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Brauer groups



Central simple algebras

Let k be a field. In this section, a k-algebra is a ring morphism
ϕ : k→ A, where A is not necessarily commutative, such that ϕ(k) is
contained in the center of A.

If, moreover, every nonzero element of
A is invertible, A is a division algebra.

Definition - Central simple algebra
Let A be a finite dimensional k-algebra. We say that A is simple if it
has no two-sided ideal other than {0} and A itself. Also, A is central
if its center equals k.
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Examples

Example - Division algebras
Let D be a division algebra over k.

As with fields, any nonzero ideal
contains 1 and so equals D. That is, D is simple.

Also, if x ∈ Z(D) is nonzero, then x is invertible. Inverting xy = yx,
we get that x−1 ∈ Z(D), proving that Z(D) is a field. Thus, D is a CSA
over Z(D).

If D = H is the quaternions, a quick calculation shows that Z(H) = R
and so H is a CSA over R.
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Examples

Proposition
Let D be a division algebra over k. Then Mn(D) is a CSA over Z(D).

Mn(D) is simple: it suffices to show that if M ∈ Mn(D) is nonzero, then
the ideal 〈M〉 = Mn(D). Since the Eij generate the D-module Mn(D), it
suffices to show that Eij ∈ 〈M〉. Actually, we can do even less: as
EijEjkEkl = Eil, we may only show that Eij ∈ 〈M〉 for some i, j. Now, if
Mij 6= 0, it follows that Eij = M−1

ij EiiMEjj ∈ 〈M〉, and we’re done.

Z(Mn(D)) = Z(D): if M in Z(Mn(D)), then EijM = MEij for all i, j. This
implies that M = d · id, for some d ∈ D. Moreover, since M commutes
with every matrix of the form d′ · id, it follows that d ∈ Z(D).
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Wedderburn’s theorem

Theorem - Wedderburn
Let A be a simple algebra over k. Then there’s a unique integer
n ≥ 1 and a division algebra D over k such that A ∼= Mn(D).

Moreover, D is uniquely determined up to isomorphism.

We won’t have time to prove this today, but please check the proof in
[GS, Theorem 2.1.3]. It’s absolutely wonderful.
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Corollaries of Wedderburn’s thm

Corollary
The center of a finite-dimensional simple algebra is a field.

Indeed, A ∼= Mn(D) and Z(A) ∼= Z(D), which is a field.

Corollary
If k = k̄, every CSA over k is isomorphic to Mn(k) for some n ≥ 1.

It suffices to show that the only (finite-dimensional) division algebra
D over k is k itself. If there exists some a ∈ D \ k, k[a] is a finite
extension of k. Absurd!
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Stability under tensor product

Theorem
Let A and B be k-algebras. Then Z(A⊗k B) = Z(A)⊗k Z(B). In
particular, if A and B are central, so is A⊗k B.

If, moreover, they’re
simple, then A⊗k B is a CSA.

That’s another cool proof, you should check out! (My favorite proof
is, of course, the one in my notes about Brauer groups. )
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More important corollaria

Corollary
Let K/k be a field extension and A a finite dimensional k-algebra.
Then A is a CSA iff AK = A⊗k K is.

One direction follows from the preceding theorem. Conversely, if AK
is simple central, the formula for the center implies that A is central.
(For Z(A)⊗k K = K .) Also, if I is a non-trivial two-sided ideal of A, then
I⊗k K is a non-trivial two-sided ideal of AK by faithful flatness of K ;
finishing the proof.
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More important corollaria

Let A be a finite dimensional k-algebra. If K/k is a field extension
such that AK ∼= Mn(K) for some n ≥ 1, we say that K is a splitting field
for A, or that A splits over K .

Corollary
Let A be a finite dimensional k-algebra. Then A is a CSA iff it splits
over some finite Galois extension of k.

Sufficiency follows from the previous corollary. For necessity, observe
that Ak̄ ∼= Mn(k̄) for some n ≥ 1. By flatness,

Ak̄ = A⊗k k =
⋃
K
A⊗k K =

⋃
K
AK ,

where K ranges over all finite extensions of K contained in k̄. Some K
large enough contains a basis (ei) of Mn(k̄), so we may map (ei) to
the standard basis of Mn(K); yielding an isomorphism AK ∼= Mn(K).
Proving that K may be taken Galois is a little harder.
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Noether-Skolem

The last fundamental theorem on central simple algebras is the
following.

Theorem - Noether-Skolem
All automorphisms of a central simple algebra are inner.

I have two interesting proofs of this in my notes. You should take a
look at ’em!
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Reduced norm

Let’s put all these theorems to use!

