L-functions, Tate's thesis

And all that jazz

Gabriel Ribeiro

École Polytechnique

Summary

1. L-functions
2. The local side of the force
3. The Poisson formula
4. The global side of the force

L-functions

Riemann zeta function

Consider the Riemann zeta function ζ, defined for $\Re(s)>1$ by the formula

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Riemann zeta function

Consider the Riemann zeta function ζ, defined for $\Re(s)>1$ by the formula

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Proposition - Product formula

We have that

$$
\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}}
$$

for $\Re(s)>1$.

Riemann zeta function

Consider the Riemann zeta function ζ, defined for $\Re(s)>1$ by the formula

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Proposition - Product formula

We have that

$$
\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}}
$$

for $\Re(s)>1$.
In particular ζ has no zeros on the half-plane $\Re(s)>1$.

Riemann zeta function - Product formula

Observe that

$$
\begin{array}{r}
\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots \\
2^{-s} \zeta(s)=\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\ldots
\end{array}
$$

Riemann zeta function - Product formula

Observe that

$$
\begin{array}{r}
\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots \\
2^{-s} \zeta(s)=\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\ldots
\end{array}
$$

so that

$$
\left(1-2^{-s}\right) \zeta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\ldots
$$

has no terms of the form n^{-s} with n even.

Riemann zeta function - Product formula

Observe that

$$
\begin{array}{r}
\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots \\
2^{-s} \zeta(s)=\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\ldots
\end{array}
$$

so that

$$
\left(1-2^{-s}\right) \zeta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\ldots
$$

has no terms of the form n^{-s} with n even. Similarly,

$$
\left(1-3^{-s}\right)\left(1-2^{-s}\right) \zeta(s)=1+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\ldots
$$

has no terms with factors of 2 or 3 .

Riemann zeta function - Product formula

Observe that

$$
\begin{array}{r}
\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots \\
2^{-s} \zeta(s)=\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\ldots
\end{array}
$$

so that

$$
\left(1-2^{-s}\right) \zeta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\ldots
$$

has no terms of the form n^{-s} with n even. Similarly,

$$
\left(1-3^{-s}\right)\left(1-2^{-s}\right) \zeta(s)=1+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\ldots
$$

has no terms with factors of 2 or 3 . We continue ad infinitum.

Riemann zeta function - Functional equation

We set $\xi(\mathrm{s}):=\pi^{-s / 2} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s})$.

Proposition - Functional equation

The function ζ has an analytic extension to \mathbb{C}, holomorphic except for a simple pole at $s=1$ with residue 1 . Moreover, we have that $\xi(s)=\xi(1-s)$ for all $s \in \mathbb{C}$.

Riemann zeta function - Functional equation

We set $\xi(s):=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)$.

Proposition - Functional equation

The function ζ has an analytic extension to \mathbb{C}, holomorphic except for a simple pole at $s=1$ with residue 1 . Moreover, we have that $\xi(s)=\xi(1-s)$ for all $s \in \mathbb{C}$.

In particular, since Γ has no zeros and simple poles at the negative integers, ζ has simple zeros at the even negative integers. All other zeros should be on the strip $0 \leq \Re(s) \leq 1$.

Riemann zeta function - Functional equation

Let $\theta(u):=\sum_{n \in \mathbb{Z}} \exp \left(-\pi n^{2} u\right)$. Since the Fourier transform of $x \mapsto \exp \left(-\pi x^{2} u\right)$ is $y \mapsto \exp \left(-\pi y^{2} / u\right) / \sqrt{u}$, the Poisson formula gives that

$$
\theta(1 / u)=\sqrt{u} \theta(u) .
$$

Riemann zeta function - Functional equation

Let $\theta(u):=\sum_{n \in \mathbb{Z}} \exp \left(-\pi n^{2} u\right)$. Since the Fourier transform of $x \mapsto \exp \left(-\pi x^{2} u\right)$ is $y \mapsto \exp \left(-\pi y^{2} / u\right) / \sqrt{u}$, the Poisson formula gives that

