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INTRODUCTION

PRESENTATION OF THE TOPIC

Given a polynomial f ∈ Z[x1, . . . , xn], perhaps the fundamental question in number theory
is to ask if the equation f = 0 has solutions in Zn. A related, but equally important, question
concerns the solutions of f ≡ t (mod p) for a prime number p and t ∈ Z/pZ. We then
consider the map Z/pZ→ Z defined as

t 7→ Sol( f , p, t) := #{solutions of f ≡ t (mod p)}.
We lose no information passing to its Fourier transform

ψ 7→ ∑
t∈Z/pZ

ψ(t) Sol( f , p, t) = ∑
x∈(Z/pZ)n

ψ( f (x))

and, under the isomorphism Ẑ/pZ ∼= Z/pZ, this results in

t 7→ ∑
x∈(Z/pZ)n

exp
(

2πit f (x)
p

)
.

This is what is called an exponential sum. Using the machinery created by Deligne and Lau-
mon to understand the Weil conjecture, we can use the Grothendieck trace formula to show
that the sum above is nothing but the trace of

R̂ f!Q`,

where ` is a prime number different than p and the hat signifies the Fourier-Deligne trans-
form of the `-adic sheaf R f!Q`.

In this case, R̂ f!Q` is a lisse `-adic sheaf over a dense open set U of A1. In other words,
it is a continuous `-adic representation ρ of the étale fundamental group π1(U). Now, the
Zariski closure of ρ(π1(U × Fp)) is an algebraic group encoding most of the information of
our exponential sum. We call this a monodromy group.

For other classes of sums, when dealing with algebraic varieties other than A1, or when
our base field is of characteristic 0, the method above breaks down mainly due to the lack of
a suitable monodromy group.

Lots of progress have been made in this direction. Arguably the most impressive result is
the paper [5], which also explains in detail the other main lines of progress in this problem.
In a simpler setting, N. Katz, O. Gabber and F. Loeser studied a monodromy group for
perverse sheaves on Gm. (In [14] and in [7].)

Due to the similarities between perverse sheaves and D-modules, it has long been folk-
lore that a similar monodromy group could be defined for D-modules on Gm in the case of
characteristic 0. The present work aims to prove (at least parts of) this result in detail.
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TENSOR CATEGORIES

1
TANNAKIAN FORMALISM

Given a locally compact abelian group G, Pontryagin duality shows that we can recover
G from its character group Ĝ. Tadao Tannaka and Mark Grigorievich Krein then extended
this result to non-commutative compact groups by replacing Ĝ with the category of linear
representations of G. Finally, inspired by the formalism of Galois categories, Grothendieck
showed that a similar result holds for algebraic groups. This later theory was formalized by
Saavedra-Rivano in what is now known as the tannakian formalism, and which is the subject
of this chapter.

Our endeavor will begin by defining some axioms encoding properties of the category
of (finite-dimensional) linear representations of an algebraic group. Then the main result
of the theory is that every such category is equivalent to the category of finite-dimensional
representations of an affine group scheme. Even though this group scheme need not be
algebraic, we’ll see that it is always a limit of algebraic groups. In other words, it is pro-
algebraic.

1.1 TENSOR CATEGORIES

We will begin our adventure by modeling some properties of the tensor product in vector
spaces. Let C be a category and consider a bifunctor ⊗ : C × C → C, whose image at
two objects M and N will be denoted as M ⊗ N. An associativity constraint is a functorial
isomorphism

ϕ−,−,− : −⊗ (−⊗−)→ (−⊗−)⊗−
such that, for all objects M, N, P, Q ∈ C, the diagram

M⊗ (N ⊗ (P⊗Q))

M⊗ ((N ⊗ P)⊗Q) (M⊗ N)⊗ (P⊗Q)

(M⊗ (N ⊗ P))⊗Q ((M⊗ N)⊗ P)⊗Q

commutes. This is called the pentagon axiom. Similarly, a commutativity constraint is a functo-
rial isomorphism

ψ−,· : −⊗ · → · ⊗−
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TENSOR CATEGORIES

such that, for all objects M, N ∈ C, ψN,M ◦ψM,N : M⊗N → M⊗N is the identity morphism.
We say than an associativity constraint and a commutativity constraint are compatible if, for
all objects M, N, P ∈ C, the diagram

M⊗ (N ⊗ P) (M⊗ N)⊗ P

M⊗ (P⊗ N) P⊗ (M⊗ N)

(M⊗ P)⊗ N (P⊗M)⊗ N

commutes. Not surprisingly, this is called the hexagon axiom. Finally, a pair (U, u) consisting
of an object U of C and an isomorphism u : U → U ⊗U is said to be an identity object if the
functor M 7→ U ⊗M is an equivalence of categories.

Definition 1.1 — Tensor category. A tuple (C,⊗, ϕ, ψ), consisting of a category C, a bifunc-
tor ⊗ and compatible associativity and commutativity constraints ϕ and ψ, is said to be a
tensor category if C contains an identity object.

In the lingo of category theory, this is nothing but a symmetric monoidal category. If
our category C is k-linear, we require the functor ⊗ to be bilinear. We remark that any two
identity objects are canonically isomorphic, so we’ll always chose one and denote it by (1, e).
Moreover, these axioms guarantee that the tensor product of any finite family of objects is
well-defined up to a unique isomorphism.

Definition 1.2 — Tensor functor. Let (C,⊗, ϕ, ψ) and (C′,⊗′, ϕ′, ψ′) be tensor categories. A
tensor functor is a pair (F, c) consisting of a functor F : C → C′ and a functorial isomor-
phism c−,− : F(−)⊗ F(−)→ F(−⊗−) such that, for all M, N, P ∈ C the diagrams

FM⊗ (FN ⊗ FP) FM⊗ F(N ⊗ P) F(M⊗ (N ⊗ P))

(FM⊗ FN)⊗ FP F(M⊗ N)⊗ FP F((M⊗ N)⊗ P)

ϕ′

id⊗c

F(ϕ)

c⊗id

and
FM⊗ FN F(M⊗ N)

FN ⊗ FM F(N ⊗M).

ψ′

c

F(ψ)

c

commute. Moreover, we impose that (F(U), F(u)) is an identity object of C′ whenever
(U, u) is an identity object of C.
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RIGID TENSOR CATEGORIES

These axioms imply that we have a functorial isomorphism

F

(⊗
i∈I

Mi

)
→
⊗
i∈I

F(Mi),

for every finite collection of objects (Mi)i∈I . We also define what it means for a natural trans-
formation to preserve the tensor structure. Such natural transformations will be particularly
important in our study.

Definition 1.3 — Morphism of tensor functors. Let (F, c) and (G, d) be tensor functors C→
C′. A morphism of tensor functors is a natural transformation λ : F → G making the
diagram ⊗

i∈I F(Mi) F (
⊗

i∈I Mi)

⊗
i∈I G(Mi) G (

⊗
i∈I Mi)

commute for every finite collection (Mi)i∈I of objects in C. We denote by Hom⊗(F, G) the
collection of morphisms of tensor functors F → G.

There is a particular related construction that we’ll need. If k is a field and A is a k-
algebra, let ϕA : k-Vect → A-Mod be the base change functor, which sends V to V ⊗k A. If
ω : C→ k-Vect is a tensor functor on a rigid tensor category (which will be defined below),
we’ll denote by Aut⊗(ω) the functor k-Alg→ Grp defined by

Aut⊗(ω)(A) := Hom⊗(ϕA ◦ω, ϕA ◦ω),

where the group operation is given by composition. We require C to be rigid since in this
case the category of tensor functors C → k-Vect is a grupoid. In other words, every mor-
phism of tensor functors is an isomorphism. That’s why we write Aut instead of End. A
(very) detailed proof of this result may be found in [23].

