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I
P R E L I M I N A R I E S : S E T T H E O RY A N D C AT E G O R I E S

1 naive set theory

Exercise 1.1 Locate a discussion of Russell’s paradox, and under-
stand it.

� Solution As Aluffi says in the second page, we often define a set by
saying that its elements are exactly those which satisfy some property
P. This is the axiom

schema of
(unrestricted)
comprehension from
naive set theory

Russell’s paradox shows that this characterization is not always
well-defined. For example, consider

A = {x | x /∈ x}.

If A is really a set, we can ask whether A is an element of itself or
not. If A ∈ A, then A should satisfy the property defining A. That is,
A /∈ A, which is absurd! However, if A is not an element of itself then
it satisfies the defining property of A, which is also an absurd.

This shows that naive set theory is inconsistent. As a solution, Ernst
Zermelo and Abraham Fraenkel developed a consistent axiomatic
system for set theory. Their theory does not allow general entities of
the form {x | P(x) is true} but only subsets of the form

This is the axiom
schema of
specification in ZFC.

{x ∈ A | P(x) is true}

when A is already known to be a set. From now on, all sets will be
defined in this way. �

Remark. Russell’s paradox is also intimately related to the axiom
of regularity, which asserts that for every nonempty set A, there
exists B ∈ A such that A ∩ B = ∅. In particular, there does not
exists a set such that A ∈ A. As we have argumented above, axiom
schema of specification and Russell’s paradox implies there does
not exists a set of all sets in ZFC. This follows independently by
the axiom of regularity.

There are, however, ways of making sense of the axiom schema of
comprehension. In NBG (von Neumann-Bernays-Gödel) set theory,
there is the notion of a class, which, in a way, generelizes the idea
of sets. A class is a collection of sets defined by a formula. Therefore,

{ x | x is a set }

and
{ x | x /∈ x }

1



2 preliminaries : set theory and categories

are classes, but not sets (what we call proper classes). Intuitively,
proper classes are collections too big to be sets. As we have claimed
above, every set is a class: any set A is defined by the formula
x ∈ A, hence it is a class.

Exercise 1.2 B Prove that if ∼ is an equivalence relation on a set
S, then the corresponding family P∼ defined in §1.5 is indeed a
partition of S: that is, its elements are nonempty, disjoint, and their
union is S. [§1.5]

� Solution By reflexivity,

(∀a ∈ S) a ∈ [a]∼,

hence every element is nonempty and their union is S. Furthermore,
suppose [a]∼ ∩ [b]∼ 6= ∅ and let e be one of its elements. Then e ∼ a
and e ∼ b, and, using symmetry and transitivity, we conclude a ∼ b.
In this case,

c ∈ [a]∼ ⇐⇒ c ∼ a

⇐⇒ c ∼ a and a ∼ b

⇐⇒ c ∼ b

⇐⇒ c ∈ [b]∼

and [a]∼ = [b]∼. In other words, they’re either disjoint or equal. �

Exercise 1.3 B Given a partition P on a set S, show how to define
a relation ∼ on S such that P is the corresponding partition.

� Solution We define the relation by

(∀a ∈ S)(∀b ∈ S) a ∼ b ⇐⇒ (∃P ∈P) a ∈ P and b ∈ P.

Let’s prove that it is indeed an equivalence relation:

• Reflexivity: Since P is a partition on S, there exists P ∈P such
that a ∈ P. It follows that a ∼ a.

• Symmetry: If a, b ∈ S are such that a ∼ b, then there exists
P ∈P satisfying a ∈ P and b ∈ P. We conclude that b ∈ P and
a ∈ P, that is, b ∼ a.

• Transitivity: Given a, b, c ∈ S with a ∼ b and b ∼ c, there exist
P, Q ∈P such that a, b ∈ P and b, c ∈ Q. Since P is a partition
on S and b ∈ P ∩Q, then P = Q. Hence, a, c ∈ P and a ∼ c.

Finally, we see that P is the corresponding partition of the equiv-
alence relation ∼ due to its definition: given a ∈ S and P ∈ P with
a ∈ P, then b ∈ P ⇐⇒ b ∼ a ⇐⇒ b ∈ [a]∼ and P = [a]∼. �
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Exercise 1.4 How many different equivalence relations may be
defined on the set {1, 2, 3}?

The number of
equivalence
relations on the set
{1, . . . , n} is the
n-th Bell number.� Solution As we saw, this question amounts to asking in how many

ways we can partition this set. A quick thought shows that these are
all the possible partitions:

{{1, 2, 3}}, {{1}, {2, 3}}, {{2}, {3, 1}},
{{3}, {1, 2}}, {{1}, {2}, {3}}.

Hence, there are exactly 5 equivalence relations on this set. �

Exercise 1.5 Give an example of a relation that is reflexive and
symmetric but not transitive. What happens if you attempt to use
this relation to define a partition on the set? (Hint: Thinking about
the second question will help you answer the first one.)

� Solution Let S = R and consider the relation

a ∼ b ⇐⇒ |a− b| < 1.

Then, indeed, ∼ is reflexive, since a− a = 0, and is symmetric, since
|a − b| = |b − a|. On the other hand, 0 ∼ 1

2 and 1
2 ∼ 1, but 0 � 1,

therefore the relation is not transitive.
As we try to construct the partition, we define, as usual,

[a]∼ = {b ∈ S | b ∼ a}.

If follows that each [a]∼ is non-empty, since the relation is reflexive,
and b ∈ [a]∼ ⇐⇒ a ∈ [b]∼, since the relation is symmetric. But the
intersection of two different sets may be nonempty, as we can see in
our example. �

Exercise 1.6 B Define a relation ∼ on the set R of real numbers
by setting a ∼ b ⇐⇒ b − a ∈ Z. Prove that this is an equiva-
lence relation, and find a ‘compelling’ description for R/∼. Do the
same for the relation ≈ on the plane R×R defined by declaring
(a1, a2) ≈ (b1, b2) ⇐⇒ b1 − a1 ∈ Z and b2 − a2 ∈ Z. [§II.8.1,
II.8.10]

� Solution We see that ∼ satisfies the following:

• Reflexivity: If a ∈ R, then a− a = 0 ∈ Z and a ∼ a.

• Symmetry: Given a, b ∈ R with a ∼ b, we have b− a ∈ Z. Thus
a− b = −(b− a) ∈ Z and b ∼ a.

• Transitivity: If a, b, c ∈ R are such that a ∼ b and b ∼ c, then
b− a ∈ Z and c− b ∈ Z. So c− a = (b− a) + (c− b) ∈ Z and
a ∼ c.
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Therefore, ∼ is an equivalence relation. Furthermore, observe that
each element of R/∼ is the set of all real numbers with the same
fractional part. We can also view R/∼ as the unitary circle S1, where
each equivalence class corresponds to an angle. This last description is
interesting because each element of R is equivalent to some number in
the interval [0, 1] and note that 0 ∼ 1. In this sense, we can ‘connect’ the
endpoints of this line segment to form a circle. It will make more sense
when considering those sets as groups (see the references indicated
above).

Similarly, the relation ≈ is an equivalence one:

• Reflexivity: If (a1, a2) ∈ R×R, then a1 − a1 = a2 − a2 = 0 ∈ Z

and (a1, a2) ≈ (a1, a2).

• Symmetry: Given (a1, a2), (b1, b2) ∈ R×R that are equivalent,
we have b1 − a1 ∈ Z and b2 − a2 ∈ Z. Thus a1 − b1 = −(b1 −
a1) ∈ Z and a2 − b2 = −(b2 − a2) ∈ Z, so (b1, b2) ≈ (a1, a2).

• Transitivity: If (a1, a2), (b1, b2), (c1, c2) ∈ R × R are such that
(a1, a2) ≈ (b1, b2) and (b1, b2) ≈ (c1, c2), then b1− a1, b2− a2, c1−
b1, c2 − b2 ∈ Z. Therefore, c1 − a1 = (c1 − b1) + (b1 − a1) ∈ Z

and c2 − a2 = (c2 − b2) + (b2 − a2) ∈ Z, so (a1, a2) ≈ (c1, c2).

Every point of R×R is equivalent to a point of the square [0, 1]×
[0, 1] (given (a, b) ∈ R×R, note that (a, b) ≈ (a′, b′), where a′ and
b′ denote the fractional part of a and b, respectively). Furthermore,
we can identify opposite sides of the square, since (x, 0) ≈ (x, 1)
and (0, y) ≈ (1, y) for all x, y ∈ R. In this manner, R×R/≈ can be
imagined as a square whose opposite sides are identified as the same.

≈ ≈

Geometrically, one can ‘glue’ those opposite sides to form a torus in
the 3-dimensional space. �

2 functions between sets

Exercise 2.1 B How many different bijections are there between a
set S with n elements and itself? [§II.2.1]

� Solution Let S = {x1, . . . , xn}. In order to have a bijection f : S→
S, we’ll define this function element by element. Firstly, f (x1) can
be any element of S. That is, we have n options for the image of x1.
Having chosen f (x1), f (x2) can be any element of S different from
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f (x1). That is, we have n− 1 options left. In this way, we see that there
are

n · (n− 1) · (n− 2) · . . . · 2 · 1 = n!

bijections between S and itself. �

Exercise 2.2 B Prove statement (2) in Proposition 2.1. You may
assume that given a family of disjoint nonempty subsets of a set,
there is a way to choose one element in each member of the family.
[§2.5, V .3.3]

Proposition 2.1 Assume A 6= ∅, and let f : A → B be a function.
Then

(1) f has a left-inverse if and only if it is injective.

(2) f has a right-inverse if and only if it is surjective.

� Solution We’ll divide the proof in two steps.
( =⇒ ) If f : A→ B has a right-inverse, then there exists g : B→ A

such that f ◦ g = idB, i.e., for each b ∈ B, f (g(b)) = b. Therefore,
b ∈ im f , and f is surjective.
( ⇐= ) If f is surjective, then for each b ∈ B, f−1(b) is nonempty. Here we use the

axiom of choice.Choose an element a ∈ f−1(b) and define g(b) = a. By definition,
g : B→ A is a well-defined function such that f ◦ g = idB. Therefore,
f has a right-inverse. �

Exercise 2.3 Prove that the inverse of a bijection is a bijection and
that the composition of two bijection is a bijection.

� Solution Let f : A → B be a bijection. If b1, b2 ∈ B are such that
f−1(b1) = f−1(b2), then

f−1(b1) = f−1(b2) =⇒ f ( f−1(b1)) = f ( f−1(b2))

=⇒ idB(b1) = idB(b2)

=⇒ b1 = b2.

Thus, f−1 is injective. Now, let a ∈ A and take b = f (a). Then f−1(b) =
f−1( f (a)) = ( f−1 ◦ f )(a) = idA(a) = a, so f−1 is also surjective. We
conclude that f−1 is a bijection.

For the second part, let g : B → C be another bijection. Firstly, if
a1, a2 ∈ A are such that (g ◦ f )(a1) = (g ◦ f )(a2), then

g( f (a1)) = g( f (a2)) =⇒ f (a1) = f (a2) =⇒ a1 = a2,

since both f and g are injective. Secondly, given c ∈ C, there exists
b ∈ B such that g(b) = c, because g is surjective. Again, there exists
a ∈ A such that f (a) = b, since f is also surjective, and so we have
(g ◦ f )(a) = g( f (a)) = g(b) = c. Therefore, g ◦ f is both injective and
surjective, that is, g ◦ f is a bijection. �
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Exercise 2.4 B Prove that isomorphism is an equivalence relation
(on any set of sets). [§4.1]

� Solution Two sets A and B are isomorphic if there exists a bijection
f : A → B between them. This relation is reflexive since idA is a
bijection between A and itself. It is symmetric since if f : A→ B is a
bijection, so is f−1 : B→ A. Last but not least, it is transitive since is
f : A→ B and g : B→ C are bijections, so is g ◦ f : A→ C. �

Exercise 2.5 B Formulate a notion of epimorphism, in the style
of the notion of monomorphism seen in §2.6, and prove a result
analogous to Proposition 2.3, for epimorphisms and surjections.
[§2.6, §4.2]

Proposition 2.3 A function is injective if and only if it is a monomor-
phism.

� Solution A function f : A → B is an epimorphism if the following
holds:

for all sets Z and all functions β′, β′′ : B→ Z

β′ ◦ f = β′′ ◦ f =⇒ β′ = β′′.

The desired analogue is the following.

A function is surjective if and only if it is an epimorphism.

Let us prove this result.
( =⇒ ) By proposition 2.1, if f is surjective, then it has a right-

inverse g : B → A. Let Z be any set and β′, β′′ : B → Z functions
satisfying

β′ ◦ f = β′′ ◦ f .

Composing on the right by g we get

β′ ◦ ( f ◦ g) = (β′ ◦ f ) ◦ g = (β′′ ◦ f ) ◦ g = β′′ ◦ ( f ◦ g),

which means β′ = β′′, since f ◦ g = idB.
( ⇐= ) If f is an epimorphism, then let b′ ∈ B be an arbitrary

element and define

β′(b) =

1, if b = b′,

0, otherwise,

and β′′ ≡ 0. Since β′ 6= β′′, then β′ ◦ f 6= β′′ ◦ f , which means there
exists a such that β′( f (a)) 6= β′′( f (a)). But this can only happen if
f (a) = b′, therefore f is surjective. �



2 functions between sets 7

Exercise 2.6 With notation as in Example 2.4, explain how any
function f : A→ B determines a section of πA.

� Solution Recall that a section of a function is a right-inverse. Since
πA is surjective, it admits sections. Let g be defined as follows:

g : A −→ A× B

a 7−→ (a, f (a)).

We claim that g is a section of πA. Indeed, for all a ∈ A, we have
(πA ◦ g)(a) = πA(g(a)) = πA((a, f (a))) = a = idA(a). Thus, πA ◦ g =

idA and g is a right-inverse of πA. �

Exercise 2.7 Let f : A→ B be any function. Prove that the graph
Γ f of f is isomorphic to A.

� Solution Let ϕ f : A → Γ f be defined as ϕ f (a) := (a, f (a)). This
function is clearly injective and it is surjective by the very definition
of Γ f . Thus, A and Γ f are isomorphic. �

Exercise 2.8 Describe as explicitly as you can all terms in the
canonical decomposition (cf. §2.8) of the function R→ C defined
by r 7→ e2πir. (This exercise matches one assigned previously. Which
one?)

� Solution Let ∼ be the equivalence relation defined by

r ∼ r′ ⇐⇒ e2πir = e2πir′ ⇐⇒ e2πi(r−r′) = 1.

Since e2πiz = 1 ⇐⇒ z ∈ Z, this is the same equivalence relation
as the one defined in Exercise 1.6, which means the first function
R� (R/∼) can be seen as the function fractional part {·} : R→ [0, 1)
which sends each real number r into the smallest non-negative real
number such that r− {r} ∈ Z. Since (R/∼) ∼= [0, 1), we can regard
the isomorphism

(R/∼) ∼−→̃
f

S1,

where S1 is the unit circle in C as a function [0, 1) → S1 where you
first stretch the interval so that its length is 2π, then you glue its edges,
forming a circle.The final function is simply the injection S1 ↪→ C

which sends a number to itself. �

Exercise 2.9 B Show that if A′ ∼= A′′ and B′ ∼= B′′, and further
A′ ∩ B′ = ∅ and A′′ ∩ B′′ = ∅, then A′ ∪ B′ ∼= A′′ ∪ B′′. Conclude
that the operation Aq B (as described in §1.4) is well-defined up to
isomorphism (cf. §2.9). [§2.9, 5.7]
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� Solution Since A′ ∼= A′′ and B′ ∼= B′′, there are bijections α : A′ →
A′′ and β : B′ → B′′. Define f : A′ ∪ B′ → A′′ ∪ B′′ by

f (x) =

α(x), if x ∈ A′

β(x), if x ∈ B′.

Since A′ ∩ B′ = ∅, f is well-defined. We claim that f is a bijection.
Let x, y ∈ A′ ∪ B′ such that f (x) = f (y). Since A′′ and B′′ are disjoint
sets, either x, y ∈ A′ or x, y ∈ B′. In the first case, we have f (x) =

f (y) =⇒ α(x) = α(y) =⇒ x = y, because α is injective. The other
case is similar. Therefore, f is injective.

On the other hand, given z ∈ A′′ ∪ B′′, either z ∈ A′′ and so there
exists a ∈ A′ such that f (a) = α(a) = z, or z ∈ B′′ and so there
exists b ∈ B′ such that f (b) = β(b) = z, because both α and β are
surjective. We proved that f is also surjective and, thus, f is a bijection,
establishing an isomorphism between A′ ∪ B′ and A′′ ∪ B′′.

Finally, we conclude that the operation Aq B is well-defined up to
isomorphism, as described in the penultimate paragraph before the
exercise section. �

Exercise 2.10 B Show that if A and B are finite sets, then |BA| =
|B||A|. [§2.1, 2.11, §II.4.1]

� Solution We want to count how many functions from A to B are
there. For each a ∈ A, f (a) can be any of the |B| elements of B. Hence
we have

|B| · |B| · . . . · |B|︸ ︷︷ ︸
|A| times

= |B||A|

possible functions. �

Exercise 2.11 B In view of Exercise 2.10, it is not unreasonable to
use 2A to denote the set of functions from an arbitrary set A to a set
with 2 elements (say {0, 1}). Prove that there is a bijection between
2A and the power set of A (cf. §1.2) [§1.2, III.2.3]

� Solution Consider the function χ : P(A)→ 2A which assigns for
each B ⊆ A a function

χB(a) =

1, if a ∈ B,

0, otherwise.

Its inverse is the function 1 : 2A →P(A) which sends each function
f : A→ {0, 1} to the set 1( f ) := f−1(1).

In fact, for each B ⊆ A, then 1(χB) = χ−1
B (1) = B, and similarly for

each f ∈ 2A,

χ1( f )(a) =

1, if a ∈ 1( f ),

0, otherwise
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is clearly equal to f , hence 1 is the desired bijection. �

3 categories

Exercise 3.1 B Let C be a category. Consider a structure Cop with

• Obj(Cop) := Obj(C);

• for A, B objects of Cop (hence objects of C), HomCop(A, B) :=
HomC(B, A).

Show how to make this into a category (that is, define composition
of morphisms in Cop and verify the properties listed in §3.1).

Intuitively, the opposite category Cop is simply obtained by "re-
versing all the arrows" in C. [5.1, §VII.1.1, §IX.1.2, IX.1.10]

� Solution Our given category C is endowed with a set-function

◦C : HomC(A, B)×HomC(B, C)→ HomC(A, C)

and we ought to define a new set-function

◦Cop : HomCop(A, B)×HomCop(B, C)→ HomCop(A, C).

In other words, a set-function

HomC(B, A)×HomC(C, B)→ HomC(C, A).

The only sensible choice here is to define ◦Cop( f , g) := ◦C(g, f ). The
identity then is the one inherited by C. Composition in Cop is associa-
tive since

(h ◦Cop g) ◦Cop f = f ◦C (g ◦C h)

= ( f ◦C g) ◦C h

= h ◦Cop (g ◦Cop f ).

Also, the identity morphisms act as identities with respect to composi-
tion since for all f ∈ HomCop(A, B) = HomC(B, A),

idB ◦Cop f = f ◦C idB = f .

Similarly, f ◦Cop idA = f . Last but not least,

HomCop(A, B) ∩HomCop(C, D) = HomC(B, A) ∩HomC(D, C)

is empty unless A = C and B = D. �

Exercise 3.2 If A is a finite set, haw large can be EndSet(A)?

� Solution For each a ∈ A, we have |A| options of image (each
element of A), therefore |EndSet(A)| ≤ |A||A|. �



10 preliminaries : set theory and categories

Exercise 3.3 B Formulate precisely what it means to say 1a is an
identity with respect to composition in Example 3.3, and prove this
assertion. [§3.2]

� Solution If a, b ∈ S are objects and f ∈ Hom(a, b) is a morphism,
we need to show that

f 1a = 1b f = f ;

this is what it means to say 1a and 1b are identities with respect to com-
position. Since f ∈ Hom(a, b), we have that Hom(a, b) is nonempty
and, therefore, f = (a, b) is the only possible morphism from a to b.
Thus, since 1a = (a, a) and 1b = (b, b), it follows that f 1a = (a, b) = f
and 1b f = (a, b) = f , by the definition of composition in this category.
�

Exercise 3.4 Can we define a category in the style of Example 3.3
using the relation < on the set Z?

� Solution No, we can’t. The relation < is not reflexive and hence
our "category" doesn’t have identities. �

Exercise 3.5 B Explain in what sense Example 3.4 is an instance
of the categories considered in Example 3.3. [§3.2]

� Solution To explain Example 3.4 in terms of Example 3.3, we let
R = P(S) be the set and the relation in R to be ⊆. Then the objects of
the category are exactly the elements of R and Hom(A, B) is the pair
(A, B) ∈ R× R if A ⊆ B, and Hom(A, B) = ∅ otherwise. �

Exercise 3.6 B (Assuming some familiarity with linear algebra)
Define a category V by taking Obj(V) = N and letting HomV(n, m)

= the set of m× n matrices with real entries, for all n, m ∈N. (We
will leave the reader the task of making sense of a matrix with 0
rows or columns.) Use product of matrices to define composition.
Does this category ’feel’ familiar? [§VI.2.1, §VIII.1.3]

� Solution Before defining V, we will first make sense of matrices
with 0 rows or 0 columns. The motivation for the following definitions
will be explained later. Let m, n ∈N be positive integers. Then:

• There is only one m × 0 matrix, denoted by 0m: it is the only
function from {0} to Rm that sends 0 to 0Rm .

• There is only one 0× n matrix, denoted by 0n: it is the only
function from Rn to {0}.

• There is only one 0 × 0 matrix, denoted by 10: it is the only
function from {0} to {0}.

Now, we define the multiplication rules for them. If A is a p×m
matrix and B is a n× q matrix, where p, q ∈N are positive integers, we
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set A · 0m = 0p and 0n · B = 0q. Also, we set 0m · 0m = 10, 0m · 10 = 0m,
10 · 0n = 0n and 10 · 10 = 10.

We are ready to define our category. Since the objects and the
morphisms have been defined, we just need to specify how to compose
morphisms and check if the conditions for V to be a category are
verified.

Let m, n, p be objects of V. If A ∈ HomV(m, n) and B ∈ HomV(n, p),
then A is a n× m matrix and B is a p× n matrix. To multiply two
matrices, the number of columns of the first must be the same as the
number of rows of the second, so we can take the product B · A (note
that A · B is not always defined). Thus, we define the composition of A
and B as BA = B · A, which is a p×m matrix, so BA ∈ HomV(m, p)
as required.

Note that BA
means to first
apply A and then
B, as we denote for
morphisms. Some
older authors, such
as Herstein and
Jacobson, would
write AB to
express the same
idea.

This composition law is associative, since matrix multi-
plication is associative (even for the ‘zero’ matrices). Also, for every
n ∈ Obj(V), we have the n× n identity matrix 1n with ones on the
main diagonal and zeros elsewhere (or 10, if n = 0). From the defi-
nition of matrix multiplication, it follows that A1n = 1m A = A, for
every A ∈ HomV(n, m). Therefore, V is indeed a category.

This category represents all finite dimensional real vector spaces
and the linear transformations between them. The object n ∈N rep-
resents the space Rn, which is isomorphic to every real vector space
of dimension n. If n = 0, it represents the trivial vector space {0},
where 0 denotes the zero vector. Furthermore, morphisms encode lin-
ear transformations, since matrices are in one-to-one correspondence
between, and the composition of morphisms defined here matches
exactly with the composition of linear transformations.

This
correspondence
arises when we fix
a basis, which, in
this case, may be
the canonical one.

That point of view motivated the definition of the ‘zero’ matrices:
0m is the only possible transformation from {0} to Rm, 0n is the only
possible one from Rn to {0}, and 10 is the identity on {0}. �

Exercise 3.7 B Define carefully objects and morphisms in Example
3.7, and draw the diagram corresponding to composition. [§3.2]

� Solution An object of the coslice category CA is a morphism f ∈
HomC(A, Z) for some object Z ∈ Obj(C). Having two objects of CA,

A

Z1

f1

A

Z2 ,

f2

there’s only one sensible way to define a morphism f1 → f2: as a
commutative diagram

A

Z1 Z2 .

f1 f2

σ
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As in the slice category CA, composition correspond to putting two
commutative diagrams side-by-side:

A

Z1 Z2 Z3

f1 f2
f3

σ τ

and, as before, the diagram obtained by removing the central arrow
also commutes. �

Exercise 3.8 B A subcategory C′ of a category C consists of a col-
lection of objects of C with sets of morphisms HomC′(A, B) ⊆
HomC(A, B) for all objects A, B ∈ Obj(C′), such that identities and
composition in C make C′ into a category. A subcategory C′ is full
if HomC′(A, B) = HomC(A, B) for all A, B ∈ ObjC′ . Construct a
category of infinite sets and explain how it may be viewed as a full
subcategory of Set.[4.4, §VI.1.1, §VIII.1.3]

� Solution We can define Inf, the category of infinite sets, in the
following way:

• Obj(Inf) = the class of infinite sets;

• for A, B ∈ Obj(Inf), HomInf(A, B) = BA.

Since every infinite set is, in particular, a set, and HomInf(A, B) =
BA = HomSet(A, B) it follows that Inf can be viewed as a full subcate-
gory of Set. �

Exercise 3.9 B An alternative to the notion of multiset introduced
in §2.2 is obtained by considering sets endowed with equivalence
relations; equivalent elements are taken to be multiple instances
of elements ‘of the same kind’. Define a notion of morphism be-
tween such enhanced sets, obtaning a category MSet containing
(a ‘copy’ of) Set as a full subcategory. (There may be more than
one reasonable way to do this! This is intentionally an open-ended
exercise.) Which objects in MSet determine ordinary multisets as
defined in §2.2 and how? Spell out what a morphism of multisets
would be from this point of view. (There are several natural notions
of morphisms of multisets. Try to define morphisms in MSet so that
the notion you obtain for ordinary multisets captures your intuitive
understanding of these objects.) [§2.2, §3.2, 4.5]

� Solution We can define the category MSet by setting:

• Obj(MSet) = the class of all the sets S endowed with an equiva-
lence relation ∼S, which will be denoted by (S,∼S);

• for (S,∼S), (T,∼T) ∈ Obj(MSet), let Hom((S,∼S), (T,∼T)) be
the set of functions f from S to T such that a ∼S b =⇒ f (a) ∼T

f (b).
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We will write S for (S,∼S) if the equivalence relation is clear from
the context.

The identity 1S consists of the identity function on S. Composition
is defined by composing the corresponding functions, which still
preserves equivalent elements, as required. Since all the conditions
to be a category are trivially satisfied, we conclude that MSet is a
category.

Note that there is a ‘copy’ of Set inside MSet: it corresponds to the
pairs of the form (S,=S), where =S denotes the equality, that is,

a =S b ⇐⇒ a = b.

Furthermore, this ‘copy’ is a full subcategory, since Hom(S, T) ends
up being the set of all functions between S and T if they are endowed
with the equality.

Although not so obvious at first sight, this definition of multiset is
much more general than the one given in §2.2. The ordinary multisets
just have a finite number of repeated elements, whilst there can be
infinite multiple instances of elements ‘of the same kind’ in objects of
MSet. Hence, only objects (S,∼S) ∈ Obj(MSet) with finite equivalence
classes determine ordinary multisets: the corresponding one is defined
by the function

m : S/∼S−→N∗

P 7−→ |P|.

From this point of view, morphisms of multisets are just functions
that respect elements ’of the same kind’, that is, instances of the same
element are mapped onto similar elements. �

Exercise 3.10 Since the objects of a category C are not (necessarily
interpreted as) sets, it is not clear how to make sense of a notion
of ‘subobject‘ in general. In some situations it does make sense to
talk about subobjects, and the subobjects of any given object A in C
are in one-to-one correspondence with the morphisms A→ Ω for
a fixed, special object Ω of C, called a subobject classifier. Show that
Set has a subobject classifier.

� Solution This is exactly what we did in Exercise 2.11: a subset B of
a given set A is nothing else than the data of a function χB : A→ {0, 1}
such that χB(x) = 1 if x ∈ B and χB(x) = 0 otherwise. Hence, {0, 1}
(or any two-element set) is a subobject classifier in Set. �

Exercise 3.11 B Draw the relevant diagrams and define composi-
tion and identities for the category CA,B mentioned in Example 3.9.
Do the same for the category Cα,β mentioned in Example 3.10. [§5.5,
5.12]
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� Solution We define the category CA,B similarly as we have defined
CA,B:

• Obj(CA,B) = diagrams

A

Z

B

f

g

in C which can be represented by (Z, f , g); and

• morphisms between (Z1, f1, g1) and (Z2, f2, g2) can be repre-
sented by the commuting diagram

A

Z1 Z2 ,

B

f1

f2

σ

g1

g2

viz., they are morphism σ : Z1 → Z2 in C such that σ f1 = f2 and
σg1 = g2.

The composition of two morphisms σ : (Z1, f1, g1)→ (Z2, f2, g2) and
τ : (Z2, f2, g2)→ (Z3, f3, g3) is a morphism

τσ : (Z1, f1, g1)→ (Z3, f3, g3).

In fact, τσ : Z1 → Z3 satisfies τσ f1 = τ f2 = f3 and τσg1 = τg2 = g3.
Furthermore, the identity 1(Z, f ,g) is the morphism 1Z : Z → Z. The
conditions are trivially satisfied.

Analogously, fixed two morphisms α : C → A and β : C → B, we
define the category Cα,β as follows:

• Obj(Cα,β) = commutative diagrams

A

C Z

B

fα

β g

in C which can be represented as (Z, f , g); and

• morphisms between (Z1, f1, g1) and (Z2, f2, g2) corresponds to
commutative diagrams

A

C Z1 Z2 ,

B

f1

f2

α

β

σ

g1

g2
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viz., they are morphisms σ : Z1 → Z2 such that σ f1 = f2 and
σg1 = g2.

The composition and identity are the same as in CA,B. In fact, Cα,β is
a full subcategory of CA,B. �

4 morphisms

Exercise 4.1 B Composition is defined for two morphisms. If more
than two morphisms are given, e.g.,

A B C D E ,
f g h i

then one may compose them in several ways, for example:

(ih)(g f ), (i(hg)) f , i((hg) f ), etc,

so that at every step one is only composing two morphisms. Prove
that the result of any such nested composition is independent of the
placement of the parentheses. (Hint: Use induction on n to show
that any such choice for fn fn−1 · · · f1 equals

((· · · (( fn fn−1) fn−2) · · · ) f1).

Carefully working out the case n = 5 is helpful.) [§4.1, §II.1.3]

A nice curiosity is
that Catalan’s
number Cn is the
number of
different ways
n + 1 morphisms
can be composed
so that at every
step one is only
composing two
morphisms.

� Solution As we hope the reader has already followed the guideline
of the exercise, we will begin directly by the general case. If n = 3,
this is associativity:

( f3 f2) f1 = f3( f2 f1).

Assuming the result is valid for all compositions of up to n− 1 mor-
phisms, we decompose a arbitrary composition f in

f = AB,

where A ends right after we have the same number of right and left
parentheses and B is what is left. For example, if f = (( f5 f4) f3)( f2 f1),
A = (( f5 f4) f3) and B = ( f2 f1). Notice that A is equal to f if and only
if f is already in the canonical choice of placement of the parentheses
proposed by the exercise. If this is the case, we are done. If not, we
write B in the canonical placement:

B = ((· · · (( fk fk−1) fk−2) · · · ) f1).

Then, by associativity,

f = A((· · · (( fk fk−1) fk−2) · · · ) f1)

= (A((· · · (( fk fk−1) fk−2) · · · ) f2) f1.

Using the induction hypothesis, we write A((· · · (( fk fk−1) fk−2) · · · ) f2

in the canonical placement and the result follows. �
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Exercise 4.2 B In Example 3.3 we have seen how to construct a
category from a set endowed with a relation, provided this lat-
ter is reflexive and transitive. For what types of relations is the
corresponding category a grupoid (cf. Example 4.6)? [§4.1]

� Solution Let ∼ be the relation and denote the category in Example
3.3 by C∼. Since C∼ is a grupoid, given a ∼ b, the morphism (a, b) ∈
HomC∼(a, b) has an inverse (a, b)−1 ∈ HomC∼(b, a). This means the
set is not empty, and b ∼ a. Therefore the relation must be symmetric
(and, in this case, it is an equivalence relation).

Reciprocally, let ∼ be an equivalence relation in a set S. Then we
can define the category C∼ as in Example 3.3. Given any elements
a, b ∈ Obj(C∼) = S, and an element (a, b) ∈ HomC∼(a, b), then a ∼ b
and b ∼ a. We must show, then, that (b, a) ∈ HomC∼(b, a) is the
inverse of (a, b). In fact, by the composition rule,

(a, b)(b, a) = (a, a) = 1a and (b, a)(a, b) = (b, b) = 1b.

Therefore (b, a) = (a, b)−1 and the category is a grupoid. �

Exercise 4.3 Let A, B be objects of a category C, and let f ∈
HomC(A, B) be a morphism.

• Prove that if f has a right-inverse, then f is an epimorphism.

• Show that the converse does not hold, by giving an explicit
example of a category and an epimorphism without a right-
inverse.

� Solution

• Let g ∈ HomC(B, A) be a right-inverse for f and Z ∈ Obj(C)
be an arbitrary object. If β′, β′′ ∈ HomC(B, Z) are such that
β′ ◦ f = β′′ ◦ f , then, by composing by g on the right, we have:

(β′ ◦ f ) ◦ g = (β′′ ◦ f ) ◦ g =⇒ β′ ◦ ( f ◦ g) = β′′ ◦ ( f ◦ g)

=⇒ β′ ◦ 1B = β′′ ◦ 1B

=⇒ β′ = β′′.

Therefore, f is an epimorphism.

• However, the converse does not hold. For instance, suppose C is
the category corresponding to endowing Z with the relation ≤,
as in Example 3.3. Then, the morphism (0, 1) is an epimorphism
(as pointed out in Example 4.10), but it cannot have a right-
inverse because it would need to be in HomC(1, 0), which is the
empty set since 1 � 0. �



4 morphisms 17

Exercise 4.4 Prove that the composition of two monomorphisms
is a monomorphism. Deduce that one can define a subcategory
Cmono of a category C by taking the same objects as in C and defin-
ing HomCmono(A, B) to be the subset of HomC(A, B) consisting of
monomorphisms, for all objects A, B. (Cf. Exercise 3.8; of course, in
general Cmono is not full in C.) Do the same for epimorphisms. Can
you define a subcategory Cnonmono of C by restricting to morphisms
that are not monomorphisms?

� Solution Let f : A → B and g : B → C be monomorphisms. We
want to prove that g ◦ f is also a monomorphism. That is, for all objects
Z of C and all morphisms α′, α′′ : Z → A,

g ◦ f ◦ α′ = g ◦ f ◦ α′′ =⇒ α′ = α′′.

Since g is a monomorphism, g ◦ f ◦ α′ = g ◦ f ◦ α′′ implies f ◦ α′ =

f ◦ α′′. The fact that f is a monomorphism now implies the result.

This is a good time
to make clear that
in general
categories
morphisms which
are both epi- and
monomorphisms
need not be
isomorphisms.
Nevertheless, the
converse is true.

Since identities are always monomorphisms (and even isomor-
phisms since they are their own inverses), Cmono is really a subcategory
of C. The analogous for epimorphisms follows from exactly the same
reasoning. However, as identities are monomorphisms, Cnonmono is not
a category. �

Exercise 4.5 Give a concrete description of monomorphisms and
epimorphisms in the category MSet you constructed in Exercise 3.9.
(Your answer will depend on the notion of morphism you defined
in that exercise!)

� Solution Let (R,∼R), (T,∼T) and (S,∼S) be objects of MSet. If
∼S is not the equality (trivial equivalence relation), then there exists
s′, s′′ ∈ S such that s′ 6= s′′, but s′ ∼ s′′. In that case, let α′ : R→ S and
α′′ : R → S be defined by α′(r) = s′, for every r ∈ R, and α′′(r) = s′′,
for every r ∈ R. Then α′, α′′ ∈ Hom((R,∼R), (S,∼S)) are different
morphisms, but for every f ∈ Hom((S,∼S), (T,∼T)), by definition of
the morphism, f ◦ α′ = f ◦ α′′. In this case, the

monomorphism
depends on the
information of
both the morphism
(injectivity) and
the object (the
equivalence
relation).

Still, if ∼S is =S, we might have a monomorphism. In fact, if
f : S → T is injective, then f ∈ Hom((S,=S), (T,∼T)) and f is
monomorphism, since it is, in particular, a set function. On the other
hand, for any s′, s′′ ∈ S, let α′ and α′′ be defined as above. Since f is
a monomorphism and α′ 6= α′′, it follows that f ◦ α′ 6= f ◦ α′′, which
means f (s′) 6= f (s′′) if s′ 6= s′′. Therefore the injections are the only
monomorphisms.

At the same time, let T = {0, 1} and ∼T be =T. Then, if s′ ∈ S, we
define

β′(s) =

1, if s ∈ [s′]∼S ,

0, otherwise,
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and β′′ ≡ 0. Since β′ 6= β′′, then β′ ◦ f 6= β′′ ◦ f for any f ∈
Hom((R,∼R), (S,∼S)); this means there exists r ∈ R such that f (r) ∈
[s′]∼S . Since s′ is arbitrary, this means that for any equivalence class
[s′]∼S , there exists r ∈ R such that f (r) ∈ [s′]∼S . Reciprocally, suppose
f satisfies this condition. Then, for any β′ 6= β′′ in Hom((S,∼S), (T,∼T

)), there exists an equivalence class [s′]S such that β′(s) 6= β′′(s) for any
s ∈ [s′]∼S . In particular, there exists a such that β′( f (a)) 6= β′′( f (a)).
Therefore f is an epimorphism and we have categorized all monomor-
phisms and epimorphisms. �

5 universal properties

Exercise 5.1 Prove that a final object is a category C is initial in the
opposite category Cop (cf. Exercise 3.1).

� Solution There’s not really much to prove here. An object F of C
is final if and only if HomC(A, F) is a singleton for every A ∈ Obj(C).
But that is, by definition, the same set as HomCop(F, A). The fact that
the latter is a singleton is exactly the definition of F being a initial
object in Cop. (Recall that C and Cop have the same objects.) �

Exercise 5.2 B Prove that ∅ is the unique initial object in Set. [§5.1]

� Solution Let A be nonempty, and S = {0, 1}. Then f0, f1 : A → S
defined by f0(a) = 0, for all a ∈ A and f1(a) = 1, for all a ∈ A are two
distinct elements in HomSet(A, S). Therefore A cannot be an initial
object in Set. �

Exercise 5.3 B Prove that final objects are unique up to isomor-
phism. [§5.1]

� Solution The proof is entirely analogous to the one given in Propo-
sition 5.4.

Let C be a category. Recall that for every object A of C there is at
least one element in HomC(A, A), namely the identity 1A. If F is final,
then there is a unique morphism F → F, which therefore must be the
identity 1F.

Let F1 and F2 be both final objects in C. Since F2 is final, there is
a unique morphism f : F1 → F2 in C; we have to show that f is an
isomorphism. Since F1 is final, there is a unique morphism g : F2 → F1

in C. Consider g f : F1 → F1; as observed, necessarily g f = 1F1 since F1

is final. By the same token, f g = 1F2 since F2 is final. This proves that
f : F1 → F2 is an isomorphism, as needed. �

Exercise 5.4 What are the initial and final objects in the category
of ‘pointed sets‘ (Example 3.8)? Are they unique?
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� Solution Recall that the category Set∗ of pointed sets has pairs (S, s)
of sets S and elements s ∈ S as objects. A morphism (S, s) → (T, t)
corresponds to a set-function σ : S→ T such that σ(s) = t. Since there
are no objects of the form (S, s) with |S| = 0 (because s should be an
element of S) and those objects with |S| > 1 are clearly not initial nor
final, the objects we seek have |S| = 1. We affirm then that objects of
the form ({s}, s) are the initial and final objects of Set∗.

Surely, there’s only one morphism ({s}, s)→ (T, t) since s has to be
mapped to t. Also, since singletons are final in Set, the only morphism
(T, t)→ ({s}, s) is the constant function. The result follows. �

Exercise 5.5 BWhat are the final objects in the categories consid-
ered in §5.3? [§5.3]

� Solution Analogously to the Set category, the final objects will
be the singletons. In fact, for each singleton {∗}, let ψ : A → {∗} be
the constant function. Then for each pair (ϕ, Z), there exists a unique
morphism ϕ → ψ, viz. the constant function σ : Z → {∗}, therefore
(ψ, {∗}) is a final object.

Reciprocally, if Y has at least 2 elements (y1 and y2), let (ψ, Y) be
an object of that category. Also, let (ϕ, Z) be such that |Z| > |A|
and ϕ(z1) 6= ϕ(z2) if z1 6∼ z2 (since |Z| > |A|, such ϕ exists and is
not surjective). Then there are two morphism σ1, σ2 : (ϕ, Z)→ (ψ, Y)
defined by:

σi(z) = ψ(a) if z = ϕ(a) and σi(z) = yi if z 6∈ im ϕ.

Hence, (ψ, Y) is not a final object. �

Exercise 5.6 B Consider the category corresponding to endowing
(as in Example 3.3) the set Z+ of positive integers with the divisi-
bility relation. Thus there is exactly one morphism d → m in this
category if and only if d divides m without remainder; there is no
morphism between d and m otherwise. Show that this category
has products and coproducts. What are their ‘conventional’ names?
[§VII.5.1]

� Solution First of all, note that the divisibility relation is reflexive
and transitive, so we can define this category as in Example 3.3.

Let a, b ∈ Z+. For a moment, suppose that the product a× b of a
and b exists. Thus we know that a× b divides a and b, and, for all
z ∈ Z+ such that z divides a and b, we have that z divides a× b. This
property is satisfied by the greatest common divisor of a and b. Therefore,
this category has products.

Now, suppose that the coproduct aq b of a and b exists. Thus we
know that a and b divide aq b and, for every z ∈ Z+ such that a and
b divide z, we have that aq b divides z. This property is satisfied by
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the least common multiple of a and b. Thereby, this category also has
coproducts. �

Remark. The divisibility relation is a partial order over the set Z+,
that is, it is reflexive, anti-symmetric and transitive. (By an anti-
symmetric relation ≤ we mean that a ≤ b and b ≤ a implies a = b.)
It is only a partial order because it is not true that a divides b or b
divides a for all a, b ∈ Z+. Furthermore, Z+ with the divisibility
relation is a lattice, as we shall define below.

Let (L,≤) be a partially ordered set (poset) and let S ⊆ L be
an arbitrary subset of L. An element u ∈ L is an upper bound of S
if s ≤ u for all s ∈ S. Similarly, an element l ∈ S is a lower bound
of S if l ≤ s for each s ∈ S. An upper bound u of S is said to be
a join if u ≤ x for all upper bound x of S. Analogously, a lower
bound l is said to be a meet if x ≤ l for each lower bound x of
S. Finally, (L,≤) is called a join-semilattice if each two-element
subset {a, b} ⊆ L has a join, and is called a meet-semilattice if
each two-element subest has a meet, denoted by a ∨ b and a ∧ b
respectively. A lattice is a partially ordered set which is both a
join- and a meet-semilattice. Note that Z+ with the divisibility
relation is a lattice where a ∨ b = lcm(a, b) and a ∧ b = gcd(a, b)
for all a, b ∈ Z+.

This exercise can be generalized to any lattice. Let (L,≤) be
a partially ordered set and define the corresponding category C
as in Example 3.3. Following the same argument given above, C
has products if and only if (L,≤) is a meet-semilattice and it has
coproducts if and only if (L,≤) is a join-semilattice. We deduce
that C has both products and coproducts if and only if (L,≤) is
a lattice, and in this case we have a× b = a ∧ b and a ä b = a ∨ b
for all a, b ∈ Obj(C).

Exercise 5.7 Redo Exercise 2.9, this time using Proposition 5.4.

Proposition 5.4 Let C be a category.

• If I1, I2 are both initial objects in C, then I1
∼= I2.

• If F1, F2 are both final objects in C, then F1
∼= F2.

Further, there isomorphisms are uniquely determined.

� Solution Since the disjoint union A ä B is the coproduct of A and
B in Set (that is, an initial object in SetA,B), it is well-defined up to an
isomorphism. �
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Exercise 5.8 Show that in every category C the products A× B
and B× A are isomorphic, if they exist. (Hint: Observe that they
both satisfy the universal property for the product of A and B; then
use Proposition 5.4.)

Proposition 5.4 Let C be a category.

• If I1, I2 are both initial objects in C, then I1
∼= I2.

• If F1, F2 are both final objects in C, then F1
∼= F2.

Further, there isomorphisms are uniquely determined.

� Solution Let’s prove that both elements are final object of the same
category, the one defined in §5.4. In fact, we already know A× B is a fi-
nal element of this category. Let π′B : B× A→ B and π′A : B× A→ A
be defined by π′B((b, a)) = b and π′A((b, a)) = a. Let (Z, fA, fB) be
an element in the category. Then σ : Z → B× A defined by σ(z) =

( fB(z), fA(z)) is a morphism from (Z, fA, fB) to (B× A, π′A, π′B). Fur-
thermore, this morphism is unique since π′A(σ(z)) = fA(z) and
π′B(σ(z)) = fB(z). Using the proposition, we can conclude A × B
and B× A are isomorphic. �

Exercise 5.9 Let C be a category with products. Find a reasonable
candidate for the universal property that the product A× B× C of
three objects of C ought to satisfy, and prove that both (A× B)× C
and A× (B× C) satisfy this universal property. Deduce that (A×
B)× C and A× (B× C) are necessarily isomorphic.

� Solution We define A × B × C as a final object in the category
CA,B,C, similar to what we did with only two objects. In this case,
CA,B,C is defined analogously as CA or CA,B, but with three objects.
For simplicity, we may denote S1 = A, S2 = B and S3 = C. Therefore,
the product A× B× C with morphisms {πi : A× B× C → Si}i∈{1,2,3}
satisfies the following universal property: for every object Z and
morphisms { fi : Z → Si}i∈{1,2,3} there exists a unique morphism
σ : Z → A× B× C such that πi ◦ σ = fi for all i ∈ {1, 2, 3}.

Now, let’s prove that (A× B)× C satisfies the universal property
pointed above. Firstly, we have to define morphisms to A, B and C. By
the definition of products in C, there exist morphisms πA : A× B→ A,
πB : A× B→ B, πA×B : (A× B)×C → A× B and π3 : (A× B)×C →
C satisfying the universal property for the corresponding products.
We will take π1 = πAπA×B and π2 = πBπA×B, as in the following
diagram:
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A

A× B

(A× B)× C B

C .

πA

πB
πA×B

π1

π2

π3

We claim that ((A × B) × C, π1, π2, π3) is a final object in CA,B,C.
Let Z ∈ Obj(C) and fi ∈ HomC(Z, Si), where i ∈ {1, 2, 3}. By the
universal property of A× B, there exists a unique σ∗ : Z → A× B
such that f1 = πAσ∗ and f2 = πBσ∗:

A

Z A× B

B .

f1

σ∗

f2

πA

πB

Now, by the universal property of (A× B)× C, there exists a unique
σ : Z → (A× B)× C such that σ∗ = πA×Bσ and f3 = π3σ:

A× B

Z (A× B)× C

C .

σ∗

σ

f3

πA×B

π3

Finally, by associativity, we have

f1 = πAσ∗ = πA(πA×Bσ) = (πAπA×B)σ = π1σ

f2 = πBσ∗ = πB(πA×Bσ) = (πBπA×B)σ = π2σ ,

thus we conclude σ is a morphism from (Z, f1, f2, f3) to ((A× B)×
C, π1, π2, π3) in CA,B,C. We just need to show it is unique. Suppose that
ρ : Z → (A× B)×C is such that fi = πiρ for all i ∈ {1, 2, 3}. Therefore,
by the definition of π1 and π2, we have that f1 = πA(πA×Bρ) and
f2 = πB(πA×Bρ). Since σ∗ is unique, we must have σ∗ = πA×Bρ. Last
but not least, since σ∗ = πA×Bρ and f3 = π3ρ, we conclude that ρ = σ.
Therefore, ((A× B)× C, π1, π2, π3) is indeed a final object in CA,B,C.

In a similar fashion, we can show that A× (B× C) (with the appro-
priate morphisms) is also a final object in CA,B,C. Thus, we deduce that
(A× B)× C and A× (B× C) are necessarily isomorphic by Proposi-
tion 5.4. �
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Exercise 5.10 Push the envelope a little further still, and define
products and coproducts for families (i.e., indexed sets) of objects of
a category.

Do these exist in Set?
It is common to denote the product A× · · · × A︸ ︷︷ ︸

n times

by An.

� Solution Let C be a category and I be a set. The product ∏i∈I Ai,
with morphisms {πj : ∏i∈I Ai → Aj}j∈I , of a family {Ai}i∈I of objects
of C should satisfy the following universal property: for every object
Z and morphisms { fi : Z → Ai}i∈I there exists a unique morphism
σ : Z → ∏i∈I Ai such that πi ◦ σ = fi for all i ∈ I.

Similarly, the coproduct äi∈I Ai, with the morphisms {ιj : Aj →
äi∈I Ai}j∈I , of a family {Ai}i∈I of objects of C should satisfy the
following universal property: for every object Z and morphisms { fi :
Ai → Z}i∈I there exists a unique morphism σ : äi∈I Ai → Z such that
σ ◦ ιi = fi for all i ∈ I.

In Set, the categorical product is the Cartesian product and the
coproduct is the disjoint union. �

Exercise 5.11 Let A, resp. B, be a set endowed with an equivalence
relation ∼A, resp. ∼B. Define a relation ∼ on A× B by setting

(a1, b1) ∼ (a2, b2) ⇐⇒ a1 ∼A a2 and b1 ∼B b2.

(this is immediately seen to be an equivalence relation.)

• Use the universal property for quotients (§5.3) to establish
that there are functions (A× B)/∼ → A/∼A, (A× B)/∼ →
B/∼B.

• Prove that (A× B)/∼, with these two functions, satisfies the
universal property for the product A/∼A and B/∼B.

• Conclude (without further work) that (A× B)/∼∼=
(A/∼A)× (B/∼B).

� Solution Let πA/∼A : A× B→A/∼A be defined by πA/∼A(a, b) =
[a]∼A and define πB/∼B in a similar fashion. If (a1, b1) ∼ (a2, b2), then
πA/∼A(a1, b1) = πA/∼A(a2, b2) and analogously for πB/∼B . Therefore
these functions are in the category defined in §5.3. Using the uni-
versal property for quotients, we know that there are unique mor-
phisms π̃A : (A× B)/∼ → A/∼A and π̃B : (A× B)/∼ → B/∼B in
this category. Let’s prove that ((A× B)/∼, π̃A, π̃B) is a final object in
the category defined in §5.4. In fact, let (Z, fA, fB) be an element
in such category. Then if fA(z) = [az]∼A and fB(z) = [bz]∼B , let
σ : Z → (A× B)/∼ be defined by σ(z) = [(az, bz)]∼. The defini-
tion of ∼ is such that this function is well-defined. Moreover this



24 preliminaries : set theory and categories

function is unique, since any such morphism must satisfy π̃A(σ(z)) =
fA(z) and π̃B(σ(z)) = fB(z). Using Proposition 1.5.4, we conclude
(A× B)/∼ ∼= (A/∼A)× (B/∼B). �

Exercise 5.12 ¬ Define the notions of fibered products and fibered
coproducts, as terminal objects of the categories Cα,β, Cα,β considered
in Example 3.10 (cf. also Exercise 3.11), by stating carefully the
corresponding universal properties.

As it happens, Set has both fibered products and coproducts.
Define these objects ’concretely’, in terms of naive set theory. [II.3.9,
III.6.10, III.6.11]

� Solution Let A, B, C be objects in C and α : A→ C, β : B→ C be
two fixed morphisms. We define the corresponding fibered product as a
final object in the category Cα,β. Thus, a object A×C B with morphisms
πA : A×C B → A, πB : A×C B → B is a fibered product of α and β

if απA = βπB and the following universal property is satisfied: for
every object Z and morphisms ϕA : Z → A, ϕB : Z → B such that
αϕA = βϕB, there exists a unique morphism σ : Z → A×C B making
the diagram below commute:

Z

A×C B A

B C .

ϕA

σ

ϕB

πA

πB α

β

Similarly, if now we set α : C → A and β : C → B, we define
the corresponding fibered coproduct as a initial object in the category
Cα,β. Therefore, a object A äC B with morphisms iA : A → A äC B,
iB : B → A äC B is a fibered coproduct of α and β if iAα = iBβ and
the following universal property is satisfied: for every object Z and
morphisms ϕA : A → Z, ϕB : B → Z such that ϕAα = ϕBβ, there
exists a unique morphism σ : A äC B→ Z making the diagram below
commute:

Z

A äC B A

B C .

σ

iA

ϕA

iB

ϕB
α

β
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In Set, we can find fibered products as follows. If A, B, C are sets
and α : A→ C, β→ C are two functions, we claim that the set

A×C B =
⋃

x∈C

α−1(x)× β−1(x)

with the usual projections πA and πB is a fibered product of α and
β. Note that we take the product of fibers of α and β over every
element of C, which is suggested by the name fibered product. It is
straightforward that απA = βπB by the definition of A×C B. Now, if
Z is another set together with functions ϕA : Z → A, ϕB : Z → B such
that αϕA = βϕB, define σ : Z → A×C B by

σ(z) = (ϕA(z), ϕB(z))

for all z ∈ Z. This function is well-defined since αϕA = βϕB, so
ϕA(z) ∈ α−1(x) and ϕB(z) ∈ β−1(x) for some x ∈ C. Furthermore,
it follows that πAσ = ϕA and πBσ = ϕB, so the first diagram above
commutes. Finally, this definition of σ is forced by commutativity
and so it is unique. Therefore, A×C B with πA and πB is indeed the
desired fibered product.

We can also find fibered coproducts in Set. Let A, B, C be sets and
α : C → A, β : C → B be functions. If i∗A and i∗B denote the inclusion
of A and B in A ä B, define ∼ on the disjoint union as the finest
equivalence relation such that

(i∗A ◦ α)(x) ∼ (i∗B ◦ β)(x)

for all x ∈ C. By finest equivalence relation we mean that, if ≈ is an
equivalence relation satisfying the property above, then a ∼ b =⇒
a ≈ b, for all a, b ∈ A ä B. This finest relation indeed exists: take the
intersection of all the equivalence relations satisfying the property
above (here we are using the definition that a relation on a set S is
a subset of S× S). Since the intersection of equivalence relations is
again an equivalence relation and there is at least one that satisfies
this property (which is the relation given by (A ä B)× (A ä B)), it
makes sense to talk about the finest one. Thus, define

A äC B = (A ä B)/ ∼

and, if π is the canonical projection to the quotient, define iA = πi∗A
and iB = πi∗B. We claim that A äC B with iA and iB is a fibered
coproduct of α and β. Note that iAα = iBβ by the definition of ∼. Now,
let Z be another set together with functions ϕA : A→ Z, ϕB : B→ Z
such that ϕAα = ϕBβ. By the universal property of the coproduct, there
exists a unique ϕ : A ä B → Z such that ϕA = ϕi∗A and ϕB = ϕi∗B.
Define σ : A äC B→ Z by

σ([x]∼) = ϕ(x)
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for all [x]∼ ∈ A äC B. This definition is forced so that the second
diagram above commutes. We just need to show that σ is well-defined.
Consider the equivalence relation ≈ on A ä B given by

a ≈ b ⇐⇒ ϕ(a) = ϕ(b).

Since ϕAα = ϕBβ, it follows that

(ϕAα)(x) = (ϕBβ)(x) =⇒ ((ϕi∗A)α)(x) = ((ϕi∗B)β)(x)

=⇒ (ϕ(i∗Aα))(x) = (ϕ(i∗Bβ))(x)

=⇒ (i∗Aα)(x) ≈ (i∗Bβ)(x)

for all x ∈ C. By the definition of ∼, we conclude that

[a]∼ = [b]∼ =⇒ a ∼ b =⇒ a ≈ b =⇒ ϕ(a) = ϕ(b),

so σ is well-defined. Therefore, A äC B with iA and iB is indeed the
desired fibered coproduct. �



II
G R O U P S , F I R S T E N C O U N T E R

1 definition of group

Exercise 1.1 BWrite a careful proof that every group is the group
of isomorphisms of a grupoid. In particular, every group is the
group of automorphisms of some object in some category. [§2.1]

� Solution Notice the
difference between
G and G.

Recall that a grupoid is a category in which every
morphism is an isomorphism. Let G be a group. As we saw in the
beginning of the chapter, it may be a good idea to consider a category
G with a single object ∗ and G as the set HomG(∗, ∗) of morphisms.
We shall show that G is in fact a category in which every morphism is
an isomorphism.

The identity element of G serves as the identity morphism 1∗ ∈
HomG(∗, ∗). The composition and the associativity of morphisms are
inherited from those properties in G. We conclude that G is a category.
Since G is a group, every morphism has a two-sided inverse and thus
is an isomorphism. This makes G a grupoid. �

Exercise 1.2 B Consider the ’set of numbers’ listed in §1.1, and
decide which are made into groups by conventional operations
such as + and ·. Even if the answer is negative (for example, (R, ·)
is not a group), see if variations of the definition of these sets lead
to groups (for example (R∗, ·) is a group; cf. §1.4). [§1.2]

� Solution In every ’set of numbers’ (Z, Q, R and C), the operation
of addition and multiplication is associative. Also, in every set, 0 is
the identity element of addition (since a + 0 = 0 + a = a for every
a ∈ Z or Q or R or C), and analogously for 1 and multiplication.
Therefore we’ll only verify the inverse property. For every n ∈ Z,
−n ∈ Z and n + (−n) = 0, from which we conclude Z is a group. If
r = p

q ∈ Q, then −r = −p
q ∈ Q and r + (−r) = 0. Similarly for α ∈ R

and z ∈ C. Since (−1)(−1) = 1, the set {+1,−1} is a group with
the operation ·. Analogously, (Q∗, ·), (R∗, ·) and (C∗, ·) are groups;
however (Q, ·), (R, ·) and (C, ·) are not groups, since 0 does not have
a multiplicative inverse. Furthermore, since a > 0 =⇒ 1

a > 0 and
since if a, b > 0 then a · b > 0, the structures (Q>0, ·) and (R>0, ·) are
groups. Finally, we can construct even strangers groups: if α ∈ C\Q,
we define Q[α] := {p + qα | p, q ∈ Q}. Then the structures (Q[α],+)

and (Q[α]∗, ·) are groups. We can do this construction for Z, and they
are similarly groups with addition, but not with multiplication, since
the multiplicative inverse is not necessarily in the set, this occurs in

27



28 groups , first encounter

particular for the elements of Z ⊆ Z[α]. The set Z[i] is called the
Gaussian integers and the set Z[e

2πi
3 ] is called the Eisenstein integers.

The Eisenstein
integers can be

used to prove
Fermat’s Last

Theorem for n = 3.

�

Exercise 1.3 Prove that (gh)−1 = h−1g−1 for all elements g, h of a
group G.

� Solution By associativity, it follows that

(gh)(h−1g−1) = g(hh−1)g−1 = geg−1 = gg−1 = e

and
(h−1g−1)(gh) = h−1(g−1g)h = h−1eh = h−1h = e

for all g, h ∈ G. Since the inverse of gh is unique, we have that (gh)−1 =

h−1g−1 for all g, h ∈ G. �

Exercise 1.4 Suppose that g2 = e for all elements g of a group G;
prove that G is commutative.

� Solution Let a and b be elements of G. All we know is that

a2 = b2 = (ab)2 = (ba)2 = e

and we shall deduce that ab = ba. We multiply both sides of abab =

(ab)2 = e by a on the left and by b on the right to obtain

a2bab2 = ab.

Since a2 = b2 = e, this is the desired result. �

Exercise 1.5 The ’multiplication table’ of a group is an array com-
piling the results of all multiplications g • h:

• e · · · h · · ·

e e · · · h · · ·
· · · · · · · · · · · · · · ·
g g · · · g • h · · ·
· · · · · · · · · · · · · · ·

(Here e is the identity elements. Of course the table depends on
the order in which the elements are listed in the top row and
leftmost column.) Prove that every row and every column of the
multiplication table of a group contains all elements of the group
exactly once (like Sudoku diagrams!).

� Solution We’ll prove the result for each row, and it follows anal-
ogously for each column. Given a row g and any element h in G, h
appears in the row, since g • (g−1 • h) = h. Moreover, given h1, h2 in G,
if g • h1 = g • h2, then h1 = h2 by the cancellation law, therefore each
element appears only once, as we desired to prove. �
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Exercise 1.6 ¬ Prove that there is only one possible multiplication
table for G if G has exactly 1, 2, or 3 elements. Analyze the possible
multiplication tables for groups with exactly 4 elements, and show
that there are two distinct tables, up to reordering the elements of
G. Use these tables to prove that all groups with ≤ 4 elements are
commutative.

(You are welcome to analyze groups with 5 elements using the
same technique, but you will soon know enough about groups to
be able to avoid such brute-force approaches.) [2.19]

� Solution From Example 1.3, we know that there is only one possi-
ble multiplication table if G = {e}:

• e

e e
.

If |G| = 2, one of the elements is the identity e. For the second
element f , we already have that f • e = e • f = f . Since it needs to
have an inverse, we must have f • f = e, so the multiplication table is:

• e f

e e f

f f e

.

If |G| = 3, we may denote it by G = {e, f , g}, where e is the identity
element. Suppose that f • g = f or f • g = g. In each case, by the
cancellation law we would have f = e or g = e, a contradiction. Thus,
we must have f • g = e and f−1 = g, so we also know that g • f = e.
By Exercise 1.5, we must complete the multiplication table as follows:

• e f g

e e f g

f f g e

g g e f

.

Finally, suppose that G = {e, f , g, h}, where e is the identity element.
Let’s find the inverses for each element. We have two cases: either
every element is of order two, that is, f 2 = g2 = h2 = e, or just one of
them is of order two and the remaining are inverses for each other.
In this last case, possibly after renaming the elements, we have that
f • h = h • f = e and g2 = e. In both cases, note that we cannot have
f • g = e = g • g, f • g = f = f • e or f • g = g = e • g because it
would follow from the cancellation law that f = g, g = e or f = e, a
contradiction. Thus, we must have f • g = h. Similarly, g • f = h and
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g • h = h • g = f . By Exercise 1.5, we must fill the multiplication table
for the first case as

• e f g h

e e f g h

f f e h g

g g h e f

h h g f e

and for the second case as

• e f g h

e e f g h

f f g h e

g g h e f

h h e f g

.

From these tables, we conclude that all groups with ≤ 4 elements
are commutative.

These groups are
isomorphic to C2,

C3, C2 × C2 and
C4, respectively.

If |G| = 5, we could use the same technique to show that there is
only one possible multiplication table, up to reordering of the elements
of G. As an illustration of the tools we will soon develop, we could
simplify this computation. Since |G| is a prime number and the order
of each element must divide it, we have that |g| = 5 for all g ∈ G
different from the identity element. Therefore, G is cyclic and, for all
g ∈ G, g 6= e, it follows that G = {e, g, g2, g3, g4} and the multiplication
table is:

• e g g2 g3 g4

e e g g2 g3 g4

g g g2 g3 g4 e

g2 g2 g3 g4 e g

g3 g3 g4 e g g2

g4 g4 e g g2 g3

.

In this case, G is isomorphic to C5. �

Exercise 1.7 Prove Corollary 1.11.

Corollary 1.11 Let g be an element of finite order, and let N ∈ Z.
Then

gN = e ⇐⇒ N is a multiple of |g|.

� Solution Obviously, we ought to use Lemma 1.10, which says
that if gn = e for some positive integer n, then |g| is a divisor of n.
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Fortunately, the left-to-right implication is exactly it. For the other
implication, lets assume that N = |g|m is a multiple of |g|. Then,

gN = g|g|m = (g|g|)m = em = e,

which is our desired result. �

When
G = (Z/pZ)∗,
this is essentially
Wilson’s Theorem.

Exercise 1.8 ¬ Let G be a finite abelian group with exactly one
element f of order 2. Prove that ∏g∈G g = f . [4.16]

� Solution Since g|g|−1 · g = e, for every g 6= e, f , g and g−1 are
different elements of G. Thus we can join the pairs g · g−1 in the
product ∏g∈G g and we’re left with e · f = f . �

Exercise 1.9 Let G be a finite group, of order n, and let m be the
number of elements g ∈ G of order exactly 2. Prove that n−m is
odd. Deduce that if n is even, then G necessarily contains elements
of order 2.

� Solution Note that n − m counts the number of elements of G
of order different than 2. Since there is only one element of order 1,
which is e, it suffices to show that the number of elements of order
greater than 2 is even.

As in the previous exercise, if g ∈ G has order greater than 2, we
see that g and g−1 are different elements of G. Thus, recalling that
(g−1)−1 = g, we can pair g with g−1 for all g ∈ G such that |g| > 2
and so we conclude that the number of elements of order greater than
2 is even.

Finally, if n is even, then m must be odd so that n−m is also odd.
Therefore, m ≥ 1 and G necessarily contains elements of order 2.

By Lagrange’s
theorem (which will
be proved in
section 8), we
know that G does
not contain
elements of order
exactly 2 if n is
odd.

�

Exercise 1.10 Suppose the order of g is odd. What can you say
about the order of g2?

� Solution If |g| is odd, then 2 and |g| are relatively prime. Thus, by
Proposition 1.13,

|g2| = lcm(2, |g|)
2

=
2|g|

2
= |g|.

Hence g and g2 have the same order. �

Exercise 1.11 Prove that for all g, h in a group G, |gh| = |hg|. (Hint:
Prove that |aga−1| = |g| for all a, g in G.)

� Solution Let’s follow the hint. We’ll prove first that (aga−1)n =

e ⇐⇒ gn = e. Observe (aga−1)n = agna−1. If gn = e, then (aga−1)n =

aea−1 = e, and if (aga−1)n = e, then gn = a−1agna−1a = a−1ea = e.
Since hg = h(gh)h−1, the result follows. �
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Exercise 1.12 B In the group of invertible 2× 2 matrices, consider

g =

(
0 −1

1 0

)
, h =

(
0 1

−1 −1

)
.

Verify that |g| = 4, |h| = 3, and |gh| = ∞. [§1.6]

� Solution An easy calculation shows that

g2 =

(
−1 0

0 −1

)
, g3 =

(
0 1

−1 0

)
, g4 =

(
1 0

0 1

)
= I2

and

h2 =

(
−1 −1

1 0

)
, h3 =

(
1 0

0 1

)
= I2 .

