Perverse sheaves

Gabriel Ribeiro

École Polytechnique

Summary

1. t-structures
2. Recollement
3. The perverse t-structure
4. Main properties

Why should I care?

"[...] But in my opinion, the most significant reason for the usefulness of perverse sheaves is the following secret known to experts: perverse sheaves are easy, in the sense that most arguments come down to a rather short list of tools, such as proper base change, smooth pullback, and open-closed distinguished triangles. In practice, one can reason and compute with perverse sheaves just using a list of these tools, much as calculus students might use a table of integrals. One does not have to dig into the details of flabby resolutions or sheafification any more than a calculus student needs to revisit Riemann sums to integrate a polynomial."

Pramod Achar
t-structures

Motivation

Can we recover an abelian category A from its derived category $D(A)$?

Motivation

Can we recover an abelian category A from its derived category $D(A)$? Yes! $A \cong\left\{M^{\bullet} \in D(A) \mid \mathscr{H}^{i}\left(M^{\bullet}\right)=0\right.$ for $\left.i \neq 0\right\}$.

Motivation

Can we recover an abelian category A from its derived category $D(A)$? Yes! $\mathrm{A} \cong\left\{M^{\bullet} \in \mathrm{D}(\mathrm{A}) \mid \mathscr{H}^{i}\left(M^{\bullet}\right)=0\right.$ for $\left.i \neq 0\right\}$.

Can we generalize this construction to obtain other abelian subcategories of $D(A)$?

t-structures

In everything that follows D is a triangulated category.

t-structures

In everything that follows D is a triangulated category.

Definition

Let ($D \leq 0, D \geq 0$) be a pair of full subcategories of D and set
$D \leq n:=D \leq 0[-n], D \geq n:=D \geq 0[-n]$. Then $(D \leq 0, D \geq 0)$ is said to be a
t-structure if
(a) $D \leq-1 \subset D \leq 0$ and $D \geq^{1} \subset D \geq 0$;
(b) $\operatorname{Hom}_{D}(M, N)=0$ for $M \in D \leq 0$ and $N \in D \geq$;
(c) For all $N \in D$, there exists a distinguished triangle $M \rightarrow N \rightarrow P$, where $M \in D \leq 0$ and $P \in D \geq 1$.

t-structures

In everything that follows D is a triangulated category.

Definition

Let ($D \leq 0, D \geq 0$) be a pair of full subcategories of D and set
$D \leq n:=D \leq 0[-n], D \geq n:=D \geq 0[-n]$. Then $(D \leq 0, D \geq 0)$ is said to be a
t-structure if
(a) $D \leq-1 \subset D \leq 0$ and $D \geq^{1} \subset D \geq 0$;
(b) $\operatorname{Hom}_{D}(M, N)=0$ for $M \in D \leq 0$ and $N \in D \geq 1$;
(c) For all $N \in D$, there exists a distinguished triangle $M \rightarrow N \rightarrow P$, where $M \in D \leq 0$ and $P \in D \geq 1$.

If $(D \leq 0, D \geq 0)$ is a t-structure, then so is $(D \leq n, D \geq n)$.

Canonical t-structure

If $D:=D(A)$, we have a canonical t-structure given by

$$
\begin{aligned}
\mathrm{D} \leq 0 & :=\left\{M \in \mathrm{D} \mid \mathscr{H}^{i}(M)=0 \text { for } i>0\right\} \\
\mathrm{D} \geq 0 & :=\left\{M \in \mathrm{D} \mid \mathscr{H}^{i}(M)=0 \text { for } i<0\right\} .
\end{aligned}
$$

Canonical t-structure

If $D:=D(A)$, we have a canonical t-structure given by

$$
\begin{aligned}
\mathrm{D} \leq 0 & :=\left\{M \in \mathrm{D} \mid \mathscr{H}^{i}(M)=0 \text { for } i>0\right\} \\
\mathrm{D} \geq 0 & :=\left\{M \in \mathrm{D} \mid \mathscr{H}^{i}(M)=0 \text { for } i<0\right\} .
\end{aligned}
$$

It's clear that $D \leq-1 \subset D \leq 0$ and $D^{\geq 1} \subset D^{\geq 0}$.

Canonical t-structure

If $D:=D(A)$, we have a canonical t-structure given by

$$
\begin{aligned}
D \leq 0 & :=\left\{M \in \mathrm{D} \mid \mathscr{H}^{i}(M)=0 \text { for } i>0\right\} \\
\mathrm{D} \geq 0 & :=\left\{M \in \mathrm{D} \mid \mathscr{H}^{i}(M)=0 \text { for } i<0\right\} .
\end{aligned}
$$

It's clear that $D \leq-1 \subset D^{\leq 0}$ and $D^{\geq 1} \subset D^{\geq 0}$. That $\operatorname{Hom}(M, N)=0$ for $M \in D \leq 0$ and $N \in D \geq 1$ is obvious in the category of complexes. Representing a map by a roof gives the result in the derived category.

