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1
A B S T R A C T I N T E G R AT I O N

Exercise 1.1 Does there exist an infinite σ-algebra which has only
countably many members?

� Solution Let X be a measurable space with an infinite σ-algebra M.
Our approach will be very similar to the proof that [0, 1] is compact.
(If you do not remember this proof, continue reading. We’re not going
to use anything other than its main idea.) Since M is infinite, there
exists at least one set E ∈M other than X and ∅. Surely, Ec is also in
the sigma-algebra M.

X

E Ec

Now, E and Ec are measurable spaces by themselves. (Their sigma-
algebras are the intersection of the sets in M with E or Ec.) As M

is infinite, at least one of the sigma-algebras of E or Ec is infinite.
With this sigma-algebra we can repeat the procedure, obtaining a
sequence (En) of sets in M. (We write En for the set that has an infinite
sigma-algebra.)

X

E1 Ec
1

Ec
2 E2

E3 Ec
3

We observe that {En \ En+1 : n ∈N} is a infinite collection of disjoint
non-empty measurable sets. Since M should contain every possible
union of those sets, and choosing one such union amounts to picking
a subset of N, the cardinality of M is at least

|P(N)| = c.

It follows that there isn’t an infinite σ-algebra with countably many
members. �

Exercise 1.2 Prove an analogue of Theorem 1.8 for n functions.
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2 abstract integration

Theorem 1.8 Let u and v be real measurable functions on a mea-
surable space X, let Φ be a continuous mapping of the plane into a
topological space Y, and define

h(x) = Φ(u(x), v(x))

for x ∈ X. Then h : X → Y is measurable.

� Solution The desired analogue is the following.

Let u1, u2, . . . , un be real measurable functions on a measurable
space X, let Φ be a continuous mapping of Rn into a topological
space Y, and define

h(x) = Φ(u1(x), u2(x), . . . , un(x))

for x ∈ X. Then h : X → Y is measurable.

As with Theorem 1.8, it is enough to prove

f (x) = (u1(x), u2(x), . . . , un(x))

is measurable. Let B = I1 × I2 × · · · × In be an open box, and each Ik
an open interval. Then

f−1(B) = u−1
1 (I1) ∩ u−1

2 (I2) ∩ · · · ∩ u−1
n (In)

is a measurable set, and since every open set V is a countable union
of open boxes Bi, then

f−1(V) = f−1

(
∞⋂

i=1

Bi

)
=

∞⋂
i=1

f−1(Bi)

is measurable. �

Exercise 1.3 Prove that if f is a real function on a measurable
space X such that {x : f (x) ≥ r} is measurable for every rational r,
then f is measurable.

� Solution Given α ∈ R, let {rn} be a decreasing sequence of rational
numbers such that lim rn = α. Then

f−1((α, ∞)) =
⋂

f−1((rn, ∞))

is measurable. Analogously, if {sn} is an increasing sequence of ratio-
nal numbers such that lim sn = α, then

f−1([α, ∞)) =
⋂

f−1((sn, ∞))

is measurable. Hence, given a < b ∈ R, the set

f−1((a, b)) = f−1((a, ∞))\ f−1([b, ∞))

is also measurable.
Since every open set in R is a countable union of open intervals, for

every open set V ⊂ R, f−1(V) is measurable, and we conclude f is
measurable. �
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Exercise 1.4 Let {an} and {bn} be sequences in [−∞, ∞], and prove
the following assertions :

(a) lim supn→∞(−an) = − lim infn→∞ an.

(b) lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn,
provided none of the sums is of the form ∞−∞.

(c) If an ≤ bn for all n, then lim infn→∞ an ≤ lim infn→∞ bn.

Show by an example that strict inequality can hold in (b).

� Solution

(a) For all n ∈N we have that

sup
i≥n
{−ai} = − inf

i≥n
{ai}.

The result then follows by taking the limit n→ ∞.

(b) Clearly, for all n ∈N,

sup
i≥n
{ai + bi} ≤ sup

i≥n
{ai}+ sup

i≥n
{bi}.

The result then follows by taking the limit n→ ∞.

(c) As an ≤ bn for all n ∈N, we have that

inf
i≥n
{ai} ≤ inf

i≥n
{bi}.

The result then follows by taking the limit n→ ∞.

For the strict inequality in (b) we can take an = (−1)n and bn =

(−1)n+1. �

Exercise 1.5

(a) Suppose f : X → [−∞, ∞] and g : X → [−∞, ∞] are measur-
able. Prove that the sets

{x : f (x) < g(x)}, {x : f (x) = g(x)}

are measurable.

(b) Prove that the set of limit points at which a sequence of
measurable real-valued functions converges (to a finite limit)
is measurable.

� Solution

(a) Since f and g are measurable, h = g− f is also measurable, and

h−1((0, ∞]) = {x : f (x) < g(x)},
h−1({0}) = {x : f (x) = g(x)}

are measurable.



4 abstract integration

(b) Let fn be the sequence of measurable functions. Then the func-
tions f = lim infn→∞ fn and g = lim supn→∞ fn are also mea-
surable, and the set of points at which the sequence converges
is

{x : f (x) = g(x)}

which is measurable by (a). �

Exercise 1.6 Let X be an uncountable set, let M be the collection
of all sets E ⊂ X such that either E or Ec is at most countable, and
define µ(E) = 0 in the first case, µ(E) = 1 in the second. Prove that
M is a σ-algebra in X and that µ is a measure in M.

� Solution Let us first prove M is a σ-algebra.
In fact, Xc = ∅, and X ∈ M. If A ∈ M, then A or Ac is countable,

i.e., Ac or (Ac)c is countable, therefore Ac ∈ M. Finally, if An ∈ M,
we divide in two cases. If every An is countable, then ∪An is also
countable. Otherwise, some Ak is uncountable. In this case, Ac

k is
countable, and (

⋃
An)

c ⊂ Ac
k is countable.

To prove µ is a measure, we again divide in two cases. If every An is
countable,

⋃
An is also countable, therefore µ(

⋃
An) = 0 = ∑ µ(An).

On the other hand, if some Ak is uncountable (and only Ak can be
uncountable, since the sets are disjoint and Ac

k is countable), then
(
⋃

An)c is countable and µ(
⋃

An) = 1 = ∑ µ(An). �

Exercise 1.7 Suppose fn : X → [0, ∞] is measurable for n = 1, 2, . . . ,
f1 ≥ f2 ≥ f3 ≥ · · · ≥ 0, fn(x) → f (x) as n → ∞, for every x ∈ X,
and f1 ∈ L1(µ). Prove that then

lim
n→∞

∫
X

fn dµ =
∫

X
f dµ

and show that this condition does not follow if the condition " f1 ∈
L1(µ)" is omitted.

� Solution Lebesgue’s Dominated Convergence Theorem implies
that (since the fn are bounded by f1 ∈ L1(µ))

lim
n→∞

∫
X

fn dµ =
∫

X
f dµ.

This condition is necessary since if X = R and fn = χ[n,∞), then f is
the zero function. Hence,

∫
X f dµ = 0 even though infX fn dµ = ∞ for

all n ∈N. �

Exercise 1.8 Put fn = χE if n is odd, fn = 1− χE is n is even. What
is the relevance of this example to Fatou’s lemma?

� Solution Note that for every x ∈ X, fn(x) is either the sequence
{0, 1, 0, 1, . . . } or {1, 0, 1, 0, . . . }, hence lim infn→∞ fn = 0. On the other
hand, lim infn→∞

∫
X fn dµ = min{µ(E), 1− µ(E)}. Therefore, if we let
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E ∈ M be a set with µ(E) ∈ (0, 1) we see the inequality in Fatou’s
lemma can be strict. �

Exercise 1.9 Suppose µ is a positive measure on X, f : X → [0, ∞]

is measurable,
∫

X f dµ = c, where 0 < c < ∞, and α is a constant.
Prove that

lim
n→∞

∫
X

n · log
(

1 +
(

f
n

)α )
dµ =


∞, if 0 < α < 1;

c, if α = 1;

0, if 1 < α < ∞.

Hint: If α ≥ 1, the integrands are dominated by α f . If α < 1, Fatou’s
lemma can be applied.

� Solution We will follow the hint. Let α ≥ 1, x ∈ X and y = f (x)/n.
In this case we will estimate limits to the integrands and we will use
the Lebesgue’s dominated convergence theorem. First we will prove
that 1 + y ≤ ey using the definition given in the prologue of the book.

1 + y ≤ 1 + y +
y2

2
+

y3

6
+ · · · =

∞

∑
n=0

yn

n!
= exp(y) = ey.

Now we will show that 1 + yα ≤ (1 + y)α. For this purpose define
ψ : (0, ∞) → R1 such that ψ(t) = (1 + t)α − tα − 1, ∀t ∈ (0, ∞). It
is straightforward that ψ is differentiable and its derivative is ψ′ :
(0, ∞) → R1 such that ψ′(t) = α[(1 + t)α−1 − tα−1], ∀t ∈ (0, ∞). Since
α − 1 ≥ 0 and exponentials are monotonically strictly increasing
positive functions, we have that

(1 + t)α−1 ≥ tα−1 ⇒ ψ′(t) ≥ 0,

for all t ∈ (0, ∞). Thus ψ is a non-decreasing function and it follows
that ψ(t) ≥ lim

s→0
ψ(s) = 0, ∀t ∈ (0, ∞). In particular,

(1 + y)α − yα − 1 = ψ(y) ≥ 0 ⇒ (1 + y)α ≥ 1 + yα.

Therefore, 1 + yα ≤ (1 + y)α ≤ (ey)α = eαy. Applying the (strictly
increasing) natural logarithm function gives us

log
(

1 +
[

f (x)
n

]α)
= log(1 + yα) ≤ αy = α · f (x)

n

and it follows that n · log
(

1 +
[

f (x)
n

]α)
≤ α f (x).

For each n = 1, 2, 3..., let ϕn : X → [0, ∞] be such that, ∀x ∈ X,

ϕn(x) = n · log
(

1 +
[

f (x)
n

]α )
. By theorem 1.7 (b), {ϕn} is a sequence

of measurable functions on X. If α = 1, then, for all x ∈ X,

f (x) = 0 ⇒ lim
n→∞

ϕn(x) = lim
n→∞

n · log
(

1 +
f (x)

n

)
= 0 = f (x)
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and, if f (x) > 0, we change variables ξ = n/ f (x) to compute

lim
n→∞

ϕn(x) = lim
n→∞

n · log
(

1 +
f (x)

n

)
= lim

n→∞
log
([

1 +
f (x)

n

]n )
= log

(
lim
n→∞

[
1 +

f (x)
n

]n )

= log

[ lim
ξ→∞

(
1 +

1
ξ

)ξ
] f (x)


= log

(
e f (x))

= f (x).

Where lim
ξ→∞
ξ∈R1

(
1 +

1
ξ

)ξ

= lim
k→∞

k=1,2,3,...

(
1 +

1
k

)k

= e =
∞

∑
k=0

1
k!

can easilly be

shown using the squeeze theorem and theorem 3.31 of the book
Principles of Mathematical Analysis 3

rd ed. (pg. 64) by the same author.
Thus α = 1 ⇒ lim

n→∞
ϕn = f .

If 1 < α < ∞, then, for all x ∈ X,

f (x) = 0 ⇒ lim
n→∞

ϕn(x) = lim
n→∞

n · log
(

1 +
[

f (x)
n

]α )
= 0

and, if f (x) > 0, again change variables s = [ f (x)]α/nα to compute

lim
n→∞

log
(

1 + [ f (x)]α
nα

)
[ f (x)]α/nα

= lim
s→0

log(1 + s)− log(1)
s

= (log)′(1) = 1,

then notice that lim
n→∞

[ f (x)]α

nα−1 = 0 to conclude

lim
n→∞

ϕn(x) = lim
n→∞

n · log
(

1 +
[

f (x)
n

]α )

= lim
n→∞

[ f (x)]α

nα−1 ·
log
(

1 + [ f (x)]α
nα

)
[ f (x)]α/nα

= 0.

Thus 1 < α < ∞ ⇒ lim
n→∞

ϕn = 0.

Since |ϕn(x)| ≤ α f (x), ∀x ∈ X, for all n = 1, 2, 3, ..., and α f ∈ L1(µ),
by the Lebesgue’s dominated convergence theorem it follows that

lim
n→∞

∫
X

ϕn dµ =
∫

X

(
lim
n→∞

ϕn

)
dµ =


∫

X f dµ = c, if α = 1;∫
X 0 dµ = 0, if 1 < α < ∞.
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Let 0 < α < 1 and x ∈ X. Now we will compute the limit inferior of
the sequence {ϕn} to use Fatou’s lemma. If f (x) = 0, then

lim inf
n→∞

ϕn(x) = lim inf
n→∞

n · log
(

1 +
[

f (x)
n

]α )
= lim inf

n→∞
n · log(1 + 0)

= lim inf
n→∞

0

= 0.

If f (x) > 0, again we have

lim
n→∞

log
(

1 + [ f (x)]α
nα

)
[ f (x)]α/nα

= (log)′(1) = 1,

but now α− 1 < 0, which implies

lim
n→∞

[ f (x)]α

nα−1 = lim
n→∞

n1−α[ f (x)]α = ∞.

It follows that

lim inf
n→∞

ϕn(x) = lim
n→∞

[ f (x)]α

nα−1 ·
log
(

1 + [ f (x)]α
nα

)
[ f (x)]α/nα

= ∞.

Let E = f−1 ({0}). We got the function lim inf
n→∞

ϕn : X → [0, ∞] such
that, ∀x ∈ X,

lim inf
n→∞

ϕn(x) =

0, if x ∈ E;

∞, x /∈ E.

That is, lim inf
n→∞

ϕn = ∞ · χEc . Since
∫

X f dµ = c > 0 we have that

µ (Ec) > 0. Hence∫
X

(
lim inf

n→∞
ϕn

)
dµ =

∫
X

∞ · χEc dµ =
∫

Ec
∞ dµ = ∞ · µ (Ec) = ∞.

By Fatou’s Lemma,

∞ =
∫

X

(
lim inf

n→∞
ϕn

)
dµ ≤ lim inf

n→∞

∫
X

ϕn dµ.

Therefore lim
n→∞

∫
X

ϕn dµ = lim inf
n→∞

∫
X

ϕn dµ = ∞ and we are done. �

Exercise 1.10 Suppose µ(X) < ∞, { fn} is a sequence of bounded
complex measurable functions on X, and fn → f uniformly on X.
Prove that

lim
n→∞

∫
X

fn dµ =
∫

X
f dµ,

and show that the hypothesis "µ(X) < ∞" cannot be omitted.
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� Solution Let ε > 0. By the uniform convergence of { fn}, there
exists N ∈N such that

| fn(x)− f (x)| < ε, for all n ≥ N and all x ∈ X.

By the reverse triangle inequality, | f (x)| < | fN(x)|+ ε and | fn(x)| <
| f (x)|+ ε. Thus

| fn(x)| < | fN(x)|+ 2ε, for all n ≥ N and all x ∈ X.

We conclude that

| fn(x)| ≤ max{| f1(x)|, . . . , | fN−1(x)|, | fN(x)|+ 2ε}.

Denoting the function on the right side by g, we have that g is bounded
and hence in L1(µ) since µ(X) is finite. Lebesgue’s Dominated Con-
vergence Theorem now applies.

We show that the hypothesis "µ(X) < ∞" is necessary by consid-
ering X = N endowed with the counting measure. If fn(x) = 1/n,
then

lim
n→∞

∫
X

fn dµ = lim
n→∞

∞

∑
i=1

1
n
= ∞

while
∫

X f dµ = 0 since f = 0. �

The set A is
usually denoted by

lim sup
k→∞

Ek.

Exercise 1.11 Show that

A =
∞⋂

n=1

∞⋃
k=n

Ek

in Theorem 1.41 and hence prove the theorem without any reference
to integration.

When µ is a
probability, viz.
µ(X) = 1, this
result is called
Borel-Cantelli

lemma.

Theorem 1.41 Let {Ek} be a sequence of measurable sets in X, such
that

∞

∑
k=1

µ(Ek) < ∞.

Then almost all x ∈ X lie in at most finitely many of the sets Ek.

� Solution Let A be as in the proof of Theorem 1.41, then

x ∈ A ⇐⇒ x lie in infinitely many Ek

⇐⇒ ∀n, ∃k ≥ n such that x ∈ Ek

⇐⇒ ∀n x ∈
∞⋃

k=n

Ek

⇐⇒ x ∈
∞⋂

n=1

∞⋃
k=n

Ek.

Let An =
⋃∞

k=n Ek. Then A =
⋂∞

n=1 An, An ∈M,

A1 ⊃ A2 ⊃ A3 ⊃ · · · ,
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and µ(A1) ≤ ∑∞
n=1 µ(Ek) < ∞. Therefore,

µ(A) = lim
n→∞

µ(An)

≤ lim
n→∞

∞

∑
k=n

µ(Ek)

= 0

and the result follows. �

Exercise 1.12 Suppose f ∈ L1(µ). Prove that to each ε > 0 there
exists a δ > 0 such that

∫
E | f | dµ < ε whenever µ(E) < δ.

� Solution Consider the family of functions gn : X → (−∞, ∞),
defined by

gn(x) =

| f (x)|, if | f (x)| ≤ n

n, otherwise.

All functions gn are measurable, and as a sequence it converges to
| f |, pointwise. Therefore, using Lebesgue’s monotone convergence
theorem, given any ε > 0, there exists a positive integer n0 such that∣∣∣∣∫E

| f | dµ−
∫

E
gn0 dµ

∣∣∣∣ < ε

2
.

On the other hand, for each n = 1, 2, 3, . . . , gn is bounded by n.
Therefore, if s denotes a simple function such that 0 ≤ s ≤ gn0 with
constant values αi on sets Ai, the sums used to define the integral of
gn0 satisfy

∑
i

αiµ(Ai ∩ E) ≤ n0µ(E).

If δ = ε
2n0

and µ(E) < δ, then n0µ(E) < ε
2 , and since the definition

of the integral of g0 over E is the supremum of the sums of the form
above, one has that ∫

E
gn0 dµ <

ε

2

whenever µ(E) < δ.
Now, using the triangle inequality,∫

E
| f | dµ =

∣∣∣∣∫E
| f | dµ−

∫
E

gn0 dµ +
∫

E
gn0 dµ

∣∣∣∣
≤
∣∣∣∣∫E
| f | dµ−

∫
E

gn0 dµ

∣∣∣∣+ ∣∣∣∣∫E
gn0 dµ

∣∣∣∣
<

ε

2
+

ε

2
= ε,

as it was wanted to prove. �
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Exercise 1.13 Show that Proposition 1.24(c) is also true when c =
∞.

� Solution We recall Proposition 1.24(c): if f ≥ 0 and c is a constant,
0 ≤ c < ∞, then ∫

E
c f dµ = c

∫
E

f dµ

for every measurable set E.
There are two cases when c = ∞. Firstly, if

∫
E f dµ = 0, then f = 0

a.e. and so c f = 0 almost everywhere. We conclude that∫
E

c f dµ = 0 = c
∫

E
f dµ.

