p$.

Since $x^{q-1}=1$ for all $x \in k \backslash\{0\}$, the number mod $p$ of solutions is

$$
\sum_{x \in k^{n}}\left(1-f(x)^{q-1}\right) .
$$

We prove that every monomial of $1-f^{q-1}$ sums to $0 \in k$. Let $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ be one such monomial.

## Chevalley-Warning

## Theorem - Chevalley-Warning

Let $k=\mathbb{F}_{q}$ be a finite field of characteristic $p$ and $f \in k\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$. The number of solutions of $f=0$ is divisible by $p$.

Since $x^{q-1}=1$ for all $x \in k \backslash\{0\}$, the number mod $p$ of solutions is

$$
\sum_{x \in k^{n}}\left(1-f(x)^{q-1}\right) .
$$

We prove that every monomial of $1-f^{q-1}$ sums to $0 \in k$. Let $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ be one such monomial. Since its degree is $<(q-1) n$, we have $a_{i}<q-1$ for at least one $i$. Let $j$ be this index.

## Chevalley-Warning

Recall that $a_{j}<q-1$. As

$$
\sum_{\left(x_{i}\right) \in R^{n}} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}=\prod_{i=1}^{n}\left(\sum_{x_{i} \in R} x_{i}^{a_{i}}\right)
$$

it suffices to show that $\sum_{x_{j} \in k} x_{j}^{a_{j}}=0$.

## Chevalley-Warning

Recall that $a_{j}<q-1$. As

$$
\sum_{\left(x_{i}\right) \in k^{n}} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}=\prod_{i=1}^{n}\left(\sum_{x_{i} \in k} x_{i}^{a_{i}}\right)
$$

it suffices to show that $\sum_{x_{j} \in k} x_{j}^{a_{j}}=0$. If $a_{j}=0$, this is clear.

## Chevalley-Warning

Recall that $a_{j}<q-1$. As

$$
\sum_{\left(x_{i}\right) \in k^{n}} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}=\prod_{i=1}^{n}\left(\sum_{x_{i} \in k} x_{i}^{a_{i}}\right)
$$

it suffices to show that $\sum_{x_{j} \in k} x_{j}^{a_{j}}=0$. If $a_{j}=0$, this is clear. Else, let $y$ be a generator of $k^{\times}$. Then,

$$
\sum_{x_{j} \in k} x_{j}^{a_{j}}=\sum_{x_{j} \in k \times} x_{j}^{a_{j}}=\sum_{m=0}^{q-2}\left(y^{m}\right)^{a_{j}}=\sum_{m=0}^{q-2}\left(y^{a_{j}}\right)^{m}=\frac{1-\left(y^{a_{j}}\right)^{q-1}}{1-y^{a_{j}}}=0
$$

concluding our proof.

## Tsen's theorem

## Theorem - Tsen

Let $k$ be an algebraically closed field and $K$ be the function field of an algebraic curve over $k$. Then $K$ is $C_{1}$.

## Tsen's theorem

## Theorem - Tsen

Let $k$ be an algebraically closed field and $K$ be the function field of an algebraic curve over $k$. Then $K$ is $C_{1}$.

By Noether normalization, we may assume that $K=k(t)$. (Little HW: prove that if $K$ is $C_{1}$, so is every finite extension.)

## Tsen's theorem

## Theorem - Tsen

Let $k$ be an algebraically closed field and $K$ be the function field of an algebraic curve over $k$. Then $K$ is $C_{1}$.

By Noether normalization, we may assume that $K=k(t)$. (Little HW: prove that if $K$ is $C_{1}$, so is every finite extension.)
Given $f \in k(t)\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$, we may also assume the coefs to be in $k[t]$ and look for solutions in $k[t]^{n}$.

## Tsen's theorem

## Theorem - Tsen

Let $k$ be an algebraically closed field and $K$ be the function field of an algebraic curve over $k$. Then $K$ is $C_{1}$.

By Noether normalization, we may assume that $K=k(t)$. (Little HW: prove that if $K$ is $C_{1}$, so is every finite extension.)
Given $f \in k(t)\left[x_{1}, \ldots, x_{n}\right]$ of degree $d<n$, we may also assume the coefs to be in $k[t]$ and look for solutions in $k[t]^{n}$. So, let's fix (for now) an integer $N>0$ and look for $x_{i}$ of the form

$$
x_{i}=\sum_{j=0}^{N} a_{i j} t^{j}
$$

where the $a_{i j} \in k$ are to be determined.

