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Abstract. We construct an algebraic space parametrizingmultiplicative line
bundles with flat connection, known as character sheaves, on commutative
algebraic groups. We then prove a generic vanishing theorem: for each
holonomic D-module, there exists a dense open subset of this space over
which the de Rham cohomology of twists by the corresponding character
sheaves is concentrated in degree zero. As a key ingredient, we study
extensions of abelian sheaves and various incarnations of Cartier duality.
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1. Introduction

1.1. Main results

Let k be a field of characteristic zero and G be a connected commutative algebraic group
over k, whose group operation is denoted by m : G × G → G. We will say that a line
bundle with flat connection (L ,∇) onG is a character sheaf if there exists an isomorphism
m∗(L ,∇) ' (L ,∇) � (L ,∇). This notion of character sheaves, which coincide with
Grothendieck’s \-extensions of G by Gm [Del74, §10.2.7.1], is a de Rham analogue to
the rank one `-adic local systems Lχ over a finite field Fq arising from a character
χ : G(Fq)→ Q×` via the Lang isogeny.

The first objective of this paper is to construct a moduli space parametrizing character
sheaves on G. A key ingredient of our approach is the so-called de Rham space GdR, an
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fppf sheaf with the property that line bundles with flat connection on G correspond to
Gm-torsors over GdR. Consequently, given a k-scheme S, the elements of

H1m(GdR × S,Gm) := ker
Ä
m∗ − pr∗1−pr∗2 : H

1(GdR × S,Gm)→ H1(G2dR × S,Gm)
ä

are isomorphism classes of line bundles L on GS with flat connection ∇ relative to S
satisfyingm∗(L ,∇) ' (L ,∇)� (L ,∇). Using the constructions of Subsection 2.5, we
prove the following result (see Corollary 2.41):

Theorem A. There exists a connected group algebraic space G[, smooth over k, satisfying
dimG 6 dimG[ 6 2 dimG and G[(S) ' H1m(GdR × S,Gm) for all seminormal k-schemes S.

In the particular case of an abelian variety, every line bundle with connection is a
character sheaf. This moduli space of connections has a long history and has been
studied by many authors in the interim. (See, for example, [MM74; Sim93; Sch15].) By
taking into account the group structure, we are able to extend the construction of such a
moduli space away from the proper case.

While a separated group algebraic space is necessarily a scheme, already the example
of G[

m ' A1/Z shows that G[ may not be quasi-separated. Regardless of this, we may
consider dense open subspaces thereof; formalizing the idea that a result holds for most
character sheaves. Furthermore, the dimension estimate dimG[ > dimG indicates that
not only does such a result hold for most character sheaves, but that there exists a large
number of them.
This culminates in the main theorem of this paper.

Theorem B. Suppose that k is algebraically closed and letM be a holonomic D-module over G.
There exists a dense open subspace V of G[ such that

HidR(G,M⊗OG (L ,∇)) = HidR,c(G,M⊗OG (L ,∇)) = 0 for i 6= 0;
H0dR(G,M⊗OG (L ,∇)) ' H0dR,c(G,M⊗OG (L ,∇))

for every character sheaf (L ,∇) ∈ V(k).

Theorem B extends results of Krämer [Krä14] and Schnell [Sch15]. Krämer’s work
focuses on the case where G is a semiabelian variety andM is regular, while Schnell’s
allows a general holonomic D-module but restricts to abelian varieties. Both results, in
turn, generalize the classical generic vanishing theorems of Green and Lazarsfeld [GL87],
which have manifold applications in complex geometry. We refer the reader to [Sch13]
for more.

1.2. Outline

Character sheaves and their moduli

According to the Barsotti-Chevalley theorem, the connected commutative algebraic group
G can be expressed as an extension of an abelian variety by a linear group. However, it
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is not obvious from its definition that the functor G 7→ H1m(GdR,Gm) preserves exact
sequences. We address this issue by establishing a comparison between H1m(GdR,Gm)

and an extension group, which has good functoriality properties.
More generally, let G and A be abelian sheaves on (Sch/k)fppf (or even abelian groups

on an arbitrary Grothendieck topos). For every k-scheme S, there are natural maps

Ext1(G ,A )(S)← Ext1S(G ,A )→ H1(GS,AS),

and the Subsection 2.2 is devoted to their study.
Proposition 2.17 and Corollary 2.19 show that the arrow on the left becomes an

isomorphism in many pertinent situations. The image of the arrow on the right lies
in the subgroup H1m(GS,AS) ⊂ H1(GS,AS), composed of the isomorphism classes of
multiplicative AS-torsors over GS. Further, the Corollary 2.15 and the Proposition 2.16 say
that the restriction Ext1S(G ,A )→ H1m(GS,AS) is also an isomorphism in the majority of
cases that pique our interest.

Given the generality of these techniques, we believe that they could be useful in other
contexts as well. For example, our methods reprove some of the results in [MM74,
Chapter I] and in [Ser88, Chapter VII]. Frequently, our approach not only simplifies but
also generalizes these results beyond their original formulations. We refer the reader to
Remarks 2.14, 2.21, and 2.22 for more details.
Returning to our original goal, denote by G\ the abelian sheaf Ext1(GdR,Gm).

Given a reduced k-scheme S, the results of Subsection 2.2 yield an isomorphism
G\(S) ' H1m(GdR × S,Gm). The sheaf G\ coincides with a stack-theoretic Cartier dual
Hom(GdR,BGm). In the Subsection 2.4, we explain this operation and compare it with
the Cartier duality for 1-motives, as studied by Deligne [Del74] and Laumon [Lau96].
Somewhat surprisingly, this comparison gives a rather explicit description for G\ in
Proposition 2.37.
The abelian sheaf G\ usually fails to be representable. Nevertheless, in the Subsec-

tion 2.5, we use the description above to isolate precisely the problematic constituents of
G\ (which behave like formal schemes) and define a variant G[ akin to a coarse moduli
space. Finally, the Theorem A follows from Theorem 2.40 and its Corollary 2.41.

Generic vanishing

Here we suppose that k is algebraically closed and we switch to D-module notations.
Denote by Lα the character sheaf corresponding to a point α ∈ G[(k) ' G\(k) in degree
dimG. We refer the reader to the beginning of Section 3 for an explanation of our choice
of notation.
As before, the fact that G is an extension of an abelian variety by a linear group

motivates us to consider a relative version of the generic vanishing theorem. Namely,
we say that G satisfies relative generic vanishing if, for every smooth variety S over k and
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every objectM of Dbh (DG×S), there exists a dense open subspace V of G[ such that the
forget-supports map

prS,!(M⊗G×S pr+GLα)→ prS,+(M⊗G×S pr+GLα),

where prS : G× S→ S and prG : G× S→ G are the projections, is an isomorphism for
every α ∈ V(k).
When G is affine, the D-module analogue of Artin vanishing says that prS,! is left

t-exact and prS,+ is right t-exact with respect to the standard t-structures. In particular, if
M is concentrated in degree zero and the forget supports map above is an isomorphism,
then

prS,!(M⊗G×S pr+GLα) ' prS,+(M⊗G×S pr+GLα)

is also concentrated in degree zero; generalizing the generic vanishing theorem.
The Subsection 3.1 dévissages this statement and proves, in Proposition 3.7, that relative

generic vanishing for an affine group G follows from the particular case in which G has
dimension one and S = Speck. This leaves the cases G = Ga and G = Gm to be treated.

As explained in Subsection 3.2, the unipotent case is intrinsically related to the Fourier
transform forD-modules. Indeed, given a unipotent groupU and an objectM of Dbh (DU),
the Fourier transform FTU(M) ∈ Dbh (DU[) contains all the data of the cohomology
groups Hi(U,M ⊗U Lα) and Hic(U,M ⊗U Lα) for every i ∈ Z and α ∈ U[(k). The
generic vanishing theorem then follows from the general properties of the Fourier
transform.

Even though there exists a multiplicative analogue of the Fourier transform for tori, it is
much less understood.1 Consequently, wewere inspired by [KL85] to compactifyGm and
use monodromical arguments to obtain the generic vanishing theorem in Subsection 3.3.
Our main tool is the V-filtration of Kashiwara, Malgrange, and Sabbah, which is a
generalization of nearby and vanishing cycles to holonomic D-modules.
Next, we describe Schnell’s study of holonomic D-modules on abelian varieties in

Subsection 3.4. Similarly to the unipotent case, the key idea is to consider the Fourier-
Mukai transform FMA : Dbh (DA)→ Dbcoh(OA\) defined by Laumon [Lau85; Lau96]. Here
the generic vanishing theorem is encoded in the fact that FMA is t-exact with respect to
a perverse t-structure on the target [Sch15, Thm. 19.1].

Finally, the Subsection 3.5 combines the relative generic vanishing theorem for affine
groups described above with Schnell’s result for abelian varieties; finishing the proof of
Theorem B.

1As Katz would say, the miracle of the Fourier transform is that it coincides with a variant with compact
supports. This does not even make sense for the Mellin transform of D-modules and it is false for its
`-adic variant [GL96].
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1.3. Related and future work

Ever since Deligne’s second paper on the Weil conjectures [Del80], it has been known
that `-adic methods can be used to understand a large class of exponential sums. A
systematic study of these ideas was done in the recent book [FFK23] by Forey, Fresán
and Kowalski, wherein the authors prove equidistribution results for exponential sums
of the form ∑

x∈G(Fq)
trM(x)χ(x),

whereG is a commutative connected algebraic group over a finite field Fq, χ is a character
of G(Fq), andM is an `-adic perverse sheaf over Gwhose trace function is trM.
As the Grothendieck trace formula relates the exponential sum above to traces of

Frobenius acting on RΓ(G,M⊗Lχ), the fundamental theorem at the heart of the results
presented in [FFK23] is a generic vanishing theorem for the `-adic cohomology of perverse
sheavesM on commutative algebraic groups [FFK23, Thm. 2.1], which is a finite-field
analogue of our Theorem B.
In both settings, we say that a holonomic D-module (resp. perverse sheaf) M is

negligible if H0(G,M⊗L ) vanishes for most character sheaves L . Those objects form
a thick subcategory of Hol(DG) (resp. of Perv(G)), and the generic vanishing theorems
imply that the quotient is tannakian under convolution. (See [FFK23, Chapter 3] for
more details.)
As a consequence of this, every holonomic D-module (resp. perverse sheaf) has an

associated tannakian group. In the `-adic context, these groups dictate the distribution of
the associated exponential sums. On the other hand, their de Rham analogues are rather
explicit. In a future work, we will explain that they coincide with certain differential and
difference Galois groups over unipotent groups and tori. Krämer also has an interesting
description of those tannakian groups for abelian varieties [Krä22, Thm. 3.2].
The relations between these tannakian groups, when G is the additive group Ga,

constitute the crowning achievement of Katz’s tour de force [Kat90]. We hope to extend
these results to more general groups G and sheavesM in the future.

1.4. Notation and conventions

Throughout this paper, wewill denote by k a base field and byG a connected commutative
algebraic group (a group scheme of finite type) over k. By the Barsotti-Chevalley theorem
[Mil17, Thm. 8.28], such a group fits into a short exact sequence

0→ L
ϕ−→ G

ψ−→ A→ 0,

where L is a (not necessarily smooth) connected linear subgroup of G andA is an abelian
variety. Since ψ : G → A is the Albanese map, this decomposition is unique up to a
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unique isomorphism. If k is perfect and G is smooth, L is a product T ×U of a torus T
and a unipotent group U [Mil17, Cor. 16.15].
Remark that, whenever k has characteristic zero, G is automatically smooth and U is

necessarily a vector group. We will systematically denote bym : G×G→ G the group
operation, by p : G → Speck the structure map, and by e ∈ G(k) the identity element.
Finally, every algebraic and formal group in this paper is supposed to be commutative.

1.5. Acknowledgements

This paper is part of my doctoral thesis under the supervision of Javier Fresán. His
influence should hopefully be clear to those acquainted with his work, and for that I
am deeply grateful. I would also like to thank Sylvain Brochard, Peter Bruin, Justin
Campbell, Thomas Krämer, Gérard Laumon, Zev Rosengarten, and Claude Sabbah for
several illuminating discussions about this work.

2. Character sheaves and their moduli

In this section we will study line bundles with integrable connection (L ,∇) on G
satisfying m∗(L ,∇) ' (L ,∇) � (L ,∇). We call them character sheaves. They are de
Rham analogs to rank one `-adic local systems Lχ over a finite field Fq arising from a
character χ : G(Fq)→ Q×` via the Lang isogeny.

Henceforth, we will see every algebraic group as an fppf sheaf on Sch/k. Given such
a group G, we can consider its formal completion at the identity Ĝ, which is naturally
a subsheaf of G. In characteristic zero, the quotient G/Ĝ is the so-called de Rham space
GdR of G, and it has a remarkable property: line bundles over GdR are the same as line
bundles with integrable connection over G. (See the Appendix A for more on these
objects.)

After the computation of some Cartier duals, we show in Subsection 2.2 that the abelian
sheaf G\ := Ext1(GdR,Gm) classifies character sheaves on G. Then, in Subsection 2.4,
we define a stacky version of Cartier duality and we compare it with a dual defined by
Laumon in [Lau96]. This comparison finally allows the construction in Subsection 2.5 of
a variant G[ of G\, akin to a coarse moduli space, that happens to be representable by an
algebraic space.

2.1. Cartier duality

Given an abelian sheaf G , we denote its Cartier dual Hom(G ,Gm) by GD. If G = SpecR

is an affine group scheme over k, its Cartier dual GD is represented by the formal group
Spf R∗, where R∗ is the dual Hopf algebra. Moreover, the double dual (GD)D is naturally
isomorphic to G. [SGA3.I, Exposé VIIB]
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As is customary, we will denote the Cartier dual of a torus T by X. It is representable
by a group scheme étale-locally isomorphic to Zr for some r [SGA3.II, Exposé X, Cor.
5.7.(i)]. Dually, the Cartier dual of X is T .
Unless explicitly stated otherwise, the base field k is supposed to have characteristic

zero for the next two subsections. Recall that a unipotent group U over a characteristic
zero field k is necessarily a vector group, and so we denote by U∗ its vector space dual.