Canonical t-structure

If $D:=D(A)$, we have a canonical t-structure given by

$$
\begin{aligned}
\mathrm{D} \leq 0 & :=\left\{M \in \mathrm{D} \mid \mathscr{H}^{i}(M)=0 \text { for } i>0\right\} \\
\mathrm{D} \geq 0 & :=\left\{M \in \mathrm{D} \mid \mathscr{H}^{i}(M)=0 \text { for } i<0\right\} .
\end{aligned}
$$

It's clear that $\mathrm{D} \leq^{\leq-1} \subset \mathrm{D} \leq 0$ and $\mathrm{D} \geq^{1} \subset \mathrm{D} \geq^{\geq 0}$. That $\operatorname{Hom}(M, N)=0$ for $M \in D \leq 0$ and $N \in D \geq 1$ is obvious in the category of complexes.
Representing a map by a roof gives the result in the derived category.
The last axiom is given by the distinguished triangle

$$
\tau^{\leq 0} N \rightarrow N \rightarrow \tau^{\geq 1} N \rightarrow \tau^{\leq 0} N[1] .
$$

Truncation functors

Theorem

Let ($D \leq 0, D \geq 0$) be a t-structure on D. Then,
(a) The inclusion $D \leq n \rightarrow D$ has a right adjoint $\tau \leq n: D \rightarrow D \leq n$;
(b) The inclusion $D \geq n \rightarrow D$ has a left adjoint $\tau^{\geq n}: D \rightarrow D \geq n$;
(c) There's a unique natural transformation $\tau^{\geq n+1} \rightarrow \tau^{\leq n}[1]$ such that, for every $N \in D$,

$$
\tau^{\leq n} N \rightarrow N \rightarrow \tau^{\geq n+1} N \rightarrow \tau^{\leq n} N[1]
$$

is a distinguished triangle.

The core

In particular, we may define cohomology functors.

Definition

Let ($D \leq 0, D \geq^{0}$) be a t-structure on D. We define the core D^{∞} as $D \leq 0 \cap D \geq 0$ and the cohomology functor $\mathscr{H}^{0}: D \rightarrow D^{\infty}$ as $\tau \leq 0 \circ \tau \geq 0$.

Of course, we also put $\mathscr{H}^{n}:=\mathscr{H}^{0}(-[n])=\tau^{\leq n} \circ \tau^{\geq n}[n]$.

The main theorem

Theorem

The core D^{∞} is an abelian category and the $\mathscr{H}^{n}: \mathrm{D} \rightarrow \mathrm{D}^{\infty}$ are cohomological functors.

One lemma

We begin the proof of our theorem with a simple lemma.

Lemma

Let $M \rightarrow N \rightarrow P \rightarrow M[1]$ be a distinguished triangle in D. If M, P are in $D \geq n$, then so is N. Similarly, if M, P are in $D \leq n$, then so is N.

One lemma

We begin the proof of our theorem with a simple lemma.

Lemma

Let $M \rightarrow N \rightarrow P \rightarrow M[1]$ be a distinguished triangle in D. If M, P are in $D \geq n$, then so is N. Similarly, if M, P are in $D \leq n$, then so is N.

In order to prove that $N \in D^{\leq n}$, it suffices to check that $\tau^{\geq n+1} N=0$.

One lemma

We begin the proof of our theorem with a simple lemma.

Lemma

Let $M \rightarrow N \rightarrow P \rightarrow M[1]$ be a distinguished triangle in D. If M, P are in $D \geq n$, then so is N. Similarly, if M, P are in $D \leq n$, then so is N.

In order to prove that $N \in D \leq n$, it suffices to check that $\tau^{\geq n+1} N=0$. By adjunction,

$$
\operatorname{Hom}_{D}\left(\tau^{\geq n+1} N, \tau^{\geq n+1} N\right) \cong \operatorname{Hom}_{D}\left(N, \tau^{\geq n+1} N\right) .
$$

One lemma

We begin the proof of our theorem with a simple lemma.

Lemma

Let $M \rightarrow N \rightarrow P \rightarrow M[1]$ be a distinguished triangle in D. If M, P are in $D \geq n$, then so is N. Similarly, if M, P are in $D \leq n$, then so is N.