## Tsen's theorem

Plugging this into the equation $f=0$, we get a decomposition

$$
0=f\left(x_{1}, \ldots, x_{n}\right)=\sum_{l=0}^{d N+r} f_{l}\left(a_{10}, \ldots, a_{n N}\right) t^{l}
$$

where $r$ is the maximal degree of the coefs of $f$, and the $f_{l}$ are homogeneous polynomials in the $a_{i j}$.

## Tsen's theorem

Plugging this into the equation $f=0$, we get a decomposition

$$
0=f\left(x_{1}, \ldots, x_{n}\right)=\sum_{l=0}^{d N+r} f_{l}\left(a_{10}, \ldots, a_{n N}\right) t^{l}
$$

where $r$ is the maximal degree of the coefs of $f$, and the $f_{l}$ are homogeneous polynomials in the $a_{i j}$. Since $d<n$, for $N \gg 1$ the number $d N+r+1$ of polynomials $f_{l}$ is smaller than the number $n(N+1)$ of indeterminates $a_{i j}$.

## Tsen's theorem

Plugging this into the equation $f=0$, we get a decomposition

$$
0=f\left(x_{1}, \ldots, x_{n}\right)=\sum_{l=0}^{d N+r} f_{l}\left(a_{10}, \ldots, a_{n N}\right) t^{l}
$$

where $r$ is the maximal degree of the coefs of $f$, and the $f_{l}$ are homogeneous polynomials in the $a_{i j}$. Since $d<n$, for $N \gg 1$ the number $d N+r+1$ of polynomials $f_{l}$ is smaller than the number $n(N+1)$ of indeterminates $a_{i j}$. Now, in the chain

$$
V\left(f_{0}\right) \supset V\left(f_{0}, f_{1}\right) \supset \cdots \supset V\left(f_{0}, \ldots, f_{d N+r}\right)
$$

of closed sets in $\mathbb{P}^{n N+n-1}$, the dimension drops by at most one in each step, proving that $V\left(f_{0}, \ldots, f_{d N+r}\right)$ is positive dimensional and so contains a $k$ point.

## Tsen's theorem

Plugging this into the equation $f=0$, we get a decomposition

$$
0=f\left(x_{1}, \ldots, x_{n}\right)=\sum_{l=0}^{d N+r} f_{l}\left(a_{10}, \ldots, a_{n N}\right) t^{l}
$$

where $r$ is the maximal degree of the coefs of $f$, and the $f_{l}$ are homogeneous polynomials in the $a_{i j}$. Since $d<n$, for $N \gg 1$ the number $d N+r+1$ of polynomials $f_{l}$ is smaller than the number $n(N+1)$ of indeterminates $a_{i j}$. Now, in the chain

$$
V\left(f_{0}\right) \supset V\left(f_{0}, f_{1}\right) \supset \cdots \supset V\left(f_{0}, \ldots, f_{d N+r}\right)
$$

of closed sets in $\mathbb{P}^{n N+n-1}$, the dimension drops by at most one in each step, proving that $V\left(f_{0}, \ldots, f_{d N+r}\right)$ is positive dimensional and so contains a $k$ point. That is, we have some $a_{i j}$ composing a nontrivial zero of $f$.

## Galois cohomology

## Elements of group cohomology

For this whole section, let $G$ be a finite group.

## Elements of group cohomology

For this whole section, let $G$ be a finite group.

## Definition

The category of G-modules is the category of left modules over the group algebra $\mathbb{Z}[G]$.

## Elements of group cohomology

For this whole section, let $G$ be a finite group.

## Definition

The category of G-modules is the category of left modules over the group algebra $\mathbb{Z}[G]$.

A surprisingly important example is the abelian group $\mathbb{Z}$, along with the trivial action of $G$.

## Elements of group cohomology

For this whole section, let $G$ be a finite group.

## Definition

The category of G-modules is the category of left modules over the group algebra $\mathbb{Z}[G]$.