Proposition 2.1. The Cartier dual of A vanishes and the Cartier dual of U is isomorphic to”U∗.
Dually, the Cartier dual of Û is isomorphic to U∗.

Proof. Let S be a k-scheme. By the universal property of the global spectrum, amorphism
of schemes AS → Gm,S over S is the same as a morphism of OS-algebras

OS[t, t
−1]→ p∗OAS ' OS,

where p : AS → S is the structure map [Stacks, Tag 0E0L]. In particular, such a morphism
is constant. If it is a morphism of groups, it has to be trivial. This proves thatAD vanishes.
Finally, the computation UD '”U∗ follows from the fact that the dual of Sym(U∗) is the
completion of Sym(U) at the ideal of degree one elements. (Upon a choice of basis, this
is nothing but the isomorphism k[x1, . . . , xn]

∗ ' kJx1, . . . , xnK.)

Given a k-algebra R, we have that “Ga(R) is the group of nilpotent elements in R and“Gm(R) is that of unipotent elements. We remark that the formal groups “Ga and “Gm are
isomorphic via the map “Gm(R)→ “Ga(R)

1+ x 7→ log(1+ x).

This phenomenon is a general property of formal groups in characteristic zero, and it
simplifies their study. (In positive characteristic, divided powers come on the scene, and
give rise to the group scheme G]

a
2; the crystalline analog of “Ga [Dri22].)

Proposition 2.2 (Cartier). Let g be the Lie algebra of G, seen as a vector group. The formal
completions of G and of g along the identity coincide.

Proof. Since an algebraic group and its formal completion share the same Lie algebra,
the composition®

Algebraic
groups over k

´ ®
Infinitesimal formal

groups over k

´ ®
Lie algebras

over k

´‘(−) Lie(−)

is the functor associating an algebraic group to its Lie algebra. In particular, G and g,
seen as a vector group, have the same image by the composition above. Now, by [SGA3.I,
Exposé VIIB, Cor. 3.3.2], the functor on the right is an equivalence of categories. In
particular, G and g have isomorphic formal completions.
2Not the same as the abelian sheaf G\

a that appears in this paper.
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The previous two propositions allow us to compute the Cartier dual of the formal
completion Ĝ.

Corollary 2.3. The Cartier dual of Ĝ is naturally isomorphic to g∗. This also coincides with the
invariant differentialsΩG of G.

We are now in position to compute the Cartier dual of the de Rham space GdR.

Proposition 2.4. The Cartier dual of GdR vanishes.

Proof. SinceHom(−,Gm) is left-exact, the vanishing ofGDdR is equivalent to themorphism
Hom(G,Gm)→ Hom(Ĝ,Gm) being a monomorphism. We check this in some particular
cases. For abelian varieties, this holds because their Cartier dual vanishes. For a unipotent
group U, the morphism in question is isomorphic to”U∗ → U∗, which is also monic.
(Corollary A.5.) Finally, for a torus T , this morphism is isomorphic to d log : X→ ΩT and
this is surely monic.
The de Rham functor (−)dR is exact, and so GdR is an extension of TdR ×UdR by AdR.

In particular, we have an induced exact sequence

0→ Hom(AdR,Gm)→ Hom(GdR,Gm)→ Hom(TdR,Gm)×Hom(UdR,Gm).

The cases considered above then imply the general result.

2.2. Extensions by the multiplicative group

We will state our next circle of ideas, which follows ideas of Breen, Deligne, Clausen,
and Scholze, in a higher level of generality than strictly needed in the hopes that it may
be useful elsewhere.
The following proposition was hinted by Grothendieck in [SGA7.I, Exposé VII,

Remarque 3.5.4] and a variant of it was constructed by Breen [Bre69]. The version below
is a unpublished result of Deligne and a proof, by Clausen and Scholze, can be found in
[Sch19, Thm. 4.10].

Proposition 2.5 (Breen-Deligne resolution). Let G be an abelian group in a Grothendieck
topos E. There exists a functorial resolution of the form

· · · →
ni⊕
j=1

Z[G ri,j ]→ · · · → Z[G 3]⊕ Z[G 2]→ Z[G 2]→ Z[G ]→ G ,

where the ni and ri,j are all positive integers.

Clausen and Scholze’s proof of the proposition above makes clear that the first terms of
the resolution can be chosen as in [BBM82, §2.1.5]. In particular, this explicit description
allows us to define two important invariants.
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Definition 2.6. Let G and A be abelian groups in a Grothendieck topos E. Applying the
functor HomE(−,A ) to the Breen-Deligne resolution of G , we obtain the complex

Γ(G ,A )→ Γ(G 2,A )→ Γ(G 3,A )⊕ Γ(G 2,A )

Γ(G 4,A )⊕ Γ(G 3,A )⊕ Γ(G 3,A )⊕ Γ(G 2,A )⊕ Γ(G ,A ),

where Γ(−,−) := HomE(−,−). We denote the first cohomology of this complex by
H2s(G ,A ) and the second cohomology by H3s(G ,A ).

Remark 2.7. Even though G andA are abelian groups, themorphisms inHomE(G ,A ) are
those in the topos E. In other words, they need not be morphisms of groups. Moreover,
H2s(G ,A ) is usually known as the symmetric subgroup of the second Hochschild
cohomology group [Mil17, Chapter 15]. The (non-standard) notationH3s(G ,A ) indicates
that this group is, in some sense, a variant of the third Hochschild cohomology which is
better adapted to commutative groups.
Let us recall the definition of cohomology for some object X in a Grothendieck

topos E. The cohomology groups Hi(X,−) are defined as the right derived functors of
Γ(X,−) := HomE(X,−) : Ab(E) → Ab. As usual, given A ∈ Ab(E), the group H1(X,A )

classifies A -torsors over X, where the group operation on the latter is the contracted
product [Gir71, §§III.2.4.2, III.2.4.5, III.3.5.4]. Moreover, a morphism f : Y → X in E

induces a morphism of groups f∗ : H1(X,A )→ H1(Y,A ). This map sends a A -torsor
P → X to the pullback f∗P → Y [Gir71, §V.1.5.3].

Proposition 2.8 (Breen). Let G and A be abelian groups in a Grothendieck topos E. Denote by
m : G × G → G the group operation of G . There exists a functorial exact sequence

0→ H2s(G ,A )→ Ext1(G ,A )→ H1m(G ,A )→ H3s(G ,A )→ Ext2(G ,A ),

where H1m(G ,A ) is the group of isomorphism classes of A -torsors P over G satisfying pr∗1 P ∧

pr∗2 P ' m∗P.

Before delving into the proof, let us explain the morphism Ext1(G ,A )→ H1m(G ,A ).
Since Ext1(−,−) is an additive bifunctor, an extension E of G by A always satisfies

m∗E = (pr1+pr2)
∗E ' pr∗1 E + pr∗2 E ,

where the sum on the right is the Baer sum of extensions. Such an extension defines a
A -torsor over G , which satisfies pr∗1 E ∧ pr∗2 E ' m∗E .

Proof of Proposition 2.8. The universal property of free objects gives that RΓ(X,−) '
RHomAb(E)(Z[X],−). In particular, the Breen-Deligne resolution yields an spectral
sequence

E
i,j
1 :

ni∏
r=1

Hj(G ri,r ,A ) =⇒ Exti+j(G ,A ),
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whose five-term exact sequence is precisely the one in the statement.

Remark 2.9. In [SGA7.I, Exposé VII, §1.2], Grothendieck proved that the category of
extensions of G byA is equivalent to a category of pairs (P, α), where P is aA -torsor over
G and α : pr∗1 P ∧ pr∗2 P → m∗P is an isomorphism of A -torsors over G × G making two
diagrams (imposing that P admits an associative and commutative group law) commute.
In particular, Ext1(G ,A ) is isomorphic to the group of isomorphism classes of such
pairs, and our invariants H2s(G ,A ) and H3s(G ,A ) govern how far the map

Ext1(G ,A )→ H1m(G ,A )

[P, α] 7→ [P]

is from being an isomorphism.
Even though the first terms of the Breen-Deligne resolution are explicit, the invariants

H2s(G ,A ) and H3s(G ,A ) are usually quite hard to compute. Somewhat surprisingly, the
following observation will suffice for their computations in many interesting cases.

Lemma 2.10. If every morphism Gn → A is constant, then both H2s(G ,A ) and H3s(G ,A )

vanish. In particular, this implies that Ext1(G ,A ) ' H1m(G ,A ).

Proof. Firstly, let us prove that H2s(G ,A ) vanishes. The kernel of

Γ(G 2,A )→ Γ(G 3,A )⊕ Γ(G 2,A )

consists of maps f : G 2 → A satisfying f(x + y, z) − f(y, z) = f(x, y + z) − f(x, y) and
f(x, y) = f(y, x). These conditions are tautological for constant morphisms. Now, the
image of

Γ(G ,A )→ Γ(G 2,A )

consists of maps of the form (x, y) 7→ g(x+ y)− g(x)− g(y), for some g : G → A . And
every constant map is also of this form. In particular, the cohomology vanishes.
Similarly, if every morphism Gn → A is constant, the map

Γ(G 3,A )⊕ Γ(G 2,A )→ Γ(G 4,A )⊕ Γ(G 3,A )⊕ Γ(G 3,A )⊕ Γ(G 2,A )⊕ Γ(G ,A )

acts as
(a, b) 7→ (−a,−a− b, a− b, 2b, b).

We conclude that its kernel vanishes and so does H3s(G ,A ).

In order to profit from this machinery, let us go back to the setting where E is the
category of sheaves on (Sch/k)fppf, or a localization thereof, and A = Gm. (Recall that
we follow the notations from Subsection 1.4.) Under these hypotheses, we can simplify
the preceding lemma even further. The result below is an application of the generalized
Rosenlicht’s lemma of González-Avilés [Gon17, Thm. 1.1].
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Lemma 2.11 (Rosenlicht’s lemma). Let G and H be connected algebraic groups over k, and
let S be a reduced k-scheme. Any morphism of S-schemes GS ×S HS → Gm,S is a product of
morphisms of S-schemes GS → Gm,S and HS → Gm,S. Similarly, any morphism of sheaves
(GdR×HdR)S → Gm,S over S is a product of morphismsGdR×S→ Gm,S andHdR×S→ Gm,S
over S.

Proof. The first statement follows from [Gon17, Thm. 1.1], so let us verify that the needed
hypotheses hold. Since G → Speck is of finite type and k is noetherian, G → Speck

is also of finite presentation. The morphism G → Speck is also smooth and clearly
surjective. All these properties are stable under base change, so GS → S is faithfully flat
and of finite presentation.
By [Mil17, Cor. 1.32], G is geometrically connected. Also, by [Stacks, Tags 056T and

020I], G is geometrically reduced. In particular, if η is a generic point of an irreducible
component of S, the schemeGS×S Specκ(η) ' G×k Specκ(η) is connected and reduced.
Of course HS → S satisfies the same properties. Also, GS ×S HS → HS → S is a

composition of smooth surjective morphisms and so is smooth and surjective. (By [EGA
IV.4, Cor. 17.16.3(ii)], this implies that it has an étale quasi-section.)

The same result holds for the de Rham spaces because the natural map G×H→ (G×
H)dR ' GdR×HdR is an epimorphismof sheaves. Indeed, since epimorphisms in topoi are
stable under base change, themapGS×SHS ' (G×H)S → (G×H)dR×S ' (GdR×HdR)S
is also epic. Then, given a map (GdR ×HdR)S → Gm,S, we apply the first result to the
composition GS ×S HS � (GdR ×HdR)S → Gm,S.

Proposition 2.12. LetS be a reducedk-scheme. Then everymorphism of sheavesLndR×S→ Gm,S
over S is constant.

Proof. Without loss of generality, we may assume that S = SpecR is affine and connected,
and that L is a product of a unipotent group and a split torus. Moreover, by Rosenlicht’s
lemma, it suffices to consider L to be Ga or Gm, and n = 1.
Recall that we have a short exact sequence 0 → L̂ × S → LS → LdR × S → 0 of

abelian sheaves over S,3 and so the universal property of quotients (of sets) says that the
morphisms LdR × S→ Gm,S correspond to maps LS → Gm,S which are constant on the
orbits of L̂× S.

For L = Ga, the reducedness of R gives that every morphism Ga,R → Gm,R is already
constant, yielding the result. Now, a map Gm,R → Gm,R is necessarily of the form
x 7→ axn for some a ∈ R× and n ∈ Z. The previous paragraph says that such a map
descends to the quotient if and only if, for every R-algebra B, the morphism

f : B× → B×

x 7→ axn

3We remind the reader that localization of topoi is exact [SGA4.I, Exposé IV, §5.2].
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satisfies f(xu) = f(x) for all x ∈ B× and every unipotent u ∈ B. In particular, it has to
send every such u to f(1) = a. Taking r > |n|, B = R[z]/(z− 1)r, and u = z ∈ Uni(B), we
obtain that n = 0. This finishes the proof.

Proposition 2.13. Let S be a k-scheme. Then every morphism of S-schemes AnS → Gm,S is
constant and every morphism of sheaves AndR × S→ Gm,S over S is constant.

Proof. The computation in the proof of Proposition 2.1 gives the first statement. Now,
if AndR × S → Gm,S is a morphism of sheaves over S, it follows that the composition
AnS → AndR × S→ Gm,S is constant. Since epimorphisms are stable under base change
in topoi, the map AnS → AndR × S is an epimorphism; proving that AndR × S→ Gm,S has
to be constant.

Remark 2.14. The multiplicative group did not play an important part in the previous
proposition. If A is an abelian scheme over S and B is a connected group scheme affine
over S, the same proof shows that any morphism An → B is constant. This implies that
the natural map

Ext1S(A,B)→ H1m(A,B)

is an isomorphism. This reproves and generalizes [Ser88, Thm. VII.5]. We also observe
that the local-to-global spectral sequence, as in the proof of Proposition 2.17, implies that
the sheafification map

Ext1T (A,B)→ Ext1(A,B)(T)

is an isomorphism for every S-scheme T . Many other results in [Ser88, Chapter VII] can
be generalized using these techniques.

