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We have that

]
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In particular ¢ has no zeros on the half-plane R(s) > 1.
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Observe that

so that . : ; ;
(1—2_5)4(5):1+3*5+§+7*5+$+

has no terms of the form n=° with n even. Similarly,

1 1 1 1
1-39)(1=-2")6S) =14+ —+ —+ — +
( ) )¢(s) 55 75 s 135+

has no terms with factors of 2 or 3. We continue ad infinitum.



Riemann zeta function - Functional equation

We set £(s) := /2T (s/2)¢(s).

The function ¢ has an analytic extension to C, holomorphic except
for a simple pole at s = 1 with residue 1. Moreover, we have that
E(s)=¢(1—s)foralls e C.



Riemann zeta function - Functional equation

We set £(s) := /2T (s/2)¢(s).

Proposition - Functional equation
The function ¢ has an analytic extension to C, holomorphic except
for a simple pole at s = 1 with residue 1. Moreover, we have that

E(s)=¢(1—s)foralls e C.
In particular, since ' has no zeros and simple poles at the negative

integers, ¢ has simple zeros at the even negative integers. All other
zeros should be on the strip 0 < R(s) < 1.



Riemann zeta function - Functional equation

Let §(u) := 3",z exp(—mn?u). Since the Fourier transform of
X — exp(—mx?Uu) is y — exp(—my?/u)/+/U, the Poisson formula gives
that

0(1/u) = Vub(u).



Riemann zeta function - Functional equation

Let §(u) := 3",z exp(—mn?u). Since the Fourier transform of
X — exp(—mx?Uu) is y — exp(—my?/u)/+/U, the Poisson formula gives
that

0(1/u) = Vub(u).

We'll consider a variant

O(u) := Zexp(*TFHZU) = 9(u)2— !

which satisfies

0(1/u) = Vb(u) + 5 (V5 - 1)



Riemann zeta function - Functional equation

By the definition of the gamma and the zeta functions,

dt
_ s/Zr 2 —t 5/2 75/2 —s )
£(s) = n=5/2(s/2)¢ Z / = S

t/ﬂnz 5/2



Riemann zeta function - Functional equation

By the definition of the gamma and the zeta functions,

dt
_ s/Zr 2 —t 5/2 75/2 —s )
£(s) = n=5/2(s/2)¢ Z / = S

t/Tmz 5/2

Letting t = 7n’u in the integral,

/ <Zexp 7rnu> 5/2(1 —/ g(u)us/zﬂ‘
u Jo u



Riemann zeta function - Functional equation

By the definition of the gamma and the zeta functions,

dt
_ s/Zr 2 —t 5/2 75/2 —s )
£(s) = n=5/2(s/2)¢ Z / = S

t/ﬂnz 5/2



Riemann zeta function - Functional equation
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Riemann zeta function - Functional equation

We divide the interval (0, 00) into (0,1) and (1,00). Then we make a
change of variables (u ~ 1/u) on the (0, 1) part, yielding

5(5):/1 (1/u)u‘5/2 / d(u s/sz



Riemann zeta function - Functional equation

We divide the interval (0, 00) into (0,1) and (1,00). Then we make a
change of variables (u ~ 1/u) on the (0, 1) part, yielding

/91/u)u‘5/2 /0 S/Zdu

Then the functional equation of 4 gives
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Riemann zeta function - Functional equation

We divide the interval (0, 00) into (0,1) and (1,00). Then we make a
change of variables (u ~ 1/u) on the (0, 1) part, yielding

/91/u)u‘5/2 /9 S/Zdu

Then the functional equation of 4 gives

§(S):L_1+/mg( ){ 572 4 0= S/z}duu
1

s—1 S

The RHS is holomorphic on C\ {0,1} and clearly symmetric with
respecttos+—1—s.
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Let x : (Z/NZ)* — C* be a multiplicative character and extend it to
a function Z — C.
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L(x,s) := i X(f)
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Natural generalizations

Let x : (Z/NZ)* — C* be a multiplicative character and extend it to
a function Z — C. Then we define Dirichlet's L-function

L(x,s) := Z erf)

Let K be a number field. We define Dedekind’s zeta function

1
K(s) =) N

IC Ok

where the sum goes through all non-zero ideals | of Ok, and
N() = #Ox /1.



