
LIE GROUPS, LIE ALGEBRAS AND REPRESENTATION

THEORY

GABRIEL RIBEIRO

This work is the result of numerous meetings between me and my advisor José
J. Ramón-Maŕı, to whom I’m grateful. Since our focus here is on Lie groups and
representation theory, standard definitions and proofs about topology, algebra and
analysis will be omitted. For our purposes a (differentiable) manifold is a Hausdorff,
second countable, locally Euclidean topological space endowed with a maximal at-
las. More information about manifolds can be found in Tu’s work: An Introduction
To Manifolds.[5]

1. Lie Groups

Definition 1 (Lie Group). A group G is said to be a Lie Group if it is also a
finite-dimensional manifold and the maps

(x, y) 7→ xy and x 7→ x−1

are both C∞.

Most of the Lie groups that will be in this work are made by matrices, however
Rn, R× and S1 are examples of other kinds of Lie groups.

Example 1 (General Linear Group). The (real) general linear group

GLn(R) = {A ∈Mn(R) | detA 6= 0}

is defined as the group of all real matrices with non-null determinant.
Since it is an open subset of Mn(R), it is a manifold.1 As the multiplication map

is polynomial in the entries of both matrices, it is C∞. Cramer’s rule implies that
the inversion map, given by

(A−1)ij =
1

detA
(−1)i+j((j, i)−minor of A),

is also C∞. Hence GLn(R) is a Lie Group. The complex general linear group
GLn(C) is defined analogously. The special linear groups SLn(R) and SLn(C) are
the subgroups of GLn(R) and GLn(C) of matrices with unit determinant.

Example 2 (Orthogonal and Unitary Groups). Let A ∈ Mn(R) be a real matrix.
The requirement that the linear transformation determined by A preserves inner
products leads us to consider orthogonal matrices, since for any vectors x, y ∈ Rn

〈Ax,Ay〉 = 〈ATAx, y〉 = 〈x,ATAy〉.

1Note that {0} is a closed subset of R with the order topology. Hence GLn(R) = Mn(R) \
det−1(0) is an open subset of Mn(R) ∼= Rn2

with the product topology.
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Since ATA = I implies detA = ±1, we say that the orthogonal matrices satisfying
detA = 1 are rotations and those satisfying detA = −1 are improper isometries.
We then define the orthogonal group as

O(n) = {A ∈Mn(R) |ATA = I}.

A (very) notable subgroup of O(n) is the special orthogonal group, defined as

SO(n) = {A ∈Mn(R) |ATA = I and detA = 1}.

The unitary group is the analogue of O(n) on Cn defined by

U(n) = {A ∈Mn(C) |A∗A = I},

where A∗ is the complex adjoint of A. The special unitary group, SU(n), is the
subset of U(n) made of matrices of unit determinant.

We shall now prove that all the orthogonal and unitary groups are manifolds
(and hence Lie groups). We give proofs only for the orthogonal groups since the
proofs for the unitary groups are analogous.

Theorem 1. The orthogonal group, O(n), and the special orthogonal group, SO(n),
are manifolds.

Proof. Let φ : Mn(R) → Symn(R), where Symn(R) is the space of all real n × n
symmetric matrices, such that φ(X) = XTX. By the regular value theorem if
I ∈ Symn(R) is a regular value of φ then O(n) = φ−1(I) is a submanifold of
Mn(R).

To prove that I is a regular value of φ it suffices to show that dφA is surjective
for all A ∈ O(n). The derivative dφA is given by

dφA(H) = ATH +HTA.

It is clear that dφA(H) is symmetric. Hence if dφA(H) = B, then

H =
1

2
(AT )−1B =

1

2
AB

is a particular solution.
The fact that SO(n) is a manifold then follows easily by noticing that det :

O(n)→ {−1, 1} is a continuous function and {1} is open in {−1, 1}. �

Corollary 1.1. The tangent space of both O(n) and SO(n) at the identity is
so(n), i.e., the space of all n × n skew-symmetric matrices. Hence, dimO(n) =
dimSO(n) = n(n− 1)/2.

