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The goal of these notes is to prove Wedderburn’s little theorem, which states that a
finite division ring is necessarily commutative, assuming some basic non-commutative
algebra. Nevertheless, we explain in a first section everything from non-commutative
algebra that is needed.

1 Basic non-commutative algebra

Let A be a finite division ring and k be its center. We observe that k is indeed a field
since the inverse a−1 of an element a ∈ k× is automatically in k. Indeed, clearly a−1

commutes with 0 and, if b ∈ A×, then ab−1 = b−1a implies

ba−1 = (ab−1)−1 = (b−1a)−1 = a−1b

and so a−1 ∈ k. Since A is finite, A is a finite-dimensional k-algebra. Moreover, as
every non-zero element in A is invertible, A has no two-sided ideals other than {0} and
A itself. In other words, A is a finite-dimensional simple1 k-algebra.
The main classification result about such algebras is the theorem below, which we

won’t prove but whose proof is not very difficult and can be found in [1].

Theorem 1 (Wedderburn). Let A be a finite-dimensional simple algebra over a field k. There
exist an integer n > 1 and a division algebraD over k so thatA is isomorphic to the matrix ring
Mn(D). Both n and D are uniquely determined up to isomorphism.

Of course, since our ring A is already a division algebra over k, it suffices to take
n = 1 and D = A. But we’ll use this result in a non-trivial way. Indeed, fix an algebraic
closure k of k and consider the k-algebra Ak := A ⊗k k. Since dimkA = dimkAk, our
new algebra is still finite-dimensional. Moreover, Ak is also simple as the following
result shows.

Proposition 1. If A and B are simple k-algebras, then so is A⊗k B.
1A ring is said to be simple if it has no non-trivial ideals.
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Proof. Let I be a nonzero two-sided ideal ofA⊗kB. We begin by supposing that there is
a pure nonzero tensor a⊗ b in I. Since A is simple, the two-sided ideal AaA generated
by a 6= 0 coincides with A. Hence u1av1 + . . . + umavm = 1 for some ui, vi ∈ A. It
follows that

1⊗ b =

(
m∑
i=1

uiavi

)
⊗ b =

m∑
i=1

(ui ⊗ 1) · (a⊗ b) · (vi ⊗ 1) ∈ I.

Reversing the roles of A and Bwe conclude that 1⊗ 1 is in I as well and so I = A⊗k B.
Now, let x = a1 ⊗ b1 + . . . + an ⊗ bn be a nonzero element of I\ with the smallest

possible n. Both the sets {a1, . . . , an} and {b1, . . . , bn} are linearly independent over k
since otherwise we could rewrite this expression to make it shorter. Also, using the
same trick as before we can suppose that a1 = 1. Indeed, there are ui, vi ∈ A such that
u1a1v1 + . . .+ uma1vm = 1. Then

m∑
i=1

uixvi =

(
m∑
i=1

uia1vi

)
︸ ︷︷ ︸

=1

⊗b1 + . . .+

(
m∑
i=1

uianvi

)
⊗ bn

is an element in I of the desired form.
Suppose that n > 1. We have that a2 /∈ k since otherwise a1 and a2 would be linearly

dependent. Since the center of A is precisely k, there exists a ∈ A such that aa2 6= a2a.
Consider the element

(a⊗ 1) · x− x · (a⊗ 1) = (aa2 − a2a)⊗ b2 + . . .+ (aa2 − a2a)⊗ b2 ∈ I.

Since {b1, . . . , bn} is linearly independent over k and aa2 − a2a 6= 0, this element is not
zero, which contradicts the minimality of n. Ergo, n = 1 and so the result follows from
the special case that was proved.

Before we apply Wedderburn’s theorem to Ak, we make one last observation. The
only finite-dimensional division algebra D over k is k itself. Indeed, if k is strictly
contained inD, let a ∈ D \ k. Then k[a] is a finite, thus algebraic, proper extension of k.
This contradicts the hypothesis that k is algebraically closed.