$$
\theta(1 / u)=\sqrt{u} \theta(u) .
$$

We'll consider a variant

$$
\tilde{\theta}(u):=\sum_{n=1}^{\infty} \exp \left(-\pi n^{2} u\right)=\frac{\theta(u)-1}{2}
$$

which satisfies

$$
\tilde{\theta}(1 / u)=\sqrt{u} \tilde{\theta}(u)+\frac{1}{2}(\sqrt{u}-1) .
$$

Riemann zeta function - Functional equation

By the definition of the gamma and the zeta functions,

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-t} \underbrace{t^{s / 2} \pi^{-s / 2} n^{-s}}_{\left(t / \pi n^{2}\right)^{s / 2}} \frac{\mathrm{~d} t}{t}
$$

Riemann zeta function - Functional equation

By the definition of the gamma and the zeta functions,

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-t} \underbrace{t^{s / 2} \pi^{-s / 2} n^{-s}}_{\left(t / \pi n^{2}\right)^{s / 2}} \frac{\mathrm{~d} t}{t}
$$

Letting $t=\pi n^{2} u$ in the integral,

$$
\xi(s)=\int_{0}^{\infty}\left(\sum_{n=1}^{\infty} \exp \left(-\pi n^{2} u\right)\right) u^{s / 2} \frac{\mathrm{~d} u}{u}=\int_{0}^{\infty} \tilde{\theta}(u) u^{\mathrm{s} / 2} \frac{\mathrm{~d} u}{u} .
$$

Riemann zeta function - Functional equation

By the definition of the gamma and the zeta functions,

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-t} \underbrace{t^{s / 2} \pi^{-s / 2} n^{-s}}_{\left(t / \pi n^{2}\right)^{s / 2}} \frac{\mathrm{~d} t}{t}
$$

Riemann zeta function - Functional equation

By the definition of the gamma and the zeta functions,

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-t} \underbrace{t^{s / 2} \pi^{-s / 2} n^{-s}}_{\left(t / \pi n^{2}\right)^{s / 2}} \frac{\mathrm{~d} t}{t}
$$

Letting $t=\pi n^{2} u$ in the integral,

$$
\xi(s)=\int_{0}^{\infty}\left(\sum_{n=1}^{\infty} \exp \left(-\pi n^{2} u\right)\right) u^{s / 2} \frac{\mathrm{~d} u}{u}=\int_{0}^{\infty} \tilde{\theta}(u) u^{\mathrm{s} / 2} \frac{\mathrm{~d} u}{u} .
$$

Riemann zeta function - Functional equation

We divide the interval $(0, \infty)$ into $(0,1)$ and $(1, \infty)$. Then we make a change of variables $(u \mapsto 1 / u)$ on the $(0,1)$ part, yielding

$$
\xi(s)=\int_{1}^{\infty} \tilde{\theta}(1 / u) u^{-s / 2} \frac{\mathrm{~d} u}{u}+\int_{1}^{\infty} \tilde{\theta}(u) u^{s / 2} \frac{\mathrm{~d} u}{u} .
$$

Riemann zeta function - Functional equation

We divide the interval $(0, \infty)$ into $(0,1)$ and $(1, \infty)$. Then we make a change of variables $(u \mapsto 1 / u)$ on the $(0,1)$ part, yielding

$$
\xi(s)=\int_{1}^{\infty} \tilde{\theta}(1 / u) u^{-s / 2} \frac{\mathrm{~d} u}{u}+\int_{1}^{\infty} \tilde{\theta}(u) u^{s / 2} \frac{\mathrm{~d} u}{u} .
$$

Then the functional equation of $\tilde{\theta}$ gives

$$
\xi(s)=\frac{1}{s-1}-\frac{1}{s}+\int_{1}^{\infty} \tilde{\theta}(u)\left\{u^{s / 2}+u^{(1-s) / 2}\right\} \frac{d u}{u} .
$$

Riemann zeta function - Functional equation

We divide the interval $(0, \infty)$ into $(0,1)$ and $(1, \infty)$. Then we make a change of variables ($u \mapsto 1 / u$) on the $(0,1)$ part, yielding

$$
\xi(s)=\int_{1}^{\infty} \tilde{\theta}(1 / u) u^{-s / 2} \frac{\mathrm{~d} u}{u}+\int_{1}^{\infty} \tilde{\theta}(u) u^{s / 2} \frac{\mathrm{~d} u}{u} .
$$