Proof. Follows readily from the fact that TIO(n) = TISO(n) = ker dφI . �

The following powerful theorem, which we shall not prove, was first proved in
its full generality by Élie Cartan and proved for matrix Lie groups by John Von
Neumann.

Theorem 2 (Closed Subgroup Theorem). Let G be a Lie group. Then the inclusion
H ⊂ G is an embedding if H is closed in G. Moreover, the converse also holds.

Since R is a T1 space, {1} is closed and hence so is SLn(R) = det−1(1) (here we
consider the determinant as a function from GLn(R) to R). That is, SLn(R) is a
manifold. The result for SLn(C) is analogous.
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2. Topological Facets of Some Lie Groups

In this section we investigate a few important topological properties which are
satisfied by some Lie groups. Since Lie groups are manifolds, we shall make no
distinction between path-connectedness and connectedness.

Theorem 3. All the orthogonal and unitary groups are compact.

Proof. Note that all these groups are bounded since as |Aij | ≤ 1 for orthogonal or
unitary matrices A. Since Heine-Borel holds in Rk and there’s an obvious homeo-
morphism between Mn(R) or Mn(C) and Rk it suffices to show that the groups are
closed.

The orthogonal group is closed in Mn(R) as O(n) = φ−1(I) and φ is clearly
continuous. (It is polynomial in the entries of the matrix.)

The unitary group is closed in Mn(C) as U(n) = φ̃−1(I), where φ̃(X) = X∗X.
For SO(n) and SU(n) it is enough to show that they are closed subspaces of

O(n) and U(n), respectively.2 But that is obvious as they can be characterized as
det−1(1). The result follows. �

Theorem 4. GLn(C) is connected.

Proof. Let A and B be two matrices in GLn(C). Consider the expression det(λA+
(1 − λ)B) = 0. The Fundamental Theorem of Algebra implies that there are only
a finite number of solutions to this expression (none of which are λ = 0 or λ = 1).
Since C \ S is connected for any finite set S ⊂ C there is a function λ : [0, 1] → C
which avoids all the solutions of det(λA+(1−λ)B) = 0. This induces a continuous
path from A to B in GLn(C). It follows that GLn(C) is path-connected and thence
connected. �

Theorem 5. SO(n) is connected.

Proof. It is a well-known fact that a special orthogonal matrix A can be written as

A = U


B(θ1)

. . .

B(θk)
Ip

U−1,
where B(θi) is the 2× 2 matrix[

cos(θi) − sin(θi)
sin(θi) cos(θi)

]
,

U is a orthogonal matrix and p is a positive integer. All the other elements in the
block-diagonal matrix are zeros. We then see that the function

f(t) = U


B(tθ1)

. . .

B(tθk)
Ip

U−1

2Let X be a topological space and Y be a subspace. Recall from basic topology that H ⊂ Y
is closed in Y if and only if H = Y ∩ F for some closed set F in X. Hence, if H is closed in Y

and Y is closed in X, then H is closed in X.
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is a path from I = f(0) to A = f(1) in SO(n). Since path-connectedness is
transitive, the result follows. �

All the special unitary groups are simply connected. However the proof does not
appear to be trivial so I’ll just prove the n = 2 case.

Theorem 6. SU(2) is simply connected.

Proof. A quick calculation shows that SU(2) ∼= S3. Thence, the result follows as a
simple corollary. �

Corollary 6.1. SL2(C) is simply connected.

The bulk of this proof lies in the Gram-Schmidt procedure to construct a de-
formation retraction from SL2(C) to SU(2). Since our focus is not on algebraic
topology, this proof will be omitted.

3. Lie Algebras

Usually it is not trivial to understand the structure endowed by a Lie group.
However, analyzing vector spaces is frequently straightforward. It would be truly
wonderful if we could understand Lie groups in terms of vector spaces. Fortunately,
that is exactly the case.