A surprisingly important example is the abelian group $\mathbb{Z}$, along with the trivial action of $G$.

As usual, this category has all the nice bells and whistles.
Particularly, it has enough injectives and projectives.

## Elements of group cohomology

In particular, we may define the cohomology of a G-module.

## Definition

For a $G$-module $M$, denote by $M^{G}$ the submodule defined by the $x \in M$ satisfying $g \cdot x=x$ for all $g \in G$.

## Elements of group cohomology

In particular, we may define the cohomology of a G-module.

## Definition

For a $G$-module $M$, denote by $M^{G}$ the submodule defined by the $x \in M$ satisfying $g \cdot x=x$ for all $g \in G$. Since $M^{G}=\operatorname{Hom}_{G}(\mathbb{Z}, M),(-)^{G}$ is left exact.

## Elements of group cohomology

In particular, we may define the cohomology of a G-module.

## Definition

For a $G$-module $M$, denote by $M^{G}$ the submodule defined by the $x \in M$ satisfying $g \cdot x=x$ for all $g \in G$. Since $M^{G}=\operatorname{Hom}_{G}(\mathbb{Z}, M),(-)^{G}$
is left exact. We denote its right derived functor by
$H^{i}(G,-)=\operatorname{Ext}_{G}^{i}(\mathbb{Z},-)$.

## Elements of group cohomology

Since Ext's may be also calculated using projective resolutions of the first fact, the following lemma is very useful.

## Elements of group cohomology

Since Ext's may be also calculated using projective resolutions of the first fact, the following lemma is very useful.

## Lemma

The sequence

$$
\cdots \rightarrow \mathbb{Z}\left[G^{3}\right] \xrightarrow{d_{2}} \mathbb{Z}\left[G^{2}\right] \xrightarrow{d_{1}} \mathbb{Z}[G] \xrightarrow{d_{0}} \mathbb{Z} \rightarrow 0
$$

where $d_{n}\left(g_{0}, \ldots, g_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(g_{0}, \ldots, \hat{g}_{i}, \ldots, g_{n}\right)$, is exact. In particular, its a free (hence projective) resolution of $\mathbb{Z}$.

## Elements of group cohomology

Since Ext's may be also calculated using projective resolutions of the first fact, the following lemma is very useful.

## Lemma

The sequence

$$
\cdots \rightarrow \mathbb{Z}\left[G^{3}\right] \xrightarrow{d_{2}} \mathbb{Z}\left[G^{2}\right] \xrightarrow{d_{1}} \mathbb{Z}[G] \xrightarrow{d_{0}} \mathbb{Z} \rightarrow 0
$$

where $d_{n}\left(g_{0}, \ldots, g_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(g_{0}, \ldots, \hat{g}_{i}, \ldots, g_{n}\right)$, is exact. In particular, its a free (hence projective) resolution of $\mathbb{Z}$.

By applying the functor $\operatorname{Hom}_{G}(-, M)$ (and dropping the last term) we obtain a very explicit description of the complex $\mathrm{RHom}_{G}(\mathbb{Z}, M)$, whose $i$-th cohomology is $H^{i}(G, M)$.

## Elements of group cohomology

We won't go further in the cohomology of finite groups, since we won't need much. But we urge the reader to read more about it, for this simple theory has a lot of similarities with other cohomology theories.

## Elements of group cohomology

We won't go further in the cohomology of finite groups, since we won't need much. But we urge the reader to read more about it, for this simple theory has a lot of similarities with other cohomology theories.

Examples: there exists a cup product

$$
\cup: H^{i}(G, M) \otimes H^{j}(G, N) \rightarrow H^{i+j}(G, M \otimes N),
$$

very similar to the wedge product of differential forms in de Rham cohomology.

## Elements of group cohomology

We won't go further in the cohomology of finite groups, since we won't need much. But we urge the reader to read more about it, for this simple theory has a lot of similarities with other cohomology theories.

Examples: there exists a cup product

$$
\cup: H^{i}(G, M) \otimes H^{j}(G, N) \rightarrow H^{i+j}(G, M \otimes N),
$$

very similar to the wedge product of differential forms in de Rham cohomology. There exists the so called Herbrand quotient, analogous to the Euler characteristic in topology.