Then the functional equation of $\tilde{\theta}$ gives

$$
\xi(s)=\frac{1}{s-1}-\frac{1}{s}+\int_{1}^{\infty} \tilde{\theta}(u)\left\{u^{s / 2}+u^{(1-s) / 2}\right\} \frac{d u}{u} .
$$

The RHS is holomorphic on $\mathbb{C} \backslash\{0,1\}$ and clearly symmetric with respect to $s \mapsto 1-s$.

Natural generalizations

Let $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a multiplicative character and extend it to
a function $\mathbb{Z} \rightarrow \mathbb{C}$.

Natural generalizations

Let $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a multiplicative character and extend it to a function $\mathbb{Z} \rightarrow \mathbb{C}$. Then we define Dirichlet's L-function

$$
L(\chi, s):=\sum_{n=1}^{\infty} \frac{\chi(s)}{n^{s}}
$$

Natural generalizations

Let $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a multiplicative character and extend it to a function $\mathbb{Z} \rightarrow \mathbb{C}$. Then we define Dirichlet's L-function

$$
L(\chi, s):=\sum_{n=1}^{\infty} \frac{\chi(s)}{n^{s}} .
$$

Let K be a number field. We define Dedekind's zeta function

$$
\zeta_{K}(s):=\sum_{\mid \subset \mathcal{O}_{K}} \frac{1}{N(I)^{s}},
$$

where the sum goes through all non-zero ideals I of \mathcal{O}_{K}, and $N(I)=\# \mathcal{O}_{K} / I$.

Why should we care?

Dirichlet used his L-functions to prove the theorem on arithmetic progressions.

Why should we care?

Dirichlet used his L-functions to prove the theorem on arithmetic progressions.

As for the Dedekind zeta function, we can write it as

$$
\zeta_{k}(s):=\sum_{I \subset \mathcal{O}_{k}} \frac{1}{N(I)^{s}}=\sum_{n=1}^{\infty} \frac{r_{k}(n)}{n^{s}},
$$

where $r_{k}(n)$ is the number of ideals of norm n.

Why should we care?

Dirichlet used his L-functions to prove the theorem on arithmetic progressions.

As for the Dedekind zeta function, we can write it as

$$
\zeta_{k}(s):=\sum_{I \subset \mathcal{O}_{k}} \frac{1}{N(I)^{s}}=\sum_{n=1}^{\infty} \frac{r_{k}(n)}{n^{s}},
$$

where $r_{k}(n)$ is the number of ideals of norm n. In particular,

- $r_{K}(p)=[K: \mathbb{Q}] \Longleftrightarrow p$ splits completely

Why should we care?

Dirichlet used his L-functions to prove the theorem on arithmetic progressions.
As for the Dedekind zeta function, we can write it as

$$
\zeta_{k}(s):=\sum_{I \subset \mathcal{O}_{k}} \frac{1}{N(I)^{s}}=\sum_{n=1}^{\infty} \frac{r_{k}(n)}{n^{s}},
$$

where $r_{k}(n)$ is the number of ideals of norm n. In particular,

- $r_{K}(p)=[K: \mathbb{Q}] \Longleftrightarrow p$ splits completely
- $r_{K}(p)=1 \Longleftrightarrow p$ is totally ramified.

Why should we care?

Dirichlet used his L-functions to prove the theorem on arithmetic progressions.
As for the Dedekind zeta function, we can write it as

$$
\zeta_{k}(s):=\sum_{l \subset \mathcal{O}_{k}} \frac{1}{N(I)^{s}}=\sum_{n=1}^{\infty} \frac{r_{k}(n)}{n^{s}},
$$

where $r_{k}(n)$ is the number of ideals of norm n. In particular,

- $r_{K}(p)=[K: \mathbb{Q}] \Longleftrightarrow p$ splits completely
- $r_{K}(p)=1 \Longleftrightarrow p$ is totally ramified.