Otherwise, there exist a number ε > 0 and a measurable set E such
that µ(E) > 0 and f (x) > ε for all x ∈ E. (If this weren’t true, we
would have f (x) < ε for all ε > 0 and thus f = 0 a.e..) Then,∫

E
c f dµ > ε

∫
E

c dµ = ∞.

The result follows since c
∫

E f dµ = ∞. �



2
P O S I T I V E B O R E L M E A S U R E S

Exercise 2.1 Let { fn} be a sequence of real nonnegative functions
on R1, and consider the following four statements:

(a) If f1 and f2 are upper semicontinuous, then f1 + f2 is upper
semicontinuous.

(b) If f1 and f2 are lower semicontinuous, then f1 + f2 is lower
semicontinuous.

(c) If each fn is upper semicontinuous, then ∑∞
1 fn is upper semi-

continuous.

(d) If each fn is lower semicontinuous, then ∑∞
1 fn is lower semi-

continuous.

Show that three of these are true and that one is false. What happens
if the word "nonnegative" is omitted? Is the truth of the statements
affected is R1 is replaced by a general topological space?

� Solution Roughly speaking,
a function f is
upper
semicontinuous if
for all x, the
function values for
arguments near x
are either close to
f (x) or are less
than f (x). An
analogous
characterization
holds for lower
semicontinuous
functions.

(a) We wish to prove that the set {x ∈ R1 : f1(x) + f2(x) < α} is
open for every real α. This set can be written as the union of

{x ∈ R1 : f1(x) < β} ∩ {x ∈ R1 : f2(x) < α− β}

for all real β. Since each one of these sets is open, so is their
union. It follows that f1 + f2 is upper semicontinuous.

(b) The same argument utilized in (a) works here.

(c) This is not true in general. As W. Rudin remarked in page 38,
characteristic functions of closed sets are upper semicontinuous.
We then let fn = χ[1/(n+1),1/n] for n ≥ 1. Since ∑∞

1 fn = χ(0,1] +

χ{1/k : k≥2}, which is not upper semicontinuous, this is a counter-
example. (Observe that {x ∈ R1 : ∑∞

1 fn < 1/2} = R1 \ (0, 1],
which is not open.)

(d) Let sk = ∑k
n=1 fn. By (b), sk is lower semi-continuous. Since sk is

increasing, supk sk = limk sk = ∑∞
n=1 fn. Now, as the supremum

of any collection of lower semicontinuous functions is lower
semicontinuous, the result follows.

In each of the cases where the result is true, we have not used the fact
that the functions are defined on R1. As for the nonnegativeness, the
first two items remain unchanged. However, (d) is no longer true!

11



12 positive borel measures

We present a counter-example. Since multiplying a upper semicon-
tinuous function by a negative number turns it into a lower semicon-
tinuous function, the functions f1 := χ(−1,1) and fn := −χ[1/(n+1),1/n],
for n > 1, are all lower semicontinuous. Then, since ∑∞

1 fn = χ(−1,0] +

χ(1/2,1) − χ{1/k : k≥3}, their sum is not lower semi-continuous. (Observe
that {x ∈ R1 : ∑∞

1 fn > 1/2} = (−1, 0] ∪ (1/2, 1) is not open.) �

Remark. If X is a metric space, a function f from X to the extended
real line is lower semicontinuous if and only if

lim inf
x→p

f (x) ≥ f (p)

for all p ∈ X. Similarly, it is upper semicontinuous if and only if

lim sup
x→p

f (x) ≤ f (p)

for all p ∈ X.

Exercise 2.2 Let f be an arbitrary complex function on R1, and
define

ϕ(x, δ) = sup{| f (s)− f (t)| : s, t ∈ (x− δ, x + δ)},
ϕ(x) = inf{ϕ(x, δ) : δ > 0}.

Prove that ϕ is upper semicontinuous, that f is continuous at a
point x if and only if ϕ(x) = 0, and hence that the set of points of
continuity of an arbitrary complex function is a Gδ.

Formulate and prove and analogous statement for general topo-
logical spaces in place of R1.

� Solution Let x be in the set V = {x : ϕ(x) < α}. Then there exists
δ such that ϕ(x, δ) < α. In this case, for every y ∈ (x− δ, x + δ), take
δ′ := δ− |y− x| > 0. Since (y− δ′, y + δ′) ⊂ (x− δ, x + δ), it follows
that ϕ(y) ≤ ϕ(y, δ′) ≤ ϕ(x, δ) < α and y ∈ V, which implies V is
open and ϕ is upper semicontinuous.

Let us prove the characterization of continuity points.
( =⇒ ) If f is continuous in x then, for every ε > 0, there exists

δ > 0 such that |x − t| < δ =⇒ | f (x)− f (t)| < ε. Hence, if s, t ∈
(x− δ, x + δ), then | f (s)− f (t)| ≤ | f (s)− f (x)|+ | f (x)− f (t)| < 2ε.
Since ε is arbitrary, ϕ(x) = 0.
(⇐= ) Since ϕ(x) = 0, for every ε > 0, we can find δ > 0 such that

ϕ(x, δ) < ε. Taking s = x we get |x− t| < δ =⇒ | f (x)− f (t)| < ε

proving the continuity of f at x.
Let Vn := {x : ϕ(x) < 1

n}. Then f is continuous in x if and only if
x ∈ ⋂∞

n=1 Vn, which is a Gδ set.
The desired analogue is the following.
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Let f be an arbitrary complex function on a topological space X,
and define

ϕ(V) = sup{| f (s)− f (t)| : s, t ∈ V}
ϕ(x) = inf{ϕ(V) : V neighborhood of x}.

Then ϕ is upper semicontinuous, f is continuous at a point x if
and only if ϕ(x) = 0, and hence the set of points of continuity of
an arbitrary complex function is a Gδ.

Let x be in the set W = {x : ϕ(x) < α}. Then there exists a
neighborhood of V of x such that ϕ(V) < α. In this case, for every
y ∈ V, V is also a neighborhood of y therefore

ϕ(y) ≤ ϕ(V) < α

and y ∈W, which implies W is open and ϕ is upper semicontinuous.
Let us prove the characterization of continuity points.
( =⇒ ) If f is continuous in x then, for every ε > 0, there exists a

neighborhood V of x such that f (V) ⊂ B( f (x), ε). Hence, if s, t ∈ V,
then | f (s)− f (t)| < diam B( f (x), ε) = 2ε. Since ε is arbitrary, ϕ(x) =
0.
( ⇐= ) Since ϕ(x) = 0, for every ε > 0, we can find V such that

ϕ(V) < ε. Taking s = x we get t ∈ V =⇒ f (t) ∈ B( f (x), ε) proving
the continuity of f at x.

Let Wn := {x : ϕ(x) < 1
n}. Then f is continuous in x if and only if

x ∈ ⋂∞
n=1 Wn, which is a Gδ set. �

Exercise 2.3 Let X be a metric space, with metric ρ. For any
nonempty E ⊂ X, define

ρE(x) = inf{ρ(x, y) : y ∈ E}.

Show that ρE is a uniformly continuous function on X. If A and B
are disjoint nonempty closed subsets of X, examine the relevance
of the function

f (x) =
ρA(x)

ρA(x) + ρB(x)

to Urysohn’s lemma.

� Solution First of all, note that

ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

for all x, y ∈ X and z ∈ E. Thus

ρE(x)− ρE(y) ≤ ρ(x, y)

and with a symmetric argument, we concluded

|ρE(x)− ρE(y)| ≤ ρ(x, y).
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In other words, ρE is a Lipschitz function and therefore, an uniformly
function.

�

Exercise 2.4 Examine the proof of the Riesz theorem and prove
the following two statements:

(a) If E1 ⊂ V1 and E2 ⊂ V2, where V1 and V2 are disjoint open
sets, then µ(E1 ∪ E2) = µ(E1) + µ(E2), even if E1 and E2 are
not in M.

(b) If E ∈ MF, then E = N ∪ K1 ∪ K2 ∪ · · · , where {Ki} is a
disjoint countable collection of compact sets and µ(N) = 0.

� Solution

(a)Recall that for any
subset E, µ(E) is

defined as the
infimum of µ(V)

for open sets V
containing E.

Firstly, by the first step of the proof we have that µ(E1 ∪ E2) ≤
µ(E1) + µ(E2) for all subsets of X. Now, let V be any open set
containing E1 ∪ E2. We may assume that V is a subset of V1 ∪V2,
as V ∩ (V1 ∪V2) is still an open set containing E1 ∪ E2. Since V1

and V2 are disjoint,

µ(V) = µ(V ∩V1) + µ(V ∩V2) ≥ µ(E1) + µ(E2).

Taking the infimum of all open V containing E1 ∪ E2, we have
that

µ(E1 ∪ E2) ≥ µ(E1) + µ(E2).

The result follows.

(b)Recall that MF is
the class of all E

with finite measure
such that µ(E) is

equal to the
supremum of µ(K)
for compact sets K

contained in E.

Let E1 = E. By step V in the proof, there is a compact K1 and
an open set V1 such that

K1 ⊂ E1 ⊂ V1 and µ(V1 − K1) < 1.

Step VI now implies that E2 := E1 − K1 is in MF. Inductively we
find compacts Kn and open sets Vn such that

Kn ⊂ En ⊂ Vn and µ(Vn − Kn) < 1/n

for En := En−1 − Kn−1. We now set N = E−⋃n Kn. By construc-
tion, {Kn} is a disjoint countable collection of compact sets, all
contained in E. Lastly, since N ⊂ Vn − Kn, µ(N) < 1/n for all n.
The result follows. �

Exercise 2.5 Let E be a Cantor’s familiar "middle thirds" set. Show
that m(E) = 0, even though E and R1 have the same cardinality.

� SolutionWe use the
notation of Rudin’s

Principles of
Mathematical

Analysis, excluding
only the fact that it

denotes Cantor’s
set by P.

Let En be the n-th step in the construction of the Cantor
set. Since E =

⋂
n En and En+1 ⊂ En, it follows that m(E) = limn m(En).

Furthermore, En is the union of 2n disjoint intervals, each one of
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length 1/3n. This implies that m(En) = (2/3)n and so m(E) = 0. Now,
Rudin’s first book, Principles of Mathematical Analysis, shows that E
is a perfect subset of R. We conclude that E and R have the same
cardinality. �

Exercise 2.6 Construct a totally disconnected compact set K ⊂ R1

such that m(K) > 0. (K is to have no connected subset consisting of
more than one point.)

If v is lower semicontinuous and v ≤ χK, show that actually
v ≤ 0. Hence χK cannot be approximated from below by lower
semicontinuous functions, in the sense of the Vitali-Carathéodory
theorem.

� Solution We’ll construct a variation of the familiar Cantor set by
removing middle fourths instead of middle thirds. This variation, and
modifications thereof, is named fat Cantor set or Smith-Volterra-Cantor
set.

As described, we begin with K0 = [0, 1]. Inductively we define Kn+1

to by removing the middle fourth of every connected component of
Kn. That is, we remove the middle open interval of length 1/4n+1 of
each one of the 2n connected components of Kn. Finally, we let

K =
∞⋂

n=0

Kn.

Being the intersection of closed sets and bounded, K is compact. Also,
since in every step we divide each connected subset into two pieces,
K has no connected subset consisting of more than one point. Lastly,
since we started with a set of measure 1 and in each step removed 2n

intervals of length 1/4n+1, we have that

m(K) = 1−
∞

∑
n=0

2n

4n+1 =
1
2

.

If v is lower semicontinuous and v ≤ χK, then the set

{x ∈ R1 : v(x) > 0}

is open and a subset of K. The fact that K contains no intervals implies
that this set is empty. It follows that v ≤ 0. �

Exercise 2.7 If 0 < ε < 1, construct an open set E ⊂ [0, 1] which
is dense in [0, 1], such that m(E) = ε. (To say that A is dense in B
means that the closure of A contains B.)

� Solution Removing
intervals of length
αn+1 in each step
we get a set with
measure
(1− 3α)/(1− 2α),
which can be any
number from 0 to 1
by choosing some
α ∈ (0, 1/3).

Using variations of the fat Cantor set constructed in the
preceding exercise we can have totally disconnected compact subsets
of [0, 1] with any measure in (0, 1).

Let K be such a set with measure 1− ε. Since K is closed and totally
disconnected, its complement [0, 1]− K is the desired open subset of
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[0, 1] which is dense and has measure ε. In fact, it is dense since K has
empty interior and the closure of the complement is the complement
of the interior. �

Exercise 2.8 Construct a Borel set E ⊂ R1 such that

0 < m(E ∩ I) < m(I)

for every nonempty segment I. Is it possible to have m(E) < ∞ for
such a set?

� SolutionThis result is
basically an article

by W. Rudin
himself. (Amer.

Math. Monthly, vol.
90, no. 1, 1983, pp.

41–42.) We adapted
his proof (done for
the interval [0, 1] in

the place of the
real line).

Let V1, V2, . . . be a countable base for the topology of R.
Since every interval contains a fat Cantor set, we define A1 and B1 to
be disjoint fat Cantor sets contained in V1. As V2 − (A1 ∪ B1) is open,
it contains another two disjoint fat Cantor sets A2 and B2. Inductively
we construct disjoint fat Cantor sets An and Bn, subsets of

Vn −
(

n−1⋃
k=1

(Ak ∪ Bk)

)
.

We set

E =
∞⋃

n=1

An.

If I is a nonempty segment, then it contains at least one Vn. So, it
contains An and Bn. Thus,

0 < m(An) ≤ m(E ∩ I) < m(E ∩ I) + m(Bn) ≤ m(I),

where the last inequality follows from the fact that Bn and Am are
disjoint for all m.

Finally, E can be constructed in such a way to have a finite mea-
sure. Following the discussion about fat Cantor sets in the preceding
exercises, we can make {m(An)} be a summable sequence. Then
m(E) ≤ ∑n m(An) < ∞. �

Exercise 2.9 Construct a sequence of continuous functions fn on
[0, 1] such that 0 ≤ fn ≤ 1, such that

lim
n→∞

∫ 1

0
fn(x) dx = 0,

but such that the sequence { fn(x)} converges for no x ∈ [0, 1].

� Solution For each n = 1, 2, 3, ... and each m = 0, 1, ..., n− 1 let

Vn
m =

(
−1 + m · 3

n
,−1 + (m + 1) · 3

n

)
=

(
3m− n

n
,

3m− n + 3
n

)



positive borel measures 17

and

Kn
m =

[
−1 + m · 3

n
+

1
2n

,−1 + (m + 1) · 3
n
− 1

2n

]
=

[
6m− 2n + 1

2n
,

6m− 2n + 5
2n

]
.

It is easy to see that

Kn
m ⊂ Vn

m ⊂ (−1, 2) ⊂ [−1, 2] (m = 0, 1, ..., n− 1 and n = 1, 2, 3, ...).

Fixing a positive integer n a an integer m with 0 ≤ m ≤ n− 1, the
construction made explicit in the proof of the Urysohn’s Lemma
(theorem 2.12) provides a function gn

m ∈ Cc[−1, 2] such that Kn
m ≺

gn
m ≺ Vn

m. Let f n
m be the restriction of gn

m to [0, 1], for all n = 1, 2, 3, ...
and all m = 0, 1, ..., n− 1. The sequence { f n

m} is exactly what we are
looking for. Indeed, for each positive integer n and all m = 0, 1, ..., n−
1, we have χ[0,1]∩Kn

m
≤ f n

m ≤ χ[0,1]∩Vn
m

, which implies

0 ≤
∫ 1

0
f n
m dx ≤

∫ 1

0
χVn

m
dx ≤

∫ 2

−1
χVn

m
dx =

3
n

.

Then clearly lim
n→∞

∫ 1

0
f n
m(x) dx = 0.

It is straightforward that Kn
m ⊂

(
−1, 2m+1

m+1

]
, for all m = 0, 1, 2, ...

and all n = m + 1, m + 2, ... So
∞⋃

n=m+1

Kn
m ⊂

(
−1,

2m + 1
m + 1

]
, for all

m = 0, 1, 2, ... We claim that

∞⋃
n=m+1

Kn
m =

(
−1,

2m + 1
m + 1

]
, m = 0, 1, 2, ...

First notice that Km+2
m ∩ Km+1

m =
[ 2m−1

m+2 , 2m+1
m+1

]
6= ∅, since 2m2 + m−

1 = (2m − 1)(m + 1) < (2m + 1)(m + 2) = 2m2 + 5m + 2. Suppose
that Km+(k+1)

m ∩ Km+k
m = [] 6= ∅

Indeed, let x ∈
(
−1, 2m+1

m+1

]
.

�

Exercise 2.10 If { fn} is a sequence of continuous functions on [0, 1]
such that 0 ≤ fn ≤ 1 and such that fn(x)→ 0 as n→ ∞, for every
x ∈ [0, 1], then

lim
n→∞

∫ 1

0
fn(x) dx = 0.

Try to prove this without using any measure theory of any theorems
about Lebesgue integration. (This is to impress you with the power
of the Lebesgue integral. A nice proof was given by W. F. Eberlein in
Communications on Pure and Applied Mathematics, vol. X, pp. 357-360,
1957.)
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� Solution Let us first state some basic results about integration.
Remember the space of continuous functions on [0, 1] is an inner
product space with the inner product ( f , g) :=

∫ 1
0 f (x)g(x) dx, and

denote ‖ f ‖∞ := sup[0,1] f (x), ‖ f ‖1 :=
∫ 1

0 | f | dx and ‖ f ‖2 := ( f , f )
1
2 =(∫ 1

0 f (x)2 dx
) 1

2
. Then, by the linear algebra classes,

(a) (Cauchy-Schwarz Inequality) |( f , g)| ≤ ‖ f ‖2 · ‖g‖2,

(b) (Parallelogram Law) ‖ f + g‖2
2 + ‖ f − g‖2

2 = 2
(
‖ f ‖2

2 + ‖g‖2
2
)
,

(c) ‖ f ‖1 = (| f |, 1) ≤ ‖ f ‖2 · ‖1‖2 = ‖ f ‖2,

and by the basics of the integration theory

‖ f ‖1 ≤ ‖ f ‖∞,

‖ f ‖2 ≤ ‖ f ‖2
∞.

We will also need the following lemma.

Lemma. If | f | ≤ ∑∞
n=1| fn|, then∫ 1

0
| f (x)| dx ≤

∞

∑
n=1
| fn(x)| dx.

Its proof is simple: given ε > 0, for each x ∈ [0, 1] there exists an
N(x) such that | f (x)| < ∑N(x)

n=1 | fn(x)|+ ε. Since all of these functions
are continuous, there exists an neighborhood U(x) of x such that
there inequality is still valid. Since the set is compact, there is a finite
cover {U(xi)} and if we let N = max{N(xi)}, then | f | < ∑N

n=1| fn|+ ε,
which implies the desired result.

