Wedderburn's Little Theorem

Gabriel Ribeiro

April 2021

The goal of these notes is to prove Wedderburn's little theorem, which states that a finite division ring is necessarily commutative, assuming some basic non-commutative algebra. Nevertheless, we explain in a first section everything from non-commutative algebra that is needed.

1 Basic non-commutative algebra

Let A be a finite division ring and k be its center. We observe that k is indeed a field since the inverse a^{-1} of an element $a \in k^{\times}$ is automatically in k. Indeed, clearly a^{-1} commutes with 0 and, if $b \in A^{\times}$, then $ab^{-1} = b^{-1}a$ implies

$$ba^{-1} = (ab^{-1})^{-1} = (b^{-1}a)^{-1} = a^{-1}b$$

and so $a^{-1} \in k$. Since A is finite, A is a finite-dimensional k-algebra. Moreover, as every non-zero element in A is invertible, A has no two-sided ideals other than {0} and A itself. In other words, A is a finite-dimensional *simple*¹ k-algebra.

The main classification result about such algebras is the theorem below, which we won't prove but whose proof is not very difficult and can be found in [1].

Theorem 1 (Wedderburn). Let A be a finite-dimensional simple algebra over a field k. There exist an integer $n \ge 1$ and a division algebra D over k so that A is isomorphic to the matrix ring $M_n(D)$. Both n and D are uniquely determined up to isomorphism.

Of course, since our ring A is already a division algebra over k, it suffices to take n = 1 and D = A. But we'll use this result in a non-trivial way. Indeed, fix an algebraic closure \overline{k} of k and consider the \overline{k} -algebra $A_{\overline{k}} := A \otimes_k \overline{k}$. Since $\dim_k A = \dim_{\overline{k}} A_{\overline{k}}$, our new algebra is still finite-dimensional. Moreover, $A_{\overline{k}}$ is also simple as the following result shows.

Proposition 1. *If* A *and* B *are simple* k*-algebras, then so is* $A \otimes_k B$.

¹A ring is said to be simple if it has no non-trivial ideals.

Proof. Let I be a nonzero two-sided ideal of $A \otimes_k B$. We begin by supposing that there is a pure nonzero tensor $a \otimes b$ in I. Since A is simple, the two-sided ideal AaA generated by $a \neq 0$ coincides with A. Hence $u_1 av_1 + \ldots + u_m av_m = 1$ for some $u_i, v_i \in A$. It follows that

$$1 \otimes b = \left(\sum_{i=1}^{m} u_i a v_i\right) \otimes b = \sum_{i=1}^{m} (u_i \otimes 1) \cdot (a \otimes b) \cdot (v_i \otimes 1) \in I.$$

Reversing the roles of A and B we conclude that $1 \otimes 1$ is in I as well and so $I = A \otimes_k B$.

Now, let $x = a_1 \otimes b_1 + \ldots + a_n \otimes b_n$ be a nonzero element of I\ with the smallest possible n. Both the sets $\{a_1, \ldots, a_n\}$ and $\{b_1, \ldots, b_n\}$ are linearly independent over k since otherwise we could rewrite this expression to make it shorter. Also, using the same trick as before we can suppose that $a_1 = 1$. Indeed, there are $u_i, v_i \in A$ such that $u_1a_1v_1 + \ldots + u_ma_1v_m = 1$. Then

$$\sum_{i=1}^{m} u_i x v_i = \underbrace{\left(\sum_{i=1}^{m} u_i a_1 v_i\right)}_{=1} \otimes b_1 + \ldots + \left(\sum_{i=1}^{m} u_i a_n v_i\right) \otimes b_n$$

is an element in I of the desired form.

Suppose that n > 1. We have that $a_2 \notin k$ since otherwise a_1 and a_2 would be linearly dependent. Since the center of A is precisely k, there exists $a \in A$ such that $aa_2 \neq a_2a$. Consider the element

$$(\mathfrak{a} \otimes \mathfrak{1}) \cdot \mathbf{x} - \mathbf{x} \cdot (\mathfrak{a} \otimes \mathfrak{1}) = (\mathfrak{a}\mathfrak{a}_2 - \mathfrak{a}_2\mathfrak{a}) \otimes \mathfrak{b}_2 + \ldots + (\mathfrak{a}\mathfrak{a}_2 - \mathfrak{a}_2\mathfrak{a}) \otimes \mathfrak{b}_2 \in \mathbf{I}.$$

Since $\{b_1, \ldots, b_n\}$ is linearly independent over k and $aa_2 - a_2a \neq 0$, this element is not zero, which contradicts the minimality of n. Ergo, n = 1 and so the result follows from the special case that was proved.

Before we apply Wedderburn's theorem to $A_{\overline{k}'}$, we make one last observation. The only finite-dimensional division algebra D over \overline{k} is \overline{k} itself. Indeed, if \overline{k} is strictly contained in D, let $a \in D \setminus \overline{k}$. Then $\overline{k}[a]$ is a finite, thus algebraic, proper extension of \overline{k} . This contradicts the hypothesis that \overline{k} is algebraically closed.