Why should we care?

Dirichlet used his L-functions to prove the theorem on arithmetic progressions.
As for the Dedekind zeta function, we can write it as

$$
\zeta_{K}(s):=\sum_{I \subset \mathcal{O}_{k}} \frac{1}{N(I)^{s}}=\sum_{n=1}^{\infty} \frac{r_{k}(n)}{n^{s}},
$$

where $r_{k}(n)$ is the number of ideals of norm n. In particular,

- $r_{K}(p)=[K: \mathbb{Q}] \Longleftrightarrow p$ splits completely
- $r_{K}(p)=1 \Longleftrightarrow p$ is totally ramified.

There's also the analytic class number formula, relating res ζ_{K} and h_{K}.

Product formulae

We have that

$$
L(\chi, s)=\prod_{p} \frac{1}{1-\chi(p) p^{-s}} \quad \text { and } \quad \zeta_{k}(s)=\prod_{\mathfrak{p} \subset \mathcal{O}_{k}} \frac{1}{1-N(\mathfrak{p})^{-s}} .
$$

Product formulae

We have that

$$
L(\chi, s)=\prod_{p} \frac{1}{1-\chi(p) p^{-s}} \quad \text { and } \quad \zeta_{k}(s)=\prod_{\mathfrak{p} \subset \mathcal{O}_{k}} \frac{1}{1-N(\mathfrak{p})^{-s}} .
$$

However, establishing a functional equation and a meromorphic continuation is a difficult task!

The local side of the force

Quasi-characters

Definition

Let K be a local field. A (multiplicative) quasi-character is a continuous morphism $\chi: K^{\times} \rightarrow \mathbb{C}^{\times}$. It's a character if $\chi\left(K^{\times}\right) \subset S^{1}$.

Quasi-characters

Definition

Let K be a local field. A (multiplicative) quasi-character is a continuous morphism $\chi: K^{\times} \rightarrow \mathbb{C}^{\times}$. It's a character if $\chi\left(K^{\times}\right) \subset S^{1}$.

We denote have a natural short exact sequence

$$
1 \rightarrow U_{K} \rightarrow K^{\times} \rightarrow\left|K^{\times}\right| \rightarrow 1,
$$

and we say that a character χ is unramified if $\chi \mid u_{k}=1$.

Quasi-characters

Proposition

Every quasi-character χ can be written as $\eta|\cdot|^{s}$, where η is a character and $s \in \mathbb{C}$. We say that $\sigma=\Re(s)$ is the exponent of χ.
(While the decomposition is not unique, the real part of s is always the same.)

Non-archimedean local L-factors

Recall that the ring of integers \mathscr{O}_{K} of a non-archimedean local field K is a discrete valuation ring with uniformizing parameter ϖ. We define $L(\chi)$ to be

$$
\frac{1}{1-\chi(\varpi)}
$$

is χ is unramified and $L(\chi)=1$ otherwise.

Archimedean local L-factors

Proposition

The quasi-characters of \mathbb{R} are of the form $\chi_{a, s}(x)=x^{-a}|x|^{5}$ for some $a \in\{0,1\}$ and $s \in \mathbb{C}$.

Archimedean local L-factors

Proposition

The quasi-characters of \mathbb{R} are of the form $\chi_{a, s}(x)=x^{-a}|x|^{5}$ for some $a \in\{0,1\}$ and $s \in \mathbb{C}$.

We define the local L-factor associated with such characters as

$$
L\left(\chi_{a, s}\right):=\pi^{-s / 2} \Gamma(s / 2) .
$$

Archimedean local L-factors

Proposition

The quasi-characters of \mathbb{C} are of the form $\chi_{a, b, s}(z)=z^{-a \bar{z}^{-b}}\|z\|^{s}$ for some $a, b \in \mathbb{Z}$ with $\min (a, b)=0$ and $s \in \mathbb{C}$.

Archimedean local L-factors

Proposition

The quasi-characters of \mathbb{C} are of the form $\chi_{a, b, s}(z)=z^{-a \bar{z}^{-b}}\|z\|^{s}$ for some $a, b \in \mathbb{Z}$ with $\min (a, b)=0$ and $s \in \mathbb{C}$.