Definition 2 (Lie Algebra). A Lie algebra g is a (real or complex) vector space
endowed with a skew-symmetric, bilinear form [·, ·] which satisfies the Jacobi iden-
tity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0,

for all x, y, z ∈ g.

Given a matrix Lie group G, we shall assign a Lie algebra g to it as follows:

g = {X ∈Mn(C) | etX ∈ G for all t ∈ R}, [X,Y ] = XY − Y X.
To see that this is, in fact, a Lie algebra we need the following lemma

Lemma 1 (Lie Product Formula). Let A,B ∈Mn(C) be complex matrices. Then,
the following formula holds:

eA+B = lim
m→∞

(
eA/meB/m

)m
.

Proof. Since
∑

(A/m)k/k! converges absolutely (as all norms are equivalent, this
holds with every norm) to eA/m,

eA/meB/m = I +
A

m
+
B

m
+O

(
I

m2

)
.

As eA/meB/m → I, eA/meB/m is in the domain of the logarithm for large enough
m. Hence,

log
(
eA/meB/m

)
= log

(
I +

A

m
+
B

m
+O

(
I

m2

))
=
A

m
+
B

m
+O

(∣∣∣∣∣∣∣∣Am +
B

m
+O

(
I

m2

)∣∣∣∣∣∣∣∣2
)

=
A

m
+
B

m
+O

(
I

m2

)
.
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Exponentiating the logarithm:(
eA/meB/m

)m
=

(
exp

(
A

m
+
B

m
+O

(
I

m2

)))m
= exp

(
A+B +O

(
I

m

))
.

The result follows. �

It is clear that, if X ∈ g then cX is also an element of g for all c ∈ R. The
fact that if X,Y ∈ g, then so does X + Y follows from our lemma and from the
closedness of G. Also, note that

[X,Y ] =
d

dt
etXY e−tX

∣∣∣∣
t=0

= lim
h→0

ehXY e−hX − Y
h

.

Since (ehXY e−hX − Y )/h ∈ g, so does [X,Y ]. Thence, g is a Lie algebra.
We shall now compute the Lie algebras of the classical Lie groups. It should be

clear that, since eX is always invertible for any X ∈Mn(C) (since det eX = etrX),
the Lie algebra gln(R) of GLn(R) is Mn(R). Similarly, gln(C) = Mn(C).

Theorem 7. The Lie algebra of SLn(C) consists of all n×n complex matrices with
trace zero. Moreover, the Lie algebra of SLn(R) consists of all n× n real matrices
with trace zero.

Proof. If X ∈Mn(C) is such that etX ∈ SLn(C) for all real t,

trX =
d

dt
et trX

∣∣∣∣
t=0

=
d

dt
det etX

∣∣∣∣
t=0

= 0.

Conversely, if trX = 0 then,

det(etX) = et trX = 1.

Hence, etX ∈ SLn(C) for all t ∈ R. The result follows. Similarly one can prove
that sln(R) consists of all traceless real matrices. �

As we saw in this proof, the “determinant 1” condition of the Lie group adds
the “trace 0” at its correspondent Lie algebra.

Theorem 8. The Lie algebra of U(n) consists of all skew-hermitian n×n complex
matrices. Moreover, the Lie algebra of SU(n) consists of all skew-hermitian n× n
complex matrices with trace zero.

Proof. Given a complex matrix X, etX is unitary if and only if(
etX
)∗

=
(
etX
)−1

= e−tX .

Since (etX)∗ = etX
∗
, etX if unitary if and only if(

etX
)∗

= e−tX ,

Which happens for all t ∈ R precisely when X is skew-hermitian. The fact that
every element of su(n) is traceless follows from the same argument used in the proof
of Theorem 7. �
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A similar argument shows that a real matrix X is an element of o(n) if and only
if X is skew-symmetric. Since every such matrix is traceless, so(n) = o(n).

The preceding discussion should clarify our notation in Corollary 1.1. The reader
might ask if it is a coincidence that TIO(n) = o(n) and TISO(n) = so(n). The
following theorem provides an answer.