Let’s return to the problem. Since ‖ fn‖∞ ≤ 1, then ‖ fn‖1 ≤ 1
and its lim sup is well-defined. Moreover, it is sufficient to prove
the lim sup is equal to 0 to conclude the result. Suppose {‖ fn‖1}
converges to the lim sup (otherwise pass to a subsequence). Define Kn

as the convex hull of the set { fm : m ≥ n} (i.e., the set of all functions
of the form ∑ aj fmj for aj ≥ 0, ∑ aj = 1 and mj ≥ n. Clearly, any
sequence {gn} such that gn ∈ Kn satisfies the same hypothesis of fn.
Let dn := inf{‖g‖2 : g ∈ Kn}. Since Kn+1 ⊂ Kn, then dn ≤ dn+1 ≤ 1,
and d = limn dn is well-defined. Now choose gn ∈ Kn such that
‖gn‖2 ≤ dn +

1
n .

Lemma. limn,m‖gn − gm‖2 = 0.

Its proof is a famous trick in the Hilbert Space Theory. By the parallel-
ogram law,

‖gn − gm‖2
2 = 2

(
‖gn‖2

2 + ‖gm‖2
2
)
− 4
∥∥∥∥ gn + gm

2

∥∥∥∥2

2
.
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If n ≥ m, then gn+gm
2 ∈ Km and∥∥∥∥ gn + gm

2

∥∥∥∥ ≥ dm.

Thus

‖gn− gm‖2
2 ≤ 2

((
dn +

1
n

)2

+

(
dm +

1
m

)2
)
− 4d2

m → 4d2− 4d2 = 0,

as m, n→ ∞ (and n ≥ m).
Now, let {hn} be a subsequence of {gn} such that

∞

∑
n=1
‖hn − hn+1‖2 < ∞.

(Take, for example, kn such that ‖gi − gj‖2 < 1
2n if i, j ≥ kn). Since

lim hn = 0, then hn = ∑∞
m=n(hm − hm+1) and |hn| = ∑∞

m=n|hm − hm+1|,
and we can use the first lemma to conclude

‖hn‖1 ≤
∞

∑
m=n
‖hm − hm+1‖ → 0

as n → ∞. Since, by hypothesis, ‖hn‖ → lim supn{‖ fn‖1}, we con-
clude the solution. �

Exercise 2.11 Let µ be a regular Borel measure on a compact
Hausdorff space X; assume µ(X) = 1. Prove that there is a compact
K ⊂ X (the carrier or support of µ) such that µ(K) = 1 but µ(H) <

1 for every proper compact subset H of K. Hint: Let K be the
intersection of all compact Kα with µ(Kα) = 1; show that every
open set V which contains K also contains some Kα. Regularity of
µ is needed; compare Exercise 18. Show that Kc is the largest open
set in X whose measure is 0.

� Solution Let K =
⋂

Kα be the intersection of all compact Kα such
that µ(Kα) = 1. By definition, if H is a proper compact subset of K,
then µ(H) < 1. In this case, it follows also that Kc is the largest open
set in X whose measure is 0, otherwise if V is open and V 6⊂ Kc, then
Vc ∩ K is a compact set strictly contained in K whose measure is 1.
It is only left to prove µ(K) = 1. We’ll need the following theorem,
present in Rudin’s Principles of Mathematical Analysis (although only
for metric spaces).

Theorem 2.1 Finite Intersection Characterization. If {Kα} is a collec-
tion of compact subsets of a compact topological space X such that
the intersection of every finite subcollection of {Kα} is nonempty,
then

⋂
Kα is nonempty.

Let V be an open set containing K. Then {Kα} and Vc form a
collection of compact sets whose intersection is empty. Therefore there
exists a finite subcollection whose intersection is finite.
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Since µ(Ki1 ∩ · · · ∩ Kin) = 1 (and, therefore, this set is not empty),
this subcollection must contain Vc, and K̃ = Ki1 ∩ · · · ∩Kin is a compact
set such that µ(K̃) = 1 and K̃ ⊂ Vc = ∅, i.e., K̃ ⊂ V. Therefore
µ(V) = 1. Since K ⊂ V is an arbitrary open set, then

µ(K) = inf{µ(V) : K ⊂ V, V is open}

and the proof is complete. �

Remark. The support of a measure is something more general. For
any measure µ in a topological space (X, τ), we define

supp(µ) = {x ∈ X : x ∈ V ∈ τ =⇒ µ(V) > 0}.

This idea is important to carry measure-theoretic properties of
f to topological properties of f

∣∣
supp(µ).

For example, in Dynamical Systems, it is the bridge between Er-
godic Theory (which studies measure-preserving transformations)
and Topological Dynamics (which studies continuous transforma-
tions).

Exercise 2.12 Show that every compact subset of R1 is the support
of a Borel measure.

� Solution Let K ⊂ R1 be compact. Since R1 is a metric space, K is
separable. Let S ⊂ K be a countable dense subset:

S =
∞⋃

i=1

pi.

Now let µi be the unit mass (Borel) measure concentrated at pi.
Define µ : B → [0, ∞] as the sum of these measures:

µ :=
∞

∑
i=1

µi.

An enumerable sum of measures is again a measure, therefore µ is a
Borel measure.

Since S was dense in K and is the set where µ > 0, supp µ = K,
which is what was to be proved. �

Exercise 2.13 Is it true that every compact subset of R1 is the
support of a continuous function? If not, can you describe the
class of all compact sets in R1 which are supports of continuous
functions? Is your description valid in other topological spaces?

� Solution Since the support of a continuous function f is the closure
of

{x : f (x) 6= 0} = f−1(R1 \ {0}),
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every support is the closure of an open set. This obviously is not the
case for a singleton, for example. However, every compact which is
the closure of an open set is the support of a continuous function.
In fact, if V is open and K = V is compact, then x 7→ d(x, R1 \V) is
continuous with support K.

The same argument holds for functions f : X → R1, where X is a
metric space. Also, this characterization holds for every subset of X,
not just the compact ones.

To study this property for more general spaces, let us first introduce
some definitions.
Definition Let X be a topological space.

(a) The space X is called normal if every two disjoint closed sets
of X have disjoint open neighborhoods.

(b) The space X is called T4 if it is normal and Hausdorff.

(c) The space X is called completely normal or hereditarily normal if
every subspace of X with the subspace topology is normal.

(d) The space X is called completely T4 or T5 if it is completely
normal and Hausdorff.

(e) The space X is called perfectly normal if it is normal and every
open set is Fσ (equivalently, if every closed set is Gδ).

(f) The space X is called perfectly T4 or T6 if it is perfectly normal
and Hausdorff.

We can now enunciate Urysohn’s lemma in its full generality.

Lemma. (Urysohn’s Lemma). If A and B are closed sets in a normal
space X, then there exists a continuous function f : X → [0, 1] such
that f (a) = 0 for every a ∈ A and and f (b) = 1 for every b ∈ B.

In particular, Theorem 2.12 is valid for every normal space (even if
the compact subset K is changed to closed subset).

With this result in mind, we can prove this characterization is always
valid for every perfectly normal space X. In fact, let V be an open set
of X and {Cn} be the sequence of closed sets such that

⋃
n Cn = V. By

Urysohn’s lemma, for each Cn, there exists a function fn : X → [0, 1]
such that fn(x) = 1 for every x ∈ Cn and the support of fn lies is V.
Therefore, the functions f : X → [0, 1] defined by

f (x) =
∞

∑
n=1

fn(x)
2n

is a continuous function, by Weierstrass M-test, and its support is V.
Moreover, since every metric space is always perfectly normal, this
case includes the previous one.



22 positive borel measures

As the reader may have noticed, there is an even more general
characterization, which we have essentially proved.

Lemma. A subset A of a normal space X is the support of a continu-
ous function f : X → [0, 1] if and only if it is the closure of an open
Fσ-set.

To find a strange pathology for our initial conjecture, C is the
support of a continuous function if and only if it is the closure of an
open set, we will find an open set which is not Fσ in a normal space.

Let ω1 be the first uncountable ordinal. Then Ω = S(ω1) = ω1 ∪
{ω1} is the second uncountable ordinal (its successor), and we can
endow with the order topology with max Ω = ω1. This space is Haus-
dorff, as any other space with the order topology, and compact. In
fact, let C be a open cover of Ω. Since ω1 ∈ Ω, there exists a0 ∈ Ω
such that (a0, ω1] is in the open cover, further there exists a1 < a0 such
that a0 ∈ (a1, b1) (for some b1) or a0 ∈ (a1, ω1], and so on. Since Ω is
well-ordered, this process must stop. Finally, there exists an open set
of the form [0, b) containing 0, and it must also contain an because it
is minimal in our procedure; hence we have found our finite subcover.
Moreover - and this is the most important step - any continuous func-
tion f : Ω→ R is constant on a neighborhood of ω1. To prove this, let
f (ω1) = α and consider the sets f−1 ((α− 1

n , α + 1
n

))
= An ⊃ (an, ω1]

with an ≤ an+1. If an → ω1, then ω1 =
⋃

n an, which is impossible,
since the sets an are countable, but ω1 is uncountable. Therefore,
sup an = a < ω1, and (a, ω1] =

⋂
n(an, ω1] ⊂ f−1(α). Furthermore, Ω

is a T5-space, as is every space endowed with the order topology (in
particular, it is normal). Now let X1 and X2 be two disjoint copies of Ω
and x1 and x2 be its maxima, respectively, and let X be the quotient of
X1 ∪ X2 with respect to the equivalence relation x1 ∼ x2 ("glue" these
points).

X1

X2

• x1 = x2
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Then X is normal, since union of normal spaces is normal, and
quotient by closed set/equivalence relation is also normal. Moreover,
X contains a copy of X1 in it, viz. X1 = {x ∈ X1 : x < x1} ∪ {x1} =
{x ∈ X1 : x < x1}, which is compact and the closure of an open set.
Nonetheless, this copy is not the support of any continuous function.
Indeed, suppose X1 is the closure of a continuous function f : X → R.
Then f (x) = 0 in the interior of X2. As we have seen, this implies
f (x1) = 0. Yet f is constant in a neighborhood of x1, therefore the
support of f is strictly smaller then X1. This happens because the
interior of X1 is not Fσ, otherwise, as we have argued above, ω1 =⋃

n an for some an countable.
Moreover, there is some related result for different spaces.

Lemma. Let X be a locally compact Hausdorff space. A compact
space K is the support of a continuous function if and only if it is
the closure of an open Fσ-set.

Observe the condition is necessary for the set to be the support of a
function in any topological space. In fact, it is the closure of an open
set, by the first observation in this solution, and this open set is Fσ,
since

f−1(R1 \ {0}) =
∞⋃

n=1

f−1(R1 \ (−1/n, 1/n)).

Reciprocally, if K is compact, this property is sufficient. In effect, for
each x ∈ K, let V(x) be and open neighborhood with compact closure.
Since K is compact and these neighborhoods cover K, there exists a
finite cover whose union we call V, which satisfies that V is compact.
Moreover, K is the closure of an open Fσ-set in V and, since V is
Hausdorff and compact, it is also normal. Hence by what we have
already proved, K is the support of a continuous function defined in
V, but we can extend this function to the whole space defining it to be
0 outside V, and we have proved the lemma.

Nonetheless, this characterization may not be useful or even true
in some more general spaces. For example, first note that there are
topological spaces such that there does not exists nonempty compact
spaces K such that K is the support of a continuous function. For
example, endow R with the co-countable topology defined by E ⊂ R is
open if and only if E = R or Ec is countable (we leave to the reader
the task of showing this is in fact a topology). In this topology the only
compact subsets are the finite ones. On the other hand, if V is a non-
empty open set, then V must be the whole space X. Thus the support
of a continuous function is either ∅ or X, and no non-empty compact
set can be the support of a continuous function (more generally, every
real-valued continuous function in this space is constant).

Actually, this is a particular case of a more general result.
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Lemma. Let X is a topological space and x ∈ X such that for every
open set V and every neighborhood N(x) of x, V ∩ N(x) 6=. Then
every continuous function f : X → R is constant. (Actually, this
holds for every continuous function f : X → Y for any Hausdorff
space Y.)

In fact, suppose y ∈ X is such that f (y) 6= f (x). Then there exists
disjoint neighborhoods U, V of f (y) and of f (x), but then f−1(U) and
f−1(V) are disjoint. A contradiction, since f−1(V) is a neighborhood
of x.

Thus we may try to find some pathological spaces with this property.
In fact, given a topological space X, define its one-point compactification
(also called Alexandroff compactification) X∗ as the set X∗ = X ∪ {∞} for
some ∞ /∈ X endowed with the topology generated by the open sets of
X and the sets X∗ − K for some compact set K ⊂ X. Out final example
will be Q∗, the one-point compactification of the rational numbers.
Note that every compact set K in Q has empty interior. In fact, if
(a, b) ⊂ K, let α be some irrational number in (a, b). Then the function
f : K → R defined by f (x) = 1

x−α is continuous and unbounded.
Now, observe that Q∗ satisfies the hypothesis of our lemma with
x = ∞. In fact, if V ∩ N(∞) = ∅ for some open set V and some
neighborhood N(∞) = Q∗ − K, then V ⊂ K, which cannot happen.
Therefore every real-valued continuous function on Q∗ is constant.
On the other hand, given any open set V ⊂ Q which is not dense, for
example V = (0, 1) ∩Q, then clQ∗(V) = cl(V) ∪ {∞} 6= Q∗ is not the
support of a continuous function. Thus we have found a compact T1

topological space Q∗ and a compact subset ([0, 1] ∩Q) ∪ {∞} whose
interior is an open Fσ-set (since Q is countable). �

Exercise 2.14 Let f be a real-valued Lebesgue measurable function
on Rk. Prove that there exist Borel functions g and h such that
g(x) = h(x) a.e. [m], and g(x) ≤ f (x) ≤ h(x) for every x ∈ Rk.

� Solution Assume first that f ≥ 0 and let {sn}, En,i and Fn be as
in the proof of Theorem 1.17. Since Rk is σ-compact, we can use
Theorem 2.17 to conclude there are An,i and Bn,i Borel measurable sets
such that An,i ⊂ En,i ⊂ Bn,i and m(Bn,i − An,i) = 0, and similarly for
Cn ⊂ Fn ⊂ Dn. Therefore, if we define

rn =
n2n

∑
i=0

i− 1
2n χAn,i + nχCn

tn =
n2n

∑
i=0

i− 1
2n χBn,i + nχDn ,

then rn and tn are Borel measurable functions such that rn(x) = tn(x)
a.e. [m] and rn ≤ sn ≤ tn. By the Lebesgue’s Monotone Convergence
Theorem, rn and tn converge to Borel measurable functions g and h,
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respectively, such that g(x) = h(x) a.e [m] and g(x) ≤ f (x) ≤ h(x) for
every x ∈ Rk. In the general case, write f = f+− f−, construct g+ and
h+ for f+ and g− and h− for f−. Then g = g+ − h− and h = h+ − g−

are the desired functions. �

Exercise 2.15 It is easy to guess the limits of∫ n
0

(
1− x

n

)n e
x
2 dx and

∫ n
0

(
1 + x

n

)n e−2x dx

as n→ ∞. Prove that your guesses are correct.

� Solution Firstly, consider the functions

Fn(x) = χ[0,n]
(
1− x

n

)n e
x
2

and

Gn(x) = χ[0,n]
(
1 + x

n

)n e−2x,

for all n ∈N. Then for all x ∈ R, Remember that
1 + x ≤ ex and
limn→∞

(
1− x

n
)n

=
e−x for all x ∈ R

|Fn(x)| =
∣∣∣χ[0,n]

(
1− x

n

)n
e

x
2

∣∣∣ ≤ e−
x
2

|Gn(x)| =
∣∣∣χ[0,n]

(
1 +

x
n

)n
e−2x

∣∣∣ ≤ e−x

and

lim
n→∞
|Fn(x)| = e−

x
2

lim
n→∞
|Gn(x)| = e−x

Applying Lebesgue’s Dominated Convergence Theorem, it follows
that

lim
n→∞

∫ ∞

0
Fn(x) dx =

∫ ∞

0
lim
n→∞

Fn(x) dx

=
∫ ∞

0
e−

x
2 dx = 2

and

lim
n→∞

∫ ∞

0
Gn(x) dx =

∫ ∞

0
lim
n→∞

Gn(x) dx

=
∫ ∞

0
e−x dx = 1.

The result follows. �

Exercise 2.16 Why is m(Y) = 0 in the proof of Theorem 2.20(e)?

� Solution Surely we could partition Y into k-cells, thicken those
cells a small bit and then show that m(Y) < ε for all ε > 0. However,
this seems to be horrible to write down and not very enlightening. So
we’ll take a different approach, which consists of a simple application
of a lemma that is interesting by itself.
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Lemma. Let (X,M, µ) be a σ-finite measure space and {Ei : i ∈ I}
be a collection of disjoint measurable subsets with positive measure.
Then I is at most countable.

Proof.If you never saw
sums over a

arbitrary collection
of positive

numbers before,
take a look at

section 4.15. The
main fact we use
here is that these

sums converge
only if the number

of positive
numbers is at most

countable.

We write X as a union of a countable collection of sets with
finite measure

X =
⋃

k∈K

Xk

and, for a fixed k ∈ K, let ai := µ(Ei ∩ Xk). Observe that, since

∑
i∈I

ai = sup
J⊂I

J finite

∑
j∈J

aj = sup
J⊂I

J finite

µ

⋃
j∈J

Ej ∩ Xk

 ≤ µ(Xk) < ∞,

there is at most a countable number of the ai that are positive. In other
words, inasmuch as a countable union of (at most) countable sets is
(at most) countable, the set

{(i, k) ∈ I × K : µ(Ei ∩ Xk) > 0}

is at most countable. As the Ei have positive measure, we know that
for every i ∈ I there exists some k ∈ K such that µ(Ei ∩ Xk) > 0. The
result follows.

Now, lets suppose that m(Y) > 0 and let x ∈ Rk be a vector not in Y.
The collection {αx + V : α ∈ R} satisfies all the criteria of our lemma
(by translation invariance). Thus, having m(Y) > 0 would imply that
R is at most countable, which is absurd! �

Remark. Using Theorem 2.20(e), there’s a much simpler proof of
the fact that a proper subspace Y of Rk has measure zero. Let T
be a linear transformation with Y as image. Since

m(Y) = m(T(Rk)) = |det T|m(Rk)

and T does not have full rank (so det T = 0), the result follows.

Exercise 2.17 Define the distance between points (x1, y1) and
(x2, y2) in the plane to be

|y1 − y2| if x1 = x2, 1 + |y1 − y2| if x1 6= x2.

Show that this is indeed a metric, and that the resulting metric
space X is locally compact.

If f ∈ Cc(X), let x1, x2, . . . , xn be those values of x for which
f (x, y) 6= 0 for at least one y (there are only finitely many such x!),
and define

Λ f =
n

∑
j=1

∫ ∞

−∞
f (xj, y) dy.
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Let µ be the measure associated with this Λ by Theorem 2.14. If
E is the x-axis, show that µ(E) = ∞ although µ(K) = 0 for every
compact K ⊂ E.