In order to prove that $N \in D \leq n$, it suffices to check that $\tau^{\geq n+1} N=0$. By adjunction,

$$
\operatorname{Hom}_{D}\left(\tau^{\geq n+1} N, \tau^{\geq n+1} N\right) \cong \operatorname{Hom}_{D}\left(N, \tau^{\geq n+1} N\right)
$$

Finally, since $\operatorname{Hom}_{D}\left(-, \tau^{\geq n+1} N\right)$ is a cohomological functor,

$$
\underbrace{\operatorname{Hom}_{D}\left(P, \tau^{\geq n+1} N\right)}_{=0} \rightarrow \operatorname{Hom}_{D}\left(N, \tau^{\geq n+1} N\right) \rightarrow \underbrace{\operatorname{Hom} m_{D}\left(M, \tau^{\geq n+1} N\right)}_{=0}
$$

is an exact sequence, finishing the proof.

Consequences of the lemma

This lemma implies two important facts:
(a) If M, N are in D^{∞}, then so is $M \oplus N$. (D^{∞} is an additive category.)

Consequences of the lemma

This lemma implies two important facts:
(a) If M, N are in D^{∞}, then so is $M \oplus N$. (D^{∞} is an additive category.) (b) If $\varphi: M \rightarrow N$ is a map in D^{∞}, then its cone C is in $D^{\leq 0} \cap D^{\geq-1}$.

Consequences of the lemma

This lemma implies two important facts:
(a) If M, N are in D^{∞}, then so is $M \oplus N$. (D^{∞} is an additive category.) (b) If $\varphi: M \rightarrow N$ is a map in D^{∞}, then its cone C is in $D^{\leq 0} \cap D^{\geq-1}$.

If $D=D(A)$, the cone above is simply the complex $C=[M \xrightarrow{\varphi} N]$ in degrees -1 and 0 . In particular $\mathscr{H}^{-1}(C)=\operatorname{ker} \varphi$ and $\mathscr{H}^{0}(C)=\operatorname{coker} \varphi$.

Consequences of the lemma

This lemma implies two important facts:
(a) If M, N are in D^{∞}, then so is $M \oplus N$. (D^{∞} is an additive category.) (b) If $\varphi: M \rightarrow N$ is a map in D^{∞}, then its cone C is in $D^{\leq 0} \cap D^{\geq-1}$.

If $D=D(A)$, the cone above is simply the complex $C=[M \xrightarrow{\varphi} N]$ in degrees -1 and 0 . In particular $\mathscr{H}^{-1}(C)=\operatorname{ker} \varphi$ and $\mathscr{H}^{0}(C)=\operatorname{coker} \varphi$.
In general, we can use the axioms of a t-structure to show that $\mathscr{H}^{-1}(C)\left(\right.$ resp. $\left.\mathscr{H}^{0}(C)\right)$ satisfies the universal property of the kernel (resp. cokernel) of φ.

End of the (sketch of) proof

This precise same argument also yields that the canonical map $\operatorname{coim} \varphi \rightarrow \operatorname{im} \varphi$ is an isomorphism.

End of the (sketch of) proof

This precise same argument also yields that the canonical map $\operatorname{coim} \varphi \rightarrow \operatorname{im} \varphi$ is an isomorphism. (Here we need the octahedral axiom!) This finishes the proof that D^{∞} is an abelian category.

End of the (sketch of) proof

This precise same argument also yields that the canonical map $\operatorname{coim} \varphi \rightarrow \operatorname{im} \varphi$ is an isomorphism. (Here we need the octahedral axiom!) This finishes the proof that D^{∞} is an abelian category.

The proof that the $\mathscr{H}^{n}: \mathrm{D} \rightarrow \mathrm{D}^{\ominus}$ are cohomological functors is similar. (And also uses the octahedral axiom!)

Recollement

t-exact functors

Let $F: D_{1} \rightarrow D_{2}$ be a triangulated functor and endow those categories with t-structures ($\mathrm{D}_{i}^{\leq 0}, \mathrm{D}_{i}^{\geq 0}$).

t-exact functors

Let $F: D_{1} \rightarrow D_{2}$ be a triangulated functor and endow those categories with t-structures ($\mathrm{D}_{i}^{\leq 0}, \mathrm{D}_{i}^{\geq 0}$).

Definition

We say that F is left t-exact if $F\left(D_{1}^{\geq 0}\right) \subset D_{2}^{\geq 0}$. It's right t-exact if $F\left(D_{1}^{\leq 0}\right) \subset D_{2}^{\leq 0}$. And it's t-exact if it's both left and right t-exact.

t-exact functors

Let $F: D_{1} \rightarrow D_{2}$ be a triangulated functor and endow those categories with t-structures ($\mathrm{D}_{i}^{\leq 0}, \mathrm{D}_{i}^{\geq 0}$).

Definition

We say that F is left t-exact if $F\left(D_{1}^{\geq 0}\right) \subset D_{2}^{\geq 0}$. It's right t-exact if $F\left(D_{1}^{\leq 0}\right) \subset D_{2}^{\leq 0}$. And it's t-exact if it's both left and right t-exact.

