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Why should I care?

”[...] But in my opinion, the most significant reason for the usefulness
of perverse sheaves is the following secret known to experts:
perverse sheaves are easy, in the sense that most arguments come
down to a rather short list of tools, such as proper base change,
smooth pullback, and open–closed distinguished triangles. In
practice, one can reason and compute with perverse sheaves just
using a list of these tools, much as calculus students might use a
table of integrals. One does not have to dig into the details of flabby
resolutions or sheafification any more than a calculus student needs
to revisit Riemann sums to integrate a polynomial.”

Pramod Achar
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t-structures



Motivation

Can we recover an abelian category A from its derived category D(A)?

Yes! A ∼= {M• ∈ D(A) | H i(M•) = 0 for i 6= 0}.

Can we generalize this construction to obtain other abelian
subcategories of D(A)?
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t-structures

In everything that follows D is a triangulated category.

Definition
Let (D≤0,D≥0) be a pair of full subcategories of D and set
D≤n := D≤0[−n], D≥n := D≥0[−n]. Then (D≤0,D≥0) is said to be a
t-structure if

(a) D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0;
(b) HomD(M,N) = 0 for M ∈ D≤0 and N ∈ D≥1;
(c) For all N ∈ D, there exists a distinguished triangle M → N → P,

where M ∈ D≤0 and P ∈ D≥1.

If (D≤0,D≥0) is a t-structure, then so is (D≤n,D≥n).
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Canonical t-structure

If D := D(A), we have a canonical t-structure given by

D≤0 := {M ∈ D | H i(M) = 0 for i > 0}
D≥0 := {M ∈ D | H i(M) = 0 for i < 0}.

It’s clear that D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0. That Hom(M,N) = 0 for
M ∈ D≤0 and N ∈ D≥1 is obvious in the category of complexes.
Representing a map by a roof gives the result in the derived category.
The last axiom is given by the distinguished triangle

τ≤0N→ N→ τ≥1N→ τ≤0N[1].
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Truncation functors

Theorem
Let (D≤0,D≥0) be a t-structure on D. Then,

(a) The inclusion D≤n → D has a right adjoint τ≤n : D→ D≤n;
(b) The inclusion D≥n → D has a left adjoint τ≥n : D→ D≥n;
(c) There’s a unique natural transformation τ≥n+1 → τ≤n[1] such

that, for every N ∈ D,

τ≤nN→ N→ τ≥n+1N→ τ≤nN[1]

is a distinguished triangle.
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The core

In particular, we may define cohomology functors.

Definition
Let (D≤0,D≥0) be a t-structure on D. We define the core D♥ as
D≤0 ∩ D≥0 and the cohomology functor H 0 : D→ D♥ as τ≤0 ◦ τ≥0.

Of course, we also put H n := H 0(−[n]) = τ≤n ◦ τ≥n[n].
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The main theorem

Theorem
The core D♥ is an abelian category and the H n : D→ D♥ are
cohomological functors.
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One lemma

We begin the proof of our theorem with a simple lemma.

Lemma
Let M→ N→ P→ M[1] be a distinguished triangle in D. If M,P are
in D≥n, then so is N. Similarly, if M,P are in D≤n, then so is N.

In order to prove that N ∈ D≤n, it suffices to check that τ≥n+1N = 0.
By adjunction,

HomD(τ
≥n+1N, τ≥n+1N) ∼= HomD(N, τ≥n+1N).

Finally, since HomD(−, τ≥n+1N) is a cohomological functor,

HomD(P, τ≥n+1N)︸ ︷︷ ︸
=0

→ HomD(N, τ≥n+1N) → HomD(M, τ≥n+1N)︸ ︷︷ ︸
=0

is an exact sequence, finishing the proof.
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Consequences of the lemma

This lemma implies two important facts:

(a) If M,N are in D♥, then so is M⊕ N. (D♥ is an additive category.)

(b) If ϕ : M→ N is a map in D♥, then its cone C is in D≤0 ∩ D≥−1.

If D = D(A), the cone above is simply the complex C = [M ϕ−→ N] in
degrees -1 and 0. In particular H −1(C) = kerϕ and H 0(C) = cokerϕ.

In general, we can use the axioms of a t-structure to show that
H −1(C) (resp. H 0(C)) satisfies the universal property of the kernel
(resp. cokernel) of ϕ.
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End of the (sketch of) proof

This precise same argument also yields that the canonical map
coimϕ → imϕ is an isomorphism.

(Here we need the octahedral
axiom!) This finishes the proof that D♥ is an abelian category.

The proof that the H n : D→ D♥ are cohomological functors is
similar. (And also uses the octahedral axiom!)
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Recollement



t-exact functors

Let F : D1 → D2 be a triangulated functor and endow those categories
with t-structures (D≤0

i ,D≥0
i ).

Definition
We say that F is left t-exact if F(D≥0

1 ) ⊂ D≥0
2 . It’s right t-exact if

F(D≤0
1 ) ⊂ D≤0

2 . And it’s t-exact if it’s both left and right t-exact.

