Perverse sheaves

Gabriel Ribeiro

École Polytechnique

- 1. t-structures
- 2. Recollement
- 3. The perverse t-structure
- 4. Main properties

"[...] But in my opinion, the most significant reason for the usefulness of perverse sheaves is the following secret known to experts: perverse sheaves are easy, in the sense that most arguments come down to a rather short list of tools, such as proper base change, smooth pullback, and open-closed distinguished triangles. In practice, one can reason and compute with perverse sheaves just using a list of these tools, much as calculus students might use a table of integrals. One does not have to dig into the details of flabby resolutions or sheafification any more than a calculus student needs to revisit Riemann sums to integrate a polynomial."

Pramod Achar

t-structures

Can we recover an abelian category A from its derived category D(A)?

Can we recover an abelian category A from its derived category D(A)? Yes! A \cong { $M^{\bullet} \in D(A) \mid \mathscr{H}^{i}(M^{\bullet}) = 0$ for $i \neq 0$ }. Can we recover an abelian category A from its derived category D(A)?

Yes!
$$A \cong \{M^{\bullet} \in D(A) \mid \mathscr{H}^{i}(M^{\bullet}) = 0 \text{ for } i \neq 0\}.$$

Can we generalize this construction to obtain other abelian subcategories of D(A)?

In everything that follows D is a triangulated category.

In everything that follows D is a triangulated category.

Definition

Let $(D^{\leq 0}, D^{\geq 0})$ be a pair of full subcategories of D and set $D^{\leq n} := D^{\leq 0}[-n]$, $D^{\geq n} := D^{\geq 0}[-n]$. Then $(D^{\leq 0}, D^{\geq 0})$ is said to be a **t-structure** if

- (a) $D^{\leq -1} \subset D^{\leq 0}$ and $D^{\geq 1} \subset D^{\geq 0}$;
- (b) $\operatorname{Hom}_{D}(M, N) = 0$ for $M \in D^{\leq 0}$ and $N \in D^{\geq 1}$;
- (c) For all $N \in D$, there exists a distinguished triangle $M \to N \to P$, where $M \in D^{\leq 0}$ and $P \in D^{\geq 1}$.

In everything that follows D is a triangulated category.

Definition

Let $(D^{\leq 0}, D^{\geq 0})$ be a pair of full subcategories of D and set $D^{\leq n} := D^{\leq 0}[-n]$, $D^{\geq n} := D^{\geq 0}[-n]$. Then $(D^{\leq 0}, D^{\geq 0})$ is said to be a **t-structure** if

(a)
$$D^{\leq -1} \subset D^{\leq 0}$$
 and $D^{\geq 1} \subset D^{\geq 0}$;

- (b) $\operatorname{Hom}_{D}(M, N) = 0$ for $M \in D^{\leq 0}$ and $N \in D^{\geq 1}$;
- (c) For all $N \in D$, there exists a distinguished triangle $M \to N \to P$, where $M \in D^{\leq 0}$ and $P \in D^{\geq 1}$.

```
If (D^{\leq 0}, D^{\geq 0}) is a t-structure, then so is (D^{\leq n}, D^{\geq n}).
```

D^{≤0} := {M ∈ D |
$$\mathscr{H}^{i}(M) = 0$$
 for $i > 0$ }
D^{≥0} := {M ∈ D | $\mathscr{H}^{i}(M) = 0$ for $i < 0$ }.

D^{≤0} := {M ∈ D |
$$\mathscr{H}^{i}(M) = 0$$
 for $i > 0$ }
D^{≥0} := {M ∈ D | $\mathscr{H}^{i}(M) = 0$ for $i < 0$ }.

It's clear that $D^{\leq -1} \subset D^{\leq 0}$ and $D^{\geq 1} \subset D^{\geq 0}.$

D^{≤0} := {M ∈ D |
$$\mathscr{H}^{i}(M) = 0$$
 for $i > 0$ }
D^{≥0} := {M ∈ D | $\mathscr{H}^{i}(M) = 0$ for $i < 0$ }.