The main theorem of this chapter will say that, under some reasonable conditions, the
functor above will be represented by an affine group scheme.

1.2 RIGID TENSOR CATEGORIES

In the previous section, we dealt with axioms that were satisfied by the category of all vector
spaces. Our goal now is to specialize to properties that are exclusive to finite-dimensional
vector spaces or representations.
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RIGID TENSOR CATEGORIES

Definition 1.4 — Internal hom. Let C be a tensor category and let M, N ∈ C be two objects.
If the functor Hom(−⊗M, N) is representable, we denote by Hom(M, N) the represent-
ing object and by

evM,N : Hom(M, N)⊗M→ N

the morphism corresponding to idHom(M,N).

Let’s be explicit. The representability condition means that we have an isomorphism

Hom(T, Hom(M, N))→ Hom(T ⊗M, N)

which is functorial in T. In particular, taking T = Hom(M, N), we obtain a morphism

Hom(Hom(M, N), Hom(M, N))→ Hom(Hom(M, N)⊗M, N).

The evaluation map evM,N is the image of idHom(M,N) under this morphism.

� Example 1.1 In A-Mod, the usual tensor-hom adjunction implies that the internal hom
Hom(M, N) always exists and is given by HomA(M, N), with its natural A-module struc-
ture. In this context, the evaluation map is given simply by

HomA(M, N)⊗M→ N
f ⊗m 7→ f (m).

This is the motivation for its name. �

If it exists, the dual M∨ of an object M is defined as Hom(M, 1). As before, we have an
evaluation map evM : M∨ ⊗M→ 1. The representability condition in this case is

Hom(T, M∨)→ Hom(T ⊗M, 1).

If, moreover, the dual of M∨ exists, the representability condition above associates a natural
morphism

iM : M→ M∨∨

to the (twisted) evaluation map evM ◦ψ : M⊗M∨ → 1. Our object M is said to be reflexive
if iM is an isomorphism.

Finally, we observe that, given two collections of objects (Mi)i∈I and (Ni)i∈I , the mor-
phism (⊗

i∈I

Hom(Mi, Ni)

)
⊗
(⊗

i∈I

Mi

)
∼−→

⊗
i∈I

(Hom(Mi, Ni)⊗Mi)
⊗ ev−→

⊗
i∈I

Ni

determines, via the representability condition, a morphism⊗
i∈I

Hom(Mi, Ni)→ Hom

(⊗
i∈I

Mi,
⊗
i∈I

Ni

)
,

whenever all the internal homs in sight exist.
After this somewhat long digression, we are able to specify the axioms which the cate-

gories of finite-dimensional vector spaces or representations satisfy.
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RIGID TENSOR CATEGORIES

Definition 1.5 — Rigid tensor category. A tensor category (C,⊗) is said to be rigid if all the
internal homs exist, if the morphism

Hom(M1, N1)⊗Hom(M2, N2)→ Hom(M1 ⊗M2, N1 ⊗ N2)

is an isomorphism for all objects M1, M2, N1, N2 ∈ C, and if all objects of C are reflexive.

A particular, but important, case of the isomorphism above is given by

M∨ ⊗ N ∼−→ Hom(M, N),

which follows from taking M1 = M, N1 = M2 = 1, and N2 = N. This isomorphism allows
us to define the trace of an element of End(M). We take the composition

End(M) ∼= M∨ ⊗M
evM
−−−−→ 1

and apply the functor Hom(1,−).1 This defines our trace morphism

tr : End(M)→ End(1).

When C is the category of finite-dimensional k-vector spaces with its usual tensor product,
the ring End(1) = End(k) is nothing but k and this becomes the usual trace morphism.

We end this section citing a simple criterion for recognizing rigid tensor categories.

Proposition 1.1 Let C be a k-linear abelian category and let ⊗ : C×C→ C be a k-bilinear
functor. Given a faithful exact k-linear functor ω : C→ k-Vect, a functorial isomorphism
ϕ−,−,− : −⊗ (−⊗−)→ (−⊗−)⊗−, and a functorial isomorphism ψ−,· : −⊗· → ·⊗−,
suppose that they satisfy the following properties:

a) ω ◦ ⊗ = ⊗ ◦ (ω×ω);

b) ω(ϕ−,−,−) is the usual associativity constraint in k-Vect;

c) ω(ψ−,·) is the usual commutativity constraint in k-Vect;

d) there exists an identity object U in C such that k ∼→ End(U) and dimk ω(U) = 1;

e) if dimk ω(L) = 1, then there exists an object L−1 ∈ C such that L⊗ L−1 = U.

Then (C,⊗, ϕ, ψ) is a rigid abelian tensor category.

The reader may find a proof (actually two proofs) of this result on [4].

1We remark that Hom(1, Hom(M, N)) ∼= Hom(1⊗M, N) = Hom(M, N).
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1.3 NEUTRAL TANNAKIAN CATEGORIES

We finally arrive at the main definition of this chapter.

Definition 1.6 — Tannakian category. A rigid k-linear abelian tensor category C such that
End(1) = k is said to be a neutral tannakian category if there exists an exact faithful tensor
functor ω : C→ k-Vect. We say that such a functor is a fibre functor.

Actually there is a more general notion of tannakian category (as in [4]) but, as we won’t
need it, we will refer to neutral tannakian categories simply as tannakian categories.

� Example 1.2 — Trivial examples. The category of finite-dimensional k-vector spaces, with
the identity functor, and the category of finite-dimensional linear representations of a group,
with the forgetful functor, are tannakian. �

� Example 1.3 — Local systems. Let X be a path-connected, locally path-connected and lo-
cally simply connected topological space. The category Lock(X), composed of local systems
(locally constant sheaves) of finite-dimensional k-vector spaces, endowed with the functor

F 7→ Fx

which takes the stalk of a local system at x ∈ X, is tannakian. �

The result below is the most important result on this chapter.

Theorem 1.2 — Main theorem on tannakian categories. Let (C,⊗) be a tannakian category
with a fiber functor ω. Then,

a) the functor Aut⊗(ω) is represented by an affine group scheme G;

b) the functor C→ G-Rep determined by ω is an equivalence of tensor categories.

We call the group scheme G associated with a tannakian category a tannakian group.
Since, at least for the writer, the proof of this result is not very illuminating, we’ll prefer
to focus on some interesting consequences of this theorem. Still, the reader may find this
result, with its proof, as theorem 2.11 in [4].

� Example 1.4 — Algebraic hull. Let G be an abstract group and k be a field. As we’ve seen,
the category G-Rep of finite-dimensional k-representations of G is tannakian. The theorem
above then shows that G-Rep is equivalent to the category of finite-dimensional representa-
tions of a group scheme Galg. We say that this is the algebraic hull of G. �

In the example above, and in general, the group schemes that arise via the main theorem
of tannakian categories are usually huge. However, they have quotients which are more
manageable. This suggests the definition below.
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NEUTRAL TANNAKIAN CATEGORIES

Definition 1.7 Let (C,⊗) be a tannakian category and M ∈ C. We denote by 〈M〉 the
smallest full subcategory of C which is closed under direct sums, tensor products, duals,
and subquotients.