Why should we care?

Dirichlet used his L-functions to prove the theorem on arithmetic
progressions.
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Why should we care?

Dirichlet used his L-functions to prove the theorem on arithmetic
progressions.

As for the Dedekind zeta function, we can write it as

1 o= Tk
G(s) =D N(/)s_zrr()?)’

n=1

where ri(n) is the number of ideals of norm n. In particular,

- rk(p) = [K: Q] <= p splits completely
- rx(p) =1 <= pis totally ramified.

There's also the analytic class number formula, relating res; x and hy.



Product formulae

We have that

1 1
L(X’S)ZQW and  &(s) =[] TR
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Product formulae

We have that

Lix.s) =[] ' and )= 11
p

1=x(p)p~* ke

_
1—N(p)=

However, establishing a functional equation and a meromorphic
continuation is a difficult task!

1



The local side of the force




Quasi-characters

Definition

Let K be a local field. A (multiplicative) quasi-character is a
continuous morphism x : KX — C*. It's a character if xy(K*) c S".



Quasi-characters

Definition

Let K be a local field. A (multiplicative) quasi-character is a
continuous morphism x : KX — C*. It's a character if xy(K*) c S".

We denote have a natural short exact sequence
1= Uk = KX = [K*] =1,

and we say that a character x is unramified if x|y, = 1.



Quasi-characters

Every quasi-character x can be written as 7| - |°, where n is a
character and s € C. We say that o = R(s) is the exponent of y.

(While the decomposition is not unique, the real part of s is always
the same.)



Non-archimedean local L-factors

Recall that the ring of integers ¢k of a non-archimedean local field K
is a discrete valuation ring with uniformizing parameter . We define

L(x) to be
1

1= x(w)
is x Is unramified and L(x) = 1 otherwise.

14



Archimedean local L-factors

The quasi-characters of R are of the form xqs(x) = x~%|x|* for some
ae{0,1} ands e C.



Archimedean local L-factors

The quasi-characters of R are of the form xqs(x) = x~%|x|* for some
ae{0,1} ands e C.

We define the local L-factor associated with such characters as

L(Xa,s) = 7775/2r(5/2)~



Archimedean local L-factors

The quasi-characters of C are of the form xq.s(2) = z=9770)|z||° for
some a, b € Z with min(a,b) =0 and s € C.



Archimedean local L-factors

The quasi-characters of C are of the form xq.s(2) = z=9770)|z||° for
some a, b € Z with min(a,b) =0 and s € C.

We define the local L-factor associated with such characters as

L(Xa,b,s) :=2(2m) T (s).



Reality check

Let x be the character | - |* on Q. It's always unramified (actually
every unramified character is like this) and x(w) = p~>.



Reality check

Let x be the character | - |* on Q. It's always unramified (actually
every unramified character is like this) and x(w) = p~5. Multiplying
all the local L-factors the completions of Q we get

;
1T—p-s

&) =m1(s/)[| = 77521 (s/2)¢(5).

p



Reality check

Let x be the character | - |* on Q. It's always unramified (actually
every unramified character is like this) and x(w) = p~5. Multiplying
all the local L-factors the completions of Q we get

) = n*"r(s/) [] 7oz = w71 (s/2)¢09)

p

Also, let K be a number field and x : K — C* be given by | - |°. The
product of the finite local L-factors is

Ck(s) = H TN



Local zeta integrals

Let K be a local field. A Schwartz-Bruhat function is a Schwartz
function if K'is archimedean or a locally constant function with
compact support if K'is nonarchimedean.



Local zeta integrals

Let K be a local field. A Schwartz-Bruhat function is a Schwartz
function if K'is archimedean or a locally constant function with
compact support if K'is nonarchimedean.

For those functions f, we define the local zeta integral

Z(f,x) == [ fO)x(x) d*x.

KX



Local zeta integrals

Let f be a SB function on Kand x = | - |* with exponent o. Then,
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Local zeta integrals

Let f be a SB function on Kand x = | - |* with exponent o. Then,

Z(f, x) is absolutely convergent if o > 0.
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Local zeta integrals

Let f be a SB function on Kand x = | - |* with exponent o. Then,

Z(f, x) is absolutely convergent if o > 0.
Z(f, x) has a meromorphic continuation of C.