It's clear that $D^{\leq -1} \subset D^{\leq 0}$ and $D^{\geq 1} \subset D^{\geq 0}$. That Hom(M, N) = 0 for $M \in D^{\leq 0}$ and $N \in D^{\geq 1}$ is obvious in the category of complexes. Representing a map by a roof gives the result in the derived category.

$$D^{\leq 0} := \{ M \in D \mid \mathscr{H}^i(M) = 0 \text{ for } i > 0 \}$$
$$D^{\geq 0} := \{ M \in D \mid \mathscr{H}^i(M) = 0 \text{ for } i < 0 \}.$$

It's clear that $D^{\leq -1} \subset D^{\leq 0}$ and $D^{\geq 1} \subset D^{\geq 0}$. That Hom(M, N) = 0 for $M \in D^{\leq 0}$ and $N \in D^{\geq 1}$ is obvious in the category of complexes. Representing a map by a roof gives the result in the derived category. The last axiom is given by the distinguished triangle

$$\tau^{\leq 0} N \to N \to \tau^{\geq 1} N \to \tau^{\leq 0} N[1].$$

Theorem

Let $(D^{\leq 0}, D^{\geq 0})$ be a t-structure on D. Then,

- (a) The inclusion $D^{\leq n} \rightarrow D$ has a right adjoint $\tau^{\leq n} : D \rightarrow D^{\leq n}$;
- (b) The inclusion $D^{\geq n} \rightarrow D$ has a left adjoint $\tau^{\geq n} : D \rightarrow D^{\geq n}$;
- (c) There's a unique natural transformation $\tau^{\geq n+1} \rightarrow \tau^{\leq n}$ [1] such that, for every $N \in D$,

$$\tau^{\leq n} N \to N \to \tau^{\geq n+1} N \to \tau^{\leq n} N[1]$$

is a distinguished triangle.

In particular, we may define cohomology functors.

Definition

Let $(D^{\leq 0}, D^{\geq 0})$ be a t-structure on D. We define the core D^{\heartsuit} as $D^{\leq 0} \cap D^{\geq 0}$ and the cohomology functor $\mathscr{H}^0 : D \to D^{\heartsuit}$ as $\tau^{\leq 0} \circ \tau^{\geq 0}$.

Of course, we also put $\mathscr{H}^n := \mathscr{H}^0(-[n]) = \tau^{\leq n} \circ \tau^{\geq n}[n]$.

Theorem

The core D^\heartsuit is an abelian category and the $\mathscr{H}^n: D\to D^\heartsuit$ are cohomological functors.

We begin the proof of our theorem with a simple lemma.

Lemma

Let $M \to N \to P \to M[1]$ be a distinguished triangle in D. If M, P are in $D^{\geq n}$, then so is N. Similarly, if M, P are in $D^{\leq n}$, then so is N.

We begin the proof of our theorem with a simple lemma.

Lemma

Let $M \to N \to P \to M[1]$ be a distinguished triangle in D. If M, P are in $D^{\geq n}$, then so is N. Similarly, if M, P are in $D^{\leq n}$, then so is N.

In order to prove that $N \in D^{\leq n}$, it suffices to check that $\tau^{\geq n+1}N = 0$.

We begin the proof of our theorem with a simple lemma.

Lemma

Let $M \to N \to P \to M[1]$ be a distinguished triangle in D. If M, P are in $D^{\geq n}$, then so is N. Similarly, if M, P are in $D^{\leq n}$, then so is N.

In order to prove that $N \in D^{\leq n}$, it suffices to check that $\tau^{\geq n+1}N = 0$. By adjunction,

$$\operatorname{Hom}_{\mathbb{D}}(\tau^{\geq n+1}N, \tau^{\geq n+1}N) \cong \operatorname{Hom}_{\mathbb{D}}(N, \tau^{\geq n+1}N).$$

We begin the proof of our theorem with a simple lemma.

Lemma

Let $M \to N \to P \to M[1]$ be a distinguished triangle in D. If M, P are in $D^{\geq n}$, then so is N. Similarly, if M, P are in $D^{\leq n}$, then so is N.

In order to prove that $N \in \mathbb{D}^{\leq n}$, it suffices to check that $\tau^{\geq n+1}N = 0$. By adjunction,

$$\operatorname{Hom}_{\mathbb{D}}(\tau^{\geq n+1}N, \tau^{\geq n+1}N) \cong \operatorname{Hom}_{\mathbb{D}}(N, \tau^{\geq n+1}N).$$

Finally, since $Hom_D(-, \tau^{\geq n+1}N)$ is a cohomological functor,

$$\underbrace{\operatorname{Hom}_{\mathbb{D}}(P,\tau^{\geq n+1}N)}_{=0} \to \operatorname{Hom}_{\mathbb{D}}(N,\tau^{\geq n+1}N) \to \underbrace{\operatorname{Hom}_{\mathbb{D}}(M,\tau^{\geq n+1}N)}_{=0}$$

is an exact sequence, finishing the proof.