Therefore, |g| = 4 and |h| = 3. On the other hand, it follows easily
from induction that

(gh)n =

(
1 n

0 1

)
6= I2

for all integer n ≥ 1, so |gh| = ∞. �

Exercise 1.13 B Give an example showing that |gh| is not neces-
sarily equal to lcm(|g|, |h|), even if g and h commute. [§1.6, 1.14]

� SolutionMaybe the reader
has encountered

them before. They
are Z/4Z and

Z/2Z×Z/2Z.

As we saw in exercise 1.6, there are exactly 2 groups of
order 4, one of them has 1 element of order 0, e, 1 element of order 2,
f , and 2 elements of order 4, g and h. Since gh = e, the product gh has
order 0 even though lcm(|g|, |h|) = 4. This group is also commutative.

The reader may recognize that this group is Z/4Z, which makes
this calculation a little more concrete. The elements of order 4 are [1]4
and [3]4. �

Exercise 1.14 B As a counterpoint to Exercise 1.13, prove that if g
and h commute and gcd(|g|, |h|) = 1, then |gh| = |g||h|. (Hint: Let
N = |gh|; then gN = (h−1)N ; What can you say about this element?)
[§1.6, 1.15, §IV.6.15]

� Solution Following the hint, since this element is a power of g,
|gN | = |g|

gcd(N,|g|) , and since it is also a power of h−1 (and |h−1| = |h|),
|(h−1)N | = |h|

gcd(N,|h|) . It follows that

|g| gcd(N, |h|) = |h| gcd(N, |g|).

Since gcd(|g|, |h|) = 1, then |g| | N, and similarly for h, from which
we conclude |g||h| | N. Moreover, (gh)|g||h| = (g|g|)|h|(h|h|)|g| = e,
implies N | |g||h|. Therefore |gh| = |g||h|. �



2 examples of groups 33

Exercise 1.15 ¬ Let G be a commutative group, and let g ∈ G be
an element of maximal finite order, that is, such that if h ∈ G has
finite order, then |h| ≤ |g|. Prove that in fact if h has finite order in
G, then |h| divides |g|. (Hint: Argue by contradiction. If |h| is finite
but it does not divide |g|, then there is a prime integer p such that
|g| = pmr, |h| = pns, with r and s relatively prime to p and m < n.
Use Exercise 1.14 to compute the order of gpm

hs.) [§2.1, 4.11, IV.6.15]

� Solution Following the hint, let’s compute the order of gpm
hs. By

Proposition 1.13,

|gpm | = lcm(pm, pmr)
pm =

pmr
pm = r

and

|hs| = lcm(s, pns)
s

=
pns
s

= pn .

Since r and p are relatively prime and G is commutative, it follows
from Exercise 1.14 that

|gpm
hs| = |gpm ||hs| = pnr > pmr = |g| ,

which contradicts that g is of maximal finite order. Therefore, we must
have that |h| divides |g|. �

2 examples of groups

Exercise 2.1 ¬ One can associate an n× n matrix Mσ with a per-
mutation σ ∈ Sn by letting the entry at (i, (i)σ) be 1 and letting all
other entries be 0. For example, the matrix corresponding to the
permutation

σ =

(
1 2 3

3 1 2

)
∈ S3

would be

Mσ =

0 0 1

1 0 0

0 1 0

 .

Prove that, with this notation,

Mστ = Mσ Mτ

for all σ, τ ∈ Sn, where the product on the right is the ordinary
product of matrices. [IV.4.13]

� Solution We have to show that the entry at (i, (i)στ) of Mσ Mτ is 1
and all other entries are 0. Writing explicitly the matrix multiplication,

(Mσ Mτ)(i,(i)στ) =
n

∑
r=1

(Mσ)(i,r)(Mτ)(r,(i)στ).
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The terms (Mσ)(i,r) on the RHS are 0 whenever r 6= (i)σ. Hence,

(Mσ Mτ)(i,(i)στ) = (Mσ)(i,(i)σ)(Mτ)((i)σ,(i)στ) = 1.

For k 6= i, we have that

(Mσ Mτ)(k,(i)στ) =
n

∑
r=1

(Mσ)(k,r)(Mτ)(r,(i)στ) = (Mτ)((k)σ,(i)στ),

which is 0 since k 6= i. The result follows. �

Exercise 2.2 B Prove that if d ≤ n, then Sn contains elements of
order d. [§2.1]

� Solution Let σ be the permutation

σ =

(
1 2 · · · d d + 1 · · · n

2 3 · · · 1 d + 1 · · · n

)
∈ Sn.

Then σd = e and σj 6= e for every 1 ≤ j ≤ d− 1 , and we have the
example we desired. �

Exercise 2.3 For every positive integer n find an element of order
n in SN.

� Solution If n = 1, just take the identity. If n ≥ 2, similar to the
previous exercise, let σ : N→N be the function given by

σ(x) =


x + 1, if x ∈ {1, . . . , n− 1},

1, if x = n,

x, otherwise.

It is clear that σ is a bijection, so σ ∈ SN. Furthermore, σn = e and
σj 6= e for every 1 ≤ j ≤ n− 1, that is, |σ| = n. �

Exercise 2.4 Define a homomorphism D8 → S4 by labeling vertices
of a square, as we did for a triangle in §2.2. List the 8 permutations
in the image of this homomorphism.

� Solution Consider the following square.

12

3 4
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Now we list the final positions of the vertices after applying each one
of the elements of D8.

D8 S4

Identity

(
1 2 3 4

1 2 3 4

)

Rotation of 90◦ counterclockwise

(
1 2 3 4

4 1 2 3

)

Rotation of 180◦ counterclockwise

(
1 2 3 4

3 4 1 2

)

Rotation of 270◦ counterclockwise

(
1 2 3 4

2 3 4 1

)

Horizontal reflection

(
1 2 3 4

4 3 2 1

)

Vertical reflection

(
1 2 3 4

2 1 4 3

)

Reflection about 13

(
1 2 3 4

1 4 3 2

)

Reflection about 24

(
1 2 3 4

3 2 1 4

)

This homomorphism is clearly not an isomorphism as |S4| > |D8|. �

Exercise 2.5 B Describe generators and relations for all dihedral
groups D2n. (Hint: Let x be the reflection about a line through the
center of a regular n-gon and a vertex, and let y be the counter-
clockwise rotation by 2π/n. The group D2n will be generated by x
and y, subject to three relations. To see that these relations really
determine D2n, use them to show that any product xi1 yi2 xi3 yi4 · · ·
equals xiyj for some i, j with 0 ≤ i ≤ 1, 0 ≤ j < n.) [8.4, §IV.2.5]

� Solution Let x and y be as in the hint. Then x2 = e and yn = e.
Moreover, the conjugation of y by x, i.e. xyx−1 is equal to y−1 = yn−1.
In fact, rotating the reflected image and the reflecting back is the
same as rotating to the other direction, therefore xy = yn−1x. Since
x2 = e, we have similarly yx = xyn−1. Thus, when we have in the
product xi1 yi2 xi3 yi4 · · · two consecutive terms different from 0 in, in+1,
(suppose, without loss of generality ik ≥ ik+1 then we can change
yik xik+1 to xik+1 yik(n−1) using the last identity, and we can join every x
and every y, and use the first two to conclude the final form xiyj for
some i, j with 0 ≤ i ≤ 1, 0 ≤ j < n. In particular, |D2n| = 2n. �
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Exercise 2.6 B For every positive integer n construct a group
containing elements g, h such that |g| = 2, |h| = 2, and |gh| = n.
(Hint: For n > 1, D2n will do.) [§1.6]

� Solution If n = 1, take any group G with an element x of order
two (for example, you may take G as any dihedral group and x as
any reflection) and let g = h = x. Suppose that n > 1. As suggested
in the hint, we take G = D2n. Let x be the reflection about a line
through the center of a regular n-gon and a vertex, and let y be the
counterclockwise rotation by 2π/n. Take g = x and h = xy. It is clear
that |g| = 2. By the previous exercise, xy = y−1x soA similar

computation
shows that xyj,

0 ≤ j ≤ n− 1, are
all reflections in

D2n.

h2 = (xy)2 = (xy)(xy) = (xy)(y−1x) = xyy−1x = xex = x2 = e .

Thus, |h| = 2 too. Finally, gh = x(xy) = x2y = ey = y, which is of
order n, as desired. �

Exercise 2.7 ¬ Find all elements of D2n that commute with every
other element. (The parity of n plays a role.) [IV.1.2]

� SolutionAs the reader will
see in §IV.1.2, the

center Z(G) of a
group G is the

subgroup
constituted by all
the elements that

commute with
every other

element.

Firstly, if n ≤ 2 the order of D2n is less than 4. Since the
smallest non-abelian group is S3, with 6 elements, every element of
D2n commute with every other element. In other words, Z(D2n) = D2n

for n ≤ 2.
Now, let n ≥ 3 and recall (Exercise 2.5) that the group D2n is

generated by two elements x, y such that x2 = e, yn = e, and xyx−1 =

y−1. (This means that every element of D2n can be written as xiyj for
some integers 0 ≤ i ≤ 1, 0 ≤ j < n.) A quick thought shows that a
element g ∈ D2n is in the center if and only if it commutes with x and
y. Thus, g = xiyj ∈ D2n is in Z(D2n) iff

(xiyj)x = x(xiyj) and (xiyj)y = y(xiyj).

By the second equation, we have that xiy = yxi. If i = 1, then
y = xyx−1 = y−1, which would imply that the order of y is 2. This
contradiction implies that i = 0.

By the first equation, yj = xyjx−1. Since xyjx−1 = (xyx−1)j = y−j,
we have that y2j = e. As the order of y is n, it follows that n divides 2j.
Knowing that 2j < 2n, we have either 2j = n or j = 0.

If n is even, the two options are possible and then Z(D2n) =

{e, yn/2}. Otherwise the center is trivial: Z(D2n) = {e}. �

Exercise 2.8 Find the orders of the groups of symmetries of the
five ’platonic solids’.

� Solution Since every symmetry is defined by an orthogonal matrix
S, we will calculate these orders using linear algebra in the following
way: if G is the desired group, then det : G → {+1,−1} is a nontrivial
group homomorphism. Therefore, by the first isomorphism theorem,
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we can find the number of rotations R, and in the end multiply the final
result by 2. By a theorem from Euler, every rotation in R3 is a rotation
around an axis v, and since the polyhedron is invariant, there are only
a finite number of possible axis: its vertices, middle points of its edges,
and barycenters of the faces (where we fix the center of the polyhedron
at the origin). Since every symmetry induces a permutation of the
vertices, we can describe these groups as subgroups of the symmetric
groups.

• Tetrahedron. Observe that the axis passing through the origin and
any vertex also passes through the center of the opposite face,
therefore we just have to count the axis passing through a vertex
and through an edge. In the former, there are four vertex and
each one gives two rotation, counting 8. In the latter, there are
six edges, but each axis passes through two edges and gives only
one rotation, counting 3. Finally, there is also the trivial rotation:
the identity, totaling 12 rotation, from where we conclude there
are 24 symmetries. Since there are 4 vertices and |S4| = 24, we
conclude the symmetry group of the tetrahedron is S4.

•

• Cube. It has 8 vertices and each axis passing through one, passes
through the opposite vertex; further, each axis gives two rotation,
counting 8 rotations. Similarly, each vertex passing through the
middle point of an edge, passes also through its opposite edge,
and each such axis determines only one rotation, giving 6 more
rotation. Finally, each axis passing through the center of a face
is counted twice and determines three rotations, giving 9 more
rotations. Finally, adding up the identity, we have 24 rotations
and the desired order is 48. In this case, observe the group
of rotations is generated by elements x, y, z such that x2 = e,
y3 = e and z4 = e, and, with further calculations, we conclude
its rotation group is S4 (in fact, each rotation permutes its four
diagonals) and therefore its symmetry group if S4 × {+1,−1}.
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•

•

• Octahedron. Similarly for the octahedron, each axis is counted
twice and each axis through vertex has 3 rotations, each axis
through middle point of an edge has 1 rotation and each axis
through a face has 2 rotations adding up to 24 with the identity,
therefore the order of the symmetry group is 48. Similarly to
the cube, its rotation group is S4 and its symmetry group is
S4 × {+1,−1}.

Since the
octahedron is dual

to the cube, it
follows

immediately that
their symmetry

groups are
isomorphic.

• Dodecahedron. Once again, each axis passing through a vertex
passes through another vertex and similarly for edges and faces.
In the first case, there are 2 rotations, in the second there are
1 rotation and in the third there are 4 rotations, adding up
(20 + 15 + 24 + 1) = 60 rotations and 120 symmetries. Since
now there are rotations such that x5 = e, it might be natural
do guess its rotation group is S5. However this is not really the
case, since |S5| = 120. In fact, there are 24 5-order rotations, 20
3-order rotations and 15 2-order rotations, the same as A5! So we
might expect its rotations group is A5 and its symmetry group
is A5 × {+1,−1}.
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•

•

• Icosahedron. Finally, for the dodecahedron, through each vertex
passes one axis, counted twice, that has 4 rotations; through each
middle point of an edge passes an axis which has 1 rotation; and
through each barycenter passes an axis which has 2 rotations,
adding up to (24 + 15 + 20 + 1) = 60 rotations and 120 symme-
tries. Similarly to the dodecahedron, its rotation group is A5 and
its symmetry group is A5 × {+1,−1}.

Since the
icosahedron and
the dodecahedron
are dual to each
other, it follows
immediately their
symmetry group
are isometric.

�

Exercise 2.9 Verify carefully that ’congruence mod n’ is an equiva-
lence relation.

� Solution

• Reflexivity: Note that n|(a − a) = 0 because 0 = 0 · n, for all
a ∈ Z. Thus, a ≡ a mod n for all a ∈ Z.

• Symmetry: Let a, b ∈ Z be such that a ≡ b mod n, that is,
there exists k ∈ Z such that b − a = k · n. Therefore, a − b =

(−k) · n =⇒ n|(a− b) =⇒ b ≡ a mod n.

• Transitivity: Let a, b, c ∈ Z be such that a ≡ b mod n and b ≡ c
mod n. Hence, there are k, l ∈ Z such that b − a = k · n and
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c − b = l · n. Adding these equations, we obtain that c − a =

(b− a) + (c− b) = (k + l) · n =⇒ n|(c− a) =⇒ a ≡ c mod n.

We conclude that ’congruence mod n’ is an equivalence relation. �

Exercise 2.10 Prove that Z/nZ consists of precisely n elements.

� Solution We affirm that the elements of Z/nZ are the equivalence
classes [0]n, [1]n, . . . , [n− 1]n. They are different since 0 ≤ a < b < n
implies 0 < b− a < n and then n does not divide b− a. Also, every
integer a is equivalent to some integer r ∈ {0, 1, . . . , n− 1} modulo n
since division with remainder implies that

a = qn + r

with 0 ≤ r < n. Modulo n we have that [a]n = [r]n. �

Exercise 2.11 B Prove that the square of every odd integer is
congruent to 1 modulo 8. [§VII.5.1]

� Solution Every odd number is of the form 2n + 1 for some n ∈
Z. Therefore its square equals (2n + 1)2 = 4n(n + 1) + 1. Since the
product of two consecutive numbers is a multiple of 2,

4n(n + 1) + 1 ≡ 1 mod 8,

as we desired to prove. �

Exercise 2.12 Prove that there are no nonzero integers a, b, c such
that a2 + b2 = 3c2. (Hint: By studying the equation [a]24 +[b]24 = 3[c]24
in Z/4Z, show that a, b, c would all have to be even. Letting a = 2k,
b = 2l, c = 2m, you would have k2 + l2 = 3m2. What’s wrong with
that?)

� Solution Note that this equation has the integer solution a = 0,
b = 0, c = 0. Let’s prove that it does not have any other integer
solution. Suppose that there are integers a, b, c, not all zero, such that
a2 + b2 = 3c2. We can assume they are all non-negative. Also, note
that c 6= 0.

The following
method is known

as Method of Infinite
Descent and it is
attributed to the

famous lawyer and
mathematician

Pierre de Fermat
(1607 - 1665), who

often used it to
solve Diophantine

equations.

Let π : Z→Z/4Z be the canonical projection to the quotient. By the
definition of + and · in Z/4Z, we know that π(a + b) = π(a) + π(b)
and π(a · b) = π(a) · π(b) for all a, b ∈ Z (this means that π is a
homomorphism of rings, as we shall see later). Thus, applying π on
our equation we obtain [a]24 + [b]24 = 3[c]24.

By Exercise 2.11, since 4 divides 8, we know that the square of any
odd integer is congruent to 1 mod 4. On the other hand, any even
integer is of the form 2n for some n ∈ Z, so its square equals 4n2,
which is congruent to 0 mod 4. Therefore, we conclude that the square
of any integer is congruent to either 0 or 1 mod 4. Thus, we must have
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[a]24 = [b]24 = [c]24 = [0]4 because otherwise we would get two distinct
numbers of {0, 1, 2, 3} congruent to each other mod 4, a contradiction.
For this reason, a, b and c are all even and there exist k, l, m ∈ Z such
that a = 2k, b = 2l, c = 2m. Note that 0 < m < c. Replacing this in
our equation, we get k2 + l2 = 3m2. By the same analysis, we get a
new solution for which we can apply again this argument, obtaining
another solution, and so on. However, an infinite sequence of strictly
decreasing positive integers arises (the numbers appearing on the
right hand-side of each equation), which is impossible to happen.

This last
contradiction is a
consequence of the
well-ordering
principle: every
non-empty set of
positive integers
contains a least
element.

We conclude that there cannot be an integer solution to the equation
besides the trivial one. �

Exercise 2.13 B Prove that if gcd(m, n) = 1, then there exist inte-
gers a and b such that

am + bn = 1.

(Use Corollary 2.5.) Conversely, prove that if am + bn = 1 for some
integers a and b, then gcd(m, n) = 1. [2.15, §V.2.1, V.2.4]

Corollary 2.5 The class [m]n generates Z/nZ if and only if gcd(m, n)
= 1.

� Solution By Corollary 2.5, the class [m]n generates Z/nZ and
hence there exists an integer a such that a[m]n = [1]n. This means that
am− 1 is divisible by n and thus there exists an integer −b such that

am− 1 = −bn.

Conversely, if am + bn = 1, let d = gcd(m, n). Since d|m and d|n,
d|(am + bn) = 1. Hence d = 1. �

Exercise 2.14 State and prove an analog of Lemma 2.2, showing
that the multiplication on Z/nZ is a well-defined operation. [§2.3,
§III.1.2]

Lemma 2.2 If a ≡ a′ mod n and b ≡ b′ mod n, then

(a + b) ≡ (a′ + b′) mod n.

� Solution The desired analogue is the following.

If a ≡ a′ mod n and b ≡ b′ mod n, then

ab ≡ a′b′ mod n.

Its proof is also similar to that of Lemma 2.2. By hypothesis, n | a− a′

and n | b− b′, therefore

n | b(a− a′) + a′(b− b′) = ab− a′b′,

and ab ≡ a′b′ mod n. �
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Exercise 2.15 ¬ Let n > 0 be an odd integer.

• Prove that if gcd(m, n) = 1, then gcd(2m + n, 2n) = 1. (Use
Exercise 2.13.)

• Prove that if gcd(r, 2n) = 1, then gcd( r−n
2 , n) = 1. (Ditto.)

• Conclude that the function [m]n → [2m + n]2n is a bijection
between (Z/nZ)∗ and (Z/2nZ)∗.

The number φ(n) of elements of (Z/nZ)∗ is Euler’s φ-function. The
reader has just proved that if n is odd, then φ(2n) = φ(n). Much
more general formulas will be given later on (cf. Exercise V.6.8).
[VII.5.11]

� Solution

• By Exercise 2.13, there are a, b ∈ Z such that that am + bn = 1.
Since n is odd, we can assume that a is even, because if it were
not, we could change a for a + n, which is even, and b for b−m,
getting (a + n)m + (b − n)m = 1. Thus, there is a′ such that
a′(2m) + bn = 1 and we get that a′(2m + n) + (b − a′)n = 1.
Finally, since 2m + n is odd, as before we can replace a′ by some
x ∈ Z and b− a′ by 2y for some y ∈ Z. Therefore, it follows that
x(2m + n) + y(2n) = 1 and, again by Exercise 2.13, we conclude
that gcd(2m + n, 2n) = 1.

• Firstly, note that r is odd, so r− n is even an r−n
2 is an integer. By

Exercise 2.13, there exist a, b ∈ Z such that ar + b(2n) = 1. Thus,

ar + (2b)n = 1 =⇒ a(r− n) + (2b + a)n = 1

=⇒ 2a
(

r− n
2

)
+ (2b + a)n = 1

and, again by Exercise 2.13, we have that gcd( r−n
2 , n) = 1.

• Let f : (Z/nZ)∗ → (Z/2nZ)∗ and g : (Z/2nZ)∗ → (Z/nZ)∗

be defined by

f ([m]n) = [2m + n]2n, g([r]2n) =

[
r− n

2

]
n

.

These functions are well-defined by the last two items and be-
cause

m ≡ m′ mod n =⇒ 2m ≡ 2m′ mod 2n

=⇒ 2m + n ≡ 2m′ + n mod 2n

and

r ≡ r′ mod 2n =⇒ r− n ≡ r′ − n mod 2n

=⇒ r− n
2
≡ r′ − n

2
mod n .
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Finally, note that f g = id(Z/2nZ)∗ and g f = id(Z/nZ)∗ since

( f g)([r]2n) =

[
2
(

r− n
2

)
+ n

]
2n

= [r]2n

and

(g f )([m]n) =

[
(2m + n)− n

2

]
n
= [m]n .

Therefore, f and g are bijections. �

Exercise 2.16 Find the last digit of 123823718238456. (Work in Z/10Z.)

� Solution Finding the last digit of a number amounts to finding the
remainder of its division by 10. In other words, we want to find

123823718238456 mod 10.

Firstly we observe that

123823718238456 = (1238230 + 7)18238456 ≡ 718238456 mod 10.

By the same reasoning, modulo 10 we have that

718238456 = 499119228 ≡ 99119228 = 814559614 ≡ 14559614 = 1.

So the last digit of 123823718238456 is 1. �

Exercise 2.17 Show that if m ≡ m′ mod n, then gcd(m, n) = 1 if
and only if gcd(m′, n) = 1. [§2.3]

� Solution By Corollary 2.5,

gcd(m, n) = 1 ⇐⇒ [m]n = [m′]n generates Z/nZ

⇐⇒ gcd(m′, n) = 1,

and we’re done. �

Exercise 2.18 For d ≤ n define an injective function Z/dZ→ Sn

preserving the operation, that is, such that the sum of equivalence
classes in Z/dZ corresponds to the product of the corresponding
permutations.

� Solution Recall that Z/dZ is cyclic and is generated by [1]d, that
is, any element of Z/dZ is of the form m · [1]d for some integer m.
By Exercise 2.2, there exists a permutation σ ∈ Sn of order d. Define
ϕ : Z/dZ→ Sn by

ϕ(m · [1]d) = σm

for all m · [1]d ∈ Z/dZ. Since the order of [1]d and σ are the same, this
function is well-defined. It is clear that ϕ preserves operation. Let’s
prove that ϕ is injective. If σm = σm′ , then, by Corollary 1.11:

σm−m′ = eSn =⇒ d|(m−m′) =⇒ (m−m′) · [1]d = [0]d
=⇒ m · [1]d = m′ · [1]d .

Thus, ϕ is injective. �
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Exercise 2.19 B Both (Z/5Z)∗ and (Z/12Z)∗ consist of 4 ele-
ments. Write their multiplication tables, and prove that no re-
ordering of the elements will make them match.

� Solution Note that (Z/5Z)∗ = {[1]5, [2]5, [3]5, [4]5} and (Z/12Z)∗

= {[1]12, [5]12, [7]12, [11]12}. Their multiplication tables are:

· [1]5 [2]5 [3]5 [4]5
[1]5 [1]5 [2]5 [3]5 [4]5
[2]5 [2]5 [4]5 [1]5 [3]5
[3]5 [3]5 [1]5 [4]5 [2]5
[4]5 [4]5 [3]5 [2]5 [1]5

and
· [1]12 [5]12 [7]12 [11]12

[1]12 [1]12 [5]12 [7]12 [11]12

[5]12 [5]12 [1]12 [11]12 [7]12

[7]12 [7]12 [11]12 [1]12 [5]12

[11]12 [11]12 [7]12 [5]12 [1]12

.

Now, observe that [2]5 has order 4 while no element of (Z/12Z)∗ has
order bigger than 2. This implies that they are not isomorphic. �

3 the category grp

Exercise 3.1 B Let ϕ : G → H be a morphism in a category C
with products. Explain why there is a unique morphism (ϕ× ϕ) :
G× G → H × H compatible in the evident way with the natural
projections.

(This morphism is defined explicitly for C = Set in §3.1.) [§3.1,3.2]

� Solution Let π1 and π2 be the projection of G × G in the first
and second coordinates, and π′1 and π′2 the projections of H × H, and
define ϕ× ϕ as the morphism which makes the following diagram
commute.

G H

G× G H × H

G H .

ϕ

π1
ϕ×ϕ

π2

π
′
1

π
′
2

ϕ

Then the existence and uniqueness follows by the universal property
of the product H × H. �
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Exercise 3.2 Let ϕ : G → H, ψ : H → K be morphisms in a category
with products, and consider morphisms between the products
G× G, H × H, K× K as in Exercise 3.1. Prove that

(ψϕ)× (ψϕ) = (ψ× ψ)(ϕ× ϕ).

(This part of the commutativity of the diagram displayed in §3.2.)

� Solution Since the following diagram commutes

G H K

G× G H × H K× K

G H K ,

ϕ ψ

π1
ϕ×ϕ

π2

ψ×ψ

π
′
1

π
′
2

π
′′
1

π
′′
2

ϕ

ψ

we conclude (ψϕ) × (ψϕ) = (ψ × ψ)(ϕ × ϕ) by the uniqueness of
(ψϕ)× (ψϕ). �

Exercise 3.3 B Show that if G, H are abelian groups, then G× H
satisfies the universal property for coproducts in Ab (cf. §I.5.5).
[§3.5, 3.6, §III.6.1]

� Solution Since we are dealing with abelian groups, the abelian
notation will be used in this exercise. Let iG : G → G× H, iH : H →
G × H be the natural injections of G and H into G × H given by
iG(g) = (g, 0H) and iH(h) = (0G, h) for all g ∈ G, h ∈ H. It is clear
that they are both homomorphisms. Let K be an abelian group and
ϕG : G → K, ϕH : H → K be homomorphisms. We need to show that
there exists a unique homomorphism σ : G× H → K such that the
following diagram commutes:

G

G× H K

H .

iG

ϕG

σ

iH

ϕH

If a homomorphism σ makes this diagram commute, it is necessarily
unique because we have

σ(g, h) = σ((g, 0H) + (0G, h))

= σ(g, 0H) + σ(0G, h)

= (σiG)(g) + (σiH)(h)

= ϕG(g) + ϕH(h)

for all (g, h) ∈ G × H. Define the set-function σ : G × H → K by
σ(g, h) = ϕG(g) + ϕH(h), as suggested by the computation above.



46 groups , first encounter

Since ϕG(0G) = ϕH(0H) = 0K, the diagram commutes. It remains to
show that σ is a homomorphism. Indeed, if (g1, h1), (g2, h2) ∈ G× H
then

σ((g1, h1) + (g2, h2)) = σ(g1 + g2, h1 + h2)

= ϕG(g1 + g2) + ϕH(h1 + h2)

= ϕG(g1) + ϕG(g2) + ϕH(h1) + ϕH(h2)

= (ϕG(g1) + ϕH(h1)) + (ϕG(g2) + ϕH(h2))

= σ(g1, h1) + σ(g2, h2)

since ϕG and ϕH are homomorphisms and K is abelian. Therefore
G× H with iG and iH satifies the universal property for coproducts in
Ab. �

Exercise 3.4 Let G, H be groups, and assume that G ∼= H × G.
Can you conclude that H is trivial? (Hint: No. Can you construct a
counterexample?)

� Solution It suffices to take H to be any non-trivial group and G to
be an infinite product of the H’s. �

Exercise 3.5 Prove that Q is not the direct product of two nontrivial
groups.

� Solution Note that, if r1, r2 ∈ Q, then there exists p, q ∈ Z such
that pr1 = qr2 6= 0, and this property is shared by all of its isomorphic
group. However, if G and H are nontrivial, g 6= 0G ∈ G and h 6= 0H ∈
H, and p, q ∈ Z are such that p(g, 0H) = q(0G, h), then they are equal
to (0G, 0H). Therefore, no product is isomorphic to Q. �

Exercise 3.6 B Consider the product of the cyclic groups C2, C3

(cf. §2.3): C2 × C3. By Exercise 3.3, this group is a coproduct of C2

and C3 in Ab. Show that it is not a coproduct of C2 and C3 in Grp,
as follows:

• find injective homomorphisms C2 → S3, C3 → S3;

• arguing by contradiction, assume that C2 × C3 is a coproduct
of C2, C3, and deduce that there would be a group homomor-
phism C2 × C3 → S3 with certain properties;

• show that there is no such homomorphism.

[§3.5]

� Solution Let σx, σy ∈ S3 be the permutations:

σx =

(
1 2 3

2 1 3

)
, σy =

(
1 2 3

2 3 1

)
.
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If x and y are the generators of C2 and C3, respectively, define f : C2 →
S3 and g : C3 → S3 by

f (xn) = σn
x , g(yn) = σn

y

for all n ∈ Z. Since |σx| = 2 and |σy| = 3, these functions are well-
defined. They are clearly injective homomorphisms.

Assume that C2× C3 is a coproduct of C2 and C3 in Grp. Then, there
exists a unique homomorphism ϕ : C2 × C3 → S3 such that diagram

C2

C2 × C3 S3

C3 .

iC2

f

ϕ

iC3

g

commutes, where iC2 , iC3 are the natural injections into the product, as
in Exercise 3.3. We can see that

ϕ(a, b) = ϕ((a, eC3) · (eC2 , b))

= ϕ(a, eC3) · ϕ(eC2 , b)

= (ϕiC2)(a) · (ϕiC3)(b)

= f (a) · g(b)

for all (a, b) ∈ C2 × C3. From this result, it can be easily checked that
ϕ is surjective. Since |C2 × C3| = |S3| = 6, it is indeed a bijection
and, thus, C2 × C3 and S3 are isomorphic. But this is a contradiction
because C2 × C3 is abelian and S3 is not. Therefore, we conclude that
C2 × C3 with iC2 and iC3 is not a coproduct of C2 and C3 in Grp. �

Exercise 3.7 Show that there is a surjective homomorphism Z ∗
Z→ C2 ∗ C3. (∗ denotes coproduct in Grp; cf. §3.4.)

One can think of Z ∗Z as a group with two generators x, y,
subject to no relations whatsoever. (We will study a general version
of such groups in §5; see Exercise 5.6.)

� Solution Actually, something way more general is true: let ϕ1 :
G1 → H1 and ϕ2 : G2 → H2 be surjective group homomorphisms.
Then there exists a surjective homomorphism G1 ∗ G2 → H1 ∗ H2.

Let
G1

G1 ∗ G2

G2

iG
1

iG
2
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be the canonical injections of G1 ∗ G2 and

H1

H1 ∗ H2

H2

iH
1

iH
2

be those of H1 ∗ H2. Then the universal property of G1 ∗ G2 implies
that there exists a unique morphism σ : G1 ∗ G2 → H1 ∗ H2 such that
the diagram

G1

G1 ∗ G2 H1 ∗ H2

G2

iG
1

iH
1 ϕ1

σ

iG
2

iH
2 ϕ2

commutes.
Now, I can only imagine two (strange) ways of proving that σ is

surjective. The first one is by utilizing the description of C2 ∗ C3 given
in the next exercise (and then we write σ explicitly just as done in
this exercise). The next one is by knowing that the coproduct of two
epimorphisms is also an epimorphism (in any category) and that,
in Grp, epimorphisms are surjective, both results that Aluffi didn’t
enunciate. �

Remark. These characterizations of Z ∗ Z and C2 ∗ C3 become
’obvious’ when the reader knows about free products. Just as in
the explicit construction of free groups done in §5.3, the elements
of G ∗ H are words of the form

g1h1g2h2 . . . gkhk.

The product in G ∗ H is analogous to the one in free groups. It is
constituted by concatenation and reduction of words.

Knowing this we can prove the general result stated in the
solution. Denoting by gn the elements of G1 and by hn the elements
of G2 we have that the image of g1h1g2h2 . . . gkhk by σ is simply

ϕ1(g1)ϕ2(h1)ϕ1(g2)ϕ2(h2) . . . ϕ1(gk)ϕ2(hk).

This shows that σ is clearly surjective.

Exercise 3.8 B Define a group G with two generators x, y, subject
(only) to the relations x2 = eG, y3 = eG . Prove that G is a coproduct
of C2 and C3 in Grp. (The reader will obtain even more concrete
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description for C2 ∗ C3 in Exercise 9.14; it is called the modular
group.) [§3.4, 9.14]

� Solution Let iC2 : C2 → G be defined by iC2(m) = xm and iC3 : C3 →
G be defined by iC3(m) = ym. Then (G, iC2 , iC3) is a coproduct of C2 and
C3 in Grp. In fact, let Z be a group and fC2 : C2 → Z and fC3 : C3 → Z
be two homomorphism, and σ a morphism from C2 ∗ C3 to Z.

C2

G Z

C3 .

iC2

fC2

σ
iC3

fC3

Since we have a commuting diagram: σ(xm) = fC2(m) and σ(ym) =

fC3(m). Since x and y generates G, we can define σ by

σ(xi1 yi2 xi3 yi4 · · · ) = fC2(i1) fC3(i2) fC2(i3) fC3(i4) · · ·

and we ensure its existence. On the other hand, this σ is unique since
any such morphism must satisfy this identity. �

Exercise 3.9 Show that fiber products and coproducts exist in Ab.
(Cf. Exercise I.5.12. For coproducts, you may have to wait until you
know about quotients.)

� Solution In this exercise, we will use the abelian notation. Let
G, H, K be abelian groups and α : G → K, β : H → K be homo-
morphisms. We will show that the fibered product of α and β is the
same one as in Set (see Exercise I.5.12); we just need to introduce an
operation. Define

G×K H =
⋃

x∈K

α−1(x)× β−1(x)

and consider the usual projections πG and πH. We claim that the
operation

(g1, h1) + (g2, h2) := (g1 + g2, h1 + h2)

turns G×K H into a group. Firstly, note that it is well-defined because
α and β are homomorphisms; if (g1, h1), (g2, h2) ∈ G×K H, there are
x, y ∈ K such that α(g1) = β(h1) = x and α(g2) = β(h2) = y, so
α(g1 + g2) = β(h1 + h2) = x + y ∈ K, which implies that (g1 + g2, h1 +

h2) ∈ G×K H. It is easy to check that this operation is associative and
commutative, (0G, 0H) ∈ G×K H is the zero element and (−g,−h) ∈
G×K H is the opposite of (g, h) ∈ G×K H. (It is essential to verify that
these elements are in G×K H, which indeed happens because α and β

are homomorphisms.) Note that πG and πH are homomorphisms and
that απG = βπH.
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Let Z be an abelian group and ϕG : Z → G, ϕH : Z → H be
homomorphisms such that αϕG = βϕH. We need to show that there
exists a unique σ : Z → G×K H such that the diagram

Z

G×K H G

H K

ϕG

σ

ϕH

πG

πH α

β

commutes. As in Exercise I.5.12, we are forced to define σ(z) =

(ϕG(z), ϕH(z)) for all z ∈ Z. By doing so, σ is an homomorphism
and it is well-defined because αϕG = βϕH. Therefore, G ×K H with
πG and πH is the desired fibered product.

Notice that we did
not use that the

groups were
abelian, so this is

also the fibered
product in Grp.

Now, for the fibered coproduct, we set α : K → G and β : K → H
as homomorphisms. As we will see, the fibered coproduct in Ab is
similar to the one in Set. Let i∗G : G → G× H, i∗H : H → G× H be the
natural injections of G and H into G× H given by i∗G(g) = (g, 0H) and
i∗H(h) = (0G, h) for all g ∈ G, h ∈ H. Let N ⊆ G× H be the subgroup
generated by the elements of the form

(i∗G ◦ α)(x) · ((i∗H ◦ β)(x))−1

for all x ∈ K. Since G× K is abelian, we can take the quotient (G×
K)/N. Thus, define

G äK H = (G× H)/N

and, if π is the canonical projection to the quotient, define iG = πi∗G
and iH = πi∗H. Note that iGα = iH β by the definition of N.

Let Z be another abelian group together with homomorphisms
ϕG : G → Z, ϕH : H → Z such that ϕGα = ϕH β. By Exercise 3.3, there
exists a unique ϕ : G × H → Z such that ϕG = ϕi∗G and ϕH = ϕi∗H.
Let’s show that N ⊆ ker ϕ. Since N is generated by the elements of
the form given above, it suffices to show that they are in this kernel.
Since ϕGα = ϕH β,

ϕ((i∗Gα)(x) · ((i∗H β)(x))−1) = ((ϕi∗G)α)(x) · (((ϕi∗H)β)(x))−1

= (ϕGα)(x) · ((ϕH β)(x))−1

= eZ
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for all x ∈ K, and it follows that N ⊆ ker ϕ. By Theorem 7.12, there
exists a unique σ : G äK H → Z such that ϕ = σπ. Hence, the diagram

Z

G äK H G

H K

σ

iG

ϕG

iH

ϕH

α

β

commutes because

σiG = σ(πi∗G) = (σπ)i∗G = ϕi∗G = ϕG

and, similarly, σiH = ϕH. Finally, suppose that there exists another
ρ : G äK H → Z such that the diagram above commutes. Since
ϕG = ρiG = (ρπ)i∗G and ϕH = ρiH = (ρπ)i∗H, the uniqueness of ϕ

and σ implies that ϕ = ρπ and so ρ = σ. Therefore, σ is the only
homomorphism such that the diagram above commutes. We conclude
that G äK H with iG and iH is the desired fibered coproduct. �

4 group homomorphisms

Exercise 4.1 B Check that the function πn
m defined in §4.1 is well-

defined and makes the diagram commute. Verify that it is a group
homomorphism. Why is the hypothesis m|n necessary? [§4.1]

� Solution The function πn
m := [a]n 7→ [a]m is well-defined because

[a]n ⊂ [a]m; indeed, x ∈ [a]n =⇒ n|x− a⇒ m|x− a (m|n)⇒ x ∈ [a]m.
This implies immediately that x, y ∈ [a]n ⇒ [x]n ∩ [y]n 6= ∅ (because a
is in that intersection)⇒ [x]n = [y]n ⇒ [x]m ∩ [y]m 6= ∅ (because [x]n
is contained in both)⇒ [x]m = [y]m.

In that last sequence of steps we used the fact that m|n, and the
proposition becomes false if m - n; in that case [0]n = [n]n but we don’t
have [0]m = [n]m because m - n− 0 = n, so there is no unique choice
for πn

m([0]n).
Now, clearly πn ◦ πn

m takes a 7→ [a]n 7→ [a]m and so πn ◦ πn
m = πm.

We conclude that the diagram commutes.
We now just have to check that πn

m is a group homomorphism.
Indeed, πn

m([a]n + [b]n) = πn
m([a + b]n) = [a + b]m = [a]m + [b]m. �

Exercise 4.2 Show that the homomorphism π4
2×π4

2 : C4 → C2×C2

is not an isomorphism. In fact, is there any isomorphism C4 →
C2 × C2?
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� Solution Since we’re taking the product of two equal functions, its
product is subset of the diagonal {(n, n) | n ∈ C2}, and the function
is not surjective. The element 1 ∈ C4 has order 4, but there is no
element in C2 × C2 with order 4, therefore there does not exist such
an isomorphism. �

Exercise 4.3 B Prove that a group of order n is isomorphic to
Z/nZ if and only if it contains an element of order n. [§4.3]

� Solution Let G be such group. The proof will be divided into two
steps.

( =⇒ ) Since [1]n ∈ Z/nZ is of order n and G ∼= Z/nZ, it follows
from Proposition 4.8 that G contains an element of order n.

(⇐= ) Let x be an element of order n in G. Define ϕ : Z/nZ→ G
by

ϕ([m]n) = xm

for all [m]n ∈ Z/nZ. Since |x| = n, ϕ is well-defined (see Corollary
1.11) and is clearly a homomorphism. We claim that ϕ is injective.
Indeed, if ϕ([m]n) = ϕ([m′]n) then, again by Corollary 1.11,

xm = xm′ =⇒ xm−m′ = eG =⇒ n|(m−m′) =⇒ [m]n = [m′]n,

as desired. By the Pigeonhole Principle, since |G| = |Z/nZ| = n, ϕ is
also surjective and, therefore, it is an isomorphism.

The Pigeonhole
Principle states
that, if X, Y are

finite sets and
|X| > |Y|, then any
function from X to

Y cannot be
injective. �

Exercise 4.4 Prove that no two of the groups (Z,+), (Q,+), (R,+)

are isomorphic to one another. Can you decide whether (R,+),
(C,+) are isomorphic to one another? (Cf. Exercise VI.1.1.)

� Solution Since R is uncountable, there does not exist a bijection
from Z or Q to R. Moreover, if ϕ : Q→ Z is an homomorphism, then,
given r ∈ Q, for each n ∈N, we have that n | φ(r), for

ϕ(r) = ϕ
( r

n
+ · · ·+ r

n

)
︸ ︷︷ ︸

n times

= nϕ
( r

n

)
.

But this implies ϕ(r) = 0, and ϕ is the trivial homomorphism.
�

Exercise 4.5 Prove that the groups (R\{0}, ·) and (C\{0}, ·) are
not isomorphic.

� Solution The element i ∈ C has order 4, but there is no element
in R\{0} with order 4. Therefore there cannot be an isomorphism
between these two groups. �
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Exercise 4.6 We have seen that (R,+) and (R>0, ·) are isomorphic
(Example 4.4). Are the groups (Q,+) and (Q>0, ·) isomorphic?

� Solution Suppose that there exists an isomorphism ϕ : (Q,+)→
(Q>0, ·). Thus, there exists r ∈ Q such that ϕ(r) = 2, but then

ϕ
( r

2

)2
= ϕ

(
2 · r

2

)
= ϕ(r) = 2,

which implies that
√

2 is rational, a contradiction. We conclude that
(Q,+) and (Q>0, ·) are not isomorphic. �

Remark. Even stronger, we can show that the only homomorphism
f from (Q,+) to (Q>0, ·) is the trivial one. Note that, if f (1) = 1,
we automatically have that f (r) = f (1)r = 1 for all r ∈ Q. Suppose
that f (1) 6= 1 and write f (1) = a

b where a and b are positive
integers such that gcd(a, b) = 1. Let k ∈N be such that a, b < 2k.
We claim that f (1) is not of the form f (1) = rn for a rational
number r, for every n > k. In fact, suppose f (1) = rn and write
r = c

d where c and d are positive integers such that gcd(c, d) = 1.
This implies that adn = bcn and, by the gcd conditions, we get
that a = cn and b = dn. But then we must have c = d = 1 because
otherwise we would get a > 2k or b > 2k. It follows that a = b = 1
and f (1) = 1, a contradiction. Therefore, f (1) 6= rn for all r ∈ Q

and n > k. However, f (1) = f ( 1
k+1 )

k+1, which is impossible. Thus
we must have f (1) = 1 and f is the trivial homomorphism.

We can also prove this result using the rational root theorem,
which states that, if x = p

q ∈ Q is such that

anxn + an−1xn−1 + · · ·+ a0 = 0

for some a0, . . . , an ∈ Z and gcd(p, q) = 1, then p divides a0

and q divides an. Let f : (Q,+)→ (Q>0, ·) be a homomorphism
and write f (1) = a

b where gcd(a.b) = 1. Since f (1) = f ( 1
n )

n, the
equation bxn − a = 0 has solutions for all n ∈ N. If f (1) 6= 1, all
these solutions would be different, by order constraints. However,
the rational root theorem implies that there can only be a finite
number of such solutions, a contradiction. Therefore, f (1) = 1
and f is the trivial homomorphism.

Exercise 4.7 Let G be a group. Prove that the function G → G
defined by g 7→ g−1 is a homomorphism if and only if G is abelian.
Prove that g 7→ g2 is a homomorphism if and only if G is abelian.

� Solution The first function is a homomorphism if and only if
g−1h−1 = (gh)−1 for all g, h ∈ G. This means that g−1h−1 = h−1g−1.
It is clear that this equation holds if G is abelian. Conversely, since
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every element is the inverse of someone, this equation implies that G
is abelian.

For the second function, supposing that it is a homomorphism, we
have that g2h2 = ghgh for all g, h ∈ G. Multiplying by g−1 on the left
and by h−1 it follows that that G is abelian. The converse is obvious. �

Exercise 4.8 ¬ Let G be a group, and let g ∈ G. Prove that the
functions γg : G → G defined by (∀a ∈ G) : γg(a) = gag−1 is an
automorphism of G. (The automorphisms γg are called ’inner’
automorphisms of G.) Prove that the function G → Aut(G) defined
by g 7→ γg is an homomorphism. Prove that the homomorphism is
trivial if and only if G is abelian. [6.7, 7.11, IV.1.5]

� Solution It is easy to see γg is an homomorphism. In fact, for any
a, b ∈ G,

γg(a)γg(b) = (gag−1)(gbg−1)

= g(ab)g−1

= γg(ab),

and its inverse is also easy to find:

γg−1 ◦ γg(a) = γg−1(gag−1)

= g−1(gag−1)g

= a,

and similarly for γg ◦ γg−1 . Therefore γg is an automorphism.
Moreover, this final calculation indicates that g → γg might be an

homomorphism. In fact, given g, h ∈ G, for any a ∈ G

γg ◦ γh(a) = γg(hah−1)

= g(hah−1)g−1

= (gh)a(gh)−1

= γgh(a).

Thus it is an homomorphism.
Finally, this homomorphism is trivial if and only if (∀g, a ∈ G) :

gag−1 = a, i.e., ga = ag, which means G is abelian. �

Exercise 4.9 B Prove that if m, n are positive integers such that
gcd(m, n) = 1, then Cmn ∼= Cm × Cn. [§4.3, 4.10, §IV.6.1, V.6.8]

� Solution We will prove that Z/mnZ ∼= Z/mZ×Z/nZ, which
is equivalent to the exercise. By Exercise 4.1, we can define the ho-
momorphism ϕ : Z/mnZ → Z/mZ ×Z/nZ by ϕ = πmn

m × πmn
n .

Explicitly,
ϕ([x]mn) = ([x]m, [x]n)
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for all [x]mn ∈ Z/mnZ. We claim that ϕ is injective. Indeed, suppose
that ϕ([x]mn) = ϕ([y]mn) for some [x]mn, [y]mn ∈ Z/mnZ. It follows
that x ≡ y mod m and x ≡ y mod n, thus, there are m′, n′ ∈ Z such
that y− x = mm′ = nn′. By Exercise 2.13, there are a, b ∈ Z such that
am + bn = 1. Multiplying this equation by y− x, we get that

am(y− x) + bn(y− x) = y− x =⇒ amnn′ + bnmm′ = y− x

=⇒ (mn)(an′ + bm′) = y− x

=⇒ mn|(y− x)

=⇒ [x]mn = [y]mn,

as desired. Finally, since |Z/mnZ| = |Z/mZ×Z/nZ| = mn, we
conclude that ϕ is also surjective. Therefore, ϕ is an isomorphism and
Z/mnZ ∼= Z/mZ×Z/nZ. �

Remark. This result is a particular case of the Chinese remainder theo-
rem, which states: if n1, . . . , nk are integers such that gcd(ni, nj) = 1
when i 6= j, then, for any a1, . . . , ak ∈ Z, there exists an integer x
such that

x ≡ a1 mod n1

...

x ≡ an mod nk

and any two such x are congruent mod n1n2 · · · nk. For k = 2, we
proved that x exists when we showed that ϕ is surjective. The
injectivity of ϕ implies the uniqueness of x mod mn.

This result can be generalized to arbitrary rings, which will
be presented in chapter III. Let R be a ring and let I1, . . . , Ik be
two-sided coprime ideals, that is, Ii + Ij = R, if i 6= j. Then,

R/I ∼= R/I1 × · · · × R/Ik

where I is the intersection of I1, . . . , Ik. Moreover, if R is commu-
tative, I equals to the product of these ideals.

Exercise 4.10 B Let p 6= q be odd prime integers; show that
(Z/pqZ)∗ is not cyclic. (Hint: Use Exercise 4.9 to compute the
order N of (Z/pqZ)∗, and show that no element can have order
N.) [§4.3]

� Solution We first observe that [x]pq ∈ Z/pqZ satisfies gcd(x, pq) =
1 if and only if gcd(x, p) = 1 = gcd(x, q) (that happens because
gcd(p, q) = 1). This means that [x]pq ∈ (Z/pqZ)∗ ⇔ [x]p ∈ (Z/pZ)∗

and [x]q ∈ (Z/qZ)∗, and we conclude, by the remark at the end of the
solution to exercise 4.9, that |Z/pqZ| = (p− 1)(q− 1). (Indeed, any
two pairs of residues in (Z/pZ)∗ and (Z/qZ)∗ determine uniquely
and reversibly a residue in (Z/pZ)∗)
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For clarity, we will use Ordn(x) as a replacement for the order of
[x]n in (Z/nZ)∗. This is to avoid ambiguity when talking about order
of the same element in different groups.

Now, we will prove that Ordpq(x) = lcm(Ordp(x), Ordq(x)). Indeed,
if Ordp(x), Ordq(x)|T, then [xT]p = [1]p and [xT]q = [1]q, which im-
plies [xT]pq = [1]pq. In the same fashion, we obtain that if [xT]pq = [1]pq

then [xT]p = [1]p and [xT]q = [1]q, by Corollary 1.11, and we conclude
Ordp(x), Ordq(x)|T.

Now, as was pointed below Definition 1.12, |g| ≤ |G| and so it
is impossible to have lcm(Ordp(x), Ordq(x)) = (p − 1)(q − 1); in-
deed lcm(x, y) ≤ xy and so we would have, for a generating ele-
ment [x]pq, (p − 1)(q − 1) = Ordpq(x) = lcm(Ordp(x), Ordq(x)) ≤
Ordp(x)Ordq(x) ≤ (p− 1)(q− 1); equality must hold, but both p− 1
and q− 1 are even, therefore lcm(p− 1, q− 1) ≤ (p− 1)(q− 1)/2, a
contradiction.

We have shown that no element of (Z/pqZ)∗ has the full order of
the group, and so we conclude that it is not cyclic, as desired. �

Remark. This question admits a natural generalization, that is to
ask for which n can the resulting group (Z/nZ)∗ be cyclic. In the
next problem (exercise 4.11) we will show that it is indeed cyclic
for p prime, and it turns out to be cyclic for n = pα or n = 2pα,
and not cyclic in any other case. While the affirmative answers
take a bit more tools to develop, the negative answers are not
conceptually harder than the solution above, and so we include
them for completeness.

We start with a simple lemma: if (Z/abZ)∗ is cyclic then so
is (Z/aZ)∗. Indeed, the projection piab

a sends a generator of
(Z/abZ)∗ into an element whose

Exercise 4.11 B In due time we will prove the easy fact that if p is
a prime integer, then the equation xd = 1 can have at most d solu-
tions in Z/pZ. Assume this fact, and prove that the multiplicative
group G = (Z/pZ)∗ is cyclic. (Hint: Let g ∈ G be an element of
maximal order; use Exercise 1.15 to show that h|g| = 1 for all h ∈ G.
Therefore...) [§4.3, 4.15, 4.16, §IV.6.3]

� Solution Let g ∈ G be as above. Then, by Exercise 1.15, h|g| = 1
for every h ∈ G. Since this equation (x|g| = 1) has |G| solutions,
this implies |G| ≤ |g|. On the other hand, as was pointed out below
Definition 1.12, |g| ≤ |G|. Therefore |g| = |G|, and g generates G. �

Exercise 4.12 ¬

• Compute the order of [9]31 in the group (Z/31Z)∗.
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• Does the equation x3− 9 = 0 have solutions in Z/31Z? (Hint:
Plugging in all 31 elements of Z/31Z is too laborious and
will not teach you much. Instead, use the result of the first
part: if c is a solution of the equation, what can you say about
|c|?) [VII.5.15]

� Solution

• We need to compute the powers of 9 mod 31:

9 6≡ 1 mod 31

92 = 81 ≡ 19 6≡ 1 mod 31

93 ≡ 19 · 9 = 171 ≡ 16 6≡ 1 mod 31

94 ≡ 16 · 9 = 144 ≡ −11 6≡ 1 mod 31

95 ≡ (−11) · 9 = −99 ≡ −6 6≡ 1 mod 31

96 ≡ (−6) · 9 = −54 ≡ 8 6≡ 1 mod 31

97 ≡ 8 · 9 = 72 ≡ 10 6≡ 1 mod 31

98 ≡ 10 · 9 = 90 ≡ −3 6≡ 1 mod 31

99 ≡ (−3) · 9 = −27 ≡ 4 6≡ 1 mod 31

910 ≡ 4 · 9 = 36 ≡ 5 6≡ 1 mod 31

911 ≡ 5 · 9 = 45 ≡ 14 6≡ 1 mod 31

912 ≡ 14 · 9 = 126 ≡ 2 6≡ 1 mod 31

913 ≡ 2 · 9 = 18 6≡ 1 mod 31

914 ≡ 18 · 9 = 162 ≡ 7 6≡ 1 mod 31

915 ≡ 7 · 9 = 63 ≡ 1 mod 31.

Therefore, |[9]31| = 15.

• Suppose that there exists c ∈ Z/31Z such that c3 = [9]31. Clearly,
c 6= [0]31 so c ∈ (Z/31Z)∗. By Proposition 1.13, we must have
lcm(3, |c|) = |[9]31| · 3 = 32 · 5, which implies that |c| = 45 in
(Z/31Z)∗. But the order of c must be less or equal than the
order of (Z/31Z)∗, which is 30, a contradiction. Therefore, the
equation x3 − 9 = 0 cannot have solutions in Z/31Z . �

Exercise 4.13 ¬ Prove that AutGrp(Z/2Z×Z/2Z) ∼= S3. [IV.5.14]

� Solution Observe that, since |Z/2Z×Z/2Z| = 4, and, for every
automorphism ϕ, ϕ(0, 0) = (0, 0), then, enumerating the other three
elements, AutGrp can be identified as a subgroup of S3. Moreover,
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the bijections ϕ : Z/2Z×Z/2Z → Z/2Z×Z/2Z and ψ : Z/2Z×
Z/2Z→ Z/2Z×Z/2Z defined by

ϕ(a, b) = (b, a),

ψ(0, 0) = (0, 0),

ψ(1, 0) = (1, 1),

ψ(0, 1) = (1, 0),

ψ(1, 0) = (0, 1)

are, in fact, homomorphisms and satisfies ϕ2 = id and ψ3 = id.
Since these permutations generate S3, we conclude AutGrp(Z/2Z×
Z/2Z) ∼= S3. �

Exercise 4.14 B Prove that the order of the group of automor-
phisms of the cyclic group Cn is the number of positive integers
r ≤ n that are relatively prime to n. (This is called Euler’s φ-function;
cf. Exercise 6.14.) [§IV.1.4, IV.1.22, §IV.2.5]

� Solution Since 1 generates the group, an automorphism is deter-
mined by the image of 1. Since an automorphism ϕ is, in particular, an
isomorphism, the image of 1 is also a generator of Cn, which occurs
if and only if gcd(ϕ(1), n) = 1 and we have exactly φ(n) choices for
ϕ(1). �

Exercise 4.15 ¬ Compute the group of automorphisms of (Z,+).
Prove that if p is prime, then AutGrp(Cp) ∼= Cp−1. (Use Exercise ??.)
[IV.5.12]

� Solution As in the previous exercise, since 1 generates Z, any
automorphism ϕ : Z → Z is determined by ϕ(1). Since ϕ is, in
particular, an isomorphism, ϕ(1) must also be a generator of Z. Thus,
ϕ(1) = 1 or ϕ(1) = −1, and we have just two automorphisms: one is
the identity on Z and the other one changes the signal of the input
integer. It follows that AutGrp(Z) ∼= C2.

Now, let’s prove that AutGrp(Z/pZ) ∼= Z/((p− 1)Z) if p is prime.
Again, any automorphism of Z/pZ is determined by the image of
[1]p, which must be a generator of Z/pZ. Conversely, each generator
determines an automorphism of Z/pZ. Since the generators are the
elements of (Z/pZ)∗, these automorphisms are given by

ϕ[n]p : Z/pZ −→ Z/pZ

[m]p 7−→ m · [n]p = [m]p · [n]p
for all [n]p ∈ (Z/pZ)∗. By Exercise ??, there is a generator x of
(Z/pZ)∗. We claim that ϕx generates AutGrp(Z/pZ). Indeed, given
ϕy ∈ AutGrp(Z/pZ), there exists z ∈ Z (which we can take positive
because (Z/pZ)∗ is finite) such that y = xz and so

ϕy(m) = my = mxz = ϕz
x(m)
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for all m ∈ (Z/pZ)∗. Thus, ϕy = ϕz
x, as desired. Since the order of

AutGrp(Z/pZ) is p − 1, Exercise 4.3 implies that AutGrp(Z/pZ) ∼=
Z/((p− 1)Z).

Similiarly, if
(Z/nZ)∗ is cyclic,
then AutGrp(Cn) ∼=
Cφ(n), where φ

denotes Euler’s
φ-function.�

Exercise 4.16 ¬ Prove Wilson’s theorem: an integer p > 1 is prime if
and only if

(p− 1)! ≡ −1 mod p.

(For one direction, use Exercises 1.8 and ??. For the other, assume d
is a proper divisor of p, and note that d divides (p− 1)!; therefore....)
[IV.4.11]

� Solution Let p > 1 be a prime number and G = (Z/pZ)∗. By
Exercise ??, G is a cyclic group. Also, we have that |G| = p− 1. In fact,
if m ∈ {1, 2, . . . , p− 1}, Exercise 2.13 implies that there exists integers
a and b such that

am + bp = 1.

Modulo p this means that a is the multiplicative inverse of m and so
[m] ∈ G. It follows that G ∼= Z/(p− 1)Z. If p = 2, the result is trivial.
Otherwise, this isomorphism makes clear that G has a unique element
of order 2. Namely, [−1]p. By Exercise 1.8, it follows that

(p− 1)! ≡ −1 mod p.

Conversely, if d is a proper divisor of p, we have that d|(p − 1)!
as it is smaller than p. By our hypothesis, p (and hence d) divides
(p− 1)! + 1. It follows that d|1 and then p is prime. �

Exercise 4.17 For a few small (but not too small) primes p, find a
generator of (Z/pZ)∗.

� Solution

• p = 7: Since 23 ≡ 1 mod 7, 2 is not a generator of (Z/7Z)∗. On
the other hand,

3 ≡ 3 mod 7

32 ≡ 2 mod 7

33 ≡ 2 · 3 ≡ −1 mod 7.

Therefore 34 ≡ −3 mod 7, 35 ≡ −2 mod 7 and 36 ≡ 1 mod 7,
and 3 is a generator.
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• p = 13: Once again, we start trying with the small numbers.

2 6≡ 1 mod 13

22 ≡ 4 mod 13

23 ≡ −5 mod 13

24 ≡ 3 mod 13

25 ≡ 6 mod 13

26 ≡ −1 mod 13.

As we have argued above, 2n+6 ≡ −2n 6≡ 1 mod 13, unless
n = 6, therefore 2 is a generator of (Z/13Z)∗.

• p = 23: Since 25 ≡ 9 mod 23, then 210 ≡ 81 ≡ 12 mod 23,
211 ≡ 1 mod 23 and 2 is not a generator of (Z/23Z)∗. Similarly,
since 25 ≡ 32 mod 23 and 33 ≡ 22 mod 23, and since 5 + 2 +

2 + 2 = 11 = 2 + 3 + 3 + 3, then 311 ≡ 211 ≡ 1 mod 23. On
the other hand, 52 ≡ 2 mod 23, hence 510 ≡ 25 ≡ 9 mod 23
and 511 ≡ −1 mod 23. Analogously as the other two problems,
5n+11 ≡ −5n 6≡ 1 mod 23, and 5 is the desired generator.

As the reader
might have noticed,
a is a generator of
(Z/pZ)∗ if and

only if a
p−1

2 ≡ −1. �

Remark. In general, there are no fast algorithms to find such
generators. Furthermore, there is a famous open problem.

Artin’s Conjecture (1927). Given an integer a which is neither a
perfect square nor −1, then there are infinitely many primes p
such that a is a generator of (Z/pZ)∗.

Exercise 4.18 Prove the second part of Proposition 4.8.

Proposition 4.8 Let ϕ : G → H be an isomorphism.

• (∀g ∈ G) : |ϕ(g)| = |g|;

• G is commutative if and only if H is commutative.

� Solution Suppose that G is commutative and take h1, h2 ∈ H. Since
ϕ is an isomorphism, there are g1, g2 ∈ G such that ϕ(g1) = h1 and
ϕ(g2) = h2. Thus,

h1h2 = ϕ(g1)ϕ(g2) = ϕ(g1g2) = ϕ(g2g1) = ϕ(g2)ϕ(g1) = h2h1

and we conclude that H is commutative. The other implication is
similar and it uses ϕ−1, which is also an isomorphism. �

5 free groups
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Exercise 5.1

� Solution A �

Exercise 5.2 Since trivial groups T are initial in Grp, one may be
led to think that (e, T) should be initial in F A, for every A: e would
be defined by sending every element of A to the (only) element
of T; and for any other group G, there is a unique homomorphism
T → G. Explain why (e, T) is not initial in F A (unless A = ∅).

� Solution If the pair (e, T) is as above and (j, G) is an arbitrary object
in F A, then a morphism from (e, T) to (j, G) is a homomorphism
ϕ such that ϕ(e(a)) = j(a) for every a ∈ A. But e(a) = eT, then
j(a) = ϕ(eT) = eG for every a ∈ A, which means the morphism does
not exists if j is not the constant function j(a) = eG. Therefore (e, T) is
not initial in F A. �

Exercise 5.3 B Use the universal property of free groups to prove
that the map j : A → F(A) is injective, for all sets A. (Hint: It
suffices to show that for every two elements a, b of A there is a
group G and a set-function f : A→ G such that f (a) 6= f (b). Why?
How do you construct f and G?) [§III.6.3]

� Solution Let a, b be two distinct elements of A. Take G as any
non-trivial group and define f : A→ G as the function which sends
every element of A to eG except for b. By the universal property of
free groups, there exists a (unique) homomorphism ϕ : F(A) → G
such that f = ϕ ◦ j. This condition implies that j(a) 6= j(b) since
f (a) 6= f (b). Therefore, we conclude that j is injective. �

Exercise 5.4 B In the ’concrete’ construction of free groups, one
can try to reduce words by performing cancellations in any order;
the process of ’elementary reductions’ used in the text (that is,
from left to right) is only one possibility. Prove that the result of
iterating cancellations on a word is independent of the order in
which the cancellations are performed. Deduce the associativity of
the product in F(A) from this. [§5.3]

� Solution T �

Exercise 5.5 Verify explicitly that H⊕A is a group.

� Solution Observe first H⊕A is not empty, since e : A→ H defined
by e(a) = eH for every a ∈ A is the set. For any α ∈ H⊕A, we can
define Eα′ = { a ∈ A | α′(a) 6= eH} and this set is finite. Hence, if
α′ : A → H and α′′ : A → H are in H⊕A, then Eα′+α′′ ⊂ Eα′ ∪ Eα′′ is a
finite set, and E−α′ = Eα′ is also finite. Since e is an identity for the
operation and the structure inherited from HA is associative, H⊕A is a
group. �
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Exercise 5.6 B Prove that the group F({x, y}) (visualized in Ex-
ample 5.3) is a coproduct Z ∗Z of Z by itself in the category Grp.
(Hint: With due care, the universal property for one turns into the
universal property for the other.) [§3.4, 3.7, 5.7]

� Solution Recall that Z satisfy the universal property for the free
group over {x} and over {y}. Let jx and jy be the inclusions of {x}
and {y} in Z, respectively, so that jx(x) = jy(y) = 1. Moreover, denote
ix and iy as the inclusions of {x} and {y} in {x, y}, respectively, and
j as the inclusion of {x, y} in F({x, y}). By the universal property of
free groups, there are unique homomorphisms i1, i2 : Z→ F({x, y})
such that i1 jx = jix and i2 jy = jiy. We claim that F({x, y}) with i1 and
i2 is a coproduct of Z by itself in Grp.

Let G be another group with homomorphisms ϕ1, ϕ2 : Z→ G. They
induce functions ϕ1 jx : {x} → G, ϕ2 jy : {y} → G and, since {x, y} is
a coproduct of {x} and {y} in Set, there exists a unique function ϕ :
{x, y} → G such that ϕ1 jx = ϕix and ϕ2 jy = ϕiy. Now, by the universal
property of free groups, there exists a unique homomorphism σ :
F({x, y})→ G such that ϕ = σj. We affirm that the following diagram
commutes:

Z

F({x, y}) G

Z .

i1

ϕ1

σ

i2

ϕ2

Indeed, we have that

ϕ1 jx = ϕix = (σj)ix = σ(jix) = σi1 jx

and, since Z satisfies the universal property of free groups, ϕ1 = σi1.
Similarly, we get that ϕ2 = σi2 and, thus, the diagram really commutes.
Now, we just need to show that σ is the only homomorphism that
makes this diagram commute. Suppose ρ : F({x, y})→ G is another
homomorphism that commutes the diagram. Note that

(ρj)(x) = (ρ(jix))(x)

= (ρ(i1 jx))(x)

= ((ρi1)(jx))(x)

= (ϕ1 jx)(x)

= (ϕix)(x)

= ϕ(x)

and, similarly, (ρj)(y) = ϕ(y). Therefore, ρj = ϕ and, by the unique-
ness of σ, we have that ρ = σ. We conclude that F({x, y}) is the desired
coproduct. �
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Exercise 5.7 B Extend the result of Exercise 5.6 to free groups
F({x1, . . . , xn}) and to free abelian groups Fab({x1, . . . , xn}). [§3.4,
§5.4]

� Solution We proceed in exactly the same way as in the preceding
exercise. Let jxk be the inclusions of {xk} in Z such that jxk(xk) = 1
for all k ∈ {1, . . . , n}. Also, we denote by ixk the inclusions of {xk} in
{x1, . . . , xn} and j the inclusion of {x1, . . . , xn} in F({x1, . . . , xn}). As
before, the universal property of free groups implies the existence of
unique morphisms ik : Z→ F({x1, . . . , xn}) such that

ik jxk = jixk

for all k. Exactly as before, the diagram

Z

Z

... F({x1, . . . , xn}) G

Z

Z

ϕ1

i1 ϕ2

i2
σ

ϕn−1

in−1

ϕn

in

commutes, which implies that F({x1, . . . , xn}) satisfies the universal
property for the coproduct Z∗n.