If $F: A \rightarrow B$ is a left exact functor between abelian categories, then $R F: D(A) \rightarrow D(B)$ is left t-exact.

t-exact functors [BBD, Prop. 1.3.17]

Conversely, let F be a triangulated functor as above and put

t-exact functors [BBD, Prop. 1.3.17]

Conversely, let F be a triangulated functor as above and put

If F is left t-exact, then ${ }^{p} F$ is left exact. The same holds for right t-exact and t-exact.

t-exact functors [BBD, Prop. 1.3.17]

Conversely, let F be a triangulated functor as above and put

If F is left t-exact, then ${ }^{p} F$ is left exact. The same holds for right t-exact and t-exact. Similarly, if $F \dashv G$ is a pair of adjoint functors, then F is right t-exact if and only if G is left t-exact. In this case, we have ${ }^{p} F \dashv{ }^{p} G$.

Recollement

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

$$
D(Z) \xrightarrow{i_{*}} D(X) \xrightarrow{j^{*}} D(U) .
$$

Moreover, set $i_{!}=i_{*}$ and $j^{!}=j^{*}$.

Recollement

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

$$
\mathrm{D}(Z) \xrightarrow{i_{*}} \mathrm{D}(X) \xrightarrow{j^{*}} \mathrm{D}(U) .
$$

Moreover, set $i_{!}=i_{*}$ and $j^{!}=j^{*}$. This data is called a recollement if
(a) i_{*} has a left adjoint i^{*} and a right adjoint i^{\prime};

Recollement

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

$$
\mathrm{D}(Z) \xrightarrow{i_{*}} \mathrm{D}(X) \xrightarrow{j^{*}} \mathrm{D}(U) .
$$

Moreover, set $i_{!}=i_{*}$ and $j^{!}=j^{*}$. This data is called a recollement if
(a) i_{*} has a left adjoint i^{*} and a right adjoint i^{\prime};
(b) j^{*} has a left adjoint $j_{!}$and a right adjoint j_{*};

Recollement

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

$$
\mathrm{D}(Z) \xrightarrow{i_{*}} \mathrm{D}(X) \xrightarrow{j^{*}} \mathrm{D}(U) .
$$

Moreover, set $i_{!}=i_{*}$ and $j^{!}=j^{*}$. This data is called a recollement if
(a) i_{*} has a left adjoint i^{*} and a right adjoint i^{\prime};
(b) j^{*} has a left adjoint $j_{!}$and a right adjoint j_{*};
(c) $j^{*} i_{*}=0$;

Recollement

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

$$
\mathrm{D}(Z) \xrightarrow{i_{*}} \mathrm{D}(X) \xrightarrow{j^{*}} \mathrm{D}(U) .
$$

Moreover, set $i_{!}=i_{*}$ and $j^{!}=j^{*}$. This data is called a recollement if
(a) i_{*} has a left adjoint i^{*} and a right adjoint i^{\prime};
(b) j^{*} has a left adjoint $j_{!}$and a right adjoint j_{*};
(c) $j^{*} i_{*}=0$;
(d) For all $M \in D(X)$, there are morphisms $i_{*} i^{*} M \rightarrow j_{i!} j^{\prime} M[1]$ and $j_{*} \|^{*} M \rightarrow i_{i!}!M[1]$ making the triangles

$$
\begin{aligned}
& j_{!} j^{!} M \rightarrow M \rightarrow i_{*} i^{*} M \rightarrow j_{i}!^{\prime} M[1] \\
& i_{1} I^{\prime} M \rightarrow M \rightarrow j_{*} I^{*} M \rightarrow i_{i}!I^{\prime} M[1]
\end{aligned}
$$

distinguished.

Recollement

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

$$
\mathrm{D}(Z) \xrightarrow{i_{*}} \mathrm{D}(X) \xrightarrow{j^{*}} \mathrm{D}(U) .
$$

Moreover, set $i_{!}=i_{*}$ and $j^{!}=j^{*}$. This data is called a recollement if
(a) i_{*} has a left adjoint i^{*} and a right adjoint i^{\prime};
(b) j^{*} has a left adjoint $j_{!}$and a right adjoint j_{*};
(c) $j^{*} i_{*}=0$;
(d) For all $M \in D(X)$, there are morphisms $i_{*} i^{*} M \rightarrow j_{i!} j^{\prime} M[1]$ and $\left.j_{*}\right)^{*} M \rightarrow i_{!}!M[1]$ making the triangles

$$
\begin{aligned}
& j_{!} j^{!} M \rightarrow M \rightarrow i_{*} i^{*} M \rightarrow j_{i}!^{\prime} M[1] \\
& i_{1} I^{!} M \rightarrow M \rightarrow j_{*} I^{*} M \rightarrow i_{i}!I^{\prime} M[1]
\end{aligned}
$$

distinguished.
(e) The functors $j_{!}, j_{*}, i_{!}=i_{*}$ are fully faithful.

