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Why should we care?



Noether’s point of view

If we wish to study a topological space X, a useful collection of
invariants are the Betti numbers bn(X), measuring the number of
n-dimensional holes of X.
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Noether’s point of view

Emmy Noether famously emphasized that the Betti numbers bn(X)
are mere shadows of the more fundamental homology groups Hn(X).

Hn(X)

bn(X)

rank /
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The arithmetic side

Let X be an algebraic variety (of dimension n) over Fq. You probably
wish to understand the number of rational points #X(Fq).

This information can also be obtained from more fundamental
groups

#X(Fq) =
2n∑
i=0

(−1)i tr(Frobq | Hiét(X)).
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Going one step further

There exists an even richer invariant: the derived category Dbc (X;Qℓ)

of constructible `-adic sheaves.

Dbc (X;Qℓ)

H•
ét(X)

#X(Fq)

/
/
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What is a six-functor formalism



The objects

Let C be the category of the spaces in consideration. For each X ∈ C,
we define triangulated categories D(X), standing for a certain kind of
derived category of sheaves over X. We suppose that, for each X ∈ C:

(SF1) D(X) is a closed symmetric monoidal category with identity OX.
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Functoriality

Given a morphism f : X→ S in C, we suppose that

(SF2) There exist adjoint (triangulated) functors

f∗ : D(S) ⇆ D(X) : f∗ and f! : D(X) ⇆ D(S) : f!.

Moreover, there exists a natural morphism f! → f∗, which is an
isomorphism when f is proper, and f∗ is monoidal.
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Base change

These functors should behave well with respect to base change. So,
given a cartesian diagram

X′ X

S′ S,

g

f f
g

the proper base change axiom then imposes that

(PBC) There is an isomorphism of functors g∗ ◦ f! ∼= f! ◦ g
∗.
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Locality

Finally, these functors should behave locally. Let i : Z ↪→ X be a
closed immersion and let j : U ↪→ X be its complementary open
immersion.

We impose that

(LOC) D(Z) i∗−→ D(X) j∗−→ D(U) is a localization sequence. (BBD §1.4.3)
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What follows formally



Local forms

Proposition
Let f : X→ S be a morphism in C. Then,

Hom(−⊗−,−) ∼= Hom(−,Hom(−,−))

Hom(−, f∗−) ∼= f∗Hom(f∗−,−).

Indeed,

Hom(Q,Hom(M⊗ N,P)) ∼=

Hom(Q⊗ (M⊗ N),P)
∼= Hom((Q⊗M)⊗ N,P)
∼= Hom(Q⊗M,Hom(N,P))
∼= Hom(Q,Hom(M,Hom(N,P)))

naturally in M,N,P,Q. The fully-faithfullness of the Yoneda
embedding then implies the first isomorphism.
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Local forms

We observe that, since

Hom(OX,Hom(M,N)) ∼= Hom(OX ⊗M,N) = Hom(M,N),

the original adjunctions can be recovered from their local forms.

What about f! ⊣ f!? One could certainly imagine that there exists an
isomorphism

f∗Hom(M, f!N) ∼−→ Hom(f!M,N)

recovering the global adjunction.
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Local forms

Proposition
Let f : X→ S be a morphism. The existence of one of the morphisms

γ : f∗Hom(−, f!−) → Hom(f!−,−), δ : Hom(f∗−, f!−) → f!Hom(−,−),

and π : −⊗ f!− → f!(f∗−⊗−)

implies the existence of the other two. Moreover, if one of them is a
natural isomorphism, then so are the other two.

We say that we’re in the Verdier-Grothendieck context if there exists
one (hence all) of the morphisms above, and it’s an isomorphism.
We’ll suppose this from now on.
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Purity

We usually know very well how to deal with the functors f∗, f∗ and f!.
But f! is often mysterious.

Proposition - Relative purity
Let f : X→ S be a morphism and M ∈ D(S) be a dualizable object.
Then the map

ϕ : f∗M⊗ f!N→ f!(M⊗ N)

is an isomorphism for all N ∈ D(S). In particular, f!M ∼= f∗M⊗ f!OS.