In the context above, the subcategory 〈M〉, along with the restriction of a fiber functor
ω of C to it, is still tannakian. The group G representing Aut⊗C (ω) acts naturally on ω(M),
defining a morphism2

G → GL(ω(M)).

Its raison d’être is the proposition below.

Proposition 1.3 Let C be a tannakian category, with fibre functor ω, tannakian group G,
and let M ∈ C. The image of the morphism G → GL(ω(M)) is a closed subgroup of
GL(ω(M)) which coincides with the tannakian group associated with the category 〈M〉.

This result is contained in the proof of proposition 2.8 in [4]. For now, let’s denote the
image of the morphism G → GL(ω(M)) as GM. These groups allow us to understand G in
the following way.

We order the subcategories of the form 〈M〉 by inclusion. If 〈N〉 is contained in 〈M〉, then
N ∈ 〈M〉 and so 〈M〉 = 〈M⊕ N〉. In particular, we obtain a map

GM → GN.

Then G is nothing but the limit of these groups.

Proposition 1.4 Let C be a tannakian category with tannakian group G. Then G = lim GM
as the limit runs over the subcategories of the form 〈M〉. In particular, G is a pro-algebraic
group.

Proof. First of all, we have surjections G → GM for every object M of C. Also, if 〈N〉 is
contained in 〈M〉, then those surjections make the diagram

G

GM GN

commute. The universal property of the limit then gives a surjection

G → lim GM.

This morphism is also injective since if g ∈ G is sent to the identity of lim GM, then g acts
trivially on ω(M) for every M and so is the identity of G.

2Here we see GL(ω(M)) as a group scheme. That is, it the the functor which sends a k-algebra A to the
group Aut(ω(M)⊗k A), the group of invertible endomorphisms of A-modules on ω(M)⊗k A.

7
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2
D-MODULES

In this chapter, we’ll see how we can use the machinery of sheaf theory and homological
algebra to understand differential equations. The main idea is the following. Let X be the
affine space An(C) = Cn and let A = C[x1, . . . , xn] be its ring of global functions. We denote
by D the (non-commutative) C-algebra generated by x1, . . . , xn and ∂1, . . . , ∂n, where

[xi, xj] = 0, [∂i, ∂j] = 0, and [∂i, xj] = δij.

This ring acts on A, making it a left D-module. Now, we would like to understand the
solutions f of the differential equation

L f = 0,

where L ∈ D and f ∈ A. Following Sato, we consider the left D-module M = D/DL and
observe that

HomD(M, A) = HomD(D/DL, A)
∼= {ϕ ∈ HomD(D, A) | ϕ(L) = 0}.

The latter is isomorphic to the solution space { f ∈ A | L f = 0}, since HomD(D, A) ∼= A via
ϕ 7→ ϕ(1) and

L f = Lϕ(1) = ϕ(L) = 0.

The study of such differential equations is then subsumed under the study of the functor
HomD(_, A) from cyclic D-modules to C-vector spaces. More generally, we can study sys-
tems of linear partial differential equations by expanding the domain of the aforementioned
functor to finitely presented modules.

2.1 BASIC DEFINITIONS

Now that we understand the main motivation, we’ll sheafify the preceding discussion and
consider more general spaces. In everything that follows, X is a smooth scheme over an
algebraically closed field k of characteristic zero and OX is its structure sheaf. We recall that
OX can be seen naturally as a subsheaf of End(OX) under the identification

OX → End(OX)

f 7→ (g 7→ f g).

8



BASIC DEFINITIONS

Finally, we also denote by ΘX the tangent sheaf, defined as the subsheaf of End(OX) deter-
mined by those θ ∈ End(OX) such that

θ( f g) = θ( f )g + f θ(g), for all f , g ∈ OX.

We’re now in position to define the main object of this chapter.

Definition 2.1 — Sheaf of differential operators. The sheaf of differential operators DX is the
subsheaf of k-algebras of End(OX) generated by OX and ΘX. A DX-module M is said
to be quasi-coherent if its quasi-coherent as an OX-module. We denote the full subcate-
gory of D∗(DX) consisting of complexes whose cohomology sheaves are quasi-coherent
as D∗qc(DX). A result of Bernstein shows that this is equivalent to the derived category of
DX-QCoh.

While we’ll try to be general when it isn’t too troublesome, in this text we care mainly
about quasi-coherent DX-modules over affine schemes. In particular, a quasi-coherent DX-
module over An (resp. Gm) is simply M̃, where M is a k[x1, . . . , xn, ∂1, . . . , ∂n]-module3 (resp.
k[x, x−1, ∂]-module).

A natural way to think about DX-modules is as OX-modules endowed with some ex-
tra structure. Usually, this structure is an action of DX. The following propositions gives
another useful possibility.

Proposition 2.1 Let M be an OX-module. Giving a leftDX-module structure on M extend-
ing the OX-module structure is equivalent to giving a k-linear morphism

∇ : ΘX → End(M)

θ 7→ ∇θ,

satisfying the relations∇ f θ(m) = f∇θ(m),∇θ( f m) = θ( f )m+ f∇θ(m) and∇[θ1,θ2](m) =

[∇θ1 ,∇θ2 ](m) for all f ∈ OX, m ∈ M and θ, θ1, θ2 ∈ ΘX. The leftDX-module structure and
the morphism ∇ are related by θ ·m = ∇θ(m).

Proof. Writing∇θ(m) as θ ·m, the relations above become the Leibniz rule and the linearity
of the DX-action.

Of course, an analogous statement for right DX-module structures also holds, provided
that the relation between the right DX-module structure and the morphism ∇′ becomes
m · θ = −∇′θ(m). This will be useful in the example below.

� Example 2.1 — Canonical sheaf. The canonical sheaf ωX := Ωn
X, where n = dim X, has

a natural right DX-module structure via the Lie derivative. An element θ ∈ ΘX acts on

3The generators of this algebra are understood to satisfy [xi, xj] = 0, [∂i, ∂j] = 0, and [∂i, xj] = δij.
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ω ∈ ωX as −(Lie θ)ω, where

((Lie θ)ω)(θ1, . . . , θn) := θ(ω(θ1, . . . , θn))−
n

∑
i=1

ω(θ1, . . . , [θ, θi], . . . , θn).

A quick calculation shows that the Lie derivative satisfies the relations of the preceding
proposition, proving that this indeed gives a right DX-module structure on ωX. �

Using this example, we obtain a way to turn left DX-modules into right DX-modules,
and vice versa.

Corollary 2.2 Let X be a smooth scheme over an algebraically closed field k of characteris-
tic zero. Denote by Dop

X -Mod the category of right DX-modules. Then the functors

DX-Mod→ Dop
X -Mod

M 7→ ωX ⊗OX M
and

Dop
X -Mod→ DX-Mod

N 7→ ω∨X ⊗OX N

are quasi-inverse and define an equivalence of categories.

Proof. Let M be a leftDX-module and N be a rightDX module. We begin by making explicit
the actions of θ ∈ ΘX on ωX ⊗OX M and ω∨X ⊗OX N ∼= HomOX

(ωX, N):

(ω⊗m) · θ = (Lie θ)ω⊗m−ω⊗ (θ ·m)

(θ · ϕ)(ω) = ϕ(ω) · θ + ϕ((Lie θ)ω),

for ω ∈ ωX, m ∈ M, and ϕ ∈ HomOX
(ωX, N). The equivalence of categories then follows

from the associativity of the tensor product and the fact that ω∨X ⊗OX ωX
∼= OX.