Corollary 2.15. Let S be a reduced k-scheme. Then every morphism of sheavesGndR×S→ Gm,S
over S is constant.

Proof. The group G is an extension of an abelian variety A by a linear group L. In
particular, we obtain a short exact sequence of abelian sheaves over S

0→ LndR × S→ GndR × S→ AndR × S→ 0.

Now, the universal property of quotients (of sets) says that amorphism f : GndR×S→ Gm,S
factors through GndR × S→ AndR × S if and only if it is constant on the orbits of LndR × S.
In other words, it factors precisely if for every local section g of GndR × S the map

LndR × S→ Gm,S
x 7→ f(x+ g)

is constant. By Proposition 2.12, this condition is tautological and so we can always
factor GndR × S→ Gm,S as

GndR × S→ AndR × S→ Gm,S.

Proposition 2.13 then finishes the proof.
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All in all, we obtained that the natural map Ext1S(GdR,Gm)→ H1m(GdR × S,Gm,S) is
an isomorphism for reduced k-schemes S. The analogous result for G in the place of
GdR is a straightforward generalization of a result of Colliot-Thélène.

Proposition 2.16 (Colliot-Thélène). Let S be a reduced k-scheme. The natural map

Ext1S(G,Gm)→ H1m(GS,Gm,S)

is an isomorphism.

Proof. The reader can find a proof, due to Gabber, of injectivity on [Col08, Prop. 3.2] and
a proof of surjectivity on [Col08, Thm. 5.6]. In both cases the result was only proved for
S = Speck, but the same arguments work if we replace the classical Rosenlicht’s lemma
by Lemma 2.11.

Let G be an abelian sheaf on (Sch/k)fppf. As Ext1(G ,Gm) is the sheafification of the
presheaf S 7→ Ext1S(G ,Gm), there is a natural morphism of groups

Ext1S(G ,Gm)→ Ext1(G ,Gm)(S)

functorial on G and on k-schemes S. The next results establish that this map is an
isomorphism in many interesting situations.

Proposition 2.17. The sheafification map Ext1S(GdR,Gm)→ Ext1(GdR,Gm)(S) is always an
isomorphism. Moreover, Ext1S(G,Gm)→ Ext1(G,Gm)(S) is an isomorphism for all S when
G is an abelian variety, for reduced S when G is unipotent, and for irreducible geometrically
unibranch S when G is a torus.

Proof. Recall that the group of sections over S of GD = Hom(G ,Gm) isHomS(G ,Gm). In
particular there is a Grothendieck spectral sequence (usually called local-to-global spectral
sequence) inducing the following exact sequence

0→ H1(S,GD)→ Ext1S(G ,Gm)→ Ext1(G ,Gm)(S)→ H2(S,GD).

In particular, the vanishing of the Cartier dual GD (which holds for abelian varieties
and de Rham spaces) implies that the map Ext1S(G ,Gm) → Ext1(G ,Gm)(S) is an
isomorphism for all S.
Let us consider the remaining cases. The unipotent case reduces to G = Ga, and we

claim that Hi(S,“Ga) vanishes for all iwhen S is reduced. Firstly, recall that “Ga(SpecR)
is the nilradical of R. In particular, the sheaf condition implies that “Ga(S) vanishes for
reduced S. Now, the cohomology Hiét(S,

“Ga) can be computed on the small étale site of S
and [Stacks, Tag 03PC.(8)] implies that the restriction of “Ga to this site vanishes.
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As Ga,dR is the presheaf quotient of Ga by “Ga, we have the following morphism of
long exact sequences.

0 Γ(S,“Ga) Γ(S,Ga) Γ(S,Ga,dR) H1fppf(S,
“Ga) H1fppf(S,Ga) · · ·

0 Γ(S,“Ga) Γ(S,Ga) Γ(S,Ga,dR) H1ét(S,
“Ga) H1ét(S,Ga) · · ·

Given that S is reduced, we just showed that Hiét(S,“Ga) = 0 for all i. Moreover, since Ga
is smooth, the natural map Hifppf(S,Ga)→ Hiét(S,Ga) is an isomorphism. Using these
facts, a diagram chase gives that Hifppf(S,“Ga) vanishes for all i.
If G = T is a torus, the sheaf Ext1(T,Gm) vanishes [SGA7.I, Exposé VIII, Prop. 3.3.1]

and so the result follows from the fact that H1(S, X) = 0, where X := TD is the Cartier
dual of T , for irreducible and geometrically unibranch S [SGA7.I, Exposé VIII, Prop.
5.1].

Even though it is not going to be needed, we remark that the sheafification map
Ext1S(U,Gm)→ Ext1(U,Gm)(S) is also an isomorphism for a not-necessarily-reduced
affine scheme S [Bha22, Remark 2.2.18].

In order to understand the sheafification map Ext1S(G,Gm)→ Ext1(G,Gm)(S) for an
arbitrary connected algebraic group G, we will need the following vanishing result.

Proposition 2.18. Let S be a seminormal k-scheme. Then Ext1(U,Gm)(S) vanishes.

Proof. As seminormal schemes are reduced [Stacks, Tag 0EUQ], Propositions 2.16 and
2.17 imply thatExt1(U,Gm)(S) ' H1m(US,Gm,S). By Traverso’s theorem [Sad21, Lemma
4.3], we have that

p∗ : H1(S,Gm,S)→ H1(US,Gm,S),

where p : US → S is the structuremap, is an isomorphism. In particular,H1m(US,Gm,S) is
isomorphic to the subgroup of H1(S,Gm,S) constituted of the elements x ∈ H1(S,Gm,S)
satisfying p∗x ∈ H1m(US,Gm,S). But p∗x lies in H1m(US,Gm,S) if and only ifm∗p∗x =

pr∗1 p
∗x+ pr∗2 p

∗x. However, the morphisms

p ◦m, p ◦ pr1, p ◦ pr2 : US ×S US → S

are all equal to the structure map of U2S, which has a section S → U2S. In particular,
m∗p∗x = pr∗1 p

∗x+ pr∗2 p
∗x holds if and only if x = 0, finishing the proof.

Corollary 2.19. The sheafification map Ext1S(G,Gm)→ Ext1(G,Gm)(S) is an isomorphism
for regular k-schemes S.
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Proof. Since G is an extension of an abelian variety A by a linear group L (which is a
product of a torus and a unipotent group), we have a commutative diagram

HomS(L,Gm) Ext1S(A,Gm) Ext1S(G,Gm) Ext1S(L,Gm)

Hom(L,Gm)(S) Ext1(A,Gm)(S) Ext1(G,Gm)(S) Ext1(L,Gm)(S),

∼ ∼

whose rows are exact. Proposition 2.18 implies that Ext1(L,Gm)(S) vanishes and then
Proposition 2.17 gives that Ext1S(L,Gm) = 0 as well. The result now follows from a
diagram chase.

In order to have a bird’s-eye view of this subsection, consider the following definition.

Definition 2.20. We denote the abelian sheaf Ext1(GdR,Gm) byG\ and the abelian sheaf
Ext1(G,Gm) by G′.

Given a reduced k-scheme S, Corollary 2.15 and Proposition 2.17 give isomorphisms

G\(S) := Ext1(GdR,Gm)(S)
∼←− Ext1S(GdR,Gm)

∼−→ H1m(GdR × S,Gm,S)

that are functorial on G. In other words, G\(S) is isomorphic to the set of isomorphism
classes of line bundles (L ,∇) on GS with integrable connection relative to S satisfying
m∗(L ,∇) ' (L ,∇)� (L ,∇). Moreover, tensor products of connections give the group
structure of G\(S) and this isomorphism preserves inverse images of connections.
Similarly, given a regular k-scheme S, Proposition 2.16 and Corollary 2.19 yield

isomorphisms

G′(S) := Ext1(G,Gm)(S)
∼←− Ext1S(G,Gm)

∼−→ H1m(GS,Gm,S)

that are functorial on G. As above, this implies that G′(S) is the group of isomorphism
classes of line bundles L on GS satisfyingm∗L ' L �L .
The next two remarks will explain our choice of notation in Definition 2.20.

Remark 2.21 (The dual abelian variety). Let A be an abelian variety over k. The fact that
our A′ coincides with the dual abelian variety is usually called the Barsotti-Weil formula.
As Harari remarks in [Jos09, Footnote to Thm. 1.2.2], there seems to be no published
proof of this formula in the correct generality.

Given any scheme S (not necessarily over a characteristic zero field) and an abelian
scheme A over S, our methods show that

Ext1(A,Gm)(T)
∼←− Ext1T (A,Gm)

∼−→ H1m(AT ,Gm,T )

for all S-schemes T . (This holds for both the étale and the fppf topologies.)
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Remark 2.22 (The universal vector extension). As above, letA be an abelian variety over k.
Taking the long exact sequence in cohomology associated to the Cartier duality functor
(−)D := Hom(−,Gm) and the short exact sequence

0→ Â→ A→ AdR → 0,

we obtain that A\ is an extension of A′ byΩA. (In particular, A\ is representable by an
algebraic group.) We affirm that A\ is the universal vector extension of A′ in the sense of
[MM74, §I.1].

Let S be any k-scheme. By Propositions 2.13 and 2.17, we have natural isomorphisms

A\(S) := Ext1(AdR,Gm)(S)
∼←− Ext1S(AdR,Gm)

∼−→ H1m(AdR × S,Gm,S).

This implies that the presheaf S 7→ H1m(AdR × S,Gm,S) already satisfies fppf descent. It
follows that the sheafification in the definition of E\ [MM74, Def. I.4.1.6] is superfluous
and we obtain that A\ ' E\.
Mazur and Messing also define an abelian sheaf Ext\(A,Gm)which, by Remark 2.9,

is isomorphic to A\ = Ext1(AdR,Gm). In particular, our methods reprove their [MM74,
Prop. I.4.2.1], that compares Ext\(A,Gm) and E\. Finally, by [MM74, Props. I.2.6.7 and
I.3.2.3] we obtain that A\ is the universal vector extension of A′.

2.3. Vanishing of extension sheaves

In this subsection we compile a number of vanishing results for extension sheaves that
are going to be useful to us next. We recall the notations from Subsection 1.4: A is an
abelian variety, U is an unipotent group, and T is a torus with character group X. All
over a field k. Unless explicitly stated, the results of this subsection hold independently
of the characteristic of k.

Proposition 2.23. Both T ′ = Ext1(T,Gm) and Ext1(X,Gm) vanish.

Proof. This follows from [SGA7.I, Exposé VIII, Prop. 3.3.1].

Proposition 2.24. Suppose that k has characteristic zero, and let S be a seminormal k-scheme.
Then U′(S) vanishes.

Proof. This is in here pour mémoire, since it was already proven in Proposition 2.18.

Proposition 2.25. Let G be a formal group over k whose Cartier dual is an algebraic group (i.e.,
separated and of finite type). Then Ext1(G ,Gm) vanishes. In particular, if G is a connected
algebraic group over k, we have that Ext1(Ĝ,Gm) = 0.

Proof. The vanishing statement is [Rus13, Lemma 1.14].

For the reader’s convenience, we remark that the Cartier dual of a formal group G is
an algebraic group precisely if G (k) is of finite type [Rus13, Prop. 1.16].
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Proposition 2.26. The sheaf Ext2(A,Gm) vanishes.

Proof. This is [Bre75, Remarque 6 on page 340].

Corollary 2.27. If k has characteristic zero, then Ext2(AdR,Gm) vanishes.

Proof. The abelian sheaf Ext2(AdR,Gm) fits into the exact sequence

Ext1(Â,Gm)→ Ext2(AdR,Gm)→ Ext2(A,Gm),

and both extremities vanish by the previous propositions.

Remark 2.28 (Schanuel’s module). Recall from Proposition 2.24 that, over a characteristic
zero field k, the abelian group Ext1(Ga,Gm)(S) vanishes for seminormal k-schemes
S. In [Ros23, Remark 2.2.16], Rosengarten constructs an example (due to Gabber) of
an extension of Ga by Gm that does not split fppf-locally. Here we construct another
non-zero section of Ext1(Ga,Gm).
Let S = SpecR, where R = k[x, y]/(y2 − x3) is the coordinate ring of a cusp. This

is the prototypical example of a scheme that is not seminormal. As S is reduced,
Propositions 2.16 and 2.17 give that

Ext1(Ga,Gm)(S)
∼←− Ext1S(Ga,Gm)

∼−→ H1m(Ga,S,Gm,S) ⊂ Pic(R[t]).

Now, consider the fractional ideals I = (x, 1+ yt/x) and J = (x, 1− yt/x) of R[t]. Since

1 = x2t4 + (1+ xt2)(1− xt2) ∈ IJ = (x2, x+ yt, x− yt, 1− xt2),

the ideal I is invertible and so defines an element of Pic(R[t]). As one verifies directly,
the fractional idealm∗Jpr∗1 Ipr∗2 I is equal to R[t], proving that I is a non-zero element of
H1m(Ga,S,Gm,S).

Remark 2.29 (Schanuel’s module in positive characteristic). Let k be a field of characteristic
p > 0. Proposition 2.16 still holds in positive characteristic, and the previous remark
gives a k-scheme S such that Ext1S(Ga,Gm) ' H1m(Ga,S,Gm,S) 6= 0. However, it is no
longer true that Ext1(Ga,Gm)(S) ' Ext1S(Ga,Gm).
Given a k-algebra R, the colimit Rperf of the tower

R
x 7→xp−−−−→ R

x 7→xp−−−−→ R
x 7→xp−−−−→ · · ·

is the so-called colimit perfection of R. It is always a perfect k-algebra and the natural
map R→ Rperf is universal among morphisms from R to a perfect algebra. The kernel of
R→ Rperf is the nilradical of R and R→ Rperf is surjective if R is semiperfect.4

4A Fp-algebra R is said to be semiperfect if the Frobenius endomorphism is surjective.
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Now, [Bha22, Remark 2.2.18] proves that RΓ(R,“Ga) ' [R→ Rperf], where the complex
is in degrees zero and one. In particular, H2(R,“Ga) = 0 but H1(R,“Ga)may not vanish.
It follows that, for S = Speck[x, y]/(y2 − x3), the sheafification map

Ext1S(Ga,Gm)→ Ext1(Ga,Gm)(S)

is surjective but not injective. More precisely, Rosengarten has recently proved that the
sheaf Ext1(Ga,Gm) vanishes [Ros23, Prop. 2.2.14].