If F : A→ B is a left exact functor between abelian categories, then
RF : D(A) → D(B) is left t-exact.
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t-exact functors [BBD, Prop. 1.3.17]

Conversely, let F be a triangulated functor as above and put

D♥
1 D1 D2 D♥

2 .
F H 0

pF

If F is left t-exact, then pF is left exact. The same holds for right
t-exact and t-exact. Similarly, if F a G is a pair of adjoint functors,
then F is right t-exact if and only if G is left t-exact. In this case, we
have pF a pG.
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Recollement

Let’s abstract a ”gluing situation”: consider a diagram of triangulated
categories (which are not necessarily derived categories)

D(Z) i∗−→ D(X) j∗−→ D(U).

Moreover, set i! = i∗ and j! = j∗.

This data is called a recollement if

(a) i∗ has a left adjoint i∗ and a right adjoint i!;
(b) j∗ has a left adjoint j! and a right adjoint j∗;
(c) j∗i∗ = 0;
(d) For all M ∈ D(X), there are morphisms i∗i∗M→ j!j!M[1] and

j∗j∗M→ i!i!M[1] making the triangles

j!j!M→ M→ i∗i∗M→ j!j!M[1]
i!i!M→ M→ j∗j∗M→ i!i!M[1]

distinguished.
(e) The functors j!, j∗, i! = i∗ are fully faithful.

14



Recollement

Let’s abstract a ”gluing situation”: consider a diagram of triangulated
categories (which are not necessarily derived categories)

D(Z) i∗−→ D(X) j∗−→ D(U).

Moreover, set i! = i∗ and j! = j∗. This data is called a recollement if

(a) i∗ has a left adjoint i∗ and a right adjoint i!;

(b) j∗ has a left adjoint j! and a right adjoint j∗;
(c) j∗i∗ = 0;
(d) For all M ∈ D(X), there are morphisms i∗i∗M→ j!j!M[1] and

j∗j∗M→ i!i!M[1] making the triangles

j!j!M→ M→ i∗i∗M→ j!j!M[1]
i!i!M→ M→ j∗j∗M→ i!i!M[1]

distinguished.
(e) The functors j!, j∗, i! = i∗ are fully faithful.

14



Recollement

Let’s abstract a ”gluing situation”: consider a diagram of triangulated
categories (which are not necessarily derived categories)

D(Z) i∗−→ D(X) j∗−→ D(U).

Moreover, set i! = i∗ and j! = j∗. This data is called a recollement if

(a) i∗ has a left adjoint i∗ and a right adjoint i!;
(b) j∗ has a left adjoint j! and a right adjoint j∗;

(c) j∗i∗ = 0;
(d) For all M ∈ D(X), there are morphisms i∗i∗M→ j!j!M[1] and

j∗j∗M→ i!i!M[1] making the triangles

j!j!M→ M→ i∗i∗M→ j!j!M[1]
i!i!M→ M→ j∗j∗M→ i!i!M[1]

distinguished.
(e) The functors j!, j∗, i! = i∗ are fully faithful.

14



Recollement

Let’s abstract a ”gluing situation”: consider a diagram of triangulated
categories (which are not necessarily derived categories)

D(Z) i∗−→ D(X) j∗−→ D(U).

Moreover, set i! = i∗ and j! = j∗. This data is called a recollement if

(a) i∗ has a left adjoint i∗ and a right adjoint i!;
(b) j∗ has a left adjoint j! and a right adjoint j∗;
(c) j∗i∗ = 0;

(d) For all M ∈ D(X), there are morphisms i∗i∗M→ j!j!M[1] and
j∗j∗M→ i!i!M[1] making the triangles

j!j!M→ M→ i∗i∗M→ j!j!M[1]
i!i!M→ M→ j∗j∗M→ i!i!M[1]

distinguished.
(e) The functors j!, j∗, i! = i∗ are fully faithful.

14



Recollement

Let’s abstract a ”gluing situation”: consider a diagram of triangulated
categories (which are not necessarily derived categories)

D(Z) i∗−→ D(X) j∗−→ D(U).

Moreover, set i! = i∗ and j! = j∗. This data is called a recollement if

(a) i∗ has a left adjoint i∗ and a right adjoint i!;
(b) j∗ has a left adjoint j! and a right adjoint j∗;
(c) j∗i∗ = 0;
(d) For all M ∈ D(X), there are morphisms i∗i∗M→ j!j!M[1] and

j∗j∗M→ i!i!M[1] making the triangles

j!j!M→ M→ i∗i∗M→ j!j!M[1]
i!i!M→ M→ j∗j∗M→ i!i!M[1]

distinguished.

(e) The functors j!, j∗, i! = i∗ are fully faithful.

14



Recollement

Let’s abstract a ”gluing situation”: consider a diagram of triangulated
categories (which are not necessarily derived categories)

D(Z) i∗−→ D(X) j∗−→ D(U).

Moreover, set i! = i∗ and j! = j∗. This data is called a recollement if

(a) i∗ has a left adjoint i∗ and a right adjoint i!;
(b) j∗ has a left adjoint j! and a right adjoint j∗;
(c) j∗i∗ = 0;
(d) For all M ∈ D(X), there are morphisms i∗i∗M→ j!j!M[1] and

j∗j∗M→ i!i!M[1] making the triangles

j!j!M→ M→ i∗i∗M→ j!j!M[1]
i!i!M→ M→ j∗j∗M→ i!i!M[1]

distinguished.
(e) The functors j!, j∗, i! = i∗ are fully faithful.