Recollement

Quite a lot follows formally from the axioms of recollements! I'll give here some examples.

Recollement

Quite a lot follows formally from the axioms of recollements! I'll give here some examples.
(a) There's a natural map $j_{!} \rightarrow j_{*}$ and we can define $j_{!* *}$ to be $\operatorname{Im}\left({ }^{p} j_{!} \rightarrow{ }^{p} j_{*}\right)$.

Recollement

Quite a lot follows formally from the axioms of recollements! I'll give here some examples.
(a) There's a natural map $j_{!} \rightarrow j_{*}$ and we can define $j_{!*}$ to be $\operatorname{Im}\left({ }^{p} j_{!} \rightarrow{ }^{p} j_{*}\right)$.
(b) We can classify the simple objects of $D(X)^{\rho}$.

Recollement

Quite a lot follows formally from the axioms of recollements! I'll give here some examples.
(a) There's a natural map $j_{!} \rightarrow j_{*}$ and we can define $j_{!* *}$ to be $\operatorname{Im}\left({ }^{P} j_{!} \rightarrow{ }^{p} j_{*}\right)$.
(b) We can classify the simple objects of $D(X)^{D}$.
(c) The functor ${ }^{p} i_{*}$ induces an equivalence between $D(Z)^{\rho}$ and the full subcategory of $D(X)^{\rho}$ whose objects M satisfy ${ }^{p} j^{*} M=0$.

Main theorem on recollements

Suppose that $D(U)$ and $D(Z)$ have t-structures. Then we define

$$
\begin{aligned}
& D^{\leq 0}(X):=\left\{M \in D(X) \mid j^{*} M \in D^{\leq 0}(U) \text { and } i^{*} M \in D^{\leq 0}(Z)\right\} \\
& D^{\geq 0}(X):=\left\{M \in D(X) \mid j^{!} M \in D^{\geq 0}(U) \text { and } i^{\prime} M \in D^{\geq 0}(Z)\right\} .
\end{aligned}
$$

Main theorem on recollements

Suppose that $D(U)$ and $D(Z)$ have t-structures. Then we define

$$
\begin{aligned}
& D^{\leq 0}(X):=\left\{M \in D(X) \mid j^{*} M \in D^{\leq 0}(U) \text { and } i^{*} M \in D^{\leq 0}(Z)\right\} \\
& D^{\geq 0}(X):=\left\{M \in D(X) \mid j^{\prime} M \in D^{\geq 0}(U) \text { and } i^{\prime} M \in D^{\geq 0}(Z)\right\} .
\end{aligned}
$$

Theorem

This is a t-structure on $D(X)$.

Main theorem on recollements

Suppose that $D(U)$ and $D(Z)$ have t-structures. Then we define

$$
\begin{aligned}
& D^{\leq 0}(X):=\left\{M \in D(X) \mid j^{*} M \in D^{\leq 0}(U) \text { and } i^{*} M \in D^{\leq 0}(Z)\right\} \\
& D^{\geq 0}(X):=\left\{M \in D(X) \mid j^{!} M \in D^{\geq 0}(U) \text { and } i^{\prime} M \in D^{\geq 0}(Z)\right\} .
\end{aligned}
$$

Theorem

This is a t-structure on $D(X)$.
If X is a topological space with an open immersion $j: U \rightarrow X$, with complement $i: Z \rightarrow X$, and all of the above has the familiar meanings (along with the canonical t-structures), this procedure gives back the canonical t-structure on $D(X)$.

Main theorem on recollements

Suppose that $D(U)$ and $D(Z)$ have t-structures. Then we define

$$
\begin{aligned}
& D^{\leq 0}(X):=\left\{M \in D(X) \mid j^{*} M \in D^{\leq 0}(U) \text { and } i^{*} M \in D^{\leq 0}(Z)\right\} \\
& D^{\geq 0}(X):=\left\{M \in D(X) \mid j^{!} M \in D^{\geq 0}(U) \text { and } i^{\prime} M \in D^{\geq 0}(Z)\right\} .
\end{aligned}
$$

Theorem

This is a t-structure on $D(X)$.
If X is a topological space with an open immersion $j: U \rightarrow X$, with complement $i: Z \rightarrow X$, and all of the above has the familiar meanings (along with the canonical t-structures), this procedure gives back the canonical t-structure on $D(X)$. But we'll make perverse choices... :3

The perverse t-structure

Motivation

Let X be a d-dimensional complex algebraic variety, along with its derived category of constructible sheaves $D_{c}^{b}(X)$.