The calculation of f!OS is said to be a result of absolute purity.
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Dualizing complexes

Suppose that C has a terminal object S.

Definition
Let p : X→ S be the natural morphism. We define the duality
functor DX : D(X) → D(X)op as Hom(−,p!OS).

If f : X→ Y is a morphism of spaces over S, the morphisms γ and δ

specialize to

f∗DX ∼= DYf! and DXf∗ ∼= f!DY.

If the natural map id → DXDX is an isomorphism, then

f! ∼= DYf∗DX and f! ∼= DXf∗DY,

simplifying their study.
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Dualizing complexes

The morphism id → DXDX isn’t usually an isomorphism without some
finiteness condition.

What often happens is that there exists canonical full subcategories
Dc(X) of D(X), for every X ∈ C, making id → DXDX an isomorphism.

If, moreover, a morphism f : X→ Y is such that f∗Dc(X) ⊂ Dc(Y) and
f∗Dc(Y) ⊂ Dc(X), then the strategy above works for expressing f! and f!
in terms of f∗ and f∗.
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How this encodes cohomology



Motivation

For now, suppose that C is the category of ringed spaces, that D(X) is
the derived category of OX-Mod, with the usual functors.

Since HomOX
(OX,−) = id, we have that Γ(X,−) = HomOX(OX,−) and

so
Hi(X,−) = ExtiOX(OX,−) = HomD(X)(OX,−[i]).

If p : X→ S is the unique map from X to a point (with Z as structure
sheaf), we can use the adjunction to write this as

Hi(X,−) = HomD(S)(OS,p∗−[i]).

Similarly, as the module of sections with quasi-compact support
Γc(X,−) is defined as Γ(S,p!−), it follows that

Hic(X,−) = HomD(S)(OS,p!−[i]).
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Definition of cohomology

Going back to our abstract setting, we define cohomology as

Hi(X,M) = HomD(S)(OS,p∗M[i]) and Hic(X,M) = HomD(S)(OS,p!M[i]),

for M ∈ D(X).

Basically all cohomological constructions seem to work very simply
in this setting.
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Basic constructions

1. A := H0(S,OS) is a ring. Moreover, Hi(X,M) and Hic(X,M) are
A-modules.

2. A morphism f : X→ Y in C induces a morphism

Hi(Y,N) → Hi(X, f∗N)

in cohomology.
3. A proper map also induces a morphism

Hic(Y,N) → Hic(X, f∗N).

4. A distinguished triangle in D(X) gives rise to a long exact
sequence in A-Mod.
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Künneth formula

Let p : X→ S and q : Y→ S be the natural maps in C and consider
the cartesian diagram

X×S Y Y

X S.

p

q q

p

If M ∈ D(X) and N ∈ D(Y) we define their exterior tensor product as

M⊠ N := q∗M⊗ p∗N ∈ D(X×S Y).

By the projection formula and proper base change, we have

q!(M⊠ N) = q!(q
∗M⊗ p∗N) = M⊗ q!p

∗N = M⊗ p∗q!N.

Let f = qp = pq. We apply p! to the equation above and use the
projection formula once again to obtain

f!(M⊠ N) = p!(M⊗ p∗q!N) = p!M⊗ q!N.
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Künneth formula (*)

If every element of D(S) is a sum of shifts of OS (that’s the case if
S = Spec k), then

Hic(X×S Y,M⊠ N) =
⊕
p+q=i

Hpc (X,M)⊗A Hqc (Y,N).
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Cup product

The adjoint of the map

p∗(p∗M⊗ p∗N) ∼= p∗p∗M⊗ p∗p∗N→ M⊗ N,

defined using the counit of the adjunction, is a natural morphism

µ : p∗M⊗ p∗N→ p∗(M⊗ N).
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Cup product

We then define the cup product as the composition

Hi(X,M)× Hj(X,N) =HomD(S)(OS,p∗M[i])× HomD(S)(OS,p∗N[j])

HomD(S)(OS,p∗M[i])× HomD(S)(p∗M[i],p∗M⊗ p∗N[i+ j])

HomD(S)(OS,p∗M⊗ p∗N[i+ j])

Hi+j(X,M⊗ N) HomD(S)(OS,p∗(M⊗ N)[i+ j]).