Theorem 9. Let G be a matrix Lie group with Lie algebra g. Then, a matrix X is
an element of g if and only if there exists a smooth curve γ in G such that γ(0) = I
and γ′(0) = X. That is, g = TIG.

Unfortunately, the proof of this important result is rather technical. Since this
work is a quick introduction to Lie groups, Lie algebras and representation theory
this proof is beyond our scope. A wonderful discussion of this result can be found
in Hall’s[3] Corollary 3.46.

Lastly, another technical result that will be useful in our studies of represen-
tation theory is the following theorem about characterization of the elements of a
connected Lie group.

Theorem 10. Let G be a connected matrix Lie group with corresponding Lie algebra
g. Then every element A of G can be written as

A = eX1eX2 . . . eXm ,

for some X1, X2, · · · , Xm ∈ g.

4. Basic Representation Theory

Linear actions of groups arise in various branches of both mathematics and
physics. Our goal in this section is to understand all the ways a fixed group can act
as a group of endomorphisms. As the notation suggests, given a vector space V we
denote by GL(V ) the Lie group composed by automorphisms of V and endowed
with the inherited topology of its identification with GLn(R). We also denote by
gl(V ) the Lie algebra composed by endomorphisms of V and endowed with the
bracket [X,Y ] = XY − Y X.

Definition 3 (Homomorphisms). We call a group homomorphism between Lie
groups a Lie group homomorphism if it is continuous.3 A linear map φ between
Lie algebras is said to be a Lie algebra homomorphism if φ([x, y]) = [φ(x), φ(y)] for
every x, y in its domain.

Definition 4 (Representations). Let G be a Lie group. A linear representation of
G is a Lie group homomorphism

ρ : G→ GL(V ),

where V is a finite-dimensional vector space.
Now let g be a Lie algebra. A linear representation of g is a Lie algebra homo-

morphism
π : g→ gl(V ).

If a representation is one-to-one, is said to be faithful. If v is a vector of V and
g ∈ G, we’ll generally denote the vector ρ(g)v by g · v. If the base field of V is C,
we’ll say that it is a complex representation. Analogously, if the base field of V is
R, it is said to be a real representation.

3As one can show, every such map is smooth.
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Similarly to the way we understand integers based on their decomposition as
products of prime numbers, we shall study a particular class of representations
named irreducible representation.

Definition 5. A representation ρ of a Lie group G is said to be irreducible if ρ(g)
has only V and {0} as invariant subspaces for all g ∈ G. A irreducible representation
of a Lie algebra is defined analogously.

If we know a representation of a Lie group G, one may ask if we can find a
representation of its associated Lie algebra g. The following theorem affirms that
the answer is affirmative. The converse of this result also holds if G is simply
connected.

Theorem 11. Let ρ be a representation of G acting on a finite-dimensional vector
space V . Then, there exists a unique representation π of g acting on the same
vector space such that

ρ(eX) = eπ(X)

for all X ∈ g. The representation π is the pushforward of ρ at identity. That is,

π(X) =
d

dt
ρ(etX)

∣∣∣∣
t=0

for all X ∈ g. Moreover, if G is simply connected, then given a representation π
of g there exists an unique representation ρ of G acting on the same space with
satisfies ρ(eX) = eπ(X).

The proof of this result follows from a discussion on flows of left-invariant fields
related by a morphism of Lie groups and is not simple at all. Hence it will be
omitted. In the light of the preceding theorem and the following result we see that
if a matrix Lie group is compact and simply connected it is enough to understand
the irreducible representations of its associated Lie algebra.

Theorem 12. Let G be a connected matrix Lie group with Lie algebra g. Let ρ
be a representation of G and π be the associated representation of g. Then ρ is
irreducible if and only if π is.

Proof. Suppose ρ is irreducible and let W be a subspace of V that is invariant
under π(X) for all X ∈ g. Now let A be an arbitrary element of G. Since A can
be written as eX1 . . . eXm and W is invariant under π(Xj), it will also be invariant
under exp(π(Xj)). Hence W is invariant under

ρ(A) = ρ(eX1 . . . eXm) = ρ(eX1) . . . ρ(eXm) = eπ(X1) . . . eπ(Xm).