Motivation

Let X be a d-dimensional complex algebraic variety, along with its derived category of constructible sheaves $D_{c}^{b}(X)$. The best motivation for the definition of a perverse sheaf that I know is the fact that the Verdier dual of a local system is almost a local system:
$D_{x}(L) \cong L^{\vee}[2 d]$.

Motivation

Let X be a d-dimensional complex algebraic variety, along with its derived category of constructible sheaves $D_{c}^{b}(X)$. The best motivation for the definition of a perverse sheaf that I know is the fact that the Verdier dual of a local system is almost a local system:
$D_{x}(L) \cong L^{\vee}[2 d]$.

$$
\text { In particular, } D_{x}(L[d]) \cong L^{\vee}[d] \text {. }
$$

Motivation

Let X be a d-dimensional complex algebraic variety, along with its derived category of constructible sheaves $D_{c}^{b}(X)$. The best motivation for the definition of a perverse sheaf that I know is the fact that the Verdier dual of a local system is almost a local system:
$D_{x}(L) \cong L^{\vee}[2 d]$.

$$
\text { In particular, } D_{x}(L[d]) \cong L^{\vee}[d] \text {. }
$$

If $D_{\text {loc }}^{b}(X)$ is the "derived category of local systems", we want to endow it with the following t-structure ($\mathrm{D}_{\text {loc }}^{b}(X)^{\leq-d}, \mathrm{D}_{\text {loc }}^{b}(X)^{\geq-d}$).

Motivation

Let X be a d-dimensional complex algebraic variety, along with its derived category of constructible sheaves $D_{c}^{b}(X)$. The best motivation for the definition of a perverse sheaf that I know is the fact that the Verdier dual of a local system is almost a local system:
$D_{X}(L) \cong L^{\vee}[2 d]$.

$$
\text { In particular, } D_{x}(L[d]) \cong L^{\vee}[d] \text {. }
$$

If $D_{\text {loc }}^{b}(X)$ is the "derived category of local systems", we want to endow it with the following t-structure ($\left.\mathrm{D}_{\text {loc }}^{b}(X)^{\leq-d}, \mathrm{D}_{\text {loc }}^{b}(X)^{\geq-d}\right)$.
As we saw, this is indeed a t-structure.

The perverse t-structure

A very clever observation is that some complex M^{\bullet} in $D_{\text {loc }}^{b}(X)$ lies in $D_{\text {loc }}^{b}(X)^{\leq-d}$ precisely when

$$
\operatorname{dim} \operatorname{supp} \mathscr{H}^{i}\left(M^{\bullet}\right) \leq-i \text { for all } i \in \mathbb{Z}
$$

The perverse t-structure

A very clever observation is that some complex M^{\bullet} in $D_{\text {loc }}^{b}(X)$ lies in $D_{\text {loc }}^{b}(X)^{\leq-d}$ precisely when

$$
\operatorname{dim} \operatorname{supp} \mathscr{H}^{i}\left(M^{\bullet}\right) \leq-i \text { for all } i \in \mathbb{Z}
$$

In particular, we may define

$$
\begin{aligned}
& { }^{p} D_{c}^{b}(X)^{\leq 0}:=\left\{M^{\bullet} \in D_{c}^{b}(X) \mid \operatorname{dim} \text { supp } \mathscr{H}^{i}\left(M^{\bullet}\right) \leq-i \text { for all } i \in \mathbb{Z}\right\} \\
& { }^{p} D_{c}^{b}(X)^{\geq 0}:=\left\{M^{\bullet} \in D_{c}^{b}(X) \mid \operatorname{dim} \operatorname{supp} \mathscr{H}^{i}\left(D_{x}\left(M^{\bullet}\right)\right) \leq-i \text { for all } i \in \mathbb{Z}\right\},
\end{aligned}
$$

and then this induces the desired t-structure on $D_{\text {loc }}^{b}(X)$. This is the perverse t-structure on $D_{c}^{b}(X)$.

Why is this a t-structure?

The only problem is that this is no longer obviously a t-structure...

Why is this a t-structure?

The only problem is that this is no longer obviously a t-structure... A first observation is that we have a filtered colimit $D_{c}^{b}(X)=2-$ colims $D_{c, S}^{b}(X)$, where $D_{c, S}^{b}(X)$ is the derived category of constructible sheaves for a fixed stratification S.

Why is this a t-structure?

The only problem is that this is no longer obviously a t-structure... A first observation is that we have a filtered colimit $D_{c}^{b}(X)=2$-colims $D_{c, S}^{b}(X)$, where $D_{c, S}^{b}(X)$ is the derived category of constructible sheaves for a fixed stratification S . (Indeed, we may refine stractifications!)

Why is this a t-structure?