Let A be a CSA over k. We define
its reduced norm to be the composition

Nrd : A→ Ak̄ ∼= Mn(k̄)
det−−→ k̄.

Proposition
The image of Nrd is contained in k.

Let ψ ∈ Aut(Mn(k̄⊗k k̄)) be defined by the commutative diagram

A⊗k k⊗k k Mn(k̄⊗k k̄)

k⊗k A⊗k k Mn(k̄⊗k k̄),

∼

ψ

∼

where the arrow on the left is x ⊗ a⊗ y 7→ a⊗ x ⊗ y.
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its reduced norm to be the composition

Nrd : A→ Ak̄ ∼= Mn(k̄)
det−−→ k̄.

Proposition
The image of Nrd is contained in k.
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Reduced norm

By Noether-Skolem, ψ is inner and so det(A) = det(ψ(A)) for all
A ∈ Mn(k̄⊗k k̄).

In particular, if α : A⊗k k̄→ Mn(k̄) is the natural
isomorphism,

det(α(a⊗ 1))⊗ 1 = 1⊗ det(α(a⊗ 1)) ∈ k̄⊗k k̄.

But the second fundamental lemma of last week says that the
sequence

0 k k̄ k̄⊗k k̄,
δ

where δ(x) = x ⊗ 1− 1⊗ x, is exact. It follows that

Nrd(a) = det(α(a⊗ 1)) ∈ k.
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Reduced norm

Basically the same idea shows that we may take any splitting field in
the definition of Nrd.

We actually have even more: we may associate
a reduced characteristic polynomial to elements of A, which has
coefficients in k.

We also remark that a ∈ A is invertible iff Nrd(a) 6= 0, and that
NA/k(a) = Nrd(a)n, where dimk A = n2.
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Brauer group

Our theorems will also allow us to define a group classifying division
algebras over k.

Definition - Brauer equivalence
Two CSAs are said to be Brauer equivalent if their underlying
division algebras are isomorphic.

This notion has interesting characterizations.

Proposition
Let A and B be two CSAs over k. TFAE:

• A and B are Brauer equivalent;
• Mn(A) = A⊗k Mn(k) ∼= B⊗k Mm(k) = Mm(k) for some n,m;
• A and B are Morita equivalent.

By the 2nd point, every equivalence class contains precisely one
division algebra.
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Brauer group

The following def motivates much of the theory.

Definition - Brauer group
The Brauer group of a field k is the group Br(k) composed by the
equivalence classes of CSAs over k, under the tensor product.

As we saw, if k = k̄, every CSA over k is isomorphic to Mn(k) for some
n ≥ 1; yielding that Br(k̄) = 0. We’ll also consider a relative variant.

Definition - Brauer group
Let K/k be a field extension and consider the restriction map

res : Br(k) → Br(K)
[A] 7→ [AK ].

The relative Brauer group Br(K/k) is the kernel of res.
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C1 fields

We can actually give a better reason for the fact that Br(k) = 0 !

Definition
A field k is said to be C1 if every homogeneous f ∈ k[x1, . . . , xn] of
degree d < n has a nontrivial zero.

Algebraically closed fields are C1. The reason d’être of this condition
is the following result.

Proposition
Let k be a C1 field. Then Br(k) = 0.

Let’s prove this!
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C1 fields

Let D be a division algebra of dimension n2 over k.

Given a basis
e1, . . . , en2 of D over k, the polynomial

f (x1, . . . , xn2) := N(x1e1 + · · · xn2en2)

is homogeneous with degree n in n2 variables with no non-trivial
zeros. If n > 1 this contradicts the C1 condition.
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Chevalley-Warning

Theorem - Chevalley-Warning
Let k = Fq be a finite field of characteristic p and f ∈ k[x1, . . . , xn] of
degree d < n. The number of solutions of f = 0 is divisible by p.

Since xq−1 = 1 for all x ∈ k \ {0}, the number mod p of solutions is∑
x∈kn

(
1− f (x)q−1

)
.

We prove that every monomial of 1− f q−1 sums to 0 ∈ k. Let
xa11 · · · xann be one such monomial. Since its degree is < (q− 1)n, we
have ai < q− 1 for at least one i. Let j be this index.
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Chevalley-Warning

Recall that aj < q− 1. As

∑
(xi)∈kn

xa11 . . . x
an
n =

n∏
i=1

∑
xi∈k

xaii

 ,

it suffices to show that
∑

xj∈k x
aj
j = 0.