� Solution Let d : R2 ×R2 → [0, ∞) be the distance defined above,
we’ll prove it is a metric.

(a) d((x1, y1), (x2, y2)) = 0 =⇒ (x1, y1) = (x2, y2). In fact, a dis-
tance less than 1 implies x1 = x2, and

|y1 − y2| = d((x1, y1), (x2, y2)) = 0.

Therefore (x1, y1) = (x2, y2).

(b) d((x1, y1), (x2, y2)) = d((x2, y2), (x1, y1)). In fact, this follows
from the symmetry of the equality and from the fact that

|y1 − y2| = |y2 − y1|.

(c) To prove the triangular inequality

d((x1, y1), (x3, y3)) ≤ d((x1, y1), (x2, y2)) + d((x2, y2), (x3, y3)),

we just have to separate in cases. For example, if x1 = x2 = x3,
then the inequality becomes |y1 − y3| ≤ |y1 − y2| + |y2 − y3|,
which is true. The other cases are analogous.

Observe that if x1 6= x2, then d((x1, y1), (x2, y2)) ≥ 1, and the balls
of radius less than 1 are vertical open intervals. Therefore we have the
following characterization:

A set E ⊂ R2 is open in the topology induced by d if and only if
its intersection with every vertical line is an open subset of the
line.

( =⇒ ) Let V be an open set in the topology induced by d. For
any x = (ξ1, ξ2) ∈ V, there exists r′ such that Bd(x, r) ∈ V for any
r < r′ (where Bd(x, r) is the ball of center x and radius r with the
metric d). Let ` be a vertical line such that its intersection with E is
nonempty (otherwise the assertion in vacuously true). Taking x ∈ `∩ E
and r < min{1, r′}, then {ξ1} × (ξ2 − r, ξ2 + r) ⊂ ` ∩ E, and this
intersection is open.
(⇐= ) Let V be a set such that its intersection with every vertical

line is an open subset of the line and x = (ξ1, ξ2) ∈ V be an arbitrary
element. If ` = {y = (η1, η2) ∈ R2 : η1 = ξ1}, then there exists r > 0
such that {ξ1} × (ξ2 − r, ξ2 + r) ⊂ ` ∩ E. Therefore, if r′ < min{1, r},
then Bd(x, r′) = {ξ1} × (ξ2 − r′, ξ2 + r′) ⊂ E and E is open in the
topology induced by d.

To see this metric space is locally compact, we just note that for
any x = (ξ1, ξ2) ∈ R2, the set {ξ1} × (ξ2 − 1, ξ2 + 1) is an open
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set, by our characterization, and its closure is the closed segment
{ξ1} × [ξ2 − 1, ξ2 + 1], which is compact, since it is compact with
respect to the vertical line.

Notice that any compact set K in this topology is the finite union
of vertical compact sets, otherwise the cover consisting of the vertical
lines containing an element of K would not have a finite subcover.

Hence, by the definition of support, if f ∈ Cc(X), there exist only
finitely many points x1, x2, . . . , xn such that f (x, y) 6= 0 for at least one
y.

Now let Λ f be the functional defined above, µ be the measure
associated with Λ by Theorem 2.14 and E be the x-axis. By our
characterization, f is continuous with respect to d if and only if f
restricted to the vertical line is a continuous function as we usually
know. An open set E ⊂ V if and only if it contains a set of the form
U =

⋃
x∈R{x} × (−rx, rx). Since R is noncountable, there exist a natu-

ral number M ∈N and a sequence {xk} such that rxk >
1
M for every

k ∈N. Let fn be identically zero except in the lines `k = {xk} ×R for
k ≤ n, where it is defined in the following way.

−rxk − 1
M

1
M

rxk

0.2

0.4

0.6

0.8

1

x

f (x)

Then fn ∈ Cc(X), fn ≺ V and Λ fn = n
M → ∞ as n → ∞. Therefore

µ(V) = ∞. Since V is arbitrary, using the outer regularity, µ(E) =

∞. On the other hand, every K ⊂ E consists of finite points K =

{(x1, 0), (x2, 0), . . . , (xn, 0)}. Given ε > 0, let V =
⋃{xk} × (−ε, ε) be

an open set containing K. Then, for any f ≺ V,

Λ f =
n

∑
k=1

∫ ∞

−∞
f (xk, y) dy ≤ n · 2ε,

hence µ(V) ≤ 2nε. Since ε is arbitrary, µ(K) = 0. �

Exercise 2.18

� Solution Gu �
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Exercise 2.19 Go through the proof of Theorem 2.14, assuming
X to be compact (of even compact metric) rather than just locally
compact, and see what simplifications you can find.

Theorem 2.14 is
usually called
Riesz-Markov-
Kakutani
Representation
Theorem. As Rudin
points out, the first
form of the
theorem was
proved by Riesz, in
1909, with
X = [0, 1], Markov
proved it for
compact spaces, in
1938, as we are
about to do it, and,
finally, Kakutani
proved it for
locally compact, in
1941.

� Solution First, let us restate Theorem 2.14 with the desired simpli-
fications.

Let X be a compact Hausdorff space, and let Λ be a positive linear
functional on C(X). Then there exists a σ-algebra in X which
contains all Borel sets in X, and there exists a unique positive
finite measure µ on M which represents Λ in the sense that:

(a) Λ f =
∫

X f dµ for every f ∈ C(X),

and which has the following additional properties:

(b) For every E ∈M, we have

µ(E) = inf{µ(V) : E ⊂ V, V open}.

(c) For every E ∈M, we have

µ(E) = sup{µ(K) : K ⊂ E, K compact}.

(d) If E ∈M, A ⊂ E, and µ(E) = 0, then A ∈M.

The proof of the uniqueness is equal to the one given, and the defini-
tion of µ must also be equal, which is clearly monotone. Nonetheless,
since for every E ⊂ X, µ(E) ≤ µ(X) = Λ(1) < ∞. Therefore we can
define M as the class of all E ⊂ X such that

µ(E) = sup{µ(K) : K ⊂ E, K compact}.

By definition, (b) and (d) hold. We’ll analyze each step.
Step I. �

Exercise 2.20 Find continuous functions fn : [0, 1] → [0, ∞) such
that fn(x) → 0 for all x ∈ [0, 1] as n → ∞,

∫ 1
0 fn(x) dx → 0,

but supn fn is not in L1. (This shows that the conclusion of the
dominated convergence theorem may hold even when part of its
hypothesis is violated.)

� Solution Let fn : [0, 1]→ [0, ∞) be defined in the following way:

fn(x) =



0, if 0 ≤ x ≤ 1
n+2 ,

(n + 1)2((n + 2)x− 1), if 1
n+2 ≤ x ≤ 1

n+1 ,
1
x , if 1

n+1 ≤ x ≤ 1
n ,

n2(1− (n− 1)x), if 1
n ≤ x ≤ 1

n−1 ,

0, if 1
n−1 ≤ x ≤ 1.
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In following picture, we have draw the function fn.

0 1
n+2

1
n+1

1
n

1
n−1

1

n + 1

x

f n
(x
)

1
x

fn(x)

These functions are defined so that the following holds:

(a) each fn is continuous. In fact, this should be "obvious" from the
picture.

(b) limn fn(x) = 0. In fact, for each fixed x and for n > 1
x + 1,

fn(x) = 0.

(c) supn fn is not in L1. In fact,

sup
n

fn(x) =

 1
x , if 0 < x ≤ 1,

0, if x = 0.

(d)
∫ 1

0 fn(x) dx → 0 as n → ∞. In fact, fn(x) ≤ (n + 1)χ[ 1
n+2 , 1

n−1 ]
(x),

and

(n + 1)
∫ 1

0
χ[ 1

n+2 , 1
n−1 ]

(x) dx =
3(n + 1)

(n− 1)(n + 2)
→ 0.

�

Exercise 2.21 If X is compact and f : X → (−∞, ∞) is upper
semicontinuous, prove that f attains its maximum at some point of
X.

� Solution If f is upper semicontinuous, then for n = 1, 2, . . . the set

An = {x ∈ X : f (x) < n}

is open, and their union for all n forms an open cover of X. Since X is
compact, it is possible to take a finite subcover

X =
k⋃

j=1

Aij
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for some positive integer j. Because there is a maximal index ij, one
sees that f is bounded above. Therefore sup f < ∞.

Assume that f did not reach its supremum on X, then consider

Bn =
{

x ∈ X : f (x) < sup f − 1
n

}
;

these sets are open, and the union
∞⋃

i=1

Bi

forms an open cover of X which does not have finite subcover. This
is a contradiction with the fact that X is compact. Therefore f must
assume its maximum in X. �

Exercise 2.22 Suppose that X is a metric space, with metric d, and
that f : X → [0, ∞] is lower semicontinuous, f (p) < ∞ for at least
one p ∈ X. For n = 1, 2, 3, . . . , x ∈ X, define

gn(x) = inf{ f (p) + nd(x, p) : p ∈ X}

and prove that

(i) |gn(x)− gn(y)| ≤ nd(x, y),

(ii) 0 ≤ g1 ≤ g2 ≤ . . . ≤ f ,

(iii) gn(x)→ f (x) as n→ ∞, for all x ∈ X.

Thus f is the pointwise limit of an increasing sequence of continu-
ous functions. (Note that the converse is almost trivial.)

� Solution

(i) Let x, y, p ∈ X. By the triangular inequality,

nd(x, y) ≥ nd(x, p)− nd(y, p)

= ( f (p) + nd(x, p))− ( f (p) + nd(y, p)).

Taking the infimum from both sides,

nd(x, y) ≥ gn(x)− gn(y).

Similarly, nd(x, y) ≥ gn(y)− gn(x). The result follows.

(ii) Clearly g1 ≥ 0. Also, since d(x, p) is always a positive number,

gn+1(x) = inf{ f (p) + (n + 1)d(x, p) : p ∈ X}
≥ inf{ f (p) + nd(x, p) : p ∈ X} = gn(x)

for all n = 1, 2, 3, . . . . Lastly,

gn(x) = inf{ f (p) + nd(x, p) : p ∈ X}
≤ f (x) + nd(x, x) = f (x)

for all n.
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(iii) Let ε > 0 and x ∈ X. By the monotone convergence theorem,
{gn} converges pointwise to a function h ≤ f . Now, for each n
we pick a point xn ∈ X such that

f (xn) ≤ f (xn) + nd(x, xn) ≤ gn(x) + ε.

Since f is positive, it follows that (we used that f (xn) ≥ 0 and
that gn(x) ≤ f (x))

d(x, xn) ≤
gn(x) + ε− f (xn)

n
≤ f (x) + ε

n
.

That is, xn converges to x. Using the lower semicontinuity of f
(see the remark in Exercise 2.1), we see that

f (x) ≤ lim inf
n→∞

f (xn) ≤ lim
n→∞

[gn(x) + ε] = h(x) + ε.

We conclude that f = h and the result follows. �

Exercise 2.23 Suppose V is open in Rk and µ is a finite Borel
measure on Rk. Is the function that sends x to µ(V + x) necessarily
continuous? lower semicontinuous? upper semicontinuous?

� Solution First observe that the function is not necessarily upper
semicontinuous. In fact, let δ be the Dirac measure defined by

δ(E) =

1, if 0 ∈ E

0, if 0 6∈ E.

Then δ(V + x) < 1
2 if and only if x 6∈ −V, therefore it is an closed

set. Nonetheless, the function is always lower semicontinuous. Let
x ∈ Rk and ε > 0. Since every open set is σ-compact, there exists a
compact K ⊂ V + x such that µ(K) > µ(V + x)− ε. Since (V + x)c

is closed, the distance between K and (V + x)c is d > 0. Therefore, if
|y− x| < d, then K ⊂ V + y and µ(V + y) > µ(V + x)− ε and the
function is lower semicontinuous, as we desired to prove. �

Remark. Let µ be any measure on the Borel sets of a topological
space X. For any x ∈ X, we can define a new measure by µx(E) =
µ(E + x). Moreover, we can always define a very natural topology
in the set of measures: the coarsest topology such that for every
continuous function ϕ : X → R, the functional

µ 7→
∫

X
ϕ dµ

is continuous (this topology is called the weak* topology).
In this topology, if xn → x, then µxn → µx. Moreover, for every

open set V, and for every sequence of measures µn converging to
µ,

lim inf
n

µn(V) ≥ µ(V),



positive borel measures 33

from which would follow the exercise.

Exercise 2.24 A step function is , by definition, a finite linear combi-
nation of characteristic functions of bounded interval of R1. Assume
f ∈ L1(R1), and prove that there is a sequence gn of step functions
so that

lim
n→∞

∫ ∞

−∞
| f (x)− gn(x)| dx = 0

� Solution Let U be a open set in R, so we have that so we can split
U as a countable disjoint union of open intervals. Then

χU =
∞

∑
n=1

χIn ,

where χU is the characteristic function, U =
⋃n=∞

n=1 In, and In is a
open interval, for all n ∈N. Suppose that In0 is unbounded for some
n0 ∈N (the other case are similar), then

lim
k→∞

∫
R

∣∣∣χIn0
(x)− χIn0∩(−k,k)(x)

∣∣∣ dx = 0

and note that

(Fk)U =

(
k

∑
n=1,n 6=n0

χIn(x)

)
+ χIn0∩(−k,k)(x)

is a increasing sequence of step functions, and

lim
k→∞
|χU(x)− (Fk)U(x)| = lim

k→∞
∑

k≤n,n 6=n0

χIn(x) = 0,

thus by Lebesgue’s Monotone Convergence Theorem we have that

lim
k→∞

∫
R
|χU(x)− (Fk)U(x)| dx = 0

By regularity of Lebesgue’s measure we have that for all measurable
set E there is a sequence of open sets Un such that

lim
n→∞

∫
R
|χE(x)− χUn(x)| dx = 0.

And now applying Cantor’s Diagonal Argument, it follows that exist
a sequence of step functions Gk = (Fnk)Umk

, such that

lim
k→∞

∫
R
|χE − Gk| dx = 0

then, we show that the set of step functions is dense in the set of
simple functions. Lastly, let be f ∈ L1(R), by Theorem 1.17 we have
that there are two increasing sequences of simple functions, cn and sn,
such that for all x ∈ R

lim
n→∞

cn(x) = f+(x)
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and
lim
n→∞

sn(x) = f−(x).

So
lim
k→∞

∫
R
| f − cn + sn| dx = 0,

in other words, the set of simple functions is dense in L1(R). We
conclude that the set of step functions is dense in L1(R) and the result
follows.

�

Exercise 2.25

(i) Find the smallest constant c such that

log(1 + et) < c + t (0 < t < ∞).

(ii) Does

lim
n→∞

1
n

∫ 1

0
log{1 + en f (x)} dx

exist for every real f ∈ L1? If it exists, what is it?

� Solution

(i) Let g(t) = log(1 + et)− t. Since g′(t) = −1/(1 + et) is always
negative, we have that

g(t) < lim
x→0+

g(x) = log(2)

for all 0 < t < ∞. It follows that c = log(2).

(ii) Let X be the set of all x ∈ [0, 1] such that f (x) > 0. By the
inequality in (i),

lim
n→∞

1
n

∫
X

log{1 + en f (x)} dx ≤ lim
n→∞

1
n

∫
X
{log(2) + n f (x)} dx

=
∫

X
f (x) dx.

Also, since log{1 + en f (x)} > log{en f (x)} = n f (x) for all x,

lim
n→∞

1
n

∫
X

log{1 + en f (x)} dx ≥
∫

X
f (x) dx.

Thus,

lim
n→∞

1
n

∫
X

log{1 + en f (x)} dx =
∫

X
f (x) dx.

Lastly, since log(1 + et) ≤ log(2) for t ≤ 0,

1
n

∫
[0,1]\X

log{1 + en f (x)} dx → 0.

This implies that the limit in the exercise’s statement always
exists and is equal to

∫
X f (x) dx. �
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Exercise 3.1 Prove that the supremum of any collection of con-
vex functions on (a, b) is convex on (a, b) (if it is finite) and that
pointwise limits of sequences of convex functions are convex. What
can you say about upper and lower limits of sequences of convex
functions?

� Solution Let {ϕα} be a collection of convex functions on (a, b) and
ϕ = supα ϕα. Then, for all x, y ∈ (a, b), λ ∈ [0, 1] and all α,

(1− λ)ϕ(x) + λϕ(y) ≥ (1− λ)ϕα(x) + λϕα(y) ≥ ϕα((1− λ)x + λy).

Since the supremum is the least upper bound,

(1− λ)ϕ(x) + λϕ(y) ≥ ϕ((1− λ)x + λy).

In other words, ϕ is convex. To prove that the limit ϕ of a sequence
{ϕn} of convex functions is convex we need just to take the limit
n→ ∞ in the inequality

ϕn((1− λ)x + λy) ≤ (1− λ)ϕn(x) + λϕn(y).

The upper limit ϕ of a sequence {ϕn} of convex functions is also
convex since, as we just proved, the supremum and the pointwise
limit of a sequence of convex functions is convex.

Nevertheless, the lower limit of a sequence of convex functions need
not be convex! For example, if ϕn(x) = (−1)nx, then its lower limit is
lim infn ϕn(x) = −|x|, which is not convex. �

Exercise 3.2 If ϕ is convex on (a, b) and if ψ is convex and nonde-
creasing on the range of ϕ, prove that ψ ◦ ϕ is convex on (a, b). For
ϕ > 0, show that the convexity of log ϕ implies the convexity of ϕ,
but not vice versa.

� Solution Let λ ∈ [0, 1], x, y ∈ (a, b). Since ϕ is convex, ϕ((1−λ)x+
λy) ≤ (1− λ) f (x) + λ f (y). Since ψ is nondecreasing and convex

ψ ◦ ϕ((1− λ)x + λy) ≤ ψ((1− λ)ϕ(x) + λϕ(y))

≤ (1− λ)ψ ◦ ϕ(x) + λψ ◦ ϕ(y),

and the composition is convex. Since log ϕ is convex and ψ = exp is
convex and nondecreasing on R, exp ◦ log ϕ = ϕ is convex. Nonethe-
less, let ϕ(x) = x. Then ϕ is convex, but log ϕ = log x is not. �

35
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Remark. A function ϕ such that log ϕ is convex is called a logarith-
mically convex function. This fact can also by written as

ϕ((1− λ)x + λy) ≤ ϕ(x)1−λ ϕ(y)λ.

Examples of such functions are the Lp-norms with respect to
1
p (this is the Riesz-Thorin Interpolation Theorem) and the Gamma
function for positive real numbers. Furthermore, if p(x) = anxn +

· · · + a1x + a0 is a polynomial with positive coefficients whose
roots are real and distinct, then

a2
i

(n
i )

2 >
ai−1

( n
i−1)

ai+1

( n
i+1)

which implies the function

f (i) =
ai

(n
i )

.

is strictly logarithmically convex.

Exercise 3.3

� Solution Gu �

Exercise 3.4 Suppose f is a complex measurable function on X, µ

is a positive measure on X, and

ϕ(p) =
∫

X
| f |p dµ = ‖ f ‖p

p (0 < p < ∞).