2.2 HOLONOMIC D-MODULES

Given a left DX-module M, the natural candidate for its dual is HomDX
(M,DX). But this is

a right DX-module, which forces us to consider HomDX
(M,DX)⊗OX ω∨X. This motivates the

definition below.
Definition 2.2 — Duality functor. Let X be a smooth scheme over k. The duality functor DX :
Db(DX)→ Db(DX)

op is defined as DX M• :=
(
RHomDX

(M•,DX)⊗OX ω∨X
)
[dim X].

As it is to be expected with any duality, it doesn’t behave well without some finiteness
condition on the allowed objects. While coherence suffices for most purposes, we need
something stronger in order to have the full six functor formalism. The right notion is that
of holonomicity.

10



HOLONOMIC D-MODULES

Definition 2.3 — Holonomic modules. Let X be a smooth scheme over k and M be a coher-
ent DX-module. We say that M is holonomic if its dual is concentrated in degree zero. We
denote byDX-hMod the category of holonomicDX-modules and by Db

h(DX) the full sub-
category of Db(DX) consisting of the complexes whose cohomology is holonomic. It is
a result of Beilinson that this coincides with the bounded derived category of holonomic
DX-modules.

This is not the usual definition of holonomicity but it will allow us to get away with
avoiding much of the foundational theory of D-modules. It is this definition which explains
the shift on the duality functor. The reader may find the usual definition, with a proof that
it is equivalent to this one, in the section 2.6 of [11].

It is clear from the definition that the duality functor DX sends elements of Db
h(DX) to

elements of Db
h(DX)

op. It defines moreover an equivalence of categories.

Proposition 2.3 Let X be a smooth scheme over k. Then D2
X
∼= Id on Db

h(DX).a

aThis result actually holds, with the same proof, for complexes with coherent cohomology, but this is the
setting in which we’ll work.

Proof. Given M• ∈ Db
h(DX), we’ll construct a morphism M• → D2

X M•. First of all, remark
that

D2
X M• =

(
RHomDX

(DX M•,DX)⊗OX ω∨X
)
[dim X]

=
(
RHomDX

(
(
RHomDX

(M•,DX)⊗OX ω∨X
)
[dim X],DX)⊗OX ω∨X

)
[dim X]

∼= RHomDX
(RHomDX

(M•,DX)⊗OX ω∨X,DX)⊗OX ω∨X.

We may suppose that we’re dealing with locally projective finitely generated modules and
so this is also isomorphic to

RHomDop
X
(RHomDX

(M•,DX),DX).

Under the tensor-hom adjunction, the evaluation morphism

M• ⊗k RHomDX
(M•,DX)→ DX

gives rise to our desired

M• → RHomDop
X
(RHomDX

(M•,DX),DX) ∼= D2
X M•.

This is an isomorphism since we can argue affine-locally, where M• may be replaced by a
locally free finitely generated DX-module. In this setting the conclusion is clear.
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2.3 SIX FUNCTOR FORMALISM

• PROPER INVERSE IMAGE

Let f : X → Y be a morphism between smooth schemes over k. Our first mission in this
chapter is to define the inverse image of a left DY-module N. As an OX-module, it’ll be
defined as

f †N := OX ⊗ f−1OY
f−1N.

We then endow f †N of a left DX-module structure in the following way. Writing the dual of
OX ⊗ f−1OY

f−1Ω1
Y → Ω1

X as

ΘX → OX ⊗ f−1OY
f−1ΘY

θ 7→ θ̃,

the left DX-module structure on f †N is given by

θ · ( f ⊗m) := θ( f )⊗m + f θ̃(m)

for θ ∈ ΘX, f ∈ OX and m ∈ f−1N. In particular, the OX-module

f †DY = OX ⊗ f−1OY
f−1DY

is naturally a (DX, f−1DY)-bimodule. This bimodule, hereafter denoted DX→Y, allows for a
cleaner definition of the inverse image.

Definition 2.4 — Inverse image. Let f : X → Y be a morphism between smooth schemes
over k and N be a left DY-module. Its inverse image f †N is defined to be DX→Y ⊗ f−1DY

f−1N.

We remark that this coincides with our previous definition since

DX→Y ⊗ f−1DY
f−1N = (OX ⊗ f−1OY

f−1DY)⊗ f−1DY
f−1N

= OX ⊗ f−1OY
f−1N.

Nevertheless, it now becomes clear that f † is a right exact functor fromDY-Mod toDX-Mod.
As usual, we denote its left derived functor

Db(DY)→ Db(DX)

N• 7→ DX→Y ⊗L
f−1DY

f−1N•

as L f †. (Recall that f−1 is an exact functor over the categories of sheaves.) While L f † isn’t
one of the six functors, one simple variation is.

12
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Definition 2.5 — Proper inverse image. Let f : X → Y be a morphism between smooth
schemes over k. The proper inverse image functor f ! : Db(DY) → Db(DX) is defined as
L f †[dim X− dim Y].

An important fact, which we won’t prove, is that the proper direct image functor pre-
serves the holonomic categories. That is, it sends Db

h(DY) into Db
h(DX). The reader may find

a proof of this on the section 3.2 of [11].

• DIRECT IMAGE

Now we will reap the rewards for having proven an equivalence of category between left
and right DX-modules. Since we have our (DX, f−1DY)-bimodule DX→Y, given a right DX-
module M, we obtain a right f−1DY-module M⊗DX DX→Y and then a right DY-module

f∗(M⊗DX DX→Y).

But we can use our equivalence of categories to make this procedure work for left DX-
modules! Indeed, we define the direct image f† for left DX-modules to be the composition

DX-Mod Dop
X -Mod Dop

Y -Mod DY-Mod,

where the middle arrow is the procedure described above. Precisely, f†M, for a left DX-
module M, is given by

ω∨Y ⊗OY f∗((ωX ⊗OX M)⊗DX DX→Y).

As with the inverse image, we simplify this expression by observing that

(ωX ⊗OX M)⊗DX DX→Y
∼= (ωX ⊗OX DX→Y)⊗DX M

as right f−1DY-modules, where the action is now on the middle factor. This implies

ω∨Y ⊗OY f∗((ωX ⊗OX M)⊗DX DX→Y) = ω∨Y ⊗OY f∗((ωX ⊗OX DX→Y)⊗DX M)

= f∗((ωX ⊗OX DX→Y ⊗ f−1OY
f−1ω∨Y )⊗DX M).

We denote the ( f−1DY,DX)-bimodule ωX ⊗OX DX→Y ⊗ f−1OY
f−1ω∨Y as DY←X, thus obtain-

ing a cleaner definition of the direct image.

Definition 2.6 — Direct image. Let f : X → Y be a morphism between smooth schemes
over k and M be a left DX-module. Its direct image f†M is defined to be f∗(DY←X ⊗DX M).

We observe that f† is a composition of a right exact functorDY←X ⊗DX −with a left exact
functor f∗, and so is neither left nor right exact. As usual, we solve this problem by working
in the bounded derived category.

13
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Definition 2.7 — Direct image. Let f : X → Y be a morphism between smooth schemes
over k. The (derived) direct image functor f∗ : Db(DX) → Db(DY) is defined as f∗M• :=
R f∗(DY←X ⊗L

DX
M•).

� We denote the (derived) direct image functor with the same symbol as the direct image
of sheaves, even though we used a different symbol for the direct image of D-modules.
Hopefully the context will leave no possible doubt.

Once again, the derived direct image preserves the holonomic categories and a proof
of this result may be found on the section 3.2 of [11]. When f is an affine morphism (in
particular, when X is affine), this functor is particularly well behaved.