2.4. Commutative group stacks and their duals

Let S be a scheme and G be a commutative group stack over S. These objects were
originally defined by Deligne in [SGA4.III, Exposé XVIII] under the name champs de Picard
strictement commutatifs. Morally, G is an fppf stack over S endowed with a morphism
m : G×S G→ G satisfying some compatibilities akin to those satisfied by abelian groups.
Naturally, commutative group stacks form a 2-category and we denote by CGS its

homotopy category. By a truncated version of the Dold-Kan correspondence, there is
an equivalence between CGS and D[−1,0](Ab(E)), where E = Sh((Sch/S)fppf) [SGA4.III,
Exposé XVIII, Prop. 1.4.15]. Every object of D[−1,0](Ab(E)) is isomorphic to a complex
[H → G ] in degrees −1 and 0. Given such a complex, the equivalence is given by

[H → G ] 7→ [G /H ],

where H acts on G by translation. We will systematically identify commutative group
stacks and the associated two-term complexes.
In this subsection, we will say that GD = Hom(G,Gm), where Hom denotes the inner

Hom of commutative group stacks, is the 0-Cartier dual of G. Similarly, we say that
G∨ = Hom(G,BGm) is the 1-Cartier dual of G. Under the equivalence above, we have
that

[H → G ]D ' τ60RHom([H → G ],Gm)

[H → G ]∨ ' τ60RHom([H → G ],Gm[1]).

This description gives rise to some explicit computations, based on the simple observation
that a complexM only having cohomology in degree i is isomorphic to H i(M)[−i].

Proposition 2.30. Let G be an abelian sheaf on (Sch/S)fppf. Then BG∨ ' GD. If
Ext1(G ,Gm) = 0, then G∨ ' BGD. Similarly, if GD = 0, then G∨ ' Ext1(G ,Gm).

When S is the spectrum of a characteristic zero field k, the previous proposition, along
with the computations done in the previous sections, give that

BG∨
dR ' 0, BĜ∨ ' ΩG, BA∨ ' 0, BT∨ ' X, BX∨ ' T, BU∨ '”U∗,

G∨
dR ' G

\, Ĝ∨ ' BΩG, A∨ ' A′ T∨ ' BX, X∨ ' BT.
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One would like the 1-Cartier dual of U to be B”U∗, which is not true since U′ =
Ext1(U,Gm) 6= 0. Possible aiming to solve this issue, Laumon introduced the following
class of commutative group stacks in [Lau96]. (See also [Rus13] for the generality on
which we are working here.)

Definition 2.31. Let k be a field of arbitrary characteristic. A generalized 1-motive is a
two-term complex of abelian fppf sheaves [G → G], where G is a connected algebraic
group over k and G is a formal group over kwhose 0-Cartier dual is a connected algebraic
group.

A usual 1-motive, as in [Del74, §10.1], is the particular case of the definition above in
which k is algebraically closed, G is a semiabelian variety, and G is a finitely generated
free Z-module.

Let [G → G] be a generalized 1-motive. Recall that G fits into a short exact sequence

0→ L
ϕ−→ G

ψ−→ A→ 0,

uniquely defined up to isomorphism, where L is a connected linear group and A is an
abelian variety. In the following lemma we will consider the composition G → G→ A,
which we see as a generalized 1-motive [G → A].

Lemma 2.32. The complex RHom([G → A],Gm) has no cohomology in degrees 0 and 2.
Moreover, Ext1([G → A],Gm) is representable by a connected algebraic group over k.

Proof. We apply the functor RHom(−,Gm) to the distinguished triangle G → A→ [G →
A] to obtain the long exact sequence below.

0 Ext0([G → A],Gm) 0 GD

Ext1([G → A],Gm) A′ 0

Ext2([G → A],Gm) 0

The vanishing results follow directly, and the representability of Ext1([G → A],Gm) by
a commutative connected algebraic group follows by descent and [Mil17, Prop. 5.59].

Henceforth, we will denote the algebraic group representing Ext1([G → A],Gm) by K.
The following variant of 1-Cartier duality first appeared in [Del74] and was subsequently
generalized in [Lau96] and [Rus13].

Definition 2.33. Let [G → G] be a generalized 1-motive. We define its Laumon dual
[G → G]L to be the generalized 1-motive [LD → K], where LD → K is the connecting
morphism induced by the distinguished triangle L → [G → G] → [G → A] via the
0-Cartier duality functor.
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As the proposition below shows, the octahedral axiom gives rise to a comparison
between the duality functor defined by Laumon and 1-Cartier duality.

Proposition 2.34. There exists a natural map [G → G]L → [G → G]∨, whose cone is
Ext1(L,Gm).

Proof. The distinguished triangle defining the Laumon dual induces the distinguished
triangle below.

RHom([G → A],Gm[1])→ RHom([G → G],Gm[1])→ RHom(L,Gm[1])

By Lemma 2.32,Ext2([G → A],Gm) vanishes and soExt1([G → G],Gm)→ Ext1(L,Gm)

is an epimorphism. Then, [Bro21, Lemma 3.10] implies that the triangle

τ60RHom([G → A],Gm[1])→ τ60RHom([G → G],Gm[1])→ τ60RHom(L,Gm[1])

is also distinguished. Yet another application of Lemma 2.32 gives that

τ60RHom([G → A],Gm[1]) ' K

and so, up to a shift, the distinguished triangle just obtained is L∨[−1]→ K→ [G → G]∨.
Since LD ' τ60(L∨[−1]), there is a natural map LD → L∨[−1]making the square

LD K [LD → K]

L∨[−1] K [G → G]∨

commute and inducing a morphism of triangles. In this way we obtain the desired
comparison map.
Now, by [Stacks, Tag 08J5], we have a distinguished triangle LD → L∨[−1] →

Ext1(L,Gm). Finally, the octahedral axiom [Stacks, Tag 05R0] gives that the cone of
[G → G]L → [G → G]∨ is isomorphic to Ext1(L,Gm).

This proposition implies that the comparison map [G → G]L → [G → G]∨ is an
isomorphism if and only if Ext1(L,Gm) = 0. This holds whenever G is semiabelian,
proving that the Cartier dual on 1-motives defined byDeligne [Del74, §§10.2.11] coincides
with 1-Cartier duality. More generally, we have the corollary below.

Corollary 2.35. The comparison morphism [G → G]L → [G → G]∨ is an isomorphism if k has
positive characteristic. When k has characteristic zero, the comparison map is an isomorphism if
and only if G is semiabelian.

Proof. In positive characteristic the fppf sheafExt1(L,Gm) always vanishes due to [Ros23,
Prop. 2.2.17]. Now, if k has characteristic zero, L is a product of a torus and a vector
group U. In particular, Proposition 2.23 implies that Ext1(L,Gm) ' Ext1(U,Gm). By
Remark 2.28, the latter vanishes precisely when U does.
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When the base field k has characteristic zero and G = Ĝ, so that [Ĝ→ G] ' GdR, one
can give a more explicit description of K = Ext1([Ĝ→ A],Gm). The long exact sequence
associated to the extension

0→ Â→ A→ AdR → 0,

via the 0-Cartier duality functor, gives rise to the short exact sequence

0→ ΩA → A\ → A′ → 0.

Now, the quotient map ψ : G → A induces to a pullback map ψ∗ : ΩA → ΩG, and we
consider the pushout extension.

0 ΩA A\ A′ 0

0 ΩG (ΩG ×A\)/ΩA A′ 0

ψ∗

Proposition 2.36. The fppf sheaf K = Ext1([Ĝ → A],Gm) is isomorphic to the quotient
(ΩG ×A\)/ΩA.

Proof. Consider the following commutative diagram, whose rows are distinguished
triangles.

Ĝ A [Ĝ→ A]

Â A [Â→ A]

After applying RHom(−,Gm) and taking long exact sequences in cohomology we obtain
the commutative diagram with exact rows

0 ΩA A\ A′ 0

0 ΩG K A′ 0,

ψ∗

in which the map ψ∗ : ΩA → ΩG is the same one appearing in the definition of
(ΩG ×A\)/ΩA. We affirm that the square on the left is cocartesian. In other words, we
affirm that the complex

0→ ΩA → ΩG ×A\ → K→ 0,
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where we have the same action of ΩA on ΩG ×A\ as in the usual construction of the
pushout, is exact. Now, this complex fits into the larger commutative diagram below.

0 0

0 ΩG ΩG 0

0 ΩA ΩG ×A\ K 0

0 ΩA A\ A′ 0

0 0 0

Here, every column is clearly exact, and both the top and the bottom row are exact. It
follows that the middle row is exact as well.

2.5. The moduli of character sheaves

Per the previous subsection, Laumon has defined a Cartier dual [Ĝ→ G]L that, in some
sense, takes away the mysterious object U′ = Ext1(U,Gm) from inside of G\ = G∨

dR.
In this subsection we will see that even [Ĝ → G]L fails to be representable, due to the
presence of a formal group in it. Taking this out as well we obtain an abelian sheaf G[

that is representable by an algebraic space and satisfies G[(S) = G\(S) for seminormal
k-schemes S.

We begin by remarking that, since both formal completions and the de Rham functor
are exact, we have a commutative diagram

0 0 0

0 T̂ × Û Ĝ Â 0

0 T ×U G A 0

0 TdR ×UdR GdR AdR 0

0 0 0,
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in which every column and row is exact. By applying the Cartier duality functor
(−)D := Hom(−,Gm) and passing to the long exact sequences in cohomology, we obtain

0 0

0 GD X×”U∗
0 ΩA ΩG ΩT ×ΩU 0

0 A\ G\ T \ ×U\ 0

A′ G′ U′ 0

0 0 0.

ψ∗ ϕ∗

ψ∗ ϕ∗

ϕ∗ψ∗

ϕ∗

Once again, every row (including the snake-like line) and every column is exact. All
the needed computations and vanishing results were already studied in the previous
subsections. We remark that the morphisms in the columns all have a natural geometric
interpretation; they are given by

0 GD ΩG G\ G′ 0

χ dχ/χ (L ,∇) L

ω (OG, d+ω).

Recall the algebraic group K characterized in the previous subsection as the following
pushout extension.

0 ΩA A\ A′ 0

0 ΩG K A′ 0

ψ∗

Since K is a quotient ofΩG ×A\, we will denote its sections as (equivalence classes of)
pairs (ω, (L ,∇)), whereω ∈ ΩG and (L ,∇) ∈ A\.5 The universal property defining K

5This is a little abuse of notation since the sheafification involved in defining the quotient sheaf may be
non-trivial. That being said, Serre vanishing implies that K(S) really is the quotient ofΩG(S)×A\(S) by
ΩA(S) for affine S.
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allows us to define the morphism of groups

γ : K→ G\

[ω, (L ,∇)] 7→ (OG, d+ω)⊗OG ψ
∗(L ,∇).

The usefulness of K comes from the fact that we understand this morphism γ : K→ G\

relatively well. Indeed, γ is basically the comparison map between Laumon’s dual and
the 1-Cartier dual of GdR as in Proposition 2.34.

Proposition 2.37. The kernel of γ is X×”U∗ and its cokernel is U′.
Proof. Recall that Proposition 2.36 gives an isomorphism between the group K defined
as a pushout and the abelian sheaf Ext1([Ĝ→ A],Gm). We affirm that the diagram

K G\

Ext1([Ĝ→ A],Gm) Ext1([Ĝ→ G],Gm),

∼

γ

on which the map Ext1([Ĝ→ A],Gm)→ Ext1([Ĝ→ G],Gm) is induced by the natural
morphism of complexes [Ĝ→ G]→ [Ĝ→ A], commutes. This is the same as showing
that the diagram

Ext1([Â→ A],Gm)

Hom(Ĝ,Gm) Ext1([Ĝ→ A],Gm)

Ext1([Ĝ→ G],Gm)

commutes. The upper triangle clearly commutes by functoriality and the lower triangle
can be seen to commute by applying the functor RHom(−,Gm) to the morphism of
distinguished triangles

Ĝ G [Ĝ→ G]

Ĝ A [Ĝ→ A]

ψ

and taking long exact sequences in cohomology. Now, as in the proof of Proposition 2.34,
there are two dashed morphisms making the diagram

K [X×”U∗ → K] X×”U∗[1]
K G\ = G∨

dR (X×”U∗)∨
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commute: the comparison map of Proposition 2.34 and γ. The [Stacks, Tag 0FWZ]
implies that they coincide and then the desired result follows from Proposition 2.34.

Inasmuch as U′ has no k-points, this computation is very useful for obtaining concrete
information about character sheaves. Indeed, it implies that γ : K → G\ induces a
surjection on k-points.

Corollary 2.38. Every character sheaf on G is of the form (OG, d +ω) ⊗OG ψ
∗(L ,∇), for

someω ∈ ΩG and (L ,∇) ∈ A\(k).

The Proposition 2.37 yields a short exact sequence 0→ K/(X×”U∗)→ G\ → U′ → 0

which, along with Proposition 2.24, implies that G\ and K/(X ×”U∗) have the same
k-points. The sheaf K/(X×”U∗) also has no hope of being representable in general, due
to the presence of this”U∗ factor. However, since we have a short exact sequence

0→”U∗ → K/X→ K/(X×”U∗)→ 0

and H1(k,”U∗) vanishes, the sheaf K/X also has the same k-points as G\. (Even the same
S-points for seminormal k-schemes S.) This turns out to be the correct "coarse moduli
space".