19



The Poisson formula




The Poisson formula

Let K be a global field. A Schwartz-Bruhat function on Ak is a product
of Schwartz-Bruhat functions on K, for all places v of K.
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The Poisson formula

Let K be a global field. A Schwartz-Bruhat function on Ak is a product
of Schwartz-Bruhat functions on K, for all places v of K.

Let f be a SB function on Ak. Then,

S +x) = f(y +x)

YyEK yEK

for all x € Ax.

20



The Riemann-Roch theorem

Let f be a SB function on Ak. Then,

S ) = ﬁzw*)

yEK y€EeK

for all x € Ik.
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The Riemann-Roch theorem

Let f be a SB function on Ak. Then,

S ) = ﬁzw*)

yEK y€EeK

for all x € Ik.

Indeed, it suffices to apply the Poisson formula to h(y) := f(xy) since
h(v) = 7(yx")/Ix].

21



The Riemann-Roch theorem

Let C be a smooth projective curve over a finite field. Then, for all
divisors D
(D) — ¢(K— D) =deg(D) — g + 1,

where K is the canonical divisor and g is the genus of C.

22



The global side of the force




Grossencharakters (german for fancy idelic characters)

Let K be a global field. Recall that K* < Iy and that the quotient
Ix/K* is the idele class group Ck.
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Let K be a global field. Recall that K* < Iy and that the quotient
Ix/K* is the idele class group Ck.

Definition
Let K be a global field. A quasi-character is a continuous morphism
x : Ck — C*. It's a character if x(Cx) C S".

If x is a Dirichlet character, the composition
g — Z* — (Z/NZ)* %5 C*

defines a quasi-character.
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Grossencharakters (german for fancy idelic characters)

Let K be a global field. Recall that K* < Iy and that the quotient
Ix/K* is the idele class group Ck.

Definition
Let K be a global field. A quasi-character is a continuous morphism
x : Ck — C*. It's a character if x(Cx) C S".

If x is a Dirichlet character, the composition
g — Z* — (Z/NZ)* %5 C*

defines a quasi-character. Another example is | - |° for s € C. (Recall
the product formula!)

23



Grossencharakters (german for fancy idelic characters)

Proposition
Every quasi-character x can be written as 7| - |°, where n is a
character and s € C. We say that o = R(s) is the exponent of y.

(While the decomposition is not unique, the real part of s is always
the same.)

24



Global zeta integrals

Let f be a SB function on Ax. We define the global zeta integral

Z(f,x) = [ fO)x(x)d*x.

Ik
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Global zeta integrals

Let f be a SB function on Ax. We define the global zeta integral

Z(f,x) = [ fO)x(x)d*x.

Ik
As before, if x = n| - |> with exponent o, Z(f, x) is absolutely
convergent for o > 1.
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Global zeta integrals
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Global zeta integrals

Z(f, x) has a meromorphic extension to C.
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Global zeta integrals
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We have the functional equation Z(f, x) = Z(]A‘, xVY).
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Z(f, x) has a meromorphic extension to C.
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Global zeta integrals

Z(f, x) has a meromorphic extension to C.
We have the functional equation Z(f, x) = Z(]A‘, xVY).
Its residue at 0 is Vol(C})F(0).

We write

so that
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Proof of the functional equation

Using the Riemann-Roch theorem, we obtain a functional equation:

21, ) = 2 (o) +70) [ X6t *x = (0) [ (o) ax.

& Ck

The result then follows as before by the formula above and the fact

that
1 o0 dt
/02th f+/ Z(fix) +

/1002t 1(fix) *Jr/OOZr(fx) it

27



Hecke's L-functions

Let K be a global field and x be a quasi-character. We pose

Aes) =TJLoul- 1) and  Lies) = [T toul- P,

v finite

where y, := x|k, Both define holomorphic functions on the half
plane R(s) > 1.

28



Hecke's L-functions

Let x be a character of a global field K. Then L(x,s) admits a
meromorphic continuation to C and we have

/\(X\/v’I - S) = E(X,S)/\(X,SL

where E(X>S) = Hv E(XV‘ ’ |S)

29



Questions?

29
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