Applying this observation to Wedderburn’s theorem, we have that Ak is isomorphic
toMn(k) for some integer n > 1. This integer is said to be the degree of A. In particular,
dimkA = dimkAk = n2.

By composing the base change A → A ⊗k k ∼= Mn(k) with the determinant, we
obtain a multiplicative map N : A → k, called the reduced norm. The fact that its image
is contained in k follows from Galois descent and it is independent of the choice of the
isomorphismAk

∼= Mn(k) by the Noether-Skolem theorem. Since it is multiplicative, it
maps A× to k×. In particular, if A 6= k, we get a homogeneous polynomial of degree n
in n2 variables that has no non-trivial root.

2



2 The Chevalley-Warning theorem

In order to prove that our ring A is commutative, we have to prove that it is equal to its
center. That is, we want to prove that its dimension over k, the integer we called n2, is
equal to 1. This will follow from our next result, which is incredible by itself.

Theorem 2 (Chevalley-Warning). Let k be a finite field of characteristic p and let P ∈
k[x1, . . . , xm] be a polynomial whose degree is strictly inferior to m. Then, the number of
solutions in km of P(x1, . . . , xm) = 0 is divisible by p. In particular, if P is homogeneous, then
this equation has a non-trivial solution.

Proof. We begin the proof by observing that, if k has q elements, the map x 7→ xq−1 is
the indicator function on k. It follows that the number of solutions to our equation is
congruent modulo p to

N :=
∑
x∈kn

(
1− P(x)q−1

)
.

We’ll show that every monomial of 1−Pq−1 sums to zero modulo p. Consider one such
monomial axe1

1 . . . xam
m . Since its degree is strictly less than (q−1)m, we have ai < q−1

for at least one i. Let j be this index. As

∑
(xi)∈kn

axe1

1 . . . xam
m = a

m∏
i=1

∑
xi∈k

xai

i

 ,

it suffices to show that
∑

xj∈k x
aj

j ≡ 0 (mod p). If aj = 0, this is clear. Else, let y be a
generator of k×. Then,

∑
xj∈k

x
aj

j ≡
∑

xj∈k×
x
aj

j ≡
q−2∑
k=0

(ym)aj ≡
q−2∑
k=0

(yaj)m ≡ 1− (yaj)q−1

1− yaj
≡ 0 (mod p),

concluding our proof.

Corollary 1 (Wedderburn’s little theorem). Every finite division ring is commutative.

Proof. As in the previous section, letA be a finite division ring and k be its center, which
is a finite field. Suppose that the dimension of A over k is strictly bigger than 1. If
e1, . . . , en2 is a basis for A over k, the map given by the reduced norm

P(x1, . . . , xn2) := N(x1e1 + . . .+ xn2en
2

)

is an homogeneous polynomial of degree n in n2 variables that has no non-trivial root.
Since n < n2, the Chevalley-Warning applies and contradicts our supposition that
n > 1. It follows that A = k.
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3 Related stuff

An important invariant of a fieldk is itsBrauer group, composedby thefinite-dimensional
division algebras over k with a natural operation, which is well described in [1]. A re-
statement ofWedderburn’s little theorem is the fact that the Brauer group of a finite field
is trivial. Our proof of this result was based on the affirmation that every homogeneous
polynomial of degree d with n variables has a non-trivial root whenever d < n. The
fields satisfying such property are said to be quasi-algebraically closed or C1.
Aswe saw, algebraically closed fields and finite fields areC1. Moreover,C1 fields have

trivial Brauer group. Another interesting class of C1 fields are those of transcendence
degree 1 over an algebraically closed field, for example C(x). This result is called Tsen’s
theorem. The number-theoretic reader may be interested in knowing that the maximal
unramified extension of a complete field with a discrete valuation and a perfect residue
field is C1. Moreover, a complete field with a discrete valuation and an algebraically
closed residue field is also C1. These latter results may be found in the classic [2].
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