Since ρ is irreducible, W is either V or {0}. Hence π is irreducible.
The converse follows by noticing that if W is an invariant subspace under ρ(X),

it is invariant under ρ(exp tX) for all X ∈ g and all t ∈ R. Hence W is invariant
under

π(X) =
d

dt
ρ(etX)

∣∣∣∣
t=0

.

The result follows. �
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The simplest example of a matrix Lie group which is compact and simply con-
nected is SU(2) ∼= S3. Thence, we’ll devote some time understanding the irre-
ducible representations of su(2). The complexification of a vector space will be of
great aid in this task.4

Theorem 13. Let g be a real Lie algebra and gC be its complexification. Then
every complex representation π of g has a unique extension to a representation of
gC, also denoted π. Furthermore, π is irreducible as a representation of g if and
only if it is irreducible as a representation of gC.

Proof. We define the extension map by π(X + iY ) = π(X) + iπ(Y ). If π′ in any
such extension then

π′(X + iY ) = π′(X + iO) + π′(O + iY )

= π′(X + iO) + iπ′(Y + iO)

= π(X) + iπ(Y ).

That is, the extension presented is unique.
A subspace W of V is invariant under π(X + iY ) if and only if it is invariant

under π(X) and under π(Y ). Hence the claim about irreducibility follows. �

Definition 6 (Intertwining Maps). Let G be a matrix Lie group, ρ be a represen-
tation of G acting on a vector space V and σ be a representation of G acting on
W . A linear map φ : V → W is said to be an intertwining map of representations
if

φ(ρ(g)v) = σ(g)φ(v),

for all g ∈ G and all v ∈ V . The definition of intertwining maps of Lie algebra
representations is analogous. If φ is an intertwining map and φ is invertible, then
it is said to be an isomorphism and the related representations are said to be
isomorphic.

Using our usual action notation the defining equation becomes φ(g ·v) = g ·φ(v),
where the g on the left side is acting on V and on the right side it is acting on W .

Our goal in the next section is to determine, up to isomorphism, all the irre-
ducible representations of SU(2).

5. The Irreducible Representations of SU(2)

As was discussed in the previous section, to classify all the irreducible rep-
resentations of SU(2) it is enough to classify the irreducible representations of
sl2(C) ∼= su(2)C. We’ll use the following basis of sl2(C):

X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
,

which satisfy the commutation relations

[H,X] = 2X,

[H,Y ] = −2Y,

[X,Y ] = H.

4The complexification VC of a vector space V is the vector space V ⊗RC. We write an arbitrary
element of VC as v1 + iv2 := v1 ⊗ 1 + v2 ⊗ i.
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The next lemma will furnish a better understanding of the structure of the linear
representations of sl2(C).

Lemma 2. Let π be a complex representation of sl2(C). If u is an eigenvector of
π(H) with correspondent eigenvalue α ∈ C, then either π(X)u = 0 or π(X)u is an
eigenvector of π(H) with eigenvalue α+ 2.

Similarly, either π(Y )u = 0 or π(Y )u is an eigenvector of π(H) with eigenvalue
α− 2.

Proof. Since [π(H), π(X)] = π([H,X]) = 2π(X), it follows that

π(H)π(X)u = π(X)π(H)u+ 2π(X)u

= π(X)(αu) + 2π(X)u

= (α+ 2)π(X)u.

The result follows since the argument of π(Y ) is similar. �

We are now able to prove our so desired classification of the irreducible repre-
sentations of sl2(C).

Theorem 14. For any integer m ≥ 0 there is an irreducible representation of
sl2(C) with dimension m + 1. Moreover, any two representations with the same
dimension are isomorphic.

For this proof we’ll pick an arbitrary representation and determine it up to
isomorphism. Then it is just a matter of computation to show that for every integer
m ≥ 0 the representations so determined actually are irreducible representations of
sl2(C).