Definition 2.39. We denote by G[ the abelian sheaf K/X, where X ↪→ K is the morphism
sending χ ∈ X to [ω, (L ,∇)], whereω is any element ofΩG satisfying ϕ∗ω = dχ/χ and
(L ,∇) is the unique element of A\ satisfying ψ∗(L ,∇) ' (OG, d−ω).

We remark that U[ ' ΩU ' U∗, T [ ' T \ ' ΩT/X ' t∗/X, and A[ ' A\. The middle
one is a (non-quasi-separated) group algebraic space, and the other two are algebraic
groups. Just as G\ is a A\-torsor over T \ ×U\, the same holds for the [-sheaves.

Theorem 2.40. There exists a short exact sequence 0→ A[ → G[ → T [ ×U[ → 0.

Proof. Consider the map K→ ΩT ×ΩU induced by ϕ∗ : ΩG → ΩT ×ΩU and 0 : A\ →
ΩT ×ΩU. We affirm that the composition K→ ΩT ×ΩU → ΩT/X×ΩU descends to
the quotient K/X. By the universal property of the quotient, we need to verify that the
composition

X→ X×”U∗ → K→ ΩT ×ΩU → ΩT/X×ΩU
is zero. Applying the functor RHom(−,Gm) to the morphism of distinguished triangles

L [L̂→ L] L̂[1]

L [Ĝ→ G] [Ĝ→ A]

and taking long exact sequences in cohomology, we obtain that the compositionX×”U∗ →
K→ ΩT ×ΩU is our well-known map which already appears on Page 23. In particular,
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this composition is the product of X → ΩT and ”U∗ → ΩU. It follows that our large
composition vanishes and we obtain a map K/X→ ΩT/X×ΩU.

Now, we have everymorphism needed to consider the following commutative diagram

0 0 0

0 0 X X 0

0 A\ K ΩT ×ΩU 0

0 A\ K/X ΩT/X×ΩU 0

0 0 0,

whose columns are clearly exact. As the top row is also exact, by the nine-lemma, it
suffices to prove that the middle row is exact. This holds by an application of the snake
lemma in the pushout extension defining K.

The theorem above finally implies that G[ is "a coarse moduli space" for G\, in the
sense that G[ is represented by an algebraic space which has the same k-points as G[.6
We emphasize that, as in [Stacks, Tag 025Y] and contrarily to [LM00, Déf. 1.1], we do not
suppose that algebraic spaces are quasi-separated.

Corollary 2.41. The abelian sheaf G[ is represented by a finite type smooth connected group
algebraic space. Moreover, it satisfies dimG 6 dimG[ 6 2 dimG with equality on the left if and
only if G is affine, and equality on the right if and only if G is proper.

Proof. The previous theorem implies that G[ → T [ × U[ is a A[-torsor. In particular,
fppf-locally on T [ ×U[, the sheaf G[ is isomorphic to the product A[ × T [ ×U[, which is
an algebraic space. Then [Stacks, Tag 04SK] gives that G[ is an algebraic space as well.
Since A[ ' A\ is an extension of A ′ by ΩA, descent implies that A[ ' A\ is smooth
and of finite type. By [Mil17, Prop. 5.59], A[ ' A\ is also connected. Using the exact
sequence of Theorem 2.40, the same arguments show that G[ is a finite type smooth
connected group algebraic space.

Finally, since dimensions add on extensions, we have that dimG[ = dim T [ + dimU[ +

6However, we do not know if there is a natural morphism G\ → G[, much less if this satisfies the universal
property.
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dimA[. Then,

dim T [ = dimΩT/X = dimΩT = dim T

dimU[ = dimU∗ = dimU

dimA[ = dimA\ = dimΩA + dimA ′ = 2 dimA,

and so dimG[ = dim T + dimU+ 2 dimA = dimG+ dimA.

3. Generic vanishing

This section is devoted to the proof of our main result Theorem B. Motivated by the
deep analogies between holonomicD-modules and `-adic perverse sheaves in positive
characteristic, we will use notations concerning the six-functor formalism of holonomic
D-modules that highlights their similarities.

Our notations are mostly standard with the exception of two points. Firstly, we denote
by ⊗X a dual version of the derived tensor product ⊗L

OX
. We focus on the former since it

corresponds to (and has the same properties as) the usual tensor product of constructible
sheaves. Moreover, just as shifted local systems are perverse sheaves, we systematically
consider integrable connections in degree dimX.7
We denote by Lα the (shifted) character sheaf of G corresponding to a point α ∈

G[(k) ' G\(k). When G is the additive group Ga, we have that G[
a ' Ga and so

the character sheaf corresponding to α ∈ G[
a(k) = k is Lα = (OGa , d + α dt)[−1] '

DGa/DGa(∂t − α)[−1]. Similarly, when G is the multiplicative group Gm, we have
that G[

m ' Ga/Z and so the character sheaf corresponding to α ∈ G[
m(k) = k/Z is

Lα = (OGm , d + α dt/t)[−1] ' DGm/DGm(t∂t − α)[−1]. We rewrite Theorem B using
these notations.

Theorem 3.1. LetM be a holonomic D-module over G. There exists a dense open subspace V of
G[ such that

Hi(G,M⊗G Lα) = Hic(G,M⊗G Lα) = 0 for i 6= 0;
H0(G,M⊗G Lα) ' H0c(G,M⊗G Lα)

for every α ∈ V(k).

The equivalence between Theorems B and 3.1 follows from Proposition B.6. More
generally, we refer the reader to the Appendix B, which contains a table comparing our
notations with the standard references, for more information. Finally, throughout this
section we suppose that k is an algebraically closed field of characteristic zero.

7Both ideas are already implicit in [KL85].
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3.1. Relative generic vanishing

Given a connected algebraic group G over k, we will say that G satisfies relative generic
vanishing if, for every smooth variety S over k and every objectM of Dbh (DG×S), there
exists a dense open subspace V of G[ such that the forget-supports map

prS,!(M⊗G×S pr+GLα)→ prS,+(M⊗G×S pr+GLα),

where prS : G× S→ S and prG : G× S→ G are the projections, is an isomorphism for
every α ∈ V(k). In this subsection we will establish some methods for proving such
results.
Let X be a locally of finite type algebraic space over k. Our first lemma says that a

dense open subset of X(k), with its natural Zariski topology, gives rise to a dense open
subset of X. Even though this result is surely well-known, we could not find a proof in
the literature and so we provide one.

Lemma 3.2. Let X be a locally of finite type algebraic space over k. The natural map X(k)→ |X|

is a bĳection onto the finite type points of X, and we use this bĳection to put a topology on X(k).
Then, the topological space X(k) is very dense in |X|.

Proof. By [Stacks, Tag 03E1], the map X(k)→ |X| is injective. Now, let SpecK→ X be a
finite type point ofX. SinceX→ Speck is locally of finite type, so is SpecK→ X→ Speck.
Zariski’s lemma then implies that K/k is a finite extension and so K = k, proving that
the image of X(k)→ |X| is the set of finite type points. The last statement is [Stacks, Tag
06EK].

For the reader’s convenience, we remark that [GW10, Def. 3.34] has some different
characterizations of very dense subsets. The first one implies that, given an open subset
V ′ of X(k), there exists an open subset V of X such that V ′ = V ∩ X(k). It is clear that if
V ′ is dense, so is V .

Lemma 3.3. Let G and H be two connected algebraic groups over k. If G and H satisfy relative
generic vanishing, then so does G×H.

Proof. Consider the following commutative diagram, in which every morphism is a
projection.

G×H× S G×H G

S H× S H

p

q q1

q2
f

p2 p1

We write a character sheaf on G×H as L(α,β) = Lα �Lβ for some (α,β) ∈ G[(k)×
H[(k) ' (G×H)[(k). LetM be an object of Dbh (DG×H×S). Our goal is to show that the
forget-supports map

p!(M⊗G×H×S q+L(α,β))→ p+(M⊗G×H×S q+L(α,β))

28

https://stacks.math.columbia.edu/tag/03E1
https://stacks.math.columbia.edu/tag/06EK


is an isomorphism for most α and β. By the commutativity of the diagram above, this is
the same as

p2,!f!(M⊗ q+q+1Lα ⊗ q+q+2Lβ)→ p2,+f+(M⊗ q+q+1Lα ⊗ q+q+2Lβ),

where we ignore the subscripts in tensor products to simplify notation.
Using that p1 ◦ f = q2 ◦ q, the projection formula gives an isomorphism

p2,!f!(M⊗ q+q+1Lα ⊗ q+q+2Lβ) ' p2,!(f!(M⊗ q+q+1Lα)⊗ p+1Lβ).

Now, our hypothesis on G gives a dense open set V ⊂ G[ such that

p2,!(f!(M⊗ q+q+1Lα)⊗ p+1Lβ) ' p2,!(f+(M⊗ q+q+1Lα)⊗ p+1Lβ)

for all α ∈ V(k). For each such α, our hypothesis on H gives a dense open set Uα ⊂ H[

such that

p2,!(f+(M⊗ q+q+1Lα)⊗ p+1Lβ) ' p2,+(f+(M⊗ q+q+1Lα)⊗ p+1Lβ)

holds for all β ∈ Uα(k). Another application of the projection formula finishes the
proof.

Given that a connected affine algebraic group L over k is necessarily a product of
copies of Ga and Gm, the preceding lemma implies that relative generic vanishing for L
follows from relative generic vanishing for Ga and Gm. The next lemmas will show that
it even suffices to consider S = Speck.

Lemma 3.4. Suppose that G satisfies relative generic vanishing for affine schemes S smooth over
k. Then G satisfies relative generic vanishing in general.

Proof. Let jl : Ul → S be a finite open cover of S constituted of affine schemes Ul.
Applying proper and smooth base change to the diagram

G×Ul G× S

Ul S,
jl

prSprUl

idG×jl

we obtain that j+l prS,! ' prUl,!(idG×jl)
+ and j+l prS,+ ' prUl,+(idG×jl)

+. It follows
that the restriction of the forget-supports map

prS,!(M⊗X pr+GLα)→ prS,+(M⊗X pr+GLα) (∗)

to Ul is precisely the same morphism with S replaced by Ul. In particular, for each l
there exists an open dense subset Vl of U∗ making j+l (∗) an isomorphism for α ∈ Vl(k).
All in all, we obtain that ∗ is an isomorphism for α ∈ (

⋂
l Vl)(k) =

⋂
l Vl(k).
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For the next lemma, recall that if p : X→ Y is an affine morphism of schemes, then the
underived direct image functor p∗ : QCoh(X)→ QCoh(Y) is faithful. Indeed, under the
equivalence QCoh(X) ' QCoh(p∗OX) it becomes the forgetful functor.

Lemma 3.5. Let p : X→ Y be a smooth affine morphism between smooth varieties over k. Then
p+ : Dbh (DX)→ Dbh (DY) is conservative and faithful.

Proof. Let M be an object of Dbh (DX) and suppose that p+M = 0. Since p+M '
p∗(Ω

•
X/Y ⊗

L
OX
M)[d] [Dim+00, Prop. 1.4], where d is the relative dimension of p, the

faithfulness of p∗ implies thatΩ•X/Y ⊗
L
OX
M vanishes. Now, ifM is non-zero, let i ∈ Z

be the smallest number such thatMi 6= 0. The left-most term in Ω•X/Y ⊗
L
OX
M isMi,

contradicting the hypothesis thatM is non-zero. In other words, p+ is conservative.
Similarly, if ϕ : M→ N is a morphism in Dbh (DX) satisfying p+ϕ = 0, the faithfulness

of p∗ implies thatΩ•X/Y ⊗
L
OX
ϕ vanishes. Zariski-locally this morphism is nothing but

the map Md → Nd acting as ϕ on each component. It follows that ϕ has to vanish,
proving that p+ is faithful.

Suppose that L is a one dimensional connected affine algebraic group over k. (Such a
group is necessarily isomorphic to Ga or Gm, but both cases can be treated uniformly
for now.) Consider a compactification

L L Z

Speck

p

j i

p q

of L, and remark that we can suppose Z to be either a point or a disjoint union of two
points. In any case, q : Z→ Speck is a smooth affine morphism.

Lemma 3.6. Let N be an object of Dbh (DL). Then the forget-supports map j!N → j+N is an
isomorphism if and only if the forget-supports map p!N→ p+N is.

Proof. The cone of the forget-supports map j!N → j+N is i+i+j+N and, since i+i+ is
isomorphic to the identity functor, it vanishes if and only if i+j+N does. Similarly, the
cone of p!N→ p+N is

p+i+i
+j+N ' q+i+j+N,

which, by the previous lemma, vanishes precisely when i+j+N does.

Putting together all of the preceding lemmata, we obtain the main result of this
subsection.

Proposition 3.7. Let L be a connected affine algebraic group over k. In order to prove that L
satisfies relative generic vanishing, we may suppose that L has dimension one and that S = Speck.

30



Proof. Suppose that L is one-dimensional and that, for all N ∈ Dbh (DL), there exists a
dense open subset V of L[ such that the forget-supports map

p!(N⊗L Lα)→ p+(N⊗L Lα)

is an isomorphism for α ∈ V(k). Finally, let S be an affine scheme smooth over k and let
M be an object of Dbh (DL×S).

Consider the following diagram, whose squares are cartesian and whose columns are
recollement sequences.

L× S L

L× S L

Z× S Z

j

i

prZ

i×idS

j×idS

prL

prL

Our supposition, together with Lemma 3.6, gives a dense open subset V ⊂ L[ such that
i+j+(prL,+(M)⊗LLα) = 0 for all α ∈ V(k). Fix some α ∈ V(k). By smooth base change
and the projection formula,

0 = pr+Z i
+j+(prL,+(M)⊗L Lα)

= (i× idS)
+ pr+

L
j+(prL,+(M)⊗L Lα)

= (i× idS)
+(j× idS)+ pr+L (prL,+(M)⊗L Lα)

= (i× idS)
+(j× idS)+ pr+L prL,+(M⊗L×S pr+L Lα).