We define the local L-factor associated with such characters as

$$
L\left(\chi_{a, b, s}\right):=2(2 \pi)^{-s} \Gamma(s) .
$$

Reality check

Let χ be the character $|\cdot|^{s}$ on \mathbb{Q}_{p}. It's always unramified (actually every unramified character is like this) and $\chi(\varpi)=p^{-s}$.

Reality check

Let χ be the character $|\cdot|^{s}$ on \mathbb{Q}_{p}. It's always unramified (actually every unramified character is like this) and $\chi(\varpi)=p^{-s}$. Multiplying all the local L-factors the completions of \mathbb{Q} we get

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \prod_{p} \frac{1}{1-p^{-s}}=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)
$$

Reality check

Let χ be the character $\left.|\cdot|\right|^{5}$ on \mathbb{Q}_{p}. It's always unramified (actually every unramified character is like this) and $\chi(\varpi)=p^{-5}$. Multiplying all the local $L-$-factors the completions of \mathbb{Q} we get

$$
\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \prod_{p} \frac{1}{1-p^{-s}}=\pi^{-s / 2} \Gamma(s / 2) \zeta(s) .
$$

Also, let K be a number field and $\chi: K_{V}^{\times} \rightarrow \mathbb{C}^{\times}$be given by $|\cdot|^{s}$. The product of the finite local L-factors is

$$
\zeta_{K}(s)=\prod_{\mathfrak{p}_{v} \subset \mathcal{O}_{K}} \frac{1}{1-N\left(\mathfrak{p}_{v}\right)^{-s}}
$$

Local zeta integrals

Let K be a local field. A Schwartz-Bruhat function is a Schwartz function if K is archimedean or a locally constant function with compact support if K is nonarchimedean.

Local zeta integrals

Let K be a local field. A Schwartz-Bruhat function is a Schwartz function if K is archimedean or a locally constant function with compact support if K is nonarchimedean.

For those functions f, we define the local zeta integral

$$
Z(f, \chi):=\int_{K^{x}} f(x) \chi(x) \mathrm{d}^{\times} x .
$$

Local zeta integrals

Theorem

Let f be a SB function on K and $\chi=\eta|\cdot|{ }^{s}$ with exponent σ. Then, 1. $Z(f, \chi)$ is absolutely convergent if $\sigma>0$.

Local zeta integrals

Theorem

Let f be a SB function on K and $\chi=\eta|\cdot|{ }^{s}$ with exponent σ. Then, 1. $Z(f, \chi)$ is absolutely convergent if $\sigma>0$.
2. $Z(f, \chi)$ has a meromorphic continuation of \mathbb{C}.

Local zeta integrals

Theorem

Let f be a SB function on K and $\chi=\eta|\cdot|{ }^{s}$ with exponent σ. Then,

1. $Z(f, \chi)$ is absolutely convergent if $\sigma>0$.
2. $Z(f, \chi)$ has a meromorphic continuation of \mathbb{C}.
3. There exists a nonvanishing holomorphic function $\varepsilon(\chi)$ such that

$$
L(\chi) Z\left(\hat{f}, \chi^{\vee}\right)=\epsilon(\chi) L\left(\chi^{\vee}\right) Z(f, \chi),
$$

where $\chi^{\vee}:=\chi^{-1}|\cdot|$.

The Poisson formula

The Poisson formula

Let K be a global field. A Schwartz-Bruhat function on \mathbb{A}_{K} is a product of Schwartz-Bruhat functions on K_{v} for all places v of K.

The Poisson formula

Let K be a global field. A Schwartz-Bruhat function on \mathbb{A}_{K} is a product of Schwartz-Bruhat functions on K_{v} for all places v of K.

Theorem - Poisson formula

Let f be a $S B$ function on \mathbb{A}_{k}. Then,

$$
\sum_{\gamma \in K} f(\gamma+x)=\sum_{\gamma \in K} \hat{f}(\gamma+x)
$$

for all $x \in \mathbb{A}_{\kappa}$.

