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L-functions



Riemann zeta function

Consider the Riemann zeta function ζ , defined for <(s) > 1 by the
formula

ζ(s) =
∞∑
n=1

1
ns .

Proposition - Product formula
We have that

ζ(s) =
∏
p

1
1− p−s

for <(s) > 1.

In particular ζ has no zeros on the half-plane <(s) > 1.

2



Riemann zeta function

Consider the Riemann zeta function ζ , defined for <(s) > 1 by the
formula

ζ(s) =
∞∑
n=1

1
ns .

Proposition - Product formula
We have that

ζ(s) =
∏
p

1
1− p−s

for <(s) > 1.

In particular ζ has no zeros on the half-plane <(s) > 1.

2



Riemann zeta function

Consider the Riemann zeta function ζ , defined for <(s) > 1 by the
formula

ζ(s) =
∞∑
n=1

1
ns .

Proposition - Product formula
We have that

ζ(s) =
∏
p

1
1− p−s

for <(s) > 1.

In particular ζ has no zeros on the half-plane <(s) > 1.

2



Riemann zeta function - Product formula

Observe that

ζ(s) = 1+ 1
2s +

1
3s +

1
4s +

1
5s + . . .

2−sζ(s) = 1
2s +

1
4s +

1
6s +

1
8s +

1
10s + . . .

so that
(1− 2−s)ζ(s) = 1+ 1

3s +
1
5s +

1
7s +

1
9s + . . .

has no terms of the form n−s with n even. Similarly,

(1− 3−s)(1− 2−s)ζ(s) = 1+ 1
5s +

1
7s +

1
11s +

1
13s + . . .

has no terms with factors of 2 or 3. We continue ad infinitum.
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Riemann zeta function - Functional equation

We set ξ(s) := π−s/2Γ(s/2)ζ(s).

Proposition - Functional equation
The function ζ has an analytic extension to C, holomorphic except
for a simple pole at s = 1 with residue 1. Moreover, we have that
ξ(s) = ξ(1− s) for all s ∈ C.

In particular, since Γ has no zeros and simple poles at the negative
integers, ζ has simple zeros at the even negative integers. All other
zeros should be on the strip 0 ≤ <(s) ≤ 1.
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Riemann zeta function - Functional equation

Let θ(u) :=
∑

n∈Z exp(−πn2u). Since the Fourier transform of
x 7→ exp(−πx2u) is y 7→ exp(−πy2/u)/

√
u, the Poisson formula gives

that
θ(1/u) =

√
uθ(u).

We’ll consider a variant

θ̃(u) :=
∞∑
n=1

exp(−πn2u) = θ(u)− 1
2

which satisfies
θ̃(1/u) =

√
uθ̃(u) + 1

2 (
√
u− 1).
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Riemann zeta function - Functional equation

By the definition of the gamma and the zeta functions,

ξ(s) = π−s/2Γ(s/2)ζ(s) =
∞∑
n=1

∫ ∞

0
e−t ts/2π−s/2n−s︸ ︷︷ ︸

(t/πn2)s/2

dt
t .

Letting t = πn2u in the integral,

ξ(s) =
∫ ∞

0

( ∞∑
n=1

exp(−πn2u)
)
us/2 du

u =

∫ ∞

0
θ̃(u)us/2 du

u .
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Riemann zeta function - Functional equation

We divide the interval (0,∞) into (0, 1) and (1,∞). Then we make a
change of variables (u 7→ 1/u) on the (0, 1) part, yielding

ξ(s) =
∫ ∞

1
θ̃(1/u)u−s/2 du

u +

∫ ∞

1
θ̃(u)us/2 du

u .

Then the functional equation of θ̃ gives

ξ(s) = 1
s− 1 −

1
s +

∫ ∞

1
θ̃(u)

{
us/2 + u(1−s)/2

} du
u .

The RHS is holomorphic on C \ {0, 1} and clearly symmetric with
respect to s 7→ 1− s.
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Natural generalizations

Let χ : (Z/NZ)× → C× be a multiplicative character and extend it to
a function Z → C.

Then we define Dirichlet’s L-function

L(χ, s) :=
∞∑
n=1

χ(s)
ns .