Since S is affine, Lemma 3.5 implies that the functor prL,+ is faithful. This is equivalent
to the counit pr+L prL,+ → id being a point-wise epimorphism. Since epimorphisms
in triangulated categories split, they are absolute (preserved by any functor) and we
conclude that

(i× idS)+(j× idS)+ pr+L prL,+(M⊗L×Spr+L Lα)→ (i× idS)+(j× idS)+(M⊗L×Spr+L Lα)

is an epimorphism. It follows that its codomain vanishes, and so does the cone of the
forget-supports map prS,!(M⊗L×S pr+L Lα)→ prS,+(M⊗L×S pr+L Lα).

3.2. Unipotent groups

LetU be an n-dimensional unipotent group. We recall thatU[ is isomorphic to the vector
space dual U∗. In particular, the latter parametrizes character sheaves on U. The key
tool of this subsection is the Fourier transform for holonomicD-modules, and so we give
a quick sketch of its main properties. (We refer the reader to [Dai00] for proofs.)
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Consider the evaluation map σ : U × U∗ → A1 and the exponential character sheaf
E := (OA1 , d+ dx)[−1] on A1. We define the Fourier transform functor FTU : Dbh (DU)→
Dbh (DU∗) as

FTU := pr2,+(pr
+
1 (−)⊗U×U∗ σ+E [n]),

where pr1 : U × U∗ → U and pr2 : U × U∗ → U∗ are the canonical projections. This
operation has a plethora of wonderful properties, but we will content ourselves with
explaining those strictly needed for our purposes:

• The functor FTU is t-exact with respect to the canonical t-structures on Dbh (DU)

and Dbh (DU∗);

• Let FTU,! := pr2,!(pr
+
1 (−)⊗U×U∗ σ+E [n]) be the "proper Fourier transform". The

forget-supports map FTU,! → FTU is an isomorphism;

• We have an isomorphism of functors DU∗ ◦ FTU ' inv+U∗ ◦FTU ◦ DU, where D

denotes the duality functor.

The reason for the importance of the Fourier transform on the generic vanishing
theorem is the fact that FTU(M) contains at once the data of all cohomology groups of
every character twist ofM.

Proposition 3.8. LetM be an object of Dbh (DU). Then,

p!(M⊗U Lα) ' α+ FTU(M)[−n] and p+(M⊗U Lα) ' α! FTU(M)[n]

hold for every α ∈ U∗(k).

Proof. An application of the proper base change theorem on the cartesian diagram

U× Speck U×U∗

U

Speck U∗

p

pr1

α

id×α

pr2

gives that α+ ◦ pr2,! ' p! ◦ pr1,! ◦ (id×α)+. Applying pr+1 M⊗U×U∗ σ
+E to both sides,

we obtain
α+ FTU(M)[−n] ' p!pr1,!N,

where N = (id×α)+ pr+1 M ⊗U×Speck (id×α)
+σ+E . Since (id, p) is the inverse of pr1,

the functors pr1,! and (id, p)+ are isomorphic. In particular,

pr1,!N ' (id, p)+(id×α)+ pr+1 M⊗U (id, p)+(id×α)+σ+E 'M⊗U σ(−, α)+E ,
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for pr1 ◦ (id×α) ◦ (id, p) = id and σ ◦ (id×α) ◦ (id, p) = σ(−, α).
Upon a choice of coordinates, both U and U∗ become isomorphic to Gna , and so the

map σ(−, α) acts as
(x1, . . . , xn) 7→ α1x1 + . . .+ αnxn.

It follows that σ(−, α)+E ' Lα andwe obtain the first desired isomorphism. The second
then follows by duality.

Now, the generic vanishing becomes a direct consequence.

Corollary 3.9. LetM be an object of Dbh (DU). There exists a dense open subset V ⊂ U∗ such
that the forget-supports map

Hic(G,M⊗U Lα)→ Hi(G,M⊗U Lα)

is an isomorphism for all α ∈ V(k) and all i ∈ Z. Moreover, ifM is concentrated in degree zero,
those cohomology groups vanish for i 6= 0.

Proof. As FTU(M) is a bounded complex of holonomic D-modules, there exists a dense
open subset V ⊂ U∗ such that H i(FTU(M)|V) is locally free for all i ∈ Z. Then, if
α ∈ V(k), we have that [Bor+87, Rem. in §VI.4]

Hi(G,M⊗G Lα) 'H i+n(α! FTU(M)|V) ' α∗H i(FTU(M)|V)

and
Hic(G,M⊗G Lα) 'H i−n(α+ FTU(M)|V) ' α∗H i(FTU(M)|V).

The result is now clear.

Combining the Proposition 3.7 with Corollary 3.9, we obtain the relative generic
vanishing theorem for unipotent groups.

Proposition 3.10. Let S be a smooth variety over k and letM be an object of Dbh (DX), where
X = U× S. There exists a dense open subspace V of U[ such that the forget-supports map

prS,!(M⊗X pr+ULα)→ prS,+(M⊗X pr+ULα),

where prS : X→ S and prU : X→ U are the projections, is an isomorphism for every α ∈ V(k).

We remark that one could define a relative Fourier transform FTX : D
b
h (DU×S) →

Dbh (DU∗×S) and it would still be true that prS,!(M⊗X pr+ULα) ' (α, idS)
+ FTX(M)[−n].

However, even though there exists an open dense subset of U∗ × S over which FTX(M)

has locally free cohomology sheaves, this subset may not be of the form V × S for some
open dense subset V of U∗.
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3.3. Tori

Let T be a torus over k. Inspired by [KL85, Thm. 6.5], we will use monodromical
arguments to prove relative generic vanishing for tori.

Proposition 3.11. Let S be a smooth variety over k and letM be an object of Dbh (DX), where
X = T × S. There exists a dense open subspace V of T [ such that the forget-supports map

prS,!(M⊗X pr+T Lα)→ prS,+(M⊗X pr+T Lα),

where prS : X→ S and prT : X→ T are the projections, is an isomorphism for every α ∈ V(k).

Due to Proposition 3.7, one can suppose that T = Gm and that S = Speck. Also, by
Lemmas 3.2 and 3.6, it suffices to obtain a finite subset F ⊂ k/Z such that

j!(M⊗Gm Lα)→ j+(M⊗Gm Lα)

is an isomorphism for α ∈ (k/Z) \ F, where j : Gm → P1 is the usual compactification of
Gm.

Gm P1 {0,∞}

Speck

p
p

j i

Moreover, as both j! and j+ are exact functors, we may suppose thatM is concentrated
in degree zero.

The following lemma gives a general criterion for dealing with these kinds of problems
using the V-filtration of M. Kashiwara, B. Malgrange and C. Sabbah.

Lemma 3.12. Let j : U → X be an open immersion between smooth k-varieties, with comple-
mentary closed immersion i : Z→ X. Suppose that Z is smooth and of codimension 1. Given a
holonomic D-module N over U, the forget-supports map

j!N→ j+N

is an isomorphism if and only if grV0 (j+N) vanishes.

Since the V-filtration is the generalization of nearby and vanishing cycles to holonomic
D-modules, we will give a proof of this result focusing on standard properties of nearby
and vanishing cycles. Once again, we refer the reader to Appendix B for more on the
V-filtration.

Proof of Lemma 3.12. In this proof we will adopt the usual notations for the six-functors
and nearby / vanishing cycles in either the analytic setting or in `-adic cohomology. We
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recall that grV0 (j+N) is the D-module analog of the unipotent vanishing cycle functor
φ1(j∗N). Now, a first observation is that we have a recollement distinguished triangle

j!N→ j∗N→ i∗i
∗j∗N,

and so the forget-supports map is an isomorphism if and only if i∗i∗j∗N = 0. Moreover,
i∗i∗ is isomorphic to the identity functor and so this happens precisely when i∗j∗N
vanishes.

Now, the usual theory of nearby and vanishing cycles gives two other distinguished
triangles:

i∗j∗N→ ψ1(j∗N)
can−−→ φ1(j∗N)

i!j∗N→ φ1(j∗N)
var−−→ ψ1(j∗N).

The first triangle shows that the forget supports map is an isomorphism if and only if can
is. Since i!j∗ = 0, the second triangle gives that ψ1(j∗N) and φ1(j∗N) are isomorphic. In
particular, if φ1(j∗N) vanishes, then so does ψ1(j∗N) and can is an isomorphism.

Conversely, if the forget supports map is an isomorphism, our reasoning shows that
can is an isomorphism as well. Now, var is also an isomorphism (since i!j∗ = 0) and then
so is can ◦ var. But this morphism is nilpotent, which implies that it is zero. It follows
that φ1(j∗N) = 0.

Consider the following commutative diagram, in which every row is a recollement
sequence.

A1 P1 {∞}

Gm P1 {0,∞}

A1 P1 {0}

j i

h0

h∞
j∞ i∞

j0 i0

j

j

As theproof of Lemma3.12 shows, the forget-supportsmap j!N→ j+N is an isomorphism
if and only if i+j+N vanishes. Now, by the Mayer-Vietoris distinguished triangle, we
have that

i+j+N ' h0,+ h+0 i
+︸ ︷︷ ︸

i+0

j+N⊕ h∞,+ h+∞i+︸ ︷︷ ︸
i+∞

j+N.

In particular, i+j+N vanishes precisely if both h0,+i+0 j+N and h∞,+i+∞j+N do. But h0
and h∞ are closed immersions, and so this happens if and only if i+0 j+N = i+∞j+N = 0.
At this point, we can continue the proof of Lemma 3.12 as usual to conclude that

j!N → j+N is an isomorphism if and only if grV0 (j+N) vanishes for both V-filtrations.
We are finally in position to finish the proof of Proposition 3.11.
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Proof of Proposition 3.11. Thediscussion above shows that it suffices to prove the following
statement: given a holonomic D-moduleM over Gm, there is a finite subset F ⊂ k/Z
such that

grV0 (j+(M⊗Gm Lα)) = 0

for all α ∈ (k/Z) \ F, and for both embeddings of A1 in P1.
Let us first analyse the embedding of A1 in P1 with complement {0}, along with its

V-filtration. Using the notations of the diagram above, if t is the global coordinate of
P1 \ {∞}, we have that8

[j+(M⊗Gm Lα)]P1\{∞} ' j+(M⊗Gm Lα)

' j+(M⊗!
Gm Lα)[2]

' j+M⊗!
A1 j+Lα[2]

' j+M⊗L
OA1

j+Lα[1]

' j+M⊗L
OA1

j+ [DGm/DGm(t∂t − α)] .

Since j+[DGm/DGm(t∂t − α)] ' j∗[DGm/DGm(t∂t − α)] is a free OA1(∗{0})-module, and
tensoring over OA1 is the same as tensoring over OA1(∗{0}), we conclude that

[j+(M⊗Gm Lα)](P1\{∞}) ' j+M⊗OA1 (∗{0}) j+[DGm/DGm(t∂t − α)].

In particular, the element t∂t in the ring of differential operators of P1 \ {∞} acts as

m⊗ 1 7→ t∂t(m)⊗ 1+m⊗ t∂t(1) = t∂t(m)⊗ 1+m⊗ α1 = (t∂t + α)(m⊗ 1).

Finally, [Sab87, Prop. 2.3.2] implies that grV0 (j+(M⊗Gm Lα)) ' grVα(j+M).
If we had chosen the embeddingwith complement {∞}, the operator t∂twould become

−t∂t and so we would have grV0 (j+(M ⊗Gm Lα)) ' grV−α(j+M). In particular, both
vanish unless ±α is a zero of the Bernstein-Sato polynomials associated to i0 and i∞.
This finishes the proof.

3.4. Abelian varieties

Let A be an abelian variety over k. The generic vanishing theorem for A follows directly
from the Fourier-Mukai transform defined by Laumon [Lau85; Lau96], together with
Schnell’s work on holonomic D-modules on abelian varieties [Sch15]. We refer to
Subsection A.2 for the needed facts on relative D-modules.

The identity map A\ → A\ defines a section in Ext1(AdR,Gm)(A\) that, according to
our interpretation explained after Definition 2.20, is a line bundle P on A×A\ endowed
8Let j : U→ X be an open immersion and letM,N ∈ Dbh (DU). By recollement and the projection formulawe
have that j!M⊗X j!N ' j!(M⊗U j+j!N) ' j!(M⊗UN). Dually, we have that j+M⊗!

X j+N ' j+(M⊗!
UN).

This formula was used in the third isomorphism below.
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with an integrable connection relative to A\. In other words, P is a D-module on A×A\

relative to A\. This is the kernel of the so-called Fourier-Mukai transform

FMA : Dqc(DA)→ Dqc(OA\)

M 7→ pr2,+((pr1, q)
∗M⊗O

A×A\
P).

All the morphisms involved in the definition above are the projections appearing in the
cartesian square

A×A\ A

A\ Speck.

pr1

pr2

q

p

The Fourier-Mukai transform restricts to a functor Dbcoh(DA) → Dbcoh(OA\) [Lau96,
Cor. 3.1.3] that, similarly to the Fourier transform for unipotent groups in Subsection 3.2,
satisfies the proposition below.

Proposition 3.13. LetM be an object of Dbcoh(DA). Then,

p+(M⊗A Lα) ' Lα∗ FMA(M)

hold for every α ∈ A\(k).

Proof. The same exact proof as in Proposition 3.8 works here. The reader may find the
needed base change and projection formula theorems in [Vig21].

In the unipotent case, the analogous of the preceding proposition implied the generic
vanishing theorem via two key properties of the Fourier transform: the fact that it
preserves holonomicity and that it is t-exact with respect to the standard t-structures.
Here, the former does not make sense and the latter is false.

Schnell’s main idea was to consider a different t-structure on Dbcoh(OA\); the perverse
t-structure defined by Kashiwara in [Kas04].