## Elements of group cohomology

We won't go further in the cohomology of finite groups, since we won't need much. But we urge the reader to read more about it, for this simple theory has a lot of similarities with other cohomology theories.

Examples: there exists a cup product

$$
\cup: H^{i}(G, M) \otimes H^{j}(G, N) \rightarrow H^{i+j}(G, M \otimes N),
$$

very similar to the wedge product of differential forms in de Rham cohomology. There exists the so called Herbrand quotient, analogous to the Euler characteristic in topology. There's a Kunneth formula...

## Cohomology of profinite groups

If $k$ is a field, its absolute Galois group $G_{k}:=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ is the projective limit of $\operatorname{Gal}(K / k)$, where $K$ runs over all finite Galois extensions of $k$.

## Cohomology of profinite groups

If $k$ is a field, its absolute Galois group $G_{k}:=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ is the projective limit of $\operatorname{Gal}(K / k)$, where $K$ runs over all finite Galois extensions of $k$. This gives $G_{k}$ the structure of a profinite group.

## Cohomology of profinite groups

If $k$ is a field, its absolute Galois group $G_{k}:=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ is the projective limit of $\operatorname{Gal}(K / k)$, where $K$ runs over all finite Galois extensions of $k$. This gives $G_{k}$ the structure of a profinite group. In what follows $G$ will always be a profinite group.

## Cohomology of profinite groups

If $k$ is a field, its absolute Galois group $G_{k}:=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ is the projective limit of $\operatorname{Gal}(K / k)$, where $K$ runs over all finite Galois extensions of $k$. This gives $G_{k}$ the structure of a profinite group. In what follows $G$ will always be a profinite group.

## Definition

Let $M$ be a discrete $\mathbb{Z}[G]$-module. We say that $M$ is a $G$-module if $G$ acts continuously on $M$.

## Cohomology of profinite groups

If $k$ is a field, its absolute Galois group $G_{k}:=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ is the projective limit of $\operatorname{Gal}(K / k)$, where $K$ runs over all finite Galois extensions of $k$. This gives $G_{k}$ the structure of a profinite group. In what follows $G$ will always be a profinite group.

## Definition

Let $M$ be a discrete $\mathbb{Z}[G]$-module. We say that $M$ is a $G$-module if $G$ acts continuously on $M$. That is, if for all $x \in M$, the map $g \mapsto g \cdot x$ is continuous.

## Cohomology of profinite groups

If $k$ is a field, its absolute Galois group $G_{k}:=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ is the projective limit of $\operatorname{Gal}(K / k)$, where $K$ runs over all finite Galois extensions of $k$. This gives $G_{k}$ the structure of a profinite group. In what follows $G$ will always be a profinite group.

## Definition

Let $M$ be a discrete $\mathbb{Z}[G]$-module. We say that $M$ is a $G$-module if $G$ acts continuously on $M$. That is, if for all $x \in M$, the map $g \mapsto g \cdot x$ is continuous.

The category of $G$-modules is a full abelian subcategory of $\mathbb{Z}[G]-M o d$, which has enough injectives but not enough projectives.

## Examples

If $G$ is a commutative algebraic group over $k, G_{k}$ acts naturally on $G\left(k_{\text {sep }}\right)$.

## Examples

If $G$ is a commutative algebraic group over $k, G_{k}$ acts naturally on $G\left(k_{\text {sep }}\right)$. In particular, we obtain the following $G_{k}$-modules:

- $\underline{M}\left(k_{\text {sep }}\right)=M ;$


## Examples

If $G$ is a commutative algebraic group over $k, G_{k}$ acts naturally on $G\left(k_{\text {sep }}\right)$. In particular, we obtain the following $G_{k}$-modules:

- $\underline{M}\left(k_{\text {sep }}\right)=M ;$
- $\mathbb{G}_{a}\left(k_{\text {sep }}\right)=k_{\text {sep }} ;$


## Examples

If $G$ is a commutative algebraic group over $k, G_{k}$ acts naturally on $G\left(k_{\text {sep }}\right)$. In particular, we obtain the following $G_{k}$-modules:

- $\underline{M}\left(k_{\text {sep }}\right)=M ;$
- $\mathbb{G}_{a}\left(k_{\text {sep }}\right)=k_{\text {sep }} ;$
- $\mathbb{G}_{m}\left(k_{\text {sep }}\right)=k_{\text {sep }}^{\times} ;$