Let K be a number field. We define Dedekind’s zeta function

ζK(s) :=
∑
I⊂OK

1
N(I)s ,

where the sum goes through all non-zero ideals I of OK, and
N(I) = #OK/I.
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Why should we care?

Dirichlet used his L-functions to prove the theorem on arithmetic
progressions.

As for the Dedekind zeta function, we can write it as

ζK(s) :=
∑
I⊂OK

1
N(I)s =

∞∑
n=1

rK(n)
ns ,

where rK(n) is the number of ideals of norm n. In particular,

• rK(p) = [K : Q] ⇐⇒ p splits completely
• rK(p) = 1 ⇐⇒ p is totally ramified.

There’s also the analytic class number formula, relating res1 ζK and hK.
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Product formulae

We have that

L(χ, s) =
∏
p

1
1− χ(p)p−s and ζK(s) =

∏
p⊂OK

1
1− N(p)−s .

However, establishing a functional equation and a meromorphic
continuation is a difficult task!
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The local side of the force



Quasi-characters

Definition
Let K be a local field. A (multiplicative) quasi-character is a
continuous morphism χ : K× → C×. It’s a character if χ(K×) ⊂ S1.

We denote have a natural short exact sequence

1→ UK → K× → |K×| → 1,

and we say that a character χ is unramified if χ|UK = 1.
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Quasi-characters

Proposition
Every quasi-character χ can be written as η| · |s, where η is a
character and s ∈ C. We say that σ = <(s) is the exponent of χ.

(While the decomposition is not unique, the real part of s is always
the same.)
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Non-archimedean local L-factors

Recall that the ring of integers OK of a non-archimedean local field K
is a discrete valuation ring with uniformizing parameter $. We define
L(χ) to be

1
1− χ($)

is χ is unramified and L(χ) = 1 otherwise.
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Archimedean local L-factors

Proposition
The quasi-characters of R are of the form χa,s(x) = x−a|x|s for some
a ∈ {0, 1} and s ∈ C.

We define the local L-factor associated with such characters as

L(χa,s) := π−s/2Γ(s/2).
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Archimedean local L-factors

Proposition
The quasi-characters of C are of the form χa,b,s(z) = z−az−b||z||s for
some a,b ∈ Z with min(a,b) = 0 and s ∈ C.

We define the local L-factor associated with such characters as

L(χa,b,s) := 2(2π)−sΓ(s).
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Reality check

Let χ be the character | · |s on Qp. It’s always unramified (actually
every unramified character is like this) and χ($) = p−s.

Multiplying
all the local L-factors the completions of Q we get

ξ(s) = π−s/2Γ(s/2)
∏
p

1
1− p−s = π−s/2Γ(s/2)ζ(s).

Also, let K be a number field and χ : K×v → C× be given by | · |s. The
product of the finite local L-factors is

ζK(s) =
∏

pv⊂OK

1
1− N(pv)−s

.

17



Reality check

Let χ be the character | · |s on Qp. It’s always unramified (actually
every unramified character is like this) and χ($) = p−s. Multiplying
all the local L-factors the completions of Q we get

ξ(s) = π−s/2Γ(s/2)
∏
p

1
1− p−s = π−s/2Γ(s/2)ζ(s).

Also, let K be a number field and χ : K×v → C× be given by | · |s. The
product of the finite local L-factors is

ζK(s) =
∏

pv⊂OK

1
1− N(pv)−s

.

17



Reality check

Let χ be the character | · |s on Qp. It’s always unramified (actually
every unramified character is like this) and χ($) = p−s. Multiplying
all the local L-factors the completions of Q we get

ξ(s) = π−s/2Γ(s/2)
∏
p

1
1− p−s = π−s/2Γ(s/2)ζ(s).

Also, let K be a number field and χ : K×v → C× be given by | · |s. The
product of the finite local L-factors is

ζK(s) =
∏

pv⊂OK

1
1− N(pv)−s

.

17



Local zeta integrals

Let K be a local field. A Schwartz-Bruhat function is a Schwartz
function if K is archimedean or a locally constant function with
compact support if K is nonarchimedean.