(a) If M, N are in D^{\heartsuit} , then so is $M \oplus N$. (D^{\heartsuit} is an additive category.)

- (a) If M, N are in D^{\heartsuit} , then so is $M \oplus N$. (D^{\heartsuit} is an additive category.)
- (b) If $\varphi: M \to N$ is a map in D^{\heartsuit} , then its cone C is in $D^{\leq 0} \cap D^{\geq -1}$.

- (a) If M, N are in D^{\heartsuit} , then so is $M \oplus N$. (D^{\heartsuit} is an additive category.)
- (b) If $\varphi: M \to N$ is a map in D^{\heartsuit} , then its cone C is in $D^{\leq 0} \cap D^{\geq -1}$.

If D = D(A), the cone above is simply the complex $C = [M \xrightarrow{\varphi} N]$ in degrees -1 and 0. In particular $\mathscr{H}^{-1}(C) = \ker \varphi$ and $\mathscr{H}^{0}(C) = \operatorname{coker} \varphi$.

- (a) If M, N are in D^{\heartsuit} , then so is $M \oplus N$. (D^{\heartsuit} is an additive category.)
- (b) If $\varphi: M \to N$ is a map in D^{\heartsuit} , then its cone C is in $D^{\leq 0} \cap D^{\geq -1}$.

If D = D(A), the cone above is simply the complex $C = [M \xrightarrow{\varphi} N]$ in degrees -1 and 0. In particular $\mathscr{H}^{-1}(C) = \ker \varphi$ and $\mathscr{H}^{0}(C) = \operatorname{coker} \varphi$.

In general, we can use the axioms of a t-structure to show that $\mathscr{H}^{-1}(C)$ (resp. $\mathscr{H}^{0}(C)$) satisfies the universal property of the kernel (resp. cokernel) of φ .

This precise same argument also yields that the canonical map $\operatorname{coim} \varphi \to \operatorname{im} \varphi$ is an isomorphism.

This precise same argument also yields that the canonical map $\operatorname{coim} \varphi \to \operatorname{im} \varphi$ is an isomorphism. (Here we need the octahedral axiom!) This finishes the proof that D^{\heartsuit} is an abelian category.

This precise same argument also yields that the canonical map coim $\varphi \to \operatorname{im} \varphi$ is an isomorphism. (Here we need the octahedral axiom!) This finishes the proof that D^{\heartsuit} is an abelian category.

The proof that the $\mathscr{H}^n : D \to D^{\heartsuit}$ are cohomological functors is similar. (And also uses the octahedral axiom!)

Recollement

Let $F : D_1 \to D_2$ be a triangulated functor and endow those categories with t-structures $(D_i^{\leq 0}, D_i^{\geq 0})$.

Let $F : D_1 \to D_2$ be a triangulated functor and endow those categories with t-structures $(D_i^{\leq 0}, D_i^{\geq 0})$.

Definition

We say that *F* is left t-exact if $F(D_1^{\geq 0}) \subset D_2^{\geq 0}$. It's right t-exact if $F(D_1^{\leq 0}) \subset D_2^{\leq 0}$. And it's t-exact if it's both left and right t-exact.

Let $F : D_1 \to D_2$ be a triangulated functor and endow those categories with t-structures $(D_i^{\leq 0}, D_i^{\geq 0})$.

Definition

We say that *F* is left t-exact if $F(D_1^{\geq 0}) \subset D_2^{\geq 0}$. It's right t-exact if $F(D_1^{\leq 0}) \subset D_2^{\leq 0}$. And it's t-exact if it's both left and right t-exact.

If $F : A \to B$ is a left exact functor between abelian categories, then $RF : D(A) \to D(B)$ is left t-exact.

Conversely, let F be a triangulated functor as above and put

Conversely, let F be a triangulated functor as above and put

If F is left t-exact, then ${}^{p}F$ is left exact. The same holds for right t-exact and t-exact.