## Examples

If $G$ is a commutative algebraic group over $k, G_{k}$ acts naturally on $G\left(k_{\text {sep }}\right)$. In particular, we obtain the following $G_{k}$-modules:

- $\underline{M}\left(k_{\text {sep }}\right)=M ;$
- $\mathbb{G}_{a}\left(k_{\text {sep }}\right)=k_{\text {sep }} ;$
- $\mathbb{G}_{m}\left(k_{\text {sep }}\right)=k_{\text {sep }}^{\times} ;$
- $\mu_{n}\left(k_{\text {sep }}\right)=\left\{x \in k_{\text {sep }} \mid x^{n}=1\right\}$.


## Cohomology of profinite groups

Since G-Mod has enough injectives, we could simply define the right derived functors of $M \mapsto M^{G}$.

## Cohomology of profinite groups

Since G-Mod has enough injectives, we could simply define the right derived functors of $M \mapsto M^{G}$. But we would lose the explicit description.

## Cohomology of profinite groups

Since G-Mod has enough injectives, we could simply define the right derived functors of $M \mapsto M^{G}$. But we would lose the explicit description. So, we make the following def:

## Definition

Let $G$ be a profinite group and $M$ a $G$-module. We define

$$
H^{i}(G, M):=\underset{U}{\operatorname{colim}} H^{i}\left(G / U, A^{U}\right)
$$

where $U$ runs through the open normal subgroups of $G$. (Which are all of finite index.)

## Cohomology of profinite groups

Since G-Mod has enough injectives, we could simply define the right derived functors of $M \mapsto M^{G}$. But we would lose the explicit description. So, we make the following def:

## Definition

Let $G$ be a profinite group and $M$ a $G$-module. We define

$$
H^{i}(G, M):=\underset{U}{\operatorname{colim}} H^{i}\left(G / U, A^{U}\right)
$$

where $U$ runs through the open normal subgroups of $G$. (Which are all of finite index.)

With this definition, the explicit description still works (the only change is that we consider continuous cochains).

## Cohomology of profinite groups

Since G-Mod has enough injectives, we could simply define the right derived functors of $M \mapsto M^{G}$. But we would lose the explicit description. So, we make the following def:

## Definition

Let $G$ be a profinite group and $M$ a $G$-module. We define

$$
H^{i}(G, M):=\underset{U}{\operatorname{colim}} H^{i}\left(G / U, A^{U}\right)
$$

where $U$ runs through the open normal subgroups of $G$. (Which are all of finite index.)

With this definition, the explicit description still works (the only change is that we consider continuous cochains). Basically all the theory of finite groups keeps working in this context.

## Cohomology of the additive group

## Proposition

Let $K / k$ be a finite Galois extension. Then $H^{i}(\operatorname{Gal}(K / k), K)=0$ for all $i>0$. In particular, $H^{i}\left(G_{k}, k_{\text {sep }}\right)=0$ for all $i>0$.

## Cohomology of the additive group

## Proposition

Let $K / k$ be a finite Galois extension. Then $H^{i}(\operatorname{Gal}(K / k), K)=0$ for all $i>0$. In particular, $H^{i}\left(G_{k}, k_{\text {sep }}\right)=0$ for all $i>0$.

We won't prove this since it's going to follow from our theory.

## Cohomology of the additive group

## Proposition

Let $K / k$ be a finite Galois extension. Then $H^{i}(\operatorname{Gal}(K / k), K)=0$ for all $i>0$. In particular, $H^{i}\left(G_{k}, k_{\text {sep }}\right)=0$ for all $i>0$.

We won't prove this since it's going to follow from our theory. But if you know a little about group cohomology, this is obvious:

## Cohomology of the additive group

## Proposition

Let $K / k$ be a finite Galois extension. Then $H^{i}(\operatorname{Gal}(K / k), K)=0$ for all $i>0$. In particular, $H^{i}\left(G_{k}, k_{\text {sep }}\right)=0$ for all $i>0$.