For those functions f, we define the local zeta integral

Z(f, χ) :=
∫
K×
f(x)χ(x) d×x.
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Local zeta integrals

Theorem
Let f be a SB function on K and χ = η| · |s with exponent σ. Then,

1. Z(f, χ) is absolutely convergent if σ > 0.

2. Z(f, χ) has a meromorphic continuation of C.
3. There exists a nonvanishing holomorphic function ε(χ) such that

L(χ)Z(̂f, χ∨) = ε(χ)L(χ∨)Z(f, χ),

where χ∨ := χ−1| · |.
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The Poisson formula



The Poisson formula

Let K be a global field. A Schwartz-Bruhat function on AK is a product
of Schwartz-Bruhat functions on Kv for all places v of K.

Theorem - Poisson formula
Let f be a SB function on AK. Then,∑

γ∈K
f(γ + x) =

∑
γ∈K

f̂(γ + x)

for all x ∈ AK.
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The Riemann-Roch theorem

Corollary - Riemann-Roch
Let f be a SB function on AK. Then,∑

γ∈K
f(γx) = 1

|x|
∑
γ∈K

f̂(γx−1)

for all x ∈ IK.

Indeed, it suffices to apply the Poisson formula to h(y) := f(xy) since
ĥ(γ) = f̂(γx−1)/|x|.
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The Riemann-Roch theorem

Corollary 2 - Riemann-Roch
Let C be a smooth projective curve over a finite field. Then, for all
divisors D

`(D)− `(K− D) = deg(D)− g+ 1,

where K is the canonical divisor and g is the genus of C.
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The global side of the force



Grössencharakters (german for fancy idelic characters)

Let K be a global field. Recall that K× ↪→ IK and that the quotient
IK/K× is the idèle class group CK.

Definition
Let K be a global field. A quasi-character is a continuous morphism
χ : CK → C×. It’s a character if χ(CK) ⊂ S1.

If χ is a Dirichlet character, the composition

IQ ↠ Ẑ× ↠ (Z/NZ)× χ−→ C×

defines a quasi-character. Another example is | · |s for s ∈ C. (Recall
the product formula!)
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Grössencharakters (german for fancy idelic characters)

Proposition
Every quasi-character χ can be written as η| · |s, where η is a
character and s ∈ C. We say that σ = <(s) is the exponent of χ.

(While the decomposition is not unique, the real part of s is always
the same.)
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Global zeta integrals

Let f be a SB function on AK. We define the global zeta integral

Z(f, χ) =
∫
IK
f(x)χ(x) d×x.

As before, if χ = η| · |s with exponent σ, Z(f, χ) is absolutely
convergent for σ > 1.
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Global zeta integrals

Theorem
1. Z(f, χ) has a meromorphic extension to C.

2. We have the functional equation Z(f, χ) = Z(̂f, χ∨).
3. Its residue at 0 is Vol(C1K)̂f(0).

We write
Zt(f, χ) :=

∫
I1K
f(tx)χ(tx) d×x

so that
Z(f, χ) =

∫ ∞

0
Zt(f, χ)

dt
t .
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Proof of the functional equation

Using the Riemann-Roch theorem, we obtain a functional equation:

Zt(f, χ) = Zt−1 (̂f, χ∨) + f̂(0)
∫
C1K
χ∨(x/t) d×x− f(0)

∫
C1K
χ(tx) d×x.

The result then follows as before by the formula above and the fact
that

Z(f, χ) =
∫ 1

0
Zt(f, χ)

dt
t +

∫ ∞

1
Zt(f, χ)

dt
t

=

∫ ∞

1
Zt−1(f, χ) dt

t +

∫ ∞

1
Zt(f, χ)

dt
t .
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Hecke’s L-functions

Let K be a global field and χ be a quasi-character. We pose

Λ(χ, s) =
∏
v
L(χv| · |s) and L(χ, s) =

∏
v finite

L(χv| · |s),

where χv := χ|Kv . Both define holomorphic functions on the half
plane <(s) > 1.
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Hecke’s L-functions

Theorem
Let χ be a character of a global field K. Then L(χ, s) admits a
meromorphic continuation to C and we have

Λ(χ∨, 1− s) = ε(χ, s)Λ(χ, s),

where ε(χ, s) :=
∏

v ε(χv| · |s).
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Questions?
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