Let E = {p : ϕ(p) < ∞}. Assume ‖ f ‖∞ > 0.

(a) If r < p < s, r ∈ E, and s ∈ E, prove that p ∈ E.

(b) Prove that log ϕ is convex in the interior of E and that ϕ is
continuous on E.

(c) By (a), E is connected. Is E necessarily open? Closed? Can E
consist of a single point? Can E be any connected subset of
(0, ∞)?

(d) If r < p < s, prove that ‖ f ‖p ≤ max (‖ f ‖r, ‖ f ‖s). Show that
this implies the inclusion Lr(µ) ∩ Ls(µ) ⊂ Lp(µ).

(e) Assume that ‖ f ‖r < ∞ for some r < ∞ and prove that

‖ f ‖p → ‖ f ‖∞ as p → ∞.

� Solution L �
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Exercise 3.5 Assume, in addition to the hypotheses of Exercise 4,
that

µ(X) = 1.

(a) Prove that ‖ f ‖r ≤ ‖ f ‖s if 0 ≤ r < s ≤ ∞.

(b) Under what conditions does it happen that 0 < r < s ≤ ∞
and ‖ f ‖r = ‖ f ‖s?

(c) Prove that Lr(µ) ⊃ Ls(µ) if 0 < r < s. Under what conditions
do these two spaces contain the same functions?

(d) Assume that ‖ f ‖r < ∞ for some r > 0, and prove that

lim
p→0
‖ f ‖p = exp

{∫
X

log| f | dµ

}
if exp{−∞} is defined to be 0.

� Solution

(a) Let p = s
r > 1 and 1

p +
1
q = 1. Then

∫
X

f r · 1 dµ ≤
(∫

X
f rp dµ

) 1
p
(∫

X
1q dµ

) 1
q

=

(∫
X

f s dµ

) r
s

.

Therefore
‖ f ‖r ≤ ‖ f ‖s.

(b) Since we used Hölder inequality, equality holds if and only if
∃α ∈ C such that f rp = α a.e., i.e., f is constant a.e.

(c) By item (a), if ‖ f ‖s < ∞, then ‖ f ‖r < ∞ for every r < s. There-
fore Lr(µ) ⊃ Ls(µ). On the other hand the following holds. Therefore, for

0 < r < s,
Lr(µ) ⊃ Ls(µ) if
and only if X does
not contains sets of
arbitrarily large
measures, and
Lr(µ) ⊂ Ls(µ) if
and only if X does
not contains sets of
arbitrarily small
measure

If 0 < r < s, then Lr(µ) ⊂ Ls(µ) if and only if there exists
c > 0 such that µ(E) > 0 implies µ(E) ≥ c.

In fact,

( =⇒ ) If for every ε > 0, there exists E such that µ(E) < ε,
consider the following construction: Let E1 = X be the whole
space; given En, let En+1 be a space such that µ(En+1) < µ(En)/3.
Since ∑∞

i=1
1
3i =

1
2 , if we denote An = En −

⋃
k>n Ek, then

0 < µ(En)/2 < µ(An) ≤ µ(En) < 1/3n−1

and we have a partition of X with sets of positive measure. If

f : X → R
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be defined by

f (x) =
1

µ(An)

1

n
2

r+s
, if x ∈ An,

then ∫
X
| f |s dµ =

∞

∑
n=1

1

n
2s

r+s
< ∞,

but ∫
X
| f |r dµ =

∞

∑
n=1

1

n
2r

r+s
= ∞.

Therefore Ls(µ) is not a subset of Lr(µ).

( ⇐= ) Let f ∈ Ls(µ) and En = {x ∈ X : f (x) ≥ n}. It follows
easily that µ(En)→ 0 as n→ ∞. Therefore it follows that there
exists n0 such that µ(En0) = 0 and f (x) ≤ n0 a.e. and since
µ(X) = 1, this means f is in Lr for every 0 < r ≤ ∞.

(d) Since we are dealing only with absolute values, all functions in
this item are positive. Let s = ∑i ciχEi be a complex, measurable,
simple function such that µ({x : s(x) 6= 0}) < ∞. Then

exp
{∫

X
log|s| dµ

}
= exp

{
∑

i
log(ci)µ(Ei)

}

and

‖s‖p =

(∫
X

s dµ

) 1
p

= exp

{
1
p

log

(
∑

i
cp

i µ(Ei)

)}
.

Since the expression inside the exp is of the form 0
0 and exp is a

continuous function, using l’Hôpital rule,

lim
p→0
‖s‖p = exp

{
lim
p→0

∑i log(ci)c
p
i µ(Ei)

∑i cp
i µ(Ei)

}

= exp

{
∑

i
log(ci)µ(Ei)

}

= exp
{∫

X
log|s| dµ

}
.

Since S is dense in L1 (and ‖·‖ is a continuous function), the
result follows for every f ∈ L1(µ). In fact, let f ∈ L1(µ) and {sn}
be as in Theorem 1.17. Then {sn} is a monotone sequence of
complex, measurable, simple functions such that sn → f . Then
limn→∞‖sn‖p = ‖ f ‖p and limn→∞

∫
X log|sn| dµ =

∫
X log| f | dµ.
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Taking the limit when p→ 0 (since all terms are positive, we can
exchange the limits),

lim
p→0
‖ f ‖p = lim

p→0
lim
n→∞
‖sn‖p

= lim
n→∞

lim
p→0
‖sn‖p

= lim
n→∞

exp
{∫

X
log|sn| dµ

}
= exp

{∫
X

log| f | dµ

}
.

Finally, let f be such that ‖ f ‖r < ∞, and let f̃ = f r. Then
f̃ ∈ L1(µ),

‖ f ‖p =

(∫
X

f p dµ

) 1
p

=

((∫
X

f̃
p
r dµ

) 1
p/r
) 1

r

=
(
‖ f̃ ‖ p

r

) 1
r

and

lim
p→0
‖ f ‖p = lim

p
r→0

(
‖ f̃ ‖ p

r

) 1
r

= exp
{

1
r

∫
X

log| f̃ | dµ

}
= exp

{∫
X

log| f | dµ

}
,

therefore the claim is proved. �

Remark. If µ is the uniform distribution in {1, 2, . . . , n} and f (i) =
ai, then the last inequality implies the following discrete analogue:

For any non-negative real numbers {a1, a2, . . . , an},

lim
p→0

(
ap

1 + ap
2 · · ·+ ap

n

n

) 1
p

= n
√

a1a2 · · · an.

Exercise 3.6 Let m be Lebesgue measure on [0, 1] and define ‖ f ‖p,
with respect to m. Find all functions Φ on [0, ∞] such that the
relation

Φ
(

lim
p→∞
‖ f ‖p

)
=
∫ 1

0
(Φ ◦ f ) dm

holds for every bounded, measurable, positive f . Show first that

cΦ(x) + (1− c)Φ(1) = Φ(xc).

Compare with Exercise 5(d) .
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� Solution
cΦ(x) + (1− c)Φ(1) =

�

Exercise 3.7 For some measures, the relation r < s implies Lr(µ) ⊂
Ls(µ); for others, the inclusion is reversed; and there are some for
which Lr(µ) does not contain Ls(µ) if r 6= s. Give examples of these
situations, and find conditions on µ under which these situations
will occur.

� SolutionIt is very important
to be careful with

the quantifiers
here. The correct

statement is:
(µ(X) < ∞) is

equivalent to (for
all r < s,

Ls(µ) ⊂ Lr(µ).)

If, in Exercise 3.5, we had µ(X) < ∞ in the place of
µ(X) = 1, it would follow from the same argument that

‖ f ‖r ≤ ‖ f ‖s µ(X)(s−r)/sr.

This implies that Ls(µ) ⊂ Lr(µ) as long as X does not contain sets of
arbitrarily large measure. Conversely, if Ls(µ) ⊂ Lr(µ) for all r < s,
we take s = ∞ and use the inclusion to conclude that 1 ∈ Lr(µ) (since
it is bounded). It follows that

µ(X) = ‖1‖r < ∞.

In the same Exercise 3.5, we proved that the reverse inclusion hap-
pens if and only if there exists c > 0 such that µ(E) > 0 implies
µ(E) ≥ c.

For some examples, if X = [0, 1], then Ls([0, 1]) ⊂ Lr([0, 1]) for
r < s. The counting measure on N provides an example for the
reverse inclusion. Finally, since R has sets with arbitrarily big and
small measures, Ls(R) does not contain Ls(R) if r 6= s. �

Exercise 3.8 If g is a positive function on (0, 1) such that g(x)→ ∞
as x → 0, then there is a convex function h on (0, 1) such that h ≤ g
and h(x) → ∞ as x → 0. True or false? Is the problem changed if
(0, 1) is replaced by (0, ∞) and x → 0 is replaced by x → ∞

� Solution Let (x1, y1) = (1, 0) and a1 be defined by

a1 := sup{a ∈ [0, ∞) | ∀x ∈ (0, 1), a(1− x) ≤ g(x)}

and define (x2, y2) =
( 1

2 , a1
2

)
. Inductively, given (xn, yn), define an by

an := sup{a ∈ [0, ∞) | ∀x ∈ (0, xn), yn + a(xn − x) ≤ g(x)}

and define (xn+1, yn+1) =
(

1
n+1 , yn +

an
n(n+1)

)
. Finally, let h : (0, 1) →

(0, ∞) be defined as the piecewise linear function connecting the
points (xn, yn). By construction, h(x) ≤ g(x) for every x ∈ (0, 1), and
since the slope in (xn+1, xn) is −an, which is non-decreasing, then h is
convex. Therefore, it is only left to prove limx→0 h(x) = ∞. It suffices
to prove yn → ∞. In fact, given any yk, there exists an ε > 0 such that
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if x < ε, then g(x) > yk + 2. Let n be such that 1
n < ε. If yn > yk + 1 we

are done, otherwise the line between (0, yk + 2) and (xn, yn) has slope
−a for some a ∈ [0, ∞) and therefore, since yn > yk, then y2n > yn + 1,
proving the sequence goes to infinity.

0.2 0.4 0.6 0.8 1

10

20

30

40

x

g(
x)

1
x

sin(x)+2
x

Nonetheless, the problem is false if (0, 1) is replaced by (0, ∞) and
x → 0 is replaced by x → ∞. In fact, let g(x) = log x, h be any convex
function and a = h(1), Since h(x)→ ∞ as x → ∞, there exists r such
that h(r + 1) ≥ a + 1. Then for any n ∈N,

h(nr + 1)− h(r + 1)
nr

≥ h(r + 1)− h(1)
r

=
1
r

.

Therefore h(nr + 1) ≥ n + a + 1. In particular

lim
n→∞

g(nr + 1)
h(nr + 1)

≤ log n
n + a + 1

= 0

and h(x) ≤ g(x) cannot happen for every x. �

Exercise 3.9

� Solution Gu �

Exercise 3.10 Suppose fn ∈ Lp(µ), for n = 1, 2, 3, . . . , and that
‖ fn − f ‖ → 0 and fn → g almost everywhere, as n → ∞. What
relation exists between f and g?

� Solution First of all, notice that Lp convergence does not imply
pointwise convergence. Take the sequence of functions

fn(x) = exp(−n2x2),
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and the usual Lebesgue measure on R. This family of functions is a
peak of fixed height at the origin, but ”sharper“ as n → ∞, as the
figure shows. Analytically,

‖ fn − 0‖ =
(∫ ∞

−∞
| fn|p dµ

)1/p

=

(∫ ∞

−∞
e−n2x2 pdx

)1/p

()

�

Exercise 3.11 Suppose µ(Ω) = 1, and suppose f and g are positive
measurable functions on Ω such that f g ≥ 1. Prove that∫

Ω
f dµ ·

∫
Ω

g dµ ≥ 1.

� Solution Since f and g are positives, we can take the square root,
and get the following inequality f 1/2g1/2 ≥ 1. Using Cauchy-Schwarz
inequality, ∫

Ω
f dµ ·

∫
Ω

g dµ ≥
(∫

Ω
f 2/1g1/2

)2

≥ 1

and we’re done. �

Exercise 3.12 Suppose that µ(Ω) = 1, and h : Ω → [0, ∞] is
measurable. If

A =
∫

Ω
h dµ,

prove that √
1 + A2 ≤

∫
Ω

√
1 + h2 dµ ≤ 1 + A.

If µ is Lebesgue measure on [0, 1] and if h is continuous, h = f ′, the
above inequalities have a simple geometry interpretation. From this,
conjecture (for general) under what conditions on h equality can
hold in either of the above inequalities, and prove your conjecture.

� Solution M �

Exercise 3.13 Under what conditions on f and g does equality
hold in the conclusions of Theorems 3.8 and 3.9? You may have to
treat the cases p = 1 and p = ∞ separately.

� Solution If 1 < p < ∞, Theorem 3.8 is nothing but Hölder’s
inequality. As we saw just after its proof, equality holds if and only if

| f |p

‖ f ‖p
p
=
|g|q

‖g‖q
q

almost everywhere.
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Also, if p = ∞ (if p = 1, then q = ∞ and the argument is the same),
equality in the conclusion of Theorem 3.8 means that∫

X
| f g| dµ = ‖ f ‖∞

∫
X
|g| dµ.

Since | f | ≤ ‖ f ‖∞ almost everywhere, it follows that

| f g| = ‖ f ‖∞|g| almost everywhere.

This happens if and only if | f | = ‖ f ‖∞ for almost all x such that
g(x) 6= 0.

For Theorem 3.9, if 1 < p < ∞, examining the proof of Minkowski’s
inequality we see that equality holds if and only if we have equality
in both uses of Hölder’s inequality and

| f + g| = | f |+ |g|.

The first condition holds if and only if both | f |p and |g|p are multiples
of | f + g|(p−1)q almost everywhere. In other words, if there exists
constants α and β, not both zero, such that α| f |p = β|g|p a.e. Using
this and the fact that | f + g| = | f |+ |g|, which holds if and only if
f and g have the same argument in the complex plane, we conclude
that either g = 0 or there exists a positive constant λ such that f = λg
almost everywhere.

If p = 1, we clearly have | f + g| = | f |+ |g| almost everywhere and
then we have the same result as before. However, there isn’t a simple
characterization of the functions which satisfy the equality in Theorem
3.9 when p = ∞. For example, f = χ(0,3) and g = χ(1,2) satisfy the
equality even without being zero nor multiples of each other. �

Exercise 3.14 Suppose 1 < p < ∞, f ∈ Lp = Lp((0, ∞)), relative to
Lebesgue measure, and

F(x) =
1
x

∫ x

0
f (t) dt (0 < x < ∞).

(a) Prove Hardy’s inequality

‖F‖p ≤
p

p− 1
‖ f ‖p

which shows that the mapping f → F carries Lp into Lp.

(b) Prove that equality holds only if f = 0 a.e.

(c) Prove that the constant p/(p − 1) cannot be replaced by a
smaller one.

(d) If f > 0 and f ∈ L1, prove that F 6∈ L1.
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Suggestions: (a) Assume first that f ≥ 0 and f ∈ Cc((0, ∞)).
Integration by parts gives∫ ∞

0
Fp(x) dx = −p

∫ ∞

0
Fp−1(x)xF′(x) dx.

Note that xF′ = f − F, and apply Hölder’s inequality to
∫

Fp−1 f .
Then derive the general case. (c) Take f (x) = x−1/p on [1, A],
f (x) = 0 elsewhere, for large A. See also Exercise 14, Chap. 8.

� Solution

(a) Let f ≥ 0 and f ∈ Cc((0, ∞)). Then F ≥ 0 and F ∈ Lp((0, ∞)).
Since xF(x) =

∫ x
0 f (t) dt and f is continuous,

xF′(x) + F(x) = f (x).

On the other hand, using integration by parts∫ ∞

0
Fp(x) dx = −p

∫ ∞

0
Fp−1(x)xF′(x) dx.

Hence∫ ∞

0
Fp(x) dx = −p

∫ ∞

0
Fp−1(x)( f (x)− F(x)) dx

= −p
∫ ∞

0
Fp−1(x) f (x) dx + p

∫ ∞

0
Fp(x) dx,

in other words,∫ ∞

0
Fp(x) dx =

p
p− 1

∫ ∞

0
Fp−1 f dx.

Using Hölder inequality, if 1
p +

1
q = 1 then p = (p− 1)q, Fp−1 ∈

Lq((0, ∞)) and

∫ ∞

0
Fp−1 f dx ≤

(∫
Fp dx

) 1
q
(∫ ∞

0
f p dx

) 1
p

.

Therefore (∫ ∞

0
Fp(x) dx

) 1
p

≤ p
p− 1

(∫ ∞

0
f p dx

) 1
p

,

i.e.
‖F‖p ≤

p
p− 1

‖ f ‖p.

Since Cc((0, ∞)) is dense in Lp((0, ∞)) and ‖·‖ is a continuous
function, then the result follows for all positive functions f ∈
Lp((0, ∞)). If f ∈ Lp((0, ∞)), then | f | ∈ Lp((0, ∞)) is a positive
function, and if

F̃(x) =
1
x

∫ x

0
| f (t)| dt,
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then |F| ≤ F̃ and

‖F‖p ≤ ‖F̃‖p ≤
p

p− 1
‖| f |‖p =

p
p− 1

‖ f ‖p,

as we desired to prove.

(b) By the last argument in (a), if equality holds for f , then it also
holds for | f |, hence we can suppose f ≥ 0.

(c) Let A > 1 and f (x) = x−1/pχ[1,A]. Then ‖ f ‖p
p =

∫ A
1 x−1 dx =

log A. On the other hand,

F(x) =


0, if 0 < x ≤ 1

p
p−1

(
x−

1
p − x−1

)
, if 1 ≤ x ≤ A,

p
(

A1− 1
p−1

)
p

1
x , if A ≤ x.

Hence,

‖F‖p
p ≥

pp

(p− 1)p

∫ A

1

(
x

1
p−x−1)p

dx

=
pp

(p− 1)p

∫ A

1
x−1

(
1− x

1
p−1
)p

dx

≥ pp

(p− 1)p

∫ A

1
x−1

(
1− px

1
p−1
)

dx

=
pp

(p− 1)p log A +
pp+2

(p− 1)p+1

(
1 + A

1
p−1
)

,

from where we conclude, if ‖F‖p ≤ Cp‖ f ‖p, then

pp

(p− 1)p ≤ lim inf
A→∞

‖F‖p
p

‖ f ‖p
p
≤ Cp

p ,

which means p
p−1 ≤ Cp.

(d) Since f ∈ L1, ∃M > 0 such that if x ≥ M, then∫ x

0
f (t) dt ≥ ‖ f ‖1

2
.

Therefore, for x ≥ M, F(x) ≥ ‖ f ‖1
2x . Since 1

x is not integrable in
(M, ∞) for any M > 0, F 6∈ L1.