Surely, the same thing holds in Ab. �

Exercise 5.8 Still more generally, prove that F(A q B) = F(A) ∗
F(B) and that Fab(Aq B) = Fab(A)⊕ Fab(B) for all sets A, B. (That
is, the constructions F and Fab ’preserve coproducts’.)

� Solution Since F(A), F(B) ⊂ F(Aq B), let iF(A) : F(A)→ F(Aq B)
and iF(B) : F(B) → F(A q B) be the the natural injection. Then we
desire to prove (F(Aq B), iF(A), iF(B)) is an initial object in the category
defined in §I.5.5. First observe this triple is in this category, since iF(A)

and iF(B) are trivially homomorphisms. Further, let (jA, F(A)) and
(jB, F(B)) be the free products of A and B respectively. Now, Let
(Z, fA, fB) be an element in that category. Then fA and fB induces
set-functions ϕA : A → Z and ϕB : B → Z defined by ϕA = fA ◦ jA
and ϕB = fB ◦ jB. Since Aq B is the coproduct of A and B in Set, there
exists a unique function ϕAqB : Aq B→ Z such that the diagram

A

Aq B Z

B

iA

ϕA

ϕAqB

iB

ϕA
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commutes. Furthermore, if (jAqB, Aq B) is the free product of Aq B,
then the following diagram commutes

A F(A)

Aq B F(Aq B),

B F(B)

jA

iA

iF(A)

jAqB

jB

iB

iF(B)

and, by the universal property of free product, there exist a unique
morphism fAqB : F(Aq B)→ Z in the category F AqB such that

F(Aq B) Z.

Aq B

fAqB

jAqB ϕAqB

Therefore, using everything above,

fAqB ◦ iF(A) ◦ jA = fAqB ◦ jAqB ◦ iA

= ϕAqB ◦ iA

= ϕA

= fA ◦ jA.

By the universal property of the free product, this means fA =

fAqB ◦ iF(A). Analogously, fB = fAqB ◦ iF(B), which proves the existence
of a morphism such that the following diagram commutes

F(A)

F(Aq B) Z .

F(B)

iF(A)

fA

fAqB

iF(B)

fB

Moreover, any such morphism σ must be equal to fAqB. In fact,
σ and fAqB induces the same morphisms in A, B, F(A) and F(B),
therefore, using the uniqueness of the universal properties, we will
find the same function and we conclude σ = fAqB.

Since everything was done using universal properties, the result
follows mutatis mutandis for Fab. �

Exercise 5.9 Let G = Z⊕N. Prove that G× G ∼= G.

� Solution Recalling that the elements of G are functions from N to
Z, we define

ϕ : G× G −→ G

( f1, f2) 7−→ f
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where

f (n) =


f1

(n
2

)
, if n is even,

f2

(
n− 1

2

)
, if n is odd.

In other words, ϕ combines f1 and f2 into only one function f by
alternating between those two. For example, f (0) = f1(0), f (1) =

f2(0), f (2) = f1(1), f (3) = f2(1), and so on. Since f1(n) 6= 0 and
f2(m) 6= 0 for finitely many n, m ∈ N, we also have f (n) 6= 0 for
finitely many n ∈ N, so ϕ is well-defined. Also, note that ϕ is a
bijection because it has the inverse

ϕ−1 : G −→ G× G

f 7−→ ( f1, f2)

where f1(n) = f (2n) and f2(n) = f (2n + 1) for all n ∈ N. Finally, it
is easy to check that ϕ preserves operation, so it is an isomorphism
and G× G ∼= G.

We can also show this using the last exercise. Since there is a bijection
between N and NqN (for example, one can take an analogue of the
function above), we have that

G = Fab(N) ∼= Fab(NqN) ∼= Fab(N)⊕ Fab(N) = G⊕ G.

Since coproducts are the same as products in Ab, we conclude that
G ∼= G× G. �

Exercise 5.10

� Solution A �

6 subgroups

Exercise 6.1 ¬ (If you know about matrices.) The group of invert-
ible n× n matrices with entries in R is denoted GLn(R) (Example
1.5). Similarly, GLn(C) denotes the group of n× n invertible matri-
ces with complex entries. Consider the following sets of matrices:

• SLn(R) = {M ∈ GLn(R) | det(M) = 1};

• SLn(C) = {M ∈ GLn(C) | det(M) = 1};

• On(R) = {M ∈ GLn(R) | MMt = Mt M = In};

• SOn(R) = {M ∈ On(R) | det(M) = 1};

• U(n) = {M ∈ GLn(C) | MM† = M† M = In};

• SU(n) = {M ∈ U(n) | det(M) = 1}.
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Here In stands for the n× n identity matrix, Mt is the transpose of
M, M† is the conjugate transpose of M, and det(M) denotes the
determinant of M. Find all possible inclusions among these sets, and
prove that in every case the smaller set is a subgroup of the larger
one.

These sets of matrices have compelling geometric interpretations:
for example, SO3(R) is the group of ’rotations’ in R3. [8.8, 9.1,
III.1.4, VI.6.16]

� Solution In the following diagrams, the hooked arrows denotes the
natural injections, therefore A ↪→ B means A ⊆ B. The first diagram
contains only the real matrices

SLn(R)

SOn(R) GLn(R),

On(R)

the second diagram only complex matrices,

SLn(C)

SU(n) GLn(C),

U(n)

and the third diagram contains all of the matrices, using the fact that
R ⊆ C

SLn(R) SLn(C)

SOn(R) SU(n) GLn(R) GLn(C).

On(R) U(n)

Let’s prove that all of these sets are groups. Let K = R or C. Then if
A, B ∈ SLn(K), then det(A) = det(B) = 1 and det(AB−1) = det(A) ·
det(B)−1 = 1, therefore AB−1 ∈ SLn(K) and it is a subgroup of
GLn(K). Since the conjugate of a real number is itself, then Mt = M†

for any real matrix M. Let A, B ∈ On(R) or U(n), then B−1(B−1)† =

(B−1)†B−1 = In,

(AB−1)(AB−1)† = A(B−1(B−1)†)A†

= AIn A†

= AA†

= In
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and similarly for (AB−1)†(AB−1). Therefore On(R) and U(n) are sub-
groups of GLn(R) and GLn(C) respectively. Finally, since SOn(R) =

On(R) ∩ SLn(R) and SU(n) = U(n) ∩ SLn(C), the result follows from
Lemma 6.3. Clearly, these sets are not empty, since In belongs to all of
them. �

Exercise 6.2 ¬ Prove that the set of 2× 2 matrices(
a b

0 c

)

with a, b, d ∈ C and ad 6= 0 is a subgroup of GL2(C). More generally,
prove that the set of n× n complex matrices (aij)1≤i,j≤n with aij = 0
for i > j and a11 · · · ann 6= 0 is a subgroup of GLn(C). (These
matrices are called ’upper triangular’, for evident reasons.) [IV.1.20]

� Solution We’ll prove the more general statement. Let UTn(C) Although they are
always called upper
triangular, this
notation is not
canonical.

be
this set and let A and B be matrices of that form, then:

• AB ∈ UTn(C). Let AB = (cij)1≤i,j≤n, and i > j. By definition of
matrix multiplication,

cij =
n

∑
k=1

aikbkj.

If i > k, then aik = 0, and if k > j, then bkj = 0. Since there is no
i ≤ k ≤ j, for i > j, then cij = 0.

Similarly, for i = j,

cii =
∞

∑
k=1

aikbki.

If k 6= i, then either k > i or i > k, and in both cases aikbki = 0.
Therefore cii = aiibii 6= 0.

• B−1 ∈ UTn(C). Let B−1 = (b−1
ij )1≤i,j≤n. Since B−1B = In, then

n

∑
k=1

b−1
ik bkj = δij

The Kronecker
delta δij is a
function defined
by δij = 1 if i = j
and δij = 0
otherwise.if i 6= j (in particular, for i > j). Initially, fix j = 1. If i = 1, then

1 =
n

∑
k=1

b−1
1k bk1 = b−1

11 b11,

implying b−1
11 = 1

b11
6= 0. If i > 1, then

0 =
n

∑
k=1

b−1
ik bk1 = b−1

i1 b11,

implying b−1
i1 = 0.
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Now, fix j = 2. If i = 2, then

1 =
n

∑
k=1

b−1
2k bk2 = b−1

22 b22,

for, as we have proved, b21 = 0, which implies b−1 = 1
b22
6= 0,

and if i > 2, then

0 =
n

∑
k=1

b−1
ik bk2 = b−1

i2 b22,

where once again we used b21 = 0, implying b−1
i2 = 0.

Continuing in this way, we conclude that b−1
ij = 0 if i > j and

b−1
ii = 1

bii
6= 0.

Since In ∈ UTn(C), this set is nonempty and, thus, a group. �

Exercise 6.3 ¬ Prove that every matrix in SU(2) may be written in
the form (

a + bi c + di

−c + di a− bi

)
where a, b, c, d ∈ R and a2 + b2 + c2 + d2 = 1. (Thus, SU(2) may
be realized as a three-dimensional sphere embedded in R4; in
particular, it is simply connected.) [8.9, III.2.5]

� Solution Let M ∈ SU(2) and x, y, z, w ∈ C be such that

M =

(
x y

z w

)
.

Since det(M) = 1, we have that

M−1 =

(
w −y

−z x

)
,

but we also know that MM† = M† M = In, that is, M† = M−1. Thus,
w = x and z = −y. If a, b, c, d ∈ R are such that x = a + bi and
y = c + di,

M =

(
a + bi c + di

−c + di a− bi

)
and det(M) = 1 implies that xx− y(−y) = |x|2 + |y|2 = a2 + b2 + c2 +

d2 = 1, as desired. �

Remark. The group SU(2) is closely related to the quaternions,
discovered by the mathematician Willian Hamilton in 1843. To see
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this relation, it will come in handy to express quaternions as 2× 2
matrices. Let 1, i, j, k be the following matrices:

1 =

(
1 0

0 1

)
, i =

(
i 0

0 −i

)
,

j =

(
0 1

−1 0

)
, k =

(
0 i

i 0

)
.

The set H of quaternions are the matrices of the form

a1 + bi + cj + dk =

(
a + bi c + di

−c + di a− bi

)

where a, b, c, d ∈ R. Note that the following identities hold:

i2 = j2 = k2 = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

They imply that H is closed with respect to addition and multi-
plication of matrices. Moreover, given a quaternion X = a1 + bi +
cj + dk, we can define its conjugate by X = a1− bi− cj− dk. It
follows that XX = XX = (a2 + b2 + c2 + d2)1 so, if N(X) = a2 +

b2 + c2 + d2 6= 0, X is invertible and X−1 = X/N(X). The number
N(X) is called the norm of X. Since XY = Y ·X, it is easy to check
that the norm is multiplicative, that is, N(XY) = N(X)N(Y), for
all X, Y ∈H. Therefore, the set of quaternions of norm 1 form a
group under multiplication and it follows immediately from this
exercise that this group is in fact SU(2).

Quaternions will be introduced by Aluffi in the initial exercises
of chapter III and we will use them in Exercise 8.9.

Exercise 6.4 ¬ Let G be a group, and let g ∈ G. Verify that the
image of the exponential map εg : Z→ G is a cyclic group (in the
sense of Definition 4.7). [§6.3, §7.5]

� Solution If |g| = ∞, all the elements in {. . . , g−2, g−1, e, g, g2, . . . }
are distinct. In other words,

Z→ εg(Z)

n 7→ gn

is injective. Since it is clearly a surjective homomorphism, it follows
that G ∼= Z.
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Otherwise, let |g| = m. Similarly as before, this implies that all the
elements in {e, g, . . . , gm−1} are distinct. So,

Z/mZ→ εg(Z)

[n]m 7→ gn

is well-defined (since |g| = m) and injective. It is also a surjective
homomorphism, so it follows that G ∼= Z/mZ. We conclude that in
either case G is cyclic. �

Exercise 6.5 Let G be a commutative group, and let n > 0 be an
integer. Prove that { gn | g ∈ G } is a subgroup of G. Prove that this
is not necessarily the case if G is not commutative.

� Solution Let G be a commutative group and H = { gn | g ∈ G }
and observe that it is trivially non-empty, therefore we just have to
prove if a, b ∈ H then ab−1 ∈ H. In fact, a = gn and b = hn, therefore
ab−1 = gn(hn)−1 = gn(h−1)n = (gh−1)n is an element of H. On the
other hand, let G = S3 and let

x =

(
1 2 3

2 1 3

)
and y =

(
1 2 3

3 1 2

)
.

Then x2 = e, y3 = e and yx = xy2. Further, G = {e, x, y, y2, xy, xy2}.
But the set H = {g3 | g ∈ G} is not a group. In fact, e3 = e, x3 = x,
y3 = e, (y2)3 = e, (xy)3 = x(yx)yxy = x(xy2)yxy = x2y3xy = xy,
and, finally, (xy2)3 = x(y2x)y2xy2 = x(xy)y2xy2 = x2y3xy2 = xy2.
Therefore H = {e, x, xy, xy2}, which is not a subgroup of G. �

Exercise 6.6 Prove that the union of a family of subgroups of a
group G is not necessarily a subgroup of G. In fact:

• Let H, H′ be subgroups of a group G. Prove that H ∪ H′ is a
subgroup of G only if H ⊆ H′ or H′ ⊆ H.

• On the other hand, let H0 ⊆ H1 ⊆ H2 ⊆ · · · be subgroups of
a group G. Prove that

⋃
i≥0 Hi is a subgroup of G.

� Solution To see that the union of a family of subgroups of a group
G is not necessarily a subgroup of G, we will take G = Z/6Z and
the subgroups H = {[0]6, [3]6} and H′ = {[0]6, [2]6, [4]6}. Note that
[2]6, [3]6 ∈ H ∪ H′, but [2]6 + [3]6 = [5]6 6∈ H ∪ H′ and so H ∪ H′ is
not a subgroup of G. Furthermore:

• Assume that H∪H′ is a subgroup of G and suppose that H 6⊆ H′.
Thus, there exists h ∈ H such that h 6∈ H′. We claim that H′ ⊆ H.
Indeed, let h′ ∈ H′ and take g = hh′, which is in H ∪ H′ since it
is a subgroup of G. If g ∈ H′ we would have that h = gh′−1 ∈ H′

since H′ is a subgroup of G. It follows that g ∈ H and so
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h′ = h−1g ∈ H and H′ ⊆ H. Therefore, if H ∪ H′ is a subgroup
of G then H ⊆ H′ or H′ ⊆ H. Note that the converse is trivially
true.

• Since each subgroup is non-empty,
⋃

i≥0 Hi is also non-empty.
Now, if a, b ∈ ⋃

i≥0 Hi, there are n, m ∈ N such that a ∈ Hn

and b ∈ Hm. Assume without loss of generality that n ≤ m, so
Hn ⊆ Hm and both a and b are in Hm. Since its a subgroup of
G, ab−1 ∈ Hm and, therefore, ab−1 ∈ ⋃i≥0 Hi. We conclude that⋃

i≥0 Hi is a subgroup of G. �

Exercise 6.7

� Solution A �

Exercise 6.8 Prove that an abelian group G is finitely generated if
and only if there is a surjective homomorphism

Z⊕ · · · ⊕Z︸ ︷︷ ︸
n times

� G

for some n.

� Solution If there is such a surjective homomorphism ϕ, then G is
trivially abelian since gh = ϕ(z1 · z2) = ϕ(z2 · z2) = hg and it is gen-
erated by gi = ϕ(ei) for ei = (0, . . . , 1, . . . , 0) (where 1 appears in the
i-th position). Therefore, let g ∈ G, then there exists z = (a1, . . . , an)

such that g = ϕ(z) = ϕ(a1e1 + · · · + anen) = ϕ(e1)
a1 · · · ϕ(en)an =

ga1
1 · · · g

an
n . Reciprocally, suppose g1, . . . , gn generates G. Then the func-

tion ψ : Zn → G defined by ψ(a1, . . . , an) = ga1 · · · gan is a surjective
homomorphism. In fact, since g1, . . . , gn generates G, the function is
surjective. Moreover,

ψ(a1, . . . , an)ψ(b1, . . . , bn) = (ga1
1 · · · g

an
n )(gb1

1 · · · g
bn
n )

= ga1+b1 · · · gan+bn

= ψ(a1 + b1, . . . , an + bn)

and we’re done. �

Exercise 6.9 Prove that every finitely generated subgroup of Q is
cyclic. Prove that Q is not finitely generated.

� Solution Let G ⊆ Q be the subgroup generated by r1, r2, . . . , rn ∈ Q.
Let P be the product of the denominators of these generators in their
irreducible form. It follows that H = {P · g | g ∈ G} is a subset of
Z. Moreover, we claim that H a subgroup of Z. Firstly, note that it
is non-empty, since G 6= ∅. Now, if a, b ∈ H, there are g1, g2 ∈ G
such that a = P · g1 and b = P · g2. Thus, since g1 − g2 ∈ G, a− b =

P · g1 − P · g2 = P · (g1 − g2) ∈ H, and H is indeed a subgroup of
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Z. By Proposition 6.9, H = dZ for some non-negative integer d. We
conclude that G is generated by d

P and, by Exercise 6.4, G is cyclic.
To prove that Q is not finitely generated, it suffices to show that it

is not cyclic. If it were generated by some rational number r, which
must be non-zero, then r

2 would be an integer multiple of r, implying
that 1

2 ∈ Z, a contradiction. Therefore, Q is not cyclic. �

Exercise 6.10 ¬ The set of 2× 2 matrices with integer entries and
determinant 1 is denoted SL2(Z):

SL2(Z) =

{(
a b

c d

)
such that a, b, c, d ∈ Z, ad− bc = 1

}
.

Prove that SL2(Z) is generated by the matrices

s =

(
0 −1

1 0

)
and t =

(
1 1

0 1

)
.

(Hint: This is a little tricky. Let H be the subgroup generated by s

and t. Given a matrix m =

(
a b

c d

)
in SL2(Z), if suffices to show

that you can obtain the identity by multiplying m by suitably chosen

elements of H. Prove that

(
1 −q

0 1

)
and

(
1 0

−q 1

)
are in H, and

note that (
a b

c d

)(
1 −q

0 1

)
=

(
a b− qa

c d− qc

)
and (

a b

c d

)(
1 0

−q 1

)
=

(
a− qb b

c− qd d

)
.

Note that if c and d are both nonzero, one of these two operations
may be used to decease the absolute value of one of them. Argue
that suitable applications of these operations reduce to the case in
which c = 0 or d = 0. Prove directly that m ∈ H in that case.) [7.5]

� Solution Let Uq =

(
1 −q

0 1

)
and Lq =

(
1 0

−q 1

)
. Since, as can be

proven by induction, tq =

(
1 q

0 1

)
, Uq ∈ H for every integer q. More-

over, since s2 = −I2 and s4 = I2,We can define the
complex numbers

using 2× 2 real
matrices. In this

construction, s
represents the

imaginary number
i.

by a straight forward calculation, it
follows that sts−1 = L1. Since Lq · L1 = Lq+1 we conclude by induction
that Lq ∈ H for every positive q. Furthermore, since L−qLq = I2, then

Lq ∈ H for every integer q. Now, given any matrix A =

(
a b

c d

)
in
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SL2(Z), let initially A0 = A and suppose without loss of generality
c ≥ d. Then we proceed by the Euclidean Algorithm. Let q1 be the

quotient of the division of c by d. If A1 =

(
a1 b1

c1 d1

)
= Lq1 A0, then

c1 = r1 ≤ d = d1. Now we divide d1 by c1, and proceed in this way.
By Bézout’s Theorem, gcd(c, d) = 1, and by the Euclidean Algorithm,
there exists n such that the n-th rest is gcd(c, d) = 1 and the (n + 1)-th
remainder is 0, therefore the matrix An+1 is such that cn+1 = 0 and
dn+1 = 1, or the other way around. If cn+1 = 0, using the fact that
an+1dn+1 − bn+1cn+1 = 1, we conclude an+1 = 1 and

An+1 =

(
1 bn+1

0 1

)
∈ H.

If dn+1 = 0, using the same identity we conclude bn+1 = −1 and

An+1 =

(
an+1 −1

1 0

)
.

Since s3An+1 =

(
1 0

−an+1 1

)
∈ H, out initial matrix A belongs to H,

as we desired to prove. �

Exercise 6.11 Since direct sums are coproducts in Ab, the classifi-
cations theorem for abelian groups mentioned in the text says that
every finitely generated abelian group is a coproduct of cyclic groups
in Ab. The reader may be tempted to conjecture that every finitely
generated group is a coproduct in Grp. Show that this is not the case
by proving that S3 is not a coproduct of cyclic groups.

� Solution We emphasize that
Cj is the j-th
element of a family
of cyclic groups. It
is not Cj for some
integer j.

Suppose that S3 satisfies the universal property of a
coproduct of cyclic groups. That is, there exist morphisms ij from
some cyclic group (lets denote it by Cj) to S3. By the universal property,
there exists a unique morphism σ : S3 → Cj such that the diagram

S3

Cj Cj

σij

id
Cj

commutes. In other words, such that idCj = σij. The fact that idCj is
surjective then implies that so is σ. That is, |Cj| ≤ 6 for all j.

By Proposition 4.1, for all g ∈ S3, the order of σ(g) divides |g|. Since
S3 has elements of order 1, 2, and 3, the order of σ(g) can only be one
of those 3 numbers. As σ is surjective, it follows that Cj is either equal
to the trivial group, C2 or C3.
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Now, S3 having a C3 as a factor in the coproduct implies that there
is a injective morphism i and surjective morphism ϕ such that

C3
i→ S3

ϕ→ C3

is equal to the identity. But there is no surjective morphism S3 → C3.
In fact, recall that S3 = {e, x, y, xy, y2, xy2} is the group generated by
x, y such that x2 = e, y3 = e and yx = xy2. By Proposition 4.1, the
order of ϕ(x) divides 2. Since C3 has no element of order 2, ϕ(x) = 0.
Similarly, ϕ(xy) = ϕ(xy2) = 0. It follows that ϕ(y) = ϕ(x · xy) = 0
and thus ϕ is not surjective.

Lastly, lets suppose S3 is a coproduct of n copies of C2 and m copies
of the trivial group. (If n or m are infinite, the argument is analogous.)
Then, by the universal property of coproducts, the morphisms S3 →
S3 are in bijection with families of n morphisms C2 → S3 and m
morphisms {e} → S3. Since there are 4 possibilities for the former and
1 for the latter, we conclude that there are 4n · 1m morphisms from S3

to itself.
Since there are exactly 10 morphisms from S3 to itself, this shows

that our assumption was false and ends the solution. (The reader
can verify this by observing that if ϕ is a morphism from S3 to itself,
Proposition 4.1 implies that ϕ(x) can only be e, x, xy or xy2. Also, ϕ(y)
can only be e, y or y2. It suffices then to see which of those functions
are homomorphisms.) �

Remark. As we said in the remark after Exercise 3.7, the elements
of the free product G ∗ H are words of the form

g1h1g2h2 . . . gkhk.

It then follows that the coproduct of two non-trivial groups is
infinite. Hence the situation is as bad as it can possibly be: no
non-trivial finite group is the coproduct of cyclic groups.

Exercise 6.12 Let m, n be positive integers, and consider the sub-
group 〈m, n〉 of Z they generate. By Proposition 6.9,

〈m, n〉 = dZ

for some positive integer d. What is d, in relation to m, n?

Proposition 6.9 Let G ⊆ Z be a subgroup. Then G = dZ for some
d ≥ 0.

� Solution Let G = 〈m, n〉 = dZ. Since m, n ∈ G, d divides both of
them. On the other hand, since d ∈ G, there are a, b ∈ Z such that
d = am + bn. Thus, every common divisor of m and n must divide d
and so is less than or equal to d. We conclude that d = gcd(m, n). �



6 subgroups 75

Exercise 6.13

� Solution A �

Exercise 6.14 B If m is a positive integer, denote φ(m) the number
of positive integers r ≤ m that are relatively primes to m (that is, for
which the gcd of r and m is 1); this is called Euler’s φ- (or ’totient’)
function. For example, φ(12) = 4. In other words, φ(m) is the order
of the group (Z/mZ)∗; cf. Proposition 2.6.

Put together the following observations:

• φ(m) = the number of generators of Cm,

• every element of Cn generates a subgroup of Cn.

• the discussion following Proposition 6.11 (in particular, every
subgroup of Cn is isomorphic to Cm for some m | n),

to obtain a proof of the following formula

∑
m>0, m|n

φ(m) = n.

(For example, φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12) = 1 + 1 +
2 + 2 + 2 + 4 = 12.) [4.14, §6.4, 8.15, V.6.8, §VII.5.2]

� Solution As he says, after Proposition 6.11, there is a bijection
between the set of all subgroups of Z/nZ and the set of positive
divisors of n. Furthermore, observe that for each m | n, an element
a ∈ 〈[m]n〉 is a generator if and only if gcd(a, m) = 1, therefore there
are φ(m) generators. If we count the pairs (a, 〈[m]n〉) for which a
generates 〈[m]n〉, on the one hand for each a ∈ Cn, there exists one
and only one such subgroup; on the other for each positive m | n,
there exists φ(m) generators, from where we conclude

∑
m>0, m|n

φ(m) = n,

the desired formula. �

Exercise 6.15 B Prove that if a group homomorphism ϕ : G → G′

has a left-inverse, that is, a group homomorphism ψ : G′ → G such
that ψ ◦ ϕ = idG, then ϕ is a monomorphism. [§6.5, 6.16]

� Solution For all groups Z and all homomorphisms α′, α′′ from Z
to G,

ϕ ◦ α′ = ϕ ◦ α′′ =⇒ (ψ ◦ ϕ) ◦ α′′ = (ψ ◦ ϕ) ◦ α′′

=⇒ idG ◦ α′ = idG ◦ α′′

=⇒ α′ = α′′,

so ϕ is a monomorphism. �
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Exercise 6.16 B Counterpart to Exercise 6.15: the homomorphism
ϕ : Z/3Z→ S3 given by

ϕ([0]) =

(
1 2 3

1 2 3

)
, ϕ([1]) =

(
1 2 3

3 1 2

)
, ϕ([2]) =

(
1 2 3

2 3 1

)

is a monomorphism; show that it has no left-inverse in Grp. (Know-
ing about normal subgroups will make this problem particularly
easy.) [§6.5]

� Solution Lets suppose that there exists a morphism ψ : S3 →
Z/3Z such that ψ ◦ ϕ = idZ/3Z. Using the notation of §2.1, this
implies that

ψ(e) = [0], ψ(y) = [1], ψ(y2) = [2].

By Proposition 4.1, the order of ψ(x) has to divide 2, the order of
x. The same is valid for xy and xy2, the other elements of order 2.
Since Z/3Z has no elements of order 2, this implies that ψ(x) =

ψ(xy) = ψ(xy2) = [0]. However, ψ is not a homomorphism as ψ(y) =
ψ(x · xy) 6= ψ(x) + ψ(xy). �

Remark. Since ψ ◦ ϕ = idZ/3Z and identities are bijective, this
implies that ψ is surjective. But then ker ψ should be a normal
subgroup of S3 with 2 elements, which does not exist.

7 quotient groups

Exercise 7.1

� Solution A �

Exercise 7.2 Is the image of a group homomorphism necessarily a
normal subgroup of the target?

� Solution No. Consider, for example the function ϕ : C2 → S3

defined by φ(i) = xi. Its image is the set subgroup 〈x〉, which is not
normal, since yxy−1 = xy2y−1 /∈ 〈x〉.

Trivially, every
inclusion is an

homomorphism.
Since normal

groups are scarce,
this phenomenon

is quite rare.

�

Exercise 7.3 B Verify that the equivalent conditions for normality
given in §7.1 are indeed equivalent. [§7.1]

� Solution Let G be a group and N ⊆ G be a subgroup. We will
prove that the following conditions are equivalent:

(1) gng−1 ∈ N for all g ∈ G and n ∈ N;

(2) gNg−1 = N for all g ∈ G;
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(3) gNg−1 ⊆ N for all g ∈ G;

(4) gN = Ng for all g ∈ G;

(5) gN ⊆ Ng for all g ∈ G.

(1) =⇒ (2). If x ∈ gNg−1, there exists n ∈ N such that x = gng−1.
By condition (1), x ∈ N, so gNg−1 ⊆ N. On the other hand, if y ∈ N,
condition (1) implies that there exists n′ ∈ N such that g−1y(g−1)−1 =

g−1yg = n′, that is, y = gn′g−1 ∈ gNg−1 and the other inclusion is
also true. Thus, gNg−1 = N for all g ∈ G.

(2) =⇒ (3). Trivial.
(3) =⇒ (4). If x ∈ gN, there exists n ∈ N such that x = gn. By

condition (3), gng−1 = n′ for some n′ ∈ N, so x = gn = n′g ∈ Ng and
gN ⊆ Ng. On the other hand, if y ∈ Ng, there exists m ∈ N such that
y = mg. Condition (3) implies that g−1m(g−1)−1 = g−1mg = m′ for
some m′ ∈ N, thus, y = mg = gm′ ∈ gN and Ng ⊆ gN. Therefore,
gN = Ng for all g ∈ G.

(4) =⇒ (5). Trivial.
(5) =⇒ (1). If g ∈ G and n ∈ N, condition (5) implies that there

exists n′ ∈ N such that gn = n′g. Thus, gng−1 = n′ ∈ N. �

Exercise 7.4 Prove that the relation defined in Exercise 5.10 on
a free abelian group F = Fab(A) is compatible with the group
structure. Determine the quotient F/ ∼ as a better known group.

� Solution Since F is abelian, we only have to verify that f ∼ f ′

implies f + h ∼ f ′ + h for all h ∈ F. This follows immediately from
the fact that

( f + h)− ( f ′ + h) = f − f ′.

Now, by Proposition 5.6,

F
∼ =

F
2F
∼=

Z⊕A

2Z⊕A ,

where 2F := {2 f | f ∈ F} and similarly for 2Z⊕A. Finally, I affirm that

Z⊕A

2Z⊕A
∼=
(

Z

2Z

)⊕A

.

This result simply
says that if
ϕ : G → G′ is a
surjective group
homomorphism,
then
G′ ∼= G/ ker ϕ.

For this, we will need Corollary 8.2, which is famously known as the
first isomorphism theorem. Let ϕ : Z⊕A → (Z/2Z)⊕A be such that

ϕ( f )(a) = f (a) mod 2

for all a ∈ A and f ∈ Z⊕A. Clearly ϕ is a surjective group homomor-
phism with 2Z⊕A as kernel. The result follows. �
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Exercise 7.5 ¬ Define an equivalence relation ∼ on SL2(Z) by
letting A ∼ A′ ⇐⇒ A′ = ±A. Prove that ∼ is compatible with the
group structure. The quotient SL2(Z)/∼ is denoted by PSL2(Z)

and is called the modular group; it would be a serious contender in
a contest for ’the most important group in mathematics’, due to its
role in algebraic geometry and number theory. Prove that PSL2(Z)

is generated by (the cosets of the) matrices(
0 −1

1 1

)
and

(
1 −1

1 0

)
.

(You will not need to work very hard, if you use the result of
Exercise 6.10) Note that the first has order 2 in PSL2(Z), the second
has order 3, and their product has infinite order. [9.14]

� Solution A �

Exercise 7.6 Let G be a group, and let n be a positive integer.
Consider the relation

a ∼ b ⇐⇒ (∃g ∈ G)ab−1 = gn.

• Show that in general ∼ is not an equivalence relation.

• Prove that ∼ is an equivalence relation if G is commutative,
and determine the corresponding subgroup of G.

� Solution

• We will take the same example as in Exercise 6.5. We know that
S3 = {e, x, y, y2, xy, xy2} where

x =

(
1 2 3

2 1 3

)
and y =

(
1 2 3

3 1 2

)
.

If we fix n = 3, as in Exercise 6.5, we have that H = {g3 | g ∈
G} = {e, x, xy, xy2}. Note that x ∼ y2 and y2 ∼ xy since
x(y2)−1 = xy ∈ H and y2(xy)−1 = y2xy = y(yx)y = y(xy2)y =

yx = xy2 ∈ H, but x 6∼ xy because x(xy)−1 = xxy = y 6∈ H.
Therefore, ∼ is not transitive and is not an equivalence relation.

• Suppose G is abelian. This relation is reflexive since aa−1 =

eG = en
G for all a ∈ G. It is also symmetric: if a ∼ b, there exists

g ∈ G such that ab−1 = gn, thus, ba−1 = (ab−1)−1 = (g−1)n

and b ∼ a. Finally, if a ∼ b and b ∼ c, there are g, h ∈ G
such that ab−1 = gn and bc−1 = hn, which implies that ac−1 =

(ab−1)(bc−1) = gnhn = (gh)n and so a ∼ c, proving that ∼ is
transitive. Note that transitivity follows from the commutativity
of G. It is clear that the corresponding subgroup of G is the one
presented in Exercise 6.5: H = {gn | g ∈ G}. �
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Exercise 7.7 Let G be a group, n a positive integer, and let H ⊆ G
be a subgroup generated by all elements of order n in G. Prove that
H is normal.

� Solution Given any element h ∈ H, there exist a1, . . . , ar such that
h = a1 · · · ar and |ai| = n. Using the notation from Exercise 4.8, for
every g ∈ G,

g · h · g−1 = γg(a1 · · · ar)

= γg(a1) · · · γg(ar).

Since |γg(ai)| = |ai| = n, then ghg−1 belongs to H. �

Exercise 7.8 Prove Proposition 7.6. [§7.3]

See the next
exercise to
remember what is
(†), if needed.

Proposition 7.6 If H is any subgroup of a group G, the relation ∼L

defined by
(∀a, b ∈ G) : a ∼L b ⇐⇒ a−1b ∈ H

is an equivalence relation satisfying (†).

� Solution Let’s prove ∼L is an equivalence relation. Since H is a
subgroup of G, a−1 = eG ∈ H for all a ∈ G and ∼L is reflexive. If
a ∼L b, then a−1 ∈ H and b−1 = (a−1b)−1 ∈ H, thus b ∼L a and
the relation is also symmetric. Finally, if a ∼L b and b ∼L c, then
a−1b, b−1c ∈ H and a−1c = (a−1b)(b−1c) ∈ H, so a ∼L c and ∼L is
transitive. To prove that ∼L satisfies (†), note that

a ∼L b =⇒ a−1b = (ga)−1(gb) ∈ H =⇒ ga ∼L gb

for all g ∈ G. �

Exercise 7.9 State and prove the ’mirror’ statements of Proposi-
tions 7.4 and 7.6, leading to the description of relations satisfying
(††).

Proposition 7.4 Let ∼ be an equivalence relation on a group G,
satisfying (†). Then

• the equivalence class of eG is a subgroup H of G; and

• a ∼ b ⇐⇒ a−1b ∈ H ⇐⇒ aH = bH.

Proposition 7.6 If H is any subgroup of a group G, the relation ∼L

defined by
(∀a, b ∈ G) : a ∼L b ⇐⇒ a−1b ∈ H

is an equivalence relation satisfying (†).
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Let G be a group and ∼ an equivalence relation on G. Then, the
conditions (†) and (††) are given by

(∀g ∈ G) : a ∼ b =⇒ ga ∼ gb (†)

(∀g ∈ G) : a ∼ b =⇒ ag ∼ bg (††)

� Solution The ’mirror’ statement of Proposition 7.4 is:

Let ∼ be an equivalence relation on a group G, satisfying (††).
Then

• the equivalence class of eG is a subgroup H of G; and

• a ∼ b ⇐⇒ ab−1 ∈ H ⇐⇒ Ha = Hb.

The proof is very similar to the one given for Proposition 7.4.
Let H ⊆ G be the equivalence class of the identity; H 6= ∅ as

eG ∈ H. For a, b ∈ H, we have eG ∼ b and hence b−1 ∼ eG (applying
(††), multiplying on the right by b−1). We also have that ab−1 ∼ b−1

(by (††) again, multiplying a ∼ eG on the right by b−1) and hence

ab−1 ∼ b−1 ∼ eG

by the transitivity of ∼. This shows that ab−1 ∈ H for all a, b ∈ H,
proving that H is a subgroup (by Proposition 6.2).

Next, assume a, b ∈ G and a ∼ b. Multiplying on the right by b−1,
(††) implies ab−1 ∼ eG, that is, ab−1 ∈ H. Since H is closed under the
operation, this implies Hab−1 ⊆ H, hence Ha ⊆ Hb; as ∼ is symmetric,
the same reasoning gives Hb ⊆ Ha; and hence Ha = Hb. Thus, we
have proved

a ∼ b =⇒ ab−1 ∈ H =⇒ Ha = Hb.

Finally, assume Ha = Hb. Then a = aeG ∈ Hb, and hence ab−1 ∈ H.
By definition of H, this means ab−1 ∼ eG. Multiplying on the right by
b shows (by (††) again) that a ∼ b, completing the proof.

The ’mirror’ statement of Proposition 7.6 is:

If H is any subgroup of a group G, the relation ∼R defined by

(∀a, b ∈ G) : a ∼R b ⇐⇒ ab−1 ∈ H

is an equivalence relation satisfying (††).

The proof is analogous to the one given in Exercise 7.8. �

Exercise 7.10 ¬ Let G be a group, and H ⊆ G a subgroup. With
notation as in Exercise 6.7, show that H is normal in G if and only
if ∀γ ∈ Inn(G), γ(H) ⊆ H.
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Conclude that if H is normal in G, then there is an interesting
homomorphism Inn(G)→ Aut(H). [8.25]

� Solution The first part is just the third condition for normality
proved in Exercise 7.3.

If H is normal in G, this implies that γ|H is an automorphism
of H for all γ ∈ Inn(G). In other words, γ 7→ γ|H is the desired
homomorphism from Inn(G) to Aut(G). �

Exercise 7.11 B Let G be a group, and let [G, G] be the subgroup
of G generated by all elements of the form aba−1b−1. (This is the
commutator subgroup G; we will return to it in §IV.3.3.) Prove
that [G, G] is normal in G. (Hint: With notation as in Exercise 4.8,
g · aba−1b−1 · g−1 = γg(aba−1b−1).) Prove that G/[G, G] is commu-
tative. [7.12, §IV.3.3]

� Solution With the notation of Exercise 4.8, observe that, given
aba−1b−1 ∈ [G, G], and g ∈ G, then

g · aba−1b−1 · g−1 = γg(aba−1b−1)

= γg(a)γg(b)γg(a)−1γg(b)−1 ∈ [G, G].

Furthermore, since a−1b−1ab ∈ [G, G], then [ba] = [ba(a−1b−1ab)] =
[ab] for any a, b ∈ G, and G/[G, G] is commutative. �

Exercise 7.12 B Let F = F(A) be a free group, and let f : A→ G
be a set function from the set A to a commutative group G. Prove
that f induces a unique homomorphism F/[F, F]→ G, where [F, F]
is the commutator subgroup of F defined in Exercise 7.11. (Use
Theorem 7.12.) Conclude that F/[F, F] ∼= Fab(A). (Use Proposition
I.5.4.) [§6.4, 7.13, VI.1.20]

Theorem 7.12 Let H be a normal subgroup of a group G. Then for
every group homomorphism ϕ : G → G′ such that H ⊆ ker ϕ there
exists a unique group homomorphism ϕ̃ : G/H → G′ so that the
diagram

G G′

G/H
π

ϕ

∃!ϕ̃

commutes.

Proposition 7.7 Let C be a category.

• If I1, I2 are both initial objects in C, then I1
∼= I2.

• If F1, F2 are both final objects in C, then F1
∼= F2.
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Further, these isomorphisms are uniquely determined.

� Solution Let j : A→ F be the inclusion of A in F. By the universal
property of free groups, there exists a unique homomorphism ϕ : F →
G such that f = ϕj. Note that, since G is abelian,

ϕ(aba−1b−1) = ϕ(a)ϕ(b)ϕ(a)−1ϕ(b)−1

= (ϕ(a)ϕ(a)−1)(ϕ(b)ϕ(b)−1) = eG

for all a, b ∈ F, so [F, F] ⊆ kerϕ. By Exercise 7.11, [F, F] is a normal
subgroup of F, so Theorem 7.12 implies that there exists a unique
homomorphism ϕ̃ : F/[F, F] → G such that ϕ = ϕ̃π, where π : F →
F/[F, F] is the canonical projection to the quotient. Let jab = π j. It
follows that f = ϕj = (ϕ̃π)j = ϕ̃(π j) = ϕ̃jab, so ϕ̃ commutes the
diagram

F/[F, F] G

A .

ϕ̃

jab
f

Moreover, it is the unique homomorphism that does this. Indeed, if
σ : F/[F, F] → G is such that f = σjab = (σπ)j, the uniqueness of
ϕ and ϕ̃ implies that ϕ = σπ and, thus, σ = ϕ̃, as desired. Again
by Exercise 7.11, F/[F, F] is abelian, so we conclude by Proposition
I.5.4 that F/[F, F] ∼= Fab(A) because both of them satisfy the universal
property for free abelian groups. �

Exercise 7.13 ¬ Let A, B be sets and F(A), F(B) the corresponding
free groups. Assume that F(A) ∼= F(B). If A is finite, prove that
B is also and A ∼= B. (Use Exercise 7.12 to upgrade Exercise 5.10.)
[5.10, VI.1.20]

� Solution Since F(A) ∼= F(B), by Exercise 7.12 we have that

Fab(A) ∼=
F(A)

[F(A), F(B)]
∼=

F(B)
[F(B), F(B)]

∼= Fab(B).

Then Exercise 5.10 implies the result. �

Exercise 7.14 Let G be a group. Prove that Inn(G) is a normal
subgroup of Aut(G).

� Solution A �

8 canonical decomposition and lagrange’s theorem
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Exercise 8.1 If a group H may be realized as a subgroup of two
groups G1 and G2 and if

G1

H
∼=

G2

H
,

does it follows that G1
∼= G2? Give a proof or a counterexample.

� Solution Observe that C3 may be realized as a subgroup of S3

(as the group 〈y〉) and as a subgroup of C6 (as the group 〈[2]6〉).
Since x2 = e and yx = xy2, this subgroup is normal, and since C6 is
commutative, C3 is normal in C6. Every pair of subgroups with two
elements are isomorphics, therefore

S3

C3

∼=
C6

C3
.

However, C6 and S3 are not isomorphic. �

Exercise 8.2 ¬ Extend Example 8.6 as follows. Suppose G is a
group and H ⊆ G is a subgroup of index 2, that is, such that there are
precisely two (say, left-) cosets of H in G. Prove that H is normal in
G. [9.11, IV.1.16]

� Solution Let g ∈ G. We want to prove that gH = Hg. If g ∈ H, this
is obvious so we suppose g /∈ H. Since there are exactly two left-cosets
of H in G, they ought to be H and gH. But the cosets partition G, so
we have that gH = G \ H. Now, we affirm that there are also exactly 2
right-cosets. This then implies that they are H and Hg = G \ H. The
result follows.

We prove something a little bit stronger: if G is any group and H is
a subgroup of G, then H has the same number of left- and right-cosets.
In fact, the function

ϕ : gH 7→ Hg−1

is well-defined and a bijection from G/ ∼L to G/ ∼R. If g1H = g2H,
then g−1

1 g2 ∈ H and so Hg−1
1 = Hg−1

2 , which means that ϕ is well-
defined. It is clearly surjective and it is injective since Hg−1

1 = Hg−1
2

implies g−1
1 g2 ∈ H and then H = g−1

1 g2H. Multiplying by g1 on both
sides we conclude that ϕ is injective. �

Exercise 8.3 Prove that every finite group is finitely presented.

� Solution Let G be a finite group. Considering A = G just as a
set, there exists a (unique) homomorphism ϕ : F(A)→ G that takes
each letter to its correspondent element of G. Since ϕ is surjective,
Collorary 8.2 implies that G ∼= F(A)/ ker ϕ. We just need to show
that there exist a finite set of words in ker ϕ such that ker ϕ is the
smallest normal subgroup of F(A) containing it. To do so, we will
find the multiplicative table of G inside ker ϕ. Take R as the set all
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words of the form abc−1, where a and b are in A or A′ and c ∈ A is
the letter corresponding to ϕ(ab). Note that, if we consider a and b as
elements of G, c is their product. For example, if we take C2 and label
its elements by C2 = {e, f }, then we have

R = {eee−1, e f f−1, f e f−1, f f e−1,

e−1ee−1, e−1 f f−1, f−1e f−1, f−1 f e−1,

ee−1e−1, e f−1 f−1, f e−1 f−1, f f−1e−1,

e−1e−1e−1, e−1 f−1 f−1, f−1e−1 f−1, f−1 f−1e−1}.

After reduction, there will be some repeated words, but we know that
|R| ≤ |A∪ A′|2 = 4|G|2, so R is finite. By construction, R ⊆ ker ϕ. We
claim that ker ϕ = 〈R〉. The inclusion 〈R〉 ⊆ ker ϕ is straightforward.
For the other one, take a word r ∈ ker ϕ. We will prove that r ∈ 〈R〉
by induction on the length of r. If r is the empty word, it is immediate.
If r consists of only one letter, we must have r = e = eee−1 or r =

e−1 = ee−1e−1 and so r ∈ 〈R〉. Now, suppose that every word with
n letters or less that is in ker ϕ is also in 〈R〉, for some n ≥ 1, and
assume that r has n + 1 letters. If r = g1,g2 · · · gn+1 and the product
of the corresponding elements of g1 and g2 in G corresponds to the
letter g, we have that

r = g1g2g3 · · · gn+1 = (g1g2g−1) · (gg3 · · · gn+1).

Reduce gg3 · · · gn+1 to the word s, which has n or less letters. Since
r, g1g2g−1 ∈ ker ϕ, s ∈ ker ϕ and, by the inductive hypothesis, s ∈ 〈R〉.
Finally, since g1g2g−1 ∈ 〈R〉, we conclude that r ∈ 〈R〉, as desired.
Therefore, ker ϕ = 〈R〉 and it follows that G is finitely presented since
it admits the presentation (A|R) where both A and R are finite. �

Exercise 8.4

� Solution A �

Exercise 8.5 Let a, b be distinct elements of order 2 in a group G,
and assume that ab has finite order n ≥ 3. Prove that the subgroup
generated by a and b in G is isomorphic to the dihedral group D2n.
(Use the previous exercise.)

� Solution Let H be the subgroup generated by a and b, and
ϕ : {a, b} → G be defined by f (a) = a and f (b) = b. By the uni-
versal property of free groups, there exists a unique homomorphism
ϕ such that the diagram

F(a, b) G

{a, b}

ϕ

j
f
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commutes. Moreover, since n > 2, a and b do not commute, and since
a2 = b2 = (ab)n = e, the kernel of this homomorphism is the smallest
normal subgroup containing a2, b2 and (ab)n, from where we conclude,
using Corollary 8.2, H ∼= (a, b | a2, b2, (ab)n) ∼= D2n. �

Exercise 8.6 ¬ Let G be a group, and let A be a set of generators for
G; assume A is finite. The corresponding Cayley graph is a directed
graph whose set of vertices is in one-to-one correspondence with
G, and two vertices g1, g2 are connected by an edge if g2 = g1a for
an a ∈ A; this edge may be labeled a and oriented from g1 to g2.
For example, the graph drawn in Example 5.3 for the free group
F({x, y}) on two generators x, y is the corresponding Cayley graph
(with the convention that horizontal edges are labeled x and point
to the right and vertical edges are labeled y and point up).

Prove that if a Cayley graph of a group is a tree, then the group
is free. Conversely, prove that free groups admit Cayley graphs that
are trees. [§5.3, 9.15]

� Solution A tree is a graph in which any two vertices are connected
by exactly one path. In this case, there cannot be repeated vertices on
the path and, therefore, there are not repeated edges either. With this
definition, let’s prove each implication separately:

Other definition
states that a tree is
a connected acyclic
graph, that is,
there is a path
between any two
vertices and there
is no cycles (loops).
Note that these
two definitions are
equivalent.

( =⇒ ) Let G be a group with a set of generators A and whose
Cayley graph is a tree. We claim that G ∼= F(A). Note that each path
in this graph induces a reduced word in F(A) corresponding to the
juxtaposition of the labels of the edges (or the inverse of the label, if
the edge is traversed in the opposite orientation). Conversely, each
reduced word also induces a path in the graph as long as we fix a
starting point. Thus, define ϕ : G → F(A) by letting ϕ(g) be the word
induced by the path from eG to g, for all g ∈ G. Since the graph is
a tree, ϕ is well-defined. This function is a bijection, since it has the
inverse ψ : F(A) → G where ψ(r) is the end of the path induced by
r starting from eG. We just need to prove that ϕ preserves operation.
Let a, b ∈ G be arbitrary. By the definition of the Cayley graph, if we
traverse the path induced by ϕ(b) but starting from a, we end at ab.
Thus, concatenating the paths induced by ϕ(a) and ϕ(b) (but starting
from a), we get a walk (as called in graph theory) from eG to ab that
may not be a path, but it can be reduced to one as follows. Let r be the
first repeated edge on the walk. It exists because otherwise the graph
would contain a cycle. Furthermore, since the graph is a tree, it must
repeat in the reverse orientation just after it appears for the first time.
We may remove these edges and the correspondent vertex from the
walk. After repeating this process sometimes, we will end with a path
from eG to ab, that corresponds to the word ϕ(ab). But this matches
exactly to how to reduce the word ϕ(a)ϕ(b), as defined in Section 5.
Therefore, it follows that ϕ(ab) = ϕ(a)ϕ(b). We conclude that ϕ is an
isomorphism and, thus, G is a free group.
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(⇐= ) Let G = F(A) be a free group, where A is a set. To construct
the Cayley graph of G, we will use the corresponding letters for A
in F(A), which we may also denote by A for simplicity. This is the
generalization of the graph presented in Example 5.3. If we label the
edges as in the example, note that going through an edge labeled x
corresponds to attach this letter at the end of the word, and going
on the other direction corresponds to attach x−1. Since every reduced
word has a unique representation when written with letters of A and
A′, moving through an edge only attaches a new letter or removes the
final one. Now, take two distinct words r, s ∈ F(A) and let’s prove that
there is only one path between them on the graph. Let t be the largest
word in common between r and s, starting from the first letter (t can
be the empty word). To get from r to s without repeating vertices on
the graph, we must remove the final letters of r one by one until we get
to t. There is only one way to do that: multiply by the inverse of each
final letter. If we did something else, the word would increase and we
would eventually have to come back to a previous word, which is not
allowed. After getting to t, we must attach the remaining letters of s
one by one. Again, there is only one way to do that without repeating
vertices. This process shows that there exists a unique path between
r and s on the graph and, therefore, we conclude that this graph is
indeed a tree.

If we fix the empty
word as the

starting point of
the tree, t is called
the lowest common
ancestor of r and s.

The path described
here corresponds

to come back from
r to t and then go

to s.
�

Here we present the Cayley graphs of some groups:

• Cn with set of generators A = {x}, where |x| = n.

e

x

x2 x3

xn−1

This is a cycle of length n.

• D2n with set of generators A = {x, y}, where x2 = e, yn = e and
yx = xy−1.

e
y

y2 y3

yn−1

x

xyn−1

xyn−2 xyn−3

xy
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The edges at the inner and outer cycles represent multiplica-
tion by y, while the edges connecting these cycles represent
multiplication by x.

• Z with set of generators A = {1}.

−2 −1 0 1 2

This is an infinite path. Note that it is a tree and that Z ∼= F({1}).

• Z×Z with set of generators A = {(1, 0), (0, 1)}.

(−1, 1) (0, 1) (1, 1)

(−1, 0) (0, 0) (1, 0)

(−1,−1) (0,−1) (1,−1)

This is an infinite grid. Horizontal edges represent addition by
(1, 0) and vertical edges represent addition by (0, 1).

• If G is a finite group and we take A = G as the set of generators,
the correspondent Cayley graph is the complete graph on |G|
vertices.

Exercise 8.7 B Let (A|R), resp., (A′|R ′), be a presentation for a
group G, resp., G′ (cf. §8.2); we may assume that A, A′ are disjoint.
Prove that the group G ∗ G′ presented by

(A ∪ A′|R ∪R ′)

satisfies the universal property for the coproduct of G and G′ in Grp.
(Use the universal properties of both free groups and quotients to
construct natural homomorphisms G → G ∗G′, G′ → G ∗G′.) [§3.4,
§8.2, 9.14]

� Solution By Exercise 5.8, F(A ∪ A′) is the coproduct F(A) ∗ F(A′)
in Grp. Thus, there exist natural morphisms

i : F(A)→ F(A ∪ A′) and i′ : F(A′)→ F(A ∪ A′).

Also, composing with the projection π∗ : F(A ∪ A′)→ G ∗ G′ we get
morphisms

π∗i : F(A)→ G ∗ G′ and π∗i′ : F(A′)→ G ∗ G′.
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As Aluffi does in
§8.2, we denote by

R the smallest
normal subgroup

of F(A) containing
R and similarly

for R′.

Now, since R ⊆ ker π∗i and R′ ⊆ ker π∗i′, the universal property of
quotients gives us morphisms

π̃∗i : G → G ∗ G′ and π̃∗i′ : G′ → G ∗ G′

such that π∗i = π̃∗iπ and π∗i′ = π̃∗i′π′, where π : F(A) → G and
π′ : F(A′)→ G′ are the natural projections.

We ought to show that these morphisms work as the natural injec-
tions of the coproduct G ∗ G′. In other words, we have to show that if
H is any group and we have morphisms

G

H

G′

f

f ′

then there exists a unique morphism σ : G ∗ G′ → H such that the
diagram

G

G ∗ G′ H

G′

π̃∗i

f

σ

π̃∗i′

f ′

commutes. By composing with the projections π and π′, we get mor-
phisms

π f : F(A)→ H and π′ f ′ : F(A′)→ G′.

Thus, by the universal property of coproducts, we get a unique mor-
phism

σ∗ : F(A ∪ A′)→ H

such that σ∗i = f π and σ∗i′ = f ′π′. Similarly as before, we have that
R ∪ R′ ⊆ ker σ∗ and then the universal property of quotients induces
a unique morphism

σ : G ∗ G′ → H

such that σ∗ = σπ∗. Utilising all the commuting diagrams we have, it
follows that

σπ̃∗iπ = f π and σπ̃∗i′π′ = f ′π′.

Since the projections to the quotients are epimorphisms, the result
follows. �

Exercise 8.8 ¬ (If you know about matrices (cf. Exercise 6.1).)
Prove that SLn(R) is a normal subgroup of GLn(R), and ’compute’
GLn(R)/ SLn(R) as a well-known group. [VI.3.3]
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� Solution A �

Exercise 8.9 ¬ (Ditto.) Prove that SO3(R) ∼= SU(2)/{±I2}, where
I2 is the identity matrix. (Hint: It so happens that every matrix
SO3(R) can be written in the forma2 + b2 − c2 − d2 2(bc− ad) 2(ac + bd)

2(ad + bc) a2 − b2 + c2 − d2 2(cd− ab)

2(bd− ac) 2(ab + cd) a2 − b2 − c2 + d2


where a, b, c, d ∈ R and a2 + b2 + c2 + d2 = 1. Proving this fact is
not hard, but at this stage you will probably find it computation-
ally demanding. Feel free to assume this, and use Exercise 6.3 to
construct a surjective homomorphism SU(2)→ SO3(R); compute
the kernel of this homomorphism.)

If you know a little topology, you can now conclude that the
fundamental group of SO3(R) is C2. [9.1, VI.1.3]

� Solution To simplify the computation a little bit, we will use the
quaternions, which were introduced in the Remark after Exercise 6.3.
By this exercise, we know that the matrices of SU(2) correspond to
the quaternions of norm 1 (unit quaternions). We can also naturally
identify the vectors of R3 with the so called pure quaternions, that is,
quaternions with real part a = 0. A famous result is that every rotation
in the 3-dimensional space is of the form

X 7−→ ZXZ−1,

for some unit quaternion Z and for all pure quaternions X. Thus, we
can define the surjective function ϕ : SU(2)→ SO3(R) that takes the
unit quaternion Z and sends it to the matrix MZ corresponding to the
rotation given above. Note that, given two unit quaternions Y, Z, we
have that MYZ = MY MZ. Indeed, this product of matrices corresponds
to the composition of the rotations, so the resulting rotation is

X 7−→ ZXZ−1 7−→ Y(ZXZ−1)Y−1 = (YZ)X(YZ)−1,

which corresponds to MYZ, as desired. Therefore, ϕ is a surjective
homomorphism.

In matrix form, let’s show that ϕ sends(
a + bi c + di

−c + di a− bi

)
to a2 + b2 − c2 − d2 2(bc− ad) 2(ac + bd)

2(ad + bc) a2 − b2 + c2 − d2 2(cd− ab)

2(bd− ac) 2(ab + cd) a2 − b2 − c2 + d2


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for all a, b, c, d ∈ R such that a2 + b2 + c2 + d2 = 1. Let Z = a1 + bi +
cj + dk be a unit quaternion. If X = a′1 + b′i + c′j + d′k, it follows
that the coordinates of ZX and XZ−1 = XZ are given by

a −b −c −d

b a −d c

c d a −b

d −c b a




a′

b′

c′

d′

 and


a b c d

−b a −d c

−c d a −b

−d −c b a




a′

b′

c′

d′

 ,

respectively. Thus, the matrix that represents the map X 7→ ZXZ−1 is
given by the product of these two 4× 4 matrices and so it is:

N(Z) 0 0 0

0 a2 + b2 − c2 − d2 2(bc− ad) 2(ac + bd)

0 2(ad + bc) a2 − b2 + c2 − d2 2(cd− ab)

0 2(bd− ac) 2(ab + cd) a2 − b2 − c2 + d2

 .

Since we are dealing only with pure quaternions, we conclude that

MZ =

a2 + b2 − c2 − d2 2(bc− ad) 2(ac + bd)

2(ad + bc) a2 − b2 + c2 − d2 2(cd− ab)

2(bd− ac) 2(ab + cd) a2 − b2 − c2 + d2

 ,

as desired.
Finally, let’s show that SO3(R) ∼= SU(2)/{±I2}. To do so, we will

compute ker ϕ. Let a, b, c, d ∈ R be such that a2 + b2 + c2 + d2 = 1 and
the corresponding matrix MZ equals to the identity. This implies that

a2 + b2 − c2 − d2 = a2 − b2 + c2 − d2 = a2 − b2 − c2 + d2 = 1

and, since a2 + b2 + c2 + d2 = 1,

c2 + d2 = b2 + d2 = b2 + c2 = 0,

so b = c = d = 0 and a = ±1. It follows that, if M ∈ ker ϕ, then
M = ±I2. Since I2 and −I2 are clearly in this kernel, we have that
ker ϕ = {±I2}. Since ϕ is surjective, we conclude from Corollary 8.2
that SO3(R) ∼= SU(2)/{±I2}.

To find ker ϕ, we
could have found
who are the unit

quaternions in
Z(H), the center

of H. Since
Z(H) = R, they

are ±1, which
correspond to ±I2

in SU(2). �
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Exercise 8.10 View Z×Z as a subgroup of R×R:

Describe the quotient

R×R

Z×Z

in terms analogous to those used in Example 8.7. (Can you ’draw a
picture’ of this group? Cf. Exercise I.1.6.)

� Solution Since S1 has a group structure, one can naturally give
S1 × S1 a group structure. Each one represents a rotation in one plane.
If we consider the transformation which maps (r, s) to the rotation by
2πr radians in the first plane and 2πs in the second, then the kernel
of this transformation is Z×Z, and we conclude

R×R

Z×Z
∼= S1 × S1

(
∼=

R

Z
× R

Z

)
.

The group T2 = S1 × S1 is called the torus (more generally, Tn =

S1 × · · · × S1︸ ︷︷ ︸
n times

is the n-dimensional torus). It is possible to draw T2, as

we have done in Exercise I.1.6,

≈ ≈

We start with the square [0, 1]× [0, 1], and we "glue" its sides. �

Exercise 8.11 (Notation as in Proposition 8.10.) Prove ’by hand’
(that is, without invoking universal properties) that N is normal in
G if and only if N/H is normal in G/H.
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Proposition 8.10 Let H be a normal subgroup of a group G, and let
N be a subgroup of G containing H. Then N/H is normal in G/H
if and only if N is normal in G, and in this case

G/H
N/H

∼=
G
N

.

� Solution Suppose N is normal in G. We want to prove that, for all
g ∈ G and n ∈ N,

(gH)(nH)(gH)−1 ∈ N/H.

But this element is gng−1H, which is in N/H by the normality of N.
Conversely, if N/H is normal in G/H,

(gH)(nH)(gH)−1 ∈ N/H,

for all g ∈ G and n ∈ N. But this means precisely that gng−1 ∈ N. The
result follows. �

Exercise 8.12 (Notation as in Proposition 8.11.) Prove ’by hand’
(that is, by using Proposition 6.2) that HK is a subgroup of G if H
is normal.

Proposition 8.2 A nonempty subset H of a group G is a subgroup if
and only if

(∀a, b ∈ H) : ab−1 ∈ H.

Proposition 8.11 Let H, K be subgroups of a group G, and assume
that H is normal in G. Then

• HK is a subgroup of G, and H is normal in HK;

• H ∩ K is normal in K, and

HK
H
∼=

K
H ∩ K

.

� Solution Firstly, note that HK 6= ∅ because it contains both H and
K, which are nonempty. Now, let a, b ∈ HK be arbitrary. There are
h1, h2 ∈ H and k1, k2 ∈ K such that a = h1k1 and b = h2k2. Since H is
normal in G, there exists h3 ∈ H such that h3 = (k1k−1

2 )h−1
2 (k1k−1

2 )−1,
that is, k1k−1

2 h−1
2 = h3k1k−1

2 . Thus,

ab−1 = (h1k1)(h2k2)
−1

= h1(k1k−1
2 h−1

2 )

= h1(h3k1k−1
2 )

= (h1h3)(k1k−1
2 ) ∈ HK

and, by Proposition 6.2, HK is a subgroup of G. �
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Exercise 8.13

� Solution A �

Exercise 8.14 Generalize the result of Exercise 8.13: if G is a group
of order n and k is an integer relatively prime to n, then the function
g 7→ gk is surjective.

� Solution Let a, b ∈ Z such that ak + bn = 1. Given g ∈ G, since
gn = e, then g = gak+bn = (ga)k · (gn)b = (ga)k and g is in the image
of the function. �

Exercise 8.15 Let a, n be positive integers, with a > 1. Prove that n
divides φ(an − 1), where φ is Euler’s φ-function; see Exercise 6.14.
(Hint: Example 8.15.)

� Solution Let G = (Z/(an− 1)Z)∗. Since (an−1)a+(−1)(an− 1) =
1, Exercise 2.13 implies that gcd(a, an − 1) = 1, so a ∈ G. It is clear
that |a| = n, thus, by Example 8.15, n divides |G| = φ(an − 1). �

Exercise 8.16 Generalize Fermat’s little theorem to congruences
modulo arbitrary (that is, possibly nonprime) integers. Note that
it is not true that an ≡ a mod n for all a and n: for example, 24 is
not congruent to 2 modulo 4. What is true? (This generalization is
known as Euler’s theorem.)

� Solution Euler’s theorem says that if n is a positive integer and a
is relatively prime to n, then

aφ(n) ≡ 1 mod n,

where φ is Euler’s φ-function.
To prove this, let G = (Z/nZ)∗. Since gcd(a, n) = 1, a ∈ G. Let d be

the order of a in G. By Lagrange’s theorem (Example 8.15), φ(n) = dk,
where k is a positive integer. Then,

aφ(n) = (ad)k ≡ 1k ≡ 1 mod n.

This is the desired result. �

Exercise 8.17 B Assume G is a finite abelian group, and let p be
a prime divisor of |G|. Prove that there exists and element in G
of order p. (Hint: Let g be any element of G, and consider the
subgroup 〈g〉; use the fact the fact that this group is cyclic to show
that there is an element h ∈ 〈g〉 of prime order q. If q = p, you are
done; otherwise, use the quotient G/〈h〉 and induction.) [§8.5, 8.18,
8.20, §IV.2.1]

� Solution A �
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Exercise 8.18 Let G be an abelian group of order 2n, where n is
odd. Prove that G has exactly one element of order 2. (It has at
least one, for example by Exercise 8.17. Use Lagrange’s theorem
to establish that it cannot have more than one.) Does the same
conclusion hold if G is not necessarily commutative?

� Solution By Exercise 8.17, there exists an element g ∈ G of order
2 because 2 is prime and it divides |G| = 2n. Let H = 〈g〉 = {eG, g}
be the subgroup generated by g. Since G is abelian, H is normal in G
and we can take the quotient G/H. By Lagrange’s theorem,∣∣∣∣G

H

∣∣∣∣ = [G : H] =
|G|
|H| =

2n
2

= n.

Suppose that there exists another element g′ ∈ G of order 2. Since
g′ 6∈ H and (g′)2 = eG, g′H 6= eG H and (g′H)2 = eG H, that is, g′H
is of order 2 in G/H. But Lagrange’s theorem implies that 2 divides
|G/H| = n, a contradiction since n is odd. Therefore, G has exactly
one element of order 2.

Note that the hypothesis that G is commutative is necessary. For
example, S3 is of order 6 = 2 · 3 and it has three elements of order 2:(

1 2 3

2 1 3

)
,

(
1 2 3

3 2 1

)
and

(
1 2 3

1 3 2

)
.

�

Exercise 8.19 Let G be a finite group, and let d be a proper divisor
of |G|. Is it necessarily true that there exists an element of G with
order d? Give a proof or a counterexample.

� Solution This is false even for commutative groups. Let G =

Z/2Z×Z/2Z. Then |G| = 4, but there is no element of order 4. In
fact, since 2a = 0 for any a ∈ Z/2Z, then 2(a, b) = 0 for any (a, b) ∈
Z/2Z. More generally, this happens for any product Z/nZ×Z/mZ,
for which gcd(n, m) > 1. �

Exercise 8.20 B Assume G is a finite abelian group, and let d be a
divisor of |G|. Prove that there exists a subgroup H ⊆ G of order d.
(Hint: induction; use Exercise 8.17.) [§IV.2.2]

� Solution We’ll induct on the order of G. If |G| = 1, the result is
trivial. Now, lets suppose that the theorem is true for all groups with
order < |G| and let p be a prime factor of d. By Exercise 8.17, there
exists an element x of order p in G. The induction hypothesis implies
that G/〈x〉 has a subgroup of order d/p. Proposition 8.9 implies that
this subgroup is of the form H/〈x〉 for some subgroup H of G. This is
the desired subgroup as it has order d. �
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Exercise 8.21 B Let H, K be subgroups of a group G. Construct a
bijection between the set of cosets hK with h ∈ H and the set of
left-cosets of H ∩ K in H. If H and K are finite, prove that

|HK| = |H| · |K||H ∩ K| .