Conversely, let F be a triangulated functor as above and put

If *F* is left t-exact, then ${}^{P}F$ is left exact. The same holds for right t-exact and t-exact. Similarly, if $F \dashv G$ is a pair of adjoint functors, then *F* is right t-exact if and only if *G* is left t-exact. In this case, we have ${}^{P}F \dashv {}^{P}G$.

Recollement

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

 $D(Z) \xrightarrow{i_*} D(X) \xrightarrow{j^*} D(U).$

Moreover, set $i_! = i_*$ and $j^! = j^*$.

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

 $D(Z) \xrightarrow{i_*} D(X) \xrightarrow{j^*} D(U).$

Moreover, set $i_1 = i_*$ and $j^! = j^*$. This data is called a *recollement* if

(a) i_* has a left adjoint i^* and a right adjoint $i^!$;

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

 $D(Z) \xrightarrow{i_*} D(X) \xrightarrow{j^*} D(U).$

Moreover, set $i_1 = i_*$ and $j^! = j^*$. This data is called a *recollement* if

(a) i_* has a left adjoint i^* and a right adjoint $i^!$;

(b) j^* has a left adjoint j_1 and a right adjoint j_* ;

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

 $D(Z) \xrightarrow{i_*} D(X) \xrightarrow{j^*} D(U).$

Moreover, set $i_1 = i_*$ and $j^! = j^*$. This data is called a *recollement* if

(a) i_* has a left adjoint i^* and a right adjoint $i^!$; (b) j^* has a left adjoint $j_!$ and a right adjoint j_* ; (c) $j^*i_* = 0$;

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

 $D(Z) \xrightarrow{i_*} D(X) \xrightarrow{j^*} D(U).$

Moreover, set $i_1 = i_*$ and $j^! = j^*$. This data is called a *recollement* if

- (a) i_* has a left adjoint i^* and a right adjoint $i^!$;
- (b) j^* has a left adjoint $j_!$ and a right adjoint j_* ;

(c) $j^*i_* = 0;$

(d) For all $M \in D(X)$, there are morphisms $i_*i^*M \to j_!j^!M[1]$ and $j_*j^*M \to i_!i^!M[1]$ making the triangles

$$j_{!j}j^{!}M \to M \to i_{*}i^{*}M \to j_{!}j^{!}M[1]$$
$$i_{!}i^{!}M \to M \to j_{*}j^{*}M \to i_{!}i^{!}M[1]$$

distinguished.

Let's abstract a "gluing situation": consider a diagram of triangulated categories (which are not necessarily derived categories)

 $D(Z) \xrightarrow{i_*} D(X) \xrightarrow{j^*} D(U).$

Moreover, set $i_1 = i_*$ and $j^! = j^*$. This data is called a *recollement* if

- (a) i_* has a left adjoint i^* and a right adjoint $i^!$;
- (b) j^* has a left adjoint $j_!$ and a right adjoint j_* ;

(c) $j^*i_* = 0;$

(d) For all $M \in D(X)$, there are morphisms $i_*i^*M \to j_!j^!M[1]$ and $j_*j^*M \to i_!i^!M[1]$ making the triangles

$$\begin{split} j_{!j}{}^{!}M &\to M \to i_{*}i^{*}M \to j_{!j}{}^{!}M[1] \\ i_{!}i^{!}M \to M \to j_{*}j^{*}M \to i_{!}i^{!}M[1] \end{split}$$

distinguished.

(e) The functors $j_{!}, j_{*}, i_{!} = i_{*}$ are fully faithful.

(a) There's a natural map $j_1 \rightarrow j_*$ and we can define j_{1*} to be $\operatorname{Im}({}^p j_1 \rightarrow {}^p j_*)$.

- (a) There's a natural map $j_1 \rightarrow j_*$ and we can define j_{1*} to be $\operatorname{Im}({}^p j_1 \rightarrow {}^p j_*)$.
- (b) We can classify the simple objects of $D(X)^{\heartsuit}$.