�

Remark. Hardy’s inequality has the following discrete analogue:
If {an}n is a sequence of non-negative real numbers, and p > 1,

then
∞

∑
n=1

(
a1 + a2 + · · ·+ an

n

)p

≤
(

p
p− 1

)p ∞

∑
n=1

ap
n.
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Taking ai = a
1
p
i and letting p → ∞, we conclude Carleman’s

Inequality
∞

∑
n=1

n
√

a1a2 · · · an ≤ e
∞

∑
n=1

an.

Exercise 3.15

� Solution Gu �

Exercise 3.16

� Solution L �

Exercise 3.17

(a) If 0 < p < ∞, put γp = max(1, 2p−1), and show that

|α− β|p ≤ γp(|α|p + |β|p)

for arbitrary complex numbers α and β.

(b) Suppose µ is a positive measure on X, 0 < p < ∞, f ∈
Lp(µ), fn ∈ Lp(µ), fn(x) → f (x) a.e., and ‖ fn‖p → ‖ f ‖p as
n→ ∞. Show that then lim‖ f − fn‖p = 0, by completing the
two proofs that are sketched below.

(i) By Egoroff’s theorem, X = A ∪ B in such a way that∫
A| f |

p < ε, µ(B) < ∞, and fn → f uniformly on B.
Fatou’s lemma, applied to

∫
B| fn|p, leads to

lim sup
∫

A
| fn|p dµ ≤ ε.

(ii) Put hn = γp(| f |p + | fn|p) − | f − fn|p, and use Fatou’s
lemma as in the proof of Theorem 1.34.

(c) Show that the conclusion of (b) is false if the hypothesis
‖ fn‖p → ‖ f ‖p is omitted, even if µ(X) < ∞.

� Solution

(a) If 1 ≤ p < ∞, then the function f (x) = |x|p is a convex function
and ∣∣∣∣α + β

2

∣∣∣∣p = f
(

α + β

2

)
≤ f (α) + f (β)

2
=
|α|p + |β|p

2
.

Therefore |α + β|p ≤ 2p−1(|α|p + |β|p) if 1 ≤ p < ∞. On the
other hand, if 0 < p < 1 and |x| ≤ 1, then |x| ≤ |x|p. Hence

1 ≤
∣∣∣∣ α

α + β

∣∣∣∣+ ∣∣∣∣ β

α + β

∣∣∣∣ ≤ ∣∣∣∣ α

α + β

∣∣∣∣p + ∣∣∣∣ β

α + β

∣∣∣∣p
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and
|α + β|p ≤ |α|p + |β|p.

Since |−β| = |β|, the result follows.

(b)

(i) Applying Fatou’s lemma as indicated,

lim sup
∫

A
| fn|p dµ = 1− lim inf

∫
B
| fn|p dµ

≤ 1−
∫

B
| f |p dµ

=
∫

A
| f |p dµ

≤ ε.

(ii)

(c)
If p = 1, the
sequence fn
converges in the
sense of distributions
to the Dirac delta
(generalized)
function δ.

Let 0 < p < ∞, X = [−1, 1] and fn = ( n
2 )

1
p χ[− 1

n , 1
n ]

, then ‖ fn‖p
p =∫ 1

−1| fn|p dx = 1, fn ∈ Lp([−1, 1]), fn(x) → f (x) = 0 for all x ∈
[−1, 1] and the function f is also in Lp. Nevertheless, ‖ fn‖p 6→
‖ f ‖p and, since f ≡ 0, ‖ f − fn‖p = ‖ fn‖p 6→ 0, as we desired to
show.

�

Remark. Using the fact that |α + β|p ≤ |α|p + |β|p, we can let α

and β be functions, and integrate to conclude that the space of
functions such that

∫
X| f | dµ < ∞ is a translation-invariant complete

metric space (what we call an F-space) with the metric

d( f , g) :=
∫

X
| f − g|p dµ.

Exercise 3.18 Let µ be a positive measure on X. A sequence of

� Solution M �

Exercise 3.19 Define the essential range of a function f ∈ L∞(µ) to
be the set R f consisting of all complex numbers w such that

µ({x : | f (x)− w| < ε}) > 0

for every ε > 0. Prove that R f is compact. What relation exists
between the set R f and the number ‖ f ‖∞?

Let A f be the set of all averages

1
µ(E)

∫
E

f dµ
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where E ∈M and µ(E) > 0. What relations exist between A f and
R f ? Is A f always closed? Are there measures µ such that A f is
convex for every f ∈ L∞(µ)? Are there measures µ such that A f
fails to be convex for some f ∈ L∞(µ)?

How are theses results affected if L∞(µ) is replaced by L1(µ), for
instance?

� Solution We begin by proving that R f is closed. Let {wn} be a
sequence in R f converging to w. We fix ε > 0 and let N be such that

|wn − w| < ε

2

for all n ≥ N. Now, if x is such that | f (x)− wN | < ε/2, then x also
satisfies

| f (x)− w| ≤ | f (x)− wN |+ |wN − w| < ε

2
+

ε

2
= ε.

In other words,

{x : | f (x)− wN | < ε/2} ⊂ {x : | f (x)− w| < ε}.

Since the latter contains a set of positive measure, its measure is also
positive, meaning that w ∈ R f .

The essential range R f is also bounded as it is contained in the
closed disk of radius ‖ f ‖∞. In fact, if |w| > ‖ f ‖∞, then the set

{x : | f (x)− w| < |w| − ‖ f ‖∞}

has measure zero since

|w| − | f (x)| ≤ | f (x)− w| < |w| − ‖ f ‖∞

implies | f (x)| > ‖ f ‖∞. Heine-Borel then implies that R f is compact.
If µ is the Lebesgue measure on [0, 1] and f (x) = x, we have that

A f = (0, 1), which shows that A f is not always closed. For µ equal to
the unit mass centered at a point x0, we have that A f = { f (x0)}, which
is evidently convex for every f ∈ L∞(µ). Now, if µ is the counting
measure on X = {a, b},

A f =

{
f (a), f (b),

1
2
( f (a) + f (b))

}
,

which fails to be convex unless it is reduced to a point.
If L∞(µ) is replaced by L1(µ), R f continues to be closed but it is

no longer necessarily bounded (just take a integrable non-bounded
continuous function on the real line, for instance). �

Exercise 3.20 Suppose ϕ is a real function of R1 such that

ϕ

(∫ 1

0
f (x) dx

)
≤
∫ 1

0
ϕ( f )dx
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for every real bounded measurable f . Prove that ϕ is then convex.

� Solution Let λ ∈ [0, 1], t, s ∈ R and f : [0, 1]→ R defined by,

f (x) =

s, if 0 ≤ x ≤ λ

t, if λ < x ≤ 1.

Then
∫ 1

0 f (x) dx = (1 − λ)t + λs, and
∫ 1

0 ϕ( f ) dx = (1 − λ)ϕ(t) +
λϕ(s), therefore the inequality becomes

ϕ((1− λ)t + λs) ≤ (1− λ)ϕ(t) + λϕ(s)

and ϕ is a convex function. �

Exercise 3.21

� Solution Gu �

Exercise 3.22

� Solution L �

Exercise 3.23 Suppose µ is a positive measure on X, µ(X) < ∞, f ∈
L∞(µ), ‖ f ‖∞ > 0, and

αn =
∫

X
‖ f ‖n dµ (n = 1, 2, 3, . . . ).

Prove that
lim
n→∞

αn+1

αn
= ‖ f ‖∞.

� Solution Since n = n+1
2 + n−1

2 , using Hölder inequality,

∫
X
‖ f ‖n dµ ≤

(∫
X
‖ f ‖n+1 dµ

) 1
2
(∫

X
‖ f ‖n−1 dµ

) 1
2

,

therefore
αn

αn−1
≤ αn+1

αn

and the sequence is monotone.

To see this, take
the log. Since the
sequence
converges, its
Cesàro sum
converges to the
same limit.

Since it is also bounded by ‖ f ‖∞, the sequence converges and, by a
theorem of Real Analysis,

lim
n→∞

αn+1

αn
= lim

n→∞
n
√

αn = ‖ f ‖∞,

as we desired to prove. �

Exercise 3.24

� Solution M �
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Exercise 3.25 Suppose µ is a positive measure on X and f : X →
(0, ∞) satisfies

∫
X f dµ = 1. Prove, for every E ⊂ X with 0 <

µ(E) < ∞, that ∫
E
(log f ) dµ ≤ µ(E) log

1
µ(E)

and, when 0 < p < 1, ∫
E

f p dµ ≤ µ(E)1−p.

� SolutionIf − f is convex, we
usually say that f

is concave.

Let ν = µ/µ(E). Since ν(E) = 1 and − log is convex,
Jensen’s inequality implies that

log
(

1
µ(E)

∫
E

f dµ

)
≥ 1

µ(E)

∫
E

f dµ.

As log is increasing and∫
E

f dµ ≤
∫

X
f dµ = 1,

the first inequality follows.
Similarly, −xp is convex for 0 < p < 1. By Jensen’s inequality,(

1
µ(E)

∫
E

f dµ

)p

≥ 1
µ(E)

∫
E

f p dµ.

The second inequality now follows in the same way as before. �

Exercise 3.26 If f is a positive measurable function on [0, 1], which
is larger,∫ 1

0
f (x) log f (x) dx or

∫ 1

0
f (s) ds

∫ 1

0
log f (t) dt?

� Solution Let ϕ(x) = x log x. Then ϕ is a convex function. Since
[0, 1] is a probability space with the Lebesgue measure and log is
concave, ∫ 1

0
f (x) log f (x) dx =

∫ 1

0
ϕ( f (x)) dx

≥ ϕ

(∫ 1

0
f (x) dx

)
=
∫ 1

0
f (s) ds · log

(∫ 1

0
f (t) dt

)
≥
∫ 1

0
f (s) ds

∫ 1

0
log f (t) dt.

Therefore the former is larger. �
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Exercise 4.1

� Solution Gu �

Exercise 4.2 Let {xn : n = 1, 2, 3, . . . } be a linearly independent
set of vectors in H. Show that the following construction yields an
orthonormal set {un} such that {x1, . . . , xN} and {u1, . . . , uN} have
the same span for all N.

This is called
Gram-Schmidt
process.

Put u1 = x1/‖x1‖. Having u1, . . . , un−1 define

vn = xn −
n−1

∑
i=1

(xn, ui)ui, un = vn/‖vn‖.

Note that this leads to a proof of existence of maximal orthonor-
mal set in separable Hilbert spaces which makes no appeal to the
Hausdorff maximality principle. (A space is separable if it contains
a countable dense subset.)

� Solution We’ll prove the claim by induction. For N = 1, it is trivial.
Suppose it is valid for N and define vN+1 and uN+1 as indicated.
Then vN+1 6= 0, since {xn} is linearly independent and ‖uN+1‖ is
immediately 1. Furthermore

‖vN+1‖(uN+1, ui) = (vN+1, ui) = (xn, ui)− (xn, ui)(ui, ui) = 0

for i = 1, 2, . . . , N, and the set is still orthonormal. Finally, uN+1 ∈
[{x1, . . . , xN+1}] and reciprocally xN+1 ∈ [{u1, . . . , uN+1}], therefore
the sets have the same span. �

Exercise 4.3

� Solution L �

Exercise 4.4

� Solution M �

Exercise 4.5 If M = {x : Lx = 0}, where L is a continuous linear
functional on H, prove that M⊥ is a vector space of dimension 1
(unless M = H).

� Solution Suppose M 6= H. By the first isomorphism theorem,

H/M ∼= im L = C.

51
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Therefore dim(H/M) = 1. Now, consider the linear transformation
P̄ : M⊥ → H/M defined by P̄(x) = x̄, where x̄ is the element in H/M
which contains x. Then P is injective since x̄ = 0 =⇒ x ∈ M ∩M⊥ =

{0}. Moreover, P̄ is surjective. In fact, let Q be as in Theorem 4.11 and
ȳ ∈ H/M. Then Qy ∈ M⊥ satisfies P̄(Qy) = ȳ. Therefore M⊥ is a
vector space of dimension 1. �

Exercise 4.6 Let {un} (n = 1, 2, 3, . . . ) be an orthonormal set in H.
Show that this gives an example of a closed and bounded set which
is not compact. Let Q be the set of all x ∈ H of the form

x =
∞

∑
n=1

cnun

(
where |cn| ≤

1
n

)
.

Prove that Q is compact. (Q is called the Hilbert cube.)
More generally, let {δn} be a sequence of positive numbers, and

let S be the set of all x ∈ H of the form

x =
∞

∑
n=1

cnun (where |cn| ≤ δn) .

Prove that S is compact if and only if ∑∞
1 δ2

n < ∞.
Prove that H is not locally compact.

� Solution The set {un} is clearly bounded as every element has
unitary norm. Let {unk} be a convergent sequence in {un}. Since this
sequence is Cauchy,

‖uni − unj‖ < 1

for i, j sufficiently big. This implies that {unk} is eventually constant,
since ‖un − um‖ is 0 if n = m and

√
2 otherwise. That is, {un} is

closed.
We recall that a metric space is compact if and only if every sequence

has a convergent subsequence. Let {un} be a sequence in itself. As we
just saw, this sequence can’t possibly be Cauchy (since taking nk = k
would imply that {un} is eventually constant) and thus it cannot have
a convergent subsequence. In other words, {un} is not compact.

What we’ve just shown implies that H is not locally compact since
the closed unit ball contains the sequence {un} which has no con-
vergent subsequence. This shows that 0 has no neighborhood whose
closure is compact.

We now prove that S is compact using a diagonal argument. Let
{xk} be a sequence in S of the form

xk =
∞

∑
n=1

ck
nun.
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Since the sequence {ck
1} is contained in the closed ball of radius δ1,

it has a convergent subsequence, namely {cσ1(k)
1 }, for some (strictly)

increasing function σ1 : N→N.
Now, the sequence {cσ1(k)

2 } is contained in the closed ball of radius δ2.
Thus, it has a convergent subsequence {cσ2(k)

2 }. Observe that {cσ2(k)
1 }

is a subsequence of {cσ1(k)
1 } and hence it is also convergent.

Similarly, we create (strictly) increasing functions σm such that
{cσm(k)

n } converges for all n ≤ m. For all n, we denote by cn the limit
of {cσn(k)

n } and by x the element

x =
∞

∑
n=1

cnun.

We affirm that the "the diagonal sequence" {xσk(k)} converges to x.
Fix ε > 0 and let N be such that

∞

∑
n=N+1

δ2
n < ε.

Also, since {cσk(k)
n } is a subsequence of {cσn(k)

n } for k ≥ n, there are
numbers Mm such that

|cσk(k)
n − cn| <

√
ε

N

for all k ≥ Mm. We conclude that

‖xσk(k) − x‖2 =
N

∑
n=1
|cσk(k)

n − cn|2 +
∞

∑
n=N+1

|cσk(k)
n − cn|2

< ε + 4ε = 5ε.

The result follows.
Conversely, if ∑∞

1 δ2
n = ∞, we create a sequence {nk} such that

nk+1

∑
n=nk+1

δ2
n ≥ 1 for all k.

Let {xk} be a sequence defined by

xk =
nk

∑
n=1

δnun.

Then, if k > k′,

‖xk − xk′‖ =
nk

∑
n=nk′+1

δ2
n ≥

nk′+1

∑
n=nk′+1

δ2
n ≥ 1.

This implies that {xk} has no convergent subsequence. Thus, S is not
compact. �
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Exercise 4.7

� Solution Gu �

Exercise 4.8 If H1 and H2 are two Hilbert spaces, prove that one
of them is isomorphic to a subspace of the other. (Note that every
closed subspace of a Hilbert space is a Hilbert space.)

� Solution Since there are sets A1 and A2 such that H1
∼= `2(A1)

and H2 ∼= `2(A2), it is sufficient prove the result for `2 spaces.
This result is

equivalent to the
axiom of choice.

By the
Theorem of Comparability of Cardinals, there exists an injection A1 →
A2 or A2 → A1. Suppose without loss of generality, ϕ : A1 → A2 is an
injection. Then it induces an isomorphism ψ : `2(A1)→ `2(ϕ(A1)) ⊂
`2(A2) defined by ψ(a1, a2, . . . ) = (ϕ(a1), ϕ(a2), . . . ). In fact, observe
first that `2(ϕ(A1)) is a subspace of `2(A2). Furthermore, ψ is an
isomorphism �

Exercise 4.9

� Solution L �

Exercise 4.10

� Solution M �

Exercise 4.11 Find a nonempty closed set E in L2(T) that contains
no element of smallest norm.

� Solution Let

E =

{
fn(t) =

(
1 +

1
n

)
eint : n ∈N

}
.

Then E contains no element of smallest norm, since ‖ fn‖ = 1 + 1
n ,

and E is closed, since all of its elements are orthogonal (and the
distance between them is at least 2). �

Exercise 4.12 The constants ck in Sec. 4.24 were shown to be such
that k−1ck is bounded. Estimate the relevant integral more precisely
and show that

0 < lim
k→∞

k−1/2ck < ∞.

� Solution The constants ck were chosen such that

1
2π

∫ π

−π
ck

{
1 + cos t

2

}k

dt = 1.

Since (1 + cos t)/2 = cos2(t/2), this is equivalent to

ck

π

∫ π/2

−π/2
cos2k t dt = 1.
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Let Ak be the integral above, divided by π. Integrating by parts we
observe that

Ak =
2k− 1

2k
Ak−1.

We also know that A0 = 1, so

Ak =
1

22k−1

(
2k + 1
k + 1

)
.

It actually implies
that this limit is
equal to

√
2π.

Stirling’s formula (Sec. 8.22 in Principles of Mathematical Analysis)
implies that

n!
(n/e)n

√
n

converges to a finite positive number. As k−1/2ck = (
√

kAk)
−1, it

suffices that
√

kAk also converges to a finite positive number as k→ ∞.
Observe that

√
kAk =

√
k

22k−1
(2k + 1)!
k!(k + 1)!

is equal to (2k + 1)!(
2k+1

e

)2k+1√
2k + 1


 k!(

k
e

)k√
k


−1  (k + 1)!(

k+1
e

)k+1√
k + 1


−1

multiplied by
1

22k−1

√
2k + 1
k + 1

(2k + 1)2k+1

kk(k + 1)k+1 .

Thus, it suffices to show that

1
22k−1

(2k + 1)2k+1

kk(k + 1)k+1

This calculation
shows that k−1/2ck
tends to

√
π/4.

converges to a finite positive number as k→ ∞. Dividing above and
below by (2k)2k+1 we see that this limit turns out to be 4. The result
follows. �

Exercise 4.13

Gu

� Solution �

Exercise 4.14 Compute

min
a,b,c

∫ 1

−1
|x3 − a− bx− cx2|2 dx

and find

max
∫ 1

−1
x3g(x) dx,
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where g is subject to the restrictions∫ 1

−1
g(x) dx =

∫ 1

−1
xg(x) dx =

∫ 1

−1
x2g(x) dx = 0;

∫ 1

−1
|g(x)|2 dx = 1.

� Solution T �

Exercise 4.15

� Solution L �

Exercise 4.16

� Solution M �

Exercise 4.17 Show that there is a continuous one-to-one mapping
γ of [0, 1] into H such that γ(b)− γ(a) is orthogonal to γ(d)− γ(c)
whenever 0 ≤ a ≤ b ≤ c ≤ d ≤ 1. (γ may be called a "curve
with orthogonal increments.") Hint: Take H = L2, and consider
characteristic functions of certain subsets of [0, 1].