[§8.5]

� Solution A helpful observation here is that h(H ∩ K) = H ∩ (hK)
for all h ∈ H, so we can connect the cosets of H ∩K in H and the cosets
hK with h ∈ H by intersection with H, as we will do soon. Before
that, let’s prove this equality. If x ∈ h(H ∩ K), there exists y ∈ H ∩ K
such that x = hy. In particular, since y ∈ H and y ∈ K, x ∈ H and
x ∈ hK, so x ∈ H ∩ (hK) and h(H ∩ K) ⊆ H ∩ (hK). On the other
hand, if x′ ∈ H ∩ (hK), there exists k ∈ K such that x′ = hk. Therefore,
k = h−1x′ ∈ H so k ∈ H ∩ K and x′ ∈ h(H ∩ K), proving the other
inclusion.

More generally, a
similar argument
shows that
g(H ∩ K) =
(gH) ∩ (gK), for
all g ∈ G.

Let X = {hK|h ∈ H}. Define f : X → H/(H ∩ K) by

f (hK) = h(H ∩ K) = H ∩ (hK)

for all hK ∈ X. Since distinct cosets of X are disjoint, it follows that f is
injective. Furthermore, given h(H ∩ K) ∈ H/(H ∩ K), it is immediate
that f (hK) = h(H ∩ K), so f is also surjective. We conclude that f is a
bijection between X and H/(H ∩ K).

Note that HK =
⋃

h∈H hK. Therefore, if H and K are finite, we have
that |HK| = |X| · |K| since the cosets are disjoint and |hK| = |K| for
all h ∈ K by Lemma 8.13. By the bijection above and by Lagrange’s
theorem, it follows that

|HK| = |X| · |K| =
∣∣∣∣ H

H ∩ K

∣∣∣∣ · |K| = |H| · |K||H ∩ K| ,

as desired. �

Exercise 8.22

� Solution A �

Exercise 8.23 B Consider the subgroup

H =

{(
1 2 3

1 2 3

)
,

(
1 2 3

2 1 3

)}

of S3. Show that the cokernel of the inclusion H ↪→ S3 is trivial,
although H ↪→ S3 is not surjective. [§8.6]

� Solution As we have seen in Exercise 7.2, H is not a normal group,
and, even more, if N is a normal group containing H, then y ∈ H.
Since x and y generates S3, N = S3 and the cokernel is trivial. �
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Exercise 8.24 B Show that epimorphisms in Grp do not necessarily
have right-inverses. [§I.4.2]

� Solution We will construct an epimorphism that does not have a
right-inverse. Let G = Z/4Z and H = {[0]4, [2]4}. Since G is commu-
tative, H is a normal subgroup and we can take π : G → G/H as the
canonical projection. It is an epimorphism in Set because it is surjec-
tive and, therefore, it is an epimorphism in Grp. However, π does not
have a right-inverse. Indeed, if ϕ were a right-inverse for π, ϕ([1]4H)

would need to be [1]4 or [3]4, because π−1([1]4H) = {[1]4, [3]4}. But
then we get that [0]4 = ϕ([0]4H) = ϕ([2]4H) = 2ϕ([1]4H) = [2]4, a
contradiction. �

Exercise 8.25 Let H be a commutative normal subgroup of G.
Construct an interesting homomorphism from G/H to Aut(H). (Cf.
Exercise 7.10.)

� Solution Recall from Exercise 4.8 that the map

G → Aut(G)

g 7→ γg,

where γg(a) = gag−1 for all a ∈ G, is a homomorphism. By restricting
domains, we obtain a morphism

ϕ : G → Aut(H).

Observe that if h ∈ H, then ϕ(h) = γh|H = idH, since H is commuta-
tive. Then the universal property of quotients (Theorem 7.12) implies
that ϕ factors through the quotient. In other words, it exists a unique
homomorphism ϕ̃ : G/H → Aut(H) so that the diagram

G Aut(H)

G/H

ϕ

π ϕ̃

commutes. That is, the function defined by gH 7→ γg|H is well-defined
and a homomorphism. �

9 group actions

Exercise 9.1 (Once more, if you are already familiar with a little
linear algebra...) The matrix groups listed in Exercise 6.1 all come
with evident actions on a vector space: If M is an n× n matrix with
(say) real entries, multiplication to the right by a column n-vector v
returns a column n-vector Mv, and this defines a left action on Rn

viewed as the space of column n-vectors.
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• Prove that, through this action, matrices M ∈ On(R) preserve
lengths and angles in Rn.

• Find an interesting action of SU(2) on R3. (Hint: Exercise 8.9.)

� Solution

• Observe that the inner product of two vectors v, w ∈ Rn is given
by

〈v, w〉 = vt ·w,

where · is the matrix product. Therefore, if M ∈ On(R),

〈Mv, Mw〉 = (Mv)t ·Mw

= vt · (Mt ·M) ·w
= vt ·w
= 〈v, w〉.

If v = w, this proves M preserves lengths. Moreover, if θ is the
angle between v and w, then cos θ = 〈v,w〉

‖v‖‖w‖ , and this also proves
M preserves angles.

• As we have seen in Exercise 6.3, every quaternion q = a + bi +
cj + dk ∈H may be represented by a matrix

q =

(
a + bi c + di

−c + di a− bi

)
.

If we let z = a + bi and w = c + di, then q = z + wj and it may

be seen as q =

(
z w

−w z

)
. Moreover, its norm |q| is the deter-

minant of the matrix. Therefore SU(2) is isomorphic (actually, it
is diffeomorphic) to the unit quaternions. Given a unitary q ∈H,
since every real number commutes with any quaternion, they are
fixed by the inner automorphism γq. Since this is a orthogonal
R-linear transformation, for γq(t) = |qtq−1| = |q||t||q−1| = |t|,
this transformation preserves the space orthogonal to R, which
we usually denote by im H and is isomorphic to R3.

Hence, for every M ∈ SU(2), there corresponds a unique quater-
nion q defined above, and to each quaternion q there corresponds
an orthogonal transformation γq. Similarly to the complex case,
every quaternion may be written as q = cos θ + u sin θ, where
u is a unitary quaternion in im H. Since u commutes with q,
then γq(u) = u, and we can restrict γq to the plane in im H

orthogonal to u. In this case, if v · u = 0, let w = u× v. Then
uv = w, vw = u, wu = v, and the product is antisymmetric.
Therefore, by direct calculation, γq(v) = v cos 2θ − w sin 2θ and
γq(w) = x cos 2θ + v sin 2θ, and γq is a rotation in R3 around
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the axis u by the angle 2θ. Furthermore, observe that a rotation
around the axis u through the angle 2θ is the same as a rotation
around −u through −2θ. Thus, as we saw in Exercise 8.9, the
kernel of this transformation is {I2,−I2}. �

Exercise 9.2 The effect of the matrices(
1 0

0 −1

)
,

(
0 1

−1 0

)

on the plane is to respectively flip the plane about the y-axis and to
rotate it 90◦ clockwise about the origin. With this in mind, construct
an action of D8 on R2.

� Solution Let e1, e2 be the canonical basis of R2 and consider the
square constituted by e1, e2, −e1, and −e2.

e1

e2

We’ll let D8 act on this square and see what happens the the vectors e1

and e2.

D8 e1 e2

Identity e1 e2

Rotation of 90◦ counterclockwise e2 −e1

Rotation of 180◦ counterclockwise −e1 −e2

Rotation of 270◦ counterclockwise −e2 e1

Horizontal reflection e1 −e2

Vertical reflection −e1 e2

Reflection about the line y = x e2 e1

Reflection about the line y = −x −e2 −e1

Since linear transformations are determined by their effects on the
basis vectors, this table determines an action of D8 on R2. �

Exercise 9.3 If G = (G, ·) is a group, we can define an ’opposite’
group G◦ = (G, •) supported on the same set G, by prescribing

(∀g, h ∈ G) : g • h := h · g.
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• Verify that G◦ is indeed a group.

• Show that the ’identity’: G◦ → G, g 7→ g is an isomorphism if
and only if G is commutative.

• Show that G◦ ∼= G (even if G is not commutative!).

• Show that giving a right-action of G on a set A is the same as
giving a homomorphism G◦ → SA, that is, a left-action of G◦

on A.

• Show that the notions of left- and right-actions coincide ’on
the nose’ for commutative groups. (That is, if (g, a) 7→ ag
defines a right-action of a commutative group G on a set A,
then setting ga = ag defines a left-action).

• For any group G, explain how to turn a right-action of G into
a left-action of G. (Note that the simple ’flip’ ga = ag does
not work in general if G is not commutative.)

� Solution

• Since G is a group, the set G is nonempty. The operation in G◦

is associative because · is associative:

(g • h) • k = k · (h · g) = (k · h) · g = g • (h • k),

for all g, h, k ∈ G. Furthermore, eG is also the identity of G◦ since
eG • g = g · eG = g and g • eG = eG · g = g for all g ∈ G. Finally,
given g ∈ G, its inverse g−1 in G is also its inverse in G◦ because
g • g−1 = g−1 · g = eG and g−1 • g = g · g−1 = eG. Therefore, G◦

is indeed a group.

• Let ϕ : G◦ → G be defined by ϕ(g) = g for all g ∈ G. This
function is clearly a bijection, so it suffices to show that ϕ is an
homomorphism if and only if G is commutative. Indeed,

ϕ(g • h) = ϕ(g) · ϕ(h) ⇐⇒ g • h = g · h ⇐⇒ h · g = g · h

and the desired equivalency follows.

• We can find another isomorphism between G and G◦ that works
in any case. Define ϕ : G◦ → G by ϕ(g) = g−1 for all g ∈ G.
Note that it does not matter where this inverse is computed
because they coincide on G and G◦. It is clear that ϕ is a bijection.
Furthermore,

ϕ(g • h) = (g • h)−1 = (h · g)−1 = g−1 · h−1 = ϕ(g) · ϕ(h)

for all g, h ∈ G, so ϕ is also a homomorphism. Therefore, G◦ ∼= G.
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• The remark made after Theorem 9.5 tells us that a right-action
of a group G on a set A is a set-function ρ : G× A → A such
that ρ(eG, a) = a for all a ∈ A and

(∀g, h ∈ G), (∀a ∈ A) : ρ(g · h, a) = ρ(h, ρ(g, a)).

If we denote ρ(g, a) = ag, this last relation means that a(gh) =
(ag)h for all g, h ∈ G and a ∈ A. Note that this definition is
slightly different to the one given for left-actions on a set.

A right-action ρ of G on A defines σ : G◦ → HomSet(A, A) in a
natural way if we set σ(g)(a) = ρ(g, a) for all g ∈ G and a ∈ A.
It preserves operation because

σ(g • h)(a) = ρ(g • h, a)

= ρ(h · g, a)

= ρ(g, ρ(h, a))

= σ(g)(σ(h)(a))

= (σ(g) ◦ σ(h))(a)

for all a ∈ A, so σ(g • h) = σ(g) ◦ σ(h) for all g, h ∈ G. Fur-
thermore, since σ(eG)(a) = ρ(eG, a) = a, σ(eG) = idA and each
σ(g) has inverse σ(g−1). Therefore, the image of σ is in SA and
we can restrict the codomain of σ to SA, obtaining the desired
homomorphism, which is a left-action of G◦ on A.

• If ρ : G × A → A is a right-action of an abelian group G on a
set A it follows that ρ is also a left-action of G on A because
ρ(eG, a) = a for all a ∈ A and

ρ(gh, a) = ρ(hg, a) = ρ(g, ρ(h, a))

for all g, h ∈ G and a ∈ A. Using the leaner notation, we see that

a(gh) = (ag)h ⇐⇒ (gh)a = h(ga) ⇐⇒ (hg)a = h(ga)

for all g, h ∈ G and a ∈ A, so setting ga = ag turns the right-
action into a left-action.

• As we did in the third item, we can use the idea of taking
the inverse of an element of G. Therefore, given a right-action
(g, a) 7→ ag of G on A, we can turn it into a left-action by setting
ga = ag−1. Indeed, it follows that eGa = ae−1

G = aeG = a for all
a ∈ A and

(gh)a = a(gh)−1 = a(h−1g−1) = (ah−1)g−1 = g(ha)

for all g, h ∈ G and a ∈ A. �
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Exercise 9.4

� Solution A �

Exercise 9.5 Prove that the action by left-multiplication of a group
on itself is free.

� Solution Fixed g ∈ G, by the cancellation law, given any a ∈ G,
ga = a implies g = eG. Therefore the left-multiplication is free, as is
the right-multiplication, for analogous reasons. �

Exercise 9.6 Let O be an orbit of an action of a group G on a set.
Prove that the induced action of G on O is transitive.

� Solution Let G act on a set A and let a ∈ A. We can restrict this
action to O = OG(a). Indeed, given x ∈ O, there exists g ∈ G such
that x = ga and so

g′x = g′(ga) = (g′g)a ∈ O

for all g′ ∈ G. Let’s prove that this induced action is transitive. Take
x, y ∈ O. There are g1, g2 ∈ G such that x = g1a and y = g2a. Thus, if
g = g2g−1

1 , it follows that

y = g2a = (g2g−1
1 g1)a = (g2g−1

1 )(g1a) = gx.

Therefore, the action of G on O is transitive. �

Exercise 9.7 Prove that stabilizers are indeed subgroups.

� Solution Let g, h ∈ StabG(a). In other words, ga = a and ha = a.
By acting on the left by h−1 we have that a = h−1a. Thus, (gh−1)a =

g(h−1a) = ga = a which means that gh−1 ∈ StabG(a). The result
follows. �

Exercise 9.8

� Solution A �

Exercise 9.9 Prove that G-Set has product and coproducts and that
every finite object of G-Set is a coproduct of objects of the type
G/H = {left-cosets of H}, where H is a subgroup of G and G acts
on G/H by left-multiplication.

� Solution Products and coproducts in G-Set are very similar to
those in Set, as we shall describe.

Let (ρA, A) and (ρB, B) be two objects. Take (ρA×B, A× B), where
A× B is the usual product in Set (that is, the Cartesian product) and
ρA×B : G× (A× B)→ A× B is the action given by

ρA×B(g, (a, b)) = (ρA(g, a), ρB(g, b))
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for all g ∈ G and (a, b) ∈ A × B. In the usual shorthand notation,
this means that g(a, b) = (ga, gb) for all g ∈ G and (a, b) ∈ A × B.
Note that this is indeed an action and that the projections πA and πB

are equivariant. We claim that (ρA×B, A× B) with πA and πB is the
product of (ρA, A) and (ρB, B) in G-Set. Let (ρC, C) be an object and
ϕA : C → A, ϕB : C → B be equivariant functions. We need to show
that there is a unique equivariant function σ : C → A× B such that
the diagram

A

C A× B

B

ϕA

σ

ϕB

πA

πB

commutes. We are forced to define σ by

σ(c) = (ϕA(c), ϕB(c))

for all c ∈ C. Finally, σ is equivariant since ϕA and ϕB are equivariant:

σ(gc) = (ϕA(gc), ϕB(gc))

= (gϕA(c), gϕB(c))

= g(ϕA(c), ϕB(c))

= gσ(c)

for all g ∈ G and c ∈ C.
For the coproduct, take (ρA ä B, A ä B), where A ä B is the usual co-

product in Set (that is, the disjoint union) and ρA ä B : G× (A ä B)→
A ä B is the action given by

ρA ä B(g, x) =

iA(ρA(g, a)), if x = iA(a) for some a ∈ A

iB(ρB(g, b)), if x = iB(b) for some b ∈ B

for all g ∈ G and x ∈ A ä B. In the usual shorthand notation, this
means that giA(a) = iA(ga) and giB(b) = iB(gb) for all g ∈ G, a ∈ A
and b ∈ B. Note that this is indeed an action and that the inclusions
iA and iB are equivariant. We claim that (ρA ä B, A ä B) with iA and
iB is the coproduct of (ρA, A) and (ρB, B) in G-Set. Let (ρC, C) be an
object and ϕA : A→ C, ϕB : B→ C be equivariant functions. We need
to show that there is a unique equivariant function σ : A ä B → C
such that the diagram

A

A ä B C

B

ϕA

iA

σ

ϕB

iB
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commutes. We are forced to define σ by

σ(c) =

ϕA(a), if c = iA(a) for some a ∈ A

ϕB(b), if c = iB(b) for some b ∈ B

for all c ∈ C. Finally, note that σ is equivariant since ϕA and ϕB are
equivariant. Indeed, given c ∈ A ä B, we have that c = iA(a) for some
a ∈ A or c = iB(b) for some b ∈ B. In the first case,

σ(gc) = σ(giA(a)) = σ(iA(ga)) = ϕA(ga) = gϕA(a) = gσ(c)

for all g ∈ G, and the second case is analogous.
Let G act on a finite set X and let O be the set of orbits of this

action. Firstly, note that O is a partition on X. Indeed, its is immediate
that every element is in some set of O (just take its orbit). Moreover,
if c ∈ OG(a) ∩OG(b), there are g1, g2 ∈ G such that c = g1a = g2b,
so a = g−1

1 c, b = g−1
2 c and it follows that OG(c) = OG(a) = OG(b).

Thus, different orbits need to be disjoint, as desired. Denote by ρO the
induced action of G on an orbit O ∈ O. If ρ is the action of G on X,
we claim that

(ρ, X) ∼= ä
O∈O

(ρO, O).

where the coprodct on the right is the one similar to the defined
above for just two objects. Indeed, there is a natural bijection ϕ :
X → äO∈OO which sends an element to a copy of itself in its orbit,
since O is a partition on X. By the definition of the action of the
coproduct given above, it is easy to check that ϕ is equivariant, so
Exercise 9.8 implies the desired isomorphism. Finally, Exercise 9.6 tells
us the each ρO is transitive, so it follows from Proposition 9.9 and
the observation above that (ρ, X) is a coproduct of objects of the type
G/H = {left-cosets of H}, where H is a subgroup of G and G acts on
G/H by left-multiplication. �

Exercise 9.10 Let H be any subgroup of a group G. Prove that
there is a bijection between the set G/H of left-cosets of H and the
set H\G of right-cosets of H in G. (Hint: G acts on the right on the
set of right-cosets; use Exercise 9.3 and Proposition 9.9.)

� Solution Consider the left-action defined by ρ(g, Ha) = H(ga).
Clearly, ρ(eG, Ha) = Ha and ρ(g1 · g2, Ha) = ρ(g1, ρ(g2, a)). Further-
more, this action is transitive, since left multiplication is surjective. For
any a ∈ G, H(ga) = Ha if and only if g ∈ H, hence StabG(a) = H,
from where we conclude G/H is isomorphic to H\G. �

Exercise 9.11 ¬ Let G be a finite group, and let H be a subgroup
of index p, where p is the smallest prime dividing |G|. Prove that H
is normal in G, as follows:
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• Interpret the action of G on G/H by left-multiplication as a
homomorphism σ : G → Sp.

• Then G/ ker σ is (isomorphic to) a subgroup of Sp. What does
this say about the index of ker σ in G?

• Show that ker σ ⊂ H.

• Conclude that H = ker σ, by index considerations.

Thus H is a kernel, proving that it is normal. (This exercise general-
izes the result of Exercise 8.2.) [9.12]

� Solution A �

Exercise 9.12 ¬ Generalize the result of Exercise 9.11, as follows.
Let G be a group, and let H ⊆ G be a subgroup of index n. Prove
that H contains a subgroup K that is normal in G and such that
[G : K] divides the gcd of |G| and n!. (In particular, [G : K] ≤ n!.)
[IV.2.23]

� Solution As in the previous exercise, the action of G on G/H by
left-multiplication can be interpreted as a homomorphism σ : G →
SG/H. By Theorem 8.1, G/ker σ is isomorphic to im σ, which is a
subgroup of SG/H. Let K = ker σ, which is a normal subgroup of G.
Since |G/H| = [G : H] = n, it follows that |SG/H | = n! and so, by
Lagrange’s theorem, [G : K] divides n!. Since K is a subgroup of G,
Lagrange’s theorem also implies that [G : K] divides |G| and, thus,
[G : K] divides the gcd of |G| and n!. It remains to show that K ⊆ H.
Let k ∈ K be an arbitrary element. Since K = ker σ, σ(k) is the identity
on G/H. This means that (kg)H = gH for all g ∈ G. In particular, if
we take g = eG, we have that kH = (keG)H = eG H = H, so k ∈ H.
Thus, K ⊆ H, as desired. �

Exercise 9.13

� Solution A �

Exercise 9.14

� Solution T �

Exercise 9.15 ¬ Prove that every (finitely generated) group G acts
freely on any corresponding Cayley graph. (Cf. Exercise 8.6. Actions
on a directed graph are defined as actions on the set of vertices
preserving incidence: if the vertices v1, v2 are connected by an edge,
then so must be gv1, gv2 for every g ∈ G.) In particular, conclude
that every free group acts freely on a tree. [9.16]

� Solution Take the Cayley graph of G corresponding to a set of
generators A. If V denotes the set of vertices of this graph, there
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is a bijection between G and V which sends each element of G to
its correspondent vertex on the graph. Thus, for simplicity, we will
operate with vertices as if they were elements of G. In this sense,
we can define a natural action ρ : G×V → V by left multiplication.
Moreover, ρ preserves incidence and orientation: if there is an edge
from v1 ∈ V to v2 ∈ V, there exists a ∈ A such that v2 = v1a and so
gv2 = g(v1a) = (gv1)a, that is, there is an edge from gv1 to gv2 for
all g ∈ G. Therefore, G acts on its Cayley graph. To show that this
action is free, note that, if gv = v for some v ∈ V, g ∈ G, we must
have g = eG by the cancellation law, so eG is the only element fixing
any element of V.

In particular, since a free group admits a Cayley graph that is a tree
(this is Exercise 8.6), we conclude that every free group acts freely on
a tree. �

Exercise 9.16 B The converse of the last statement in Exercise 9.15

is also true: only free groups can act freely on a tree. Assuming this,
prove that every subgroup of a free group (on a finite set) is free.
[§6.4]

� Solution Let F be a free group on a finite set and let H ⊆ F be
a subgroup. By the preceding exercise, F acts freely on a tree (its
Cayley graph, cf. Exercise 8.6). The restriction of this action to H surely
preserves the fact that it is free. That is, H also acts freely on a tree.
We conclude that H is free. �

Exercise 9.17

� Solution A �

Exercise 9.18 Show how to construct a groupoid carrying the infor-
mation of the action of a group G on a set A. (Hint: A will be the
set of objects of the grupoid. What will be the morphisms?)

� Solution Let’s define the category C as follows:

• Obj(C) = A;

• for a, b ∈ A, HomC(a, b) = {(g, a) ∈ G× A | b = ga}.

The objects of C are the elements of A and the morphisms are es-
sentially elements of G representing the action. The reason for tak-
ing ordered pairs is to guarantee that HomC(a, b) and HomC(c, d)
are disjoint unless a = c and b = d. We define the composition
of (g, a) ∈ HomC(a, b) and (h, b) ∈ HomC(b, c) as (h, b)(g, a) :=
(h · g, a) ∈ HomC(a, c), that is, we simply multiply h and g. Note
that we really have that (h · g, a) ∈ HomC(a, c) because (h · g)a =

h(ga) = hb = c. Since G is a group, this composition is associative.
Furthermore, the identity morphisms are 1a = (eG, a) ∈ HomC(a, a)
for all a ∈ A, which are identities with respect to composition since eG
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is the identity element of G. Therefore, C is indeed a category. To prove
that it is also a grupoid, note that (g−1, b) ∈ Hom(b, a) is a two-sided
inverse for (g, a) ∈ HomC(a, b) since g−1b = g−1(ga) = (g−1g)a = a,
(g−1, b)(g, a) = (eG, a) = 1a and (g, a)(g−1, b) = (eG, b) = 1b.

This grupoid carries the information of the action in the sense that
we can compute ga by simply looking at the morphisms that depart
from a, for all g ∈ G and a ∈ A. The identities and the composition of
morphisms in C correspond to the properties given by and eGa = a
(gh)a = g(ha) for all g, h ∈ G and a ∈ A. �

10 group objects in categories

Exercise 10.1 Define all the unnamed maps appearing in the
diagrams in the definition of group object, and prove that they
are indeed isomorphisms when so indicated. (For the projection
1× G → G, what is left to prove is that the composition

1× G → G → 1× G

is the identity, as mentioned in the text.)

� Solution T �

Exercise 10.2 B Show that groups, as defined in §1.2, are ’group
objects in the category of sets’. [§10.1]

� Solution All we need to do is to prove that a couple of diagrams
commute. Firstly, the commutativity of

(G× G)× G G× G G

G× (G× G) G× G G

m×idG

∼=

m

idG ×m m

asserts the associativity of the binary operation in G. The commutativ-
ity of

1× G G× G G× 1 G× G

G G

e×idG

∼=
m

idG ×e

∼=
m

follows from the existence of a two-sided identity. Lastly, the commu-
tativity of

G G× G G× G

1 G

∆ idG ×ι

m

e

G G× G G× G

1 G

∆ ι×idG

m

e
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means exactly that there exists two-sided inverses. �

Exercise 10.3 Let (G, ·) be a group, and suppose ◦ : G× G → G is
a group homomorphism (w.r.t. ·) such that (G, ◦) is also a group.
Prove that ◦ and · coincide. (Hint: First prove that the identity with
respect to the two operations must be the same.)

� Solution To avoid confusion, we will denote the homomorphism
◦ by f , that is f (g, h) = ◦(g, h) = g ◦ h for all g, h ∈ G. Let e1 and
e2 be the identities with respect to · and ◦, respectively. Since f is a
homomorphism with respect to ·, it follows that

e2 = e2 ◦ e2

= f (e2, e2)

= f (e2 · e1, e1 · e2)

= f ((e2, e1) · (e1, e2))

= f (e2, e1) · f (e1, e2)

= (e2 ◦ e1) · (e1 ◦ e2)

= e1 · e1 = e1,

so these two identities are the same and we will denote it simply by e.
With a similar computation, we have that

g ◦ h = f (g, h)

= f (g · e, e · h)
= f ((g, e) · (e, h))

= f (g, e) · f (e, h)

= (g ◦ e) · (e ◦ h)

= g · h

for all g, h ∈ G. Therefore, ◦ and · coincide. �

Exercise 10.4 Prove that every abelian group has exactly one struc-
ture of group object in the category Ab.

� Solution A �

Exercise 10.5 By the previous exercise, a group object in Ab is
nothing other than an abelian group. What is a group object in
group?

� Solution T �





III
R I N G S A N D M O D U L E S

1 definition of ring

Exercise 1.1 B Prove that if 0 = 1 in a ring R, then R is a zero-ring.
[§1.2]

� Solution Observe that, for every r ∈ R,

r = 1 · r = 0 · r = 0.

Hence R = {0} is a zero-ring. �

Exercise 1.2 ¬ Let S be a set, and define operations on the power
set P(S) of S by setting ∀A, B ∈P(S)

This addition
operation is
usually called
symmetric difference.

A + B := (A ∪ B) \ (A ∩ B), A · B := A ∩ B :

A · BA + B

(where the solid grey indicates the set included in the operation).
Prove that (P(S),+, ·) is a commutative ring. [2.3, 3.15]

� Solution Since P(S) has two ’distinguished’ elements, ∅ and S,
we can surely guess that they might be the identities. We quickly verify
that

A +∅ = (A ∪∅) \ (A ∩∅) = A \∅ = A

and that
A · S = A ∩ S = A,

since A ⊆ S. Similarly, ∅+ A = A and S · A = A. This means that ∅
is the additive identity and S is the multiplicative identity.

109
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The addition is associative since both (A + B) + C and A + (B + C)
are the set indicated in the following diagram.

A + B + C

Also, clearly · is associative and both operations are commutative. The
additive inverse of a element is simply itself as

A + A = (A ∪ A) \ (A ∩ A) = A \ A = ∅.

Lastly, we have distributivity since

A B

C

represents both (A + B) · C and (A · C) + (B · C). �

Exercise 1.3 ¬ Let R be a ring, and let S be any set. Explain how
to endow the set RS of set-functions S→ R of two operations +, ·
so as to make RS into a ring, such that RS is just a copy of R if S is
a singleton. [2.3]

� Solution Similarly to what has been done at the very end of section
4 of chapter II, if f , g : S→ R are two functions of RS, we can set their
sum as the function given by

( f + g)(s) := f (s) + g(s)

and their product as the function defined by

( f · g)(s) := f (s) · g(s),

for all s ∈ S. These operations naturally ’inherits’ the associative
and distributive properties of +, · in R and note that the sum is also
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commutative. Furthermore, the function that sends every element of S
to 0R is the zero element and the one that sends every element to 1R

is the multiplicative identity. Finally, it is clear that the opposite of a
function f : S→ R is the function given by

(− f )(s) = − f (s)

for all s ∈ S. Therefore, RS is a ring.
Notice that, if S is the singleton {∗}, RS is just a copy of R in the

sense that the function

ϕ : RS → R

f 7→ f (∗)

is a bijection, it preserves both operations and ϕ(1RS) = 1R. As we
will see in future sections, ϕ is a ring isomorphism. �

Exercise 1.4 B The set of n× n matrices with entries in a ring R is
denotedMn(R). Prove that componentwise addition and matrix
multiplication makeMn(R) into a ring, for any ring R. The notation
gln(R) is also commonly used, especially for R = R of C (although
this indicates one is considering them as Lie algebras) in parallel
with the analogous notation for the corresponding groups of units;
cf. Exercise II.6.1. In fact, the parallel continues with the definition
of the following sets of matrices:

• sln(R) = {M ∈ gln(R) | tr(M) = 0};

• sln(C) = {M ∈ gln(C) | tr(M) = 0};

• so(R) = {M ∈ sln(R) | M + Mt = 0};

• su(n) = {M ∈ sln(C) | M + M† = 0}.

Here tr(M) is the trace of M, that is, the sum of its diagonal entries.
The other notation matches the notation user in Exercise II.6.1.
Can we make rings of these sets by endowing them with ordinary
addition and multiplication of matrices? (These sets are all Lie
algebras; cf. Exercise VI.1.4.) [ §1.2, 2.4, 5.9, VI.1.2, VI.1.4]

� Solution Since (R,+, 0R) is a commutative group, then (Mn(R),+, 0n)

where 0n is the matrix whose entries are all 0R. �

Exercise 1.5 Let R be a ring. In a, b are zero-divisors in R, is a + b
necessarily a zero-divisor?

� Solution No. Consider, for example, R = Z/6Z. Then 2 and 3 are
zero-divisors, but 5 = 2 + 3 is not a zero-divisor. �
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Exercise 1.6 ¬ An element a of a ring R is nilpotent if an = 0 for
some n.

• Prove that if a and b are nilpotent in R and ab = ba, then a+ b
is also nilpotent.

• Is the hypothesis ab = ba in the previous statement necessary
for its conclusion to hold?

[3.12]

� Solution

• Lets say that an = 0 and bm = 0. Since a and b commute, the
binomial theorem is valid. That is,

(a + b)n+m =
n+m

∑
k=0

(
m + n

k

)
akbn+m−k.

If k < n, then n + m− k > m so that bn+m−k = 0. Else, ak = 0. In
other words, every term in the sum above is zero.

• Yes, the hypothesis is necessary. For a counter-example, take

a =

(
0 1

0 0

)
and b =

(
0 0

1 0

)
.

Then (a + b)2 is the identity matrix, which shows that a + b is
not nilpotent. �

Exercise 1.7 Prove that [m] is nilpotent in Z/nZ if and only if m
is divisible by all prime factors of n.

� Solution ( =⇒ ) If [m]n is nilpotent in Z/nZ, there exists k ∈ N

such that [m]kn = [mk]n = [0]n and so n divides mk. Thus, if p is a
prime factor of n, p divides mk and, since it is a prime number, p
divides m.

(⇐= ) Suppose that m is divisible by all prime factors of n and let
k ∈N be the largest exponent appearing in the prime factorization of
n. It is clear that n divides mk and so [m]kn = [mk]n = [0]n. Therefore,
m is nilpotent in Z/nZ. �

Exercise 1.8 Prove that x = ±1 are the only solutions to the equa-
tion x2 = 1 in an integral domain. Find a ring in which the equation
x2 = 1 has momre than 2 solutions.

� Solution If x2 = 1, then x2 − 1 = 0 and (x + 1)(x − 1) = 0.
Since we are in an integral domain, x + 1 = 0 or x − 1 = 0, which
is the desired conclusion. On the other hand, if R = Z/8Z, then
[1]28 = [3]28 = [5]28 = [7]28 = 1. �
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Exercise 1.9 B Prove Proposition 1.12. [§1.2]

Proposition 1.12 In a Ring R:

• u is a left- (resp., right-) unit if and only if left- (resp., right-)
multiplication by u is a surjective function R→ R;

• if u is a left- (resp., right- ) unit, then right- (resp., left-) multi-
plication by u is injective; that is, u is not a right- (resp., left-)
zero-divisor;

• the inverse of a two-sided unit is unique;

• two-sided units form a group under multiplication.

� Solution The book has already proved the first two claims for
u right-unit. Suppose u left-unit, and v ∈ R satisfies u · v = 1R. If
λu : R→ R is defined by λu(r) = u · r, then, for every r ∈ R,

λu(vr) = u(vr) = (uv)r = 1R · r = r,

and left-multiplication by u is surjective. Reciprocally, if the function
is surjectire, there exists a v ∈ R such that u · v = λu(v) = 1R, and u is
a left-unit.

Analogously, let u be a left-unit and v ∈ R be such that u · v = 1. If
ρu(r) = r · u, then

(ρv ◦ ρu)(r) = ρv(ρu(r)) = ρv(r · u) = (ru)v = r(uv) = r · 1R = r.

Hence ρu is injective. �

Exercise 1.10 Let R be a ring. Prove that if a ∈ R is a right-unit
and has two or more left-inverses, then a is not a left-zero-divisor
and is a right-zero-divisor.

� Solution Our hypothesis says that there are two elements b1, b2 ∈ R
such that b1a = b2a = 1. This implies that

(b1 − b2)a = b1a− b2a = 1− 1 = 0,

which says precisely that a is a right-zero-divisor. Now, lets suppose
that a is a left-zero-divisor. In other words, lets suppose that there is
a non-zero element c ∈ R such that ac = 0. Multiplying by c on the
right on b1a = 1, we get that

0 = b1ac = c,

which is absurd. The result follows. �
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Exercise 1.11 B Construct a field with 4 elements: as mentioned
in the text, the underlying abelian group will have to be Z/2Z×
Z/2Z; (0, 0) will be the zero element, and (1, 1) will be the mul-
tiplicative identity. The question is what (0, 1) · (0, 1), (0, 1) · (1, 0),
(1, 0) · (1, 0) must be, in order to get a field. [§1.2, §V.5.1]

� Solution By Proposition 1.12, two-sided units of a ring R form
a group under multiplication, so F \ {0F} with ·F is a group for all
fields F. Therefore, we have to define multiplication in Z/2Z×Z/2Z

so that {(1, 1), (0, 1), (1, 0)} be a group with identity (1, 1) under this
operation. But all groups of order 3 are isomorphic to C3 (see Exercise
II.1.6) and, thus, the multiplication table for Z/2Z×Z/2Z must be
the one below.Since (1, 1), (1, 0)

and (0, 1) are
indistinguishable

with respect to
their addition
properties in

Z/2Z×Z/2Z,
we could have

taken the identity
as (1, 0) or (0, 1)

and we would
have gotten

isomorphic fields
to this one.

· (0, 0) (1, 1) (0, 1) (1, 0)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(1, 1) (0, 0) (1, 1) (0, 1) (1, 0)

(0, 1) (0, 0) (0, 1) (1, 0) (1, 1)

(1, 0) (0, 0) (1, 0) (1, 1) (0, 1)

Since this multiplication is commutative, it only remains to show that
the distributive properties hold in Z/2Z×Z/2Z, which can be done
with some few computations. Therefore, Z/2Z ×Z/2Z with this
multiplication becomes a field. �

Remark. The field we constructed above is called (for obvious
reasons) a finite field. They are very important and appear in a
number of areas of mathematics and computer science such as
number theory, algebraic geometry, Galois theory, finite geometry,
cryptography and coding theory. We will find them again in
future chapters. Here are some properties of the finite fields:

• There exists a finite field of order n if and only if n is a
power of a prime number. Furthermore, all finite fields of
the same order are isomorphic to each other and so they
are all unambiguously denoted by Fn, Fn or GF(n) (here the
letters GF stand for "Galois field").

• As for all fields, the nonzero elements of a finite field form a
group under multiplication. This group is always cyclic. For
example, we pointed above that this group is isomorphic to
C3 if we consider the field as F4.

• A finite field of order pk is of characteristic p, so there is
a ’copy’ of Z/pZ inside it. Some properties follow from
this observation. For example, (x + y)p = xp + yp for all
x, y ∈ Fpk . We can also generalize Fermat’s little theorem:
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xpk
= x for all x ∈ Fpk . With this, we can conclude that

xpk − x factors in Fpk as

xpk − x = ∏
a∈Fpk

(x− a).

Moreover, F is the splitting field of xpk − x over Z/pZ.

• For all prime numbers p and positive integers n, we can
find an irreducible polynomial f (x) in Z/pZ of degree n.
Therefore, it follows that

Fpn ∼=
Z/pZ

( f (x))

and so we can explicitly construct all finite fields. For ex-
ample, the finite field F4 of this exercise is isomorphic to
(Z/2Z)/(x2 + x + 1). This observation makes it easier to
calculate multiplication tables as we did above.

Exercise 1.12 / Just as complex numbers may be view as combi-
nations a + bi, where a, b ∈ R and i satisfies the relation i2 = −1
(and commutes with R), we may construct a ring H by considering
linear combinations a + bi + cj + dk where a, b, c, d ∈ R and i, j, k
commutes with R and satisfies the relations:

i2 = j2 = k2 = −1 ij = −hi = k jk = −kj = i ki = −ik = j.

� Solution T �

Exercise 1.13

� Solution A �

Exercise 1.14 B Let R be a ring, and let f (x), g(x) ∈ R[x] be
nonzero polynomials. Prove that

deg( f (x) + g(x)) ≤ max(deg( f (x)), deg(g(x))).

Assuming that R is an integral domain, prove that

deg( f (x) · g(x)) = deg( f (x)) + deg(g(x)).

[§1.3]

� Solution Let f (x) = ∑i≥0 aixi and g(x) = ∑i≥0 bixi. If d is the
greatest index such that ai 6= 0 and e is the greatest index such that
bi 6= 0, it is clear that every coefficient ci = ai + bi in

f (x) + g(x) = ∑
i≥0

cixi = ∑
i≥0

(ai + bi)xi
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is zero if i > d + e. This means that

deg( f (x) + g(x)) ≤ max(deg( f (x)), deg(g(x))).

Now let R be an integral domain. As we know, the k-th coefficient
of f (x) · g(x) is

∑
i+j=k

aibjxi+j.

Clearly if k > d + e this sum has no non-zero terms. However, since
the (d + e)-th coefficient is adbe and R is an integral domain, adbe 6= 0.
This means that the degree of f (x) · g(x) is exactly d + e. �

Exercise 1.15 B Prove that R[x] is an integral domain if and only
if R is an integral domain.

� Solution If R[x] is an integral domain, it is clear that R is too
since the polynomials of degree 0 form a ’copy’ of R inside R[x].
Now, suppose that R is an integral domain. It is clear that R[x] is
commutative since R is commutative. Moreover, R[x] does not have
nonzero zero-divisors. Indeed, let f = ∑i≥0 aixi and g = ∑i≥0 bixi be
two nonzero polynomials in R[x]. If r and s are the largest integers
such that ar 6= 0 and bs 6= 0, the coefficient of xr+s in f (x) · g(x) is

∑
i+j=r+s

aibj =

 ∑
i+j=r+s

i>r

aibj

+ arbs +

 ∑
i+j=r+s

j>s

aibj

 = arbs 6= 0

and so f (x) · g(x) is a nonzero polynomial, as desired. Note that
arbs 6= 0 because both ar and bs are nonzero and R is an integral
domain. Therefore, we conclude that R[x] is also an integral domain. �

Exercise 1.16 Let R be a ring, and consider the ring of power series
R[[x]] (cf. §1.3).

(i) Prove that a poer series a0 + a1x+ a2x2 + · · · is a unit in R[[x]]
if and only if a0 is a unit in R. What is the inverse of 1− x?

(ii) Prove that R[[x]] is an integral domain if and only if R is.

� Solution T �

Exercise 1.17

� Solution A �

2 the category ring
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Exercise 2.1 B Prove that if there is a homomorphism from a
zero-ring to a ring R, then R is a zero-ring. [§2.1]

� Solution Let ϕ : {∗} → R be a homomorphism. Since homomor-
phisms take identities to identities,

0 = ϕ(∗) = 1.

As a · 1 = a for all a ∈ R, we conclude that a = a · 1 = a · 0 = 0 for all
a ∈ R. In other words, R is the trivial ring. �

Exercise 2.2

� Solution T �

Exercise 2.3 Let S be a set, and consider the power set ring P(S)
(Exercise 1.2) and the ring (Z/2Z)S you constructed in Exercise
1.3. Prove that these two rings are isomorphic. (Cf. Exercise I.2.11.)

� Solution By Exercise I.2.11, the function χ : P(S) → (Z/2Z)S

which assigns for each A ⊆ S a function

χA(x) =

[1]2, if x ∈ A

[0]2, otherwise.

is a bijection. We claim that χ is also a ring homomorphism. Firstly,
recall that S = 1P(S) and notice that χS is the function that sends every
element of S to [1]2, which is the multiplicative identity of (Z/2Z)S.
Now, let A, B ⊆ S be two arbitrary subsets. Note that (χA + χB)(x)
equals to [1]2 if and only if x belongs to A or B but not to both of
them, that is, if and only if x ∈ (A ∪ B)r (A ∩ B) = A + B. Thus, it
follows that χA+B = χA + χB. Moreover, (χA · χB)(x) = [1]2 if and
only if χA(x) = χB(x) = [1]2, that is, if and only if x ∈ A ∩ B = A · B.
Hence, χA·B = χA · χB. It follows that χ is also a ring homomorphism
and so we conclude that P(S) and (Z/2Z)S are isomorphic. �

Exercise 2.4

� Solution A �

Exercise 2.5 ¬ The norm of a quaternion w = a + bi + cj + dk, with
a, b, c, d ∈ R, is the real number N(w) = a2 + b2 + c2 + d2.

Prove that the function from the multiplicative group H∗ of
nonzero quaternions to the multiplicative group R+ of positive real
numbers, defined by assigning to each nonzero quaternion its norm,
is a homomorphism. Prove that the kernel of this homomorphism
is isomorphic to SU(2) (cf. Exercise II.6.3). [4.10, IV.4.17, V.6.19]
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� Solution A priori, in order to prove that this function is a homo-
morphism, one could simply observe that

N(w1w2) = N(w1)N(w2)

by expanding both sides explicitly. However, I think it is more in-
teresting to understand a couple important facts about quaternions
and then proving this result more elegantly. We begin by defining the
conjugate w of a quaternion w = a + bi + cj + dk by

w = a− bi− cj− dk.

As we saw in Exercise , N(w) = ww. Now, while conjugation is not
a multiplicative operation, it is anti-multiplicative, in the sense that
w1w2 = w2 w1. (This can be quickly verified by an explicit calculation.)
This implies that

N(w1w2) = (w1w2)(w1w2) = w1 w2 w2 w1 = N(w1)N(w2).

Now, to compute the kernel of this homomorphism, we will repre-
sent a quaternion w = a + bi + cj + dk as a complex matrix(

a + bi c + di

−c + di a− bi

)
,

just like in the previous exercise. Notice that the norm of w is given
by the determinant of the corresponding matrix. (This gives another
proof that the norm is multiplicative.) Just for now, we shall denote by
W the matrix associated with the quaternion w.

Observe that we have

WW† = W†W = N(w)I,

where I is the identity matrix. If w ∈ ker N, this shows that W is
unitary. The fact that N(w) = det W then implies that W ∈ SU(2). The
reverse inclusion was done in Exercise II.6.3. �

Exercise 2.6

� Solution T �

Exercise 2.7 B Let R = Z/2Z, and let f (x) = x2 − x; note f (x) 6=
0. What is the polynomial function R → R determined by f (x)?
[§2.2, §V.4.2, §V.5.1]

� Solution The polynomial function determined by f (x) takes r and
sends it to f (r) = r2 − r for all r ∈ Z/2Z. But note that f ([0]2) =

f ([1]2) = [0]2, so this polynomial function is the same as the one
determined by g(x) = 0, even though f (x) 6= 0. �
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Exercise 2.8

� Solution A �

Exercise 2.9 ¬ The center of a ring R consists of the elements a
such that ar = ra for all r ∈ R. Prove that the center is a subring of
R.

Prove that the center of a division ring is a field. [2.11, IV.2.17,
VII.5.14, VII.5.16]

� Solution Let C be the center of R. In order to prove that C is
a subring, we have to show that 1 ∈ C, and that a, b ∈ C implies
a− b ∈ C and ab ∈ C. Clearly 1 ∈ C and distributivity implies that
a, b ∈ C implies a− b ∈ C since

(a− b)r = ar− br = ra− rb = r(a− b)

for all r ∈ R. Now, we also have that

abr = arb = rab,

for all r ∈ R, which implies that C is a subring.
Finally, since the center is a subring, the center of a division ring is

also a division ring and it is commutative. In other words, it is a field.
�

Exercise 2.10

� Solution T �

Exercise 2.11 ¬ Let R be a division ring consisting of p2 elements,
where p is a prime. Prove that R is commutative as follows:

• If R is not commutative, then its center C (Exercise 2.9) is a
proper subring of R. Prove that C would then consist of p
elements.

• Let r ∈ R, r 6∈ C. Prove that the centralizer of r (Exercise 2.10)
contains both r and C.

• Deduce that the centralizer of r is the whole of R.

• Derive a contradiction, and conclude that R had to be com-
mutative (hence, a field).

This is a particular case of Wedderburn’s theorem: every finite
division ring is a field. [IV.2.17, VII.5.16]

� Solution

• Since C is a subring of R, the underlying abelian group (C,+) is
a subgroup of (R,+). By Lagrange’s theorem, |C| can only be 1,
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p or p2 because p is prime. But C is a proper subring of R and
it has at least two elements (0R and 1R, which are different by
Exercise 2.1), so |C| = p.

• It is clear that r commutes with itself and with every element
of C by the definition of center. Therefore, the centralizer of r
contains both r and C.

• By Exercise 2.10, the centralizer of r is a subring of R. As in the
first part, Lagrange’s theorem implies that it contains 1, p or p2

elements. Since it contains both C and r (which is not in C), and
|C| = p, it follows that the centralizer of r has p2 elements and,
hence, is the whole of R.

• Notice that the centralizer of an element of C also is R. By Exer-
cise 2.10, C is the intersection of the centralizers of all elements
of R, which is R itself. This contradicts the fact that C has only p
elements. Therefore, we conclude that R had to be commutative
and, hence, a field. �

Exercise 2.12

� Solution A �

Exercise 2.13 B Verify that the ’componentwise’ product R1 ×
R2 of two rings satisfies the universal property for products in a
category, given in §I.5.4. [§2.4]

� Solution Let π1 : (r1, r2) 7→ r1 and π2 : (r1, r2) 7→ r2 be the natural
projections. If R is any ring with ring homomorphisms f1 : R → R1

and f2 : R→ R2, we ought to find a morphism σ : R→ R1 × R2 such
that the diagram

R1

R R1 × R2

R2

σ

f2

f1

π1

π2

commutes. Inspired by the proof in Set, we set

σ(a) := ( f1(a), f2(a)).

This definition manifestly makes the diagram commute. We only have
to show that it is a ring homomorphism. For that, let a, b ∈ R. We have
that

σ(ab) = ( f1(ab), f2(ab))

= ( f1(a) f1(b), f2(a) f2(b))

= ( f1(a), f2(a))( f1(b), f2(b)) = σ(a)σ(b),
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since f1 and f2 are homomorphisms. The result follows. �

Exercise 2.14

� Solution T �

Exercise 2.15 B For m > 1, the abelian groups (Z,+) and (mZ,+)

are manifestly isomorphic: the function ϕ : Z→ mZ, n 7→ mn is a
group isomorphism. Use this isomorphism to transfer the structure
of ’ring without identity’ (mZ,+, ·) back onto Z: give an explicit
formula for the ’multiplication’ • this defines on Z (that is, such
that ϕ(a • b) = ϕ(a) · ϕ(b)). Explain why structures induced by
different positive integers m are nonisomorphic as ’rings without
1’.

(This shows that there are many different ways to give a struc-
ture of ring without identity to the group (Z,+). Compare this
observation with Exercise 2.6.) [§2.1]

� Solution To satisfy the relation ϕ(a • b) = ϕ(a) · ϕ(b), we must
define:

a • b = ϕ−1(ϕ(a) · ϕ(b)) = mab

for all a, b ∈ Z. Note that we are using the usual multiplication in Z to
compute mab. We can conclude from the relation ϕ(a • b) = ϕ(a) · ϕ(b)
and the properties of · that • is associative and distributive over +.
Therefore, (Z,+, •) is a ’ring without identity’.

For the second part, let m, n be positive integers and suppose that
(Z,+, •m) and (Z,+, •n) are isomorphic as ’rings without identity’,
where •m and •n are the operations induced by mZ and nZ, respec-
tively. Then, there is a isomorphism f : (Z,+, •m)→ (Z,+, •n), which
is, in particular, a group isomorphism with respect to +. By Exercise
4.15, we know that f is the identity or f (x) = −x for all x ∈ Z. If we
had this last case, then we would get that

n = 1 •n 1

= (− f (1)) •n (− f (1))

= f (1) •n f (1)

= f (1 •m 1)

= f (m)

= −m,

which implies that m or n is negative, a contradiction. Therefore, f is
the identity and, by a similar computation as the one done above, we
have that m = n, as desired. We conclude that the structures induced
by different positive integers are nonisomorphic as ’rings without 1’. �

Exercise 2.16

� Solution A �



122 rings and modules

Exercise 2.17 ¬ Let R be a ring, and let E = EndAb(R) be the ring
of endomorphisms of the underlying abelian group (R,+). Prove
that the center of E is isomorphic to a subring of the center of R.
(Prove that if α ∈ E commutes with all right-multiplications by
elements of R, then α is left-multiplication by an element of R; then
use Proposition 2.7.)

� Solution Following the hint, lets suppose that α ∈ E commutes
with all right-multiplications by elements of R. In other words, we
suppose that

α(ar) = α(a)r

for all a, r ∈ R. Taking a = 1, we get that

α(r) = α(1)r = λα(1)(r),

so that α is left-multiplication by α(1). In other words, the following
homomorphism

ϕ : Center of E→ R

α 7→ α(1)

is injective. Now, since every α in the center of E commutes with both
left- and right-multiplication,

α(1)r− rα(1) = α(r)− α(r) = 0 for all r ∈ R,

which means that im ϕ is contained in the center of R. Restricting the
codomain we obtain an isomorphism. �

Exercise 2.18

� Solution T �

Exercise 2.19 Prove that for n ∈ Z a positive integer, EndAb(Z/nZ)

is isomorphic to Z/nZ as a ring.

� Solution By Proposition 2.7, the function

λ : Z/nZ→ EndAb(Z/nZ)

r 7→ λr

is an injective ring homomorphism, where λr denotes the homomor-
phism given by λr(x) = r · x for all r ∈ Z/nZ. We claim that λ is
surjective. Let α be in EndAb(Z/nZ) and denote α([1]n) by a. Then,

α([m]n) = mα([1]n) = ma = a · [m]n = λa([m]n)

for all [m]n ∈ Z/nZ, that is, α = λa. Therefore, λ is surjective and so
we conclude that it is a ring isomorphism, as desired. �
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3 ideals and quotient rings

Exercise 3.1

� Solution A �

Exercise 3.2 B Let ϕ : R→ S be a ring homomorphism, and let J
be an ideal of S. Prove that I = ϕ−1(J) is an ideal of R. [§3.1]

� Solution It is not hard to simply check that ar and ra are both in I
for all r ∈ R if a ∈ I. However, we can also observe that I is the kernel
of

R S S/J,
ϕ π

where π : S→ S/J is the canonical projection. This implies immedi-
ately that I is an ideal. �

Exercise 3.3 ¬ Let ϕ : R→ S be a ring homomorphism, and let J
be and ideal of R.

• Show that ϕ(J) need not be an ideal of S.

• Assume that ϕ is surjective; then prove that ϕ(J) is an ideal
of S.

• Assume that ϕ is surjective, and let I = ker ϕ; thus we may
identify S with R/I. Let J = ϕ(J), an ideal of R/I by the
previous point. Prove that

R/I
J
∼=

R
I + J

.

(Of course this is just a rehash of Proposition 3.11.) [4.11]

� Solution

• Let ϕ : Z→ Q be the inclusion homomorphism. Note that Z is
an ideal of Z and ϕ(Z) = Z, which is not an ideal of Q since
1 ∈ Z and Z 6= Q.

• We already know that ϕ(J) is a subgroup of (S,+). Now, let
s ∈ S and j ∈ ϕ(J) be arbitrary. Since ϕ is surjective, there are
r ∈ R and j′ ∈ J such that ϕ(r) = s and ϕ(j′) = j. Since J is
an ideal of R, rj′, j′r ∈ J, so sj = ϕ(r)ϕ(j′) = ϕ(rj′) ∈ ϕ(J) and
js = ϕ(j′)ϕ(r) = ϕ(j′r) ∈ ϕ(J). Therefore, ϕ(J) is an ideal of S.

• By the identification of S with R/I, J = ϕ(J) corresponds to the
ideal J/I. Since J/I = (I + J)/I and I ⊆ I + J, it follows from
Proposition 3.11 the desired isomorphism. �
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Exercise 3.4

� Solution T �

Exercise 3.5

� Solution A �

Exercise 3.6 ¬ Let J be a two-sided ideal of the ring Mn(R) of
n × n matrices over a ring R, and let I ⊆ R be the set of (1, 1)
entries of matrices in J. Prove that I is a two-sided ideal of R and J
consists precisely of those matrices whose entries all belong to I.
(Hint: Exercise 3.5.) [3.9]

� Solution Let a be the (1, 1) entry of matrix in J. Multiplying by
suitable matrices as in Exercise 3.5, we can assume that this matrix is

a 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 .

If r ∈ R, we can multiply on the left (resp. on the right) by
r 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


to conclude that ra (resp. ar) is in I. That is, I is a two-sided ideal of R.

Also, if a any entry in a matrix in J, we can multiply by suitable
matrices in order to make a the (1, 1) entry. This implies that a ∈ I. �

Exercise 3.7 Let R be a ring, and let a ∈ R. Prove that Ra is a
left-ideal of R and aR is a right-ideal of R. Prove that a is a left-,
resp. right-, unit if and only if R = aR, resp. R = Ra.

� Solution Note that Ra 6= ∅ since a = 1 · a ∈ Ra. Furthermore,
if x, y ∈ Ra, there are x′, y′ ∈ R such that x = x′a and y = y′a, so
x− y = x′a− y′a = (x′ − y′)a ∈ Ra. Thus, Ra is a subgroup of (R,+).
Finally, for all r ∈ R and r′a ∈ Ra, we have that r(r′a) = (rr′)a ∈ Ra.
We conclude that Ra is a left-ideal of R. In the same fashion, we can
prove that aR is a right-ideal of R.

For the second part, let a ∈ R be a left-unit. Thus, there exists b ∈ R
such that ab = 1 and so 1 ∈ aR. Since aR is a right-ideal, it follows
that r = 1 · r ∈ aR for all r ∈ R and we have that R = aR. Conversely,
if R = aR, there exists b ∈ R such that ab = 1 and, therefore, a is a
left-unit. It can be similarly shown that a ∈ R is a right-unit if and
only if R = Ra. �
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Exercise 3.8

� Solution T �

Exercise 3.9

� Solution A �

Exercise 3.10 B Let ϕ : k→ R be a ring homomorphism, where k
is a field and R is a nonzero ring. Prove that ϕ is injective. [§V.4.2,
§V.5.2]

� Solution Observe that ker ϕ is an ideal of k. Since fields only
have {0} and k as ideals, it follows that ker ϕ = {0}, since a ring
homomorphism to a nonzero ring is necessarily non-constant. (It
should map identities to identities.) �

Exercise 3.11 Let R be a ring containing C as a subring. Prove that
there are no ring homomorphisms R→ R.

� Solution Suppose that there were a ring homomorphism ϕ : R→
R. Then, we would have that

ϕ(i)2 = ϕ(i2) = ϕ(−1) = −ϕ(1) = −1 < 0,

a contradiction since x2 ≥ 0 for all x ∈ R. Therefore, there are no ring
homomorphisms from R to R. �

Exercise 3.12

� Solution T �

Exercise 3.13

� Solution A �

Exercise 3.14 ¬ Prove that the characteristic of an integral domain
is either 0 or a prime integer. Do you know any ring of characteristic
1? [V.4.17]

� Solution Let R be an integral domain of positive characteristic n.
Lets suppose that n = ab, where a, b > 1. Also, let f : Z → R be the
unique ring homomorphism from Z to R. Since ker f = nZ,

f (n) = f (ab) = f (a) f (b) = 0.

But R is an integral domain, hence either f (a) or f (b) is zero. This
contradicts our assumption. Thus n is a prime integer.

If the characteristic of a ring is 1, then it necessarily is the zero-ring.
In fact, such a ring has 0 = f (0) = f (1) = 1, where f is the same
homomorphism as before. �
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Exercise 3.15 ¬ A ring R is Boolean if a2 = a for all a ∈ R. Prove
that P(S) is Boolean, for every set S (cf. Exercise 1.2). Prove that
every nonzero Boolean ring is commutative, and has characteristic
2. Prove that if an integral domain R is Boolean, then R ∼= Z/2Z.
[4.23, V.6.3]

� Solution It is clear that P(S) is Boolean for every set S since
A2 = A ∩ A = A for all A ⊆ S.

Let R be a nonzero Boolean ring . Note that r = r2 = (−r)2 = −r
for all r ∈ R. In particular, 1 = −1 and so the order of 1 as an element
of (R,+) is 2, that is, R is of characteristic 2. Finally, we have that

a + b = (a + b)2 = a2 + ab + ba + b2 = a + ab + ba + b

and this implies that

ab + ba = 0 =⇒ ab = −ba = ba

for all a, b ∈ R. Therefore, R is commutative.
For the last part, suppose that R is a Boolean integral domain. If

x ∈ R is nonzero, we conclude from x2 = x = x · 1 that x = 1 by the
cancellation law. Therefore, R has only two elements and it follows
immediately that R ∼= Z/2Z. �

Exercise 3.16

� Solution T �

Exercise 3.17

� Solution A �

4 ideals and quotients : remarks and examples .

Exercise 4.1 B Let R be a ring, and let {Iα}α∈A be a family of
ideals of R. We let

∑
α∈A

Iα :=

{
∑

α∈A
rα

∣∣∣∣∣ rα ∈ Iα and rα = 0 for all but finitely many α

}
.

Prove that ∑α Iα is an ideal of R and that it is the smallest ideal
containing all of the ideals Iα. [§4.1]

� Solution Distributivity implies immediately that ∑α Iα is an ideal
of R. Now, let I be an ideal of R containing all of the ideals Iα. Since
it is a subgroup (of (R,+)), it contains ∑α Iα. This means that ∑α Iα is
the smallest ideal containing all of the Iα. �
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Exercise 4.2

� Solution T �

Exercise 4.3 Prove that the ideal (2, x) of Z[x] is not principal.

� Solution Suppose that there exists p(x) ∈ Z[x] such that (2, x) =
(p(x)). Since 2 ∈ (2, x), there exists f (x) ∈ Z[x] such that 2 =

f (x)p(x). By Exercise 1.15, Z[x] is an integral domain, so Exercise
1.14 implies that deg(p(x)) = 0 and there is a nonzero constant c ∈ Z

such that p(x) = c. Since x ∈ (2, x), there exists g(x) ∈ Z[x] such that
x = g(x)p(x) = cg(x). Again by Exercise 1.14, deg(g(x)) = 1 and so
there are a, b ∈ Z such that g(x) = a+ bx. Thus, since x = (ac)+ (bc)x,
we must have bc = 1 and so c = 1 or c = −1, which are the only
units of Z. It follows that 1 ∈ (2, x) and there are h1(x), h2(x) ∈ Z[x]
such that 1 = 2h1(x) + xh2(x). This implies that the constant term of
2h1(x) equals to 1 because the constant term of xh2(x) is 0. But all
coefficients of 2h1(x) are even and 1 is odd, a contradiction. Therefore,
(2, x) cannot be a principal ideal of Z[x]. �

Exercise 4.4

� Solution A �

Exercise 4.5 B Let I, J be ideals in a ring R, such that I + J = (1).
Prove that I J = I ∩ J. [§4.1]

� Solution As we saw in §4.1, I J ⊆ I ∩ J. Now, let a ∈ I ∩ J. Since
I + J = (1), we write 1 = i + j, where i ∈ I and j ∈ J. This implies that

a = a · 1 = ai + aj ∈ I J.

The result follows. �

Exercise 4.6

� Solution T �

Exercise 4.7 B Let R = k be a field. Prove that every nonzero
(principal) ideal in k[x] is generated by a unique monic polynomial.
[§4.2, §VI.7.2]

� Solution Let I be an ideal of k[x]. By Exercise 4.4, I is principal,
that is, there exists f (x) ∈ k[x] such that I = ( f (x)). If a ∈ k is
the leading coefficient of f (x), take m(x) = a−1 f (x) ∈ I. It follows
that m(x) is monic and it generates I. Furthermore, if m′(x) is also a
monic polynomial that generates I, we have that m(x) divides m′(x)
and m′(x) divides m(x). Thus, deg(m(x)) = deg(m′(x)) and m′(x) =
cm(x) for some c ∈ k. Since both of them are monic, we must have
c = 1 and, therefore, m(x) is unique. �
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Exercise 4.8

� Solution A �

Exercise 4.9 Generalize the result of Exercise 4.8, as follows. Let
R be a commutative ring, and let f (x) be a left-zero-divisor in
R[x]. Prove that ∃b ∈ R, b 6= 0, such that f (x)b = 0. (Hint: Let
f (x) = adxd + · · ·+ a0, and let g(x) = bexe + · · ·+ b0 be a nonzero
polynomial of minimal degree e such that f (x)g(x) = 0. Deduce
that adg(x) = 0, and then prove ad−ig(x) = 0 for all i, by induction.
What does this say about be?)

� Solution Let f (x) and g(x) be as in the hint. Since f (x)g(x) = 0,
it follows that adbe = 0. This implies that the degree of adg(x) is less
than e. Now, as

f (x)(adg(x)) = ad( f (x)g(x)) = 0

and g(x) was the nonzero polynomial of minimal degree with this
property, we have that adg(x) = 0. In particular, we have that adbe−1 =

0. Since the coefficient of xd+e−1 in f (x)g(x) is adbe−1 + ad−1be, this
implies that ad−1be = 0 and thus ad−1g(x) = 0. Similarly we conclude
that ad−ig(x) = 0 for all i.

Since ad−ig(x) = 0 for all i, we have in particular that ad−ibe = 0 for
all i. In other words, f (x)be = 0. �

Exercise 4.10

� Solution T �

Exercise 4.11 Let R be a commutative ring, a ∈ R, and f1(x), . . . ,
fr(x) ∈ R[x].

• Prove the equality of ideals

( f1(x), . . . , fr(x), x− a) = ( f1(a), . . . , fr(a), x− a).

• Prove the useful substitution trick

R[x]
( f1(x), . . . , fr(x), x− a)

∼=
R

( f1(a), . . . , fr(a))
.

(Hint: Exercise 3.3.)

� Solution

• Let I = ( f1(x), . . . , fr(x), x− a) and J = ( f1(a), . . . , fr(a), x− a).
It suffices to show that the generators of I are in J, and vice
versa. Since x− a is monic, we can divide fi(x) by x− a and so
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fi(x) = qi(x)(x− a) + ri, where qi(x) ∈ R[x] and ri ∈ R, for all
i ∈ {1, . . . , r}. Replacing x by a, we see that ri = fi(a), thus

fi(x) = qi(x)(x− a) + fi(a) ∈ J

and
fi(a) = fi(x)− qi(x)(x− a) ∈ I

for all i ∈ {1, . . . , r}. Therefore, I = J.

• Let ϕ : R[x]→ R be the homomorphism of evaluation by a. As
in Example 4.7, ker ϕ = (x− a) and, since ϕ is surjective,

R[x]
(x− a)

∼= R.

On the other hand, if we take the ideal J = ( f1(x), . . . , fr(x)) in
R[x], we see that J = ϕ(J) = ( f1(a), . . . , fr(a)) and, by Exercise
3.3,

R[x]/(x− a)
J

∼=
R[x]

J + (x− a)
=

R[x]
( f1(x), . . . , fr(x), x− a)

.

The first isomorphism above implies that

R[x]
( f1(x), . . . , fr(x), x− a)

∼=
R

( f1(a), . . . , fr(a))
,

as desired. �

Exercise 4.12

� Solution A �

Exercise 4.13 B Let R be an integral domain. For all k = 1, . . . , n
prove that (x1, . . . , xk) is prime in R[x1, . . . , xn]. [§4.3]

� Solution Let ϕ : R[x1, . . . , xn] → R[xk+1, . . . , xn] be the morphism
which sets the first k indeterminates to 0. It is clearly surjective and its
kernel is (x1, . . . , xk), which implies that

R[x1, . . . , xn]

(x1, . . . , xk)
∼= R[xk+1, . . . , xn].

(We can also do this by repeated application of the result in Example
4.7.) Since R[xk+1, . . . , xn] is an integral domain (as R is), the result
follows. �

Exercise 4.14

� Solution T �
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Exercise 4.15 Let ϕ : R→ S be a homomorphism of commutative
rings, and let I ⊆ S be an ideal. Prove that if I is a prime ideal
in S, then ϕ−1(I) is a prime ideal in R. Show that ϕ−1(I) is not
necessarily maximal if I is maximal.

� Solution By Exercise 3.2, we know that ϕ−1(I) is an ideal of R. Now,
let a, b ∈ R be such that ab ∈ ϕ−1(I), that is, ϕ(ab) = ϕ(a)ϕ(b) ∈ I.
Since I is a prime ideal, ϕ(a) ∈ I or ϕ(b) ∈ I, and so a ∈ ϕ−1(I) or
b ∈ ϕ−1(I). Therefore, ϕ−1(I) is a prime ideal in R.

Note that ϕ−1(I) need not be maximal if I is maximal. Indeed,
consider the inclusion homomorphism ϕ : Z → Q. By Exercise 3.8,
I = {0} is a maximal ideal in Q, but ϕ−1(I) = {0} is not maximal in
Z. �

Exercise 4.16

� Solution A �

Exercise 4.17 ¬ (If you know a little topology...) Let K be a compact
topological space, and let R be the ring of continuous real-valued
functions on K, with addition and multiplication defined pointwise.