The Riemann-Roch theorem

Corollary - Riemann-Roch

Let f be a SB function on \mathbb{A}_{k}. Then,

$$
\sum_{\gamma \in K} f(\gamma x)=\frac{1}{|x|} \sum_{\gamma \in K} \hat{f}\left(\gamma x^{-1}\right)
$$

for all $x \in \mathbb{I}_{K}$.

The Riemann-Roch theorem

Corollary - Riemann-Roch

Let f be a SB function on \mathbb{A}_{k}. Then,

$$
\sum_{\gamma \in K} f(\gamma x)=\frac{1}{|x|} \sum_{\gamma \in K} \hat{f}\left(\gamma x^{-1}\right)
$$

for all $x \in \mathbb{I}_{K}$.
Indeed, it suffices to apply the Poisson formula to $h(y):=f(x y)$ since $\hat{h}(\gamma)=\hat{f}\left(\gamma x^{-1}\right) /|x|$.

The Riemann-Roch theorem

Corollary 2 - Riemann-Roch

Let C be a smooth projective curve over a finite field. Then, for all divisors D

$$
\ell(D)-\ell(K-D)=\operatorname{deg}(D)-g+1
$$

where K is the canonical divisor and g is the genus of C.

The global side of the force

Grössencharakters (german for fancy idelic characters)

Let K be a global field. Recall that $K^{\times} \hookrightarrow \mathbb{I}_{K}$ and that the quotient $\mathbb{I}_{K} / K^{\times}$is the idèle class group C_{K}.

Grössencharakters (german for fancy idelic characters)

Let K be a global field. Recall that $K^{\times} \hookrightarrow \mathbb{I}_{K}$ and that the quotient $\mathbb{I}_{K} / K^{\times}$is the idèle class group C_{K}.

Definition

Let K be a global field. A quasi-character is a continuous morphism $\chi: C_{K} \rightarrow \mathbb{C}^{\times}$. It's a character if $\chi\left(C_{K}\right) \subset S^{1}$.

Grössencharakters (german for fancy idelic characters)

Let K be a global field. Recall that $K^{\times} \hookrightarrow \mathbb{I}_{K}$ and that the quotient $\mathbb{I}_{K} / K^{\times}$is the idèle class group C_{K}.

Definition

Let K be a global field. A quasi-character is a continuous morphism $\chi: C_{K} \rightarrow \mathbb{C}^{\times}$. It's a character if $\chi\left(C_{K}\right) \subset S^{1}$.

If χ is a Dirichlet character, the composition

$$
\mathbb{I}_{\mathbb{Q}} \rightarrow \widehat{\mathbb{Z}}^{\times} \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}
$$

defines a quasi-character.

Grössencharakters (german for fancy idelic characters)

Let K be a global field. Recall that $K^{\times} \hookrightarrow \mathbb{I}_{K}$ and that the quotient $\mathbb{I}_{K} / K^{\times}$is the idèle class group C_{K}.

Definition

Let K be a global field. A quasi-character is a continuous morphism $\chi: C_{K} \rightarrow \mathbb{C}^{\times}$. It's a character if $\chi\left(C_{K}\right) \subset S^{1}$.

If χ is a Dirichlet character, the composition

$$
\mathbb{I}_{\mathbb{Q}} \rightarrow \widehat{\mathbb{Z}}^{\times} \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}
$$

defines a quasi-character. Another example is $|\cdot|^{s}$ for $s \in \mathbb{C}$. (Recall the product formula!)

Grössencharakters (german for fancy idelic characters)

Proposition

Every quasi-character χ can be written as $\eta|\cdot|^{s}$, where η is a character and $s \in \mathbb{C}$. We say that $\sigma=\Re(s)$ is the exponent of χ.
(While the decomposition is not unique, the real part of s is always the same.)

Global zeta integrals

Let f be a SB function on \mathbb{A}_{k}. We define the global zeta integral

$$
Z(f, \chi)=\int_{\mathbb{I}_{k}} f(x) \chi(x) \mathrm{d}^{\times} x
$$

Global zeta integrals

Let f be a SB function on \mathbb{A}_{k}. We define the global zeta integral

$$
Z(f, \chi)=\int_{\mathbb{I}_{k}} f(x) \chi(x) \mathrm{d}^{\times} x .
$$

As before, if $\chi=\eta|\cdot|{ }^{s}$ with exponent $\sigma, Z(f, \chi)$ is absolutely convergent for $\sigma>1$.