- (a) There's a natural map $j_! \rightarrow j_*$ and we can define $j_{!*}$ to be $Im({}^pj_! \rightarrow {}^pj_*)$.
- (b) We can classify the simple objects of $D(X)^{\heartsuit}$.
- (c) The functor ${}^{p}i_{*}$ induces an equivalence between $D(Z)^{\heartsuit}$ and the full subcategory of $D(X)^{\heartsuit}$ whose objects M satisfy ${}^{p}j^{*}M = 0$.

$$D^{\leq 0}(X) := \{ M \in D(X) \mid j^*M \in D^{\leq 0}(U) \text{ and } i^*M \in D^{\leq 0}(Z) \}$$
$$D^{\geq 0}(X) := \{ M \in D(X) \mid j^!M \in D^{\geq 0}(U) \text{ and } i^!M \in D^{\geq 0}(Z) \}.$$

$$D^{\leq 0}(X) := \{ M \in D(X) \mid j^*M \in D^{\leq 0}(U) \text{ and } i^*M \in D^{\leq 0}(Z) \}$$
$$D^{\geq 0}(X) := \{ M \in D(X) \mid j^!M \in D^{\geq 0}(U) \text{ and } i^!M \in D^{\geq 0}(Z) \}.$$

Theorem

This is a t-structure on D(X).

$$D^{\leq 0}(X) := \{ M \in D(X) \mid j^*M \in D^{\leq 0}(U) \text{ and } i^*M \in D^{\leq 0}(Z) \}$$
$$D^{\geq 0}(X) := \{ M \in D(X) \mid j^!M \in D^{\geq 0}(U) \text{ and } i^!M \in D^{\geq 0}(Z) \}.$$

Theorem

This is a t-structure on D(X).

If X is a topological space with an open immersion $j : U \to X$, with complement $i : Z \to X$, and all of the above has the familiar meanings (along with the canonical t-structures), this procedure gives back the canonical t-structure on D(X).

$$D^{\leq 0}(X) := \{ M \in D(X) \mid j^*M \in D^{\leq 0}(U) \text{ and } i^*M \in D^{\leq 0}(Z) \}$$
$$D^{\geq 0}(X) := \{ M \in D(X) \mid j^!M \in D^{\geq 0}(U) \text{ and } i^!M \in D^{\geq 0}(Z) \}.$$

Theorem

This is a t-structure on D(X).

If X is a topological space with an open immersion $j : U \to X$, with complement $i : Z \to X$, and all of the above has the familiar meanings (along with the canonical t-structures), this procedure gives back the canonical t-structure on D(X). But we'll make perverse choices...

The perverse t-structure

Let X be a d-dimensional complex algebraic variety, along with its derived category of constructible sheaves $D_c^b(X)$.

In particular, $D_X(L[d]) \cong L^{\vee}[d]$.

In particular, $D_X(L[d]) \cong L^{\vee}[d]$.

If $D_{loc}^{b}(X)$ is the "derived category of local systems", we want to endow it with the following t-structure $(D_{loc}^{b}(X)^{\leq -d}, D_{loc}^{b}(X)^{\geq -d})$.

In particular, $D_X(L[d]) \cong L^{\vee}[d]$.

If $D_{loc}^{b}(X)$ is the "derived category of local systems", we want to endow it with the following t-structure $(D_{loc}^{b}(X)^{\leq -d}, D_{loc}^{b}(X)^{\geq -d})$.

As we saw, this is indeed a t-structure.

A very clever observation is that some complex M^{\bullet} in $D^b_{loc}(X)$ lies in $D^b_{loc}(X)^{\leq -d}$ precisely when

dim supp $\mathscr{H}^{i}(M^{\bullet}) \leq -i$ for all $i \in \mathbb{Z}$.

A very clever observation is that some complex M^{\bullet} in $D^b_{loc}(X)$ lies in $D^b_{loc}(X)^{\leq -d}$ precisely when

dim supp
$$\mathscr{H}^{i}(M^{\bullet}) \leq -i$$
 for all $i \in \mathbb{Z}$.

In particular, we may define

 ${}^{p}\mathsf{D}^{b}_{\mathsf{c}}(X)^{\leq 0} := \{M^{\bullet} \in \mathsf{D}^{b}_{\mathsf{c}}(X) \mid \operatorname{dim} \operatorname{supp} \mathscr{H}^{i}(M^{\bullet}) \leq -i \text{ for all } i \in \mathbb{Z} \}$ ${}^{p}\mathsf{D}^{b}_{\mathsf{c}}(X)^{\geq 0} := \{M^{\bullet} \in \mathsf{D}^{b}_{\mathsf{c}}(X) \mid \operatorname{dim} \operatorname{supp} \mathscr{H}^{i}(\mathsf{D}_{X}(M^{\bullet})) \leq -i \text{ for all } i \in \mathbb{Z} \},$

and then this induces the desired t-structure on $D_{loc}^{b}(X)$. This is the perverse t-structure on $D_{c}^{b}(X)$.