Proposition 2.4 Let f : X → Y be an affine morphism between smooth schemes over k.
Then f∗ is right t-exact with respect to the usual t-structure on the derived category. That
is, it sends Db

qc(DX)
≤0 to Db

qc(DX)
≤0.

Proof. Since the statement is local on Y, we may suppose that Y = Spec B and so X =

Spec A. Moreover, the modules involved are quasi-coherent and so we may work with their
global sections. In this context, f∗ becomes the functor which sends a complex M• inDb(DA)

to
Γ(X, DY←X)⊗L

DA
M• ∈ Db(DB),

where DA := Γ(X,DX) and DB := Γ(Y,DY). This is the left derived functor of a right exact
functor and so is naturally right t-exact.

Finally, we can relate our two operations via the following theorem which will be stated
without proof.

Theorem 2.5 — Base change theorem. Let f : X → S and g : Y → S be two morphisms of
smooth schemes over k and consider the fiber product

X×S Y Y

X S.

f̃

g̃ g

f

If X×S Y is also smooth, then there exists an isomorphism

g! ◦ f∗ ∼= f̃∗ ◦ g̃! : Db
qc(DX)→ Db

qc(DY)

of functors.

The interested reader may find this result, with a proof, in the section 1.7 of [11].
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• TENSOR AND HOM

Given two DX-modules M and N, their tensor product M⊗OX N has a natural DX-module
structure (via the Leibniz rule) and so this defines a bifunctor

DX-Mod×DX-Mod→ DX-Mod.

Moreover, this bifunctor is right exact with respect to each of its factors and so gives rise to
a derived counterpart

−⊗L
OX
− : Db(DX)×Db(DX)→ Db(DX).

Similarly, if X, Y are two smooth schemes over k and p1 : X × Y → X, p2 : X × Y → Y are
the natural projections, we may define the external tensor product M � N of a DX-module
M and a DY-module N as

M � N := p†
1 M⊗OX×X p†

2N.

As it is already the case in the underlying O-modules, the bifunctor − � − is exact with
respect to both factors and so descends to the derived categories

−�− : Db(DX)×Db(DY)→ Db(DX×Y).

We remark that both the usual tensor product and the exterior tensor product functors
preserve the categories of holonomic complexes.

The proposition below gives a useful relation between those two functors.

Proposition 2.6 Let X be a smooth scheme over k and let ∆X : X → X× X be the diagonal
morphism. Then there is an isomorphism

M• ⊗L
OX

N• ∼= L∆†
X(M• � N•),

which is natural in M•, N• ∈ Db(DX).

Proof. Since the exterior tensor product preserves flatness, it suffices to prove this statement
on the level of modules. Then,

∆†
X(M � N) = ∆†

X(p†
1 M⊗OX×X p†

2N)

∼= ∆†
X(p†

1 M)⊗OX ∆†
X(p†

2N)

= (p1 ◦ ∆X)
†M⊗OX (p2 ◦ ∆X)

†N
= M⊗OX N,

which concludes the proof.

The preceding proposition suggests a possible variant of the tensor product functor. In-
deed, given two complexes of DX-modules in Db(DX), we may consider the proper tensor
product M• ⊗!

OX
N•, defined as ∆!

X(M• � N•). This will be useful in the definition below.
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Definition 2.8 — Internal Hom. Let M• and N• be complexes in Db
h(DX). We define their

internal hom Hom(M•, N•) as DX M• ⊗!
OX

N•.

Observe that this has a natural structure of left DX-module. I think that this should be
the right adjoint of the derived tensor product−⊗L

OX
− : Db

h(DX)×Db
h(DX)→ Db

h(DX) but
I couldn’t prove it nor I found anything on the literature.

• INVERSE IMAGE AND PROPER DIRECT IMAGE

In this section we define two new functors and we study some of their properties.

Definition 2.9 — Inverse image and proper direct image. Let f : X → Y be a morphism be-
tween smooth schemes over k. We define the (derived) inverse image functor f ∗ : Db

h(DY)→
Db

h(DX) to be DX ◦ f ! ◦DY and the proper direct image functor f! : Db
h(DX) → Db

h(DY) to
be DY ◦ f∗ ◦DX.

We remark that the definitions above does indeed make sense since, even though f ! and
f∗ need not send coherent modules to coherent modules, they do preserve holonomicity.
Another simple observation is the fact that

DX ◦ f ∗ = f ! ◦DY and DY ◦ f! = f∗ ◦DX,

which follow from the proposition 2.3. The raison d’être of these functors is the result below.

Theorem 2.7 Let f : X → Y be a morphism between smooth schemes over k. Then we
have isomorphisms

RHomDY
(M•, f∗N•) ∼= R f∗RHomDX

( f ∗M•, N•)

and
RHomDY

( f!M•, N•) ∼= R f∗RHomDX
(M•, f !N•),

which are natural on M• ∈ Db
h(DY) and N• ∈ Db

h(DX).

Proof. The proposition 2.3 implies that

RHomDX
(M•, f !N•) ∼= (ωX ⊗L

OX
DX M•)⊗L

DX
f !N•[−dim X].

Writing out the expression defining the proper inverse image, we have the isomorphisms

R f∗RHomDX
(M•, f !N•) ∼= R f∗

(
(ωX ⊗L

OX
DX M•)⊗L

DX
DX→Y ⊗L

f−1DY
f−1N•

)
[−dim Y]

∼= R f∗
(
(ωX ⊗L

OX
DX M•)⊗L

DX
DX→Y

)
⊗L
DY

N•[−dim Y]

∼= (ωY ⊗L
OY

f∗DX M•)⊗L
DY

N•[−dim Y]
∼= (ωY ⊗L

OY
DY f!M•)⊗L

DY
N•[−dim Y].
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Finally, the same proposition 2.3 shows that this is nothing but RHomDY
( f!M•, N•). The

other isomorphism follows by duality.

The local counterpart of this result is the classical adjunction of the six functor formalism.

Corollary 2.8 Let f : X → Y be a morphism between smooth schemes over k. Then f ∗ is
the left adjoint of f∗ and f! is the left adjoint of f !.

Proof. By applying the functor H0(RΓ(Y,−)) to the isomorphisms of the preceding theo-
rem, we obtain isomorphisms

HomDb
h(DY)

(M•, f∗N•) ∼= HomDb
h(DX)

( f ∗M•, N•)

and
HomDb

h(DY)
( f!M•, N•) ∼= HomDb

h(DX)
(M•, f !N•),

which are natural on the complexes M• ∈ Db
h(DY) and N• ∈ Db

h(DX). This gives the desired
adjunctions.

The result below yields of counterpart of the proposition 2.4 for the proper direct image.

Proposition 2.9 Let f : X → Y be an affine morphism between smooth schemes over k.
Then f! is left t-exact with respect to the usual t-structure on the derived category. That
is, it sends Db

h(DX)
≥0 to Db

h(DX)
≥0.

Proof. A complex in Db
h(DX)

≥0 is sent to Db
h(DX)

≤0 via DX, then to Db
h(DY)

≤0 via f∗ and,
finally, to Db

h(DY)
≥0 via DY. The final result is nothing but the image of f!.

Finally, we relate the two notions of direct image via a natural morphism.

Theorem 2.10 Let f : X → Y be a (separated and finite-type) morphism between (quasi-
compact and quasi-separated) smooth schemes over k. Then there is a morphism of func-
tors

Db
h(DX) Db

h(DY),

f!

f∗

which is an isomorphism whenever f is proper.