⌣

⊗

◦

µ

As usual, if M = N = OX, this defines a structure of graded ring on
H•(X).
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Duality (*)

The cup product restricts to

Hi(X,M)× Hjc(X,N)
⌣−→ Hi+jc (X,M⊗ N).

If M is dualizable, this allows us to define a perfect pairing

Hi(X,M∨ ⊗ p!OS)× H−i
c (X,M) ⌣−→ H0c(X,p!OS)

ε−→ H0(S,OS) = A.

More generally, we have a perfect pairing

Exti(M,p!OS)× H−i
c (X,M) → A.
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What should work (**)

1. Mayer-Vietoris

2. Local cohomology (and local duality)
3. A cap product
4. Dualities between homology and compactly supported
cohomology (resp. cohomology and Borel-Moore homology)

5. Alexander and Lefschetz dualities
6. More?

24
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Examples



Verdier duality

Let C be the category of ”nice” topological spaces and D(X) be the
derived category of abelian sheaves over X. In this case,

f∗ := Rf∗, f∗ := f−1 and f! := Rf!.

The functor f! has a right adjoint f! given by abstract nonsense. These
functors satisfy all our axioms. (Including relative purity when f is
smooth.)

If f : X→ S is smooth of relative dimension n, f!Z ∼= Z[n].In particular,
if L is a local system and X is a manifold of dimension n,

Hd−i(X, L∨) ∼= H−i(X, L∨ ⊗ Z[d]) ∼= Hic(X, L)∨.
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Verdier duality

All the functors restrict to the full subcategory Dbc (X) of complexes
with bounded and constructible cohomology. This makes the natural
maps

id → DXDX

isomorphisms.
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Étale cohomology

Let C be the category of ”nice” schemes with ”nice” morphisms, and
let D(X) be the derived category of sheaves of A-modules, where A is
a noetherian torsion ring.

We define f∗ and f∗ as before but we use a compactification to define
f!. Write f as p ◦ i:

X X S.

f

open immersion proper

Then f! := Rp∗ ◦ i!. By abstract nonsense it has a right adjoint f!.
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Étale cohomology

If f : X→ S is smooth of relative dimension n, f!A ∼= A(n)[2n].

In
particular, if X is a smooth ”nice” scheme and L is a local system,

H2n−i(X, L∨(n)) ∼= H−i(X, L∨ ⊗ A(n)[2n]) ∼= Hic(X, L)∨.

Extending these results to `-adic cohomology and to algebraic stacks
was a difficult problem.
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Grothendieck duality

Let C be the category of ”nice” schemes with ”nice” morphisms, and
let D(X) be the full subcategory of D(OX-Mod) whose objects have
quasi-coherent cohomology.

In this context, the usual functor f! (as in Verdier duality) need not
preserve quasi-coherence. So we pose f! := Rf∗.This has a right
adjoint f! by abstract nonsense.

If f : X→ S is smooth of relative dimension n, we have that
f!OS ∼= Ωn

X/S[n]. In particular, if E is a vector bundle and X is smooth,

Hn−i(X, E∨ ⊗ Ωn
X/S)

∼= H−i(X, E∨ ⊗ Ωn
X/S[n]) ∼= Hi(X, E)∨.
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D-modules

Let C be the category of smooth schemes, and let D(X) be the full
subcategory of D(DX-Mod) whose objects have ”finite” cohomology.

We have a six-functor formalism in this context. Moreover, many
usual facts become clearer here.

• f∗ preserves ”finiteness” =⇒ HidR(X) is finite-dimensional
• D(X) ∼= Dc(Xan) =⇒ HidR(X) ∼= Hi(Xan,C)
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Others (**)

K-theoryMotivic
categories

Mixed
Hodge
modules

Duality
in étale

cohomology

Artin-
Verdier

Poitou-
Tate

Class
field
theory

?
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Questions?
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