(i) For p ∈ K, let Mp = { f ∈ R | f (p) = 0}. Prove that Mp is a
maximal ideal in R.

(ii) Prove that if f1, . . . , fr ∈ R have no common zeros, then
( f1, . . . , fr) = (1). (Hint: Consider f 2

1 + · · ·+ f 2
r .)

(iii) Prove that every maximal ideal M in R is of the form Mp for
some p ∈ K. (Hint: You will use the compactness of K and
(ii).)

Conclude that p 7→ Mp defines a bijection from K to the set of
maximal ideals of R. (The set of maximal ideals of a commutative
ring R is called the maximal spectrum of R; it is contained in the
(prime) spectrum Spec R, defined in §4.3. Relating commutative
rings and ’geometric’ entities such as topological spaces is the
business of algebraic geometry.)

The compactness hypothesis is necessary: cf. Exercise V.3.10.
[V.3.10]

� Solution

(i) Let ϕ : R→ R be defined by f 7→ f (p). This is clearly a surjective
(since constant functions are continuous) homomorphism with
Mp as kernel. Thus,

R
Mp
∼= R,

which means that Mp is a maximal ideal.
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(ii) If f1, . . . , fr ∈ R have no common zeros, then

1 =
f 2
1 + · · ·+ f 2

r

f 2
1 + · · ·+ f 2

r
∈ ( f1, . . . , fr).

This implies that (1) ⊆ ( f1, . . . , fr) and the result follows.

(iii) Lets suppose that M is a maximal ideal such that M * Mp for
all p ∈ K. This implies that for all p ∈ K we have a continuous
function fp ∈ M such that fp(p) 6= 0. By continuity, there exists
a neighborhood Np of p such that fp(q) 6= 0 for all q ∈ Np.
The compactness of K implies that Np1 , . . . , Npn cover K and thus
fp1 , . . . , fpn share no common zeros. (Since a common zero would
not be in any of the Npk ’s.)

Now, by (ii), 1 ∈ ( fp1 , . . . , fpn) ⊆ M. In other words, M = R and
thus M is not maximal. This contradiction establishes the result.

The third item says precisely that p 7→ Mp is a surjective function
from K to the maximal spectrum of R. In order to prove injectivity, we
need to show that if p 6= q there exists a continuous function f such
that f (p) = 0 and f (q) 6= 0. If K is normal, this is exactly Urysohn’s
Lemma. Since compact Hausdorff spaces are automatically normal,
this suggests that maybe P. Aluffi forgot to add ’Hausdorff’ to the
hypothesis in the statement of the question. If K is not Hausdorff,
there are counter-examples to Urysohn’s Lemma. (Any non-normal
space suffices.) �

Exercise 4.18

� Solution T �

Exercise 4.19 Let R be a commutative ring, let P be a prime ideal
in R, and let Ij be ideals of R.

(i) Assume that I1 · · · Ir ⊆ P; prove that Ij ⊆ P for some j.

(ii) By (i), if P ⊇ ⋂r
j=1 Ij, then P contains one of the ideals Ij.

Prove or disprove: if P ⊇ ⋂∞
j=1 Ij, then P contains one of the

ideals Ij.

� Solution

(i) Suppose that none of the ideals Ij is contained in P. Thus, there
are ij ∈ Ij such that ij 6∈ P for all j ∈ {1, . . . , r}. But since
I1 · · · Ir ⊆ P, i1 · · · ir ∈ P and, since P is a prime ideal, ij ∈ P for
some j ∈ {1, · · · , r}, a contradiction. Therefore, P must contain
one of the ideals Ij.

(ii) Since I1 · · · Ir ⊆
⋂r

j=1 Ij ⊆ P, it follows from (i) that P contains
one of the ideals Ij. However, this statement is not true if we take
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an infinite intersection of ideals. For Example, (0) is a prime
ideal in Z since it is an integral domain, and (0) ⊇ ⋂∞

n=1 nZ, but
(0) 6⊇ nZ for all n ≥ 1. �

Exercise 4.20

� Solution A �

Exercise 4.21 B Let k be an algebraically closed field, and let I ⊆
k[x] be an ideal. Prove that I is maximal if and only if I = (x− c)
for some c ∈ k. [§4.3, §V.5.2, §VII.2.1, §VII.2.2]

� Solution As we saw in Example 4.7,

k[x]
(x− c)

∼= k,

even if k is not algebraically closed. This implies that (x− c) is maximal
in k[x] if k is any field.

Conversely, let I be a maximal ideal in k[x], where we now suppose
that k is algebraically closed. Since k[x] is a PID, I = ( f (x)) for some
f (x) ∈ k[x]. This polynomial is not constant, since it would imply
that I = k[x], which is not maximal. Now, as f (x) has a root c ∈ k,
f (x) = (x− c)g(x) for some g(x) ∈ k[x]. In particular f (x) ∈ (x− c)
and thus I ⊆ (x− c). Finally, since I is maximal, I = (x− c). �

Exercise 4.22

� Solution T �

Exercise 4.23 A ring R has Krull dimension 0 if every prime ideal
in R is maximal. Prove that fields and Boolean rings (Exercise 3.15)
have Krull dimension 0.

� Solution If K is a field, Exercise 3.8 implies that its only ideals are
(0) and K itself. It is clear that the only prime ideal of K is (0) and
that it is maximal. Therefore, K has Krull dimension 0.

Let P be a prime ideal of a nonzero Boolean ring R. It follows that
R/P is an integral domain and it is clear that it is also Boolean. By
Exercise 3.15, R/P ∼= Z/2Z and, hence, it is indeed a field and so
P is maximal. We conclude that nonzero Boolean rings have Krull
dimension 0. �

Exercise 4.24

� Solution A �

5 modules over a ring
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Exercise 5.1 B Let R be a ring. The opposite ring R◦ is obtained
from R by reversing the multiplication: that is, the product a • b in
R◦ is defined to be ba ∈ R. Prove that the identity map R→ R◦ is
an isomorphism if and only if R is commutative. Prove thatMn(R)

is isomorphic to its opposite (not via the identity map!). Explain
how to turn right-R-modules into left-R-modules and conversely, if
R ∼= R◦. [§5.1, VIII.5.19]

� Solution The identity map R → R◦ is a homomorphism if and
only if

ab = id(ab) = id(a) • id(b) = id(b) id(a) = ba,

for all a, b ∈ R. In other words, it is a homomorphism if and only if R
is commutative.

Finally, the transposition map A 7→ AT is an isomorphism from
Mn(R) to its opposite.

Lets say (M,+, ·) is a left-R-module and we denote by r 7→ r◦ the
isomorphism from R to R◦. This allows us to define a right-R-module
M◦ whose elements are the same as those of M and whose operations
⊕ and � are given by

m⊕ n = m + n and m� r = r◦ ·m.

Clearly M and M◦ are the same as abelian groups. The reader can
easily verify that M◦ also satisfies the axioms in Definition 5.2. �

Exercise 5.2

� Solution T �

Exercise 5.3 B Let M be a module over a ring R. Prove that 0 ·m =

0 and that (−1) ·m = −m, for all m ∈ M. [§5.2]

� Solution By the properties of R-modules, we have that 0 · m =

(0 + 0) · m = 0 · m + 0 · m. It follows from the cancellation law that
0 · m = 0 for all m ∈ M. Now, note that m + (−1) · m = 1 · m +

(−1) · m = (1 + (−1)) · m = 0 · m = 0 = m + (−m). Again by the
cancellation law, (−1) ·m = −m for all m ∈ M. �

Exercise 5.4

� Solution A �

Exercise 5.5 Let R be a ring, viewed as an R-module over itself,
and let M be an R-module. Prove that HomR-Mod(R, M) ∼= M as
R-modules.

� Solution Observe that any R-module homomorphism ϕ : R→ M
satisfies

ϕ(r) = ϕ(r · 1) = rϕ(1)
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and thus is determined by ϕ(1). This leads us to consider

f : HomR-Mod(R, M)→ M

ϕ 7→ ϕ(1).

Our observation says precisely that f is injective. This function is also
clearly a surjective morphism of R-modules, hence it is our desired
isomorphism. �

Exercise 5.6

� Solution T �

Exercise 5.7 Let K be a field, and let k ⊆ K be a subfield of K.
Show that K is a vector space over k (and in fact a k-algebra) in a
natural way. In this situation, we say that K is an extension of k.

� Solution If we take the inclusion homomorphism α : k → K, we
can define ρ : k× K → K as in Example 5.6 by

ρ(r, s) = rs

for all r ∈ k and s ∈ K, where rs is the multiplication of r and s in
K. The axioms of Definition 5.2 are clearly satisfied since K is a field
and, thus, K is a vector space over k. Moreover, since k and K are
commutative, Definition 5.7 tells us that K is indeed a k-algebra. �

Exercise 5.8

� Solution A �

Exercise 5.9 ¬ Let R be a commutative ring, and let M be an R-
module. Prove that the operation of composition on the R-module
EndR-Mod(M) makes the latter an R-algebra in a natural way.

Prove thatMn(R) (cf. Exercise 1.4) is an R-algebra, in a natural
way. [VI.1.12, VI.2.3]

� Solution Similarly as in Ab, EndR-Mod(M) is a ring with addition
and composition as operations. Also, since EndR-Mod(M) is just an-
other name for HomR-Mod(M, M), it is clearly a R-module, as observed
in §5.2. In conclusion, it is an R-algebra in a natural way.

The addition and multiplication of matrices endowMn(R) with the
structure of a ring. Now, the element-wise multiplication by elements
of R promotesMn(R) to the status of an R-algebra. �

Exercise 5.10

� Solution T �
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Exercise 5.11 B Let R be a commutative ring, and let M be an
R-module. Prove that there is a bijection between the set of R[x]-
module structures on M (extending the given R-module structure)
and EndR-Mod(M). [§VI.7.1]

� Solution The set of R[x]-module structures on M extending the
given R-module structure is in bijection with the set S of ring homo-
morphisms σ∗ : R[x]→ EndAb(M) such that the restriction of σ∗ to R
is the ring homomorphism σ : R→ EndAb(M), which represents the
R-module structure on M. Let α ∈ EndR-Mod(M). Since α(rm) = rα(m)

for all r ∈ R and m ∈ M, it follows that α commutes with σ(r) for
all r ∈ R. By Example 2.3 and Exercise 2.6, there exists a unique ring
homomorphism σα : R[x]→ EndAb(M) extending σ and sending x to
α. Thus, we may define

f : EndR-Mod(M) −→ S

α 7−→ σα.

Now, let σ∗ ∈ S. We claim that σ∗(x) ∈ EndR-Mod(M). Indeed, since
x commutes with every constant polynomial of R[x], σ∗(x) must
commute with σ∗(r) = σ(r) for all r ∈ R. Therefore, σ∗(x)(rm) =

rσ∗(x)(m) for all r ∈ R and m ∈ M, so σ∗(x) ∈ EndR-Mod(M) and we
can define

g : S −→ EndR-Mod

σ∗ 7−→ σ∗(x).

It is clear that f and g are inverses for each other, so they are bijections,
as desired. �

Exercise 5.12

� Solution A �

Exercise 5.13 Let R be an integral domain, and let I be a nonzero
principal ideal of R. Prove that I is isomorphic to R as an R-module.

� Solution Let I = (a). Since I is nonzero, so is a. The function

R→ I

r 7→ ra

is clearly a surjective R-module morphism. Since R is an integral
domain and a 6= 0, ra = rs implies r = s and thus this function is also
injective. The result follows. �

Exercise 5.14

� Solution T �
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Exercise 5.15 Let R be a commutative ring, and let I, J be ideals
of R. Prove that I · (R/J) ∼= (I + J)/J as R-modules.

� Solution We will prove that I · (R/J) ∼= I/(I ∩ J) and the exercise
will be a consequence of Proposition 5.18. Let ϕ : I → I · (R/J) be
given by

ϕ(i) = i(1 + J)

for all i ∈ I. Note that ϕ is a homomorphism of R-modules since

ϕ(i1 + i2) = (i1 + i2)(1 + J) = i1(1 + J) + i2(1 + J) = ϕ(i1) + ϕ(i2)

and
ϕ(ri) = (ri)(1 + J) = r(i(1 + J)) = rϕ(i)

for all i1, i2, i ∈ I and r ∈ R. Moreover, it is surjective because, given
∑n

k=1 ik(rk + J) ∈ I · (R/J), we have that

ϕ(
n

∑
k=1

ikrk) =
n

∑
k=1

ikrk(1 + J) =
n

∑
k=1

ik(rk + J)

and ∑n
k=1 ikrk ∈ I since I is an ideal of R. By Corollary 5.16,

I · (R/J) ∼=
I

ker ϕ

and note that

ker ϕ = {i ∈ I | ϕ(i) = 0I·(R/J)}
= {i ∈ I | i(1 + J) = J}
= {i ∈ I | (i + J) = J}
= {i ∈ I | i ∈ J}
= I ∩ J,

as desired. �

Exercise 5.16

� Solution A �

Exercise 5.17 B Let R be a commutative ring, and let I be an ideal
of R. Noting that I j Ik ⊆ I j+k, define a ring structure on the direct
sum

ReesR(I) :=
⊕
j≥0

I j = R⊕ I ⊕ I2 ⊕ I3 ⊕ · · · .

The homomorphism sending R identically to the first term in this
direct sum makes ReesR(I) into an R-algebra, called the Rees algebra
of I. Prove that if a ∈ R is a non-zero-divisor, then the Rees algebra
of (a) is isomorphic to the polynomial ring R[x] (as an R-algebra).
[5.18]
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� Solution The condition that I j Ik ⊆ I j+k (which is clear, since
we even have equality) hints that we can define in ReesR(I) a ring
structure based on the polynomial ring. That is, we do element-wise
addition and ’polynomial’ multiplication. We then write an element
of ReesR(I) as

r + i1 + i2 + i3 + . . . ,

where this sum is finite (since ReesR(I) is a direct sum), r is an element
of R, and ik is a finite sum of products of k elements of I. The ’polyno-
mial’ multiplication in ReesR(I) amounts to forcing the distributive
law to hold in this notation. This makes it clear that this is in fact a
ring. It is an R-algebra in exactly the same way that R[x] is.

If a ∈ R is a non-zero-divisor, an element of ReesR((a)) can be
written as

r0 + r1a + r2a2 + r3a3 + . . . ,

where the rk are in R and this sum is finite. It is clear that

r0 + r1a + r2a2 + . . . + rnan 7→ r0 + r1x + r2x2 + . . . + rnxn

is an isomorphism of R-algebras. �

Exercise 5.18

� Solution T �

6 products , coproducts , etc . , in R-mod

Exercise 6.1

� Solution A �

Exercise 6.2 Prove or disprove that if R is a ring and M is a nonzero
R-module, then M is not isomorphic to M⊕M.

� Solution Take R = Z and M = Z⊕N. We can utilize Exercise 6.5
to conclude that

M⊕M ∼= Z⊕N2 ∼= Z⊕Z = M.

Nevertheless, we can also construct this isomorphism explicitly: let

ϕ : M→ M⊕M

be defined by sending ϕ ∈ M to (n 7→ ϕ(2n), n 7→ ϕ(2n− 1)). This is
clearly a R-module isomorphism. �
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Exercise 6.3 Let R be a ring, M an R-module, and p : M→ M an
R-module homomorphism such that p2 = p. (Such a map is called
a projection.) Prove that M ∼= ker p⊕ im p.

� Solution Define ϕ : ker p⊕ im p→ M by

ϕ(k, i) = k + i

for all k ∈ ker p and i ∈ im p. It is clear that ϕ is a homomorphism
of R-modules. Let’s prove it is indeed an isomorphism. Firstly, given
k, k′ ∈ ker p, i, i′ ∈ im p, there are m, m′ ∈ M such that i = p(m) and
i′ = p(m′), so

ϕ(k, i) = ϕ(k′, i′) =⇒ k + i = k′ + i′

=⇒ p(k + i) = p(k′ + i′)

=⇒ p(k) + p2(m) = p(k′) + p2(m′)

=⇒ p(m) = p(m′)

=⇒ i = i′ and k = k′

and it follows that ϕ is injective. Now, given m ∈ M, we have that m =

(m − p(m)) + p(m). Since p(m − p(m)) = p(m) − p2(m) = p(m) −
p(m) = 0, m− p(m) ∈ ker p and so ϕ(m− p(m), p(m)) = m, implying
that ϕ is also surjective. Therefore, ϕ is an isomorphism and we have
that M ∼= ker p⊕ im p.

We can also prove the desired isomorphism using the universal
property of the product of ker p and im p in R-Mod. Take πker : M→
ker p as πker(m) = m− p(m) and πim : M → im p as πim(m) = p(m),
for all m ∈ M. Note that πker really is a homomorphism and that
m − p(m) ∈ ker p since p2 = p. Now, let Z be an R-module and
ϕker : Z → ker p, ϕim : Z → im p be homomorphisms of R-modules.
If σ : Z → M is an R-module homomorphism such that the diagram

ker p

Z M

im p

ϕker

σ

ϕim

πker

πim

commutes, we have that

σ(m) = (σ(m)− p(σ(m))) + p(σ(m))

= (πker ◦ σ)(m) + (πim ◦ σ)(m)

= ϕker(m) + ϕim(m)

for all m ∈ M. Thus, σ is uniquely determined by the commutativity
of the diagram and it is immediate that setting σ as above really
defines an R-module homomorphism. Therefore, M with πker and
πim satisfies the universal property of the product of ker p and im p in
R-Mod, and so M ∼= ker p⊕ im p. �
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Exercise 6.4

� Solution T �

Exercise 6.5

� Solution A �

Exercise 6.6 ¬ Let R be a ring, and let F = R⊕n be a finitely
generated free R-module. Prove that HomR-Mod(F, R) ∼= F. On the
other hand, find an example of a ring R and a nonzero R-module
M such that HomR-Mod(M, R) = 0. [6.8]

� Solution The R-module
HomR-Mod(M, R)
is called the dual
module of M and is
denoted by M∨.

Following §6.3, we write j(i) for the vector

(0, 0, . . . , 1, . . . , 0),

where the 1 is in the i-th place. (In linear algebra lingo, this is the i-th
element of the canonical basis.) Observe that any element r ∈ F can be
written as

r = (r1, r2, . . . , rn) = r1 j(1) + r2 j(2) + . . . + rn j(n).

We conclude that any morphism ϕ ∈ HomR-Mod(F, R) satisfies

ϕ(r) = r1ϕ(j(1)) + r2ϕ(j(2)) + . . . + rn ϕ(j(n))

and thus is determined by the data of ϕ(j(i)) for all i. In other words,
the function

HomR-Mod(F, R)→ F

ϕ 7→ (ϕ(j(1)), ϕ(j(2)), . . . , ϕ(j(n)))

is injective. Since the map that assigns

(r1, r2, . . . , rn) 7→ r1e1 + r2e2 + . . . + rnen

to (e1, e2, . . . , en) is its inverse, we conclude that it is bijective. Moreover,
since its clear that this is an morphism of R-modules, this is the desired
isomorphism.

Finally, consider M = Q as a Z-module. If ϕ ∈ HomZ-Mod(Q, Z),
then

f (r) = 2n f
( r

2n

)
,

so that f (r) is an integer divisible by 2n for all n. This implies that
f (r) = 0 for all r ∈ Q. In other words, HomZ-Mod(Q, Z) = 0. �

Exercise 6.7 B Let A be any set.

• For any family {Ma}a∈A of modules over a ring R, define the
product ∏a∈A Ma and coproduct

⊕
a∈A Ma. If Ma ∼= R for all

a ∈ A, these are denoted RA, R⊕A, respectively.

• Prove that ZN 6∼= Z⊕N. (Hint: Cardinality.)
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[§6.1, 6.8]

� Solution

• The definitions of products and coproducts in R-Mod are the
same as the ones given for general categories in Exercise I.5.10.
Thus, the product ∏a∈A Ma with R-module homomorphisms
{πj : ∏a∈A Ma → Mj}j∈A satisfies the following universal prop-
erty: for every R-module Z and R-module homomorphisms
{ f j : Z → Mj}j∈A there exists a unique homomorphism σ : Z →
∏a∈A Ma such that πj ◦ σ = f j for all j ∈ A.

Similarly, the coproduct
⊕

a∈A Ma with R-module homomor-
phisms {ij : Mj →

⊕
a∈A Ma}j∈A satisfies the following univer-

sal property: for every R-module Z and morphisms { f j : Mj →
Z}j∈A there exists a unique homomorphism σ :

⊕
a∈A Ma → Z

such that σ ◦ ij = f j for all j ∈ A.

As usual, they do exist in R-Mod. The product is the module
obtained by endowing

∏
a∈A

Ma =

{
f : A→

⋃
a∈A

Ma

∣∣∣∣∣ (∀a ∈ A) : f (a) ∈ Ma

}
with the usual operations and the coproduct is the submodule
of ∏a∈A Ma given by the functions f such that f (a) 6= 0 for only
finitely many a ∈ A. The projections πj and the inclusions ij
are similar to the case with just two modules. Moreover, the
proof that they satisfy the corresponding universal properties is
analogous to the proof of Proposition 6.1.

• We claim that Z⊕N is countable as a set, that is, there is a bijective
set-function between N and Z⊕N. Let Xn be defined by

Xn = { f ∈ Z⊕N|(∀m ≥ n) : f (m) = 0}

for all n ≥ 1. There is a natural injection ϕn : Xn → Zn such
that ϕn( f ) = ( f (0), . . . , f (n − 1)) for all f ∈ Xn. Since Z is
countable and ϕn is injective, Zn is also countable and, thus, Xn

is countable for all n ≥ 1. Finally, note that Z⊕N =
⋃

n≥1 Xn,
which is a countable union of countable sets. Therefore, Z⊕N is
countable. By the Remark below, ZN is not countable and so we
conclude that ZN 6∼= Z⊕N. �

Remark. In the proof above, we used some results about count-
able sets that we did not prove. Their proof do not fit here and
the reader is encouraged to check these results in other books.
However, we shall prove one of them, which involves the famous
Cantor’s diagonal argument.
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Proposition. Let A and B be sets such that A 6= ∅ and B has at
least two distinct elements. Then, any function f : A→ BA cannot
be surjective.

Proof. Let b, b′ ∈ B be two distinct elements of B. Given f : A→
BA, define ϕ : A→ B by

ϕ(x) =

b′, if ( f (x))(x) = b

b, otherwise

for all x ∈ A. Note that ϕ ∈ BA and that ϕ(x) 6= ( f (x))(x) for all
x ∈ A. Therefore, ϕ 6∈ im f and it follows that f is not surjective.

The German mathematician Georg Cantor (1845-1918) proved
this result and used it to show, for example, that the set of the
real numbers is uncountable and that P(A) has a strictly greater
cardinality than A itself, for every set A. In our case, we can use
it to show that there is no bijection between N and ZN, so ZN is
not countable.

Exercise 6.8

� Solution T �

Exercise 6.9

� Solution A �

Exercise 6.10 B (Cf. Exercise I.5.12.) Let M, N, and Z be R-modules,
and let µ : M→ Z, ν : N → Z be homomorphisms of R-modules.

Prove that R-Mod has ’fibered products’: there exists an R-module
M×Z N with R-module homomorphisms πM : M×Z N → M, πN :
M×Z N → N, such that µ ◦ πM = ν ◦ πN , and which is universal
with respect to this requirement. That is, for each R-module P and
R-module homomorphisms ϕM : P → M, ϕN : P → N such that
µ ◦ ϕM = ν ◦ ϕN , there exists a unique R-module homomorphism
P→ M×Z N making the diagram

P

M×Z N N

M Z

∃!

ϕN

ϕM

πN

πM ν

µ
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commute. The module M×Z N may be called the pull-back of M
along ν (or of N along µ, since the construction is symmetric). ’Fiber
diagrams’

M×Z N N

�

M Z

ν

µ

are commutative, but ’even better’ than commutative; they are often
decorated by a square, as shown here. [§6.1, 6.11, §IX.1.4]

� Solution As we did in Exercise I.5.12, we define the module M×Z

N as
M×Z N := {(x, y) ∈ M⊕ N | µ(x) = ν(y)}

and the projections πM and πN as the restrictions of the projections
from M⊕N to M and N, respectively. Since we already proved most of
this in Set, we only have to prove that M×Z N is actually an R-module
and that the morphism P→ M×Z N is a morphism of R-modules.

In order to prove that M × ZN is a submodule of M ⊕ N, it suf-
fices to show that r1(x1, y1) + r2(x2, y2) is in M ×Z N as long as
(x1, y1), (x1, y2) ∈ M×Z N and r1, r2 ∈ R. In other words, that

µ(r1x1 + r2x2) = ν(r1y1 + r2y2).

This follows from the fact that µ and ν are homomorphisms of R-
modules.

As before, the commutativity of the diagram forces the morphism
P→ M×Z N to be

z 7→ (ϕM(z), ϕN(z)),

which is clearly a morphism of R-modules. �

Exercise 6.11 B Define a notion of fibered coproduct of two R-
modules M, N, along an R-module A, in style of Exercise 6.10

(and cf. Exercise I.5.12)

A N

M M⊕A N

ν

µ

Prove that fibered coproducts exist in R-Mod. The fibered coproduct
M⊕A N is called the push-out of M along ν (or of N along µ). [§6.1]

� Solution We define fibered coproducts similarly to the previous
exercise. Let M, N and A be R-modules and µ : A → M, ν : A → N
be homomorphisms of R-modules. A module M⊕A N with R-module
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homorphisms iM : M → M ⊕A N, iN : N → M ⊕A N is a fibered
coproduct of M and N along A if iMµ = iNν and the following
universal property is satisfied: for every R-module P and R-module
homomorphisms ϕM : M → P, ϕN : N → P such that ϕMµ = ϕNν,
there exists a unique R-module homomorphism σ : M ⊕A N → P
making the diagram below commute:

P

M⊕A N M

N A .

σ

iM

ϕM

iN

ϕN
µ

ν

The proof of the existence of fibered coproducts in R-Mod is similar
to Exercise II.3.9. Let i∗M : M → M ⊕ N, i∗N : N → M ⊕ N be the
natural injections of M and N into M ⊕ N. Let S ⊆ M ⊕ N be the
submodule generated by the elements of the form

(i∗M ◦ µ)(x)− (i∗N ◦ ν)(x)

for all x ∈ A. We define

M⊕A N = (M⊕ N)/S

and, if π is the canonical projection to the quotient, we take iM = πi∗M
and iN = πi∗N . Note that iMµ = iNν by the definition of S.

Let P be another R-module together with R-module homomor-
phisms ϕM : M → P, ϕN : N → P such that ϕMµ = ϕNν. By the
universal property of coproducts in R-Mod, there exists a unique R-
module homomorphism ϕ : M × N → P such that ϕM = ϕi∗M and
ϕN = ϕi∗N . Let’s show that S ⊆ ker ϕ. Since S is generated by the
elements of the form given above, it suffices to show that they are in
this kernel. Since ϕMµ = ϕNν,

ϕ((i∗Mµ)(x)− (i∗Nν)(x)) = ((ϕi∗M)µ)(x)− ((ϕi∗N)ν)(x)

= (ϕMµ)(x)− (ϕNν)(x)

= 0P

for all x ∈ A, and it follows that S ⊆ ker ϕ. By Theorem 5.14, there
exists a unique R-module homomorphism σ : M⊕A N → P such that
ϕ = σπ. Hence, the diagram shown above commutes because

σiM = σ(πi∗M) = (σπ)i∗M = ϕi∗M = ϕM

and, similarly, σiN = ϕN . Finally, suppose that there exists another
ρ : M ⊕A N → P such that the diagram above commutes. Since
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ϕM = ρiM = (ρπ)i∗M and ϕN = ρiN = (ρπ)i∗N , the uniqueness of ϕ

and σ implies that ϕ = ρπ and so ρ = σ. Therefore, σ is the only
homomorphism such that the diagram above commutes. We conclude
that M⊕A N with iM and iN is the desired fibered coproduct. �

Exercise 6.12

� Solution T �

Exercise 6.13

� Solution A �

Exercise 6.14 B Prove that the ideal (x1, x2, . . . ) of the ring R =

Z[x1, x2, . . . ] is not finitely generated (as an ideal, i.e., as an R-
module). [§6.4]

� Solution Let I = (x1, x2, . . . ) and lets suppose that I is finitely
generated. In other words, there is a finite set S = { f1, . . . , fn} ⊂ I
such that I = 〈S〉. Since S is finite, there’s a finite number of the xi
appearing in f1, . . . , fn. Let xk be such that xi does not appear in the
polynomials of S for i ≥ k.

Since xk ∈ I, we can write

xk = f1h1 + . . . + fnhn,

for polynomials h1, . . . , hn ∈ R. By evaluating every variable except xk
to 0 we find that

xk = 0,

which is an absurd. The result follows. �

Exercise 6.15 B Let R be a commutative ring. Prove that a commu-
tative R-algebra S is finitely generated as an algebra over R if and
only if it is finitely generated as a commutative algebra over R. (Cf.
§6.5.) [§6.5]

� Solution (⇐= ) Suppose that S is finitely generated as a commu-
tative algebra over R. Thus, there exists a surjective homomorphism
of R-algebras ϕ : R[x1, . . . , xn] → S for some n ∈ N. On the other
hand, by the universal property of free algebras, there exists an R-
algebra homomorphism ψ : R〈x1, . . . , xn〉 → R[x1, . . . , xn] such that
ψ(xi) = xi for all i ∈ {1, . . . , n}. We claim that ψ is surjective. Indeed,
every polynomial p(x) ∈ R[x1, . . . , xn] can be viewed as a polynomial
in R〈x1, . . . , xn〉 and, since ψ is a homomorphism and it preserves
the indeterminates, it follows that ψ(p(x)) = p(x) and ψ is surjective.
Therefore, ϕ ◦ ψ is a surjective homomorphism from R〈x1, . . . , xn〉 to
S and we conclude that S is finitely generated as an algebra over R.

( =⇒ ) Assume that R is finitely generated as an algebra over
R. Thus, there exists a surjective homomorphism of R-algebras ϕ :
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R〈x1, . . . , xn〉 → S. If j : {1, . . . , n} → R〈x1, . . . , xn〉 denotes the inclu-
sion from {1, . . . , n} to R〈x1, . . . , xn〉, we can take the function f = ϕ ◦ j.
Since S is commutative, this induces a function ϕ∗ : R[x1, . . . , xn]→ S
such that f = ϕ∗ ◦ j∗, where j∗ : {1, . . . , n} → R[x1, . . . , xn] denotes the
inclusion from {1, . . . , n} to R[x1, . . . , xn]. Let ψ be as in the previous
paragraph. We claim that the following diagram commutes:

R〈x1, . . . , xn〉 S

R[x1, . . . , xn] .

ψ

ϕ

ϕ∗

By the definition of ψ, we have that j∗ = ψ ◦ j and so (ϕ∗ ◦ ψ) ◦ j =
ϕ∗ ◦ j∗ = f . By the universal property of free algebras, ϕ is the unique
homomorphism satisfying this relation and, hence, ϕ = ϕ∗ ◦ ψ, that is,
the diagram commutes. Therefore, since ϕ is surjective, we conclude
that ϕ∗ is also surjective and so S is finitely generated as a commutative
algebra over R. �

Exercise 6.16

� Solution T �

Exercise 6.17

� Solution A �

Exercise 6.18 B Let M be an R-module, and let N be a submodule
of M. Prove that if N and M/N are both finitely generated, then
M is finitely generated. [§6.4]

� Solution Lets says that N is generated by x1, . . . , xn and M/N
by y1 + N, . . . , ym + N. If x is any element of M, then there exist
r1, . . . , rm ∈ R such that

x + N = r1y1 + . . . + rmym + N.

Now, since x− (r1y1 + . . . + rmym) ∈ N, there exist s1, . . . , sn ∈ R such
that

x− (r1y1 + . . . + rmym) = s1x1 + . . . + snxn.

This implies that M is generated by x1, . . . , xn, y1, . . . , ym. �

Remark. We can also prove it in a more abstract way if the reader
has already seen the results in section 7. By the hypothesis of the
exercise’s statement, we have the following morphisms:

0 R⊕n R⊕n ⊕ R⊕m R⊕m 0

0 N M M/N 0,
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where both rows are clearly exact. If we had a (not necessarily sur-
jective) morphism R⊕n⊕ R⊕m → M in the middle column making
this diagram commute, the snake lemma (Lemma 7.8) would im-
ply that it is surjective, proving that M is finitely generated. (We
can also use the result from Exercise 7.13.)

This morphism can be obtained in the following way: we obtain
a morphism (called a lift) R⊕m → M, which makes

R⊕m M/N

M

commute, by defining it on each j(i) (notation of §6.3) and us-
ing the surjectivity. Then, by considering the direct sum of this
morphism and of

R⊕n N M,

we obtain the desired morphism. The reader will observe that the
universal property of the coproduct is exactly what is needed to
have commutativity.

7 complexes and homology

Exercise 7.1

� Solution T �

Exercise 7.2

� Solution A �

Exercise 7.3 Assume that the complex

· · · 0 L M M′ N 0 · · ·ϕ

is exact. Show that, up to natural identifications, L = ker ϕ and
N = coker ϕ.

� Solution Let α : L → M be the homomorphism preceding ϕ in
the complex. By Example 7.1, α is injective and so we may identity L
with im α. Since the complex is exact, im α = ker ϕ and it follows that
L = ker ϕ.

Now, let β : M′ → N be the homomorphism after ϕ in the complex.
By Example 7.2 and Corollary 5.16, β is surjective and so we may
identity N with M′/ ker β. Since the complex is exact, ker β = im ϕ

and it follows that N = M′/ im ϕ = coker ϕ. �
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Exercise 7.4 Construct short exact sequences of Z-modules

0 Z⊕N Z⊕N Z 0

and
0 Z⊕N Z⊕N Z⊕N 0.

(Hint: David Hilbert’s Grand Hotel.)

� Solution Since, as we saw in §7.2, 0→ A→ A⊕ B→ B→ 0 is an
exact sequence, it suffices to show that

Z⊕N ∼= Z⊕N ⊕Z and Z⊕N ∼= Z⊕N ⊕Z⊕N.

The first isomorphism consists of simply sending ϕ ∈ Z⊕N to
(n 7→ ϕ(n + 1), ϕ(1)). The second isomorphism was established in
Exercise 6.2. �

Exercise 7.5

� Solution A �

Exercise 7.6

� Solution T �

Exercise 7.7 B Let

0 M N P 0

be a short exact sequence of R-modules, and L be an R-module.

(i) Prove that there is an exact sequence

0 HomR-Mod(P, L) HomR-Mod(N, L) HomR-Mod(M, L) .

(ii) Redo Exercise 6.17.

(Use the exact sequence 0 I R R/I 0 .)

(iii) Construct an example showing that the rightmost homomor-
phism in (i) need not be onto.

(iv) Show that if the original sequence splits, then the rightmost
homomorphism in (i) is onto.

� Solution

(i) Let α : M → N and β : N → P be the homomorphisms of the
exact sequence. Define

ϕ : HomR-Mod(P, L)→ HomR-Mod(N, L)

f 7−→ f ◦ β
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and

ψ : HomR-Mod(N, L)→ HomR-Mod(M, L)

g 7−→ g ◦ α.

It is clear that both ϕ and ψ are homomorphisms of R-modules
(or abelian groups, depending on the case). Let’s prove that the
corresponding sequence is exact.

Firstly, we claim that it is exact at HomR-Mod(P, L). Suppose
f ∈ HomR-Mod(P, L) is such that ϕ( f ) = 0, that is, f ◦ β = 0,
where 0 denotes the trivial homomorphism. By the exactness of
the first sequence, β is surjective and so it has a right-inverse β′

as set-function. It follows that

f = f (ββ′) = ( f β)β′ = 0 ◦ β′ = 0

and so ker ϕ = {0}, as desired.

Now, let’s prove that it is exact at HomR-Mod(N, L). Take g ∈
im ϕ, that is, g = f ◦ β for some f ∈ HomR-Mod(P, L). By the
exactness of the first sequence, β ◦ α = 0 and so

ψ(g) = g ◦ α = f ◦ (β ◦ α) = f ◦ 0 = 0.

Thus, g ∈ ker ψ and im ϕ ⊆ ker ψ. On the other hand, if g ∈
ker ψ, then g ◦ α = 0. This implies that im α ⊆ ker g and, by
Theorem 5.14, there exists a homomorphism f : N/ im α → L
such that g = f ◦ π, where π is the canonical projection. But
we know that im α = ker β and, since β is surjective, Corollary
5.16 tells us that N/ im α = N/ ker β ∼= P. Therefore, we can
naturally identify π as β and the domain of f as P, so f ∈
HomR-Mod(P, L) and g = f ◦ β = ϕ( f ) ∈ im ϕ, proving the other
inclusion.

We conclude that the sequence that arises is indeed exact.

(ii) Firstly, note that, if R is noncommutative, the structures pre-
sented are not necessarily R-modules. Hence, we will prove that
they are isomorphic as abelian groups. Consider the following
exact sequence:

0 I R R/I ∼= M 0 .i π

By (i), it induces the exact sequence:

0 H(M, N) H(R, N) H(I, N) ,
ϕ ψ

where "H" abbreviates "HomR-Mod". By the exactness, it follows
that HomR-Mod(M, N) ∼= im ϕ = ker ψ. Notice that ker ψ = { f ∈
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HomR-Mod(R, N) | f ◦ i = 0} = { f ∈ HomR-Mod(R, N) | I ⊆
ker f }. If S = {n ∈ N | (∀a ∈ I), an = 0}, define:

σ : ker ψ −→ S

f 7−→ f (1).

This function is well-defined because a f (1) = f (a) = 0 for all
a ∈ I. It is clear that σ is a homomorphism of abelian groups
and, if R is commutative, it is a homomorphism of R-modules
too. Finally, σ is bijective because its inverse is

σ−1 : S −→ ker ψ

n 7−→ (a 7→ an),

which is also well-defined and is a homomorphism. Therefore,
we conclude the desired isomorphism.

The second part is a consequence of the first. The proof is in
Exercise 6.17.

(iii) Consider the following exact sequence:

0 Z Z Z/2Z 0 .· 2 π

Now, if we take the Z-module L as Z itself, the induced ho-
momorphism ψ : HomZ-Mod(Z, Z)→ HomZ-Mod(Z, Z) is given
by

ψ( f )(x) = f (2x) = 2 f (x)

for all x ∈ Z and f ∈ HomZ-Mod(Z, Z). We see that ψ is not
onto since the identity homomorphism is not in im ψ.

(iv) If the original sequence splits, there are R-modules M′,P′ and a
commutative diagram

0 M N P 0

0 M′ M′ ⊕ P′ P′ 0

α

∼

β

∼ ∼
iM′ πN′

in which the vertical maps are isomorphisms. We will abbreviate
"HomR-Mod" by just "H", as we did in (ii). The induced exact
sequences from (i) create the following diagram:

0 H(P′, L) H(M′ ⊕ P′, L) H(M′, L)

0 H(P, L) H(N, L) H(M, L) .

∼ ∼ ∼

The vertical maps are the isomorphisms that take a homomor-
phism and composes with the isomorphisms of the first diagram.
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Note that this diagram also commutes because the other one
commutes. Now, if we consider only this part of the diagram:

H(M′ ⊕ P′, L) H(M′, L)

H(N, L) H(M, L) ,

Φ1

ψ′

Φ2

ψ

we see that ψ is onto if ψ′ is onto. Indeed, if ψ′ is surjective,
so is Φ2 ◦ ψ′ = ψ ◦ Φ1 and we must have that ψ is surjective.
Therefore, we just need to check that ψ′ is onto, that is, if for
every f ∈ H(M′, L) there exists g ∈ H(M′ ⊕ P′, L) such that
f = ψ′(g) = g ◦ iM′ . By the universal property of coproducts in
R-Mod, there is a homomorphism g : M′ ⊕ P′ → L such that the
diagram

M′

M′ ⊕ P′ L

P′

iM′

f

g

iP′

0

commutes, and so f = ψ′(g), as desired.
�

Exercise 7.8

� Solution T �

Exercise 7.9

� Solution A �

Exercise 7.10 B In the situation of the snake lemma, assume that λ

and ν are isomorphisms. Use the snake lemma and prove that µ is
an isomorphism. This is called the ’short five-lemma’, as it follows
immediately from the five-lemma (cf. Exercise 7.14), as well as from
the snake lemma. [VIII.6.21, IX.2.4]

� Solution If λ and ν are isomorphisms,

ker λ = coker λ = ker ν = coker ν = 0.

The snake lemma then implies that

0→ 0→ ker µ→ 0→ 0 coker µ→ 0→ 0.

By Exercise 7.1, ker µ = coker µ = 0, which means that µ is an isomor-
phism. �
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Exercise 7.11 B Let

0 M1 N M2 0 (*)

be an exact sequence of R-modules. (This may be called an ’exten-
sion’ of M2 by M1.) Suppose there is any R-module homomorphism
N → M1 ⊕M2 making the diagram

0 M1 N M2 0

0 M1 M1 ⊕M2 M2 0

commute, where the bottom sequence is the standard sequence of
a direct sum. Prove that (*) splits. [§7.2]

� Solution This is an immediate consequence of Exercise 7.10: since
the identities idM1 and idM2 are, in particular, isomorphims, it follows
that the homomorphism N → M1 ⊕ M2 is indeed an isomorphism
and, therefore, (*) splits. �

Exercise 7.12

� Solution T �

Exercise 7.13

� Solution A �

Exercise 7.14 ¬ Prove the ’five-lemma’: if

A1 B1 C1 D1 E1

A0 B0 C0 D0 E0

α β γ δ ε

is a commutative diagram of R-modules with exact rows, β and δ

are isomorphisms, α is an epimorphism, and ε is a monomorphism,
then γ is an isomorphism. (You can avoid the needed diagram chase
by pasting together results from the previous exercises.) [7.10]

� Solution By the two preceding exercises, γ is both an epimorphism
and a monomorphism. Since we are in R-Mod this implies that γ is
an isomorphism. (As we observed before, both exercises are needed
as their correct conclusions are that γ is a monomorphism and an
epimorphism, respectively.) �
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Exercise 7.15 ¬ Consider the following commutative diagram of
R-modules:

0 0 0

0 L2 M2 N2 0

0 L1 M1 N1 0

0 L0 M0 N0 0

0 0 0

α

β

Assume that the three rows are exact and the two rightmost columns
are exact. Prove that the left column is exact. Second version: as-
sume that the three rows are exact and the two leftmost columns are
exact; prove that the right column is exact. This is the ’nine-lemma’.
(You can avoid a diagram chase by applying the snake lemma; for
this, you will have to turn the diagram by 90◦.) [7.16]

� Solution Let’s turn the diagram by 90◦, reflect it and give names
for the homomorphisms:

0 0 0

0 L2 L1 L0 0

0 M2 M1 M0 0

0 N2 N1 N0 0

0 0 0 .

l2

f

l1

g h

α

λ

β

µ ν

n2 n1

Since the columns of this diagram are exact, we know that

ker f = ker g = ker h = 0

and
coker λ = coker µ = coker ν = 0.

For the first version, suppose that the two bottom rows are exact.
Applying the snake lemma to them, we get the exact sequence

0 ker λ ker µ ker ν 0 ,α β
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where α and β are restricted to ker λ and ker µ, respectively. By the
exactness of the columns, we can change it to

0 im f im g im h 0α β

and, since f , g and h are injective, we have the following commutative
diagram:

0 L2 L1 L0 0

0 im f im g im h 0 ,

l2

f

l1

g h

α β

where the vertical maps are isomorphisms. Thus, these sequences are
the same, up to natural identifications. Indeed, one can check that
the exactness of the bottom row implies that the top row is exact, as
desired.

The second case is similar. Suppose that the two top rows are exact.
Applying the snake lemma to them, we get the exact sequence

0 coker f coker g coker k 0 ,α̃ β̃

where α̃ and β̃ are given by α̃(x + im f ) = α(x) + im g and β̃(x +

im g) = β(x) + im h. This homomorphisms are well-defined and arise
from the snake lemma, making the diagram drawn after Remark 7.11

commute. By the exactness of the columns, we can write it as

0 M2
ker λ

M1
ker µ

M0
ker ν 0 .α̃ β̃

Since λ, µ and ν are surjective, Corollary 5.16 implies that there
are isomorphisms ϕ2 : M2/ ker λ → N2, ϕ1 : M1/ ker µ → N1 and
ϕ0 : M0/ ker ν → N0 such that λ = ϕ2π2, µ = ϕ1π1 and ν = ϕ0π0,
where π2, π1 and π0 are the corresponding projections. Thus, we have
the following commutative diagram:

M2 M1 M3

0 M2
ker λ

M1
ker µ

M0
ker ν 0

0 N2 N1 N0 0 .

π2

α

π1

β

π3

ϕ2

α̃

ϕ1

β̃

ϕ0

n2 n1

It is not as clear as in the other case that this diagram really commutes.
But note that

n2(ϕ2π2) = n2λ = µα = (ϕ1π1)α = ϕ1(π1α)ϕ1(α̃π2)
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and, since π2 is an epimorphism, n2ϕ2 = ϕ1α̃. Similarly, we have that
n1ϕ1 = ϕ0 β̃, so the diagram indeed commutes. Therefore, since ϕ2, ϕ1

and ϕ0 are isomorphisms, the bottom two rows of the diagram above
are essentially the same, up to natural identifications. As in the last
case, it follows that N• is exact. �

Exercise 7.16

� Solution T �

Exercise 7.17

� Solution A �



IV
G R O U P S , S E C O N D E N C O U N T E R

1 the conjugation action

Exercise 1.1 B Let p be a prime integer, let G be a p-group, and
let S be a set such that |S| 6≡ 0 mod p. If G acts on S, prove that
the action must have fixed points. [§1.1, §2.3]

� Solution G �

Exercise 1.2

� Solution T �

Exercise 1.3 Prove that the center of Sn is trivial for n ≥ 3. (Sup-
pose that σ ∈ S3 sends a to b 6= a, and let c 6= a, b. Let τ be the
permutation that acts solely by swapping b and c. Then compare
the action of στ and τσ on a.)

� Solution Let σ ∈ S3 be a permutation different from the identity.
Thus, there are a, b and c distinct such that σ sends a to b. Let τ be
the permutation that acts solely by swapping b and c. Now, note that
στ sends a to b and then to c, while τσ sends a to a and then to b.
Therefore, στ 6= τσ and σ 6∈ Z(Sn). We conclude that the center of Sn

is trivial for n ≥ 3. �

Exercise 1.4

� Solution A �

Exercise 1.5 B Let G be a group. Prove that G/Z(G) is isomorphic
to the group Inn(G) of inner automorphisms of G. (Cf. Exercise
II.4.8.) Then prove Lemma 1.5 again by using the result of Exercise
II.6.7. [§1.2]

� Solution G �

Exercise 1.6

� Solution T �

Exercise 1.7 Prove or disprove that if p is prime, then every group
of order p3 is commutative.

� Solution This statement is false. For example, D8 and Q8 (see
Exercise III.2) are both noncommutative and have order 8 = 23. �

155
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Exercise 1.8

� Solution A �

Exercise 1.9 ¬ Let p be a prime number, G a p-group, and H a
nontrivial normal subgroup of G. Prove that H∩Z(G) 6= {e}. (Hint:
Use the class formula.) [3.11]

� Solution G �

Exercise 1.10

� Solution T �

Exercise 1.11 Let G be a finite group, and suppose there exist
representatives g1, . . . , gr of the r distinct conjugacy classes in G,
such that ∀i, j, gigj = gjgi. Prove that G is commutative. (Hint: What
can you say about the sizes of the conjugacy classes?)

� Solution Note that |Z(gi)| ≥ r since {g1, . . . , gr} ⊆ Z(gi) for all i.
By Proposition II.9.9 and Lagrange’s theorem, we have that

|[gi]| = [G : Z(gi)] =
|G|
|Z(gi)|

≤ |G|
r

for all i. Since the conjugacy class of the identity has only one element,
we may assume that g1 = e. Thus,

|G| =
r

∑
i=1
|[gi]| = 1 +

r

∑
i=2
|[gi]| ≤ 1 +

r

∑
i=2

|G|
r

= 1 +
r− 1

r
|G|,

which implies that r ≥ |G|. But r ≤ |G| and so we must have r =

|G|, following that each conjugacy class has only one element and,
therefore, G is commutative. �

Exercise 1.12

� Solution A �

Exercise 1.13 B Let G be a noncommutative group of order 6. As
observed in Example 1.10, G must have trivial center and exactly
two conjugacy classes, of order 2 and 3.

• Prove that if every element of a group has order ≤ 2, then the
group is commutative. Conclude that G has an element y of
order 3.

• Prove that 〈y〉 is normal in G.

• Prove that [y] is the conjugacy class of order 2 and [y] =

{y, y2}.

• Prove that there is an x ∈ G such that yx = xy2.
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• Prove that x has order 2.

• Prove that x and y generate G.

• Prove that G ∼= S3.

[§1.3, §2.5]

� Solution G �

Exercise 1.14

� Solution T �

Exercise 1.15 Suppose that the class formula for a group G is
60 = 1 + 15 + 20 + 12 + 12. Prove that the only normal subgroups
of G are {e} and G.

� Solution By the definition of the class formula, we know that there
are 5 conjugacy classes and that their sizes are 1, 12, 12, 15 and 20. Let
N be a nontrivial normal subgroup of G. Since it is normal, it is the
union of some conjugacy classes of G, so the order of N is the sum of
some of the numbers listed above. We know for sure that e ∈ N, so it
has to contain the conjugacy class of e, which has only one element. By
Lagrange’s theorem, |N| divides 60 and, by the considerations above,
it must be 15, 20, 30 or 60. It is easy to see that it is impossible to
choose some numbers between 12, 12, 15 and 20, add them to 1 and
get 15, 20 or 30, so we must have |N| = 60 and, therefore, N = G. We
conclude that the only normal subgroups of G are {e} and G. �

Exercise 1.16

� Solution A �

Exercise 1.17 ¬ Let H be a proper subgroup of a finite group G.
Prove that G is not the union of the conjugates of H. (Hint: You
know the number of conjugates of H; keep in mind that any two
subgroups overlap, at least at the identity.) [1.18, 1.20]

� Solution G �

Exercise 1.18

� Solution T �

Exercise 1.19 Let H be a proper subgroup of a finite group G.
Prove that there exists a g ∈ G whose conjugacy class is disjoint
from H.

� Solution By Exercise 1.17, G is not the union of conjugates of H,
so there exists g ∈ G such that g 6∈ aHa−1 for all a ∈ G. If H contained
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aga−1 for some a ∈ G, we would have that g ∈ a−1Ha, a contradiction.
Therefore, the conjugacy class of g must be disjoint from H. �

Exercise 1.20

� Solution A �

Exercise 1.21 B Let H, K be subgroups of a group G, with H ⊆
NG(K). Verify that the function γ : H → AutGrp(K) defined by
conjugation is a homomorphism of groups and that ker γ = H ∩
ZG(K), where ZG(K) is the centralizer of K. [§1.4, 1.22]

� Solution G �

Exercise 1.22

� Solution T �

2 the sylow theorems

Exercise 2.1

� Solution A �

Exercise 2.2 B Let G be a group. A subgroup H of G is characteristic
if ϕ(H) ⊆ H for every automorphism ϕ of G.

• Prove that characteristic subgroups are normal.

• Let H ⊆ K ⊆ G, with H characteristic in K and K normal in
G. Prove that H is normal in G.

• Let G, K be groups, and assume that G contains a single
subgroup H isomorphic to K. Prove that H is normal in G.

• Let K be a normal subgroup of a finite group G, and as-
sume that |K| and |G/K| are relatively prime. Prove that K is
characteristic in G.

[§2.1, §2.4, 2.13, §3.3]

� Solution G �

Exercise 2.3 Prove that a nonzero abelian group G is simple if and
only if G ∼= Z/pZ for some positive prime integer p.

� Solution ( =⇒ ) Let G be a nonzero abelian group that is simple
and take any element g ∈ G different from the identity element. Since
G is abelian and simple, 〈g〉 6= {e} is a normal subgroup of G and so
〈g〉 = G. Thus, G is cyclic and so it is isomorphic to Z or Z/nZ for
some n > 1. Since Z is clearly non-simple, it follows that we have the
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second case. On the other hand, if n = ab, where a, b > 1, then 〈[a]n〉
is a proper, nontrivial and normal subgroup of Z/nZ and this group
is not simple. Therefore, we must have G ∼= Z/pZ for some positive
prime integer p.

( ⇐= ) Let p be a positive prime integer. By Lagrange’s theorem,
the only subgroups of Z/pZ are {[0]p} and Z/pZ itself, so Z/pZ is
simple. �

Exercise 2.4

� Solution T �

Exercise 2.5

� Solution A �

Exercise 2.6 Prove that there are no simple groups of order 4, 8, 9,
16, 25, 27, 32, or 49. In fact, prove that no p-group of order ≥ p2 is
simple.

� Solution G �

Exercise 2.7 Prove that there are no simple groups of order 6, 10,
14, 15, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 42, 44, 46, 51, 52, 55, 57,
or 58. (Hint: Example 2.4)

� Solution This is an immediate consequence of Example 2.4. Indeed,
note that all these numbers are of the form mp where 1 < m < p and
p is a prime integer. �

Exercise 2.8

� Solution T �

Exercise 2.9

� Solution A �

Exercise 2.10 ¬ Let P be a p-Sylow subgroup of a finite group G,
and act with P by conjugation on the set of p-Sylow subgroups of
G. Show that P is the unique fixed point of this action. (Hint: Use
Exercise 2.9.) [2.11]

� Solution G �

Exercise 2.11 B Use the second Sylow theorem, Corollary 1.14,
and Exercise 2.10 to paste together an alternative proof of the third
Sylow theorem. [§2.4]
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Theorem 2.8 (Second Sylow theorem). Let G be a finite group, let
P be a p-Sylow subgroup, and let H ⊆ G be a p-group. Then
H is contained in a conjugate of P: there exists g ∈ G such that
H ⊆ gPg−1.

Corollary 2.14 Let H ⊆ G be a subgroup. If [G : H] is finite, then the
number of subgroups conjugate to H is finite and divides [G : H].

Theorem 2.11 (Third Sylow theorem). Let p be a prime integer, and
let G be a finite group of order |G| = prm. Assume that p does not
divide m. Then the number of p-Sylow subgroups of G divides m
and is congruent to 1 modulo p.

� Solution With the notation as above, let S be the set of p-Sylow
subgroups of G and let P be one of them. By the second Sylow theorem,
every p-Sylow subgroup in S is a conjugate of P, so |S| also counts the
number of conjugates of P and Corollary 2.14 tells us that |S| divides
[G : P] = m. Now, if we let P act on S by conjugation, it follows from
Exercise 2.10 that P is the unique fixed point of this action. Therefore,
by Corollary 1.3, |S| ≡ 1 mod p. �

Exercise 2.12

� Solution T �

Exercise 2.13

� Solution A �

Exercise 2.14 Prove that there are no simple groups of order 18,
40, 45, 50, or 54.

� Solution G �

Exercise 2.15 Classify all groups of order n ≤ 15, n 6= 8, 12: that is,
produce a list of nonisomorphic groups such that every group of
order n 6= 8, 12, n ≤ 15 is isomorphic to one group in the list.

� Solution By Exercise II.1.6, we already know the classification for
n ≤ 5, as listed below. Let’s find it for the other orders.

• n = 1: The only group of order 1 is the trivial group.

• n = 2: The only group of order 2 is C2.

• n = 3: The only group of order 3 is C3.

• n = 4: The groups of order 4 are C4 and C2 × C2.

• n = 5: The only group of order 5 is C5.
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• n = 6: Let G be a group of order 6 and suppose that it is abelian.
By Cauchy’s theorem, there are elements g, h ∈ G of order 2
and 3, respectively. It follows from Exercise II.1.14 that |gh| = 6
and so G is cyclic and G ∼= C6. On the other hand, if G is
noncommutative, Exercise 1.13 implies that G ∼= S3. Therefore,
the groups of order 6 are C6 and S3.

• n = 7: It is similar to what have been done for n = 5 in Exercise
II.1.6. By Lagrange’s theorem, elements different from the iden-
tity in a group of order 7 must also be of order 7, so this group
is cyclic. Thus, the only group of order 7 is C7.

• n = 9: Let G be a group of order 9 and suppose that it is
not cyclic. By Lagrange’s theorem, every element besides the
identity is of order 3. Moreover, by Exercise 1.6, we also know
that G is commutative. Let a ∈ G be any element different from
e and take b ∈ G such that b 6= e, a, a2. We claim that G is
generated by a and b. Firstly, note that {a, a2} ∩ {b, b2} = ∅
because otherwise we would have b = a or b = a2. Thus, if
ax = by then necessarily x and y are multiples of 3, which is the
order of a and b. Now, let’s prove that 〈a, b〉 has 9 elements and,
therefore, G = 〈a, b〉. If axby = azbw with x, y, z, w ∈ {0, 1, 2},
then ax−z = bw−y and so x ≡ z mod 3 and w ≡ y mod 3,
following that x = z and w = y. This implies that 〈a, b〉 is in
bijection with {0, 1, 2} × {0, 1, 2} and so it has 9 elemtents, as
desired. Finally, we can define ϕ : C3 × C3 → G by

ϕ([x]3, [y]3) = axby

for all ([x]3, [y]3) ∈ C3 × C3, which is an isomorphism by the
considerations above. We conclude that the groups of order 9
are C9 and C3 × C3.

In general, any
group of order p2

where p is prime is
isomorphic to Cp2

or Cp × Cp. A
proof similar to the
one given here will
hold.

• n = 10: Let G be a group of order 10 and suppose that it is
abelian. Similar as for n = 6, Cauchy’s theorem implies that
there are elements of order 2 and 5 and so it follows from
Exercise II.1.14 that G is cyclic and G ∼= C10. On the other hand,
if G is noncommutative, Claim 2.17 tells us that G ∼= D10 since
10 = 2 · 5 and 5 is an odd prime. Therefore, the groups of order
10 are C10 and D10.

• n = 11: Since 11 is prime, the only group of order 11 is C11, as
in the previous cases where n was a prime number.

• n = 13: Since 13 is prime, the only group of order 13 is C13.

• n = 14: This case is very similar to the case n = 10 since 14 = 2 · 7
and 7 is an odd prime. Thus, the groups of order 14 are C14 and
D14.
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• n = 15: Since 15 = 3 · 5, 3 and 5 are primes and 5 6≡ 1 mod 3, it
follows from Claim 2.16 that the only group of order 15 is C15.�

Remark. We could have worked what are the groups of order 8
and 12, but the discussion would be too long compared to what
we did. Thus, we bring here just a list of them:

• n = 8: The groups of order 8 are C8, C4 × C2, C2 × C2 × C2,
D8 and Q8 (see Exercise III.2).

• n = 12: The groups of order 12 are C12, C6×C2, D12, A4 and
Dic3.

The groups An is called the alternating group of degree n. It
is the subgroup of Sn composed of the even permutations,
as we shall define. Any permutation in Sn can be decom-
posed as a product of transpositions (permutations that only
change two elements) and the parity of the number of trans-
positions is invariant. In this sense, a permutation is even if
this number is even or odd otherwise. Aluffi will introduce
these concepts and this group in section 4.

The groups Dicn are called the dicyclic groups. They have the
following presentation:

Dicn = (a, x|a2n = e, x2 = an, x−1ax = a−1).

From these relations, it follows that every element of Dicn

can be uniquely written as akxl , where 0 ≤ k < 2n and l = 0
or 1. Thus, the order of Dicn is 4n. The quaternionic group
Q8 presented in Exercise III.2 is isomorphic to Dic2.

Exercise 2.16

� Solution T �

Exercise 2.17

� Solution A �

Exercise 2.18 B Give an alternative proof of Claim 2.16 as follows:
use the third Sylow theorem to count the number of elements of
order p and q in G; use this to show that there are elements in G of
order neither 1 nor p nor q; deduce that G is cyclic. [§2.5]

� Solution G �

Exercise 2.19 B Let G be a noncommutative group of order pq,
where p < q are primes.

• Show that q ≡ 1 mod p.
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• Show that the center of G is trivial.

• Draw the lattice of subgroups of G.

• Find the number of elements of each possible order in G.

• Find the number and the size of the conjugacy classes in G.

[§2.5]

� Solution

• If q were not congruent to 1 modulo p, Claim 2.16 (see Exercise
2.18) would imply that G is abelian, a contradiction. Therefore,
we must have q ≡ 1 mod p.

• This follows immediately from Exercise 1.6.

• Let’s find how are the subgroups of G. By the third Sylow theo-
rem, the number Nq of subgroups of order q of G divides p and
is congruent to 1 modulo q. Since the only positive divisors of p
are 1 and p, and p < q, we must have Nq = 1. This also implies
that G has exactly q− 1 elements of order q and, thus, G has
pq− q elements of order different from 1 and q. By Lagrange’s
theorem, these elements can only have order p or pq, but, since
G is not abelian, it is not cyclic, so it follows that G has pq− q
elements of order p. Since

pq− q = q(p− 1) ≥ 2(p− 1) = 2p− 2 ≥ 2p− p = p,

G must have at least two subgroups of order p. Again by the
third Sylow theorem we know that the number Np of subgroups
of order p of G must divide q and so Np = q. If Hp

1 , . . . , Hp
q are

these q subgroups of order p and Hq is the subgroup of order q,
we conclude that the lattice of subgroups of G is the one below.

Note that here we
have another proof
for the first item.

G

Hp
1 Hp

2 Hp
q Hq

{e}

• We did this in the previous item. By Lagrange’s theorem, the
possible orders for the elements of G are 1, p, q and pq. we have
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found that there are 1 element of order 1 (the identity), pq− q
elements of order p, q− 1 elements of order q and no elements
of order pq.

• The size of each conjugacy class must divide the order of G, so
the possible sizes for them are 1, p and q. Since the center of G is
trivial, the conjugacy class of the identity is the only trivial one.
Let np and nq denote the number of conjugacy classes of sizes p
and q, respectively. By the class formula, pq = 1+ np p+ nqq and,
modulo p, we have that nq ≡ −1 mod p since q ≡ 1 mod p.
It follows that nq = p− 1 because nqq < pq and so np = q−1

p .

Therefore, there are p + q−1
p conjugacy classes: 1 of size 1, q−1

p of
size p and p− 1 of size q. �

Exercise 2.20

� Solution T �

Exercise 2.21

� Solution A �

Exercise 2.22 Let G be a finite group, n = |G|, and p be a prime
divisor of n. Assume that the only divisor of n that is congruent to
1 modulo p is 1. Prove that G is simple.

� Solution G �

Exercise 2.23 ¬ Let Np denote the number of p-Sylow subgroups
of a group G. Prove that if G is simple, then |G| divides Np! for
all primes p in the factorization of G. More generally, prove that
if G is simple and H is a subgroup of G of index N > 1, then |G|
divides N!. (Hint: Exercise II.9.12.) This problem capitalizes on the
idea behind Example 2.15. [2.25]

� Solution For the first part, we will suppose that G is not a p-Sylow
subgroup itself. Therefore, Np > 1 for all primes p in the factorization
of G. Indeed, if Np = 1, this p-Sylow subgroup would be a proper,
nontrivial normal subgroup of G, contradicting that G is simple. Now,
for a given prime p in the factorization of G, let X be the set of p-Sylow
subgroups of G. Note that G acts by conjugation on X and, since Np >

1, the second Sylow theorem guarantees that this action is nontrivial.
Therefore, there is a nontrivial group homomorphism G → SX and,
since G is simple, Exercise 2.5 implies that this homomorphism is
injective. It follows that G can be viewed as a subgroup of SX and, by
Lagrange’s theorem, we conclude that |G| divides |SX| = |X|! = Np!.

For the second part, let G act on G/H by left-multiplication. Since
N > 1, this action is nontrivial and so there exists a nontrivial group
homomorphism G → SG/H. Again by Exercise 2.5, this homomor-
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phism is injective and we may realize G as a subgroup of SG/H . Finally,
Lagrange’s theorem implies that |G| divides |SG/H | = |G/H|! = [G :
H]! = N!, as desired. �

Exercise 2.24

� Solution T �

Exercise 2.25

� Solution A �

3 composition series and solvability

Exercise 3.1 Prove that Z has normal series of arbitrary lengths.
(Thus, `(Z) is not finite.)

� Solution G �

Exercise 3.2

� Solution T �

Exercise 3.3 B Prove that every finite group has a composition
series. Prove that Z does not have a composition series. [§3.1]

� Solution Let G be a finite group. We will prove that G has a
composition series by induction on the order of G. If |G| = 1, G is
the trivial group and so has a composition series. Now, suppose that
|G| > 1 and that every group of order less than |G| has a composition
series. Let N ⊆ G be a proper normal subgroup of maximal order. We
claim that G/N is simple. Indeed, if it were not simple, it would have
a proper, nontrivial and normal subgroup which would correspond
(by Propositions II.8.9 and II.8.10) to a normal subgroup H of G such
that N ( H ( G, contradicting the definition of N. Since N is a
proper subgroup, |N| < |G| and, by the inductive hypothesis, N has
a composition series. Thus, concatenating G ) N to a composition
series for N, we get a composition series for G, as desired.

For the second part, note that, in a composition series, the group
appearing just before {e} is simple. Thus, it suffices to show that
Z does not have simple subgroups and, since it is abelian, this is
equivalent to show that every nontrivial subgroup of Z has proper
and nontrivial subgroups, which is clearly true. We conclude that Z

does not have a composition series. �

Exercise 3.4

� Solution A �
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Exercise 3.5 B Show that if H, K are normal subgroups of a group
G, then HK is a normal subgroup of G. [§3.1]

� Solution G �

Exercise 3.6

� Solution T �

Exercise 3.7 B Locate and understand a proof of (the general
form of) Schreier’s theorem that does not use the Jordan-Hölder
theorem. Then obtain an alternative proof of the Jordan-Hölder,
using Schreier’s. [§3.2]

Theorem 3.2 (Jordan-Hölder). Let G be a group, and let

G = G0 ) G1 ) G2 ) · · · ) Gn = {e},

G = G′0 ) G′1 ) G′2 ) · · · ) G′m = {e}

be two composition series for G. Then m = n, and the lists of
quotient groups Hi = Gi/Gi+1, H′i = G′i /G′i+1 agree (up to isomor-
phism) after a permutation of indices.

� Solution Here is the theorem:

(Schreier’s theorem). Any two normal series of a group G ending
with {e} admit equivalent refinements.

To prove it, we need the following lemma:

(Zassenhaus’s lemma). Let H and K be subgroups of a group G
and let H′ and K′ be normal subgroups of H and K respectively.
Then

• H′(H ∩ K′) is a normal subgroup of H′(H ∩ K).

• K′(H′ ∩ K) is a normal subgroup of K′(H ∩ K).

• (H′ ∩ K)(H ∩ K′) is a normal subgroup of H ∩ K.