� Solution T �

Exercise 4.18 Define us(t) = eist for all s ∈ R1, t ∈ R1. Let X be
the complex vector space consisting of all finite linear combinations
of these functions us. If f ∈ X and g ∈ X, show that

( f , g) = lim
A→∞

1
2A

∫ A

−A
f (t)g(t) dt

exists. Show that this inner product makes X into a unitary space
whose completion is a non-separable Hilbert space H. Show also
that {us : s ∈ R1} is a maximal orthonormal set in H.

� Solution To prove that the limit in the definition of ( f , g) exists, it
suffices to check the case f = ur, g = us. We have that

(ur, us) = lim
A→∞

1
2A

∫ A

−A
ei(r−s)t dt =

1 if r = s

0 otherwise
.

This also shows that {us} is a orthonormal set.
Since X is dense in H, Theorem 4.18 implies that {us} is a maximal

orthonormal set in H. If H were separable, Exercise 4.2 would imply
the existence of a countable orthonormal set, which contradicts the
maximality of {us}. Hence, H is non-separable. �

Exercise 4.19

� Solution Gu �
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Exercise 5.1

� Solution L �

Exercise 5.2 Prove that the unit ball (open or closed) is convex in
every normed linear space.

� Solution T �

Exercise 5.3

� Solution M �

Exercise 5.4 Let C be the space of all continuous functions of [0, 1],
with the supremum norm. Let M consist of all f ∈ C for which∫ 1/2

0
f (t) dt−

∫ 1

1/2
f (t) dt = 1.

Prove that M is a closed convex subset of C which contains no
element of minimal norm.

� Solution Firstly, the triangular inequality implies that

1 ≤
∣∣∣∣∫ 1/2

0
f (t) dt

∣∣∣∣+ ∣∣∣∣∫ 1

1/2
f (t) dt

∣∣∣∣
≤ 1

2
‖ f ‖∞ +

1
2
‖ f ‖∞ = ‖ f ‖∞.

Also, we can find functions in M with norms arbitrarily close to 1. For
example, let fn be the function with the graph below.

1
2 −

1
n+1

1
2

1
2 + 1

n+1

1

1 + 1
n

−1− 1
n

x

f n
(x
)

fn(x)

57
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We see clearly that fn ∈ M for all n and that ‖ fn‖∞ → 1. In other
words,

inf
f∈M
‖ f ‖∞ = 1.

Now, suppose there is a function f ∈ M with unitary norm. This
function satisfies∫ 1/2

0
( f (t)− 1) dt +

∫ 1

1/2
(−1− f (t)) dt = 0.

Since f is continuous and has unitary norm, both integrands are
negative. This implies that

f (t) = 1 for t ∈ (0, 1/2) and f (t) = −1 for t ∈ (1/2, 1).

But then f is discontinuous. Absurd! �

Exercise 5.5 Let M be the set of all f ∈ L1([0, 1]), relative to
Lebesgue measure, such that∫ 1

0
f (t) dt = 1.

Show that M is a closed convex subset of L1([0, 1]) which contains
infinitely many points of minimal norm. (Compare this and Exercise
4 with Theorem 4.10.)

� Solution T �

Remark. There is a theorem which characterizes spaces satisfying
the conclusion of Theorem 4.10. It is called Day-James Theorem and
asserts the following.

For a normed space X, the following are equivalent:

• X is strictly convex and reflexive (see Exercises 3 and 8).

• Every non-empty closed convex set in X has a unique point of
minimal norm.

Exercise 5.6

� Solution Gu �

Exercise 5.7

� Solution L �

Exercise 5.8 Let X be a normed linear space, and let X∗ be its duas
space, as defined in Sec. 1.21, with the norm

‖ f ‖ = sup{ | f (x)| : ‖x‖ ≤ 1 }.
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(a) Prove that X∗ is a Banach space.

(b) Prove that the mapping f → f (x) is, for each x ∈ X, bounded
linead functional on X∗, of norm ‖x‖. (This gives a natural
embedding of X in its "second dual" X∗∗, the dual space of
X∗.)

When this
embedding is, in
fact, an isometric
isomorphism, we
say the space X is
reflexive.

(c) Prove that {‖xn‖} is bounded if {xn} is a sequence in X such
that { f (xn)} is bounded for every f ∈ X∗.

� Solution T �

Remark. James found an example (called James’ space) of a space X
such that X is isometrically isomorphic to X∗∗ but X is not reflexive
(i.e. the embedding above is not an isomorphisms)! Therefore a
reflexive space does not mean a space isomorphic to its second
dual. Nonetheless, there are (a lot!) of theorems which characterize
reflexive spaces, for example James’ Theorem which asserts the
following.

A Banach space X is reflexive if and only if every continuous linear
functional on X attains its supremum on the closed unit ball.

Another important theorem is S̆mulian Theorem (sometimes
called S̆mulian-James Theorem) which asserts the following.

A normed space X is reflexive if and only if for every nested sequence
C1 ⊃ C2 ⊃ C3 ⊃ · · · of nonempty bounded closed convex subsets of X,
their intersection is non-empty.

Exercise 5.9

� Solution M �

Exercise 5.10 If ∑ αiξi converges for every sequence {ξi} such that
ξi → 0 as i→ ∞, prove that ∑ |αi| < ∞.

� Solution Firstly, lets write this using this chapter’s formalism:
let α = {αi} be a complex sequence such that ∑ αiξi < ∞ for every
sequence ξ = {ξi} ∈ c0. (Recall the definition of c0 from the preceding
exercise.) We want to prove that α ∈ `1.

Consider the following linear functional:

Λn : c0 → C

ξ 7→
n

∑
i=1

αiξi.

By the triangular inequality,

‖Λn‖ = sup
‖ξ‖≤1

∣∣∣∣∣ n

∑
i=1

αiξi

∣∣∣∣∣ ≤ sup
‖ξ‖≤1

n

∑
i=1
|αi| |ξi| ≤

n

∑
i=1
|αi|.
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Moreover, by taking ξi = |αi|/αi for 1 ≤ i ≤ n (if αi = 0, just take
ξi = 0) and ξi = 0 for i > n, we see that this bound is attained. Thus,

‖Λn‖ =
n

∑
i=1
|αi| < ∞.

Since supn |Λnξ| < ∞ for all ξ, the Banach-Steinhaus theorem im-
plies that

‖α‖1 =
∞

∑
i=1
|αi| = sup

n
‖Λn‖ < ∞.

This is what was to be shown. �

Exercise 5.11 For 0 < α ≤ 1, let Lip α denote the space of all
complex functions f on [a, b] for which

M f = sup
s 6=t

| f (s)− f (t)|
|s− t|α < ∞.

Prove that Lip α is a Banach space, if ‖ f ‖ = | f (a)|+ M f ; also if

‖ f ‖ = M f + sup
x
| f (x)|.

(The members of Lip α are sair to satisfy Lipschitz condition of order
α.)

Nowadays these
functions are said
to satisfy α-Hölder

condition
� Solution T �

Exercise 5.12

� Solution Gu �

Exercise 5.13

� Solution L �

Exercise 5.14 Let C be the space of all real continuous functions
on I = [0, 1] with the supremum norm. Let Xn be the subset of
C consisting of those f for which there exists a t ∈ I such that
| f (s)− f (t)| ≤ n|s− t| for all s ∈ I. Fix n and prove that each open
set in X contains an open set which does not intersect Xn. (Each
f ∈ C can be uniformly approximated by a zigzag function g with
very large slopes, and if ‖g− h‖ is small, h /∈ Xn.) Show that this
implies the existence of a dense set Gδ in C which consists entirely
of nowhere differentiable functions.

� Solution T �

Exercise 5.15

� Solution M �
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Exercise 5.16 Suppose X and Y are Banach spaces, and suppose
Λ is a linear mapping of X into Y, with the following property: For
every sequence {xn} in X for which x = lim xn and y = lim Λxn

exist, it is true that y = Λx. Prove that Λ is continuous.
This is the so-called "closed graph theorem". Hint: Let X⊕Y be

the set of all ordered pairs (x, y), x ∈ X and y ∈ Y, with addition
and scalar multiplication defined componentwise. Prove that X⊕Y
is a Banach space, if ‖(x, y)‖ = ‖x‖+ ‖y‖. The graph G of Λ is the
subset of X⊕Y formed by the pairs (x, Λx), x ∈ X. Note that our
hypothesis says that G is closed; hence G is a Banach space. Note
that (x, Λx)→ x is continuous, one-to-one, and linear and maps G
onto X.

Observe that there exist nonlinear mappings (of R1 onto R1, for
instance) whose graph is closed although they are not continuous:
f (x) = 1/x if x 6= 0, f (0) = 0.

� Solution The fact that the function

G → X

(x, Λx) 7→ x

is linear, surjective and maps Banach spaces into Banach spaces hints
to the utilization of the Open Mapping Theorem or corollaries thereof.
Let ϕ : X → G be its inverse. By Theorem 5.10, ϕ is continuous. The
result now follows since

Λ = πY ◦ ϕ,

where πY : G → Y is the (clearly continuous) projection from G to Y,
is a composition of continuous functions.

The fact that X ⊕ Y is a Banach space is clear since if {(xn, yn)} is
a Cauchy sequence in X ⊕ Y, {xn} and {yn} are Cauchy sequences
in X and Y, respectively. So, if xn → x and yn → y, it follows that
(xn, yn)→ (x, y). �

Exercise 5.17 If µ is a positive measure, each f ∈ L∞(µ) defines a
multiplication operator M f on L2(µ) into L2(µ), such that M f (g) =
f g. Prove that ‖M f ‖ ≤ ‖ f ‖∞. For which measures µ is it true that
‖M f ‖ = ‖ f ‖∞ for all f ∈ L∞(µ)? For which f ∈ L∞(µ) does M f
map L2(µ) onto L2(µ)?

� Solution T �

Exercise 5.18

� Solution Gu �

Exercise 5.19

� Solution L �
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Exercise 5.20

(a) Does there exist a sequence of continuous positive functions
fn on R1 such that { fn(x)} is unbounded if and only if x is
rational?

(b) Replace "rational" by "irrational" in (a) and answer the result-
ing question.

(c) Replace "{ fn(x)} is unbounded" by " fn(x) → ∞ as n → ∞"
and answer the resulting analogues of (a) and (b).

� Solution T �

Exercise 5.21

� Solution M �

Exercise 5.22 Suppose f ∈ C(T) and f ∈ Lip α for some α > 0.
(See Exercise 5.11.) Prove that the Fourier series of f converges to
f (x), by completing the following outline: It is enough to consider
the case x = 0, f (0) = 0. The difference between the partial sums
sn( f ; 0) and the integrals

1
π

∫ π

−π
f (t)

sin nt
t

dt

tends to 0 as n → ∞. The function f (t)/t is in L1(T). Apply the
Riemann-Lebesgue lemma. More careful reasoning shows that the
convergence is actually uniform on T.

� Solution Firstly, if g(t) = f (t + x) − f (x), then by linearity we
have that

sn( f ; x)− sn(g; 0) = f (x).

In other words, if sn(g; 0) → 0, then sn( f ; x) → f (x) so it suffices to
consider the case x = 0, f (0) = 0.

Now we use the usual formula for sin(x + y) to write

Dn(t) =
sin(n + 1

2 )t
sin(t/2)

= 2 · sin nt
t

+

[
sin nt

(
cot(t/2)− 2

t

)
+ cos nt

]
.

Since Dn is even, this implies that the difference in the exercise’s
statement is equal to

1
2π

∫ π

−π
f (t)

(
cot(t/2)− 2

t

)
sin nt dt +

1
2π

∫ π

−π
f (t) cos nt dt.

But cot(t/2)− 2/t→ 0 as t→ 0, which implies that this function has
only a removable singularity. Thus, by defining it to be 0 for t = 0 we
see that both

f (t)
(

cot(t/2)− 2
t

)
and f (t)
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are continuous functions and belong to L1(T). The Riemann-Lebesgue
lemma then implies that both integrals tend to 0 as n→ ∞.

Since f ∈ Lip α,∣∣∣∣ f (t)
t

∣∣∣∣ = | f (t)− f (0)|
|t− 0| ≤ M f |t− 0|α−1 = M f |t|α−1

for all t 6= 0. This implies that | f (t)/t| is integrable and so f (t)/t ∈
L1(T). Finally, as we saw,

sn( f ; 0) =
1
π

∫ π

−π
f (t)

sin nt
t

dt + xn,

where xn → 0 as n→ ∞. A third application of the Riemann-Lebesgue
lemma implies that sn( f ; 0)→ 0.

In view of Arzelà-Ascoli’s theorem (theorem 7.25 in Principles of
Mathematical Analysis), it suffices to show that {sn( f ; x) − f (x)} is
equicontinuous to have uniform convergence. For that, we have to
bound

|[sn( f ; x)− f (x)]− [sn( f ; y)− f (y)]|.

Since
∫ π
−π Dn(t) dt = 2π, this is equal to∣∣∣∣∫ π

−π
{[ f (x− t)− f (x)]− [ f (y− t)− f (y)]}Dn(t) dt

∣∣∣∣ .

Using the triangular inequality twice we bound this integral by∫
A
{| f (x− t)− f (x)|+ | f (y− t)− f (y)|} |Dn(t)| dt+∫

B
{| f (x− t)− f (y− t)|+ | f (x)− f (y)|} |Dn(t)| dt,

where A = {t ∈ [−π, π] : |t| < |x− y|} and B = {t ∈ [−π, π] : |t| >
|x− y|}. As f ∈ Lip α, it follows that this is bounded by∫

A

{
2M f |t|α

}
|Dn(t)| dt +

∫
B

{
2M f |x− y|α

}
|Dn(t)| dt.

Now, since (t/2)/ sin(t/2)→ 1 as t→ 0, there exists δ > 0 such that

|Dn(t)| < 4|t|−1

for all 0 < |t| < δ. We conclude that, if |x− y| < min(δ, π), the integral
over A is bounded by

8M f

∫
A
|t|α−1 dt

and that the integral over B is bounded by This integral is
bounded since
|Dn(t)| → 0 for all
t 6= 0 as n→ ∞.2M f |x− y|α

∫
B
|Dn(t)| dt︸ ︷︷ ︸
bounded

.
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Finally, since −1 < α − 1 ≤ 0, we can estimate
∫

A |t|
α−1 dt in the

following way: let |x− y| = a and observe that∫
A
|t|α−1 dt = 2

∫ a

0
tα−1 dt

= 2
(∫ a

a/2
tα−1 dt +

∫ a/2

a/4
tα−1 dt + . . .

)
≤ 2

(
a
2

( a
2

)α−1
+

a
4

( a
4

)α−1
+ . . .

)
= K|x− y|α,

for some constant K > 0. Putting it all together, we get that if |x− y| <
min(δ, π), then

|[sn( f ; x)− f (x)]− [sn( f ; y)− f (y)]| < K′|x− y|α,

for another constant K′ > 0. This implies that {sn( f ; x) − f (x)} is
equicontinuous and the result follows. �

Remark. For f ∈ Lip α we can have a explicit bound on | f̂ (n)| in
the following way: by periodicity we have that, for n 6= 0,

f̂ (n) =
1

2π

∫ π

−π
f (t)e−int dt =

1
2π

∫ π

−π
f
(

t +
π

n

)
e−in(t+π/n)︸ ︷︷ ︸

=−e−int

dt.

Averaging the two expressions and utilising the definition of the
Lipschitz condition,

| f̂ (n)| =
∣∣∣∣ 1
4π

∫ π

−π

[
f (t)− f

(
t +

π

n

)]
e−int dt

∣∣∣∣
≤ 1

4π

∫ π

−π

∣∣∣ f (t)− f
(

t +
π

n

)∣∣∣ dt

≤ 2π

4π
M f

∣∣∣t− (t +
π

n

)∣∣∣α =
M f

2

∣∣∣π
n

∣∣∣α .

Observe that letting n → ±∞ we obtain another proof the the
Riemann-Lebesgue lemma. Unfortunately, this bound is not strong
enough to imply that sn( f ; x)→ f (x) uniformly.
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C O M P L E X M E A S U R E S

Exercise 6.1 If µ is a complex measure on a σ-algebra M, and if
E ∈M, define

λ(E) = sup ∑ |µ(Ei)|,

the supremum being taken over all finite partitions {Ei} of E. Does
it follow that λ = |µ|?

� Solution Since {|µ(Ei)| : {Ei} is a finite partition of E} is a subset
of {|µ(Ei)| : {Ei} is a partition of E}, we clearly have that λ ≤ |µ|.

Now let {Ei} be a not necessarily finite partition of E and ε > 0.
Since ∑i |µ(Ei)| converges to |µ|(E), there exists n such that

|µ|(E) <
n

∑
i=1
|µ(Ei)|+ ε.

Since {Ei : i = 1, 2, . . . , n} is a finite partition of E1 ∪ . . . ∪ En, By the same
argument as in
Theorem 6.2, λ is
monotone.

n

∑
i=1
|µ(Ei)| ≤ λ

(
n⋃

i=1

Ei

)
≤ λ(E).

Using both inequalities we obtain that |µ| < λ + ε for all ε > 0. It
follows that |µ| = λ. �

Exercise 6.2

� Solution Gu �

Exercise 6.3

� Solution L �

Exercise 6.4

� Solution M �

Exercise 6.5

� Solution T �

Exercise 6.6 Suppose 1 < p < ∞ and prove that Lq(µ) is the dual
space of Lp(µ) even if µ is not σ-finite. (As usual, 1/p + 1/q = 1.)

� Solution Ga �

65
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Exercise 6.7

� Solution Gu �

Exercise 6.8

� Solution M �

Exercise 6.9

� Solution L �

Exercise 6.10

� Solution T �

Exercise 6.11 Suppose µ is a positive measure on X, µ(X) < ∞,
fn ∈ L1(µ) for n = 1, 2, 3, . . . , fn(x) → f (x) a.e., and there exists
p > 1 and C < ∞ such that

∫
X | fn|p dµ < C for all n. Prove that

lim
n→∞

∫
X
| f − fn| dµ = 0.

Hint: { fn} is uniformly integrable.

� Solution By Hölder’s inequality,∣∣∣∣∫E
fn dµ

∣∣∣∣ = ∣∣∣∣∫X
fnχE dµ

∣∣∣∣ ≤ {∫X
| fn|p dµ

}1/p

µ(E)1/q,

with 1/p + 1/q = 1. In other words, if µ(E) < δ we have that∣∣∣∣∫E
fn dµ

∣∣∣∣ < C1/pδ1/q

which implies that { fn} is uniformly integrable. (Recall the definition
in Exercise 6.10.) Since fn ∈ L1(µ) implies that fn is finite almost
everywhere, we satisfy all the conditions in Vitali’s theorem (Exercise
6.10.(b)), which implies our result. �

Exercise 6.12

� Solution Gu �

Exercise 6.13

� Solution M �
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D I F F E R E N T I AT I O N

Exercise 7.1 The function M f is
called
Hardy-Littlewood
maximal function.