14



Recollement

Quite a lot follows formally from the axioms of recollements! I’ll give
here some examples.

(a) There’s a natural map j! → j∗ and we can define j!∗ to be
Im( pj! → pj∗).

(b) We can classify the simple objects of D(X)♥.
(c) The functor pi∗ induces an equivalence between D(Z)♥ and the

full subcategory of D(X)♥ whose objects M satisfy pj∗M = 0.
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Main theorem on recollements

Suppose that D(U) and D(Z) have t-structures. Then we define

D≤0(X) := {M ∈ D(X) | j∗M ∈ D≤0(U) and i∗M ∈ D≤0(Z)}
D≥0(X) := {M ∈ D(X) | j!M ∈ D≥0(U) and i!M ∈ D≥0(Z)}.

Theorem
This is a t-structure on D(X).

If X is a topological space with an open immersion j : U→ X, with
complement i : Z → X, and all of the above has the familiar meanings
(along with the canonical t-structures), this procedure gives back the
canonical t-structure on D(X). But we’ll make perverse choices...
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The perverse t-structure



Motivation

Let X be a d-dimensional complex algebraic variety, along with its
derived category of constructible sheaves Dbc (X).

The best motivation
for the definition of a perverse sheaf that I know is the fact that the
Verdier dual of a local system is almost a local system:
DX(L) ∼= L∨[2d].

In particular, DX(L[d]) ∼= L∨[d].

If Dbloc(X) is the ”derived category of local systems”, we want to endow
it with the following t-structure (Dbloc(X)

≤−d,Dbloc(X)
≥−d).

As we saw, this is indeed a t-structure.
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The perverse t-structure

A very clever observation is that some complex M• in Dbloc(X) lies in
Dbloc(X)

≤−d precisely when

dim suppH i(M•) ≤ −i for all i ∈ Z.

In particular, we may define

pDbc (X)≤0 := {M• ∈ Dbc (X) | dim suppH i(M•) ≤ −i for all i ∈ Z}
pDbc (X)≥0 := {M• ∈ Dbc (X) | dim suppH i(DX(M•)) ≤ −i for all i ∈ Z},

and then this induces the desired t-structure on Dbloc(X). This is the
perverse t-structure on Dbc (X).
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Why is this a t-structure?

The only problem is that this is no longer obviously a t-structure...

A first observation is that we have a filtered colimit
Dbc (X) = 2 -colimS Dbc,S(X), where Dbc,S(X) is the derived category of
constructible sheaves for a fixed stratification S. (Indeed, we may
refine stractifications!)

Now, we can split X as U
∐
Z, where the restriction of every complex

in Dbc,S(X) to U lies in Dbloc(U). (Modulo some small technicalities that
I’m hiding) this gives the desired t-structure on Dbc,S(X) (and then on
Dbc (X)) by recollement.
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Main properties



Perverse sheaves

We stay with the same notations as in the previous sections.

Definition
The category Perv(X) of perverse sheaves on X is the heart of Dbc (X)
for the perverse t-structure.

We already know that everything that follows formally from
recollements is true for perverse sheaves. We also know that if L is a
local system, then L[d] is a perverse sheaf. And we know that DX is
t-exact. Let’s see what else can we do!
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Important properties

(a) The category Perv(X) is both noetherian and artinian. I.e., every
perverse sheaf has finite length.

(b) The functor U 7→ Perv(U), for U ⊂ X, is a stack.
(c) (Artin vanishing) Let f : X → S be an affine morphism. Then Rf∗

is right t-exact and Rf! is left t-exact.
(d) Let f : X → S be a quasi-finite morphism. Then Rf∗ is left t-exact

and Rf! is right t-exact.
(e) Let f : X → S be a smooth morphism. Then f ∗[d] ∼= f ![−d], for

d = dim X − dim S, is t-exact.
(f) The exterior tensor product � is t-exact.
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An example of application

Theorem (Weak Lefschetz)
Let X be a complex projective variety and i : D ↪→ X be the inclusion
of a hyperplane section. Then, for M ∈ Perv(X), the restriction map
Hi(X,M) → Hi(D, i∗M) is an isomorphism for i < −1 and injective for
i = −1.

Let j : U = X \ D ↪→ X be the complementary open immersion. Recall
the distinguished triangle

j!j!M→ M→ i∗i∗M→ j!j!M[1].

As we saw, j! is t-exact and RcΓ(U,−) is left t-exact (since U is affine).
I.e., Hi

c(U, j!M) = 0 for i < 0. The long exact sequence in cohomology
then yields the result.
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The decomposition theorem (+ le théorème de Lefschetz vache)

Unfortunately, I don’t have the time nor knowledge to give a proper
introduction to the decomposition theorem. But the viewer should at
least read something about it! (The whole chapter 6 of BBD is
breathtaking!)
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Questions?
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