Moreover,

H′(H ∩ K)
H′(H ∩ K′)

∼=
H ∩ K

(H′ ∩ K)(H ∩ K′)
∼=

K′(H ∩ K)
K′(H′ ∩ K)

.

This lemma is also
known as the

butterfly lemma
because the lattice

with the subgroups
that arise from it

resembles a
butterfly.

Proof of the lemma. Firstly, note that the groups appearing in the first
two items are indeed groups since H′ and K′ are normal in H and K
respectively (see Proposition II.8.11). It is also clear that H′ ∩ K and
H ∩ K′ are normal subgroups of H ∩ K so Exercise 3.5 implies the
third item. To prove the first two items, we will prove directly that
they are kernels of homomorphisms.
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If L = (H′ ∩ K)(H ∩ K′), let ϕ : H′(H ∩ K)→ (H ∩ K)/L be defined
as follows. For h ∈ H′ and x ∈ H ∩ K, let ϕ(hx) = xL. We will show
that ϕ is well-defined and a homomorphism. Let h1, h2 ∈ H′ and
x1, x2 ∈ H ∩ K. If h1x1 = h2x2, then h−1

2 h1 = x2x−1
1 ∈ H′ ∩ (H ∩ K) =

H′ ∩ K ⊆ L, so x1L = x2L. Thus, ϕ is well-defined. Since H′ is normal
in H, there is h3 in H′ such that x1h2 = h3x1. Then

ϕ((h1x1)(h2x2)) = ϕ((h1h3)(x1x2))

= (x1x2)L

= (x1L)(x2L)

= ϕ(h1x1)ϕ(h2x2)

and ϕ is a homomorphism.
Obviously ϕ is surjective. Finally if h ∈ H′ and x ∈ H ∩ K, then

ϕ(hx) = xL = L if and only if x ∈ L, or if and only if hx ∈ H′L =

H′(H′ ∩ K)(H ∩ K′) = H′(H ∩ K′). Hence, ker ϕ = H′(H ∩ K′), prov-
ing the first item and one of isomorphisms by Corollary II.8.2. The
other part follows by symmetry.

Proof of Schreier’s theorem. Let G be a group and let

G = H0 ) H1 ) H2 ) · · · ) Hn = {e},

G = K0 ) K1 ) K2 ) · · · ) Km = {e}
be two normal series for G ending with {e}. For i ∈ {0, . . . , n− 1}, we
form the chain of (not necessarily distinct) groups

Hi = Hi+1(Hi ∩ K0) ⊇ Hi+1(Hi ∩ K1) ⊇ · · · ⊇ Hi+1(Hi ∩ Km) = Hi+1.

We refine the first normal series by inserting the above chain between
Hi and Hi+1. In a symmetric fashion, for j ∈ {0, . . . , m− 1}, we insert
the chain

Kj = Kj+1(Kj ∩ H0) ⊇ Kj+1(Kj ∩ H1) ⊇ · · · ⊇ Kj+1(Kj ∩ Hn) = Kj+1

between Kj and Kj+1. By Zassenhaus’s lemma, we have

Hi+1(Hi ∩ Kj)

Hi+1(Hi ∩ Kj+1)
∼=

Kj+1(Kj ∩ Hi)

Kj+1(Kj ∩ Hi+1)

for 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1. This implies that the number
of repetitions in both series is the same, so we can remove repeated
groups to obtain refinements for both series that have the same length
and the same quotients, as desired.

This theorem gives a simple proof for the Jordan-Hölder theorem.
If we have two composition series for a group G, Schreier’s theorem
implies that they have equivalent refinements. But composition series
cannot be further refined since each quotient is already simple. There-
fore, the composition series must be equivalent, that is, they have the
same length and the lists of quotient groups agree up to isomorphism
after a permutation of indices. �
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Exercise 3.8

� Solution A �

Exercise 3.9 Let G be a nontrivial p-group. Construct explicitly an
abelian series for G, using the fact that the center of a nontrivial
p-group is nontrivial (Corollary 1.9). This gives an alternative proof
of the fact that p-groups are solvable (Example 3.12).

� Solution G �

Exercise 3.10

� Solution T �

Exercise 3.11 ¬ Let H be a nontrivial normal subgroup of a nilpo-
tent group G (cf. Exercise 3.10). Prove that H intersects Z(G) non-
trivially. (Hint: Let r ≥ 1 be the smallest index such that ∃h 6= e,
h ∈ H ∩ Zr. Contemplate a well-chosen commutator [g, h]. Since
p-groups are nilpotent, this strengthens the result of Exercise 1.9.
[3.14]

� Solution As in the hint, let r ≥ 1 be the smallest index such
that there exists h 6= e in H ∩ Zr. Note that, since G is nilpotent and
H is nontrivial, such index r really exists. We claim that h ∈ Z(G).
Firstly, we have that [g, h] = ghg−1h−1 ∈ H for all g ∈ G, because
ghg−1 ∈ H since H is normal. Now, let π : G → G/Zr−1 be the
canonical projection. Since h ∈ Zr, we know that that π(h) is in the
center of G/Zr−1, so

π([g, h]) = [π(g), π(h)] = eZr−1 =⇒ [g, h] ∈ Zr−1

for all g ∈ G. Therefore, it follows that [g, h] ∈ H ∩ Zr−1 = {e}, that
is, [g, h] = e for all g ∈ G. This implies that h ∈ Z(G) and, thus, H
intersects Z(G) nontrivially. �

Exercise 3.12

� Solution A �

Exercise 3.13 ¬ For a group G, let G(i) denote the iterated commu-
tator, as in §3.3. Prove that each G(i) is characteristic (hence normal)
in G. [3.14]

� Solution G �

Exercise 3.14

� Solution T �
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Exercise 3.15 Let p, q be prime integers, and let G be a group of
order p2q. Prove that G is solvable. (This is a particular case of
Burnside’s theorem: for p, q primes, every group of order paqb is
solvable.)

� Solution If p = q then G is a p-group and it is solvable by Example
3.12. Thus, suppose that p 6= q. Firstly, we claim that any group H of
order pq is solvable. Indeed, if H is abelian, it is immediately solvable.
Otherwise, if we take m = max{p, q}, Exercise 2.19 implies that H has
only one m-Sylow subgroup P, which must be normal, so we have the
following composition series for H:

H ) P ) {e}.

Since all composition factors are cyclic, H is solvable by Proposition
3.11.

Now, if G has a proper, nontrivial and normal subgroup N, it follows
that N and G/N are solvable since their order can only be p, p2, q or
pq. By Corollary 3.13, this implies that G is also solvable, so it suffices
to show that such N really exists. To prove this, we will compute
the possible values for the numbers Np and Nq of p- and q-Sylow
subgroups of G, respectively, and show that Np = 1 or Nq = 1, which
implies that at least one of these Sylow subgroups is normal.

Suppose that Nq 6= 1. By the third Sylow theorem, Nq divides p2

and is congruent to 1 modulo q. If Nq = p, we know that p ≡ 1 mod q
and so q < p. Again by the third Sylow theorem, Np divides q and
is congruent to 1 modulo p. Since q < p, we must have Np = 1, as
desired. On the other hand, if Nq = p2 then G has p2(q− 1) = p2q− p2

elements of order q since distinct subgroups of order q meet only at
the identity. Therefore, we have only p2 elements of order 1, p or p2

and so there is enough room to just one p-Sylow subgroup, following
that Np = 1. We conclude that G has a proper, nontrivial and normal
subgroup and so G is solvable. �

Exercise 3.16

� Solution A �

Exercise 3.17 Prove that the Feit-Thompson theorem is equivalent
to the assertion that every noncommutative finite simple group has
even order.

� Solution G �

4 the symmetric group

Exercise 4.1

� Solution T �
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Exercise 4.2

� Solution A �

Exercise 4.3 Assume σ has type [λ1, . . . , λr] and that the λi’s are
pairwise relatively prime. What is |σ|? What can you say about |σ|,
without the additional hypothesis on the numbers λi?

� Solution Since σ has type [λ1, . . . , λr], its decomposition as the
product of disjoint cycles is of the form

σ = (a1 . . . aλ1)(b1 . . . bλ2) · · · (c1 . . . cλr).

By Lemma 4.2, we have that

σn = (a1 . . . aλ1)
n(b1 . . . bλ2)

n · · · (c1 . . . cλr)
n

so, if σn = e, we must have that λi divides n for all 1 ≤ i ≤ r since
the cycles are disjoint. Thus, the lcm of λ1, . . . , λr divides |σ|. On the
other hand, it is clear by the considerations above that σlcm(λ1,...,λr) = e
and we conclude that |σ| = lcm(λ1, . . . , λr). In particular, if the λi’s
are pairwise relatively prime, |σ| = λ1 · · · λr. �

Exercise 4.4 Make sense of the ’Taylor series’ of the infinite product

1
(1− x)

· 1
(1− x2)

· 1
(1− x3)

· 1
(1− x4)

· 1
(1− x5)

· . . . .

Prove that the coefficient of xn in this series is the number of
partitions of n.

� Solution G �

Exercise 4.5

� Solution T �

Exercise 4.6

� Solution A �

Exercise 4.7 B Prove that Sn is generated by (12) and (12 . . . n).
(Hint: It is enough to get all transpositions. What is the conjugate

of (12) by (12 . . . n)?) [4.9, §VII.7.5]

� Solution Let G be the subgroup of Sn generated by (12) and
(12 . . . n). By Lemma 4.5, τ−1(12)τ = (1τ 2τ) for all τ ∈ Sn. Thus, it
follows that

((12 . . . n)k)−1(12)(12 . . . n)k = (k k + 1) ∈ G
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for all 0 ≤ k < n. Now, let σ ∈ Sn be any transposition. We may
suppose that σ = (ab), where 1 ≤ a < b ≤ n. Take τ = (a a + 1)(a +
1 a + 2) · · · (b− 1 b), which is in G. We have that

τ−1(a a + 1)τ = (aτ (a + 1)τ) = (ba) = σ

and so σ ∈ G. Therefore, G contains all transpositions and, by Lemma
4.11, we conclude that G = Sn, as desired. �

Exercise 4.8 ¬ For n > 1, prove that the subgroup H of Sn consist-
ing of permutations fixing 1 is isomorphic to Sn−1. Prove that there
are no proper subgroups of Sn properly containing H. [VII.7.17]

� Solution G �

Exercise 4.9

� Solution T �

Exercise 4.10

� Solution A �

Exercise 4.11 Let p be a prime integer. Compute the number of
p-Sylow subgroups of Sp. (Use Exercise 4.10.) Use this result and
Sylow’s third theorem to prove again the ’only if’ implication in
Wilson’s theorem (cf. Exercise II.4.16.)

� Solution The exponent of p in the prime factorization of p! is 1,
so p-Sylow subgroups of Sp are cyclic groups Cp. Thus, to compute
the number Np of Sylow subgroups of Sp, we can find the number of
elements of order p in Sp. By Exercise 4.3, a permutation has order
p if and only if it has type [p], that is, if and only if it is a p-cycle.
By Exercise 4.10, it follows that there are (p− 1)! elements of order
p in Sp. Since the p-Sylow subgroups can only meet at the identity
(because they are cyclic groups of prime order) and each one has p− 1
elements of order p, it follows that

Np(p− 1) = (p− 1)! =⇒ Np = (p− 2)!

and so Sp has (p− 2)! p-Sylow subgroups.
The third Sylow theorem implies that Np = (p− 2)! ≡ 1 mod p.

Multiplying by p− 1 we get that

(p− 1)! ≡ p− 1 ≡ −1 mod p,

which proves the ’only if’ implication in Wilson’s theorem. �

Exercise 4.12 B A subgroup G of Sn is transitive if the induced
action of G on {1, . . . , n} is transitive.

• Prove that if G ⊆ Sn is transitive, then |G| is a multiple of n.
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• List the transitive subgroups of S3.

• Prove that the following subgroups of S4 are all transitive:

– 〈(1234)〉 ∼= C4 and its conjugates,

– 〈(12)(34), (13)(24)〉 ∼= C2 × C2,

– 〈(12)(34), (1234)〉 ∼= D8 and its conjugates,

– A4, and S4.

With a bit of stamina, you can prove that there are the only
transitive subgroups of S4.

[§VII.7.5]

� Solution G �

Exercise 4.13

� Solution T �

Exercise 4.14

� Solution A �

Exercise 4.15 Justify the ’pictorial’ recipe given in §4.3 to decide
whether a permutation is even.

� Solution Let σ ∈ Sn be a permutation whose Young diagram has
ne rows of even size and no rows of odd size. Note that n ≡ no mod 2
and that σ is even if and only if ne ≡ 0 mod 2, that is, if and only if
there is an even number of rows of even size, which correspond to
cycles of odd parity. Adding these congruences we obtain that σ is
even if and only if n and the number ne + n0 of rows in the Young
diagram of σ have the same parity. �

Exercise 4.16 The number of conjugacy classes in An, n ≥ 2, is
(allegedly)

1, 3, 4, 5, 7, 9, 14, 18, 24, 31, 43, . . . .

Check the first several numbers in this list by finding the class
formulas for the corresponding alternating groups.

� Solution G �

Exercise 4.17

� Solution T �

Exercise 4.18

� Solution A �
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Exercise 4.19 Prove that for n ≥ 5 there are no nontrivial actions
of An on any set S with |S| < n. Construct a nontrivial action of A4

on a set S, |S| = 3. Is there a nontrivial action of A4 on a set S with
|S| = 2?

� Solution Suppose that for some n ≥ 5 there exists a nontrivial
action of An on a set S with m = |S| < n. Thus, there exists a nontrivial
group homomorphism ϕ : An → Sm and, since An is simple, ϕ is
injective by Exercise 2.5. Hence, An is isomorphic to a subgroup of Sm

and Lagrange’s theorem implies that |An| = n!
2 divides |Sm| = m!. But

this is impossible since m!
2 < n!

2 6= m!. Therefore, for n ≥ 5 there are
no nontrivial actions of An on any set S with |S| < n.

We can construct a nontrivial action of A4 on S = {1, 2, 3} by real-
izing A4 as the rotation group of the tetrahedron (see Exercise II.2.8),
as Aluffi mentions. Identifying the pairs of opposite edges of the
tetrahedron with the numbers 1, 2 and 3, we can define a nontrivial
right-action where xσ represents where the pair of opposite edges x
goes after we apply the corresponding rotation of the even permu-
tation σ to the tetrahedron. Algebraically, we can find an analogous
action by knowing that N = {e, (12)(34), (13)(24), (14)(23)} is a nor-
mal subgroup of A4. Since A4/N ∼= C3 by order considerations and C3

may be viewed as a subgroup of S3, we can define a homomorphism
ϕ : A4 → S3 whose kernel is N, and this defines a left-action of A4

on S. Note that the first action is a right-action and the second is a
left-action, but they are closely related. By Exercise II.9.3 we can turn
the first action into a left-action of A◦4 on S. Applying the isomorphism
between A4 and A◦4 given there, we get our second action. (Perhaps
you will have to realize C3 in S3 in a different way to really get to the
second action.)

Finally, note that there is no nontrivial action of A4 on a set with
two elements. Indeed, if it did exist, we would have a surjective group
homomorphism ϕ : A4 → S2 and it would follow from Corollary II.8.2
(first isomorphism theorem) and Lagrange’s theorem that |ker ϕ| = 6,
which is impossible by Exercise 4.17. �

Exercise 4.20 ¬ Find all fifteen elements of order 2 in A5, and
prove that A5 has exactly five 2-Sylow subgroups. [4.22]

� Solution G �

Exercise 4.21

� Solution T �

Exercise 4.22

� Solution A �
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5 products of groups

Exercise 5.1 B Let G be a finite group, and let P1, . . . , Pr be its
nontrivial Sylow subgroups. Assume that all Pi are normal in G.

• Prove that G ∼= P1 × · · · × Pr. (Induction of r; use Proposition
5.3.)

• Prove that G is nilpotent. (Hint: Mod out by the center, and
work by induction of |G|. What is the center of a direct prod-
uct of groups?)

Together with Exercise 3.10, this shows that a finite group is nilpo-
tent if and only if each of its Sylow subgroups is normal. [3.12,
§6.1]

� Solution G �

Exercise 5.2

� Solution T �

Exercise 5.3 Let

G = G0 ) G1 ) · · · ) Gr = {e}

be a normal series. Show how to ’connect’ {e} to G by means of r
exact sequences of groups using the groups Gi and the quotients
Hi = Gi/Gi+1.

� Solution We can ’connect’ {e} to G by the short exact sequences
that represent the quotients Hi:

1 Gr = {e} Gr−1 Hr−1 1 ,

1 Gr−1 Gr−2 Hr−2 1 ,

...

1 G1 G0 = G H0 1 .

As in the example just before Definition 5.6, this tells us that G is an
extension of H0 by an extension of H1 by an extension of H2 . . . by an
extension of Hr−1 by {e}. �

Exercise 5.4

� Solution A �
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Exercise 5.5 In Proposition III.7.5 we have seen that is an exact
sequence

0 M N N/(ϕ(M)) 0
ϕ

of abelian groups splits, then ϕ has a left-inverse. Is this necessarily
the case for split sequences of groups?

� Solution G �

Exercise 5.6

� Solution T �

Exercise 5.7 Let N be a group, and let α : N → N be an auto-
morphism of N. Prove that α may be realized as conjugation, in
the sense that there exists a group G containing N as a normal
subgroup and such that α(n) = gng−1 for some g ∈ G.

� Solution Let εα : Z→ AutGrp(N) be the exponential map given by
εα(n) = αn for all n ∈ Z and take G = Noεα Z. By Proposition 5.10,
N is contained in G as a normal subgroup and α can be realized as
conjugation by (eN , 1) in G. �

Exercise 5.8

� Solution A �

Exercise 5.9 B Prove that if G = N o H is commutative, then
G ∼= N × H. [§6.1]

� Solution G �

Exercise 5.10

� Solution T �

Exercise 5.11 B For all n > 0 express D2n as a semidirect product
Cn oθ C2, finding θ explicitly. [§5.3]]

� Solution By Exercise II.2.5, D2n is generated by x, y ∈ D2n such
that x2 = e, yn = e and yx = xy−1. Take the subgroups N = 〈y〉 and
H = 〈x〉 of G. It is clear that N ∩ H = {e} and D2n = NH. Moreover,
since [G : N] = 2, we also know that N is normal in G. Thus, if
γ : H → AutGrp(N) is the homomorphism defined by

γh(n) = hnh−1

for all h ∈ H, n ∈ N, Proposition 5.11 implies that D2n ∼= Noγ H.
Since N ∼= Cn and H ∼= C2, we just have to figure it out how is

γ when we change N and H by Cn and C2 through the correspond-
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ing isomorphisms. Let θ : C2 → AutGrp(Cn) be this homomorphism
corresponding to γ. It is clear that θ[0]2 = idCn . Now, note that

γx(yk) = xykx−1 = xykx = xxy−k = (yk)−1

for all yk ∈ N. Thus, we must have

θ[1]2(g) = g−1

for all g ∈ Cn. This really is an automorphism of Cn since Cn is
commutative. Therefore, we conclude that D2n ∼= Cn oθ C2, where θ is
given as above. �

Exercise 5.12

� Solution A �

Exercise 5.13 ¬ Let G = Noθ H be a semidirect product, and let
K be the subgroup of G corresponding to ker θ ⊆ H. Prove that K
is the kernel of the action of G on the set G/H of left-cosets of H.
[5.14]

� Solution G �

Exercise 5.14

� Solution T �

Exercise 5.15 B Let G be a group of order 28.

• Prove that G contains a normal subgroup N of order 7.

• Recall (or prove again) that, up to isomorphism, the only
groups of order 4 are C4 and C2×C2. Prove that there are two
homomorphisms C4 → AutGrp(N) and two homomorphisms
C2 × C2 → AutGrp(N) up to the choice of generators for the
sources.

• Conclude that there are four groups of order 28 up to isomor-
phism: the two direct products C4 × C7, C2 × C2 × C7, and
two noncommutative groups.

• Prove that D28 ∼= C2 × D14. The other noncommutative group
of order 28 is a generalized quaternionic group.

[§5.3]

� Solution

• Let N7 be the number of 7-Sylow subgroups of G. By the third
Sylow theorem, N7 divides 4 and is congruent to 1 modulo 7,
so we must have N7 = 1. This implies that G contains a unique
7-Sylow subgroup N, which is of order 7 and must be normal.
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• To recall that C4 and C2 × C2 are the only groups of order 4 up
to isomorphism, see Exercise II.1.6.

By Exercise II.4.15, AutGrp(N) ∼= C6, so AutGrp(N) has only one
element of order 2, which is the automorphism σ that sends each
element to its inverse. Since a homomorphism C4 → AutGrp(N)

is completely determined by the image of [1]4 and its order must
divide |[1]4| = 4, there are only two such homomorphisms; the
trivial one αe and the homomorphism ασ which sends [1]4 to σ.

The other case is similar to the previous one. A homomorphism
C2 × C2 → AutGrp(N) is completely determined by the images
of ([1]2, [0]2) and ([0]2, [1]2), which must have order 1 or 2. This
tells us that there are actually four such homomorphisms, but
the three that are not trivial are essentially the same and de-
pend on the choice of generators for C2 × C2. More formally, we
mean that, if f1 and f2 are such homomorphisms, there is an
automorphism ϕ of C2 × C2 such that f1 ◦ ϕ = f2. Thus, there
are two homomorphisms C2 × C2 → AutGrp(N) up to choice of
generators: the trivial one βe and the homomorphism βσ which
sends ([1]2, [0]2) and ([0]2, [1]2) to σ.

• Let H be any 2-Sylow subgroup of G. By order constraints, we
have that N ∩ H = {e}. We claim that G = NH. To prove this, it
suffices to show that |NH| = 28. Let f : N × H → NH be the
function given by

f (n, h) = nh

for all n ∈ N, h ∈ H, which is clearly surjective. Notice that f is
also injective since

f (n1, h1) = f (n2, h2) =⇒ n1h1 = n2h2

=⇒ n−1
2 n1 = h2h−1

1 ∈ N ∩ H = {e}
=⇒ n1 = n2 and h1 = h2

=⇒ (n1, h1) = (n2, h2).

Thus, f is a bijection and so |NH| = |N × H| = 28, as desired.
Since N is normal in G, it follows from Proposition 5.11 that
G ∼= No H for a suitable homomorphism H → AutGrp(N).

Since H ∼= C4 or H ∼= C2 × C2, the previous item implies that G
is isomorphic to one of the following groups: G1 = C7 oαe C4,
G2 = C7oασ C4, G3 = C7oβe (C2×C2) or G4 = C7oβσ

(C2×C2).
We will prove that these groups are not isomorphic to each
other. Firstly, since αe and βe are trivial, G1

∼= C4 × C7 and
G3 ∼= C2 × C2 × C7. Note that these two groups are abelian. On
the other hand, since ασ and βσ are nontrivial, it follows from
Exercise 5.9 that G2 and G4 are noncommutative. Hence, we just
need to check that G1 6∼= G3 and G2 6∼= G4. Indeed, by the second
Sylow theorem, p-Sylow subgroups are conjugate to each other
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and, since conjugation preserves operation, they are isomorphic.
Therefore, since C4 6∼= C2 × C2 and C4 is a 2-Sylow subgroup of
G1 and G2 and C2 × C2 is a 2-Sylow subgroup of G3 and G4, the
results follows. We conclude that there are four groups of order
28 up to isomophirsm: C4 × C7 ∼= C28, C2 × C2 × C7, and two
noncommutative groups.

• Let x and y be the generators of D14 as in Exercise II.2.5 and
take X = (0, x) ∈ C2 × D14 and Y = (1, y) ∈ C2 × D14. Note that
|X| = 2, |Y| = 14 and

YX = (1, yx) = (1, xy6) = XY13.

We claim that X and Y generate C2 × D14. Indeed, it is easy to
check that the powers of Y are all elements of the form (0, yk)

and (1, yk) for some 0 ≤ k < 7, so multiplying by X if needed
we get all elements of C2 × D14. Therefore, D28 ∼= C2 × D14 since
they have the same presentation.

Just to mention, note that D28 is isomorphic to G4, as defined
in the last item, since the other noncommutative group has
elements of order 4 and D28 do not. The group G2 is isomorphic
to Dic7 (see the Remark in Exercise 2.15).

If p > 3 is a prime
number such that

p ≡ 3 mod 4, a
similar argument

shows that the
groups of order 4p

are C4p,
C2 × C2 × Cp, D4p

and Dicp.

�

Remark. An important observation to be made is that we just need
to consider two of the four homomorphisms C2×C2 → AutGrp(N)

when we take the semidirect products. We will show that we can
do this in general.

Claim. Let N, H be groups and let α, β : H → AutGrp(N) be
group homomorphisms. If there exists ϕ ∈ AutGrp(H) such that
α ◦ ϕ = β then Noα H ∼= Noβ H.

Proof. Define σ : Noβ H → Noα H by

σ(n, h) = (n, ϕ(h))

for all (n, h) ∈ Noβ H. Since ϕ is an automorphism, it is clear that
σ is a bijection. We just need to check that σ is a homomorphism.
Indeed,

σ((n1, h1) •β (n2, h2)) = σ(n1βh1(n2), h1h2)

= (n1(α ◦ ϕ)h1(n2), ϕ(h1h2))

= (n1αϕ(h1)(n2), ϕ(h1)ϕ(h2))

= (n1, ϕ(h1)) •α (n2, ϕ(h2))

= σ(n1, h1) •α σ(n2, h2)

for all (n1, h1), (n2, h2) ∈ N oβ H. Thus, we have the desired
isomorphism.



6 finite abelian groups 179

Exercise 5.16

� Solution A �

Exercise 5.17 Prove that the multiplicative group H∗ of nonzero
quaternions (cf. Exercise III.2) is isomorphic to a semidirect product
SU2(C)oR+. (Hint: Exercise III.2.5.) Is this semidirect product in
fact direct?

� Solution G �

6 finite abelian groups

Exercise 6.1

� Solution T �

Exercise 6.2

� Solution A �

Exercise 6.3 Let G be a noncommutative group of order p3, where
p is a prime integer. Prove that Z(G) ∼= Z/pZ and G/Z(G) ∼=
Z/pZ×Z/pZ.

� Solution By Corollary 1.9 and Lemma 1.5, the center of G is
nontrivial and G/Z(G) is not cyclic. Thus, we must have |Z(G)| = p
and so Z(G) ∼= Z/pZ. Since G/Z(G) has order p2, we know from
Exercise 1.6 that G/Z(G) is commutative and so Theorem 6.6 implies
that it is isomorphic to Z/pZ×Z/pZ or Z/p2Z. But it cannot be
cyclic and, hence, we conclude that G/Z(G) ∼= Z/pZ×Z/pZ. �

Exercise 6.4 Classify abelian groups of order 400.

� Solution G �

Exercise 6.5

� Solution T �

Exercise 6.6

� Solution A �

Exercise 6.7 ¬ Let p > 0 be a prime integer, G a finite abelian
group, and denote by ρ : G → G the homomorphism defined by
ρ(g) = pg.

• Let A be a finite abelian group such that pA = 0. Prove that
A ∼= Z/pZ⊕ · · · ⊕Z/pZ.
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• Prove that p ker ρ and p(coker ρ) are both 0.

• Prove that ker ρ ∼= coker ρ.

• Prove that every subgroup of G of order p is contained in
ker ρ and that every subgroup of G of index p contains im ρ.

• Prove that the number of subgroups of G of order p equals
the number of subgroups of G of index p.

[6.8]

� Solution

• Since pA = 0, the order of every element of A divides p and so,
every element besides the identity is of order p. By Cauchy’s
theorem, A must be a p-group. By Theorem 6.6,

A ∼=
k⊕

i=1

Z

pni Z

where n1 ≥ n2 ≥ · · · ≥ nk are positive integers such that |G| =
pn1+···+nk . If n1 > 1, (1, 0, . . . , 0) would be an element of order
greater than p, contradicting our first considerations. Therefore,
n1 = 1 and so A ∼= Z/pZ⊕ · · · ⊕Z/pZ.

• For all g ∈ ker ρ, we have that pg = ρ(g) = 0, so p ker ρ = 0.
Now, for all g + im ρ ∈ coker ρ, p(g + im ρ) = pg + im ρ =

ρ(g) + im ρ = 0, so p(coker ρ) = 0 too.

• By the first isomorphism theorem, we have that G/ ker ρ ∼= im ρ,
so it follows from Lagrange’s theorem that

|G|
|ker ρ| = |im ρ| =⇒ |ker ρ| = |G|

|im ρ| =
∣∣∣∣ G
im ρ

∣∣∣∣ = |coker ρ|.

We conclude from the first two items that

ker ρ ∼=
n⊕

i=1

Z

pZ
∼= coker ρ,

where n is such that |ker ρ| = |coker ρ| = pn.

• Let H be a subgroup of G of order p. Since all elements besides
the identity are of order p, it follows that pH = 0, that is, ρ(H) =

0 and so H ⊆ ker ρ. Now, let K be a subgroup of G of index p.
Thus, G/K is of order p and so

p(g + K) = ρ(g) + K = K =⇒ ρ(g) ∈ K

for all g ∈ G, that is, im ρ ⊆ K.
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• We will prove this by induction on the order of G. If |G| = 1,
the result is immediate. Now, suppose that |G| > 1 and that the
result is valid for all abelian groups of order less than |G|. We
have two cases: either |coker ρ| = |G| or |coker ρ| < |G|.
In the first case, we must have im ρ = 0 and so ker ρ = G.
From the first two items we get that G ∼= Z/pZ⊕ · · · ⊕Z/pZ.
Note that every subgroup of Z/pZ⊕ · · · ⊕Z/pZ is of the form
H1 ⊕ · · · ⊕ Hk, where H1, . . . , Hk are subgroups of Z/pZ. Since
the only subgroups of Z/pZ are {0} and Z/pZ itself, it follows
that the subgroups of order p are those such that only one Hi is
Z/pZ and the other are trivial, while subgroups of index p are
those such that only one Hi is trivial and the other are Z/pZ.
Thus, it is clear that there is the same number of subgroups of
order p and of subgroups of index p.

In the second case, by the inductive hypothesis there exists a
bijection between subgroups of coker ρ of order p and subgroups
of coker ρ of index p. Since every subgroup of G of order p is
contained in ker ρ and ker ρ ∼= coker ρ, there exists a bijection
between subgroups of G of order p and subgroups of coker ρ of
index p. Furthermore, Proposition II.8.9 implies that there is a
bijection between the subgroups of coker ρ and the subgroups
of G that contain im ρ. By the third isomorphism theorem, it
preserves indices and, since every subgroup of G of index p
contains im ρ, we get that the number of subgroups of G of order
p equals the number of subgroups of G of index p. �

Exercise 6.8 ¬ Let G be a finite abelian p-group, with elementary
divisors pn1 , . . . , pnr (n1 ≥ n2 ≥ . . . ). Prove that G has a subgroup H
with invariant divisors pm1 , . . . , pms (m1 ≥ m2 ≥ . . . ) if and only if
s ≤ r and mi ≤ ni for i = 1, . . . , s. (Hint: One direction is immediate.
For the other, with notation as in Exercise 6.7, compare ker ρ for H
and G to establish s ≤ r; this also proves the statement if all ni = 1.
For the general case use induction, noting that if G ∼=

⊕
i Z/pni Z,

then ρ(G) ∼=
⊕

i Z/pni−1Z.)
Prove that the same description holds for the homomorphic

images of G. [6.9]

� Solution G �

Exercise 6.9

� Solution T �

Exercise 6.10

� Solution A �
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Exercise 6.11

• Use the classification theorem for finite abelian groups (Theo-
rem 6.6) to classify all finite modules over the ring Z/nZ.

• Prove that if p is prime, all finite modules over Z/pZ are
free.

Theorem 6.6 Let G be a finite nontrivial abelian group. Then

• there exist prime integers p1, . . . , pr and positive integers nij

such that |G| = ∏i,j p
ni,j
i and

G ∼=
⊕
i,j

Z

p
nij
i Z

;

• there exist positive integers 1 < d1 | · · · | ds such that |G| =
d1 · · · ds and

G ∼=
Z

d1Z
⊕ · · · ⊕ Z

dsZ
.

Further, these decompositions are uniquely determined by G.

� Solution

• Let M be a finite module over Z/nZ. Thus, there exists a ring
homomorphism σ : Z/nZ → EndAb(M) that represents the
action of Z/nZ on M. Since |idM| = |σ([1]n)| divides |[1]n| = n,
we know that the order of every element of M divides n. If
n = pα1

1 · · · p
αr
r is the prime factorization of n, the classification

theorem for finite abelian groups implies that we must have the
following isomorphism of abelian groups:

M ∼=
⊕
i,j

Z

p
nij
i Z

,

for some positive integers nij such that |M| = ∏i,j p
nij
i and nij ≤

αi for all indices i and j. Conversely, note that every abelian
group of the form given above admits a unique Z/nZ-module
structure, since every element has order dividing n and so we
can define the homomorphism σ. Moreover, the isomorphism
above also preserves the structure of the modules and so it is
indeed an isomorphism of Z/nZ-modules.

Putting all together, we have the following classification:

Classification for finite modules over Z/nZ. Let M be a fi-
nite nontrivial Z/nZ-module and let n = pα1

1 · · · p
αr
r be the

prime factorization of n. Then
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• there exist positive integers nij such that |M| = ∏i,j p
nij
i ,

nij ≤ αi and

M ∼=
⊕
i,j

Z

p
nij
i Z

;

• there exist positive integers 1 < d1 | · · · | ds | n such
that |M| = d1 · · · ds and

M ∼=
Z

d1Z
⊕ · · · ⊕ Z

dsZ
.

Further, these decompositions are uniquely determined by
M.

• Since p is prime, the previous item implies that all finite Z/pZ-
modules are of the form Z/pZ⊕ · · · ⊕Z/pZ. By Claim III.6.3
(see Exercise III.6.1), they are all free. �

Exercise 6.12 Let G, H, K be finite abelian groups such that G ⊕
H ∼= G⊕ K. Prove that H ∼= K.

� Solution G �

Exercise 6.13

� Solution T �

Exercise 6.14

� Solution A �

Exercise 6.15 Let G be a finite abelian group, and let a ∈ G be
an element of maximal order in G. Prove that the order of every
b ∈ G divides |a|. (This essentially reproduces the result of Exercise
II.1.15.)

� Solution We give a different
proof from the one
given in Exercise
II.1.15 to illustrate
one application of
the results of this
section.

By the classification theorem for finite abelian groups,
there exist positive integers 1 < d1 | · · · | dn such that |G| = d1 · · · dn

and
G ∼=

Z

d1Z
⊕ · · · ⊕ Z

dnZ
,

so we will simply assume that G = Z/d1Z⊕ · · · ⊕Z/dnZ. Let x =

(x1, . . . , xn) ∈ G. Note that, if xk = 0, then xk
i = 0 and so |xi| divides

k for all 1 ≤ i ≤ n. This implies that lcm(|x1|, . . . , |xn|) divides k and,
since xlcm(|x1|,...,|xn|) = 0, we have that |x| = lcm(|x1|, . . . , |xn|). Since
|xi| divides di which divides dn, for all xi ∈ Z/diZ and 1 ≤ i ≤ n,
it follows that |x| divides dn for all x ∈ G. Finally, note that G have
at least one element of order dn, which is (0, . . . , 0, 1). Therefore, we
conclude that |a| = dn and that |b| divides |a| for all b ∈ G. �
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Exercise 6.16 Let G be an abelian group of order n, and assume
that G has at most one subgroup of order d for all d|n. Prove that
G is cyclic.

� Solution G �
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1 chain conditions and existence of factorizations

Exercise 1.1

� Solution T �

Exercise 1.2

� Solution A �

Exercise 1.3 Let k be a field, and let f ∈ k[x], f 6∈ k. For every
subring R of k[x] contaning k and f , define a homomorphism
ϕ : k[t] → R by extending the identity on k and mapping t to f .
This makes every such R a k[t]-algebra (Example III.5.6).

• Prove that k[x] is finitely generated as a k[t]-module.

• Prove that every subring R as above is finitely generated as a
k[t]-module.

• Prove that every subring of k[x] containing k is a Noetherian
ring.

� Solution

• Firstly, recall that p(t)g(x) = p( f ) · g(x) for all p(t) ∈ k[t] and
g(x) ∈ k[x], that is, the action of p(t) on g(x) is to multiply g(x)
by the polynomial obtained by substituting t by f in p(t) (see
Example III.5.6). If d = deg f , we claim that k[t] is generated
by 1, x, . . . , xd−1 as a k[t]-module. Let α ∈ k[x] and suppose that
deg α ≥ d. Dividing α by f with remainder, we get that

α = f h1 + r1

where h1, r1 ∈ k[x] and deg r1 < d. Since f 6∈ k, d > 0 and so
deg h1 < deg α. Now, divide h1 by f and get h2 and r2 similar
as before. Continue this procedure until deg hk < d for some k.
Thus,

α = f khk + f k−1rk + · · ·+ f r2 + r1,

where deg hk, deg rk, . . . , deg r1 < d. It follows immediately that
there are p0(t), . . . , pd−1(t) ∈ k[t] such that

α = pd−1(t)xd−1 + · · ·+ p1(t)x + p0(t)1,

as desired. Therefore, k[x] is finitely generated as a k[t]-module.

185
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• By Lemma 1.3, k[t] is Noetherian and so Corollary III.6.8 implies
that k[x] is Noetherian as a k[t]-module. Since R is a submodule
of k[x], it follows that R is finitely generated as a k[t]-module.

• Let R be a subring of k[x] containing k. If R = k then R is
immediately Noetherian since it is a field. Suppose that R 6= k
and let f ∈ R \ k. By the previous item, the corresponding
homomorphism ϕ : k[t] → R turns R into a finitely generated
k[t]-module. Since k[t] is Noetherian by Lemma 1.3, Corollary
III.6.8 implies that R is Noetherian as a k[t]-module.

Now, let I be an ideal of R and let’s prove that it is finitely
generated. Note that I can also be viewed as a k[t]-module since
the action of any element of k[t] is the same as multiplication
by some element of R. Thus, I is a submodule of R and so it is
finitely generated as a k[t]-module. This means that there are
i1, . . . , ik ∈ I such that every element i of I may be written as

i = p1(t)i1 + · · ·+ pk(t)ik = p1( f ) · i1 + · · ·+ pk( f ) · ik

for some p1(t), · · · , pk(t) ∈ k[t]. It follows that I = (i1, · · · , ik)

and so it is finitely generated as an ideal of R as well. We
conclude that R is a Noetherian ring. �

Exercise 1.4

� Solution G �

Exercise 1.5

� Solution T �

Exercise 1.6

� Solution A �

Exercise 1.7 Prove that if R is a Noetherian ring, then the ring of
power series R[[x]] (cf. §III.1.3) is also Noetherian. (Hint: The order
of a power series ∑∞

i=0 aixi is the smallest i for which ai 6= 0; the
dominant coefficient is then ai. Let Ai ⊆ R be the set of dominant
coefficients of series of order i in I, together with 0. Prove that Ai
is an ideal of R and A0 ⊆ A1 ⊆ A2 ⊆ · · · . This sequence stabilizes
since R is Noetherian, and each Ai is finitely generated for the same
reason. Now adapt the proof of Lemma 1.3.)

Lemma 1.3 (Hilbert’s basis theorem). R Noetherian =⇒ R[x]
Noetherian.

� Solution Let I be an ideal of R[[x]] and let’s prove that I is finitely
generated. Let Ai ⊆ R be the set of dominant coefficients of series of
order i in I, together with 0. We claim that Ai is an ideal of R for all
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i ∈ N. Firstly, Ai 6= ∅ since it contains 0. Now, if a, b ∈ Ai, there are
pa(x), pb(x) ∈ I of order i whose dominant coefficients are a and b,
respectively. Note that either a− b = 0 ∈ Ai or pa(x)− pb(x) ∈ I is a
series of order i whose dominant coefficient is a− b and so a− b ∈ Ai.
Moreover, we have that either ra = 0 ∈ Ai or rpa(x) ∈ I is of order
i whose dominant coefficient is ra and so ra ∈ Ai for all r ∈ R. This
proves our claim.

Also notice that Ai ⊆ Ai+1 for all i ∈ N. Indeed, if a ∈ Ai, a 6= 0,
there is pa(x) ∈ I of order i whose dominant coefficient is a and, thus,
xpa(x) ∈ I has order i + 1 and a as dominant coefficient, so a ∈ Aa+1.
Thus, we get the the sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of ideals of R.
Since R is Noetherian, all these ideals are finitely generated and there
exists k ∈ N such that Ai = Ak for all i ≥ k. Let f i

1(x), . . . , f i
ri
(x) ∈ I

be series of order i whose dominant coefficients ai
1, . . . , ai

ri
generate Ai

as an ideal of R, for all 0 ≤ i ≤ k. We will prove that all these series
generate the ideal I.

Let α(x) ∈ I be an arbitrary series of I and suppose that it is of
order d < k. If a is the dominant coefficient of α(x) then a ∈ Ad and
there are b1, . . . , brd ∈ R such that

a = b1ad
1 + · · ·+ brd ad

rd
,

so
α(x)− b1 f d

1 (x)− · · · − brd f d
rd
(x) ∈ I

has order strictly greater than d. Repeating this procedure, we get
a series α∗(x) of order e ≥ k. If its dominant coefficient is a∗ then
a∗ ∈ Ae = Ak and there are c1, . . . , crk ∈ R such that

a∗ = c1ak
1 + · · ·+ crk ak

rk
,

so
α∗ − xe−k(c1 f k

1 (x) + · · ·+ crk f k
rk
(x)) ∈ I

has order strictly greater than e. Finally, iterating this new process, we
obtain a finite list of (possibly infinite) series β1(x), . . . , βrk(x) ∈ R[[x]]
such that

α∗(x)− β1(x) f k
1 (x)− βrk f k

rk
(x) = 0,

which implies that α(x) really is in the ideal generated by the se-
ries listed above. Therefore, I is finitely generated and so R[[x]] is
Noetherian. �

Exercise 1.8

� Solution G �

Exercise 1.9

� Solution T �
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Exercise 1.10

� Solution A �

Exercise 1.11 Prove that the ’associate’ relation is an equivalence
relation.

� Solution Let R be a commutative ring. Recall that a, b ∈ R are as-
sociate if and only if (a) = (b). It is straightforward that this ’associate’
relation is an equivalence relation since the equality of sets is itself an
equivalence relation. �

Exercise 1.12

� Solution G �

Exercise 1.13

� Solution T �

Exercise 1.14

� Solution A �

Exercise 1.15 B Identify S = Z[x1, . . . , xn] in a natural way with
a subring of the polynomial ring in countably infinitely many
variables R = Z[x1, x2, x3, . . . ]. Prove that if f ∈ S and ( f ) ⊆ (g) in
R, then g ∈ S as well. Conclude that the ascending chain condition
for principal ideals holds in R, and hence R is a domain with
factorizations. [§1.3, §4.3]

� Solution We can naturally identify S as the set of all polynomials
in R only in the variables x1, . . . , xn. It is clear that this set is a subring
of R isomorphic to S. Thus, we may assume that S ⊆ R.

Now, let f ∈ S, f 6= 0 and g ∈ R be such that ( f ) ⊆ (g) in R. This
implies that there exists h ∈ R such that f = gh. We will show that
g, h ∈ S. Let m be the largest index such that xm appears as a variable
in g or h, and suppose that m > n. Thus, we may identify g and h as
polynomials of Z[x1, . . . , xn, . . . , xm] as we did before. If we write g and
h as polynomials in xm with coefficients in Z[x1, . . . , xm−1] (recall that
Z[x1, . . . , xm] = Z[x1, . . . , xm−1][xm]), we conclude that xm appears as
a variable in gh = f by the same argument given in Exercise III.1.15

since Z[x1, . . . , xm−1] is an integral domain. But this contradicts that
f ∈ S. Therefore, we must have m ≤ n and so g, h ∈ S, as desired.

The fact that Z is
an integral domain

is essential here.
For example, if we

take f (x) = x2
1 ∈

Z/4Z[x1] and
g(x) = x1 + 2x2 ∈
Z/4Z[x1, . . . ], we

have that ( f ) ⊆ (g)
since

f = (x1 − 2x2)g,
but g 6∈ Z/4Z[x1].

For the last part, let ( f0) ⊆ ( f1) ⊆ ( f2) ⊆ · · · be an ascending chain
of principal ideals in R. We may assume without loss of generality that
n is the largest index such that xn appears as a variable in f0, so we
have that f0 ∈ S. Therefore, fi ∈ S for all i ∈N. Since S is Noetherian
by Theorem 1.2, the chain of ideals stabilizes if we consider them as
ideals in S. Thus, there exists k such that ( fi) = ( fk) in S for all i ≥ k.
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But this clearly implies that ( fi) = ( fk) in R for all i ≥ k and so the
chain of ideals stabilizes. By Proposition 1.11, R is a domain with
factorizations. �

Exercise 1.16

� Solution G �

Exercise 1.17

� Solution T �

2 ufds , pids , euclidean domains

Exercise 2.1

� Solution A �

Exercise 2.2

� Solution G �

Exercise 2.3 Let n be a positive integer. Prove that there is a one-
to-one correspondence preserving multiplicities between the irre-
ducible factors of n (as an integer) and the composition factors of
Z/nZ (as a group). (In fact, the Jordan-Hölder theorem may be
used to prove that Z is a UFD.)

� Solution Let’s find a composition series for Z/nZ. Since it is
abelian, we need not worry about normality but only about the sim-
plicity of the quotients. If n = pα1

1 · · · p
αr
r is the prime factorization of

n, we can define the following normal series:

Z

nZ
) p1Z

nZ
) · · · )

pα1
1 Z

nZ
)

pα1
1 p2Z

nZ
) · · · )

pα1
1 pα2

2 Z

nZ
) · · · ) {0}.

In this series we are adding one prime factor at each step until we get
to nZ/nZ = {0}. By the third isomorphism theorem, each quotient
is isomorphic to Z/piZ for some i, which is simple. Therefore, this
series is indeed a composition series for Z/nZ. It follows immediately
that there is a one-to-one correspondence preserving multiplicities
between the irreducible factors of n and the composition factors of
Z/nZ. �

Remark. As pointed out in the statement of the exercise, the Jordan-
Hölder theorem may be used to prove that Z is a UFD as follows.
Let n be an integer greater than 1. Since Z/nZ is finite, it admits
a composition series (see Exercise IV.3.3), which is of the form

Z

nZ
) n1Z

nZ
) · · · ) nk−1Z

nZ
) nZ

nZ
= {0}
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where n1, · · · , nk−1 are positive divisors of n. Let n0 = 1 and
nk = n. By the inclusions, we must have that ni divides ni+1

for all 0 ≤ i < k. Furthermore, since each quotient is simple
and isomorphic to Z/(ni+1/ni)Z, we must have that ni+1/ni is a
prime number. Thus, since

n =
nk

nk−1
· · · n1

n0
,

it follows that n can be factorized as a product of irreducible
elements in Z, which are prime integers by definition. Finally,
the Jordan-Hölder theorem guarantees the uniqueness of the
factorization (as stated in Definition 1.8) because each factorization
corresponds to a composition series for Z/nZ (as shown in the
exercise) and each composition factor corresponds to a prime
number. Note that this property naturally extends to negative
numbers and so we conclude that Z is indeed a UFD.

Exercise 2.4

� Solution T �

Exercise 2.5

� Solution A �

Exercise 2.6

� Solution G �

Exercise 2.7 B Let R be a Noetherian domain, and assume that
for all nonzero a, b in R, the greatest common divisors of a and b
are linear combinations of a and b. Prove that R is a PID. [§2.3]

� Solution Let I be an ideal of R. Since R is Noetherian, I is finitely
generated, that is, there are a1, . . . , an ∈ I such that I = (a1, . . . , an).
Let d be a gcd of a1 and a2. By the definition of R, there are r, s ∈ R
such that d = ra1 + sa2. Thus, it follows that a1, a2 ∈ (d, a3, . . . , an)

and d ∈ (a1, a2, a3, . . . , an) = I, so I = (d, a3, . . . , an). Repeating this
procedure of reducing the set of generators of I sometimes, we get
that I = (r) for some r ∈ I and so I is principal. We conclude that R
is a PID.

Note that r is a gcd
of a1, . . . , an. �

Exercise 2.8

� Solution T �

Exercise 2.9

� Solution A �
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Exercise 2.10

� Solution G �

Exercise 2.11 Let R be a PID, and let I be a nonzero ideal of R.
Show that R/I is an artinian ring (cf. Exercise 1.10), by proving
explicitly that the d.c.c. holds in R/I.

� Solution Let I1 ⊇ I2 ⊇ · · · be a descending chain of ideals in R/I.
These ideals correspond to ideals of R containing I, so we have a cor-
responding descending chain of principal ideals in R. By Proposition
2.6, R is also a UFD, so Exercise 2.8 implies that this chain of principal
ideals must stabilize since I is nonzero. It follows that our original
chain also stabilizes and so R/I is Artinian. �

Exercise 2.12

� Solution T �

Exercise 2.13

� Solution A �

Exercise 2.14

� Solution G �

Exercise 2.15 Prove that if R is an Euclidean domain, then R admits
a Euclidean valuation v such that v(ab) ≥ v(b) for all nonzero
a, b ∈ R. (Hint: Since R is a Euclidean domain, it admits a valuation
v as in Definition 2.7. For a 6= 0, let v(a) be the minimum of all
v(ab) as b ∈ R, b 6= 0. To see that R is a Euclidean domain with
respect to v as well, let a, b be nonzero in R, with b - a; choose q, r
so that a = bq + r, with v(r) minimal; assume that v(r) ≥ v(b), and
get a contradiction.) [§2.4, 2.16]

� Solution Following the hint, let v be an Euclidean valuation on R
and, for a 6= 0, define v(a) as the minimum of all v(ab) as b ∈ R, b 6= 0.
It follows that v(ab) ≥ v(b) for all nonzero a, b ∈ R. Let’s prove that v
is also an Euclidean valuation on R.

Let a, b be nonzero elements in R with b - a and choose q, r ∈ R so
that a = bq + r with v(r) minimal. Assume that v(r) ≥ v(b). Thus,
there exists c ∈ R, c 6= 0 such that v(bc) ≤ v(r). Since v is an Euclidean
valuation on R, there are q′, r′ ∈ R such that a = bcq′ + r′ with either
r′ = 0 or v(r′) < v(bc) ≤ v(r). But we cannot have r = 0 because it
would imply that b|a, and it is also impossible that v(r′) < v(r) by the
definition of r. Therefore, we have a contradiction and it follows that
v(r) < v(b). This proves that v is indeed an Euclidean evaluation on
R, as desired. �
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Exercise 2.16

� Solution T �

Exercise 2.17

� Solution A �

Exercise 2.18

� Solution G �

Exercise 2.19 ¬ A discrete valuation on a field k is a surjective
homomorphism of abelian groups v : (k∗, ·) → (Z,+) such that
v(a + b) ≥ min(v(a), v(b)) for all a, b ∈ k∗ such that a + b ∈ k∗.

• Prove that the set R := {a ∈ k∗ | v(a) ≥ 0} ∪ {0} is a subring
of k.

• Prove that R is a Euclidean domain.

Rings arising in this fashion are called discrete valuation rings, abbre-
viated DVR. They arise naturally in number theory and algebraic
geometry. Note that the Krull dimension of a DVR is 1 (Example
III.4.14); in algebraic geometry, DVRs correspond to particularly
nice points on a ’curve’.

• Prove that the ring of rational numbers a/b with b not divisi-
ble by a fixed prime integer p is a DVR.

[2.20, VIII.1.19]

� Solution

• Firstly, R is nonempty since 0 ∈ R. Moreover, note that v(1) = 0
since v preserves identities, so 1 ∈ R. Thus, we also have that
2v(−1) = v(1) = 0 and so v(−1) = 0 and −1 ∈ R. This implies
that v(−r) = v(r) and −r ∈ R for all r ∈ R, r 6= 0. Now,
let a, b ∈ R be nonzero elements. It is clear that ab ∈ R since
v(ab) = v(a) + v(b) ≥ 0. Further, either a + b = 0 or v(a + b) ≥
min(v(a), v(b)) ≥ 0, which implies that a+ b ∈ R. From all these
considerations, we conclude that R is a subring of k.

• We claim that v restricted to R is an Euclidean valuation. Let
a, b ∈ R with b 6= 0. If a = 0, it is immediate that a = b · 0 + 0,
so we may assume that a 6= 0. If v(a) < v(b), we can take q = 0
and r = a, obtaining a = bq + r with v(r) < v(b). Otherwise,
v(ab−1) = v(a)− v(b) ≥ 0, so ab−1 ∈ R and we can take q =

ab−1 and r = 0, following that a = bq + r. In any case, there
are q, r ∈ R such that a = bq + r with r = 0 or v(r) < v(b).
Therefore, we conclude that R is indeed a Euclidean domain
with v as a Euclidean valuation.
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• Let’s define a discrete valuation v on Q as follows. Given r ∈ Q∗,
there are a, b ∈ Z not divisible by p and a unique x ∈ Z such
that

r = px a′

b′
.

Define v(r) = x. This function v is clearly surjective and note
that, if a, b, c, d ∈ Z are not divisible by p and x, y ∈ Z, then

v
(

px a
b
· py c

d

)
= v

(
px+y ac

bd

)
= x + y = v

(
px a

b

)
+ v

(
py c

d

)
,

so v is a group homomorphism between (Q∗, ·) and (Z,+).
Finally, if pxa/b + pyc/d 6= 0 and m = min(x, y), then

v
(

px a
b
+ py c

d

)
= v

(
pm px−mad + py−mbc

bd

)
≥ m

since bd is not divisible by p. Therefore, v is indeed a discrete
valuation on Q and it is easy to see that the ring of rational
numbers a/b with b not divisible by p is given by R = {r ∈
Q∗ | v(r) ≥ 0} ∪ {0}. �

Exercise 2.20

� Solution T �

Exercise 2.21

� Solution A �

Exercise 2.22

� Solution G �

Exercise 2.23 Compute

d = gcd(5504227617645696, 2922476045110123).

Further, find a, b such that

d = 5504227617645696a + 2922476045110123b.
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� Solution Executing the Euclidean algorithm, we get the following
equations:

5504227617645696 = 2922476045110123 · 1 + 2581751572535573

2922476045110123 = 2581751572535573 · 1 + 340724472574550

2581751572535573 = 340724472574550 · 7 + 196680264513723

340724472574550 = 196680264513723 · 1 + 144044208060827

196680264513723 = 144044208060827 · 1 + 52636056452896

144044208060827 = 52636056452896 · 2 + 38772095155035

52636056452896 = 38772095155035 · 1 + 13863961297861

38772095155035 = 13863961297861 · 2 + 11044172559313

13863961297861 = 11044172559313 · 1 + 2819788738548

11044172559313 = 2819788738548 · 3 + 2584806343669

2819788738548 = 2584806343669 · 1 + 234982394879

2584806343669 = 234982394879 · 11.

Therefore, d = 234982394879. To find a and b, we can use substitute
each of these equations into the previous one, starting from the penul-
timate one. By doing so, we find that possible values for a and b are
a = 1055 and b = −1987. �

Exercise 2.24

� Solution T �

Exercise 2.25

� Solution A �

3 intermezzo : zorn’s lemma

Exercise 3.1

� Solution G �

Exercise 3.2

� Solution T �

Exercise 3.3 Prove that the axiom of choice is equivalent to the
statement that a set-function is surjective if and only if it has a
right-inverse (cf. Exercise I.2.2).

� Solution By Exercise I.2.2, we know that the axiom of choice
implies that a set-function is surjective if and only if it has a right-
inverse. Let’s show that the converse also holds. Assume that a set-
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function is surjective if and only if it has a right-inverse. Let F be a
family of disjoint nonempty subsets of a set Z. Define a function

f :
⋃

S∈F

S→ F

by letting f (x) be the subset of Z in F that contains x, for all x ∈⋃
S∈F S. Since the subsets in F are disjoint, f is well-defined. Moreover,

since they are nonempty, we also know that f is surjective. Therefore,
f admits a right-inverse g. Since f ◦ g = idF , it follows that g(S) ∈ S
for all S ∈ F . Thus, im g is a set formed by selecting one element of
each S ∈ F . We conclude that the axiom of choice is true, stablishing
the equivalence in the exercise. �

Exercise 3.4

� Solution A �

Exercise 3.5

� Solution G �

Exercise 3.6

� Solution T �

Exercise 3.7 In this exercise assume the truth of the axiom of
choice and the conventional set-theoretic constructions; you will be
proving the well-ordering theorem.

Let Z be a nonempty set. Use the axiom of choice to choose an
element γ(S) 6∈ S for each proper subset S ( Z. Call a pair (S,≤)
a γ-woset if S ⊆ Z, ≤ is a well-ordering on S, and for every a ∈ S,
a = γ({b ∈ S, b < a}).

• Show how to begin constructing a γ-woset, and show that all
γ-wosets must begin in the same way.

Define an ordering on γ-wosets by prescribing that (U,≤′′) �
(T,≤′) if and only if U ⊆ T and ≤′′ is the restriction of ≤′.

• Prove that if (U,≤′′) ≺ (T,≤′), then γ(U) ∈ T.

• For two γ-wosets (S,≤) and (T,≤′), prove that there is a max-
imal γ-woset (U,≤′′) preceding both w.r.t �. (Note: There is
no need to use Zorn’s lemma!)

• Prove that the maximal γ-woset found in the previous point
in fact equals (S,≤) or (T,≤′). Thus, � is a total ordering.

• Prove that there is a maximal γ-woset (M,≤) w.r.t �. (Again,
Zorn’s lemma need not and should not be invoked.)
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• Prove that M = Z.

Thus every set admits a well-ordering, as stated in Theorem 3.3.

Theorem 3.3 (Well-ordering theorem). Every set admits a well-
ordering.

� Solution

• To construct a γ-woset (S,≤), we need to define a least element
a in S. By the definition of a γ-woset, we are forced to define
a = γ(∅), since there will not be any element preceding a with
respect to ≤. It is clear that any γ-woset must have it least
element as γ(∅) by the same reason.

• Since (U,≤′′) ≺ (T,≤′), we know that U ( T. Thus, T \U is
nonempty and has a least element x with respect to ≤′ because
≤′ is a well-ordering on T. It follows that the set X = {b ∈
T, b <′ x} is contained in U. In fact, we claim that X = U. We
will prove this by contradiction. Suppose that X ( U. Hence,
U \ X is nonempty and has a least element y with respect to ≤′′
because ≤′′ is a well-ordering on U. Let Y = {b ∈ U, b <′′ y}
and let’s prove that X = Y. If b ∈ Y, then b must be in X since
b <′′ y, so we have the inclusion Y ⊆ X. For the other inclusion,
firstly note that x <′ y. Indeed, by Exercise 3.1, we can compare
x and y and certainly x ≤′ y since y 6∈ X. On the other hand
x 6= y since x 6∈ U and y ∈ U, and so x <′ y. Thus, if b ∈ X then
b ∈ U and

b <′ x =⇒ b <′ y =⇒ b <′′ y =⇒ b ∈ Y,

as desired. By the definition of a γ-woset,

x = γ(X) = γ(Y) = y,

but this contradicts that x 6= y. Therefore, we must have X = U
and so γ(U) = x ∈ T.

• Ainda não sei.

• Suppose that (U,≤′′) is different from (S,≤) and (T,≤′). By the
second item, γ(U) ∈ S and γ(U) ∈ T. Define V = U ∪ {γ(U)}
and extend ≤′′ to ≤′′′ by setting u <′′′ γ(U) for all u ∈ U and
γ(U) ≤′′′ γ(U). It is clear that (V,≤′′′) is a γ-woset and that
V ⊆ S and V ⊆ T. Let’s prove that ≤′′′ is the restriction of ≤ and
≤′ to V. We just need to verify this between every element of U
and γ(U). As in the proof of the second item, there are x ∈ S
and y ∈ T such that b ∈ U ⇐⇒ b < x and b ∈ U ⇐⇒ b <′ y.
Since γ(U) 6∈ U, x ≤ γ(U) and y ≤′ γ(U) and so it follows
by transitivity that u < γ(U) and u <′ γ(U) for all u ∈ U.
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It follows that (V,≤′′′) precedes both (S,≤) and (T,≤′) with
respect to �. But this contradicts the definition of (U,≤′′) since
(U,≤′′) ≺ (V,≤′′′). Therefore, we conclude that (U,≤′′) must
equal (S,≤) or (T,≤′).

• Não tenho certeza

• Suppose that M 6= Z. As in the fourth item, we can define
M′ = M ∪ {γ(M)} and ≤′ such that (M′,≤′) is a γ-woset. It
follows that (M,≤) ≺ (M′,≤′), contradicting that (M,≤) is
maximal. Therefore, we must have M = Z and so Z admits a
well-ordering. �

Exercise 3.8

� Solution A �

Exercise 3.9

� Solution G �

Exercise 3.10

� Solution T �

Exercise 3.11 Prove that a UFD R is a PID if and only if every
nonzero prime ideal in R is maximal. (Hint: One direction is Propo-
sition III.4.13. For the other, assume that every nonzero prime ideal
in a UFD R is maximal, and prove that every maximal ideal in R
is principal; then use Proposition 3.5 to relate arbitrary ideals to
maximal ideals, and prove that every ideal of R is principal.)

Proposition 3.13 Let R be a PID, and let I be a nonzero ideal in R.
Then I is prime if and only if it is maximal.

Proposition 3.5 Let I 6= (1) be a proper ideal of a commutative
ring R. Then there exists a maximal ideal m of R containing I.

� Solution If R is a PID, Proposition III.4.13 implies that every
nonzero prime ideal in R is maximal. To prove the converse, we will
follow the hint.

Suppose that every nonzero prime ideal in R is maximal. Let M be
a maximal ideal of R. If m ∈ M, we can factorize m into irreducible
factors since R is an UFD. It follows that one of these factors, say p, is
in M since M is, in particular, a prime ideal. By Lemma 2.4, p is prime
and so (p) is a prime ideal. By hypothesis, (p) is maximal and, since
(p) ⊆ M, we have that M = (p), following that M is principal.

Let I be any nontrivial and proper ideal of R. Denote by n(I) the
minimum number of irreducible factors that every nonzero element
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in I must have. We will prove that I is principal by induction in n(I).
If n(I) = 1, there exists q ∈ I irreducible, which is prime and so
(q) is maximal, implying that I = (q) since (q) ⊆ I. Now, suppose
that n(I) > 1 and that every nontrivial and proper ideal J of R with
n(J) < n(I) is principal. By Proposition 3.5, there exists a maximal
ideal (p) of R containing I, where p ∈ R is irreducible. Thus, every
element of I has p as an irreducible factor. Let

J = {x ∈ R | px ∈ I}.

It is clear that J is a nontrivial and proper ideal of R and that n(J) <
n(I). By the inductive hypothesis, J = (a) for some a ∈ R and, since
every element of I is divisible by p,

I = pJ = p(a) = (pa),

that is, I is principal, as desired. We conclude that R is a PID. �

Exercise 3.12

� Solution A �

Exercise 3.13

� Solution G �

Exercise 3.14

� Solution T �

Exercise 3.15 Recall that a (commutative) ring R is Noetherian if
every ideal of R is finitely generated. Assume the seemingly weaker
condition that every prime ideal of R is finitely generated. Let F be
the family of ideals that are not finitely generated in R. You will
prove F = ∅.

• If F 6= ∅, prove that it has a maximal element I.

• Prove that R/I is Noetherian.

• Prove that there are ideals J1, J2 properly containing I, such
that J1 J2 ⊆ I.

• Give a structure of R/I module to I/J1 J2 and J1/J1 J2.

• Prove that I/J1 J2 is a finitely generated R/I-module.

• Prove that I is finitely generated, thereby reaching a contra-
diction.

Thus, a ring is Noetherian if and only if its prime ideals are finitely
generated.

� Solution
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• Let C be a chain of ideals in F and consider

U :=
⋃
J∈C

J.

It is clear that U is an ideal since C is a chain (see the proof
of Proposition 3.5). Now, assume that U is finitely generated,
that is, U = (a1, . . . , an) for some a1, . . . , an ∈ U. Thus, there
are ideals J1, . . . , Jn ∈ C such that ai ∈ Ji for all i. It is easy to
check that any finite subset of C has a greatest element with
respect to inclusion, so a1, . . . , an ∈ Ji for some i. This implies
that Ji = U, which contradicts the fact that Ji is not finitely
generated. Therefore, U cannot be finitely generated and hence
it is an upper bound for C in F . This proves that every chain
in F has an upper bound, and it follows that F has a maximal
element I, by Zorn’s lemma.

• Let A be a nontrivial ideal of R/I. Thus, there exists an ideal J of
R properly containing I such that A = J/I. Since I is a maximal
element in F , J must be finitely generated and it follows that A
is also finitely generated. Therefore, every ideal of R/I is finitely
generated and so R/I is Noetherian.

• Since I is not finitely generated, I is not a prime ideal of R. This
implies that there are a, b ∈ R such that a, b 6∈ I but ab ∈ I.
Define

J1 := I + (a) and J2 := I + (b).

It is clear that J1, J2 are ideals of R properly containing I. To
prove that J1 J2 ⊆ I, it suffices to show that every element of the
form j1 j2 with j1 ∈ J1 and j2 ∈ J2 is in I. Indeed, if j1 ∈ J1 and
j2 ∈ J2, there are i1, i2 ∈ I and r1, r2 ∈ R such that

j1 = i1 + r1a and j2 = i2 + r2b.

Therefore,

j1 j2 = i1i2 + (r1a)i2 + (r2b)i1 + (r1r2)(ab) ∈ I

since ab ∈ I, so J1 J2 ⊆ I, as desired.

• A natural way to define this structure is to set

(r + I)(i + J1 J2) := (ri + J1 J2)

for all r ∈ R and i ∈ I. If this action is well-defined, it follows
easily that it turns I/J1 J2 into an R/I-module. To see that it is
really well-defined, let i ∈ I and r, r′ ∈ R be such that r + I =

r′ + I, that is, r− r′ ∈ I. Since I ⊆ J1, J2, we have that

(r− r′)i ∈ J1 J2 =⇒ ri− r′i ∈ J1 J2 =⇒ ri + J1 J2 = r′i + J1 J2,

which tells us that this action is really well-defined. Note that
we can give a structure of R/I-module to J1/J1 J2 in the same
fashion.
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• We just need to prove that J1/J1 J2 is a finitely generated R/I-
module. Indeed, if this is the case, Corollary III.6.8 implies that
J1/J1 J2 is a Noetherian module because R/I is Noetherian by
the second item. Since I ⊆ J1, we have that I/J1 J2 is contained
in J1/J1 J2 as a submodule and so I/J1 J2 is a finitely generated
R/I-module.