Theorem 3.14 (Kashiwara, Arinkin-Bezrukavnikov). Let X be a smooth variety over k. The
following pair of full subcategories
mDbcoh(OX)

60 := {M ∈ Dbcoh(OX) | codimSuppH i(M) > 2i for all i ∈ Z}
mDbcoh(OX)

>0 := {M ∈ Dbcoh(OX) | codimSuppRiHom(M,OX) > 2i− 1 for all i ∈ Z}

defines a bounded t-structure on Dbcoh(OX).

Proof. See [Kas04, Thm. 5.9], [AB10, Thm. 3.10] and [Sch15, Lemma 18.4].

The main result in [Sch15] is the fact that, when restricted to Dbh (DA), the Fourier-
Mukai transform is a t-exact functor with respect to the standard t-structure on Dbh (DA)

and the perverse t-structure on Dbcoh(OA\). More precisely, [Sch15, Thm. 19.1] gives the
description below.
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Theorem 3.15 (Schnell). LetM be an object of Dbh (DA). Then, for an integer i, M lies in
Dbh (DA)

6i if and only if FMA(M) lies in mDbcoh(OA\)6i. Similarly,M lies in Dbh (DA)
>i if

and only if FMA(M) lies in mDbcoh(OA\)>i.

This incredible theorem, along with the Proposition 3.13, subsumes the generic
vanishing theorem for abelian varieties.

Corollary 3.16. LetM be a holonomic D-module over A. There exists a dense open subspace V
of A\ such that

Hi(A,M⊗A Lα) = 0

for every i 6= 0 and every α ∈ V(k).

Proof. Just as in the proof of Corollary 3.9, it suffices to obtain a dense open subspace
of A\ over which FMA(M)|V is a locally free sheaf concentrated in degree zero. Now,
Schnell’s theorem says that FMA(M) is a perverse coherent sheaf and so we have

codimSuppH i(FMA(M)) > 2i

for every integer i. This inequality, alongwith [Sch15, Lemma 18.5], implies thatFMA(M)

is concentrated in degree zero over a dense open subspace. The result then follows by
generic freeness [Stacks, Tag 051S].

We remark that a version of Corollary 3.16 for regular holonomic D-modules over
abelian varieties has also been proven by Krämer and Weissauer [KW15, Thm. 1.1].

3.5. The general case

We now go back to the general case in which G is a connected algebraic group over k.
Recall that such a group necessarily fits into a short exact sequence

0→ T ×U ϕ−−−→ G
ψ−−−→ A→ 0,

in which T is a torus, U is a unipotent group, and A is an abelian variety. We denote
by Lω the character sheaf (OG, d + ω)[−dimG] defined by an invariant differential
ω ∈ ΩG. Using this notation, the main observation needed for this subsection comes
from Corollary 2.38: every character sheaf on G is of the form

Lω ⊗G ψ+Lα,

for someω ∈ ΩG and α ∈ A[(k).
We begin the proof of the generic vanishing theorem by a lemma that generalizes

Propositions 3.10 and 3.11.
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Lemma 3.17. LetM be an object of Dbh (DG). There exists a dense open subset V ofΩT/X×ΩU
such that the forget-supports map

ψ!(M⊗G Lω)→ ψ+(M⊗G Lω),

is an isomorphism for everyω ∈ ΩG such that ϕ∗ω ∈ V(k).

Proof. Let {Si → A}i∈I be an étale covering trivializing the T × U-torsor G → A. (By
[SGA4.II, Exposé VI, 1.6.2] we may suppose that I is finite.) In particular, the following
diagram

T ×U×A× Si A× Si Si

T ×U

G A
ψ

ϕ

prT×U

prA×Si prSi

is cartesian for all i ∈ I. Since checking whether or not the forget-supports map
ψ!(M⊗G Lω)→ ψ+(M⊗G Lω) is an isomorphism can be done étale-locally on A, it
suffices to check that

prA×Si,!(pr
+
T×Uϕ

+M⊗ pr+T×Uϕ
+Lω)→ prA×Si,+(pr

+
T×Uϕ

+M⊗ pr+T×Uϕ
+Lω)

is an isomorphism for all i ∈ I. Combining Propositions 3.10 and 3.11 by means of the
Lemma 3.3, we obtain dense open subsets Vi of T [ ×U[ ' ΩT/X×ΩU making

prA×Si,!(pr
+
T×Uϕ

+M⊗ pr+T×ULα)→ prA×Si,+(pr
+
T×Uϕ

+M⊗ pr+T×ULα)

an isomorphism for all α ∈ Vi(k). The result then follows by taking the intersection of
the Vi, for i ∈ I.

We are finally able to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. LetM be a holonomic D-module on G. Since G is a T × U-torsor
over A, descent implies that the map ψ : G→ A is affine. Then, the analogue of Artin
vanishing forD-modules [Bor+87, Prop. VI.8.1] implies thatwhenever the forget-supports
map

ψ!(M⊗G Lω)→ ψ+(M⊗G Lω)

is an isomorphism, both sides are concentrated in degree zero.
Lemma 3.17 gives a dense open subset V ofΩT/X×ΩU such that the map above is an

isomorphism for allω ∈ ΩG satisfying ϕ∗ω ∈ V(k). Fix one suchω and let α ∈ A[(k).
The projection formula implies that

ψ!(M⊗G Lω ⊗G ψ+Lα) ' ψ!(M⊗G Lω)⊗A Lα

' ψ+(M⊗G Lω)⊗A Lα

' ψ+(M⊗G Lω ⊗G ψ+Lα),
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and so the generic vanishing theorem for abelian varieties, applied to ψ!(M⊗G Lω) '
ψ+(M⊗G Lω), finishes the proof.

A. Crystals and de Rham spaces

As it was first observed by Simpson [Sim96], given a choice of cohomology theory H and
a "space" X, there is often a stack XH whose category of quasi-coherent sheaves coincides
with the category of coefficients for H. Moreover, the association X 7→ XH preserves the
functoriality of the given cohomology theory.
In this appendix, we study the de Rham side of this story. Namely, given a variety X,

the de Rham space XdR has the marvellous property that quasi-coherent sheaves over it
are the same as quasi-coherent DX-modules. Moreover, formal completions can also be
understood in function of the de Rham spaces.
The author claims no originality for any result in this appendix: all the results in it

are either available in the literature or are folklore. (See [GR17] and [Hen17] for more
on this.) However, even the results that have published proofs are usually studied in
the context of (derived) prestacks, so we thought that this appendix could be helpful to
some readers.

A.1. Basic properties of the de Rham space

Let k be a field and consider the category Aff/k of affine schemes over k. In order to
simplify notation, we will often denote an object SpecR of Aff/k as R.

Definition A.1 (de Rham space). Given a presheaf X on Aff/k, its de Rham space XdR is
the presheaf defined by

XdR(R) := colim
I⊂R

X(R/I),

where the colimit runs through the filtered poset of nilpotent ideals of R. This presheaf
comes equipped with a morphism X→ XdR induced by the trivial ideal I = 0.

We remark that this assignment is functorial: given amorphism f : X→ Y of presheaves,
there is an induced map fdR : XdR → YdR making the diagram

X XdR

Y YdR

f fdR

commute. As it will be formalized in Corollary A.7, the geometric interpretation of XdR,
at least for smooth schemes X, is that it is a quotient of Xwhere we identify infinitesimally
close points.

We begin our study of the de Rham space by this following simple observation which
is going to be useful later.
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Proposition A.2. The functor (−)dR : PSh(Aff/k)→ PSh(Aff/k) preserves arbitrary colimits
and finite limits.

Proof. Since (co)limits of presheaves are computed pointwise, this is nothing but the fact
that filtered colimits in the category of sets commute with arbitrary colimits and finite
limits.

Given a finite type k-algebra R (more generally, a noetherian k-algebra), its nilradical
Nil(R) is nilpotent for it is generated by finitely many nilpotent elements. In particular,
we have that XdR(R) ' X(R/Nil(R)) = X(Rred). This crucial property holds for every
k-algebra as long as X is (represented by) a finite type scheme.

Proposition A.3. Let X be a locally of finite type scheme over k. Then XdR(R) ' X(Rred) for
every k-algebra R.

Proof. Let S := colimI⊂R R/I, where the colimit runs through the nilpotent ideals of R.
As usual, we denote the elements of S as equivalence classes of the form [I, x], for some
nilpotent ideal I ⊂ R and x ∈ R. Here, [I, x] = [I′, x′] if there exists a nilpotent ideal J
containing I and I′ such that x ≡ x′ mod J.

The natural map R→ S, corresponding to the ideal I = 0, sends every nilpotent in R to
zero. In other words, it factors through the nilradical yielding a map Rred → S. We affirm
that this morphism is injective. Indeed, [0, x] = 0 means that there exists a nilpotent
ideal J containing x. It follows that x is nilpotent and so vanishes on Rred. As [I, x] ∈ S is
the image of x ∈ R, we have that Rred → S is an isomorphism.

Finally, since X is locally of finite type, [Stacks, Tag 01ZC] implies that XdR(R) ' X(S) '
X(Rred), finishing the proof.

Perhaps not surprisingly, given the aforementioned geometric interpretation of XdR,
formal completions of schemes can be written in terms of de Rham spaces.

Proposition A.4. Let X be a k-scheme and let Z be a closed subscheme of X. The formal
completion X̂Z of X along Z is isomorphic to X×XdR

ZdR.

Proof. Let I ⊂ OX be the ideal sheaf defined by Z and let R be a k-algebra. Our goal is to
obtain a functorial isomorphism

colim
I⊂R

X(R)×X(R/I) Z(R/I) ' colim
n>0

SpecX(OX/I
n+1)(R),

where the colimit on the left runs through the nilpotent ideals of R. Given an ideal I ⊂ R,
denote by iI the closed immersion SpecR/I→ SpecR. Now, we have that

colim
I⊂R

X(R)×X(R/I) Z(R/I) ' colim
I⊂R

{x ∈ X(R) | i∗Ix∗I = 0}

' colim
n>0

colim
In+1=0

{x ∈ X(R) | i∗Ix∗I = 0}

' colim
n>0

{x ∈ X(R) | x∗In+1 = 0} ' X̂Z(R),
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where the last isomorphism is the universal property of the relative spectrum.

We remark that the expression X×XdR ZdR makes sense even if Z→ X is not a closed
immersion. In these cases, it can be used to define formal completions. Moreover, this
characterization makes it clear that the projection X̂Z → X is a monomorphismwhenever
Z→ X is.

Corollary A.5. Given a closed subscheme Z of a locally of finite type scheme X over k, the
projection X̂Z → X is a monomorphism of presheaves.

Proof. By [Stacks, Tag 01L7], the closed immersion i : Z→ X is a monomorphism in the
category of schemes. Now, the Yoneda embedding preserves limits and any functor that
preserves limits preserves monomorphisms [Stacks, Tag 01L3]. In other words, i is a
monomorphism of presheaves. Since the de Rham functor preserves finite limits, so is
ZdR → XdR. Finally, fibered products preserve monomorphisms and this finishes the
proof.

Given a morphism of k-schemes f : X→ S, the universal product of fibered products
induces a map X→ XdR ×SdR S. As the proposition below shows, it faithfully encodes
the differential information contained in f.

Proposition A.6. Let f : X→ S be a morphism of k-schemes. Then f is formally smooth (resp.
formally unramified) if and only if X→ XdR ×SdR S is an epimorphism (resp. monomorphism)
of presheaves.

Proof. Recall that f is said to be formally smooth (resp. formally unramified) if, for every
k-algebra Rwith a map SpecR→ S and for every nilpotent ideal I ⊂ R, the induced map

HomS(SpecR, X)→ HomS(SpecR/I, X)

is surjective (resp. injective). It is a quick exercise to translate this condition into the
surjectivity (resp. injectivity) of X(R)→ (XdR ×SdR S)(R).

Let Y → X be an immersion of k-schemes that factors as Y → U → X, where Y → U

is a closed immersion with ideal I and U → X is an open immersion. The formal
completion of X along Y is usually defined as the colimit of SpecU(OU/In+1), for n > 0.
The previous proposition shows that U ' UdR ×XdR X and so

U×UdR ZdR ' X×XdR UdR ×UdR ZdR ' X×XdR ZdR,

proving that the Proposition A.4 also works for locally closed immersions.

Corollary A.7. Let X→ S be a formally smooth morphism of k-schemes. Then XdR ×SdR S is
the coequalizer of ÿ�(X×S X)∆ ⇒ X,

where ÿ�(X×S X)∆ is the formal completion of X×S X along the diagonal.
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Proof. In order to simplify notation, let Y = XdR ×SdR S. Since every epimorphism is
effective in a topos, X → Y is the coequalizer of X ×Y X ⇒ X. Now, the result follows
from general category theory: the pullback of

X×S X

XdR (X×S X)dR
∆dR

is X×Y X.

Given a schemeX, its functor of points is always a sheaf for the étale and fppf topologies.
We will now study the descent properties of XdR, and we begin with a lemma.

Lemma A.8. Let R be a k-algebra and let {R→ Ri}i∈I be an étale covering. Then the reduction
{Rred → Ri,red}i∈I is also an étale covering. Moreover, any étale covering of Rred arises in this
way.

Proof. Since R → Ri is étale, so is its base change Rred → Rred ⊗R Ri. By [Stacks, Tag
033B], we have that Rred ⊗R Ri is reduced and then [EGA I, Cor. 5.1.8] gives that

Rred ⊗R Ri = (Rred ⊗R Ri)red ' (Rred ⊗Rred Ri,red)red ' Ri,red.

It follows that {Rred → Ri,red}i∈I is an étale covering of Rred.
Now, consider an étale covering {Rred → Si}i∈I of Rred. By the topological invariance of

the étale site, there exists a covering {R→ Ri}i∈I alongwith isomorphismsRred⊗RRi ' Si
for all i ∈ I [Stacks, Tag 04DZ]. The same argument as above shows that Si is reduced,
and then Si ' Ri,red.

Proposition A.9. Let X be a locally of finite type scheme over k. The de Rham space XdR is an
étale sheaf on Aff/k.