A first observation is that we have a filtered colimit $D_{c}^{b}(X) = 2$ -colim_S $D_{c,S}^{b}(X)$, where $D_{c,S}^{b}(X)$ is the derived category of constructible sheaves for a fixed stratification S.

A first observation is that we have a filtered colimit $D_c^b(X) = 2$ -colim_S $D_{c,S}^b(X)$, where $D_{c,S}^b(X)$ is the derived category of constructible sheaves for a fixed stratification S. (Indeed, we may refine stractifications!)

A first observation is that we have a filtered colimit $D_c^b(X) = 2 \operatorname{-colim}_S D_{c,S}^b(X)$, where $D_{c,S}^b(X)$ is the derived category of constructible sheaves for a fixed stratification S. (Indeed, we may refine stractifications!)

Now, we can split X as $U \coprod Z$, where the restriction of every complex in $D^b_{c,S}(X)$ to U lies in $D^b_{loc}(U)$.

A first observation is that we have a filtered colimit $D_c^b(X) = 2 \operatorname{-colim}_S D_{c,S}^b(X)$, where $D_{c,S}^b(X)$ is the derived category of constructible sheaves for a fixed stratification S. (Indeed, we may refine stractifications!)

Now, we can split X as $U \coprod Z$, where the restriction of every complex in $D^b_{c,S}(X)$ to U lies in $D^b_{loc}(U)$. (Modulo some small technicalities that I'm hiding) this gives the desired t-structure on $D^b_{c,S}(X)$ (and then on $D^b_c(X)$) by recollement.

Main properties

Definition

The category Perv(X) of perverse sheaves on X is the heart of $D_c^b(X)$ for the perverse t-structure.

Definition

The category Perv(X) of perverse sheaves on X is the heart of $D_c^b(X)$ for the perverse t-structure.

We already know that everything that follows formally from recollements is true for perverse sheaves.

Definition

The category Perv(X) of perverse sheaves on X is the heart of $D_c^b(X)$ for the perverse t-structure.

We already know that everything that follows formally from recollements is true for perverse sheaves. We also know that if L is a local system, then L[d] is a perverse sheaf.

Definition

The category Perv(X) of perverse sheaves on X is the heart of $D_c^b(X)$ for the perverse t-structure.

We already know that everything that follows formally from recollements is true for perverse sheaves. We also know that if *L* is a local system, then *L*[*d*] is a perverse sheaf. And we know that D_X is t-exact.

Definition

The category Perv(X) of perverse sheaves on X is the heart of $D_c^b(X)$ for the perverse t-structure.

We already know that everything that follows formally from recollements is true for perverse sheaves. We also know that if L is a local system, then L[d] is a perverse sheaf. And we know that D_X is t-exact. Let's see what else can we do!

(a) The category Perv(X) is both noetherian and artinian. I.e., every perverse sheaf has finite length.

- (a) The category Perv(X) is both noetherian and artinian. I.e., every perverse sheaf has finite length.
- (b) The functor $U \mapsto \text{Perv}(U)$, for $U \subset X$, is a stack.

Important properties

- (a) The category Perv(X) is both noetherian and artinian. I.e., every perverse sheaf has finite length.
- (b) The functor $U \mapsto \text{Perv}(U)$, for $U \subset X$, is a stack.
- (c) (Artin vanishing) Let $f : X \to S$ be an affine morphism. Then Rf_* is right t-exact and $Rf_!$ is left t-exact.

Important properties

- (a) The category Perv(X) is both noetherian and artinian. I.e., every perverse sheaf has finite length.
- (b) The functor $U \mapsto \text{Perv}(U)$, for $U \subset X$, is a stack.
- (c) (Artin vanishing) Let $f : X \to S$ be an affine morphism. Then Rf_* is right t-exact and $Rf_!$ is left t-exact.
- (d) Let $f : X \to S$ be a quasi-finite morphism. Then Rf_* is left t-exact and $Rf_!$ is right t-exact.