Since J1 properly contains I, J1 must be a finitely generated ideal
of R and so there are x1, . . . , xn ∈ J1 such that J1 = (x1, . . . , xn).
We claim that J1/J1 J2 is generated by x1 + J1 J2, . . . , xn + J1 J2 as an
R/I-module. Indeed, if j1 + J1 J2 ∈ J1/J1 J2, there are r1, . . . , rn ∈
R such that

j1 = r1x1 + · · ·+ rnxn

and so

j1 + J1 J2 = (r1 + I)(x1 + J1 J2) + · · ·+ (rn + I)(xn + J1 J2).

Therefore, J1/J1 J2 is a finitely generated R/I-module, as desired.

• By the previous item, I/J1 J2 is generated (as an R/I-module) by
some i1 + J1 J2, . . . , ik + J1 J2 ∈ I/J1 J2. Moreover, since J1 and J2

properly contain I, they are finitely generated ideals of R and so
J1 J2 = (j1, . . . , jl) for some j1, . . . , jl ∈ J1 J2 ⊆ I. Let’s prove that
I = (i1, . . . , ik, j1, . . . , jl). If i ∈ I, there are r1, . . . , rk ∈ R such that

i + J1 J2 = (r1 + I)(i1 + J1 J2) + · · ·+ (rk + I)(ik + J1 J2)

= (r1i1 + · · ·+ rkik) + J1 J2.

Therefore,
i− (r1i1 + · · ·+ rkik) ∈ J1 J2,

which implies that there are s1, . . . , sl ∈ R such that

i = r1i1 + · · ·+ rkik + s1 j1 + · · ·+ sl jl .

This proves our claim and we reach a contradiction since I is not
finitely generated by definition. We conclude that we must have
F = ∅, that is, R is Noetherian. �

4 unique factorization in polynomial rings

Exercise 4.1

� Solution A �

Exercise 4.2

� Solution G �
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Exercise 4.3 B Let R be a PID, and let f ∈ R[x]. Prove that f is
primitive if and only if it is very primitive. Prove that this is not
necessarily the case in an arbitrary UFD. [§4.1]

� Solution For any ring R, a polynomial f ∈ R[x] is primitive if it
is very primitive, by definition. Now, if R is PID, the converse also
holds since every prime ideal of R is principal. However, it may not
be true in an arbitrary UFD. For instance, take R = Z[x] (which is
a UFD by Theorem 4.14) and f = x + (x + 2)y ∈ R[y]. It is easy to
check that gcd(x, x + 2) = 1 and so f is primitive by Lemma 4.5. On
the other hand, (x, x + 2) = (2, x) do not equal (1) by Exercise III.4.3
and it follows (again by Lemma 4.5) that f is not very primitive. �

Exercise 4.4

� Solution T �

Exercise 4.5

� Solution A �

Exercise 4.6

� Solution G �

Exercise 4.7 B A subset S of a commutative ring R is a mul-
tiplicative subset (or multiplicatively closed) if (i) 1 ∈ S and (ii)
s, t ∈ S =⇒ st ∈ S. Define a relation on the set of pairs (a, s)
with a ∈ R, s ∈ S as follows:

(a, s) ∼ (a′, s′) ⇐⇒ (∃t ∈ S), t(s′a− sa′) = 0.

Note that if R is an integral domain and S = R \ {0}, then S is
a multiplicative subset, and the relation agrees with the relation
introduced in §4.2.

• Prove that the relation ∼ is an equivalence relation.

• Denote by a
s the equivalence class of (a, s), and define the

same operations +, · on such ’fractions’ as the ones introduced
in the special case of §4.2. Prove that these operations are well-
defined.

• The set S−1R of fractions, endowed with the operations +, ·,
is the localization of R at the multiplicative subset S. Prove that
S−1R is a commutative ring and that the function a 7→ a

1
defines a ring homomorphism l : R→ S−1R.

• Prove that l(s) is invertible for every s ∈ S.
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• Prove that R→ S−1R is initial among ring homomorphisms
f : R→ R′ such that f (s) is invertible in R′ for every s ∈ S.

• Prove that S−1R is an integral domain if R is an integral
domain.

• Prove that S−1R is the zero-ring if and only if 0 ∈ S.

[4.8, 4.9, 4.11, 4.15, VII.2.16, VIII.1.4, VIII.2.5, VIII.2.6, VIII.2.12,
§IX.9.1]

� Solution

• Firstly, we have that (a, s) ∼ (a, s) for all (a, s) ∈ R × S since
1 · (sa− sa) = 0 and 1 ∈ S. Also note that, if (a, s) ∼ (a′, s′), then
there exists t ∈ S such that t(s′a− sa′) = 0, so t(sa′ − s′a) = 0
and (a′, s′) ∼ (a, s). Now, if (a, s) ∼ (a′, s′) and (a′, s′) ∼ (a′′, s′′),
there are t1, t2 ∈ S such that t1(s′a− sa′) = t2(s′′a′ − s′a′′) = 0.
Thus,

(s′t1t2)(s′′a− sa′′) = (t1s′a)(t2s′′)− (t2s′a′′)(t1s)

= (t1sa′)(t2s′′)− (t2s′′a′)(t1s)

= t1t2sa′s′′ − t1t2sa′s′′ = 0

and, since s′t1t2 ∈ S, (a, s) ∼ (a′′, s′′). We conclude that ∼ is an
equivalence relation.

• As in §4.2, we define operations on such ’fractions’ as follows:

a1

s1
+

a2

s2
=

a1s2 + a2s1

s1s2
,

a1

s1
· a2

s2
=

a1a2

s1s2
.

Let’s verify that they are well-defined. Firstly, note that the
fractions on the right are indeed valid fractions since s1s2 ∈ S
because S is multiplicatively closed.Now, let a1

s1
, a′1

s′1
, a2

s2
, a′2

s′2
be such

that
a1

s1
=

a′1
s′1

and
a2

s2
=

a′2
s′2

,

that is, there are t1, t2 ∈ S such that

t1(s′1a1 − s1a′1) = t2(s′2a2 − s2a′2) = 0.

Thus, t1t2 ∈ S and note that

(t1t2)((a1s2 + a2s1)(s′1s′2)− (a′1s′2 + a′2s′1)(s1s2)) = 0

and
(t1t2)(a1a2s′1s′2 − a′1a′2s1s2) = 0,

so
a1s2 + a2s1

s1s2
=

a′1s′2 + a′2s′1
s′1s′2

and
a1a2

s1s2
=

a′1a′2
s′1s′2

.

We conclude that these operations are indeed well-defined.
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• Let’s prove that S−1R is a commutative ring. The associative
property for + and · follows from associativity and distributivity
in R. It also follows immediately that + and · are commutative
since commutativity holds in R both for sum and for multi-
plication. Further, 0

1 and 1
1 are the additive and multiplicative

identities, respectively, and for all a ∈ R and s ∈ S we have that

−
( a

s

)
=

(−a)
s

.

Finally, the computation done just after Definition 4.10 also
proves the distributive property in S−1R. Thus, S−1R is indeed a
commutative ring.

Now, define l : R → S−1R by l(a) = a
1 for every a ∈ R. This

function is a ring homomorphism because l(1) = 1
1 , which is the

multiplicative identity of S−1R, and

l(a + b) =
a + b

1
=

a · 1 + b · 1
1 · 1 =

a
1
+

b
1
= l(a) + l(b)

l(a · b) = ab
1

=
ab

1 · 1 =
a
1
· b

1
= l(a) · l(b)

for all a, b ∈ R.

• We have that
l(s) · 1

s
=

s
1
· 1

s
=

s
s
=

1
1

and so l(s) is invertible for every s ∈ S. Note that 1
s is well-

defined since s ∈ S.

• Let f : R → R′ be a ring homomorphism from R to a ring R′

such that f (s) is invertible in R′ for every s ∈ S. As in Claim 4.11,
we need to define an induced homomorphism ϕ : S−1R→ R′ so
that the diagram

S−1R R′

R

ϕ

l f

commutes, and we must show that ϕ is unique. Now, the defini-
tion of ϕ is in fact forced upon us: if ϕ exists as a homomorphism,
then necessarily

ϕ
( a

s

)
= ϕ

( a
1

)
ϕ

(( s
1

)−1
)

= ϕ
( a

1

)
ϕ
( s

1

)−1

= ((ϕ ◦ l)(a))((ϕ ◦ l)(s))−1

= f (a) f (s)−1.
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Thus ϕ is indeed unique, if it exists. On the other hand, the
prescription

ϕ
( a

s

)
:= f (a) f (s)−1

does define a function S−1R→ R′. Indeed, firstly note that f (s)
is invertible since s ∈ S. Moreover, if a

s = a′
s′ , there exists t ∈ S

such that
tas′ = ta′s

in R, hence
f (t) f (a) f (s′) = f (t) f (a′) f (s′)

in R′, and
f (a) f (s)−1 = f (a′) f (s′)−1

since f (t), f (s) and f (s′) are invertible in R′. This shows that ϕ

is well-defined. Finally, it is a ring homomorphism because

ϕ

(
a
s
+

a′

s′

)
= f (as′ + a′s) f (ss′)−1

= ( f (a) f (s′) + f (a′) f (s))( f (s)−1 f (s′)−1)

= f (a) f (s)−1 + f (a′) f (s′)−1

= ϕ
( a

s

)
+ ϕ

(
a′

s′

)
and

ϕ

(
a
s
· a′

s′

)
= f (aa′) f (ss′)−1

= ( f (a) f (s)−1) · ( f (a′) f (s′)−1)

= ϕ
( a

s

)
· ϕ
(

a′

s′

)
for all a

s , a′
s′ ∈ S−1R, and f ( 1

1 ) = 1R′ . Therefore, it follows that l
is initial among ring homomorphisms f : R→ R′ such that f (s)
is invertible in R′ for every s ∈ S.

• We will suppose that 0 6∈ S because, otherwise, S−1R would be
the zero-ring by the next item. Thus, we just need to show that,
if a

s , a′
s′ ∈ S−1R are nonzero fractions, then a

s ·
a′
s′ 6=

0
1 . Indeed, if

this product were equal to 0
1 , there would exist t ∈ S such that

t(aa′ · 1− ss′ · 0) = taa′ = 0.

Since R is an integral domain and t 6= 0, a = 0 or a′ = 0. But
this implies that a

s or a′
s′ would be equal to zero, a contradiction.

Therefore, the product is nonzero, as desired.

• Note that 0
1 = 1

1 if and only if there exists t ∈ S such that

t(1 · 0− 1 · 1) = −t = 0

and so if and only if 0 ∈ S. By Exercise III.1.1, S−1R is the
zero-ring if and only if 0 ∈ S. �



4 unique factorization in polynomial rings 205

Exercise 4.8

� Solution T �

Exercise 4.9

� Solution A �

Exercise 4.10

� Solution G �

Exercise 4.11 ¬ (Notation as in Exercise 4.7 and 4.8) A ring is said
to be local if it has a single maximal ideal.

Let R be a commutative ring, and let p be a prime ideal of R. Prove
that the set S = R \ p is multiplicatively closed. The localizations
S−1R, S−1M are then denoted Rp, Mp.

Prove that there is an inclusion-preserving bijection between the
prime ideals of Rp and the prime ideals of R contained in p. Deduce
that Rp is a local ring. [4.12, 4.13, VI.5.5, VII.2.17, VIII.2.21]

� Solution Let’s prove that S = R \ p is a multiplicative subset of R.
Since p 6= (1), we have that 1 ∈ S. Moreover, since p is prime,

st ∈ p =⇒ s ∈ p or t ∈ p

and so
s, t ∈ S =⇒ st ∈ S,

by contraposition. Hence S is multiplicatively closed as desired.
For the second part, Exercise 4.10 tells us that there is an inclusion-

preserving bijection between the prime ideals of Rp and the prime
ideals of R disjoint from S. But an ideal is disjoint from S if and only if
it is contained in p and so the result follows. Furthermore, Proposition
3.5 implies that Rp contains a maximal ideal, which is in particular
prime and, thus, is contained in the corresponding prime ideal of p. It
follows that Rp have only one maximal ideal (the one corresponding
to p), that is, Rp is a local ring. �

Exercise 4.12

� Solution T �

Exercise 4.13

� Solution A �

Exercise 4.14

� Solution G �
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Exercise 4.15 ¬ Let R be a UFD, and let S be a multiplicatively
closed subset of R (cf. Exercise 4.7).

• Prove that if q is irreducible in R, then q/1 is either irreducible
or a unit in S−1R.

• Prove that if a/s is irreducible in S−1R, then a/s is an associate
of q/1 for some irreducible element q of R.

• Prove that S−1R is also a UFD.

[4.16]

� Solution

• We will suppose that 0 6∈ S so that S−1R is an integral domain
by Exercise 4.7. In this case, we just need to check that

q
1
=

a
s
· a′

s′
=⇒

(
a
s

is a unit or
a′

s′
is a unit

)
.

Indeed, this equality means that there exists t ∈ S such that

tqss′ = taa′

and so
qss′ = aa′

since R is an integral domain and t 6= 0. By Lemma 2.4, q is prime
and so q divides a or q divides a′. Without loss of generality, we
may suppose that a = qb for some b ∈ R. Thus,

q
1
=

a
s
· a′

s′
=

q
1
· b

s
· a′

s′
=⇒ b

s
· a′

s′
=

1
1

=⇒ a′

s′
is a unit,

as desired.

• Since R is a UFD, there are irreducible elements q1, . . . , qn ∈ R
such that a = q1 · · · qn and we may write

a
s
=

1
s
· q1

1
· · · qn

1
.

By the previous item, each of the factors on the right is either
irreducible or a unit. Since a

s is itself irreducible, we have that
only one qi

1 can be irreducible and the other factors must be units.
Thus, a

s is associate to qi
1 , where qi is an irreducible element of R.

• As in the proof of Theorem 2.5, it suffices to show that factoriza-
tions exist in S−1R and that every irreducible element of S−1R
is prime. For the first part, let a

s ∈ S−1R be an arbitrary ele-
ment. Since R is a UFD, a = q1 · · · qn where q1, . . . , qn ∈ R are
irreducible elements. Thus, we may write

a
s
=

1
s
· q1

1
· · · qn

1
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and, after grouping 1
s with other possible units, we get a factor-

ization of a
s by the first item.

For the second part, let x ∈ S−1R be an irreducible element. By
the second item we may assume that x = q

1 for some irreducible
element q of R. We claim that (q) is disjoint from S. Indeed, if it
existed r ∈ R such that qr = s ∈ S, then

q
1
· r

s
=

s
s
=

1
1

and q
1 would be a unit, which is impossible since it is irreducible.

Moreover, since R is a UFD, q is prime and so the ideal S−1(q)
is a prime ideal of S−1R by Exercise 4.10. Finally, note that

S−1(q) =
( q

1

)
and so we conclude that q

1 is prime, as desired.

Therefore, S−1R is indeed a UFD. �

Exercise 4.16

� Solution T �

Exercise 4.17

� Solution A �

Exercise 4.18

� Solution G �

Exercise 4.19 B An element a ∈ R in a ring is said to be nilpotent
if an = 0 for some n ≥ 0. Prove that if a is nilpotent, then 1 + a is a
unit in R. [VI.7.11, §VII.2.3]

� Solution Let a ∈ R be nilpotent and let n ≥ 0 be such that an = 0.
If n = 0, then R must be the zero-ring and it follows immediately that
1 + a is invertible. If n > 0, we can use a famous identity. Notice that

xn + (−1)n−1yn = (x + y)(xn−1 − xn−2y + · · ·+ (−1)n−1yn−1)

for all x, y ∈ R such that xy = yx. Thus, taking x = 1 and y = a, we
get that 1 + a is a unit in R and

1− a + · · ·+ (−1)n−1an−1

is its inverse. �

Remark. Recall that the Taylor series for the function 1
1+x is

1
1 + x

= 1− x + x2 − x3 + · · · .



208 irreducibility and factorization in integral domains

Note that the inverse for 1+ a that we found in the exercise can be
reached by replacing x by a and using the fact that a is nilpotent.
In this sense, the Taylor series can help us guessing what may be
the inverse for a certain element.

Exercise 4.20

� Solution T �

Exercise 4.21

� Solution A �

Exercise 4.22

� Solution G �

Exercise 4.23 B Let R be a UFD, K its field of fractions, f (x) ∈ R[x],
and assume f (x) = α(x)β(x) with α(x), β(x) in K[x]. Prove that
there exists a c ∈ K such that cα(x) ∈ R[x], c−1β(x) ∈ R[x], so that

f (x) = (cα(x))(c−1β(x))

splits f (x) as a product of factors in R[x].
Deduce that if α(x)β(x) = f (x) ∈ R[x] is monic and α(x) ∈ K[x]

is monic, then α(x), β(x) are both in R[x] and β(x) is also monic.
[§4.3, 4.24, §VII.5.2]

� Solution Write α(x) = a1
a2

α′(x) and β(x) = b1
b2

β′(x), where a1, a2,
b1, b2 ∈ R and α′(x), β′(x) ∈ R[x] are primitive polynomials. Thus,

a2b2 f (x) = a1b1α′(x)β′(x)

and, by Gauss’s lemma and Lemma 4.7,

(a2b2(cont f (x))) = (a1b1).

If d ∈ R is a content of f (x) then there exists a unit u ∈ R such that

a2b2du = a1b1

and we may take

c =
a2du

a1
∈ K.

It is immediate that c−1 = b2
b1

and so both cα(x) and c−1β(x) are in
R[x].

For the second part, note that the leading coefficients of cα(x) and
c−1β(x) must be inverses for each other since f (x) is monic. This
implies that c is in R and is a unit because α is also monic. Therefore,
it follows that α(x) and β(x) are in R[x] and, since f (x) = α(x)β(x),
β(x) is also monic. �
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Exercise 4.24

� Solution T �

Exercise 4.25

� Solution A �

5 irreducibility of polynomials

Exercise 5.1

� Solution G �

Exercise 5.2

� Solution T �

Exercise 5.3 Let R be a ring, and let f (x) = a2nx2n + a2n−2x2n−2 +

· · ·+ a2x2 + a0 ∈ R[x] be a polynomial only involving even powers
of x. Prove that if g(x) is a factor of f (x), so is g(−x).

� Solution Consider the ’evaluation map’ ϕ : R[x]→ R[x] that sends
x to −x, which is a homomorphism by Example III.2.3 and Exercise
III.2.6. Since g(x) is a factor of f (x), there exists h(x) ∈ R[x] such that

f (x) = g(x)h(x).

The fact that f (x) is a polynomial only involving even powers of x
implies that

f (x) = f (−x) = ϕ( f (x)) = ϕ(g(x))ϕ(h(x)) = g(−x)h(−x)

and so g(−x) is also a factor of f (x). �

Exercise 5.4

� Solution A �

Exercise 5.5

� Solution G �

Exercise 5.6

� Solution T �

Exercise 5.7 Let R be an integral domain, and let f (x) ∈ R[x] be a
polynomial of degree d. Prove that f (x) is determined by its value
at any d + 1 distinct elements of R.

� Solution The proof is analogous to the one given for Corollary
5.2. Indeed, let r1, . . . , rd+1 be distinct elements of R. If there were a
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polynomial g(x) ∈ R[x] different from f (x) such that f (ri) = g(ri) for
all 1 ≤ i ≤ d + 1, the polynomial f (x)− g(x) 6= 0 would have more
than n distinct roots, which contradicts Lemma 5.1. Therefore, f (x) is
uniquely determined by its value at any d + 1 distinct elements of R. �

Exercise 5.8

� Solution A �

Exercise 5.9

� Solution G �

Exercise 5.10

� Solution T �

Exercise 5.11 B Let F be a finite field. Prove that there are ir-
reducible polynomials in F[x] of arbitrarily high degree. (Hint:
Exercise 2.24.) [§5.3]

� Solution Fix n > 0 and let’s show that there is an irreducible
polynomial in F of degree at least n. For this, let p1, . . . , pk ∈ F be all
irreducible polynomials in F of degree at most n− 1. Since F is finite,
this list is indeed finite as well. Consider the polynomial

f = p1 · · · pk + 1.

Note that, if f were divisible by pi for some i then 1 would be divisible
by pi, contradicting that pi is irreducible. Therefore, f is not divisible
by any irreducible polynomial of degree at most n− 1. Since F is a field,
F[x] is a UFD and so f is divisible by some irreducible polynomial,
which must be of degree at least n, as desired.

We can take F as
any finite UFD and
the argument will

still hold due to
Theorem 4.14.

�

Exercise 5.12

� Solution A �

Exercise 5.13

� Solution G �

Exercise 5.14

� Solution T �

Exercise 5.15 Prove Lemma 5.10.

Lemma 5.10 A field k is algebraically closed if and only if every
nonconstant polynomial f ∈ k[x] factors completely as a product of
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linear factors, if and only if every nonconstant polynomial f ∈ k[x]
has a root in k.

� Solution Let’s deal with each equivalence one at a time. For the
first one, suppose that k is algebraically closed. Then, since k[x] is a
UFD, every nonconstant polynomial in k[x] is not a unit and factors
completely as a product of irreducible polynomials, which must be
linear. Conversely, if every nonconstant polynomial of k[x] factors as a
product of linear factors, then any polynomial of degree higher than 1
is reducible, which implies that k is algebraically closed.

For the second equivalence, if every nonconstant polynomial f ∈
k[x] factors as a product of linear factors, Example III.4.7 implies that f
has a root in k. Reciprocally, if every nonconstant polynomial f ∈ k[x]
has a root in k, we can repeatedly apply Example III.4.7 to get that

f = a(x− r1)
l1 · · · (x− rn)

ln

for some a, r1, . . . , rn ∈ k and positive integers l1, . . . , ln, that is, f
factors completely as a product of linear factors. �

Exercise 5.16

� Solution A �

Exercise 5.17

� Solution G �

Exercise 5.18

� Solution T �

Exercise 5.19 Give a proof of the fact that
√

2 is not rational by
using Eisenstein’s criterion.

� Solution Applying Eisenstein’s criterion with R = Z and p = (2)
to the polynomial f (x) = x2 − 2 ∈ Z[x], we get that f (x) is not the
product of polynomials of degree less than 2. It follows that f (x) is
irreducible in Q[x] and so Proposition 5.3 implies that f (x) has no
rational roots. Since

√
2 is a root of f (x), we conclude that

√
2 is not

rational.

A similar
argument shows
that n
√

p is
irrational for every
n > 1 and p prime.

�

Exercise 5.20

� Solution A �

Exercise 5.21

� Solution G �

Exercise 5.22

� Solution T �
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Exercise 5.23 Decide whether y5 + x2y3 + x3y2 + x is reducible or
irreducible in C[x, y].

� Solution Firstly, by Exercise 5.12 we have that

C[x]
(x)
∼= C

and so (x) is a prime (even maximal) ideal of C[x]. Thus, we may apply
Eisenstein’s criterion with R = C[x] and p = (x) to the polynomial
y5 + x2y3 + x3y2 + x ∈ C[x, y] = C[x][y], obtaining that it is not a
product of polynomials of degree less than 5 (if they are viewed as
polynomials in y). Since it is monic (as a polynomial in y), we conclude
that y5 + x2y3 + x3y2 + x is irreducible in C[x, y]. �

Exercise 5.24

� Solution A �

6 further remarks and examples

Exercise 6.1

� Solution G �

Exercise 6.2

� Solution T �

Exercise 6.3 Recall (Exercise III.3.15) that a ring R is called Boolean
if a2 = a for all a ∈ R. Let R be a finite Boolean ring; prove that
R ∼= Z/2Z× · · · ×Z/2Z.

� Solution We will prove this exercise by induction on the order
of R. If |R| = 1, then R is the zero-ring, which may be considered
as the ’empty’ product of Z/2Z’s rings. If |R| = 2, then R ∼= Z/2Z

since this is the only ring (up to isomorphism) with two elements.
Now, let |R| = n > 2 and suppose that all finite Boolean rings with
less than n elements are of the form Z/2Z× · · · ×Z/2Z. Take a ∈ R
different from 0 and 1. By Exercise III.3.15, R is commutative and
so Exercise 6.2 implies that R ∼= R/(a) × R/(1− a). Since (a) and
(1− a) are nontrivial ideals, R/(a) and R/(1− a) have less than n
elements. These quotients are clearly Boolean rings, so it follows from
the inductive hypothesis that they are of the form Z/2Z× · · ·×Z/2Z.
We conclude that R ∼= Z/2Z× · · · ×Z/2Z for a suitable number of
factors Z/2Z. �

Exercise 6.4

� Solution A �
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Exercise 6.5

� Solution G �

Exercise 6.6

� Solution T �

Exercise 6.7 B Find a polynomial f ∈ Q[x] such that f ≡ 1
mod (x2 + 1) and f ≡ x mod x100. [§6.1]

� Solution We will execute the procedure shown in §6.1. Firstly, note
that the gcd between x2 + 1 and x100 is 1 since x2 + 1 is irreducible and
does not divide x100. We have to find polynomials α(x), β(x) ∈ Q[x]
such that α(x)(x2 + 1) + β(x)(x100) = 1 and, to do so, notice that

x100 = (x2 + 1)(x98 − x96 + · · ·+ x2 − 1) + 1.

Here we are
actually using the
Euclidean
algorithm, as
described in the
procedureThus, we may take α(x) = −x98 + x96 − · · · − x2 + 1 and β(x) = 1.

As described in the procedure, one solution to the given system of
congruences is

f = 1 · β(x) · x100 + x · α(x) · (x2 + 1) = −x101 + x100 + x.

We can also find the other solutions to this system of congruences.
Indeed, every solution must be congruent to f modulo x2 + 1 and mod-
ulo x100. Since gcd(x2 + 1, x100) = 1, any other solution is congruent
to f modulo x100(x2 + 1) and so is of the form

f + p · x100(x2 + 1)

for some p ∈ Q[x]. �

Exercise 6.8

� Solution A �

Exercise 6.9

� Solution G �

Exercise 6.10

� Solution T �

Exercise 6.11 Prove that the irreducible elements in Z[i] are, up to
associates: 1 + i; the integer primes congruent to 3 mod 4; and the
elements a± bi with a2 + b2 an integer prime congruent to 1 mod 4.

� Solution Firstly, note that the numbers described in the exercise
are irreducible elements in Z[i]. Indeed, Lemma 6.10 assures that any
integer prime congruent to 3 mod 4 is irreducible in Z[i]. Furthermore,
a number q in one of the other cases is also irreducible because its
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norm is a prime integer: since the norm is multiplicative and the units
in Z[i] are exactly the elements of norm 1, it follows that

q = ab =⇒ N(p) = N(a)N(b) =⇒ N(a) = 1 or N(b) = 1,

that is, a or b is a unit, which implies that q is irreducible.
Now, let’s prove that the numbers mentioned in the exercise en-

compass all irreducible elements in Z[i]. Let q ∈ Z[i] be irreducible.
Since Z[i] is a UFD, q is prime and Lemma 6.7 implies that N(q) = p
or N(q) = p2 for some prime integer p. We will deal with each case
separately.

If N(q) is a prime integer, Theorem 6.11 implies that either N(q) = 2
or N(q) is congruent to 1 modulo 4 since N(q) is a sum of two squares.
In the first case, N(q) = ±1± i and all these numbers are associates
to 1 + i. In the other case, it is immediate that q = a± bi with a2 + b2

an integer prime congruent to 1 mod 4.

Notice that a + bi
and a− bi are not

associates since
a2 + b2 is odd and

so a and b are
different.

If N(q) = p2 for some prime integer p, we have that q divides p2

and, since q is prime, q divides p. By Exercise 6.10, q is associate to
p. Finally, this implies that p is irreducible and so p is congruent to 3
mod 4 by Lemma 6.10. �

Exercise 6.12

� Solution A �

Exercise 6.13

� Solution G �

Exercise 6.14

� Solution T �

Exercise 6.15 Give an elementary proof (using modular arithmetic)
of the fact that if an integer n is congruent to 3 modulo 4, then it is
not the sum of two squares.

� Solution Notice that the square of any integer is congruent to 0
or 1 modulo 4. This can be easily proved by testing the square of
each element of Z/4Z. Therefore, a sum of two squares can only be
congruent to 0, 1 or 2 modulo 4, and we conclude that n is not the
sum of two squares. �

Exercise 6.16

� Solution A �

Exercise 6.17

� Solution G �
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Exercise 6.18

� Solution T �

Exercise 6.19 ¬ Let I ⊆ H be the set of quaternions (cf. Exercise
III.2) of the form a

2 (1 + i + j + k) + bi + cj + dk with a, b, c, d ∈ Z.

• Prove that I is a (noncommutative) subring of the ring of
quaternions.

• Prove that the norm N(w) (Exercise III.2.5) of an integral
quaternion w ∈ I is an integer and N(w1w2) = N(w1)N(w2).

• Prove that I has exactly 24 units in I: ±1, ±i, ±j, ±k, and
1
2 (±1± i± j± k).

• Prove that every w ∈ I is an associate of an element a + bi +
cj + dk ∈ I with a, b, c, d ∈ Z.

The ring I is called the ring of integral quaternions. [6.20, 6.21]

� Solution

• It is straightforward that (I,+) is a subgroup of (H,+) since
it is clearly nonempty and x− y ∈ I for all x, y ∈ I. Moreover,
with some computation one can check that the product of two
elements of I is also in I, so this set is multiplicatively closed.
Finally, since 1 = 2

2 (1 + i + j + k)− i− j− k ∈ I, we conclude
that I is a subring of the ring of quaternions.

• If w = a
2 (1 + i + j + k) + bi + cj + dk, we can rewrite it as

w =
a
2
+
( a

2
+ b
)

i +
( a

2
+ c
)

i +
( a

2
+ d
)

k

and it follows that

N(w) =
( a

2

)2
+
( a

2
+ b
)2

+
( a

2
+ c
)2

+
( a

2
+ d
)2

= a2 + b2 + c2 + d2 + a(b + c + d),

which is an integer. By Exercise III.2.5, we know that N(w1w2) =

N(w1)N(w2) for all w1, w2 ∈ I, since the norm defines a group
homomorphism from the multiplicative group H∗ of nonzero
quaternions to the multiplicative group R+ of positive real num-
bers.

• We claim that w ∈ I is a unit if and only if N(w) = 1. Indeed, if
w is a unit then

N(w)N(w−1) = N(ww−1) = N(1) = 1,

which implies that N(w) = 1 since it is an integer. Conversely, by
the item (ii) in Exercise III.2, we know that N(w) = ww = ww,
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where w is the conjugate of w, obtained by changing the signal
of the coefficients of i, j and k. A quick verification shows that
w ∈ I and, if N(w) = 1, it follows that w is a unit and w−1 = w.

Thus, we only need to find what are the integral quaternions of
norm 1. By the previous item, any element w ∈ I may be written
as

w =
a
2
+
( a

2
+ b
)

i +
( a

2
+ c
)

i +
( a

2
+ d
)

k

where a, b, c, d ∈ Z, and we have that

N(w) =
( a

2

)2
+
( a

2
+ b
)2

+
( a

2
+ c
)2

+
( a

2
+ d
)2

.

If N(w) = 1, the squares on the right must be between 0 and
1. Also note that each one is the square of a reduced fraction
whose denominator is 1 or 2. This implies that these squares can
only be 0, 1

4 or 1. Hence, there are two options: either one of the
squares is 1 and the other are 0, which gives us the quaternions
±1, ±i, ±j and ±k; or every square equals to 1

4 , which results in
the quaternions 1

2 (±1± i± j± k). Therefore, we conclude that
these are the only units in I.

• Write w = a
2 (1 + i + j + k) + bi + cj + dk, where a, b, c, d ∈ Z. If

a is even, w is already in the desired form. Thus, suppose that a
is an odd integer. We claim that w can be written as

w =
a
2
(1± i± j± k) + 2(b′i + c′ j + d′k)

where b′, c′, d′ ∈ Z. This representation depends on the parity of
b, c and d. If one of these coefficients is odd, we may add a to
it (which turns it even since a is odd) and change the signal of
the corresponding imaginary number in the leftmost part. For
example, if b and d are odd and c is even, note that

w =
a
2
(1− i + j− k) + (b + a)i + cj + (d + a)k

and b + a, c and d + a are even. Let u be the quaternion mul-
tiplying a in the expression above (in the example we gave,
u would be 1

2 (1− i + j − k)). By the previous item, we know
that u ∈ I and is a unit. It follows that wu−1 can be written as
a′′ + b′′i + c′′ j + d′′k with a′′, b′′, c′′, d′′ ∈ Z. Indeed,

wu−1 = auu−1 + 2(b′i + c′ j + d′k)u−1 = a + 2(b′i + c′ j + d′k)u−1

and the factor 2 will cancel with the factor 2 that appears in the
denominators of the coefficients in u−1, so only integers remain.
Since u−1 is a unit, we conclude that w is an associate of an
element in the desired form. �
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Exercise 6.20

� Solution A �

Exercise 6.21

� Solution G �





VI
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1 free modules revisited

Exercise 1.1

� Solution T �

Exercise 1.2 ¬ Prove that the sets listed in Exercise III.1.4 are all
R-vector spaces, and compute their dimensions. [1.3]

� Solution We can define an action of R on gln(R) and gln(C) by
componentwise multiplication. Together with componentwise addi-
tion, we naturally identify them with Rn2

and Cn2
and so, gln(R)

and gln(C) are R-vector spaces. Moreover, it is easy to check that the
functions

T1 : gln(R)→ R

M 7→ tr(M)

and

T2 : gln(C)→ C

M 7→ tr(M)

are homomorphisms of R-vector spaces and ker T1 = sln(R) and
ker T2 = sln(C), thus, these sets are also R-vector spaces. Finally,
son(R) and su(n) also admit a structure of vector space over R because
they are the kernels of the R-vector space homomorphisms

T3 : sln(R)→ sln(R)

M 7→ M + Mt

and

T4 : sln(C)→ sln(C)

M 7→ M + M†,

respectively.
Let’s compute their dimensions. To do so, denote by Exy the n× n

matrix which is 1 in the x-th row and the y-th column, and 0 in the
other entries. Also denote by E∗xy the matrix Exy but with the imaginary
number i instead of 1. Therefore, the following sets are basis for the
indicated R-vector spaces:

Bgln(R) = {Exy | 1 ≤ x, y ≤ n}

219
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Bgln(C) = Bgln(R) ∪ {E∗xy | 1 ≤ x, y ≤ n}

Bsln(R) = {Exy | 1 ≤ x, y ≤ n, x 6= y} ∪ {Exx − Enn | 1 ≤ x < n}

Bsln(C) = Bsln(R)∪{E∗xy | 1 ≤ x, y ≤ n, x 6= y}∪{E∗xx−E∗nn | 1 ≤ x < n}

Bson(R) = {Exy − Eyx | 1 ≤ x < y ≤ n}

Bsu(n) = Bson(R)∪{E∗xy +E∗yx | 1 ≤ x < y ≤ n}∪{E∗xx−E∗nn | 1 ≤ x < n}

As an illustration, we will show that Bson(R) really is a basis for son(R).
Firstly, a quick computation proves that this set is linear independent.
We just need to check that it generates son(R). If M = (axy) ∈ son(R)

then M = −Mt, that is, axy = −ayx for all x, y ∈ {1, . . . , n}. In particu-
lar, we have that axx = 0. Thus,

M = ∑
1≤x,y≤n

axyExy

= ∑
1≤x<y≤n

axyExy + ∑
1≤y<x≤n

axyExy

= ∑
1≤x<y≤n

axyExy + ∑
1≤x<y≤n

ayxEyx

= ∑
1≤x<y≤n

axyExy − ∑
1≤x<y≤n

axyEyx

= ∑
1≤x<y≤n

axy(Exy − Eyx),

so Bson(R) really generates son(R), as desired.
We conclude that

dimR(gln(R)) = n2 dimR(gln(C)) = 2n2

dimR(sln(R)) = n2 − 1 dimR(sln(C)) = 2n2 − 2

dimR(son(R)) =
n(n− 1)

2
dimR(su(n)) = n2 − 1

are the desired dimensions.

We could have
computed these

dimensions by
other methods. For

example, Claim
3.10 (also known

as the rank-nullity
theorem) allows us

to calculate the last
four dimensions

since these vector
spaces are the

kernels of T1, T2, T3
and T4. �

Exercise 1.3

� Solution A �

Exercise 1.4

� Solution G �

Exercise 1.5

� Solution T �

Exercise 1.6 B Prove Lemma 1.8. [§1.3]
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� Solution To prove that B is a basis of V, it suffices to show that
B is linear independent. Suppose that it is not, that is, there exist
b1, . . . , bn ∈ B and c1, . . . , cn ∈ k such that

c1b1 + · · ·+ cnbn = 0

with not all c1, . . . , cn equal to 0. Without loss of generality, we can
assume that c1 6= 0. Since k is a field, c1 is a unit and

b1 = (−c−1
1 c2)b2 + · · ·+ (−c−1

1 cn)bn.

It follows that B \ {b1} is a generating set for V because B is a generat-
ing set and b1 is a linear combination of elements of B \ {b1}. However,
this contradicts that B is minimal and, therefore, we must have that B
is linear independent and so is a basis for V.

The second part of Lemma 1.8 is covered by Proposition 1.15. �

Exercise 1.7

� Solution A �

Exercise 1.8

� Solution G �

Exercise 1.9

� Solution T �

Exercise 1.10 ¬ Let R be a commutative ring, and let F = R⊕B

be a free module over R. Let m be a maximal ideal of R, and let
k = R/m be the quotient field. Prove that F/mF ∼= k⊕B as k-vector
spaces. [1.11]

� Solution Firstly, note that m(F/mF) = 0 by definition of mF. By
the previous exercise, we can define a vector space structure over k on
F/mF by setting

(r +m)( f +mF) := r f +mF

for all r ∈ R and f ∈ F.
Given α ∈ k⊕B, we can define fα : B→ R as follows: for every b ∈ B,

set fα(b) ∈ R such that α(b) = fα(b) +m and fα(b) = 0 if α(b) = m. It
is clear that fα ∈ F. Therefore, we can define the function

ϕ : k⊕B → F/mF

α 7→ fα +mF.

It is easy to check that ϕ is well-defined and that it is a homomorphism
of k-vector spaces. We claim that ϕ is indeed a isomorphism.

If ϕ(α) = 0, we have that fα ∈ mF. This implies that fα(b) ∈ m and
so α(b) = fα(b) +m = 0 for all b ∈ B. Therefore, α = 0 and ker ψ = 0.
It follows the ϕ is injective.
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Moreover, if x ∈ F/mF then there exists f : B → R such that
x = f +mF. Define α : B → k by α(b) = f (b) +m for all b ∈ B. We
have that α ∈ k⊕B and ϕ(α) = x, so ϕ is also surjective.

More generally, if I
is any ideal of R

then
F/IF ∼= (R/I)⊕B

as R/I-modules.
The proof is

analogous.

We conclude that ϕ is indeed an isomorphism and so F/mF ∼= k⊕B.
�

Exercise 1.11

� Solution A �

Exercise 1.12

� Solution G �

Exercise 1.13

� Solution T �

Exercise 1.14 ¬ Let V be a finite-dimensional vector space, and let
ϕ : V → V be a homomorphism of vector spaces. Prove that there
is an integer n such that ker ϕn+1 = ker ϕn and im ϕn+1 = im ϕn.

Show that both claims may fail if V has infinite dimension. [1.15]

� Solution An important observation here is that any subspace U
of V is finite-dimensional and dim U ≤ dim V. This follows from
Propositions 1.7 and 1.9. Moreover, Corollary 1.11 implies that U = V
if and only if dim U = dim V.

Note that we have the following chains:

ker ϕ ⊆ ker ϕ2 ⊆ ker ϕ3 ⊆ · · ·

im ϕ ⊇ im ϕ2 ⊇ im ϕ3 ⊇ · · · .

By our initial observation, every one of these vectors spaces is finite-
dimensional and we have that

dim(ker ϕ) ≤ dim(ker ϕ2) ≤ dim(ker ϕ3) ≤ · · · ≤ dim V

and

dim V ≥ dim(im ϕ) ≥ dim(im ϕ2) ≥ dim(im ϕ3) ≥ · · · .

Since all these dimensions are positive integers limited by dim V, they
will have to stabilize and so ker ϕm+1 = ker ϕm and im ϕn+1 = im ϕn

for sufficiently large integers m and n. Finally, it follows by induction
that

ker ϕm+1 = ker ϕm =⇒ (∀k ≥ m) ker ϕk+1 = ker ϕk

and
im ϕn+1 = im ϕn =⇒ (∀k ≥ n) im ϕk+1 = im ϕk,

thus, we may assume that m = n, which proves the exercise.
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To see that both claims may fail if V is infinite-dimensional, take
V = R⊕N, which has infinite dimension. If ϕ : V → V is the left-shift
homomorphism given by

(a0, a1, a2, . . . ) 7→ (a1, a2, a3, . . . ),

it is clear that ker ϕn is the subspace of all sequences (a0, a1, a2, . . . ) ∈
V where ai = 0 for all i ≥ n, following that ker ϕn+1 6= ker ϕn for
all n ≥ 1. Similarly, if ψ : V → V is the right-shift homomorphism
defined by

(a0, a1, a2, . . . ) 7→ (0, a0, a1, . . . ),

we have that im ϕn is the subspace of all sequences (a0, a1, a2, . . . ) ∈ V
such that ai = 0 for all i < n, which implies that im ϕn+1 6= im ϕn for
all n ≥ 1. �

Exercise 1.15

� Solution A �

Exercise 1.16

� Solution G �

Exercise 1.17

� Solution T �

Exercise 1.18 Let M be an R-module of finite length m (cf. Exercise
1.16).

• Prove that every submodule N of M has finite length n ≤ m.
(Adapt the proof of Proposition IV.3.4.)

• Prove that the ’descending chain condition’ (d.c.c.) for sub-
modules holds in M. (Use induction on the length.)

• Prove that if R is an integral domain that is not a field and F
is a free R-module, then F has finite length if and only if it is
the 0-module.

� Solution

• Let
M = M0 ) M1 ) · · · ) Mm = 〈0〉

be a composition series for G. Intersecting it with N gives a
sequence of submodules of M:

N = M ∩ N ⊇ M1 ∩ N ⊇ · · · ⊇ 〈0〉 ∩ N = 〈0〉.
We claim that this becomes a composition series for N once
repetitions are eliminated, which implies that N has finite length
n ≤ m. Indeed, this follows once we establish that

Mi ∩ N
Mi+1 ∩ N
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is either trivial (so that Mi+1 ∩ N = Mi ∩ N, and the correspond-
ing inclusion may be omitted) or isomorphic to Mi/Mi+1 (hence
simple). To see this, consider the homomorphism

Mi ∩ N ↪−→ Mi �
Mi

Mi+1
:

the kernel is clearly Mi+1 ∩ N; therefore (by the first isomor-
phism theorem) we have an injective homomorphism

Mi ∩ N
Mi+1 ∩ N

↪−→ Mi

Mi+1

identifying (Mi ∩N)/(Mi+1∩N) with a submodule of Mi/Mi+1.
Since Mi/Mi+1 is simple, our claim follows.

The remaining part
of the proof of

Proposition IV.3.4
can also be easily

adapted for
R-modules.

• By the version of Proposition IV.3.4 for R-modules, we get that
M/N has also finite length n′ ≤ m and that m = n + n′. It
follows that, if N is proper, then n′ > 0 and so n < m. This fact
will be important for us.

Let
N0 ⊇ N1 ⊇ N2 ⊇ N3 ⊇ · · ·

be a descending chain of submodules of M. As suggested in the
hint, we will prove by induction on m that this chain stabilizes.
If m = 0, then M is the 0-module and so the chain stabilizes
because all the submodules are equal to M. Now, suppose that
m > 0 and that the d.c.c. for submodules holds for every R-
module of finite length n < m. If all the submodules in the
chain are equal to M, we are done, so we may suppose that
there exists a submodule Ni properly contained in M. By our
previous observation, Ni is of finite length n < m and, by the
inductive hypothesis, the d.c.c. for submodules holds in Ni. But
the chain starting from Ni is a descending chain of submodules
of Ni and, therefore, it stabilizes. We conclude that the d.c.c. for
submodules holds in M.

• One implication is trivial since the 0-module clearly has finite
length. Let’s prove the converse. Suppose that F is not the 0-
module. Since it is free, we may assume that

F = R⊕B

for some B 6= ∅. Let x ∈ R be any nonzero element that is not a
unit and let I = (x). We have that

(1) ) I ) I2 ) I3 ) · · · .

Indeed, if In = In+1 for some n ≥ 1, there would be r ∈ R such
that

xn = rxn+1
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and, since R is an integral domain, it would follow that x is a
unit, a contradiction. Now, we will show that

F ) IF ) I2F ) I3F ) · · · .

Let f ∈ F be the function defined by f (b) = 1 for all b ∈ B. If
InF = In+1F for some n, we would have that

r ∈ In ⇐⇒ r f ∈ InF ⇐⇒ r f ∈ In+1F ⇐⇒ r ∈ In+1

and so In = In+1, contradicting what we proved earlier. There-
fore, we have a descending chain of submodules of F that does
not stabilize. By the second item, F is not of finite length. �

Exercise 1.19

� Solution A �

Exercise 1.20

� Solution G �

2 homomorphisms of free modules , i

Exercise 2.1

� Solution T �

Exercise 2.2 B Prove that matrix multiplication is associative. [§2.1]

� Solution Let A = (aik) be a m × p matrix, B = (bkl) be a p × q
matrix and C = (cl j) be a q× n matrix, all of them with entries in some
ring R. Denote (A · B) · C = (dij) and A · (B · C) = (eij). It follows that

dij =
q

∑
l=1

(
p

∑
k=1

aikbkl

)
cl j =

q

∑
l=1

p

∑
k=1

aikbklcl j

=
p

∑
k=1

q

∑
l=1

aikbklcl j =
p

∑
k=1

aik

(
q

∑
l=1

bklcl j

)
= eij

The swap of the
summation signs
represents a
change in the
order of the sum of
the terms aikbklcl j.
Since addition is
commutative, these
sums must be
equal.for all indices i, j. Therefore, we have that (A · B) · C = A · (B · C),

proving that matrix multiplication is associative. �

Exercise 2.3

� Solution A �

Exercise 2.4

� Solution G �
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Exercise 2.5

� Solution T �

Exercise 2.6 ¬ A matrix with entries in a field is in row echelon
form if

• its nonzero rows are all above the zero rows and

• the leftmost nonzero entry of each row is 1, and it is strictly
to the right of the leftmost nonzero entry of the row above it.

The matrix is further in reduced row echelon form if

• the leftmost nonzero entry of each row is the only nonzero
entry in its column.

The leftmost nonzero entries in a matrix in row echelon form are
called pivots.

Prove that any matrix with entries in a field can be brought into
reduced echelon form by a sequence of elementary operations on
rows. This is what is more properly called Gaussian elimination.) [2.7,
2.9]

� Solution Let k be a field. The proof will be divided into two
steps. We will firstly show that any matrix inMm,n(k) can be brought
into row echelon form by a sequence of elementary operations on
rows. Secondly, we will deduce that matrices in row echelon form in
Mm,n(k) can be turned into reduced row echelon form by a sequence
of elementary operations on rows as well. Both steps will be proved
by induction on the number m + n, which we will call as the extent of
the matrix.

Let M = (aij) ∈ Mm,n(k) be a nonzero matrix. If m = 1, we just
multiply the unique row of M by the inverse of the leftmost nonzero
entry, turning it into row echelon form. Now, suppose that the extent
of M is strictly greater than 2 and that every other matrix with extent
less than the extent of M can be brought into row echelon form by
a sequence of elementary operations on rows. As shown before, we
may suppose that M is not a row n-vector. Moreover, we may also
assume without loss of generality that the first column of M has a
nonzero entry. After a row switch if necessary, we may assume that
a11 is nonzero. Multiplying the first row by a−1

11 , we may consider that
a11 = 1:

M =


1 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 .
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Adding the first row multiplied by −a21 to the second row clears the
(2, 1) entry. After an analogous operation on all rows, we may reach
the row echelon form (especially if n = 1), or we get a matrix of the
form: (

1 A

0 M′

)
,

for some matrices A and M′ of size 1 × n and (m − 1) × (n − 1),
respectively. The extent of M′ is less than the extent of M, thus the
inductive hypothesis implies that M′ can be brought to row echelon
form by a sequence of elementary operations on rows. Applying this
sequence to the matrix above, the first column will not change and we
will surely get to row echelon form, as desired.

For the second part, assume that M is already in row echelon form.
If m = 1 or n = 1 then M is clearly in the reduced form. Now, suppose
that the extent of M is strictly greater than 2 and that every other
matrix in row echelon form with extent less than the extent of M
can be turned into the reduced form by a sequence of elementary
operations on rows. Suppose that M is neither a row n-vector nor a
column m-vector. Ignoring the zero rows and the columns after the
last pivot, we may also assume that amn = 1:

M =


1 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...

0 0 · · · 1

 .

Similarly to the previous part, we may add the last row multiplied by
−ain to the i-th row for all 0 ≤ i < m, obtaining a matrix of the form:(

M′ 0

0 1

)
,

where M′ is a (m− 1)× (n− 1) matrix. Note that M′ is in row echelon
form and so we can apply the inductive hypothesis since its extent is
smaller than the extent of M. The resulting sequence of elementary
operations on rows can be applied to M and it will not change the
last column of the matrix above. Therefore, the final matrix will be in
reduced row echelon form, as needed.

The algorithm that
arises from the
proof is known as
Gaussian
elimination.

�

Exercise 2.7

� Solution A �

Exercise 2.8

� Solution G �
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Exercise 2.9

� Solution T �

Exercise 2.10 B The row space of a matrix M is the span of its
rows; the column space of M is the span of its column. Prove that
row-equivalent matrices have the same row space and isomorphic
column spaces. [2.12, §3.3]

� Solution Let R be a ring and let M, N ∈ Mm,n(R) be two row-
equivalent matrices, that is, M = PN for some invertible matrix
P ∈ Mm(R). Further, let M1, . . . , Mm and N1, . . . , Nm be the rows of
M and N respectively. To prove that M and N have the same row space,
it suffices to show that M1, . . . , Mm are in the span of N1, . . . , Nm and
vice versa. Indeed, if P = (pij), it follows that

M = P · N

=


p11 · · · p1m
...

. . .
...

pm1 · · · pmm

 ·


N1
...

Nm



=


p11N1 + p12N2 + · · · p1mNm

...

pm1N1 + pm2N2 + · · · pmmNm

 ,

that is, M1, . . . , Mm really are in the span of N1, . . . , Nm. Since N =

P−1M, we similarly get the converse, as desired.
For the second part, let µ, ν : Rn → Rm and ρ : Rm → Rm be the

corresponding R-module homomorphisms to M, N and P, respectively,
accordingly to Corollary 2.2. Since µ(ei) is the i-th column of M and
ν(ei) s the i-th column of N, for all i, it follows that the column spaces
of M and N are, respectively, the image of µ and the image of ν.
Moreover, M = PN implies that µ = ρ ◦ ν by Lemma 2.3. Thus, we
may take ρ′ : im(ν) → im(µ) as the restriction of ρ, which is also
a homomorphism of R-modules. It is clear that ρ′ is surjective, and,
since ρ is an isomorphism (Exercise 2.3), ρ′ is also injective. Hence, we
conclude that ρ′ is an isomorphism and so M and N have isomorphic
column spaces.

If R is a field,
Proposition 3.7

implies that the
row space and the
column space of a

matrix are
isomorphic. In this
particular case, the

first half of the
proof would

already be
sufficient.

�

Exercise 2.11

� Solution A �

Exercise 2.12

� Solution G �
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Exercise 2.13

� Solution T �

Exercise 2.14 B Show that the Grassmannian Grk(2, 4) of 2- di-
mensional subspaces of k4 is the union of 6 Schubert cells: k4 ∪
k3 ∪ k2 ∪ k2 ∪ k1 ∪ k0. (Use Exercise 2.12; list all the possible reduced
echelon forms.) [VIII.4.8]

� Solution As in the previous exercise, we need to list all the possible
reduced echelon forms. In this case, since we are dealing with Grk(2, 4),
we will consider reduced row echelon matrices of size 4× 4 with 2
nonzero rows, which naturally correspond to those of size 2× 4 with
no zero rows.

The reduced echelon forms may be divided into subsets accordingly
to the position of their pivots. We have six of them:(

1 0 a b

0 1 c d

)
,

(
1 a 0 b

0 0 1 c

)
,

(
1 a b 0

0 0 0 1

)
,

(
0 1 0 a

0 0 1 b

)
,

(
0 1 a 0

0 0 0 1

)
,

and (
0 0 1 0

0 0 0 1

)
,

where a, b, c, d ∈ k. These subsets are in a natural bijection with k4,
k3, k2, k2, k1 and k0, respectively. Since they partition Grk(2, 4), we
conclude that Grk(2, 4) is the union of 6 Schubert cells: k4 ∪ k3 ∪ k2 ∪
k2 ∪ k1 ∪ k0. �

Exercise 2.15

� Solution A �

Exercise 2.16

� Solution G �
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Exercise 2.17

� Solution T �

Exercise 2.18 Suppose α : Z3 → Z2 is represented by the matrix(
−6 12 18

−15 36 54

)

with respect to the standard bases. Find bases of Z3, Z2 with respect
to which α is given by a matrix of the form obtained in Proposition
2.11.

� Solution Let P be the matrix above and let A and C be the stan-
dard bases for Z3 and Z2, respectively. By the discussion preceding
Proposition 2.5, we need to find bases B and D for Z3 and Z2 such
that

Q = (MC
D)
−1 · P · NA

B

We are taking
these matrices

instead of NB
A and

MD
C to facilitate

the recovering of B
and D from the
corresponding

matrices of change
of basis, as we will

see soon.

is a matrix in the form obtained in Proposition 2.11, where NA
B and

MC
D are the corresponding matrices of change of basis. To do so, we

will firstly find NA
B and MC

D by executing the algorithm in §2.4.
We will first clear the (2, 1) entry (and other entries will vanish too

as we will see). Add to the second row the (−3)-multiple of the first,
producing the matrix (

−6 12 18

3 0 0

)
.

Swapping the rows and adding to the second one the 2-multiple of
the first, we get the matrix (

3 0 0

0 12 18

)
.

Now, we will clear the (2, 3) entry. Adding to the third column the
opposite of the second results in the matrix(

3 0 0

0 12 6

)
.

Finally, swapping the last two columns and adding to the third one
the (−2)-multiple of the second, we end with the matrix(

3 0 0

0 6 0

)
,

which is already in the form desired.
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The matrix NA
B is obtained by applying the elementary operations

on columns that we did above to the 3× 3 identity matrix. Thus,

NA
B =

1 0 0

0 −1 3

0 1 −2

 .

Similarly, (MC
D)
−1 is obtained by applying the elementary operations

on rows that we did above to the 2× 2 identity matrix. This is equiva-
lent to the product of elementary matrices

(MC
D)
−1 =

(
1 0

2 1

)
·
(

0 1

1 0

)
·
(

1 0

−3 1

)

by Exercise 2.5. Hence,

MC
D =

(
1 0

−3 1

)−1

·
(

0 1

1 0

)−1

·
(

1 0

2 1

)−1

=

(
1 0

3 1

)
·
(

0 1

1 0

)
·
(

1 0

−2 1

)

=

(
−2 1

−5 3

)
.

Recall that the
inverse of an
elementary matrix
M is the
elementary matrix
that undoes the
operation done by
M.

Finally, the desired (ordered) bases are given by the columns of NA
B

and MC
D, so

B = {(1, 0, 0), (0,−1, 1), (0, 3,−2)}

and
D = {(−2,−5), (1, 3)}

are bases of Z3 and Z2 with respect to which α is given by a matrix of
the form obtained in Proposition 2.11. �

Exercise 2.19

� Solution A �

3 homomorphisms of free modules , ii

Exercise 3.1

� Solution G �

Exercise 3.2

� Solution T �
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Exercise 3.3 Redo Exercise II.8.8.

� Solution See the solution of Exercise II.8.8 given in Chapter II. �

Exercise 3.4

� Solution A �

Exercise 3.5

� Solution G �

Exercise 3.6

� Solution T �

Exercise 3.7 ¬ Let R be a commutative ring, M a finitely generated
R-module, and let J be an ideal of R. Assume that JM = M. Prove
that there exists an element b ∈ J such that (1 + b)M = 0. (Let
m1, . . . , mr be generators for M. Find an r× r matrix B with entries

in J such that


m1
...

mr

 = B ·


m1
...

mr

. Then use Exercise 3.6.) [3.8,

VIII.1.18]

� Solution Let m1, . . . , mr be generators for M. Since mi ∈ M = JM,
there are bi1, . . . , bir ∈ J such that

mi = bi1m1 + · · ·+ birmr

for all 1 ≤ i ≤ r. Let B = (bij) be the r × r matrix formed by these
elements of J. Note that

B ·


m1
...

mr

 =


b11m1 + b12m2 + · · · birmr

...

br1m1 + br2m2 + · · · brrmr

 =


m1
...

mr


and so

(Ir − B) ·


m1
...

mr

 =


0
...

0

 .

By Exercise 3.6, det(Ir − B)M = 0. Finally, we have that

det(Ir − B) ≡ det(Ir) = 1 mod J

This congruence is
valid since the

determinant may
be expressed as a

sum of products of
elements of the

matrix.

and so det(Ir − B)− 1 ∈ J, that is, there exists b ∈ J such that det(Ir −
B) = 1 + b. We conclude that (1 + b)M = 0. �
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Exercise 3.8

� Solution A �

Exercise 3.9

� Solution G �

Exercise 3.10

� Solution T �

Exercise 3.11 Explain how to use Gaussian elimination to find
bases for the row space and the column space of a matrix over a
field.

� Solution Let M be a matrix over a field. By Exercise 2.6, M can be
brought into a matrix N in reduced echelon form by Gaussian elimina-
tion. Thus, Exercise 2.8 implies that M and N are row-equivalent and
so they have the same row space by Exercise 2.10. Finally, it follows
from Exercise 2.7 that the nonzero rows of N form a basis for the
row space of M. To find a basis for the column space, apply the same
procedure to the transpose of M. �

Exercise 3.12

� Solution A �

Exercise 3.13

� Solution G �

Exercise 3.14

� Solution T �

Exercise 3.15 B Prove Proposition 3.13 for the case N = 1. [§3.4]

� Solution Consider the following complex of finite-dimensional
vector spaces and linear maps:

V• : 0 V1 V0 0 .
α1

If χH(V•) denotes

χH(V•) = dim(H0(V•))− dim(H1(V•)),

we need to prove that χ(V•) = χH(V•). Since

H0(V•) =
V0

im α1
and H1(V•) = ker α1,
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it follows by Proposition 3.11 (cf. Claim 3.10) that

χH(V•) = dim(H0(V•))− dim(H1(V•))

= (dim(V0)− dim(im α1))− dim(ker α1)

= dim(V0)− (dim(im α1) + dim(ker α1))

= dim(V0)− dim(V1)

= χ(V•),

as desired. �

Exercise 3.16

� Solution A �

Exercise 3.17

� Solution G �

Exercise 3.18

� Solution T �

Exercise 3.19 ¬ Let Ab f be the category of finite abelian groups.
Prove that assigning to every finite abelian group its order extends
to a homomorphism from the Grothendieck group K(Ab f ) to the
multiplicative group (Q∗, ·). [3.20]

� Solution Let X be the set of all isomorphism classes in Ab f . Since
all groups of a isomorphism class have the same order, we can define
the function f : X → Q∗ that sends [G] to |G| for all G ∈ Obj(Ab f ). By
the universal property of free abelian groups, there exists a unique
group homomorphism ϕ : Fab(X)→ (Q∗, ·) such that the diagram

Fab(X) Q∗

X

ϕ

j
f

commutes, where j denotes the natural inclusion of X in Fab(X). Now,
let E be the subgroup of Fab(X) generated by the elements

[H]− [G]− [K]

for all short exact sequences

1 G H K 1

in Ab f . In this case, we have that
H
G
∼= K =⇒ |H| = |G| · |K|

=⇒ |H| · |G|−1 · |K|−1 = 1

=⇒ ϕ([H]− [G]− [K]) = 1

=⇒ [H]− [G]− [K] ∈ ker ϕ
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and so E ⊆ ker ϕ. Recalling that

K(Ab f ) =
Fab(X)

E
,

Theorem II.7.12 implies that there exists a unique group homomor-
phism ϕ̃ : K(Ab f )→ (Q∗, ·) such that ϕ̃ ◦ π = ϕ, where π : Fab(X)→
K(Ab f ) is the canonical projection. Note that ϕ̃ naturally extends f in
the sense that ϕ̃([G]) = |G| for all finite abelian group G. �

Exercise 3.20

� Solution A �

4 presentations and resolutions

Exercise 4.1

� Solution G �

Exercise 4.2

� Solution T �

Exercise 4.3 B Prove that an integral domain R is a PID if and
only if every submodule of R itself is free. [§4.1, 5.13]

� Solution ( =⇒ ) Suppose that R is a PID and let’s prove that every
ideal of I is free as an R-module. Since I is principal, it is generated
by some a ∈ I. If a = 0, I is the 0-module and so it is free. If a 6= 0,
{a} is linear independent since R is an integral domain, so {a} is a
basis for I and I is free.

( ⇐= ) Suppose that every submodule of R is free and let I be an
ideal (that is, a submodule) of R. Since R is an integral domain and
has rank 1, it follows from Proposition 1.9 that I has rank at most 1,
which implies that I is generated by one of its elements. Therefore, I
is principal and we conclude that R is a PID. �

Exercise 4.4

� Solution A �

Exercise 4.5

� Solution G �

Exercise 4.6

� Solution T �
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Exercise 4.7 ¬ Let R be a commutative Noetherian ring, and let
M be a finitely generated module over R. Prove that M admits a
finite series

M = M0 ) M1 ) · · · ) Mm = 〈0〉

in which all quotients Mi/Mi+1 are of the form R/p for some
prime ideal p of R. (Hint: Use Exercises 4.5 and 4.6 to show that
M contains an isomorphic copy M′ of R/p1 for some prime p1.
Then do the same with M/M′, producing an M′′ ⊇ M′ such that
M′′/M′ ∼= R/p2 for some prime p2. Why must this process stop
after finitely many steps?) [4.8]

� Solution Since R is Noetherian, Exercise 4.6 implies that AssR(M)

is nonempty and so there exists a prime ideal p1 of R which is the
annihilator of some element of M. By Exercise 4.5, M contains an
isomorphic copy M′ of R/p1. Now, it follows from Proposition III.6.7
that M/M′ is Noetherian and, by the same reasoning as before, M/M′

contains an isomorphic copy of R/p2 for some prime ideal p2 of R.
This copy corresponds to a submodule M′′ of M containing M′ such
that M′′/M′ ∼= R/p2. Note that M′ ( M′′ because R/p2 is not the
0-module. Continuing this process, we get an ascending chain of
submodules of M:

〈0〉 ( M′ ( M′′ ( · · · .

Since R is Noetherian and M is finitely generated, we have from
Corollary III.6.8 that M is Noetherian and so the chain above stabilizes.
Finally, by construction, the chain can only stabilize when we reach M.
Therefore, after a renaming of the submodules, we get a finite series

M = M0 ) M1 ) · · · ) Mm = 〈0〉

in which all quotients Mi/Mi+1 are of the form R/p for some prime
ideal p of R. �

Exercise 4.8

� Solution A �

Exercise 4.9

� Solution G �

Exercise 4.10

� Solution T �

Exercise 4.11 Review the notion of presentation of a group, (§II.8.2),
and relate it to the notion of presentation introduced in §4.2.

� Solution Recall from §II.8.2 that a presentation of a group G is an
explicit group homomorphism ρ : F(A)→ G for some set A which is
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surjective and has a specified kernel R, the subgroup of ’relations’. If G
is finitely presented, we can rewrite this definition so that it resembles
the notion of presentation introduced in §4.2. If A is finite, Exercise
II.9.16 implies that R is free, that is, there exists a set B (not necessarily
finite) such that R ∼= F(B). If ϕ : F(B)→ F(A) denotes the inclusion
homomorphism (after a natural identification), we have the following
exact sequence of groups:

The Nielsen-Schreier
theorem states the
every subgroup of
a free group is free
(even for free
groups on infinite
sets). In this sense,
we need not
suppose that A is
finite.

F(B) F(A) G 1,
ϕ ρ

which is similar to Definition 4.7, but for groups. Conversely, note that
an exact sequence as the one above naturally determines a presentation
of G as defined in §II.8.2. �

Exercise 4.12

� Solution A �

Exercise 4.13

� Solution G �

Exercise 4.14

� Solution T �

Exercise 4.15 B View Z as a module over the ring R = Z[x, y],
where x and y act by 0. Find a free resolution of Z over R. [VIII.4.21]

� Solution Since R is Noetherian (by Hilbert’s basis theorem), we
can iterate the argument proving Lemma 4.8 to find a free resolution
of Z over R. Firstly, since Z is generated by 1, there exists a surjective
R-module homomorphism ϕ1 : R→ Z such that f (1) = 1. Note that
ker ϕ1 consists of all polynomials in R with constant term equal to
0 and so ker ϕ1 is generated by x and y. This gives us an R-module
homomorphism ϕ2 : R2 → R which sends (1, 0) to x and (0, 1) to y.
Let’s compute ker ϕ2. If (p1, p2) ∈ ker ϕ2, we have that

p1x + p2y = 0 =⇒ p1x = −p2y.

Since y is prime in R (note that R/(y) is isomorphic to Z[x], which is
an integral domain) and does not divide x, it follows that y divides
p1, that is, there exists p ∈ R such that p1 = py. Thus, we have that
p2 = −px and so

(p1, p2) = p(y,−x)

and ker ϕ2 is generated by (−y, x). Finally, we have an injective R-
module homomorphism ϕ3 : R→ R2 sending 1 to (y,−x). Therefore,
we have the following exact sequence:

0 R R2 R Z 0 ,
ϕ3 ϕ2 ϕ1

which is a free resolution of Z over R. �
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Exercise 4.16

� Solution A �

Exercise 4.17

� Solution G �

5 classification of finitely generated modules over

pids

Exercise 5.1

� Solution T �

Exercise 5.2 Let R be an integral domain, and let M be a finitely
generated R-module. Prove that M is torsion if and only if rk M = 0.