We won't prove this since it's going to follow from our theory. But if you know a little about group cohomology, this is obvious: the normal basis theorem says that $K \cong \mathbb{Z}[\operatorname{Gal}(K / k)] \otimes_{\mathbb{Z}} k$. So $K$ is induced and its cohomology vanishes by Shapiro's lemma.

## Cohomology of the multiplicative group

Proposition - Hilberts 90 Satz
Let $K / k$ be a finite Galois extension. Then $H^{1}\left(\operatorname{Gal}(K / k), K^{\times}\right)=0$. In particular, $H^{1}\left(G_{k}, k_{\text {sep }}^{\times}\right)=0$.

## Cohomology of the multiplicative group

```
Proposition - Hilberts 90 Satz
Let K/k be a finite Galois extension. Then H}\mp@subsup{H}{}{1}(\operatorname{Gal}(K/k),\mp@subsup{K}{}{\times})=0\mathrm{ . In
particular, H}\mp@subsup{H}{}{1}(\mp@subsup{G}{k}{},\mp@subsup{k}{\mathrm{ sep }}{\times})=0
Let G = Gal(K/k).
```


## Cohomology of the multiplicative group

## Proposition - Hilberts 90 Satz <br> Let $K / k$ be a finite Galois extension. Then $H^{1}\left(\operatorname{Gal}(K / k), K^{\times}\right)=0$. In particular, $H^{1}\left(G_{k}, k_{\text {sep }}^{\times}\right)=0$.

Let $G=\operatorname{Gal}(K / k)$. We have to show that every element of $Z^{1}\left(G, K^{\times}\right)$ (that is, a function $\varphi: G \rightarrow K^{\times}$satisfying $\varphi(g h)=\varphi(g) h(\varphi(g))$ ) and show that it's in $B^{1}\left(G, K^{\times}\right)$(that is, it's of the form $g \mapsto g(x) / x$ for some $x \in K^{\times}$).

## Cohomology of the multiplicative group

## Proposition - Hilberts 90 Satz

Let $K / k$ be a finite Galois extension. Then $H^{1}\left(\operatorname{Gal}(K / k), K^{\times}\right)=0$. In particular, $H^{1}\left(G_{k}, k_{\text {sep }}^{\times}\right)=0$.

Let $G=\operatorname{Gal}(K / k)$. We have to show that every element of $Z^{1}\left(G, K^{\times}\right)$ (that is, a function $\varphi: G \rightarrow K^{\times}$satisfying $\varphi(g h)=\varphi(g) h(\varphi(g))$ ) and show that it's in $B^{1}\left(G, K^{\times}\right)$(that is, it's of the form $g \mapsto g(x) / x$ for some $x \in K^{\times}$).

Dedekind's theorem on the independence of characters gives an element $x \in K^{\times}$such that

$$
z:=\sum_{h \in G} \varphi(h) h(x)
$$

is non-zero.

## Cohomology of the multiplicative group

Then, for all $g \in G$,

$$
g(z)=\sum_{h \in G} h(\varphi(g)) g(h(x))=\sum_{h \in G} \varphi(g)^{-1} \varphi(g h) g(h(x))=\varphi(g)^{-1} z .
$$

## Cohomology of the multiplicative group

Then, for all $g \in G$,

$$
g(z)=\sum_{h \in G} h(\varphi(g)) g(h(x))=\sum_{h \in G} \varphi(g)^{-1} \varphi(g h) g(h(x))=\varphi(g)^{-1} z .
$$

Proving that $\varphi(g)=g\left(z^{-1}\right) / z^{-1}$. I.e., $\varphi \in B^{1}\left(G, K^{\times}\right)$.

## Guess what!

The next cohomology group of the multiplicative group is an old friend!

## Guess what!

The next cohomology group of the multiplicative group is an old friend!

Theorem
Let $K / k$ be a finite Galois extension. Then
$\operatorname{Br}(K / k) \cong H^{2}\left(\operatorname{Gal}(K / k), K^{\times}\right)$and so $\operatorname{Br}(k) \cong H^{2}\left(G_{k}, k_{\text {sep }}^{\times}\right)$.

## Guess what!

The next cohomology group of the multiplicative group is an old friend!