Applying this observation to Wedderburn's theorem, we have that $A_{\overline{k}}$ is isomorphic to $M_n(\overline{k})$ for some integer $n \ge 1$. This integer is said to be the *degree* of A. In particular, $\dim_k A = \dim_{\overline{k}} A_{\overline{k}} = n^2$.

By composing the base change $A \to A \otimes_k \overline{k} \cong M_n(\overline{k})$ with the determinant, we obtain a multiplicative map $N : A \to k$, called the *reduced norm*. The fact that its image is contained in k follows from Galois descent and it is independent of the choice of the isomorphism $A_{\overline{k}} \cong M_n(\overline{k})$ by the Noether-Skolem theorem. Since it is multiplicative, it maps A^{\times} to k^{\times} . In particular, if $A \neq k$, we get a homogeneous polynomial of degree n in n^2 variables that has no non-trivial root.

2 The Chevalley-Warning theorem

In order to prove that our ring A is commutative, we have to prove that it is equal to its center. That is, we want to prove that its dimension over k, the integer we called n^2 , is equal to 1. This will follow from our next result, which is incredible by itself.

Theorem 2 (Chevalley-Warning). Let k be a finite field of characteristic p and let $P \in k[x_1, ..., x_m]$ be a polynomial whose degree is strictly inferior to m. Then, the number of solutions in k^m of $P(x_1, ..., x_m) = 0$ is divisible by p. In particular, if P is homogeneous, then this equation has a non-trivial solution.

Proof. We begin the proof by observing that, if k has q elements, the map $x \mapsto x^{q-1}$ is the indicator function on k. It follows that the number of solutions to our equation is congruent modulo p to

$$\mathsf{N} := \sum_{\mathbf{x} \in k^n} \left(1 - \mathsf{P}(\mathbf{x})^{q-1} \right).$$

We'll show that every monomial of $1 - P^{q-1}$ sums to zero modulo p. Consider one such monomial $ax_1^{e_1} \dots x_m^{a_m}$. Since its degree is strictly less than (q-1)m, we have $a_i < q-1$ for at least one i. Let j be this index. As

$$\sum_{(x_i)\in k^n} a x_1^{e_1} \dots x_m^{a_m} = a \prod_{i=1}^m \left(\sum_{x_i \in k} x_i^{a_i} \right),$$

it suffices to show that $\sum_{x_j \in k} x_j^{a_j} \equiv 0 \pmod{p}$. If $a_j = 0$, this is clear. Else, let y be a generator of k^{\times} . Then,

$$\sum_{x_j \in k} x_j^{\alpha_j} \equiv \sum_{x_j \in k^{\times}} x_j^{\alpha_j} \equiv \sum_{k=0}^{q-2} (y^m)^{\alpha_j} \equiv \sum_{k=0}^{q-2} (y^{\alpha_j})^m \equiv \frac{1 - (y^{\alpha_j})^{q-1}}{1 - y^{\alpha_j}} \equiv 0 \pmod{p},$$

concluding our proof.

Corollary 1 (Wedderburn's little theorem). Every finite division ring is commutative.

Proof. As in the previous section, let A be a finite division ring and k be its center, which is a finite field. Suppose that the dimension of A over k is strictly bigger than 1. If e_1, \ldots, e_{n^2} is a basis for A over k, the map given by the reduced norm

$$P(x_1,...,x_{n^2}) := N(x_1e_1 + ... + x_{n^2}e^{n^2})$$

is an homogeneous polynomial of degree n in n^2 variables that has no non-trivial root. Since $n < n^2$, the Chevalley-Warning applies and contradicts our supposition that n > 1. It follows that A = k.

3 Related stuff

An important invariant of a field k is its *Brauer group*, composed by the finite-dimensional division algebras over k with a natural operation, which is well described in [1]. A restatement of Wedderburn's little theorem is the fact that the Brauer group of a finite field is trivial. Our proof of this result was based on the affirmation that every homogeneous polynomial of degree d with n variables has a non-trivial root whenever d < n. The fields satisfying such property are said to be *quasi-algebraically closed* or C₁.

As we saw, algebraically closed fields and finite fields are C_1 . Moreover, C_1 fields have trivial Brauer group. Another interesting class of C_1 fields are those of transcendence degree 1 over an algebraically closed field, for example $\mathbb{C}(x)$. This result is called *Tsen's theorem*. The number-theoretic reader may be interested in knowing that the maximal unramified extension of a complete field with a discrete valuation and a perfect residue field is C_1 . Moreover, a complete field with a discrete valuation and an algebraically closed residue field is also C_1 . These latter results may be found in the classic [2].

References

- [1] Philippe Gille and Tamás Szamuely. *Central simple algebras and Galois cohomology*. Vol. 165. Cambridge University Press, 2017.
- [2] Jean-Pierre Serre. Local fields. Vol. 67. Springer Science & Business Media, 2013.