Proof. Let π be a irreducible finite-dimensional complex representation of sl2(C).
Since C is algebraically closed, let u be an eigenvector of π(H) with eigenvalue α.
From the previous lemma, it follows that

π(H)π(X)ku = (α+ 2k)π(X)ku.

The π(X)ku’s cannot all be nonzero as that would imply π(H) has infinitely many
eigenvalues. Thus, there is a non-negative integer N such that π(X)Nu 6= 0 but
π(X)N+1u = 0. Then we set u0 = π(X)Nu and λ = α+ 2N . Then,

π(H)u0 = λu0,

π(X)u0 = 0.

We then define
uk = π(Y )ku0

for k ≥ 0. Our lemma then implies

π(H)uk = (λ− 2k)uk,

from where it follows that

π(X)uk = k[λ− (k − 1)]uk−1.

Moreover, for the same argument used earlier, the uk’s cannot all be nonzero.
Thence, there exists a non-negative integer m such that uk = π(Y )ku0 6= 0 for
all k ≤ m but um+1 = π(Y )m+1u0 = 0. Therefore, from our previous equation it
follows that

0 = π(X)um+1 = (m+ 1)(λ−m)um
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and so λ = m. Since the vectors u0, . . . , um are eigenvectors of π(H) with distinct
eigenvalues, the are linearly independent. Moreover, their span is invariant under
π(X), π(Y ) and π(H). We conclude that, as π is irreducible, u0, . . . , um is a basis
of V . To sum up, every irreducible finite-dimensional complex representation of
sl2(C) is of the form

π(H)uk = (m− 2k)uk,

π(X)uk =

{
k[m− (k − 1)]uk−1 if k > 0

0 if k = 0
,

π(Y )uk =

{
uk+1 if k < m

0 if k = m
.

Conversely, let V be any complex (m+1)-dimensional vector space with {u0, . . . , um}
as a basis. Then it is just a matter of computation to show that the preceding equa-
tions define a irreducible representation of sl2(C). �

Now, we shall explicitly present a list of irreducible representations of SU(2) to
finish our classification.

Let Vm be the space of homogeneous polynomials of degree m on two complex
variables. For each U ∈ SU(2) define a endomorphism ρm(U) by the formula

[ρm(U)f ](z) = f(U−1z),

where z ∈ C2. Then ρm is a representation of SU(2). Clearly, as no two of the
Vm’s have the same dimension, no two of the ρm are isomorphic.

Now for X ∈ su(2), the associated representation πm of su(2) is given by

[πm(X)f ](z) =
d

dt
f(e−tXz)

∣∣∣∣
t=0

.

The chain rule then implies

[πm(X)f ](z1, z2) = − ∂f
∂z1

(X11z1 +X12z2)− ∂f

∂z2
(X21z1 +X22z2).

We can extend this representation to a representation of sl2(C) ∼= su(2)C by the

same formula with X ∈ sl2(C). Take H,X, Y as a basis of sl2(C) and uk = zm−k1 zk2
as a basis of Vm. Then,

πm(H)uk = (−m+ 2k)uk,

πm(X)uk = (k −m)uk+1,

πm(Y )uk = −kuk−1.

The theoremata of section 4 then implies that every irreducible representation
of SU(2) is isomorphic to one of the ρm’s described above.

6. Coverings

As we saw, if G is a simply connected Lie group, every representation of g can
be exponentiated to a representation of G. If G is not simply connected it can be

useful to find another Lie group G̃ that has the same associated Lie algebra as G
and is simply connected. This motivates our next definition.
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Definition 7 (Universal Cover). Let G be a connected Lie group. A simply con-
nected Lie group H together with a Lie group homomorphism Φ : H → G such that
the associated Lie algebra homomorphism φ : h→ g is a Lie algebra isomorphism.
The homomorphism Φ is then called a covering map.

It is not hard to prove that every two universal covers of a connected Lie group
are isomorphic, hence it is reasonable to speak of the universal cover of G.