The only problem is that this is no longer obviously a t-structure...
A first observation is that we have a filtered colimit $D_{c}^{b}(X)=2-\operatorname{colim}_{S} D_{c, S}^{b}(X)$, where $D_{c, S}^{b}(X)$ is the derived category of constructible sheaves for a fixed stratification S . (Indeed, we may refine stractifications!)

Now, we can split X as $\cup \amalg Z$, where the restriction of every complex in $D_{c, S}^{b}(X)$ to U lies in $D_{\text {loc }}^{b}(U)$.

Why is this a t-structure?

The only problem is that this is no longer obviously a t-structure...
A first observation is that we have a filtered colimit $D_{c}^{b}(X)=2$-colims $D_{c, S}^{b}(X)$, where $D_{c, S}^{b}(X)$ is the derived category of constructible sheaves for a fixed stratification S . (Indeed, we may refine stractifications!)

Now, we can split X as $U \amalg Z$, where the restriction of every complex in $D_{c, S}^{b}(X)$ to U lies in $D_{\text {loc }}^{b}(U)$. (Modulo some small technicalities that I'm hiding) this gives the desired t-structure on $D_{c, S}^{b}(X)$ (and then on $\left.D_{c}^{b}(X)\right)$ by recollement.

Main properties

Perverse sheaves

We stay with the same notations as in the previous sections.

Definition

The category $\operatorname{Perv}(X)$ of perverse sheaves on X is the heart of $D_{c}^{b}(X)$ for the perverse t-structure.

Perverse sheaves

We stay with the same notations as in the previous sections.

Definition

The category $\operatorname{Perv}(X)$ of perverse sheaves on X is the heart of $D_{c}^{b}(X)$ for the perverse t -structure.

We already know that everything that follows formally from recollements is true for perverse sheaves.

Perverse sheaves

We stay with the same notations as in the previous sections.

Definition

The category $\operatorname{Perv}(X)$ of perverse sheaves on X is the heart of $D_{c}^{b}(X)$ for the perverse t -structure.

We already know that everything that follows formally from recollements is true for perverse sheaves. We also know that if L is a local system, then $L[d]$ is a perverse sheaf.

Perverse sheaves

We stay with the same notations as in the previous sections.

Definition

The category $\operatorname{Perv}(X)$ of perverse sheaves on X is the heart of $D_{c}^{b}(X)$ for the perverse t -structure.

We already know that everything that follows formally from recollements is true for perverse sheaves. We also know that if L is a local system, then $L[d]$ is a perverse sheaf. And we know that D_{X} is t-exact.

Perverse sheaves

We stay with the same notations as in the previous sections.

Definition

The category $\operatorname{Perv}(X)$ of perverse sheaves on X is the heart of $D_{c}^{b}(X)$ for the perverse t -structure.

We already know that everything that follows formally from recollements is true for perverse sheaves. We also know that if L is a local system, then $L[d]$ is a perverse sheaf. And we know that D_{x} is t-exact. Let's see what else can we do!

Important properties

(a) The category $\operatorname{Perv}(X)$ is both noetherian and artinian. I.e., every perverse sheaf has finite length.

Important properties

(a) The category $\operatorname{Perv}(X)$ is both noetherian and artinian. I.e., every perverse sheaf has finite length.
(b) The functor $U \mapsto \operatorname{Perv}(U)$, for $U \subset X$, is a stack.

Important properties

(a) The category $\operatorname{Perv}(X)$ is both noetherian and artinian. I.e., every perverse sheaf has finite length.
(b) The functor $U \mapsto \operatorname{Perv}(U)$, for $U \subset X$, is a stack.
(c) (Artin vanishing) Let $f: X \rightarrow S$ be an affine morphism. Then Rf_{*} is right t-exact and $R f$! is left t-exact.

Important properties

(a) The category $\operatorname{Perv}(X)$ is both noetherian and artinian. I.e., every perverse sheaf has finite length.
(b) The functor $U \mapsto \operatorname{Perv}(U)$, for $U \subset X$, is a stack.
(c) (Artin vanishing) Let $f: X \rightarrow S$ be an affine morphism. Then Rf_{*} is right t-exact and $R f$! is left t-exact.
(d) Let $f: X \rightarrow S$ be a quasi-finite morphism. Then $R f_{*}$ is left t-exact and $R f_{!}$is right t-exact.

Important properties

(a) The category $\operatorname{Perv}(X)$ is both noetherian and artinian. I.e., every perverse sheaf has finite length.
(b) The functor $U \mapsto \operatorname{Perv}(U)$, for $U \subset X$, is a stack.
(c) (Artin vanishing) Let $f: X \rightarrow S$ be an affine morphism. Then Rf_{*} is right t-exact and $R f$! is left t-exact.
(d) Let $f: X \rightarrow S$ be a quasi-finite morphism. Then $R f_{*}$ is left t-exact and $R f_{!}$is right t-exact.
(e) Let $f: X \rightarrow S$ be a smooth morphism. Then $f^{*}[d] \cong f^{!}[-d]$, for $d=\operatorname{dim} X-\operatorname{dim} S$, is t-exact.