Following Katz, we call f! → f∗ the forget supports map. For the proof of this theorem,
we’ll assume the following result: if f : X → Y is a proper morphism, then we have a natural
isomorphism of functors f∗ ◦DX → DY ◦ f∗. This is the theorem 2.7.2 on [11], and its proof
needs a lot of stuff that we didn’t had the time (nor space) to cover here.
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Proof. Due to Nagata’s compactification theorem (as in [1]), we can factor f into an open
immersion followed by a proper map:

X X̄ Y.

f

i p

The result cited above then gives an isomorphism

p! = DY ◦ p∗ ◦DX̄
∼−→ D2

Y ◦ p∗ ∼= p∗.

Now, if M• ∈ Db
h(DX), the adjunction in corollary 2.8 implies that

HomDb
h(DX̄)

(i!M•, i∗M•) ∼= HomDb
h(DX)

(M•, i!i∗M•)

∼= HomDb
h(DX)

(M•, M•),

from which we define a morphism i!M• → i∗M• corresponding to the identity map in
HomDb

h(DX)
(M•, M•).
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3
THE TENSOR STRUCTURE

In this chapter, we’ll construct a natural convolution on a category of holonomicD-modules
over Gm. In everything that follows, Gm is Spec k[x, x−1] for an algebraically closed field
of characteristic zero k, D denotes the sheaf of differential operators of Gm (or its global
sections), m : Gm ×Gm → Gm is the multiplication map, and inv : Gm → Gm is the inverse
map.

3.1 THE MELLIN TRANSFORM

As we commented in the previous chapter, a quasi-coherent D-module over the multiplica-
tive group Gm is nothing but M̃, where M is a k[x, x−1, ∂]-module.4 A surprisingly useful
point of view consists of viewing this as the k-algebra k[x, x−1, θ], where θ := x∂.

Inspired by the Fourier transform on `-adic sheaves over the affine line, which allowed
G. Laumon to simplify Deligne’s proof of the Weil conjectures, we define a multiplicative
analog thereof. As a first step, we consider the (iso)morphism of k-algebras

k[x, x−1, θ]→ k[s, τ, τ−1]

x 7→ τ

θ 7→ −s,

where k[s, τ, τ−1] is the quotient of k〈s, τ, η〉 by the relations τη = ητ = 1 and τs = (s + 1)τ.
This gives k[s, τ, τ−1] the structure of a k[x, x−1, θ]-algebra and allows the definition below.

Definition 3.1 — Mellin transform. Let M be a k[x, x−1, θ]-module. We define its Mellin
transform to be

M := k[s, τ, τ−1]⊗k[x,x−1,θ] M.

We also consider the variantM(s) := k(s)⊗k[s]M.

Of course,M is nothing but M but seen as a k[s, τ, τ−1]-module. The importance of the
variantM(s) lies within its dimension. A first result about this dimension is the fact that it
is finite whenever M is holonomic. Indeed, we can show that (as in the lemme 1.2.2 of [19])

M(s) = p∗(M⊗k k(s)xs),

where p : Spec k(s)[x, x−1] → Spec k(s) is the projection, and so the result follows from the
fact that p∗ preserves holonomicity.

4We recall that this is the quotient of k〈x, y, ∂〉 by the relations xy = yx = 1 and ∂x− x∂ = 1.
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For a more interesting relation, we have to define some concepts. If M is a holonomicDX-
module over any smooth scheme X, its Euler characteristic χ(X, M) is defined as the Euler
characteristic of the de Rham complex

DR(M) := Ω•X ⊗OX M[dim X].

In our context, where X = Gm and M is a k[x, x−1, θ]-module, this complex has a particularly
simple expression:

0 M M︸︷︷︸
degree 0

0θ

and so χ(Gm, M) is simply dim coker θ−dim ker θ. Surprisingly, this number coincides with
the dimension ofM(s).

Proposition 3.1 Let M be a holonomic D-module. Then χ(Gm, M) = dimk(s)M(s). In
particular, χ(Gm, M) ≥ 0. Moreover, χ(Gm, M) = 0 if and only if M is a successive
extension of the Kummer sheaves D/D(θ − a) for a ∈ k.

Proof. Passing to the Mellin transform, we observe that χ(Gm, M) is also the Euler charac-
teristic of the complex

Li†M : 0 M M︸︷︷︸
degree 0

0,s

where i : {0} → Spec k[s] is the natural inclusion. Now, ifM were a finitely generated k[s]-
module, we would have χ(Li†M) = dimk(s)M(s) due to the following lemma, which will
be proved after we finish this proof.

Lemma 3.2 LetM be a finitely generated k[s]-module. Then,

dimk coker s− dimk ker s = dimk(s) k(s)⊗k[s]M,

where s is the multiplication by s map.

WhileM is not a finitely generated k[s]-module in general, we may hope to find a finitely
generated k[s]-submodule N ofM such that N (s) =M(s) and χ(Li†N ) = χ(Li†M). This
is possible and will finish our proof.

Let N0 be any finitely generated k[s]-submodule of M such that N0(s) = M(s)5 and
define inductively

Nk+1 := τ−(k+1)N0 +Nk + τk+1N0.

We remark a couple of simple facts about those finitely generated k[s]-modules.

5We can take N0 to be the free k[s]-module generated by any k(s)-base ofM(s).
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a) We have that Nk(s) =M(s) for all k. Indeed, this follows inductively using that

Nk+1(s) = τ−(k+1)N0(s) +Nk(s) + τk+1N0(s)

= τ−(k+1)M(s) +M(s) + τk+1M(s) =M(s).

b) There exists a polynomial b(s) ∈ k[s] such that b(s)N1/N0 = {0}. Indeed, if N1/N0
is generated by m1, . . . , mr, we have that mi/1 ∈ M(s) = N0(s) and so mi/1 is a k(s)-
linear combination of elements ofN0. Clearing denominators, we obtain a polynomial
bi(s) such that bi(s)mi ∈ N0. The product of all the bi(s) is our desired b(s).

c) For all k > 0, b(s− k)b(s + k)Nk+1/Nk = {0}. Indeed, by the previous item b(s)τn1 +

b(s)τ−1n ∈ N0 for all n, n′ ∈ N0. Then,

b(s− k)b(s + k)
(

τk+1n + τ−(k+1)n′
)
= τk b(s− 2k)b(s)τn︸ ︷︷ ︸

∈N0

+τ−k b(s + 2k)b(s)τ−1n′︸ ︷︷ ︸
∈N0

is in Nk, proving the result.

d) For large enough k, the induced morphism on the quotients

s :
Nk+1

Nk
→ Nk+1

Nk

is an isomorphism. Indeed, for large enough k, s and b(s − k)b(s + k) are coprime.
Then, by Bézout’s theorem, there exist p(s) and q(s) such that

sp(s) + b(s− k)b(s + k)q(s) = 1.

Then, if n ∈ Nk+1, we can multiply the equation above by n on the right to obtain that

s (p(s)n) = n

on the quotientNk+1/Nk, proving that the morphism is surjective. The same equation
shows that it is injective.