## Theorem

Let $K / k$ be a finite Galois extension. Then

$$
\operatorname{Br}(K / k) \cong H^{2}\left(\operatorname{Gal}(K / k), K^{\times}\right) \text {and so } \operatorname{Br}(k) \cong H^{2}\left(G_{k}, k_{\text {sep }}^{\times}\right) \text {. }
$$

As a corollary, we obtain that $H^{i}\left(G_{k}, k^{\times}\right)=0$ for all $i>0$ if $k$ is algebraically closed.

## Calculating étale cohomology

## Cohomology of points [LM, Theorem 17.1]

Besides being an incredible number-theoretic tool, Galois cohomology will allow us to calculate some étale cohomology groups.

## Cohomology of points [LM, Theorem 17.1]

Besides being an incredible number-theoretic tool, Galois cohomology will allow us to calculate some étale cohomology groups.

Theorem
Let $X=$ Spec $k$. Then the functor $\mathscr{F} \mapsto \mathscr{F}(X)$ defines an equivalence of categories between the étale sheaves on $X$ and the $G_{k}$-modules.

## Cohomology of points [LM, Theorem 17.1]

Besides being an incredible number-theoretic tool, Galois cohomology will allow us to calculate some étale cohomology groups.

## Theorem

Let $X=$ Spec $k$. Then the functor $\mathscr{F} \mapsto \mathscr{F}(X)$ defines an equivalence of categories between the étale sheaves on $X$ and the $G_{k}$-modules. In particular, $H_{\mathrm{et}}^{\mathrm{i}}(X, \mathscr{F})=H^{i}\left(G_{k}, \mathscr{F}(X)\right)$ for all $i$.

## Cohomology of points [LM, Theorem 17.1]

Besides being an incredible number-theoretic tool, Galois cohomology will allow us to calculate some étale cohomology groups.

Theorem
Let $X=\operatorname{Spec} k$. Then the functor $\mathscr{F} \mapsto \mathscr{F}(X)$ defines an equivalence of categories between the étale sheaves on $X$ and the $G_{k}$-modules. In particular, $H_{\text {êt }}^{i}(X, \mathscr{F})=H^{i}\left(G_{k}, \mathscr{F}(X)\right)$ for all i.

This proof basically amounts to verifying that things identify as expected.

## Cohomology of curves

We're finally in position to calculate the cohomology of an algebraic curve!

## Theorem

Let $X$ be a smooth projective connected curve over an algebraically closed field $k$.

## Cohomology of curves

We're finally in position to calculate the cohomology of an algebraic curve!

## Theorem

Let $X$ be a smooth projective connected curve over an algebraically closed field $k$. Then

$$
H^{0}\left(X, \mathbb{G}_{m}\right)=k^{\times}, \quad H^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X), \quad H^{p}\left(X, \mathbb{G}_{m}\right)=0 \text { for } p \geq 2 .
$$

## Cohomology of curves

We're finally in position to calculate the cohomology of an algebraic curve!

## Theorem

Let $X$ be a smooth projective connected curve over an algebraically closed field $k$. Then

$$
H^{0}\left(X, \mathbb{G}_{m}\right)=k^{\times}, \quad H^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X), \quad H^{p}\left(X, \mathbb{G}_{m}\right)=0 \text { for } p \geq 2 .
$$

The only thing left to prove is the last part.

## Cohomology of curves

We're finally in position to calculate the cohomology of an algebraic curve!

## Theorem

Let $X$ be a smooth projective connected curve over an algebraically closed field $k$. Then

$$
H^{0}\left(X, \mathbb{G}_{m}\right)=k^{\times}, \quad H^{1}\left(X, \mathbb{G}_{m}\right)=\operatorname{Pic}(X), \quad H^{p}\left(X, \mathbb{G}_{m}\right)=0 \text { for } p \geq 2 .
$$

The only thing left to prove is the last part. For that we're going to use the divisor exact sequence:

$$
0 \rightarrow \mathbb{G}_{m, x} \rightarrow j_{*} \mathbb{G}_{m, k} \rightarrow \bigoplus_{x \in X} i_{x, \text { closed }} \underline{\mathbb{Z}} \rightarrow 0
$$

where $K$ is the function field of $X, j: \operatorname{Spec} K \rightarrow X$ the inclusion of the generic point, and $i_{x}:\{x\} \rightarrow X$ the inclusion of a closed point $x \in X$.