As we saw earlier, the group SU(2) is isomorphic to the unit sphere S3. We’ll
identify S3 as the group of unit quaternions. I claim that SU(2) is the universal
cover of SO(3).

Theorem 15. There is a 2-to-1 group homomorphism from SU(2) to SO(3). Since
su(2) ∼= so(3), SU(2) is the universal cover of SO(3). It is said that such map is a
double covering.

In the following proof I assume that the reader is acquainted with the fact that
a rotation of R3 through an angle α about the axis u is given by the conjugation
map

q 7→ tqt−1, where t = cos
α

2
+ u sin

α

2
.

Obviously we identified R3 to the imaginary quaternions iR + jR + kR.

Proof. The required map is given by

Φ : SU(2)→ SO(3)

t 7→ (q 7→ tqt−1).

A simple calculation confirms that Φ is a group homomorphism. The fact that Φ
is 2-to-1 is a consequence of the α/2 factor in the conjugation map. �

As a corollary of the fundamental isomorphism theorem for groups we get that:

Corollary 15.1. The groups SO(3) and SU(2)/{±I} are isomorphic.

Since so(3) ∼= su(2) it is natural to ask whether one of the π’s described in The-
orem 14 can become a representation of SO(3). It can be proved that a irreducible
representation of SO(3) comes from one of the π’s if and only if m is even. In
the physics literature such representations are labelled by the parameter l = m/2,
where l is called the spin of the representation. A electron has spin 1/2, which
means that it is described by a representation of SU(2). In practice, this implies
that a rotation of 360◦ applied to the electron wave function gives back the negative
of the original function. This is illustrated cleverly by Dirac’s belt trick.

A similar argument shows that for t1, t2 ∈ SU(2) the map (t1, t2) 7→ (q 7→ t1qt
−1
2 )

is a double covering of SO(4) and hence SU(2)×SU(2) is its universal cover. Also,
SO(4) ∼= SU(2)× SU(2)/{(I, I), (−I,−I)}.

7. Applications to Physics

It is of particular interest to physicists the study of the group O(3, 1), denom-
inated Lorentz group after Dutch physicist Hendrik A. Lorentz, whose action pre-
serves the symmetric bilinear form b given by

b(x, y) = x1y1 + x2y2 + x3y3 − x4y4.
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That is, we are interested in the matrices A ∈ GL4(R) such that b(Ax,Ay) = b(x, y)
for all x, y ∈ R4. Consider the matrix g = diag(1, 1, 1,−1). It should be clear
that b(x, y) = 〈x, gy〉, where 〈·, ·〉 is the canonical inner product on R4. Hence
A ∈ O(3, 1) if and only if AT gA = g. Taking the determinant of this equation gives
detA = ±1. The group SO(3, 1) is composed by the matrices of O(3, 1) with unit
determinant.

Similarly to the proof of Theorem 8, one can show that the Lie algebras of
both O(3, 1) and SO(3, 1) are given by the matrices X which satisfy gXT g = −X.
The group O(3, 1) has four connected components. We’ll denote by SO↑(3, 1) its
connected component which contains the identity. Consider the mapping M given
by

x ∈ R4 7→M(x) =

[
x1 + x4 x2 − ix3
x2 + ix3 x1 − x4

]
.

As one can clearly see, M(x) is hermitian. We then define an action of SL2(C) on
the space of hermitian matrices by

(A,X) 7→ A ·X = AXA∗,

where A ∈ SL2(C) and X is hermitian. Note that det(A ·M(x)) = det(M(x)) =
b(x, x). Hence, the matrix TA associated with the endomorphism x 7→ A ·M(x) is
an element of O(3, 1). It can be easily checked that A 7→ TA is a homomorphism of
Lie groups with kernel {±I}. Since SL2(C) is connected, its image is the connected
component of the identity in O(3, 1), namely, SO↑(3, 1). We conclude that

Theorem 16. The mapping A 7→ TA is a double covering of SO↑(3, 1) by SL2(C).
Hence, SO↑(3, 1) ∼= SL2(C)/{±I}.
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