Finally, for some k as in the item (d), we prove that the morphism of complexes

0 Nk Nk 0

0 M M 0

s

s

is a quasi-isomorphism. We denote by N •k andM• the respective complexes and consider
the short exact sequence given by

0 N •k M• M•/N •k 0.
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By the induced long exact sequence in cohomology, it suffices to prove that M•/N •k has
trivial cohomology. That is, that the morphism

s :M/Nk →M/Nk

is an isomorphism. But this follows from the item (d), proving thatNk is our desired finitely
generated k[s]-submodule of M satisfying Nk(s) = M (by the item (a)) and χ(Li†Nk) =

χ(Li†M). This concludes the proof of the first part. The reader can find the second part in
the lemma 3.7.5 of [15].

The proof above is essentially a highly commented version of the one by F. Loeser and
C. Sabbah in [18]. We now prove the lemma that we needed. Observe that the finiteness
hypothesis is essential for the use of the structure theorem for finite modules over PIDs.

Proof of the lemma 3.2. Since k[s] is a PID, the result is additive and trivially true forM =

k[s], we may assume thatM = k[s]/(p), where p ∈ k[s] is a non-zero polynomial. In this
case,

dimk(s) k(s)⊗k[s]M = 0

and so it suffices to prove that dimk coker s = dimk ker s. Now, this follows from the fact
that the sequence

0 ker s M M coker s 0s

is exact and from the (alternate) additivity of dimensions in exact sequences of finite dimen-
sional k-vector spaces.

Before ending this chapter, we remark a possible different proof of the proposition 3.1.
Let ιk : Nk →M be the inclusion and consider the following morphism of complexes:

0 Nk Nk 0

0 M M 0.

s

ιk ιk

s

We think that ιk determines a quasi-isomorphism if k is large enough. Its mapping cone is
given by

0 Nk M⊕Nk M 0

n (n,−sn)

(m, n) sm + n.

The arrow on the left is clearly injective. Exactness on the middle means that

if sm + n = 0, then there is n̄ ∈ Nk such that

{
m = n̄

n = −sn̄
.
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But sm = −n ∈ Nk implies that m itself is in Nk and so we can take n̄ = m, proving that the
cone is also exact in the middle. If we could prove that the arrow on the right is surjective,
which doesn’t seem difficult, that would furnish another proof of the proposition.

3.2 CONVOLUTION OF HOLONOMIC MODULES

Definition 3.2 — Convolution. If M• and N• are complexes in Db
h(D), we define their con-

volution to be
M• ∗ N• := m∗(M• � N•) ∈ Db

h(D).

Similarly, their !-convolution M• ∗! N• is defined as m!(M• � N•) ∈ Db
h(D).

We remark that both convolutions are exchanged by duality. That is, D(M• ∗ N•) =

DM• ∗! DN• and D(M• ∗! N•) = DM• ∗DN•. We also comment that both notions of
convolution are commutative, associative, and have an identity object given by the Dirac
module δ1 := D/D(x− 1).

Now, we have two problems. First and foremost, it won’t always be the case that the
convolution of two holonomic D-modules will result in another D-module (that is, a com-
plex concentrated in degree 0). Also, it is not clear which of the two notions of convolution
should be used. As it turns out, both problems are related.

Proposition 3.3 Let M, N be holonomic D-modules. If the forget supports map

m∗(M � N)→ m!(M � N)

is an isomorphism, then M ∗ N ∼= M ∗! N is a holonomic D-module.

Proof. Since Gm is affine, the multiplication map m : Gm ×Gm → Gm is also affine. In this
case, the proposition 2.4 implies that m∗ is right t-exact and the proposition 2.9 implies that
m! is left t-exact, with respect to the usual t-structures. Then, as the forget supports map is
an isomorphism, it follows that M ∗ N ∼= M ∗! N is a complex concentrated in degree 0.

Somewhat surprisingly, the problems we are discussing are related to the Euler charac-
teristic χ(Gm, M) of a holonomic D-module M. We begin the exploration of this relation.

Definition 3.3 — Negligible modules. We say that a holonomic D-module M is negligible
if χ(Gm, M) = 0 and we denote the full subcategory of D-hMod composed of negligible
modules by Neg.

We recall that a non-empty full subcategory C of an abelian category A is said to be thick
if, whenever

0→ M→ N → P→ 0

23



CONVOLUTION OF HOLONOMIC MODULES

is an exact sequence in A, the object N is in C if and only if M and P are. The motivation for
defining such categories is that, in this case, we can define a quotient category A/C which has
the same objects as A and whose hom-sets are given by

HomA/C(M, N) := colim HomA(M′, N/N′),

where the colimit runs over all subobjects M′ of M and N′ of N such that both M/M′ and
N′ are in C. It follows that A/C is abelian, that the natural functor Q : A → A/C is exact
and that Q(M) is a zero object in A/C if and only if M ∈ C.[8] As we shall see, the category
of negligible objects is thick.

Proposition 3.4 The category of negligible modules Neg is thick.

Proof. We observe that, since the Euler characteristic is additive, it suffices to prove that
χ(Gm, M) ≥ 0 for every holonomic D-module M. But this follows from the proposition 3.1
on the previous section.

We then consider the quotient category D-hMod/Neg. The main idea is that, in this
category, both notions of convolution will make sense and coincide. For that, we’ll need to
once again make a detour to the derived category.

We denote by Neg the full subcategory of Db
h(D) composed of the complexes whose

cohomology is negligible. The next two propositions were proven in the context of perverse
sheaves by O. Gabber and F. Loeser in [7]. There’s also a proof of the second proposition in
the Séminaire Bourbaki 1141 by Javier Fresán [6].

Proposition 3.5 Let M• and N• be two complexes in Db
h(D). Then M• ∗ N• is in Neg if

either M• of N• is in Neg. The same holds for the !-convolution.

In particular, the universal property of the localization implies that both notions of con-
volution descend to the quotient category D-hMod/Neg.

Proposition 3.6 Let M• and N• be two complexes in Db
h(D). Then the cone of the forget

supports map
M• ∗ N• → M• ∗! N•

is in Neg.

Combining the two previous propositions, we get our desired result.

Corollary 3.7 Both notions of convolution descend to the quotient categoryD-hMod/Neg,
where they coincide.
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3.3 AN EQUIVALENCE OF CATEGORIES

Due to the fact that it is often easier to deal with subcategories than with quotients, in his
book Rigid Local Systems [16], N. Katz considers the following subcategory ofD-hMod. We
also follow his exposition in [14].

Definition 3.4 We denote by P the full subcategory of D-hMod composed of the holo-
nomic D-modules M such that for every D-module N, both convolutions M ∗ N and
M ∗! N are in D-hMod.

We remark that in the context of perverse sheaves, Katz proved in [16] that a perverse
sheaf is an element of P if and only if it has no subobjects nor quotients which are of the
form Lχ[1], where Lχ is the Kummer sheaf associated to a continuous character χ of the
tame fundamental group of Gm. We believe the analogous result to be true in the D-module
world. Namely, that a D-module is in P if and only if it has no subobjects nor quotients
which are of the form D/D(θ − a) for a ∈ k.

This category P is tailor-made so that we can have a working notion of convolution
without needing to pass to the quotient, as in the previous section.

Definition 3.5 — Middle convolution. Let M and N be twoD-modules in P. We define their
middle convolution M ∗mid N to be the image

M ∗mid N := im (M ∗! N → M ∗ N)

in D-hMod of the natural forget supports map.

A priori it’s not clear whether the middle convolution of two elements of P is still in P or
not. N. Katz gave an affirmative response in [16] for perverse sheaves. We believe the same
result to be true for holonomic D-modules and, for lack of time, we assume it from now on.

We observe that, due to the exactness of the exterior tensor product, the functors − ∗
N and − ∗! N are exact in D-hMod whenever N is in P. This will allow us to prove the
associativity of the middle convolution (the commutativity being clear). But first we need a
lemma.