If aj = 0, this is clear. Else, let y
be a generator of k×. Then,

∑
xj∈k

xajj =
∑
xj∈k×

xajj =

q−2∑
m=0

(ym)aj =
q−2∑
m=0

(yaj)m =
1− (yaj)q−1

1− yaj
= 0,

concluding our proof.
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Tsen’s theorem

Theorem - Tsen
Let k be an algebraically closed field and K be the function field of
an algebraic curve over k. Then K is C1.

By Noether normalization, we may assume that K = k(t). (Little HW:
prove that if K is C1, so is every finite extension.)

Given f ∈ k(t)[x1, . . . , xn] of degree d < n, we may also assume the
coefs to be in k[t] and look for solutions in k[t]n. So, let’s fix (for now)
an integer N > 0 and look for xi of the form

xi =
N∑
j=0

aijtj,

where the aij ∈ k are to be determined.
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Tsen’s theorem

Plugging this into the equation f = 0, we get a decomposition

0 = f (x1, . . . , xn) =
dN+r∑
l=0

fl(a10, . . . ,anN)tl,

where r is the maximal degree of the coefs of f , and the fl are
homogeneous polynomials in the aij.

Since d < n, for N� 1 the
number dN+ r + 1 of polynomials fl is smaller than the number
n(N+ 1) of indeterminates aij. Now, in the chain

V(f0) ⊃ V(f0, f1) ⊃ · · · ⊃ V(f0, . . . , fdN+r)

of closed sets in PnN+n−1, the dimension drops by at most one in
each step, proving that V(f0, . . . , fdN+r) is positive dimensional and so
contains a k point. That is, we have some aij composing a nontrivial
zero of f .
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Galois cohomology



Elements of group cohomology

For this whole section, let G be a finite group.

Definition
The category of G-modules is the category of left modules over the
group algebra Z[G].

A surprisingly important example is the abelian group Z, along with
the trivial action of G.

As usual, this category has all the nice bells and whistles.
Particularly, it has enough injectives and projectives.
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Elements of group cohomology

In particular, we may define the cohomology of a G-module.

Definition
For a G-module M, denote by MG the submodule defined by the
x ∈ M satisfying g · x = x for all g ∈ G.

Since MG = HomG(Z,M), (−)G

is left exact. We denote its right derived functor by
Hi(G,−) = ExtiG(Z,−).
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Elements of group cohomology

Since Ext’s may be also calculated using projective resolutions of the
first fact, the following lemma is very useful.

Lemma
The sequence

· · · → Z[G3] d2−→ Z[G2] d1−→ Z[G] d0−→ Z → 0,

where dn(g0, . . . ,gn) =
∑n

i=0(−1)i(g0, . . . , ĝi, . . . ,gn), is exact. In
particular, its a free (hence projective) resolution of Z.

By applying the functor HomG(−,M) (and dropping the last term) we
obtain a very explicit description of the complex RHomG(Z,M),
whose i-th cohomology is Hi(G,M).
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i=0(−1)i(g0, . . . , ĝi, . . . ,gn), is exact. In
particular, its a free (hence projective) resolution of Z.

By applying the functor HomG(−,M) (and dropping the last term) we
obtain a very explicit description of the complex RHomG(Z,M),
whose i-th cohomology is Hi(G,M).

24



Elements of group cohomology

We won’t go further in the cohomology of finite groups, since we
won’t need much. But we urge the reader to read more about it, for
this simple theory has a lot of similarities with other cohomology
theories.

Examples: there exists a cup product

∪ : Hi(G,M)⊗ Hj(G,N) → Hi+j(G,M⊗ N),

very similar to the wedge product of differential forms in de Rham
cohomology. There exists the so called Herbrand quotient, analogous
to the Euler characteristic in topology. There’s a Kunneth formula...
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Cohomology of profinite groups

If k is a field, its absolute Galois group Gk := Gal(ksep/k) is the
projective limit of Gal(K/k), where K runs over all finite Galois
extensions of k.

This gives Gk the structure of a profinite group. In
what follows G will always be a profinite group.

Definition
Let M be a discrete Z[G]-module. We say that M is a G-module if G
acts continuously on M. That is, if for all x ∈ M, the map g 7→ g · x is
continuous.

The category of G-modules is a full abelian subcategory of Z[G]-Mod,
which has enough injectives but not enough projectives.
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Examples

If G is a commutative algebraic group over k, Gk acts naturally on
G(ksep).

In particular, we obtain the following Gk-modules:

• M(ksep) = M;
• Ga(ksep) = ksep;
• Gm(ksep) = k×sep;
• µn(ksep) = {x ∈ ksep | xn = 1}.
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Cohomology of profinite groups

Since G-Mod has enough injectives, we could simply define the right
derived functors of M 7→ MG.