Global zeta integrals

Theorem

1. $Z(f, \chi)$ has a meromorphic extension to \mathbb{C}.

Global zeta integrals

Theorem

1. $Z(f, \chi)$ has a meromorphic extension to \mathbb{C}.
2. We have the functional equation $Z(f, \chi)=Z\left(\hat{f}, \chi^{\vee}\right)$.

Global zeta integrals

Theorem

1. $Z(f, \chi)$ has a meromorphic extension to \mathbb{C}.
2. We have the functional equation $Z(f, \chi)=Z\left(\hat{f}, \chi^{\vee}\right)$.
3. Its residue at 0 is $\operatorname{Vol}\left(C_{K}^{1}\right) \hat{f}(0)$.

Global zeta integrals

Theorem

1. $Z(f, \chi)$ has a meromorphic extension to \mathbb{C}.
2. We have the functional equation $Z(f, \chi)=Z\left(\hat{f}, \chi^{\vee}\right)$.
3. Its residue at 0 is $\operatorname{Vol}\left(C_{K}^{1}\right) \hat{f}(0)$.

Global zeta integrals

Theorem

1. $Z(f, \chi)$ has a meromorphic extension to \mathbb{C}.
2. We have the functional equation $Z(f, \chi)=Z\left(\hat{f}, \chi^{\vee}\right)$.
3. Its residue at 0 is $\operatorname{Vol}\left(C_{K}^{1}\right) \hat{f}(0)$.

We write

$$
Z_{t}(f, \chi):=\int_{\mathbb{I}_{k}^{\prime}} f(t x) \chi(t x) d^{\times} x
$$

so that

$$
Z(f, \chi)=\int_{0}^{\infty} Z_{t}(f, \chi) \frac{\mathrm{d} t}{t}
$$

Proof of the functional equation

Using the Riemann-Roch theorem, we obtain a functional equation:

$$
Z_{t}(f, \chi)=Z_{t^{-1}}\left(\hat{f}, \chi^{\vee}\right)+\hat{f}(0) \int_{C_{k}^{\prime}} \chi^{\vee}(x / t) \mathrm{d}^{\times} x-f(0) \int_{C_{k}^{\prime}} \chi(t x) \mathrm{d}^{\times} x .
$$

The result then follows as before by the formula above and the fact that

$$
\begin{aligned}
Z(f, \chi) & =\int_{0}^{1} Z_{t}(f, \chi) \frac{\mathrm{d} t}{\mathrm{t}}+\int_{1}^{\infty} Z_{\mathrm{t}}(f, \chi) \frac{\mathrm{d} t}{t} \\
& =\int_{1}^{\infty} Z_{\mathrm{t}^{-1}}(f, \chi) \frac{\mathrm{d} t}{t}+\int_{1}^{\infty} Z_{\mathrm{t}}(f, \chi) \frac{\mathrm{d} t}{t} .
\end{aligned}
$$

Hecke's L-functions

Let K be a global field and χ be a quasi-character. We pose

$$
\Lambda(\chi, s)=\prod_{v} L\left(\chi_{v}|\cdot|^{s}\right) \quad \text { and } \quad L(\chi, s)=\prod_{v \text { finite }} L\left(\chi_{v}|\cdot|^{s}\right),
$$

where $\chi_{v}:=\chi \mid k_{v}$. Both define holomorphic functions on the half plane $\Re(s)>1$.

Hecke's L-functions

Theorem

Let χ be a character of a global field K. Then $L(\chi, s)$ admits a meromorphic continuation to \mathbb{C} and we have

$$
\wedge\left(\chi^{\vee}, 1-s\right)=\varepsilon(\chi, s) \wedge(\chi, s)
$$

where $\varepsilon(\chi, s):=\prod_{v} \varepsilon\left(\chi_{v}|\cdot|{ }^{s}\right)$.

Questions?