Lemma 3.8 Let A and B be two abelian categories and let F, G : A → B be functors
between them, related by a natural transformation ϕ : F → G. Then the image functor
im ϕ : A→ B, given by

(im ϕ)A = im(ϕA : F(A)→ G(A)),

is end-exact. That is, it sends monomorphisms to monomorphisms and epimorphisms to
epimorphisms.

25



AN EQUIVALENCE OF CATEGORIES

Proof. The proof consists of two simple applications of the snake lemma. We begin with a
short exact sequence

0 A B C 0

in A. Its image by the functors F and G define a commutative diagram with exact rows

0 F(A) F(B) F(C) 0

0 G(A) G(B) G(C) 0

ϕA ϕB ϕC

which, by the snake lemma, gives rise to the following exact sequence:

0 ker ϕA ker ϕB ker ϕC

coker ϕA coker ϕB coker ϕC 0.

δ

Then, the morphism ker ϕB → ker ϕC factorizes through the kernel of the connecting mor-
phism δ, yielding the commutative diagram

0 ker ϕA ker ϕB ker δ 0

0 F(A) F(B) F(C) 0,

whose rows are exact and whose columns are monic. Another application of the snake
lemma gives the short exact sequence

0 F(A)/ ker ϕA F(B)/ ker ϕB F(C)/ ker δ 0

and the first isomorphism theorem identifies the morphism on the left with

im ϕA → im ϕB,

which is then monic. Moreover, since F(C)/ ker δ surjects into

F(C)/ ker ϕC
∼= im ϕC,

we can factor im ϕB → im ϕC into a composition

im ϕB F(C)/ ker δ F(C)/ ker ϕC im ϕC
∼

of three epimorphisms, which is then also an epimorphism.
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In particular, for a holonomic D-module N in the category P, the functor − ∗mid N is
end-exact. We’ll capitalize on this in the following proposition. For that, we observe that the
forget supports map M ∗! N → M ∗ N factors

M ∗! N M ∗mid N M ∗ N

as a composition of a surjective map with an injective map.

Proposition 3.9 Let M, N, P be three holonomicD-modules in P. Then the natural isomor-
phism

(M ∗mid N) ∗mid P = M ∗mid (N ∗mid P)

holds. That is, middle convolution on P is associative.

Proof. It suffices to prove that the left-hand side (M ∗mid N) ∗mid P is the image of the nat-
ural map

M ∗! N ∗! P→ M ∗ N ∗ P.

We factor the forget supports map above as a composition of two surjective maps

(M ∗! N) ∗! P (M ∗mid N) ∗! P (M ∗mid N) ∗mid P

and two injective maps

(M ∗mid N) ∗mid P (M ∗mid N) ∗ P (M ∗ N) ∗ P.

This proves that (M ∗mid N) ∗mid P is the image of M ∗! N ∗! P in M ∗ N ∗ P. The same
reasoning shows that M ∗mid (N ∗mid P) coincides with the same image, proving that they
are equal.

We arrive at the main result of this section.

Theorem 3.10 The composition of the inclusion P → D-hMod with the quotient map
D-hMod → D-hMod/Neg is an equivalence of categories. Moreover, under this equiva-
lence, the image of the middle convolution on P is sent to the convolution on the quotient
D-hMod/Neg.

Before going to its proof, we observe that P inherits from this equivalence a structure of
abelian category that is somewhat twisted. Namely, a sequence of morphisms in P

0 M N P 0α β

is exact if and only if α is injective, β is surjective, β ◦ α = 0 and ker β/ im α is negligible.
With this structure of abelian category, the middle convolution becomes a biexact functor.
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We now divide the proof of the theorem 3.10 in two propositions. The first of them is
purely formal.

Let A be an abelian category and C a thick subcategory. Given an object A of A, we
denote by AC the largest subobject of A in C and by AC the smallest subobject B of A such
that A/B is in C. We write [A : C] for the full subcategory of A whose objects A satisfy
AC = 0 and AC = A.

Proposition 3.11 Let A be an abelian category and C a thick subcategory. Using the nota-
tions above, consider the functor

T : A→ [A : C]
A 7→ (AC ⊕ AC)/AC.

This functor factors through A/C, yielding a quasi-inverse

S : A/C→ [A : C]

of the restriction of the quotient functor A→ A/C to [A : C]. In particular, these functors
define an equivalence of categories between A/C and [A : C].

Proof. Given a morphism α : A → B in A, we remark that α(AC) is a subobject of BC.
Moreover, α(AC) is also a subobject of BC. Indeed, the morphism

A/α−1(BC)→ B/BC

is monic, which implies that A/α−1(BC) ∈ C and so AC ⊂ α−1(BC). We conclude that T is
indeed a functor.

In order to prove that T factors through the quotient functor Q : A → A/C, we have to
show that if ker α and coker α are in C, then T(α) is an isomorphism. Now, let α : A → B be
a morphism in A such that ker α is in C. Since α−1(BC) is an extension of BC by ker α, it is an
object of C containing AC. It follows that α−1(BC) = AC and so T(α) is a monomorphism.
Dually, if coker α ∈ C then T(α) is a monomorphism. We conclude that T factors through a
functor S : A/C→ [A : C] :

A [A : C]

A/C.

Q
S

T

Let’s denote by I : [A : C]→ A the inclusion functor. If A ∈ A, the canonical morphisms
AC → A and AC → I(T(A)) descend to a functorial isomorphism A ∼= I(T(A)) in A/C.
This proves that Q ◦ I ◦ S ∼= id. Since it is clear that S ◦Q ◦ I = id, it follows that the functor
Q ◦ I : [A : C]→ A/C defines an equivalence of categories.
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In order to conclude the proof of the theorem 3.10, it suffices then to attain the proposi-
tion below, which follows from the aforementioned characterization of P by Katz and the
proposition 3.1.

Proposition 3.12 Let M be a holonomic D-module. Then MNeg = 0 and MNeg = M if and
only if, for every holonomic D-module N, both convolutions M ∗ N and M ∗! N are in
D-hMod. In other words, P = [D-hMod : Neg].

Given all the work that we’ve done so far and having the proposition 1.1 in mind, we
have to define a fibre functor ω : P→ k-Vect which satisfies

a) there exists an identity object U in P such that k ∼= End(U) and dimk ω(U) = 1;

b) whenever dimk ω(L) = 1, there exists an object L∨ ∈ P such that L⊗ L∨ = U;

c) ω(M ∗mid N) = ω(M)⊗k ω(N) for every M, N ∈ P,

in order to prove that P is a tannakian category. We affirm that the fibre functor ω defined
by

M 7→ H0(A1, j!M),

where j : Gm → A1 is the natural inclusion, along with U = δ1 and L∨ = inv∗D(L), satisfy
our requirements, yielding the theorem below.

Theorem 3.13 The structure described above makes P a tannakian category.

The analog proof for perverse sheaves over Gm is described in detail on the appendix to
Katz’ book Convolution and Equidistribution [14] and so will me omitted here. The author
regrets this choice and plans to convert this proof to the world of D-modules soon.

While we’re still here, we remark that the proposition 1.3 gives rise to a algebraic group
GM (a closed subgroup of GL(ω(M))) for every holonomic D-module M in the category
P. The existence of such a group allows us to understand a plethora of equidistribution
results, which are well explained in the Séminaire Bourbaki 1141 [5], which was given by
my advisor Javier Fresán.
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