But we would lose the explicit
description. So, we make the following def:

Definition
Let G be a profinite group and M a G-module. We define

Hi(G,M) := colim
U

Hi(G/U,AU),

where U runs through the open normal subgroups of G. (Which are
all of finite index.)

With this definition, the explicit description still works (the only
change is that we consider continuous cochains). Basically all the
theory of finite groups keeps working in this context.
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Cohomology of the additive group

Proposition
Let K/k be a finite Galois extension. Then Hi(Gal(K/k), K) = 0 for all
i > 0. In particular, Hi(Gk, ksep) = 0 for all i > 0.

We won’t prove this since it’s going to follow from our theory. But if
you know a little about group cohomology, this is obvious: the
normal basis theorem says that K ∼= Z[Gal(K/k)]⊗Z k. So K is
induced and its cohomology vanishes by Shapiro’s lemma.
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Cohomology of the multiplicative group

Proposition - Hilberts 90 Satz
Let K/k be a finite Galois extension. Then H1(Gal(K/k), K×) = 0. In
particular, H1(Gk, k×sep) = 0.

Let G = Gal(K/k). We have to show that every element of Z1(G, K×)

(that is, a function ϕ : G→ K× satisfying ϕ(gh) = ϕ(g) h(ϕ(g))) and
show that it’s in B1(G, K×) (that is, it’s of the form g 7→ g(x)/x for
some x ∈ K×).

Dedekind’s theorem on the independence of characters gives an
element x ∈ K× such that

z :=
∑
h∈G

ϕ(h)h(x)

is non-zero.
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Cohomology of the multiplicative group

Then, for all g ∈ G,

g(z) =
∑
h∈G

h(ϕ(g))g(h(x)) =
∑
h∈G

ϕ(g)−1ϕ(gh)g(h(x)) = ϕ(g)−1z.

Proving that ϕ(g) = g(z−1)/z−1. I.e., ϕ ∈ B1(G, K×).
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Cohomology of the multiplicative group
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Guess what!

The next cohomology group of the multiplicative group is an old
friend!

Theorem
Let K/k be a finite Galois extension. Then
Br(K/k) ∼= H2(Gal(K/k), K×) and so Br(k) ∼= H2(Gk, k×sep).

As a corollary, we obtain that Hi(Gk, k×) = 0 for all i > 0 if k is
algebraically closed.
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Calculating étale cohomology



Cohomology of points [LM, Theorem 17.1]

Besides being an incredible number-theoretic tool, Galois
cohomology will allow us to calculate some étale cohomology
groups.

Theorem
Let X = Spec k. Then the functor F 7→ F (X) defines an equivalence
of categories between the étale sheaves on X and the Gk-modules.
In particular, Hiét(X,F ) = Hi(Gk,F (X)) for all i.

This proof basically amounts to verifying that things identify as
expected.
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Cohomology of curves

We’re finally in position to calculate the cohomology of an algebraic
curve!
Theorem
Let X be a smooth projective connected curve over an algebraically
closed field k.

Then

H0(X,Gm) = k×, H1(X,Gm) = Pic(X), Hp(X,Gm) = 0 for p ≥ 2.

The only thing left to prove is the last part. For that we’re going to
use the divisor exact sequence:

0→ Gm,X → j∗Gm,K →
⊕

x∈X closed

ix,∗Z → 0,

where K is the function field of X, j : Spec K → X the inclusion of the
generic point, and ix : {x} → X the inclusion of a closed point x ∈ X.
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Cohomology of curves

We split the proof in parts.

By the long exact sequence, it suffices to
prove that both Hp(X, j∗Gm,K) and Hp(X, ix,∗Z) vanish, for p > 0 and
x ∈ X closed.

Lemma A
We have Hp(Spec K,Gm) = 0 and so Hp(X, j∗Gm,K) = 0 for all p > 0.

The first part follows from Tsen’s theorem and our characterization
of Galois cohomology as a Brauer group. Since j∗ is exact,
Rpj∗Gm,K = 0 and so the Leray spectral sequence degenerates on the
second page, proving that Hp(X, j∗Gm,K) = Hp(Spec K,Gm).
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We split the proof in parts. By the long exact sequence, it suffices to
prove that both Hp(X, j∗Gm,K) and Hp(X, ix,∗Z) vanish, for p > 0 and
x ∈ X closed.
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Cohomology of curves

Lemma B
We have Hp(X, ix,∗Z) = 0 for all p > 0.

As before, the exactness of ix,∗ implies that Rpix,∗Z = 0 for all p > 0.
Then the Leray spectral sequence gives that

Hp(X, ix,∗Z) = Hp({x},Z),

which vanishes since {x} = Spec k and k is algebraically closed.
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Questions?
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