� Solution Note that rk M = 0 if and only if {m} is linearly depen-
dent for all m ∈ M, that is, if and only if every element of M is a
torsion element. It follows that rk M = 0 if and only if M is torsion. �

Exercise 5.3

� Solution A �

Exercise 5.4

� Solution G �

Exercise 5.5

� Solution T �

Exercise 5.6 B Let R be an integral domain, and let M = 〈m1, . . . , mr〉
be a finitely generated module. Prove that rk M ≤ r. (Use Exercise
3.12.) [§5.3]

� Solution Let v1, v2, . . . , vn ∈ M be any finite collection of elements
of M and suppose that n > r. We will prove that {v1, . . . , vn} is linearly
dependent (as an indexed set, since we may have repeated elements),
which implies that rk M ≤ r. Since M = 〈m1, . . . , mr〉, there are aij ∈ R,
with 1 ≤ i ≤ r and 1 ≤ j ≤ n such that

vj =
r

∑
i=1

aijmi

for all 1 ≤ j ≤ n. Let A ∈ Mr,n(R) be the matrix A = (aij). By
Exercise 3.12, the columns of A are linearly dependent and so there
are r1, . . . , rn ∈ R not all zero such that

n

∑
j=1

rjaij = 0
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for all 1 ≤ i ≤ r. Therefore,

n

∑
j=1

rjvj =
n

∑
j=1

r

∑
i=1

rjaijmi =
r

∑
i=1

n

∑
j=1

rjaijmi

=
r

∑
i=1

(
n

∑
j=1

rjaij

)
mi =

r

∑
i=1

0 ·mi = 0

and {v1, . . . , vn} is linearly dependent, as desired. �

Exercise 5.7

� Solution A �

Exercise 5.8

� Solution G �

Exercise 5.9

� Solution T �

Exercise 5.10 B Let R be an integral domain, M an R-module, and
assume M ∼= Rr ⊕ T, with T a torsion module. Prove directly (that
is, without using Theorem 5.6) that r = rk M and T ∼= TorR(M).
[§5.3]

� Solution For simplicity, we will assume that M = Rr ⊕ T due
to the given isomorphism. Firstly, let’s prove that T ∼= TorR(M). If
(s, t) ∈ TorR(M), where s ∈ Rr and t ∈ T, then s = 0 since s ∈ TorR Rr

and free modules over integral domains are torsion-free (Lemma 4.2).
Thus,

TorR(M) = {(0, t) ∈ M | t ∈ T},

which is clearly isomorphic to T.
If M is finitely
generated, Exercise
5.7 readily implies
that r = rk M
because
M/ TorR(M) is
isomorphic to Rr.

For the other part, note that r ≤ rk M since any basis for Rr nat-
urally corresponds to a linearly independent subset of M. Now, let
m1, . . . , mn ∈ M be any finite collection of elements of M and suppose
that n > r. We will show that the indexed set {m1, . . . , mn} is linearly
dependent. Let si ∈ Rr and ti ∈ T be such that

mi = (si, ti)

for all 1 ≤ i ≤ n. Since Rr is of rank r < n, the indexed set {s1, . . . , sn}
is linearly dependent and so there are a1, . . . , an ∈ R not all zero such
that

a1s1 + · · ·+ ansn = 0.

On the other hand, since T is torsion, there are r1, . . . , rn ∈ R such that

riti = 0 and ri 6= 0
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for all 1 ≤ i ≤ n. The product P = r1 · · · rn is nonzero because R is
an integral domain, and note that Pti = 0 for all 1 ≤ i ≤ n. Finally,
at least one of the elements Pa1, . . . , Pan of R is nonzero and we have
that

Pa1m1 + · · ·+ Panmn = Pa1(s1, t1) + · · ·+ Pan(sn, tn)

= (P(a1s1 + · · ·+ ansn), a1Pt1 + · · ·+ anPtn)

= 0,

which proves that {m1, . . . , mn} is linearly dependent, as desired.
Therefore, we get the other inequality r ≥ rk M and we conclude
that r = rk M. �

Exercise 5.11

� Solution A �

Exercise 5.12

� Solution G �

Exercise 5.13

� Solution T �

Exercise 5.14 Give an example of a finitely generated module over
an integral domain which is not isomorphic to a direct sum of cyclic
modules.

� Solution Let R = Z[x] and let I = (2, x). It is clear that I is finitely
generated as a module over R. Now, suppose that I is isomorphic to a
direct sum of cyclic modules. Our first observation is that only finitely
many of these cyclic modules is nonzero because, otherwise, I would
not be finitely generated. Thus, we may suppose that

More generally, we
could have taken R
as any Noetherian

integral domain
which is not a PID,

and I as any
nonprincipal ideal

of R. I ∼= M1 ⊕M2 ⊕ · · · ⊕Mn

where Mi is a cyclic R-module for all i. By Definition 4.4 (see Exercise
III.6.16), there are ideals I1, . . . , In of R such that

Mi
∼= R/Ii

for all indices i. If the ideal Ii is nonzero, it follows that Mi is not
torsion-free and, consequently, I is not torsion-free, which contradicts
Lemma 4.2 since R is clearly torsion-free and I is a submodule of R.
Thus, I1 = · · · = In = 0 and so

I ∼= Rn

and I is free. However, Example 4.3 shows that I is not free, a contra-
diction. Therefore, we conclude that I is not isomorphic to a direct
sum of cyclic modules. �
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Exercise 5.15

� Solution A �

Exercise 5.16

� Solution G �

Exercise 5.17

� Solution T �

6 linear transformations of a free module

Exercise 6.1 Let k be an infinite field, and let n be any positive
integer.

• Prove that there are finitely many equivalence classes of matri-
ces inMn(k).

• Prove that there are infinitely many similarity classes of matri-
ces inMn(k).

� Solution

• By Proposition 2.10, every matrix in Mn(k) is equivalent to a
matrix of the form (

Ir 0

0 0

)
,

for some 1 ≤ r ≤ n. Therefore, there are exactly n equivalence
classes of matrices inMn(k).

• As shown in §6.2, similar matrices have the same trace. Thus,
since k is infinite, it suffices to show that any c ∈ k is the trace
of some matrix inMn(k). Indeed, it is straightfoward that the
trace of the matrix 

c 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


is c, as desired. �

Remark. There is a more general statement than the one given in
the second item: any monic polynomial f (t) in k[t] is the char-
acteristic polynomial of some linear transformation in Endk(kn),
where n is the degree of f (t). Indeed, if

f (t) = tn + rn−1tn−1 + · · ·+ r0,
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then Exercise 7.2 implies that f (t) is the characteristic polynomial
of the linear transformation given by the matrix

0 0 0 · · · 0 −r0

1 0 0 · · · 0 −r1

0 1 0 · · · 0 −r2
...

...
...

. . .
...

...

0 0 0 · · · 0 −rn−2

0 0 0 · · · 1 −rn−1


.

This is called the companion matrix of the polynomial f (t). Com-
panion matrices will be further studied in the next section.

Exercise 6.2

� Solution A �

Exercise 6.3

� Solution G �

Exercise 6.4

� Solution T �

Exercise 6.5 B Let k be a field, and view k[t] as a vector space over
k in the evident way. Give an example of a k-linear transformation
k[t]→ k[t] which is injective but not surjective; give an example of
a linear transformation which is surjective but not injective. [§6.2,
§VII.4.1]

� Solution Define the ’shift’ functions

These linear
transformations

are analogous to
the ones defined in
Exercise 1.14 since

k[t] ∼= k⊕N as
k-vector spaces.

ϕl : k[t]→ k[t]

∑
i≥0

aixi 7→ ∑
i≥0

ai+1xi

and

ϕl : k[t]→ k[t]

∑
i≥0

aixi 7→ ∑
i≥1

ai−1xi.

It is straightfoward that ϕl and ϕr are k-linear transformations. Fur-
thermore, since ϕl ◦ ϕr = idk[t], we have that ϕl is surjective and ϕr

is injective. However, ϕl is not injective since ϕl(c) = 0 for all c ∈ k,
and ϕr is not surjective because im ϕr does not contain any constant
polynomial. �
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Exercise 6.6

� Solution A �

Exercise 6.7

� Solution G �

Exercise 6.8

� Solution T �

Exercise 6.9 B Prove the Cayley-Hamilton theorem, as follows.
Recall that every square matrix M has an adjoint matrix, which
we will denote adj(M), and that we proved (Corollary 3.5) that
adj(M) ·M = det(M) · I. Applying this to M = tI − A (with A a
matrix realization of α ∈ EndR(F)) gives

adj(tI − A) · (tI − A) = Pα(t) · I. (*)

Prove that there exist matrices Bk ∈ Mn(R) such that adj(tI− A) =

∑n−1
k=0 Bktk; then use (*) to obtain Pα(A) = 0, proving the Cayley-

Hamilton theorem. [§6.2]

� Solution By the definition of the adjoint matrix, each entry of
adj(tI− A) is the determinant of a (n− 1)× (n− 1) matrix and so is a
polynomial in t of degree at most n− 1. Thus, we can break adj(tI− A)

into n− 1 matrices, each one containing only monomials of the same
degree on t, and we then factor the powers of t out, obtaining that

adj(tI − A) =
n−1

∑
k=0

Bktk

for some matrices Bk ∈ Mn(R). Now, let

Pα(t) = cnxn + cn−1xn−1 + · · · c1x + c0

Although we know
that cn = 1, we
will denote it this
way to facilitate
writing the
following sums.be the characteristic polynomial of α. From (*), we have that(

n−1

∑
k=0

Bktk

)
· (tI − A) =

n

∑
k=0

(ck I)tk

and so

Bn−1tn +
n−1

∑
k=1

(Bk−1 − Bk A)tk − B0A =
n

∑
k=0

(ck I)tk.
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Comparing the entries of the matrices above and the coefficients of
the corresponding polynomials, it follows that

Bn−1 = cn I

Bn−2 − Bn−1A = cn−1 I

Bn−3 − Bn−2A = cn−2 I
...

B0 − B1A = c1 I

−B0A = c0 I.

Finally, multiplying the first equation by An on the right, the second
by An−1, the third by An−2, and so on, and adding them, we conclude
that

0 = cn An + cn−1An−1 + · · ·+ c1A + c0 I,

that is,
Pα(A) = 0,

proving the Cayley-Hamilton theorem. �

Exercise 6.10

� Solution A �

Exercise 6.11

� Solution G �

Exercise 6.12

� Solution T �

Exercise 6.13 Let A be a square matrix with integer entries. Prove
that if λ is a rational eigenvalue of A, then in fact λ ∈ Z. (Hint:
Proposition V.5.5.)

� Solution By Lemma 6.14, λ is a rational root of the characteristic
polynomial of A, which is monic and has integer coefficients. By
Proposition V.5.5, it follows that λ ∈ Z. �

Exercise 6.14

� Solution A �

Exercise 6.15

� Solution G �

Exercise 6.16

� Solution T �
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Exercise 6.17 ¬ We say that two vectors v, w of Rn or Cn are
orthogonal if (v, w) = 0. The orthogonal complement v⊥ of v is the
set of vectors w that are orthogonal to v. Prove that if v 6= 0 in
V = Rn or Cn, then v⊥ is a subspace of V of dimension n− 1. [7.16,
VIII.5.15]

� Solution We will suppose that V = Rn (the other case is analogous).
Let ϕ : V → R be the function defined by

ϕ(w) = (v, w)

for all w ∈ V. By the properties of the standard inner product on V, it
is easy to check that ϕ is a homomorphism of R-vector spaces. Note
that v⊥ = ker ϕ and so the orthogonal complement of v is a subspace
of V. Moreover, since v 6= 0, ϕ(v) is not zero, which implies that ϕ is
surjective because dim R = 1. We conclude from Claim 3.10 that

dim v⊥ = dim(ker ϕ) = dim V − dim(im ϕ) = n− 1,

as desired. �

Remark. More generally, we can define the notion of orthogonal
complement for any subset S of V = Rn or Cn by setting

S⊥ = {v ∈ V | (∀s ∈ S)(s, v) = 0}.

We have that S⊥ is always a subspace of V. Furthermore, if U ⊆ V
is a subspace, then

V ∼= U ⊕U⊥

and so dim U⊥ = n− dim U.

Exercise 6.18

� Solution A �

Exercise 6.19

� Solution G �

Exercise 6.20

� Solution T �

Exercise 6.21 ¬ A matrix M ∈ Mn(R) is symmetric if Mt = M.
Prove that M is symmetric if and only if (∀v, w ∈ Rn), (Mv, w) =

(v, Mw).
A matrix M ∈ Mn(C) is hermitian if M† = M. Prove that M is

hermitian if and only if (∀v, w ∈ Cn), (Mv, w) = (v, Mw).
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In both cases, one may say that M is self-adjoint; this means that
shuttling it from one side of the product to the other does not
change the result of the operation.

A hermitian matrix with real entries is symmetric. It is in fact
useful to think of real symmetric matrices as particular cases of
hermitian matrices. [6.22]

� Solution Let M = (mij) ∈ Mn(R). If M is symmetric, it follows
that

(Mv, w) = (M · v)t ·w = vt ·Mt ·w = vt ·M ·w = (v, Mw)

Recall that
(AB)t = Bt At for
all A ∈ Mm,p(R)

and B ∈ Mp,n(R)
and any ring R.

for all v, w ∈ Rn. Conversely, if this last equality holds, replacing
v = ei and w = ej gives

mij = mji

for all 1 ≤ i, j ≤ n, that is, Mt = M and M is symmetric. Finally,
since (AB)† = B† A† for all A ∈ Mm,p(C) and B ∈ Mp,n(C), a similar
argument proves the analogous result for hermitian matrices. �

Exercise 6.22

� Solution A �

7 canonical forms

Exercise 7.1

� Solution G �

Exercise 7.2

� Solution T �

Exercise 7.3 B Prove that two linear transformations of a vector
space of dimension ≤ 3 are similar if and only if they have the same
characteristic and minimal polynomials. Is this true in dimension
4? [§6.2]

� Solution Independently of the dimension of the vector space, sim-
ilar linear transformations have the same characteristic and minimal
polynomials. This follows, for example, from Corollary 7.7 and Propo-
sition 7.9. Now, let α, β be two linear transformations of a vector space
V of dimension ≤ 3 and suppose that they have the same characteristic
and minimal polynomials. We will show that α and β are similar by
comparing their rational canonical forms.

Let f1(t) | · · · | fm(t) and g1(t) | · · · | gn(t) be the invariant factors
of α and β, respectively. Note that fm(t) = gn(t) = p(t) by Proposition
7.9 because α and β have the same minimal polynomials. Since m, n ≤
dim V, if dim V = 1 or dim V = 2, the same Proposition will imply
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that the other invariant factors are also the same since α and β have
the same characteristic polynomial too. Now, assume that dim V = 3.
If deg p(t) = 3, then we must have m = n = 1 and, thus, the invariant
factors coincide. If deg p(t) = 2, then m = n = 2 and there is only
one more invariant factor for α and β to compare; they will be the
same again by Proposition 7.9 and because the linear transformations
have the same characteristic polynomial. Finally, if deg p(t) = 1, the
condition of divisibility of the invariant factors and the fact that they
are monic will imply that they are all equal to p(t), as desired.

In any case, α and β have the same invariant factors and, therefore,
the same rational canonical form. We conclude that they are similar.

Notice that this result is not true if V is of dimension 4. For example,
take α as a linear transformation whose invariant factors are t, t and
t2, and β as a linear transformation whose invariant factors are t2 and
t2. Proposition 7.9 implies that α and β have the same characteristic
and minimal polynomials. However, the rational canonical forms of α

and β are respectively
0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 and


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

 ,
These matrices are
also the Jordan
canonical forms of
α and β.

which are different and, thus, α and β are not similar. �

Exercise 7.4

� Solution A �

Exercise 7.5

� Solution G �

Exercise 7.6

� Solution T �

Exercise 7.7 Let V be a k-vector space of dimension n, and let
α ∈ Endk(V). Prove that the minimal and characteristic polynomials
of α coincide if and only if there is a vector v ∈ V such that

v, α(v), · · · , αn−1(v)

is a basis of V.
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� Solution The minimal and characteristic polynomials of α coincide
if and only if the rational canonical form of α is a companion matrix:

0 0 0 · · · 0 −r0

1 0 0 · · · 0 −r1

0 1 0 · · · 0 −r2
...

...
...

. . .
...

...

0 0 0 · · · 0 −rn−2

0 0 0 · · · 1 −rn−1


.

This happens if and only if there exists a basis B = {v1, · · · , vn} of V
such that the matrix of α with respect to B is the one above. Finally,
looking to the columns of this matrix, we must have

v2 = α(v1), v3 = α2(v1), . . . , vn = αn−1(v1),

that is, if we take v := v1, then

B = {v, α(v), . . . , αn−1(v)},

as desired. �

Exercise 7.8

� Solution A �

Exercise 7.9

� Solution G �

Exercise 7.10

� Solution T �

Exercise 7.11 A square matrix A ∈ Mn(k) is nilpotent (cf. Exercise
V.4.19) if Ak = 0 for some integer k.

• Characterize nilpotent matrices in terms of their Jordan canon-
ical form.

• Prove that if Ak = 0 for some integer k, then Ak = 0 for some
integer k no larger than n (= the size of the matrix).

• Prove that the trace of a nilpotent matrix is 0.

� Solution

• Let’s prove that A ∈ Mn(k) is nilpotent if and only if the main
diagonal of its Jordan canonical form has only zeroes.

If A is a nilpotent, then the minimal polynomial of A is of the
form tk for some integer k. By Proposition 7.9, all the other
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invariant factors divide the minimal polynomial and so the
characteristic polynomial of A is tn. Thus, the only eigenvalue
of A is 0, so the main diagonal of its Jordan canonical form has
only zeroes.

Conversely, if the Jordan canonical form of A has only zeroes in
the main diagonal, its characteristic polynomial must be tn. By
the Cayley-Hamilton theorem, A is nilpotent.

• If Ak = 0, then the minimal polynomial of A divides tk and so it
is tl for some positive integer l. Since the minimal polynomial
always has degree at most n, l ≤ n and the result follows.

• Since similar matrices have the same trace, it follows from the
first item that the trace of any nilpotent matrix is 0. �

Exercise 7.12

� Solution A �

Exercise 7.13

� Solution G �

Exercise 7.14

� Solution T �

Exercise 7.15 A complete flag of subspaces of a vector space V of
dimension n is a sequence of nested subspaces

0 = V0 ( V1 ( · · · ( Vn−1 ( Vn = V

with dim Vi = i. In other words, a complete flag is a composition
series in the sense of Exercise 1.16.

Let V be a finite-dimensional vector space over an algebraically
closed field. Prove that every linear transformation α of V preserves
a complete flag: that is, there is a complete flag as above and such
that α(Vi) ⊆ Vi.

Find a linear transformation of R2 that does not preserve a
complete flag.

� Solution Let α be a linear transformation of V. Since V is a finite-
dimensional vector space over an algebraically closed field, α admits a
Jordan canonical form. Let B = {v1, . . . , vn} be a basis of V such that
the matrix of α with respect to B is in Jordan canonical form. Define
V0 = 0 and

Vi = 〈v1, v2, . . . , vi〉

for all 1 ≤ i ≤ n. It is clear that

V0 ( V1 ( · · · ( Vn−1 ( Vn
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is a complete flag and α(Vi) ⊆ Vi for all 0 ≤ i ≤ n by the definition of
B and the subspaces Vi. Therefore, α preserves a complete flag.

For the second part, let β be the linear transformation of R2 given
by the matrix (

0 −1

1 0

)
Geometrically,

since β represents
a rotation of the

plane by 90◦

degrees about the
origin, it cannot

preserve any line
passing through

the point (0, 0).

and let’s prove that β does not preserve a complete flag. To show
this, it suffices to prove that, for any subspace U ⊆ V of dimension
1, β(U) 6⊆ U. Indeed, such subspace would be generated by a single
nonzero vector (a, b) ∈ U. However, if β((a, b)) = (−b, a) ∈ U, this
vector would be a multiple of (a, b) and so

det

(
a −b

b a

)
= 0 =⇒ a2 + b2 = 0 =⇒ a = b = 0,

contradicting the fact that (a, b) is nonzero. Thus, (−b, a) 6∈ U and
β(U) 6⊆ U, as desired. �

Exercise 7.16

� Solution A �

Exercise 7.17

� Solution G �

Exercise 7.18

� Solution T �

Exercise 7.19 Prove that a matrix M ∈ Mn(C) is normal if and
only if it admits an orthonormal basis of eigenvectors. (Exercise
7.18 gives one direction; prove the converse.)

� Solution If M admits an orthonormal basis of eigenvectors, there
exists a matrix P whose columns are orthonormal vectors and such
that

D = P−1MP

is a diagonal matrix. By Exercise 6.18, P ∈ U(n) and so P−1 = P†.
Since

M = PDP−1 = PDP†

and diagonal matrices commute with each other, we have that

MM† = (PDP†)(PDP†)† = PDP†PD†P†

= PDD†P† = PD†DP†

= PD†P†PDP† = (PDP†)†(PDP†)

= M† M.

Therefore, M is normal and so the converse of Exercise 7.18 holds. �
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Exercise 7.20

� Solution A �





VII
F I E L D S

1 field extensions , i

Exercise 1.1

� Solution G �

Exercise 1.2

� Solution T �

Exercise 1.3 B Let k ⊆ F be a field extension, and let α ∈ F. Prove
that the field k(α) consists of all elements of F which may be written
as a rational function in α, with coefficients in k. Why does this not
give (in general) an onto homomorphism k(t)→ k(α)? [§1.2, §1.3]

� Solution Let E be the set of all elements of F which may be written
as a rational function in α, with coefficients in k. It is clear that E is
a subfield of F that contains k and α, so k(α) ⊆ E by the definition
of k(α). On the other hand, since k(α) contains both k and α and is a
field, it must also contain any rational function in α, with coefficients
in k. Therefore, the other inclusion holds and so k(α) = E.

Note that this does not necessarily give an onto homomorphism
k(t)→ k(α). Indeed, since field homomorphisms are always injective,
such homomorphism would be in fact an isomorphism. However, note
that k ⊆ k(t) is always an infinite extension, while k ⊆ k(α) can be
finite if α is algebraic over k. By Proposition 1.3, we conclude that this
onto homomorphism arises if and only if α is transcendental over k. �

Exercise 1.4

� Solution A �

Exercise 1.5

� Solution G �

Exercise 1.6

� Solution T �

Exercise 1.7 Let k ⊆ F be a field extension, and let α ∈ F be
algebraic over k.

253
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• Suppose p(x) ∈ k[x] is an irreducible monic polynomial such
that p(α) = 0; prove that p(x) is the minimal polynomial of α

over k, in the sense of Proposition 1.3.

• Let f (x) ∈ k[x]. Prove that f (α) = 0 if and only if p(x) | f (x).

• Show that the minimal polynomial of α is the minimal poly-
nomial of a certain k-linear transformation of F, in the sense
of Definition VI.6.12.

� Solution

• By Proposition 1.3, p(x) must be divisible by the minimal polyno-
mial of α since its image through the isomorphism given there is
p(α) = 0. It follows that p(x) is associate to the minimal polyno-
mial of α because p(x) is irreducible. But since both polynomials
are monic, they must be the same, as desired.

• Let ϕ : k[x]/(p(x))→ k(α) be the isomorphism given in Propo-
sition 1.3. It follows that

f (α) = 0 ⇐⇒ ϕ( f (x) + (p(x))) = 0

⇐⇒ f (x) + (p(x)) = 0

⇐⇒ p(x) | f (x),

as needed.

• Let T : F → F be the k-linear transformation on F given by
multiplication by α. It is easy to check that, if f (x) ∈ k[x] then

f (T)(c) = f (α) · c

for all c ∈ F. Therefore, f (T) = 0 if and only if f (α) = 0 and, by
the previous item, this happens if and only if p(x) divides f (x).
We conclude that mT(x) = p(x) by the definition of minimal
polynomial of a linear transformation. �

Exercise 1.8

� Solution A �

Exercise 1.9

� Solution G �

Exercise 1.10

� Solution T �

Exercise 1.11 ¬ Let k ⊆ F be a finite field extension, and let p(x)
be the characteristic polynomial of the k-linear transformation of F
given by multiplication by α. Prove that p(α) = 0.
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This gives an effective way to find a polynomial satisfied by an
element of an extension. Use it to find a polynomial satisfied by√

2 +
√

3 over Q, and compare this method with the one used in
Example 1.19. [1.12]

� Solution By Exercise 1.7, the minimal polynomial of α is the
minimal polynomial of the k-linear transformation of F given by
multiplication by α. By the Cayley-Hamilton theorem, we conclude
that p(α) = 0.

If we consider the composition of extensions

Q ⊆ Q(
√

2) ⊆ Q(
√

2,
√

3),

the proof of Proposition 1.10 implies that

(1,
√

2,
√

3,
√

6)

is a basis for Q(
√

2,
√

3) over Q because (1,
√

2) is a basis for Q(
√

2)
over Q and (1,

√
3) is a basis for Q(

√
2,
√

3) over Q(
√

2). With this ba-
sis, the Q-linear transformation of Q(

√
2,
√

3) given by multiplication
by
√

2 +
√

3 has the following matrix representation:
0 2 3 0

1 0 0 3

1 0 0 2

0 1 1 0

 .

A quick computation shows that the characteristic polynomial of this
matrix is p(x) = x4 − 10x2 + 1. As we proved before, it follows that
p(
√

2 +
√

3) = 0.
Note that this method does not require solving a system of equa-

tions or guessing values, as done in Example 1.19. However, it is
necessary that we have a basis for the extension in order to compute
the characteristic polynomial of the linear transformation. �

Exercise 1.12

� Solution A �

Exercise 1.13

� Solution G �

Exercise 1.14

� Solution T �

Exercise 1.15 ¬ Let k ⊆ F be a finite extension, and let α ∈ F.
Assume [F : k(α)] = r. Prove that

trk⊆F(α) = r trk⊆k(α)(α) and Nk⊆F(α) = Nk⊆k(α)(α)
r.
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(Cf. Exercises 1.12 and 1.13.) (Hint: If f1, . . . , fr is a basis of F over
k(α) and α has degree d over k, then ( fiα

j) i=1,··· ,r
j=1,··· ,d−1

is a basis of

F over k. The matrix corresponding to multiplication by α with
respect to this basis consists of r identical square blocks.) [4.19,
4.21]

� Solution Let B be the basis given in the hint, ordered as

B = ( f1, f1α, . . . , f1αd−1, f2, f2α, . . . , f2αd−1, . . . , frαd−1).

For a given index i, note that the α-multiples of fi, . . . , fiα
d−1 can

also be written as linear combinations of these elements. Indeed, we
essentially need to check this for α · ( fiα

d−1): if

p(x) = xd + cd−1xd−1 + · · ·+ c1x + x0

is the minimal polynomial of α over k, then

α · ( fiα
d−1) = fiα

d = (−c0) fi + (−c1) fiα + · · ·+ (−cd−1) fiα
d−1,

as desired. Therefore, the matrix of the linear transformation of F
given by multiplication by α will consist of r square blocks of size d
over the main diagonal. Furthermore, since (1, α, . . . , αd−1) is a basis
for k(α) over k, these blocks will be identical to the matrix of the linear
transformation of k(α) given by multiplication by α. Thus, it follows
immediately that

Each block will be
the companion

matrix of the
minimal

polynomial p(x) of
α over k.

trk⊆F(α) = r trk⊆k(α)(α)

and, by the Remark below, we also have that

Nk⊆F(α) = Nk⊆k(α)(α)
r,

proving the exercise. �

Remark. A remarkable property of determinants is that, if M is a
matrix of the form

M =



M1 ∗ ∗ · · · ∗
0 M2 ∗ · · · ∗
0 0 M3 · · · ∗
...

...
...

. . .
...

0 0 0 · · · Mn


,

where M1, M2, . . . , Mn are square blocks (not necessarily of the
same size), then

det M = det M1 det M2 · · ·det Mn.
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Another interesting property is that, if M is a matrix of the form

M =

(
A B

C D

)
,

where the block D is invertible, then

det M = det(AD− BD−1CD).

In particular, if CD = DC, we have that

det M = det(AD− BC)

and we can compute this determinant almost as if M were a 2× 2
matrix. (In this last case, the hyptohesis that D is invertible can be
dispensed.)

Exercise 1.16

� Solution A �

Exercise 1.17

� Solution G �

Exercise 1.18

� Solution T �

Exercise 1.19 Let k ⊆ F be a field extension of degree p, a prime
integer. Prove that there are no subrings of F properly containing k
and properly contained in F. (Use Exercise 1.18.)

� Solution Let R be a subring of F containing k. Since k ⊆ F is a
finite extension, Lemma 1.9 implies that it is algebraic and so R is a
field by Exercise 1.18. Now, Proposition 1.10 tells us that the extensions
k ⊆ R and R ⊆ F are finite, and

[F : R] · [R : k] = [F : k] = p.

Since p is prime, either [F : R] = 1 or [R : k] = 1, that is, either R = F
or R = k. Therefore, there are no subrings of F properly containing k
and properly contained in F. �

Exercise 1.20

� Solution A �

Exercise 1.21

� Solution G �
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Exercise 1.22

� Solution T �

Exercise 1.23 Express
√

2 explicitly as a polynomial function in√
2 +
√

3 with rational coefficients.

� Solution By Example 1.19, Q ⊆ Q(
√

2 +
√

3) is an extension of
degree 4. Thus,

(1,
√

2 +
√

3, (
√

2 +
√

3)2, (
√

2 +
√

3)3)

is a basis for Q(
√

2+
√

3) over Q and so there are unique q0, q1, q2, q3 ∈
Q such that

√
2 = q0 + q1(

√
2 +
√

3) + q2(
√

2 +
√

3)2 + q3(
√

2 +
√

3)3.

Computing the powers above we get that
√

2 = (q0 + 5q2) + (q1 + 11q3)
√

2 + (q1 + 9q3)
√

3 + (2q2)
√

6.

As argued in Exercise 1.11, (1,
√

2,
√

3,
√

6) is also a basis for Q(
√

2 +√
3) = Q(

√
2,
√

3) over Q. Therefore, we must have

q0 + 5q2 = 0

q1 + 11q3 = 1

q1 + 9q3 = 0

2q2 = 0

=⇒



q0 = 0

q1 = − 9
2

q2 = 0

q3 = 1
2

and so √
2 = −9

2
(
√

2 +
√

3) +
1
2
(
√

2 +
√

3)3

expresses
√

2 as a polynomial function in
√

2 +
√

3 with rational
coefficients. �

Exercise 1.24

� Solution A �

Exercise 1.25

� Solution G �

Exercise 1.26

� Solution T �

Exercise 1.27 ¬ With notation and terminology as in Exercise 1.26,
the indexed set {αi}i∈I is a transcendence basis for F over k if it is a
maximal algebraically independent set in F.
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• Prove that {αi}i∈I is a transcendence basis for F over k if and
only if it is algebraically independent and F is algebraic over
k({αi}i∈I).

• Prove that transcendence bases exist. (Zorn)

• Prove that any two transcendence bases for F over k have
the same cardinality. (Mimic the proof of Proposition VI.1.9.
Don’t feel too bad if you prefer to deal only with the case of
finite transcendence bases.)

The cardinality of a transcendence basis is called the transcendence
degree of F over k, denoted tr . degk⊆F. [1.28, 1.29, 2.19]

� Solution

• Let S = {αi}i∈I be an algebraically independent set in F. We will
prove the equivalent statement that S is not a transcendental
basis for F over k if and only if F is transcendental over k(S). In-
deed, this last condition happens if and only if there exists β ∈ F
that does not satisfy any polynomial function with coefficients
in k(S). Since S is already algebraically independent over k, this
occurs if and only if S ∪ {β} ) S is also algebraically indepen-
dent over k and, therefore, if and only if S is not a transcendental
basis for F over k.

• The proof is very similar to the proof of Lemma VI.1.2. Con-
sider the family F of all algebraically independent sets in F
over k, ordered by inclusion. If the extension k ⊆ F is algebraic,
then we may consider the empty set as a transcendence basis
for F over k. Thus, we may suppose that k ⊆ F is a transcen-
dental extension and so F 6= ∅. By Zorn’s lemma, to show
that transcendence bases exist, it suffices to verify that every
chain in F has an upper bound. Indeed, the union of a chain of
algebraically independent sets in F over k is also algebraically
independent over k because, since polynomials are only finite
sums of monomials, any relation of ’algebraic dependence’ only
involves finitely many elements and these elements would all
belong to one subset in the chain.

The same
argument shows
that any
algebraically
independent set
may be extended
to a transcendence
basis.

• Mimicking Proposition VI.1.9, we will prove that, if S ⊆ F is
algebraically independent over k and B ⊆ F is a transcendence
basis for F over k, then |S| ≤ |B|. It will follows that any two
transcendence bases for F over k have the same cardinality.

We have to prove that there is an injective map j : S ↪−→ B,
and this can be done by an inductive process, replacing the
elements of B by elements of S ’one-by-one’. For this, let ≤ be
a well-ordering on S, let α ∈ S, and assume we have defined j
for all β ∈ S with β < α. Let B′ be the set obtained from B by
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replacing all j(β) by β, for all β < α, and assume (inductively)
that B′ is still a transcendence basis for F over k. Then we claim
that j(α) ∈ B may be defined so that j(α) 6= j(β) for all β < α

and the set B′′ obtained from B′ by replacing j(α) by α is still a
transcendence basis for F over k. Transfinite induction (Claim
V.3.2) then shows that j is defined and injective on S, as needed.

To verify our claim, since B′ is a transcendence basis for F over
k, B′ ∪ {α} is not algebraically independent as an indexed set, so
that there exists a nonzero polynomial f ∈ k[x0, x1, . . . , xn] and
distinct β1, . . . , βn ∈ B′ such that

f (α, β1, . . . , βn) = 0.

We may assume that each one of the variables x0, x1, . . . , xn ap-
pears in f with a nonzero coefficient at least one time. Moreover,
since S is algebraically independent over k, at least one of the el-
ements β1, . . . , βn is not in S. Without loss of generality, suppose
that β1 ∈ B′ \ S. This guarantees that β1 6= j(β) for all β < α; we
set j(α) = β1.

All that is left now is the verification that the set B′′ obtained
by replacing β1 by α in B′ is a transcendence basis for F over k.
First, consider the composition of extensions:

k(B′′) ⊆ k(B′′ ∪ {β1}) = k(B′ ∪ {α}) ⊆ F.

By the first item, the last extension above is algebraic and, since
f (α, β1, . . . , βn) = 0, β1 is algebraic over k(B′′) and so the first
extension is also algebraic. By Corollary 1.18, k(B′′) ⊆ F is an
algebraic extension. Now, if B′′ were not algebraically indepen-
dent over k, α would be algebraic over k(B′′ \ {α}) and, since we
have the extensions

k(B′′ \ {α}) ⊆ k(B′′) ⊆ F,

the extension k(B′′ \ {α}) ⊆ F would be algebraic, again by
Corollary 1.18. But this would imply that β1 is algebraic over
k(B′′ \ {α}), contradicting that B′ is algebraically independent.
Therefore, B′′ must be algebraically independent and we con-
clude by the first item that B′′ is a transcendence basis for F over
k, as desired. �

Exercise 1.28

� Solution A �

Exercise 1.29

� Solution G �
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Exercise 1.30

� Solution T �

2 algebraic closure , nullstellensatz , and a little al-
gebraic geometry

Exercise 2.1 B Prove Lemma 2.1. [§2.1]

� Solution We will enumerate the statements in Lemma 2.1 as fol-
lows:

(1) K is algebraically closed.

(2) K has no nontrivial algebraic extensions.

(3) If K ⊆ L is any extension α ∈ L is algebraic over K, then α ∈ K.

Let’s prove that (1) =⇒ (2) =⇒ (3) =⇒ (1).
(1) =⇒ (2). Suppose that K ⊆ L is a nontrivial algebraic extension.

Thus, there exists α ∈ L \ K, which is algebraic over K. By Proposition
1.3, the minimal polynomial of α is irreducible and, since α 6∈ K, its
degree is at least 2. It follows that K is not algebraically closed.

(2) =⇒ (3). Let K ⊆ L be any extension and let α ∈ L be algebraic
over K. Thus, K ⊆ K(α) is an algebraic extension, so K = K(α) and
α ∈ K.

(3) =⇒ (1). Let f (x) ∈ K[x] be a nonzero irreducible polyno-
mial. By Proposition V.5.7, there are an extension K ⊆ L and α ∈ L
such that f (α) = 0. This means that α is algebraic over K and, by
hypothesis, α ∈ K. Therefore, the polynomial x− a divides f (x) and,
since it is irreducible, the degree of f (x) must be 1. Therefore, all
irreducible polynomials in K[x] have degree 1 and we conclude that K
is algebraically closed. �

Exercise 2.2

� Solution A �

Exercise 2.3

� Solution G �

Exercise 2.4

� Solution T �

Exercise 2.5 Let K be a field, let A be a subset of K[x1, . . . , xn], and
let I be the ideal generated by A. Prove that V (A) = V (I) in An

K.
[§2.3]

� Solution It is immediate that V (I) ⊆ V (A) because A ⊆ I.
Let’s prove the other inclusion. Let p ∈ V (A) and let f ∈ I be any
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polynomial. Since I is generated by A, there are a1, . . . , an ∈ A and
g1, . . . , gn ∈ K[x] such that

f = g1a1 + · · · gnan.

By the definition of V (A), it follows that

f (p) = g1(p)a1(p) + · · ·+ gn(p)an(p) = g1(p) · 0 + · · · gn(p) · 0 = 0.

Since f was an arbitrary polynomial of I, we conclude that p ∈ V (I)
and so V (A) ⊆ V (I), as desired. �

Exercise 2.6

� Solution A �

Exercise 2.7

� Solution G �

Exercise 2.8

� Solution T �

Exercise 2.9 B Prove that every affine algebraic set equals V (I)
for a radical ideal I. [§2.3]

� Solution Since any affine algebraic set is by definition of the form
V (I) for some ideal I ⊆ K[x1, . . . , xn], it suffices to prove that V (I) =
V (
√

I). The inclusion V (
√

I) ⊆ V (I) follows from the inclusion
I ⊆
√

I. Now, to prove the other inclusion, let p ∈ V (I) be an arbitrary
point. For every f ∈

√
I, there exists k ≥ 0 such that

f k ∈ I =⇒ f k(p) = 0 =⇒ f (p) = 0.

Therefore, p ∈ V (
√

I) and so V (I) ⊆ V (
√

I), as desired. �

Exercise 2.10

� Solution A �

Exercise 2.11

� Solution G �

Exercise 2.12

� Solution T �

Exercise 2.13 Let K be an algebraically closed field. Prove that ev-
ery reduced commutative K-algebra of finite type is the coordinate
ring of an algebraic set S in some affine space An

K.
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� Solution If R is a commutative K-algebra of finite type, it follows
that

R ∼=
K[x1, . . . , xn]

I
for some n and some ideal I of K[x1, . . . , xn]. If R is also reduced,
Exercise 2.8 implies that I is radical. Taking S = V (I) ⊆ An

K, we
have that I (S) = I by Corollary 2.18 and so R is isomorphic to the
coordinate ring K[S]. �

Exercise 2.14

� Solution A �

Exercise 2.15

� Solution G �

Exercise 2.16

� Solution T �

Exercise 2.17 ¬ Let K be an algebraically closed field, and let m be
a maximal ideal of K[x1, . . . , xn], corresponding to a point p of An

K.
A germ of a function at p is determined by an open set containing
p and a function defined on that open set; in our context (dealing
with rational functions and where the open set may be taken to be
the complement of a function that does not vanish at p) this is the
same information as a rational function defined at p, in the sense
of Exercise 2.16.

Show how to identify the ring of germs with the localization
K[An

K]m (defined in Exercise V.4.11).
As in Exercise 2.16, the same discussion can be carried out for

any algebraic set. This is the origin of the name ’localization’:
localizing the coordinate ring of a variety V at the maximal ideal
corresponding to a point p amounts to considering only functions
defined in a neighborhood of p, thus studying V ’locally’, ’near p’.
[V.4.7]

� Solution As pointed in the statement of the exercise, the ring of
germs R corresponds to all rational functions defined at p, that is,
rationals functions of the form

α =
F
G

where F, G ∈ K[x1, . . . , xn] are relatively prime and G(p) 6= 0. Since α

is defined at p = (c1, . . . , cn), we must have

G 6∈ m = (x− c1, . . . , x− cn).
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Thus, we can define the function

ϕ : R→ K[An
K]m

F
G
7→ F

G
.

This function is clearly a bijection since equality of two fractions
in K[An

K]m is the same as equality in the field of rational functions
K(x1, . . . , xn). (In this case, the ’t’ in the definition of the localization
may be disregarded since K[An

K] is an integral domain.) Moreover,
note that ϕ is indeed an isomorphism of rings because it also preserves
operations. �

Remark. Germs can be defined more generally for a point in a
topological space. Let x be a point in some topological space and
let F be some family of functions defined in neighbourhood of x
(each in its own neighbourhood). Two functions f , g ∈ F are said
to be equivalent at x if they coincide in some neighbourhood of x.
An equivalence class generated by this relation is called a germ of
functions of class F at x.

In the exercise above, the topological space considered is An
K

endowed with the Zariski topology (see Exercise 2.7) and F is the
family of rational functions defined at p.

Exercise 2.18

� Solution A �

Exercise 2.19

� Solution G �

Exercise 2.20

� Solution T �

Exercise 2.21 ¬ Let F(x0, . . . , xn) ∈ K[x0, . . . , xn] be a homogeneous
polynomial. With notation as in Exercise 2.20, prove that the condi-
tion ’F(c0, . . . , cn) = 0’ for a point (c0 : . . . : cn) ∈ Pn

K is well-defined:
it does not depend on the representative (c0, . . . , cn) chosen for the
points (c0 : . . . : cn). We can then define the following subset of Pn

K:

V (F) := {(c0 : . . . : cn) ∈ Pn
K | F(c0, . . . , cn) = 0}.

Prove that this ’projective algebraic set’ can be covered with n + 1
affine algebraic sets.

The basic definitions in ’projective algebraic geometry’ can be
developed along essentially the same path taken in this section
for affine algebraic geometry, using ’homogenous ideals’ (that is,
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ideals generated by homogeneous polynomials; see §VIII.4.3) rather
than ordinary ideals. This problem shows one way to relate pro-
jective and affine algebraic sets, in one template example. [VIII.4.8,
VIII.4.11]

� Solution For the first part, let (c0, · · · , cn) and (c′0, . . . , c′n) be two
equivalent points in Kn+1, accordingly to the equivalence relation
defined in Exercise 2.20. Thus, there exists λ ∈ K∗ such that

(c′0, . . . , c′n) = (λc0, . . . , λcn)

and, since F is a homogeneous polynomial, we have that

F(c′0, . . . , c′n) = λl · F(c0, . . . , cn),

where l is the degree of F. Therefore,

F(c0, . . . , cn) = 0 ⇐⇒ F(c′0, . . . , c′n) = 0

and the considered condition is well-defined.
For the second part, consider the copies of An

K in Pn
K defined by the

injections

(c1, . . . , cn) 7→ (c1 : . . . : ci−1 : 1 : ci : . . . : cn)

for all 1 ≤ i ≤ n + 1, as in Exercise 2.20. We can define the affine
algebraic sets

Si = V (F(x1, . . . , xi−1, 1, xi, . . . , xn)) ⊆ An
K

for all 1 ≤ i ≤ n + 1, that is, we consider the zeroes of the polynomial
F when we replace one of its variables by 1. Each Si can be naturally
identified as a subset of the i-th copy of An

K inside Pn
K, as defined

above. Since the copies of An
K cover Pn

K, it follows that

V (F) = S1 ∪ · · · ∪ Sn+1,

showing that this projective algebraic set can be covered with n + 1
affine algebraic sets. �

3 geometric impossibilities

Exercise 3.1

� Solution A �

Exercise 3.2

� Solution G �
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Exercise 3.3

� Solution T �

Exercise 3.4 Show how to square a triangle by straightedge and
compass.

� Solution Choosing two vertices of the given triangle to be the start-
ing points O and P, we may suppose that the vertices are O = (0, 0),
P = (1, 0) and A = (a, b), where a and b are positive constructible real
numbers.

O P

A

Note that the area of this triangle is b
2 and so we need to construct

a square of side
√

b
2 . Proceeding as done just before Definition 3.1,

we may mark the point (b, 0) on the x-axis and, by Exercise 3.1, we
can construct the point ( b

2 , 0). Now, with the construction given in the

proof of Theorem 3.4, we can construct the point X = (0,
√

b
2 ) and,

thus, the point X′ = (
√

b
2 , 0). Tracing perpendicular lines to the x-axis

and the y-axis that pass through these points, we get a square:

O P

A

X′

X

It is clear that the area of this square is the same as the area of the
triangle. �

Exercise 3.5

� Solution A �

Exercise 3.6

� Solution G �

Exercise 3.7

� Solution T �

Exercise 3.8 For δ ∈ C, δ 6= 0, let θδ be the argument of δ (that is,
the angle formed by the line through 0 and δ with the real axis).
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Prove that δ ∈ CC if and only if |δ|, cos θδ, sin θδ are all constructible
real numbers.

� Solution ( =⇒ ) If δ ∈ CC then the point P = (|δ| cos θδ, |δ| sin θδ)

is constructible and so |δ| cos θδ and |δ| sin θδ are constructible real
numbers. Now, the intersection of the circle centered at the origin and
passing through P with the x-axis is precisely the point (|δ|, 0), so |δ|
is also a constructible real number.

O

|δ|

P

(|δ|, 0)

Finally, since CR is a field and |δ| 6= 0, it follows that cos θδ and sin θδ

are constructible real numbers.
(⇐= ) Since CR is a field, |δ| cos θδ and |δ| sin θδ are constructible. By

Lemma 3.2, it follows that δ = (|δ| cos θδ) + i(|δ| sin θδ) is constructible
and so δ ∈ CC. �

Exercise 3.9

� Solution A �

Exercise 3.10

� Solution G �

Exercise 3.11

� Solution T �

Exercise 3.12 Prove that the angles of 1◦ and 2◦ are not con-
structible. (Hint: Given what we know at this point, you only need
to recall that there exist trigonometric formulas for the sum of two
angles; the exact shape of these formulas is not important.) For
what integers n is the angle n◦ constructible?

� Solution Suppose that the angles of 1◦ and 2◦ are constructible.
By Exercise 3.10, we have that cos 1◦ and cos 2◦ are constructible real
numbers. Applying the formula

cos(θ + θ′) = cos(θ) cos(θ′)− sin(θ) sin(θ′)

repeatedly, we get that cos 20◦ can be expressed as a polynomial in
cos 1◦ and as a polynomial in cos 2◦ because 20 is a multiple of 1 and
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2. Since CR is field, this implies that 20◦ is a constructible angle, which
contradicts what has been proved in §3.3. Therefore, 1◦ and 2◦ cannot
be constructible.

Since 3◦ is constructible, the argument above shows that n◦ is a
construcible angle for all integers n divisible by 3. Conversely, if n◦ is
constructible, then n is divisible by 3. Indeed, if the quotient and the
remainder of n by 3 are respectively q and r, we can apply the identity
above to θ = n◦ and θ′ = (−3q)◦ and obtain that r◦ is constructible,
which implies that r = 0. �

Exercise 3.13

� Solution A �

Exercise 3.14

� Solution G �

Exercise 3.15

� Solution T �

4 field extensions , ii

Exercise 4.1 B Let k be a field, f (x) ∈ k[x], and let F be the
splitting field for f (x) over k. Let k ⊆ K be an extension such that
f (x) splits as a product of linear factors over K. Prove that there is
a homomorphism F → K extending the identity on k. [§4.2]

� Solution Since f (x) splits as a product of linear factors over K, f (x)
has roots α1, . . . , αr in K. Let F′ = k(α1, . . . , αr) ⊆ K be the extension
of k generated by the roots of f (x). By definition, it follows that F′ is
the splitting field for f (x) over k and so Lemma 4.2 implies that there
exists an isomorphism F → F′ extending the identity on k. Composing
this isomorphism with the inclusion F′ → K, we get a homomorphism
F → K extending the identity on k. �

Exercise 4.2

� Solution A �

Exercise 4.3

� Solution G �

Exercise 4.4

� Solution T �
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Exercise 4.5 B Let F be a splitting field for a polynomial f (x) ∈
k[x], and let g(x) ∈ k[x] be a factor of f (x). Prove that F contains a
unique copy of the splitting field of g(x). [§5.1]

� Solution Note that g(x) splits in F because it is a factor of f (x).
Thus, g(x) has roots α1, . . . , αr in F and we have that k(α1, . . . , αr) ⊆
F is the splitting field of g(x) over k. This is the unique copy of
the splitting field of g(x) in F since, by definition, it is uniquely
determined by the roots α1, . . . , αr of g(x). �

Exercise 4.6

� Solution A �

Exercise 4.7

� Solution G �

Exercise 4.8

� Solution T �

Exercise 4.9 Using the notion of ’derivative’ given in §4.2, prove
that ( f g)′ = f ′g + f g′ for all polynomials f , g.

� Solution Let

f (x) = ∑
i≥0

aixi and g(x) = ∑
j≥0

bjxj

be arbitrary polynomials. A quick computation shows that the k-th
coefficient of ( f g)′ and f ′g + f g′ are

(k + 1) ∑
i+j=k+1

aibj

and
∑

i+j=k
(i + 1)ai+1bj + ∑

i+j=k
(j + 1)aibj+1,

respectively, so we just need to show that these two expressions are
the same for all k ≥ 0. Indeed, in the last expression, replace i + 1 by i
in the first sum and j + 1 by j in the second. It follows that

Note that we
added the term
0 · a0bk+1 to the
first sum and the
term 0 · ak+1b0 to
the second, but
they do not change
the equality since
they equal to 0.

∑
i+j=k

(i + 1)ai+1bj + ∑
i+j=k

(j + 1)aibj+1

= ∑
i+j=k+1

iaibj + ∑
i+j=k+1

jaibj

= ∑
i+j=k+1

(i + j)aibj

=(k + 1) ∑
i+j=k+1

aibj,

as needed. �
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Exercise 4.10

� Solution A �

Exercise 4.11

� Solution G �

Exercise 4.12

� Solution T �

Exercise 4.13 B Let k be a field of positive characteristic p, and let
f (x) be an irreducible polynomial. Prove that there exist an integer
d and a separable irreducible polynomial fsep(x) such that

f (x) = fsep(xpd
).

The number pd is called the inseparable degree of f (x). If f (x) is
the minimal polynomial of an algebraic element α, the inseparable
degree of α is defined to be the inseparable degree of f (x). Prove
that α is inseparable if and only if its inseparable degree is ≥ p.

The picture to keep in mind is as follows: the roots of the minimal
polynomial f (x) of α are distributed into deg fsep ’clumps’, each
collecting a number of coincident roots equal to the inseparable
degree of α. We say that α is ’purely inseparable’ if there is only
one clump, that is, if all roots of f (x) coincide (see Exercise 4.14).
[§4.2, 4.14, 4.18]

� Solution FALTA A PRIMEIRA PARTE
Now, for the second part of the exercise, it is equivalent to prove

that α is separable if and only if its inseparable degree is 1.
( =⇒ ) Suppose that α is separable and let f (x) be its minimal

polynomial over k. By the first part of the exercise, there exists a
separable polynomial fsep(x) ∈ k[x] and an integer d such that f (x) =
fsep(xpd

). If x− a divides fsep(x) in k, it follows that xpd − a divides
f (x) in k. But note that xpd − a has only one root. Indeed, if b ∈ k is
such that bpd

= a, we have that

xpd − a = xpd − bpd
= (x− b)pd

after applying Exercise 4.8 successively. Since α is separable, f (x) is
separable and so we must have pd = 1, that is, the inseparable degree
of α must be 1.

(⇐= ) If the inseparable degree of α is 1, the definition above imme-
diately implies that the minimal polynomial of α over k is separable.
Thus, α is separable. �
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Exercise 4.14

� Solution A �

Exercise 4.15

� Solution G �

Exercise 4.16

� Solution T �

Exercise 4.17 ¬ Let k ⊆ F be an algebraic extension, in positive
characteristic. With notation as in Exercises 4.14 and 4.16, prove
that the extension Fsep ⊆ F is purely inseparable. Prove that the
extension k ⊆ F is purely inseparable if and only if Fsep = k. [4.18]

� Solution Let α ∈ F. We claim that αpd ∈ Fsep, where pd is the
inseparable degree of α over k, as defined in Exercise 4.13. Indeed,
let f (x) be the minimal polynomial of α over k and let fsep(x) be the
separable irreducible polynomial such that f (x) = fsep(xpd

). Since α

is a root of f (x), αpd
is a root of fsep(x) and, since this polynomial is

irreducible, fsep(x) is the minimal polynomial of αpd
over k. It follows

that αpd
is separable over k, which proves that Fsep ⊆ F is purely

inseparable.
For the second part, it suffices to show that Fsep ⊆ k. Let α ∈ Fsep.

Since k ⊆ F is purely inseparable and Fsep ⊆ F, α is purely inseparable
over k. Thus, Exercise 4.14 implies that the degree of α over k equals
its inseparable degree. But, since α ∈ Fsep, α is separable over k and it
follows from Exercise 4.13 that its inseparable degree is 1. Therefore,
the degree of α is 1 and α ∈ k, as desired. �

Exercise 4.18

� Solution A �

Exercise 4.19

� Solution G �

Exercise 4.20

� Solution T �

Exercise 4.21 ¬ Let k ⊆ E ⊆ F be finite separable extensions, and
let α ∈ F. Prove that

Nk⊆F(α) = Nk⊆E(NE⊆F(α)) and trk⊆F(α) = trk⊆E(trE⊆F(α)).
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(Hint: Use Exercise 4.19: if d = [E : k] and e = [F : E], the de
embeddings of F into k lifting idk must divide into d groups of e
each, according to their restriction to E.)

This ’transitivity’ of norm and trace extends the result of Exercise
1.15 to separable extensions. The separability restriction is actually
unnecessary; cf. Exercise 4.22. [4.22]

� Solution Firstly, since the extensions are finite and separable,
Proposition 4.24 states that d = [E : k] and e = [F : E] are the
separable degrees of E over k and of F over E, respectively. Now, note
that any embedding of F into k lifting idk is an embedding of E into
k lifting idk if we restrict it to E. Furthermore, given an embedding
σ : E→ k extending the identity on k, there are exactly e embeddings
ισ1 , . . . ισe of F into E = k extending σ, by the definition of the separable
degree of F over E. If C denotes the set of the d embeddings of E
into k lifting idk, we conclude that the distinct embeddings of F into k
lifting idk are given by the following disjoint union:⋃

σ∈C

{ισ1 , . . . , ισe }. (*)

This fact will be used below.
We will prove the result only for the norm; the argument for the

trace is very similar. If σ ∈ C and α ∈ F, let’s compute the following
product:

e

∏
j=1

ισj (α).

Realizing E in k = E via σ, Exercise 4.19 tells us that the product above
equals to NE⊆F(α). However, by the definition given in Exercise 1.12,
the norm of α must be in E, while this product is computed in k. If
we were not dealing with different embeddings of E into k, it would
be fine to say that the product equals to NE⊆F(α), but, in our case,
it is more precise to say that it equals to σ(NE⊆F(α)) because we are
realizing E into k through σ and not another embedding.

Finally, (*) and Exercise 4.19 implies that

Nk⊆F(α) = ∏
σ∈C

e

∏
j=1

ισj (α) = ∏
σ∈C

σ(NE⊆F(α)) = Nk⊆E(NE⊆F(α)),

as desired. Note that, this time, there is no ambiguity about the equal-
ity of the norms and the products above because we are dealing with
only one fixed embedding of k in k. �

Exercise 4.22

� Solution A �

5 field extensions , iii
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Exercise 5.1

� Solution G �

Exercise 5.2

� Solution T �

Exercise 5.3 B Find an explicit isomorphism

F2[x]
(x3 + x2 + 1)

∼−→ F2[x]
(x3 + x + 1)

.

[§5.1]

� Solution Let f : F2[x]→ F2[x] be the function given by f (p(x)) =
p(x + 1). It follows from Example III.2.3 and Exercise III.2.6 that f is a
homomorphism and, since it is bijective, it is indeed an isomorphism.
In particular, π ◦ f is a surjective homomorphism onto F2/(x3 + x + 1)
and so Theorem III.3.8 gives us an isomorphism

ϕ :
F2[x]

ker(π ◦ f )
−→ F2[x]

(x3 + x + 1)
.

It remains to show that ker(π ◦ f ) is generated by x3 + x2 + 1. Firstly,
note that ker(π ◦ f ) is different from F2[x] because π ◦ f is not trivial.
Since x3 + x2 + 1 is irreducible in F2[x], which is a PID, it suffices to
show that this polynomial is in ker(π ◦ f ). Indeed:

f (x3 + x2 + 1) = (x + 1)3 + (x + 1)2 + 1

= (x3 + x2 + x + 1) + (x2 + 1) + 1

= x3 + x + 1

and thus
(π ◦ f )(x3 + x2 + 1) = 0,

as desired. �

Exercise 5.4

� Solution A �

Exercise 5.5

� Solution G �

Exercise 5.6

� Solution T �

Exercise 5.7 Let p be a prime integer. View the Frobenius automor-
phism ϕ : Fpd → Fpd as a linear transformation of the Fp-vector
space Fpd . Find the rational canonical form of ϕ. (Adapt the proof
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of Proposition 5.8 to show that the minimal polynomial of ϕ is
xd − 1.)

� Solution Let mϕ(x) be the minimal polynomial of ϕ(x), viewed as
a linear transformation of the Fp-vector space Fpd . Since every element

of Fpd is a root of the polynomial xpd − x, we have that ϕd − idFpd = 0

and so mϕ(x) divides xd − 1. On the other hand, if

mϕ(x) = xn + an−1xn−1 + · · ·+ a1x + a0,

every element of Fpd is also a root of

xpn
+ an−1xpn−1

+ · · ·+ a1xp + a0x,

because

cpn
+ an−1cpn−1

+ · · ·+ a1cp + a0c

= (ϕn + an−1ϕn−1 + · · ·+ a1ϕ + a0 idFpd )(c)

= (mϕ(ϕ))(c)

= 0

for all c ∈ Fpd . Thus, Lemma V.5.1 implies pd ≤ pn and so d ≤ n. Since
the degree of xd − 1 is d, we conclude that mϕ(x) = xd − 1. Finally,
note that [Fpd : Fp] = d and, therefore, it follows that the rational
canonical form of ϕ is the companion matrix of mϕ(x), that is,

0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


is the desired matrix. �

Exercise 5.8

� Solution A �

Exercise 5.9

� Solution G �

Exercise 5.10

� Solution T �

Exercise 5.11 Prove that if n > 1 is odd, then Φ2n(x) = Φn(−x).
(Hint: Draw the primitive 14-th roots of 1 side-by-side to the prim-
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itive 7-th roots of 1; then go back to Exercise II.2.15 to justify the
fact you observe.)

� Solution This is the picture of the hint:

0 1

ζ14

ζ7

The gray and black dots are, respectively, the primitive 7-th and 14-th
roots of 1. Note that there is the same number of them and that they
are opposite to each other. As will now prove, these facts generalize
for any odd integer n > 1.

Let α be a primitive n-th root of 1, that is, α = ζm
n with gcd(m, n) = 1.

We claim that −α is a primitive 2n-th root of 1. Indeed, note that

−α = (−1) · α = (ζn
2n)(ζ

2
2n)

m = ζ2m+n
2n

and, since gcd(2m + n, 2n) = 1 by Exercise II.2.15, our claim follows.
This implies that Φn(−x) divides Φ2n(x) because every root of the first
polynomial is also a root of the second one. Again by Exercise II.2.15,
we have that φ(n) = φ(2n) and so Φn(x) and Φ2n(x) are of the same
degree. Finally, since n ≥ 3, φ(n) is even (this can be easily derived
from the formula in Exercise V.6.8), which implies that Φn(−x) is
monic, just as Φ2n(x) is. From these observations we conclude that
Φ2n(x) = Φn(−x). �

Exercise 5.12

� Solution A �

Exercise 5.13

� Solution G �
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Exercise 5.14

� Solution T �

Exercise 5.15 B Let a, p, n be integers, with p, n positive and p
prime, p - n.

• Show that xn − 1 has no multiple roots modulo p.

• Show that if p divides Φn(a), then an ≡ 1 modulo p. (In
particular, p - a, so [a]p ∈ (Z/pZ)∗.)

• Show that if p divides Φn(a), then ad 6≡ 1 modulo p for every
d < n.

• Deduce that p | Φn(a) if and only if the order of [a]p in
(Z/pZ)∗ is n.

• Compute Φ15(9), and show that it is divisible by 31. Then
look back at the first part of Exercise II.4.12.

[§II.4.3, 5.16, 5.17]

� Solution

• Consider the polynomial f (x) = xn − 1 in Fp. Note that f ′(x) =
nxn−1 and, since p - n, f ′(x) is not the zero polynomial. It follows
that the only non-constant factors (up to associates) of f ′(x) are
the powers of x, which clearly do not divide f (x). Thus, f (x)
and f ′(x) are relatively prime and Lemma 4.13 implies that f (x)
has no multiple roots.

• Since Φn(x) divides xn − 1, we have that Φn(a) divides an − 1.
Therefore, p divides an − 1, that is, an ≡ 1 modulo p.

• FALTA ESSE ITEM.

• If p divides Φn(a), the last two items imply that the order of
[a]p in (Z/pZ)∗ is n. Conversely, if [a]p is of order n in the
multiplicative group of Z/pZ, the ’only if’ part we just proved
implies that p - Φd(a) for all d < n such that d divides p, because,
otherwise, the order of [a]p would not be n. By Lemma 5.11,

∏
1≤d|n

Φd(a) = an − 1 ≡ 0 mod p

and p divides the product above. By our previous observation,
we must have p | Φn(a).

• By Exercise 5.9,

Φ15 = x8 − x7 + x5 − x4 + x3 − x + 1,
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thus,
Φ15(9) = 38316961 = 31 · 1236031

is divisible by 31. Since 31 - 15, the last item implies that the
order of [9]31 in (Z/31Z)∗ is 15, the same that we obtained in
the first part of Exercise II.4.12. �

Exercise 5.16

� Solution A �

Exercise 5.17

� Solution G �

Exercise 5.18

� Solution T �

Exercise 5.19 B Prove that the regular n-gon can be constructed
by straightedge and compass only if n = 2m p1 · · · pr, where m ≥ 0
and the factors pi are distinct Fermat primes. (Hint: Use Exercise
V.6.8.) [§5.2, §7.2]

� Solution Let n > 1 be an integer such that the regular n-gon can
be constructed by straightedge and compass. As argued just after
Example 5.17, φ(n) must be a power of 2. Let n = pα1

1 · · · p
αr
r be the

prime factorization of n. By Exercise V.6.8, we know that

φ(n) = pα1−1
1 (p1 − 1) · · · pαr−1

r (pr − 1).

Thus, since (pi − 1) | φ(n) for all i, each pi is of the form 2k + 1 for
some integer k. In particular, Exercise 3.15 implies that every odd
prime divisor of n is a Fermat prime. Furthermore, if pi is odd, it
cannot divide φ(n) and so αi = 1. We conclude that n is of the desired
form. �

Exercise 5.20

� Solution A �

Exercise 5.21

� Solution G �

Exercise 5.22

� Solution T �

Exercise 5.23 B Let k be a field, and let n > 0 be an integer.
Assume that there are no irreducible polynomials of degree n in
k[x]. Prove that there are no separable extensions of k of degree n.
[§7.1]
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� Solution Suppose that there exists a separable extension F of k of
degree n. Since the extension is finite, Proposition 5.19 implies that
F = k(α) for some α ∈ F. It follows that the minimal polynomial of α

is an irreducible polynomial of degree n in k[x]. �

6 a little galois theory

Exercise 6.1

� Solution A �

Exercise 6.2

� Solution G �

Exercise 6.3

� Solution T �

Exercise 6.4 B Let k ⊆ E be a finite separable extension. Prove that
E may be identified with an intermediate field of a Galois extension
k ⊆ F of k.

In fact, prove that there is a smallest such extension k ⊆ F, in the
sense that if k ⊆ E ⊆ K, with k ⊆ K Galois, then there exists an
embedding of F in K which is the identity on E. (The extension
k ⊆ F is the Galois closure of the extension k ⊆ E. It is clearly
uniquely determined up to isomorphism.) [§6.3, 6.5]

� Solution R �

Exercise 6.5

� Solution A �

Exercise 6.6

� Solution G �

Exercise 6.7

� Solution T �

Exercise 6.8 Let k ⊆ F be a Galois extension of degree n, and let E
be an intermediate field. Assume that [E : k] is the smallest prime
dividing n. Prove that k ⊆ E is Galois.

� Solution R �

Exercise 6.9

� Solution A �
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Exercise 6.10

� Solution G �

Exercise 6.11

� Solution T �

Exercise 6.12 Find two algebraic extensions k ⊆ F, k ⊆ K and
embeddings F ⊆ k, σ1 : K ⊆ k, σ2 : K ⊆ k extending k ⊆ k, such
that the composites Fσ1(K), Fσ2(K) are not isomorphic.

Prove that no such example exists if F and K are Galois over k.

� Solution R �

Exercise 6.13

� Solution A �

Exercise 6.14

� Solution G �

Exercise 6.15

� Solution T �

Exercise 6.16 B Let k ⊆ F be a cyclic Galois extension of degree d,
and let ϕ be a generator of Autk(F). Let α ∈ F be an element such
that Nk⊆F(α) = 1.

• Prove that the automorphisms idF, ϕ, . . . , ϕd−1 are linearly
independent over F. (Exercise 6.14.)

• Prove that there exists a γ ∈ F such that

β :=γ + αϕ(γ) + αϕ(α)ϕ2(γ) + · · ·
· · ·+ αϕ(α) · · · ϕd−2(α)ϕd−1(γ) 6= 0.

• Prove that αϕ(α)ϕ2(α) · · · ϕd−1(α)ϕd(γ) = γ, and deduce that
α = β/ϕ(β).

Together with the result of Exercise 4.20, the conclusion is that an
element α of a cyclic Galois extension as above has norm 1 if and
only if there exists a β such that α = β/ϕ(β).

This is Hilbert’s theorem 90 (the 90-th theorem in Hilbert’s Zahlbericht,
a report on the state of number theory at the end of the nineteenth
century commissioned by the German Mathematical Society). [6.17,
§IX.7.6, IX.7.18]

� Solution R �
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Exercise 6.17

� Solution A �

Exercise 6.18

� Solution G �

Exercise 6.19

� Solution T �

7 short march through applications of galois theory

Exercise 7.1

� Solution R �

Exercise 7.2

� Solution A �

Exercise 7.3

� Solution G �

Exercise 7.4

� Solution T �

Exercise 7.5

� Solution R �

Exercise 7.6

� Solution A �

Exercise 7.7

� Solution G �

Exercise 7.8

� Solution T �

Exercise 7.9

� Solution R �

Exercise 7.10

� Solution A �

Exercise 7.11

� Solution G �
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Exercise 7.12

� Solution T �

Exercise 7.13

� Solution R �

Exercise 7.14

� Solution A �

Exercise 7.15

� Solution G �

Exercise 7.16

� Solution T �

Exercise 7.17

� Solution R �

Exercise 7.18

� Solution A �

Exercise 7.19

� Solution G �
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