- (a) The category Perv(X) is both noetherian and artinian. I.e., every perverse sheaf has finite length.
- (b) The functor $U \mapsto \text{Perv}(U)$, for $U \subset X$, is a stack.
- (c) (Artin vanishing) Let $f : X \to S$ be an affine morphism. Then Rf_* is right t-exact and $Rf_!$ is left t-exact.
- (d) Let $f : X \to S$ be a quasi-finite morphism. Then Rf_* is left t-exact and $Rf_!$ is right t-exact.
- (e) Let $f : X \to S$ be a smooth morphism. Then $f^*[d] \cong f^![-d]$, for $d = \dim X \dim S$, is t-exact.

- (a) The category Perv(X) is both noetherian and artinian. I.e., every perverse sheaf has finite length.
- (b) The functor $U \mapsto \text{Perv}(U)$, for $U \subset X$, is a stack.
- (c) (Artin vanishing) Let $f : X \to S$ be an affine morphism. Then Rf_* is right t-exact and $Rf_!$ is left t-exact.
- (d) Let $f : X \to S$ be a quasi-finite morphism. Then Rf_* is left t-exact and $Rf_!$ is right t-exact.
- (e) Let $f : X \to S$ be a smooth morphism. Then $f^*[d] \cong f^![-d]$, for $d = \dim X \dim S$, is t-exact.
- (f) The exterior tensor product \boxtimes is t-exact.

Let X be a complex projective variety and $i : D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in Perv(X)$, the restriction map $\operatorname{H}^{i}(X, M) \to \operatorname{H}^{i}(D, i^{*}M)$ is an isomorphism for i < -1 and injective for i = -1.

Let X be a complex projective variety and $i : D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in Perv(X)$, the restriction map $\operatorname{H}^{i}(X, M) \to \operatorname{H}^{i}(D, i^{*}M)$ is an isomorphism for i < -1 and injective for i = -1.

Let $j : U = X \setminus D \hookrightarrow X$ be the complementary open immersion. Recall the distinguished triangle

$$j_!j^!M \to M \to i_*i^*M \to j_!j^!M[1].$$

Let X be a complex projective variety and $i : D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in Perv(X)$, the restriction map $\operatorname{H}^{i}(X, M) \to \operatorname{H}^{i}(D, i^{*}M)$ is an isomorphism for i < -1 and injective for i = -1.

Let $j : U = X \setminus D \hookrightarrow X$ be the complementary open immersion. Recall the distinguished triangle

$$j_!j^!M \to M \to i_*i^*M \to j_!j^!M[1].$$

As we saw, $j^!$ is t-exact and $R_c\Gamma(U, -)$ is left t-exact (since U is affine).

Let X be a complex projective variety and $i : D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in Perv(X)$, the restriction map $\operatorname{H}^{i}(X, M) \to \operatorname{H}^{i}(D, i^{*}M)$ is an isomorphism for i < -1 and injective for i = -1.

Let $j : U = X \setminus D \hookrightarrow X$ be the complementary open immersion. Recall the distinguished triangle

$$j_!j^!M \to M \to i_*i^*M \to j_!j^!M[1].$$

As we saw, $j^{!}$ is t-exact and $R_c\Gamma(U, -)$ is left t-exact (since U is affine). I.e., $H_c^i(U, j^!M) = 0$ for i < 0.

Let X be a complex projective variety and $i : D \hookrightarrow X$ be the inclusion of a hyperplane section. Then, for $M \in Perv(X)$, the restriction map $\operatorname{H}^{i}(X, M) \to \operatorname{H}^{i}(D, i^{*}M)$ is an isomorphism for i < -1 and injective for i = -1.

Let $j : U = X \setminus D \hookrightarrow X$ be the complementary open immersion. Recall the distinguished triangle

$$j_!j^!M \to M \to i_*i^*M \to j_!j^!M[1].$$

As we saw, j^i is t-exact and $R_c\Gamma(U, -)$ is left t-exact (since U is affine). I.e., $H_c^i(U, j^iM) = 0$ for i < 0. The long exact sequence in cohomology then yields the result. Unfortunately, I don't have the time nor knowledge to give a proper introduction to the decomposition theorem. But the viewer should at least read something about it! (The whole chapter 6 of BBD is breathtaking!)

Questions?