## Cohomology of curves

We split the proof in parts.

## Cohomology of curves

We split the proof in parts. By the long exact sequence, it suffices to prove that both $H^{p}\left(X, j_{*} \mathbb{G}_{m, K}\right)$ and $H^{p}\left(X, i_{X, *} \underline{\mathbb{Z}}\right)$ vanish, for $p>0$ and $x \in X$ closed.

Lemma A
We have $H^{p}\left(\operatorname{Spec} K, \mathbb{G}_{m}\right)=0$ and so $H^{p}\left(X, j_{*} \mathbb{G}_{m, K}\right)=0$ for all $p>0$.

## Cohomology of curves

We split the proof in parts. By the long exact sequence, it suffices to prove that both $H^{p}\left(X, j_{*} \mathbb{G}_{m, K}\right)$ and $H^{p}\left(X, i_{X, *} \underline{\mathbb{Z}}\right)$ vanish, for $p>0$ and $x \in X$ closed.

Lemma A
We have $H^{p}\left(\operatorname{Spec} K, \mathbb{G}_{m}\right)=0$ and so $H^{p}\left(X, j_{*} \mathbb{G}_{m, K}\right)=0$ for all $p>0$.
The first part follows from Tsen's theorem and our characterization of Galois cohomology as a Brauer group.

## Cohomology of curves

We split the proof in parts. By the long exact sequence, it suffices to prove that both $H^{p}\left(X, j_{*} \mathbb{G}_{m, K}\right)$ and $H^{p}\left(X, i_{X, *} \underline{\mathbb{Z}}\right)$ vanish, for $p>0$ and $x \in X$ closed.

## Lemma A

We have $H^{p}\left(\operatorname{Spec} K, \mathbb{G}_{m}\right)=0$ and so $H^{p}\left(X, j_{*} \mathbb{G}_{m, k}\right)=0$ for all $p>0$.
The first part follows from Tsen's theorem and our characterization of Galois cohomology as a Brauer group. Since $j_{*}$ is exact, $\mathrm{R}^{p} \mathrm{j}_{*} \mathbb{G}_{m, k}=0$

## Cohomology of curves

We split the proof in parts. By the long exact sequence, it suffices to prove that both $H^{p}\left(X, j_{*} \mathbb{G}_{m, K}\right)$ and $H^{p}\left(X, i_{X, *} \underline{Z}\right)$ vanish, for $p>0$ and $x \in X$ closed.

## Lemma A

We have $H^{p}\left(\operatorname{Spec} K, \mathbb{G}_{m}\right)=0$ and so $H^{p}\left(X, j_{*} \mathbb{G}_{m, k}\right)=0$ for all $p>0$.
The first part follows from Tsen's theorem and our characterization of Galois cohomology as a Brauer group. Since $j_{*}$ is exact, $\mathrm{R}^{p} j_{*} \mathbb{G}_{m, K}=0$ and so the Leray spectral sequence degenerates on the second page, proving that $H^{p}\left(X, j_{*} \mathbb{G}_{m, K}\right)=H^{p}\left(\operatorname{Spec} K, \mathbb{G}_{m}\right)$.

## Cohomology of curves

## Lemma B

We have $H^{p}\left(X, i_{X, *} \underline{Z}\right)=0$ for all $p>0$.

## Cohomology of curves

## Lemma B

We have $H^{p}\left(X, i_{X, *} \underline{Z}\right)=0$ for all $p>0$.
As before, the exactness of $i_{x, *}$ implies that $\mathbb{R}^{p} i_{x, *} \underline{\mathbb{Z}}=0$ for all $p>0$.

## Cohomology of curves

## Lemma B

We have $H^{p}\left(X, i_{X, *} \mathbb{Z}\right)=0$ for all $p>0$.
As before, the exactness of $i_{x, *}$ implies that $\mathrm{R}^{p} i_{x, *} \underline{\mathbb{Z}}=0$ for all $p>0$. Then the Leray spectral sequence gives that

$$
H^{p}\left(X, i_{X, *} \underline{\mathbb{Z}}\right)=H^{p}(\{x\}, \underline{Z}),
$$

which vanishes since $\{x\}=\operatorname{Seec} k$ and $k$ is algebraically closed.

## Questions?