Important properties

(a) The category $\operatorname{Perv}(X)$ is both noetherian and artinian. I.e., every perverse sheaf has finite length.
(b) The functor $U \mapsto \operatorname{Perv}(U)$, for $U \subset X$, is a stack.
(c) (Artin vanishing) Let $f: X \rightarrow S$ be an affine morphism. Then Rf_{*} is right t-exact and $R f$! is left t-exact.
(d) Let $f: X \rightarrow S$ be a quasi-finite morphism. Then $R f_{*}$ is left t-exact and $R f_{!}$is right t-exact.
(e) Let $f: X \rightarrow S$ be a smooth morphism. Then $f^{*}[d] \cong f^{!}[-d]$, for $d=\operatorname{dim} X-\operatorname{dim} S$, is t-exact.
(f) The exterior tensor product \boxtimes is t-exact.

An example of application

Theorem (Weak Lefschetz)

Let X be a complex projective variety and $i: D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in \operatorname{Perv}(X)$, the restriction map $H^{i}(X, M) \rightarrow H^{i}\left(D, i^{*} M\right)$ is an isomorphism for $i<-1$ and injective for $i=-1$.

An example of application

Theorem (Weak Lefschetz)

Let X be a complex projective variety and $i: D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in \operatorname{Perv}(X)$, the restriction map $H^{i}(X, M) \rightarrow H^{i}\left(D, i^{*} M\right)$ is an isomorphism for $i<-1$ and injective for $i=-1$.

Let $j: U=X \backslash D \hookrightarrow X$ be the complementary open immersion. Recall the distinguished triangle

$$
j_{j!} j^{!} M \rightarrow M \rightarrow i_{*} i^{*} M \rightarrow j_{j}!\cdot M[1] .
$$

An example of application

Theorem (Weak Lefschetz)

Let X be a complex projective variety and $i: D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in \operatorname{Perv}(X)$, the restriction map $H^{i}(X, M) \rightarrow H^{i}\left(D, i^{*} M\right)$ is an isomorphism for $i<-1$ and injective for $i=-1$.

Let $j: U=X \backslash D \hookrightarrow X$ be the complementary open immersion. Recall the distinguished triangle

$$
j_{!} j^{!} M \rightarrow M \rightarrow i_{*} i^{*} M \rightarrow j_{j} j^{!} M[1] .
$$

As we saw, j ! is t-exact and $\mathrm{R}_{C} \Gamma(U,-)$ is left t -exact (since U is affine).

An example of application

Theorem (Weak Lefschetz)

Let X be a complex projective variety and $i: D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in \operatorname{Perv}(X)$, the restriction map $H^{i}(X, M) \rightarrow H^{i}\left(D, i^{*} M\right)$ is an isomorphism for $i<-1$ and injective for $i=-1$.

Let $j: U=X \backslash D \hookrightarrow X$ be the complementary open immersion. Recall the distinguished triangle

$$
j_{!} j^{!} M \rightarrow M \rightarrow i_{*} i^{*} M \rightarrow j_{j} j^{!} M[1] .
$$

As we saw, j ! is t-exact and $R_{C} \Gamma(U,-)$ is left t-exact (since U is affine). I.e., $\mathrm{H}_{c}^{i}\left(U, j^{j} M\right)=0$ for $i<0$.

An example of application

Theorem (Weak Lefschetz)

Let X be a complex projective variety and $i: D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in \operatorname{Perv}(X)$, the restriction map $H^{i}(X, M) \rightarrow H^{i}\left(D, i^{*} M\right)$ is an isomorphism for $i<-1$ and injective for $i=-1$.

Let $j: U=X \backslash D \hookrightarrow X$ be the complementary open immersion. Recall the distinguished triangle

$$
j_{j!} j^{!} M \rightarrow M \rightarrow i_{*} i^{*} M \rightarrow j_{j}!\cdot M[1] .
$$

As we saw, j ! is t-exact and $R_{C} \Gamma(U,-)$ is left t-exact (since U is affine). I.e., $H_{c}^{i}\left(U, j^{!} M\right)=0$ for $i<0$. The long exact sequence in cohomology then yields the result.

The decomposition theorem (+ le théorème de Lefschetz vache)

Unfortunately, I don't have the time nor knowledge to give a proper introduction to the decomposition theorem. But the viewer should at least read something about it! (The whole chapter 6 of BBD is breathtaking!)

Questions?