Show that | f (x)| ≤ (M f )(x) at every Lebesgue point
of f if f ∈ L1(Rk).

� Solution By the triangular inequality,

1
m(Br)

∣∣∣∣∫B(x,r)
f dm

∣∣∣∣ ≤ 1
m(Br)

∫
B(x,r)

| f | dm.

Since x is a Lebesgue point of f , the left side tends to | f (x)| as r → 0.
Also, the supremum of the right side, for 0 < r < ∞, is (M f )(x). The
result follows. �

Exercise 7.2

� Solution Gu �

Exercise 7.3

� Solution M �

Exercise 7.4

� Solution L �

Exercise 7.5

� Solution T �

Exercise 7.6 Suppose G is a subgroup of R1 (relative to addition),
G 6= R1, and G is Lebesgue measurable. Prove that then m(G) = 0.

Hint: Use Exercise 7.5.

� Solution Suppose that m(G) > 0. Then, by Exercise 7.5, G+G ⊂ G
contains an interval I. Let m be the midpoint of this interval. Since
m ∈ G, −m ∈ G and thus I−m is an interval contained in G, centered
at the origin. Since G is a subgroup, kI ⊂ G for all k = 1, 2, . . . . It
follows that G = R1, which is absurd! We conclude that m(G) = 0. �

Exercise 7.7

� Solution Gu �

Exercise 7.8

� Solution M �

67
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Exercise 7.9

� Solution L �

Exercise 7.10

� Solution T �

Exercise 7.11 Assume that 1 < p < ∞, f is absolutely continuous
on [a, b], f ′ ∈ Lp, and α = 1/q, where q is the exponent conjugate
to p. Prove that f ∈ Lip α.

� Solution Let x, y ∈ [a, b]. Without loss of generality, suppose that
x ≥ y. By Hölder’s inequality,

| f (x)− f (y)| =
∣∣∣∣∫ x

y
f ′ dm

∣∣∣∣ ≤ ∫ x

y
| f ′| dm ≤ ‖ f ′‖p|x− y|1/q.

The result follows. �

Exercise 7.12

� Solution Gu �

Exercise 7.13

� Solution M �

Exercise 7.14

� Solution L �

Exercise 7.15

� Solution T �

Exercise 7.16 Suppose E ⊂ [a, b], m(E) = 0. Construct an abso-
lutely continuous monotonic function f on [a, b] so that f ′(x) = ∞
at every x ∈ E.

Hint: E ⊂ ⋂Vn, Vn open, m(Vn) < 2−n. Consider the sum of the
characteristic functions of these sets.

� Solution Since m is outer regular, there exists a countable collection
of open sets {Vn} containing E such that Vn+1 ⊂ Vn and m(Vn) < 2−n

for all n. Let g = ∑n χVn and f (x) =
∫ x

a g dm. The function f is clearly
monotonic and is absolutely continuous by the following lemma,
which is of independent interest.

Lemma. Let g be an integrable function on [a, b]. Then f (x) =∫ x
a g dm is absolutely continuous.

Proof. Let dλ = |g| dm. By Theorem 6.11, to every ε > 0, there is a
δ > 0 such that ∫

A
|g| dm < ε
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for all Lebesgue measurable sets A with m(A) < δ. Now, if (α1, β1),
...,(αn, βn) is a disjoint collection of segments whose lengths satisfy

n

∑
i=1

(βi − αi) < δ,

then A =
⋃

i(αi, βi) satisfies m(A) < δ and so

n

∑
i=1
| f (βi)− f (αi)| =

n

∑
i=1

∫ βi

αi

|g| dm =
∫

A
|g| dm < ε.

The result follows.

The only thing that we have to show now is that f ′(x) = ∞ at every
x ∈ E. Let x ∈ Vn. Since Vn is open, there is a δ > 0 such that
x + h ∈ Vn for all h such that |h| < δ. This implies that

| f (x + h)− f (x)| =
∣∣∣∣∫ x+h

x
g dm

∣∣∣∣ ≤
∣∣∣∣∣
∫ x+h

x

n

∑
i=1

χVi dm

∣∣∣∣∣ = n|h|,

since all the points in the integration domain are in Vi for all i =

1, 2, . . . , n. Making h → 0, we have that if x ∈ ⋂n Vn, then f ′(x) ≥ n
for all n. In other words, f ′(x) = ∞ for all x ∈ E. �

Exercise 7.17

� Solution Gu �

Exercise 7.18

� Solution M �

Exercise 7.19

� Solution L �

Exercise 7.20

� Solution T �

Exercise 7.21 If f is a real function on [0, 1] and

γ(t) = t + i f (t),

the length of the graph of f is, by definition, the total variation of
γ on [0, 1]. Show that this length is finite if and only if f ∈ BV. (See
Exercise 7.13.) Show that it is equal to∫ 1

0

√
1 + [ f ′(t)]2 dt

if f is absolutely continuous.
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� Solution If f ∈ BV, let {ti} be as in the definition of total variation.
We have that

N

∑
i=1
|γ(ti)− γ(ti−1)| =

N

∑
i=1
|ti − ti−1 + i( f (ti)− f (ti−1))|

≤
N

∑
i=1
|ti − ti−1|+

N

∑
i=1
| f (ti)− f (ti−1)|.

Taking the supremum of both sides, it follows that

total variation of γ ≤ 1 + total variation of f < ∞.

Conversely, since

N

∑
i=1
|γ(ti)− γ(ti−1)| =

N

∑
i=1
|ti − ti−1 + i( f (ti)− f (ti−1))|

=
N

∑
i=1

√
(ti − ti−1)2 + ( f (ti)− f (ti−1))2

≥
N

∑
i=1
| f (ti)− f (ti−1)|,

we have that γ ∈ BV implies f ∈ BV.
Finally, if f is absolutely continuous, so is γ. Thus, it suffices to

show that the total variation of γ is∫ 1

0
|γ′| dm.

Let G be the total variation function of γ. By the triangular inequality
we have that

N

∑
i=1
|γ(ti)− γ(ti−1)| =

N

∑
i=1

∣∣∣∣∫ ti

ti−1

γ′ dm
∣∣∣∣ ≤ N

∑
i=1

∫ ti

ti−1

|γ′| dm =
∫ 1

0
|γ′| dm.

Taking the supremum we obtain

G(1) ≤
∫ 1

0
|γ′| dm.

For the other inequality, observe that |γ(x)− γ(y)| ≤ |G(x)− G(y)|
for all x, y ∈ [0, 1], which implies that, whenever γ and G are differ-
entiable, |γ′| ≤ |G′| = G′ (as G is nondecreasing). Now, since G is
absolutely continuous,∫ 1

0
|γ′| dm ≤

∫ 1

0
G′ dm = G(1)− G(0) = G(1).

The result follows. �
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Exercise 7.22

� Solution Gu �

Exercise 7.23

� Solution M �





8
I N T E G R AT I O N O N P R O D U C T S PA C E S

Exercise 8.1 Find a monotone class M in R1 which is not a σ-
algebra, even though R1 ∈M and R1 − A ∈M for every A ∈M.

� Solution Let M consist of all the unbounded intervals in R1,
together with the empty set. In other words, an element of M is either
the empty set, R1,

(−∞, a), (−∞, a], (a, ∞), or [a, ∞)

for some a ∈ R1. Clearly M is a monotone class which is closed under
complements. Nevertheless, it is not a σ-algebra since

(−∞, 1) ∩ (0, ∞) = (0, 1)

is a finite intersection of elements of M which is not in M. �

Exercise 8.2

� Solution Gu �

Exercise 8.3

� Solution M �

Exercise 8.4

� Solution L �

Exercise 8.5

� Solution T �

Exercise 8.6 — Polar coordinates in Rk. Let Sk−1 be the unit sphere
in Rk, i.e., the set of all u ∈ Rk whose distance from the origin
0 is 1. Show that every x ∈ Rk, except for x = 0, has a unique
representation of the form x = ru, where r is a positive real number
and u ∈ Sk−1. Thus Rk − {0} bay be regarded as the cartesian
product (0, ∞)× Sk−1.

Let mk be the Lebesgue measure on Rk, and define a measure
σk−1 on Sk−1 as follows: If A ⊂ Sk−1 and A is a Borel set, let Ã be
the set of points ru, where 0 < r < 1 and u ∈ A, and define

σk−1(A) = k ·mk(Ã).

73
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Prove that the formula∫
Rk

f dmk =
∫ ∞

0
rk−1 dr

∫
Sk−1

f (ru) dσk−1(u)

is valid for every nonnegative Borel function f on Rk. Check that
this coincides with the familiar results when k = 2 and k = 3.

Suggestion: If 0 < r1 < r2 and if A is an open subset of Sk−1, let
E be the set of all ru with r1 < r < r2, u ∈ A, and verify that the
formula holds for the characteristic function of E. Pass from these
to characteristic functions of Borel sets in Rk.

� Solution Firstly, every non-zero x ∈ Rk can be written as

x = ‖x‖ x
‖x‖ ,

where ‖x‖ is a positive real number and x/‖x‖ ∈ Sk−1. If we had two
representations x = r1u1 = r2u2, then it would follow that

r1

r2
u1

has norm equal to 1 and so r1 = r2. This implies that u1 = u2.
In the rest of this exercise, we will use rA to denote the set {rx :

x ∈ A} for all r > 0 and A ⊂ Rk. Also, mk(rA) = rkmk(A) holds for
measurable set since it holds for k-cells. Now, by the regularity of the
Lebesgue measure

mk(E) = mk(r2Ã− r1Ã) = (rk
2 − rk

1)mk(Ã) =
rk

2 − rk
1

k
σk−1(A).

In other words,∫
Rk

χE dmk =
∫ r2

r1

rk−1 dr
∫

Sk−1

χA(u) dσk−1(u)

=
∫ ∞

0
rk−1 dr

∫
Sk−1

χ(r1,r2)(r) χA(u) dσk−1(u).

Since χE(x) = 1 if and only if x = ru with χ(r1,r2)(r)χA(u) = 1, this
proves that the formula from the statement holds for the characteristic
function of E.

CONTINUAR �

Exercise 8.7

� Solution Gu �

Exercise 8.8

� Solution M �
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Exercise 8.9

� Solution L �

Exercise 8.10

� Solution T �

Exercise 8.11 Let Bk be the σ-algebra of all Borel sets in Rk. Prove
that Bm+n = Bm ×Bn. This is relevant in Theorem 8.14.

� Solution If A ∈ Bm and B ∈ Bn, both A×Rn and Rm × B are
Borel sets in Rm+n. Since

A× B = (A×Rn) ∩ (Rm × B),

this implies that A× B ∈ Bm+n. In other words, Bm ×Bn ⊂ Bm+n.
Conversely, let V ∈ Rm+n be an open set. Since Rm+n is the topolog-

ical product Rm ×Rn and Rk is second countable for all k, V can be
written as

V =
∞⋃

k=1

Ak × Bk,

where Ak ∈ Rm and Bk ∈ Rn are open sets. This implies that V ∈
Bm ×Bn. As Bm+n is the smallest σ-algebra which contains the open
sets, it follows that Bm+n ⊂ Bm ×Bn. �

Exercise 8.12

� Solution Gu �

Exercise 8.13

� Solution M �

Exercise 8.14

� Solution L �

Exercise 8.15

� Solution T �

Exercise 8.16 Prove the following analogue of Minkowski’s in-
equality, for f ≥ 0:

{∫ [∫
f (x, y) dλ(y)

]p

dµ(x)
} 1

p

≤
∫ [∫

f p(x, y) dµ(x)
] 1

p

dλ(y).

Supply the required hypotheses. (Many further developments of
this theme may be found in G. H. Hardy, J. E. Littlewood, and G.
Pólya’s book Inequalities.)
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� Solution Let I(x) =
∫

f (x, y) dλ(y). Suppose that
∫

I(x)p dµ(x) is
finite so that Fubini’s theorem is justified. Then, by Hölder’s inequality,∫

I(x)p dµ(x) =
∫

I(x)p−1 dµ(x)
∫

f (x, y) dλ(y)

=
∫

dλ(y)
∫

I(x)p−1 f (x, y) dµ(x)

≤
∫

dλ(y)

{[∫
f (x, y)p dµ(x)

] 1
p
[∫

I(x)p dµ(x)
] 1

q
}

=

[∫
I(x)p dµ(x)

] 1
q ∫ [∫

f (x, y)p dµ(x)
] 1

p

dλ(y),

where p and q are conjugated exponents. Now, if
∫

I(x)p dµ(x) > 0, it
follows that{∫

I(x)p dµ(x)
} 1

p

≤
∫ [∫

f (x, y)p dµ(x)
] 1

p

dλ(y),

which is what we wanted to prove. If
∫

I(x)p dµ(x) = 0, I(x) = 0 for
almost all x and then f (x, y) = 0 for almost all x and y. It follows that
both sides of our desired inequality are zero, so that it holds trivially.

Actually, this inequality holds even if
∫

I(x)p dµ(x) = ∞. However,
in this case the proof is a little more delicate. The reader is encouraged
to check the details in the cited book. �
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F O U R I E R T R A N S F O R M S

Recall that in this chapter m denotes the Lebesgue measure divided
by
√

2π.

Exercise 9.1 Suppose f ∈ L1, f > 0. Prove that | f̂ (y)| < f̂ (0) for
every y 6= 0.

� Solution By the triangular inequality,

| f̂ (y)| =
∣∣∣∣∫ ∞

−∞
f (x)e−ixy dm(x)

∣∣∣∣ ≤ ∫ ∞

−∞
| f (x)| dm(x) = f̂ (0).

Now, lets suppose that there exists y 6= 0 such that | f̂ (y)| = f̂ (0).
Then Theorem 1.39(c) implies that there is a constant α such that
α f (x)e−ixy = f (x) holds for almost all x. Since f > 0, this implies that
αe−ixy = 1 for all x (since the exponential function is continuous). In
other words, y = 0. This contradiction implies the result. �

Exercise 9.2

� Solution Gu �

Exercise 9.3

� Solution M �

Exercise 9.4

� Solution L �

Exercise 9.5

� Solution T �

Exercise 9.6 Suppose f ∈ L1, f is differentiable almost everywhere,
and f ′ ∈ L1. Does it follow that the Fourier transform of f ′ is ti f̂ (t)?

� Solution As it is, the answer is no. Take f = χ[−1,1], for example.
Clearly f ∈ L1 and f ′ = 0 almost everywhere so that f ′ ∈ L1. However,

0 = f̂ ′(t) 6= ti f̂ (t) = i

√
2
π

sin t.

Nevertheless, if we suppose that f is continuously differentiable,
then the result is true. (It suffices to integrate by parts.) �

77
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Exercise 9.7

� Solution Gu �

Exercise 9.8

� Solution M �

Exercise 9.9

� Solution L �

Exercise 9.10

� Solution T �

Exercise 9.11 Find conditions on f and/or f̂ which ensure the
correctness of the following formal argument: If

ϕ(t) =
1

2π

∫ ∞

−∞
f (x)e−itx dx

and

F(x) =
∞

∑
k=−∞

f (x + 2kπ)

then F is periodic, with period 2π, the nth Fourier coefficient of F
is ϕ(n), hence F(x) = ∑ ϕ(n)einx. In particular,

∞

∑
k=−∞

f (2kπ) =
∞

∑
n=−∞

ϕ(n).

More generally,

∞

∑
k=−∞

f (kβ) = α
∞

∑
n=−∞

ϕ(nα) if α > 0, β > 0, αβ = 2π. (∗)

What does (∗) say about the limit, as α → 0, of the right-hand
side (for "nice" functions, of course)? Is this in agreement with the
inversion theorem?

[(∗) is known as the Poisson summation formula.]

� Solution Firstly, it is clear that we ought to have f ∈ L1(R1) so
that ϕ is well-defined. Since∫ π

−π

∞

∑
k=−∞

| f (x + 2kπ)| dx =
∞

∑
k=−∞

∫ π

−π
| f (x + 2kπ)| dx

=
∫ ∞

−∞
| f (x)| dx < ∞,

it follows that F is finite almost everywhere and so F ∈ L1(T). In order
to conclude that

F(x) =
∞

∑
n=−∞

ϕ(n)einx
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we need to assure pointwise convergence of the Fourier series. The
only result we have so far that implies pointwise convergence is
Exercise 5.22. So, if F ∈ Lip α for 0 < α ≤ 1, it follows that This is actually a

condition on f
since f ∈ Lip α

implies that F
satisfies a Lipschitz
condition of order
α2/(α + 1).

F(x) =
∞

∑
n=−∞

ϕ(n)einx.

This exact same reasoning implies (∗). As α→ 0, the right-hand side
of (∗) tends to the Riemann integral of ϕ on the real line. Finally, the
left-hand side tends to∫ ∞

−∞
ϕ(t) dt =

∫ ∞

−∞
f̂ (t) dm(t) = f (0),

which holds by the inversion formula. �

Exercise 9.12

� Solution Gu �

Exercise 9.13

� Solution M �

Exercise 9.14

� Solution L �

Exercise 9.15

� Solution T �

Exercise 9.16 The Laplacian of a function f on Rk is

∆ f =
k

∑
j=1

∂2 f
∂x2

j
,

provided the partial derivatives exist. What is the relation between
f̂ and ĝ is g = ∆ f and all necessary integrability conditions are
satisfied? It is clear that the Laplacian commutes with translations.
Prove that it also commutes with rotations, i.e., that

∆( f ◦ A) = (∆ f ) ◦ A

whenever f has continuous second derivatives and A is a rotation
of Rk. (Show that it is enough to do this under the additional
assumption that f has compact support.)

� Solution Integrating by parts, we can prove that

∂̂ f
∂xj

(t) = itj f̂ (t).
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It follows that if g = ∆ f , then

ĝ(t) = −‖t‖2 f̂ (t).

Now suppose that f has compact support and so it has a Fourier
transform. By the previous exercise,

̂∆( f ◦ A)(t) = −‖t‖2 ̂( f ◦ A)(t) = −‖t‖2 f̂ (At).

Since rotations preserve norms, this is also equal to

−‖At‖2 f̂ (At) = ̂(∆ f ◦ A)(t).

The injectivity of the Fourier transform implies that

∆( f ◦ A) = (∆ f ) ◦ A

for all f ∈ C2
c (R

k). For f ∈ C2(Rk), let t ∈ Rk and B be a ball
containing At. Similarly to Urysohn’s lemma, there is ϕ ∈ C∞

c (Rk)

such that ϕ(x) = 1 for all x ∈ B. Then

f ϕ = f

in B. This implies that

∆( f ◦ A)(t) = ∆( f ϕ ◦ A)(t) = (∆ f ϕ) ◦ A(t) = (∆ f ) ◦ A(t).

Since this holds for all t, the result follows. �

Exercise 9.17

� Solution Gu �

Exercise 9.18

� Solution M �

Exercise 9.19

� Solution L �
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