Proof. Let R be a k-algebra and let {R → Ri}i∈I be an étale covering of R. We want to
prove that the diagram

X(Rred)
∏
i X(Ri,red)

∏
i,j X((Ri ⊗R Rj)red)

is an equalizer. The lemma above says that {Rred → Ri,red}i∈I is also an étale cover and
then the fact that X is an étale sheaf implies that the diagram

X(Rred)
∏
i X(Ri,red)

∏
i,j X(Ri,red ⊗Rred Rj,red)

is an equalizer. The same argument as in the proof of the previous lemma shows that
Ri,red ⊗Rred Rj,red is reduced. Then [EGA I, Cor. 5.1.8] gives isomorphisms Ri,red ⊗Rred

Rj,red ' (Ri ⊗R Rj)red, finishing the proof.
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In particular, the preceding proposition implies that the de Rham space defines a
functor from commutative algebraic groups over k to abelian étale sheaves on Aff/k.

Proposition A.10. The functor (−)dR : AbAlgGrp/k→ Ab((Aff/k)et) is exact.

Proof. Let 0→ A→ B→ C→ 0 be an exact sequence of commutative algebraic groups
over k. In particular, it is left-exact in the category of abelian presheaves on Aff/k. By
PropositionA.2, the induced exact sequence 0→ AdR → BdR → CdR → 0 is also left-exact
in abelian presheaves. Since sheafification is exact, this sequence is left-exact in the
category of abelian étale sheaves.

Let us verify that BdR → CdR is an epimorphism of abelian sheaves. Given a k-algebra
R and an element c ∈ CdR(R) = C(Rred), the fact that B→ C is an epimorphism of étale
sheaves implies that there exists a covering {Rred → Si}i∈I such that c|Si is in the image
of B(Si) → C(Si) for all i ∈ I [Stacks, Tag 00WN]. Lemma A.8 then gives a covering
{R→ Ri}i∈I whose reduction is {Rred → Si}i∈I. It follows that c|Ri = c|Si is in the image
of BdR(Ri)→ CdR(Ri) for all i ∈ I, concluding the proof.

We proved in Corollary A.7 that XdR is a quotient of X in which we identify infinitesi-
mally close points. When X is a commutative algebraic group G, the difference of two
such points has to live in an infinitesimal neighborhood of the identity. This heuristic
leads to the result below.

Proposition A.11. Let G be a commutative algebraic group over k. Then GdR is isomorphic to
the presheaf quotientG/Ĝ, where Ĝ is the formal completion ofG along the identity. In particular,
GdR is also isomorphic to the sheaf quotient G/Ĝ.

Proof. In this proof, let us consider every (co)limit to be taken inside the category of
abelian presheaves on Aff/k. As the cokernel of the identity section e : Speck → G is
G itself, a variant of Proposition A.2 for abelian presheaves shows that the cokernel of
edR : Speck→ GdR is GdR. The universal property of cokernels then induces the dashed
map below.

Ĝ G G/Ĝ

Speck GdR GdR
edR

The square on the left is cartesian due to PropositionA.4, andG→ GdR is an epimorphism
since G is smooth. Then, [Stacks, Tag 08N4] implies that the square on the left is also
cocartesian, and [Stacks, Tag 08N3] gives that G/Ĝ→ GdR is an isomorphism. Since GdR
is already an étale sheaf, the presheaf and the sheaf quotients G/Ĝ coincide.

The following proposition is the unique result in this subsection that needs the base
field k to have characteristic zero.
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Proposition A.12. Let G be a commutative algebraic group over a characteristic zero field k.
Then GdR is an fppf sheaf isomorphic to G/Ĝ and the functor (−)dR from commutative algebraic
groups over k to abelian fppf sheaves is exact.

Proof. Recall that, by Proposition 2.3, the formal completion Ĝ is a direct sum of copies
of “Ga. Then, given a k-algebra R, [Bha22, Remark 2.2.18] says that H1fppf(R,“Ga) = 0 and
so (G/Ĝ)(R) ' G(R)/Ĝ(R) ' GdR(R), where the quotient on the left is taken on the fppf
topology. In other wordsGdR is an fppf sheaf isomorphic toG/Ĝ. The exactness of (−)dR
here is a particular case of Proposition A.10.

Remark A.13 (de Rham spaces in positive characteristic). Let k be a field of characteristic
p > 0. Given a k-algebra R, recall the construction of its colimit perfection Rperf as in
Remark 2.29, and define a presheaf Ga,perf on Aff/k by Ga,perf(R) := Rperf. As [Bha22,
Remark 2.2.18] shows, we have an exact sequence of abelian fppf sheaves

0→ “Ga → Ga → Ga,perf → 0.

It follows that the natural map of abelian étale sheaves Ga,dR → Ga,perf identifies Ga,perf
with the fppf sheafification of Ga,dR.

Given a locally of finite type scheme X over k, we can restrict its functor of points to
Aff/k, form its de Rham space XdR and right Kan extend to obtain a presheaf on Sch/k.
We also denote this extension as XdR. It acts on a k-scheme S as XdR(S) ' X(Sred) and,
by Proposition A.9 and [Stacks, Tag 021E], XdR it is always an étale sheaf.

We end this subsection by noting that we have an equivalence of topoi Sh((Aff/k)ét) '
Sh((Sch/k)ét), in which the functor Sh((Sch/k)ét)→ Sh((Aff/k)ét) is simply restriction
and the functor Sh((Aff/k)ét)→ Sh((Sch/k)ét) is a right Kan extension [Stacks, Tag 021E].
The analogous result also holds for the fppf topoi [Stacks, Tag 021V]. In particular, every
result in this section also hold with the extended definition of de Rham spaces.

A.2. Crystals and D-modules

As it was said in the introduction of this appendix, quasi-coherent sheaves over XdR are
the same as quasi-coherent DX-modules. However, those de Rham spaces are usually
far from being algebraic and so we begin this subsection by defining what do we mean
by a quasi-coherent sheaf over a not-necessarily-representable sheaf.

Definition A.14 (Quasi-coherent sheaves). Let X be an étale sheaf on Sch/k. We define
the presheaf of categories QCoh : Sh((Sch/k)ét)op → Cat as the right Kan extension
of the usual functor QCoh : (Sch/k)op → Cat along the Yoneda embedding Sch/k →
Sh((Sch/k)ét).

Remark A.15. Equivalently, QCoh(X) is the 2-limit of QCoh(S) over the category of pairs
(S, x), where S is a k-scheme and x is a S-point of X. This implies that a quasi-coherent
sheaf F on X consists of the following data:
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• for each k-scheme S and each x ∈ X(S), a quasi-coherent sheaf F (x) on S;

• for each morphism of k-schemes f : S → S′ and each x ∈ X(S), an isomorphism
αf,x : f

∗F (f(x))
∼−→ F (x).

This data is supposed to satisfy a cocycle condition. Namely, if f : S→ S′ and g : S′ → S′′

are morphisms of k-schemes and x ∈ X(S), the diagram

f∗g∗F (g(f(x))) f∗F (f(x)) F (x)

(g ◦ f)∗F (g(f(x))) F (x)

αf,xf∗αg,f(x)

αg◦f,x

∼

should commute.

As usual, we will denote by OX the quasi-coherent sheaf on Xwhich associates to each
x ∈ X(S) the trivial OS-module. (The isomorphisms αf,x are nothing but f∗OS′

∼−→ OS.)
We define the tensor product F ⊗OX F ′ of two quasi-coherent sheaves F and F ′ simply
via the tensor products of the point-wise quasi-coherent sheaves. Moreover, given a
morphism f : X→ Y of presheaves and a quasi-coherent sheaf G on Y, its inverse image
f∗G associates each x ∈ X(S) to G (f(x)).

Remark A.16. The category QCoh(X) is automatically symmetric monoidal. One possible
way of seeing this is by remarking that the presheafQCoh : (Sch/k)op → Cat has values in
CAlg(PrL), the commutative algebra objects in the ∞-category of presentable categories
with left adjoint functors. The result then follows from the fact that both forgetful
functors CAlg(PrL) → PrL → Cat∞ preserve limits [Lur17, Cor. 3.2.2.5; Lur09, Prop.
5.5.3.13].

It is not true, however, that QCoh(X) is always an abelian category [Stacks, Tag 0ALF].
That being said, we prove below that QCoh(XdR), for a smooth k-scheme X, is equivalent
to the category of quasi-coherent DX-modules and so it is ipso facto abelian.

We say that a quasi-coherent sheaf F on X locally free of a given rank if all the
quasi-coherent sheaves F (x) are. In particular, one can consider the Picard group
Pic(X) constituted of the isomorphism classes of rank one locally free sheaves over X,
whose group operation is the tensor product. The proposition below gives another
characterization of this object.

Proposition A.17. Let X be an étale sheaf on Sch/k. We have a monoidal equivalence of
categories

{Line bundles on X}' ∼−→ {Gm-torsors over X},

where C' is the underlying groupoid of a category C. In particular, we have an isomorphism of
groups Pic(X) ' H1et(X,Gm).9
9We refer the reader to the discussion before Proposition 2.8 for the definition of H1et(X,Gm).
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Proof. The usual proof also works here.

We now present the raison d’être of this appendix: the category of crystals. This object
first appeared in [Gro68] under the name infinitesimal topos.10

Definition A.18 (Crystals). Let X → S be a morphism of k-schemes. Its category of
crystals Crys(X/S) is defined as QCoh(XdR ×SdR S).

In order to have a more concrete description of Crys(X/S), suppose that X → S is
smooth and consider the following diagram, on which every map is a natural projection.

( ¤�X×S X×S X)∆ (◊�X×S X)∆ X

We denote by pri (resp. prij) the projection on the i-th factor (resp. on the i, j-th factors).

Lemma A.19. Given a quasi-coherent sheafM on X, the following data are equivalent:

(i) An isomorphism of quasi-coherent sheaves ε : pr∗1M → pr∗2M satisfying the cocycle
condition pr∗12(ε) ◦ pr∗23(ε) = pr∗13(ε);

(ii) A stratification onM as in [BO15, Def. 2.10];

(iii) A morphism of OX-algebras DX/S → EndOS(M).

Proof. Let (X×S X)(n)∆ be the n-th infinitesimal neighborhood of the diagonal in X×S X.
Recall that the formal completion (◊�X×S X)∆ is the filtered colimit of the (X×S X)(n)∆ in
PSh(Sch/k). If we consider the latter as a (2, 1)-category, this is automatically a 2-colimit
and so QCoh((◊�X×S X)∆) is the 2-limit of the categories QCoh((X×SX)

(n)
∆ ). It follows that

an isomorphism ε : pr∗1M→ pr∗2M amounts to a compatible system of isomorphisms
εn : (pr

(n)
1 )∗M→ (pr

(n)
2 )∗M, where

(X×S X)
(n)
∆ X

pr
(n)
1

pr
(n)
2

are the natural projections. This gives the equivalence between (i) and (ii). Finally, [BO15,
Prop. 2.11] gives the equivalence between (ii) and (iii). The reader may want to see [BO15,
Remark 2.13] as well.

We remark that, given a morphism of quasi-coherent sheaves ϕ : M→ N on X along
with isomorphisms εM : pr∗1M→ pr∗2M and εN : pr∗1N→ pr∗2N as above, the diagram

pr∗1M pr∗1N

pr∗2M pr∗2N

εM

pr∗2ϕ

pr∗1ϕ

εN

10Contrarily to what the name may indicate, Crys(X/S) is not the crystalline topos if k has positive
characteristic. See [Gre19] for a similar approach to crystalline cohomology.
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commutes if and only if ϕ is DX/S-linear. All in all, we obtain the proposition below.

Proposition A.20 (Grothendieck). Let X → S be a smooth morphism of k-schemes. Then
Crys(X/S) is monoidally equivalent to the category QCoh(DX/S) of quasi-coherent DX/S-
modules.

Proof. Consider the following cosimplicial diagram in PSh(Sch/k), seen as a (2, 1)-
category.

( ¤�X×S X×S X)∆ (◊�X×S X)∆ X

Since its 2-colimit can be computed by truncating [Car+17, Lemma 2.21], Corollary A.7
implies that it is XdR ×SdR S. It follows that Crys(X/S) = QCoh(XdR ×SdR S) is the 2-limit
of the diagram

QCoh(X) QCoh((◊�X×S X)∆) QCoh(( ¤�X×S X×S X)∆).

This is a category of descent data, whose objects are exactly quasi-coherent sheaves
M on X endowed with the data of Lemma A.19.(i). The result then follows from the
aforementioned lemma.

Let us make some observations about this result. First, as the proof above shows,
the equivalence Crys(X/S) ' QCoh(DX/S) preserves the natural forgetful functors to
QCoh(X). Next, even though PropositionA.20works over fields of arbitrary characteristic,
we can give an even simpler description of Crys(X/S)when k has characteristic zero.

Recall that, given a quasi-coherent sheafM onX, a connection relative to S is aOS-linear
map ∇ : M→ Ω1X/S ⊗OX M satisfying the Leibniz rule

∇(fm) = df⊗m+ f∇(m),

for local sections f of OX andm ofM. The connection ∇ is said to be integrable (or flat) if
∇1 ◦ ∇ = 0, where∇1 : Ω1X/S ⊗OX M→ Ω2X/S ⊗OX M is given by

∇1(ω⊗m) = dω⊗m−ω∧∇(m).

As iswell-known, the data of an integrable connection∇ relative to S onM is equivalent
to the data of amorphismofOX-modulesD1X/S → EndOS(M), whereD1X/S ⊂ DX/S is the
sheaf of differential operators of order one [ABC20, Def. 4.2.1]. Now, in characteristic zero,
the sheaf D1X/S generates DX/S as a OX-algebra and so such a map D1X/S → EndOS(M)

extends uniquely to a morphism of OX-algebrasDX/S → EndOS(M) [BO15, Thm. 2.15].

Corollary A.21. Let k be a characteristic zero field and let X → S be a smooth morphism of
k-schemes. Then Crys(X/S) is monoidally equivalent to the category MIC(X/S) of quasi-coherent
sheaves on X endowed with an integrable connection relative to S.
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Since, once again, the equivalence Crys(X/S) ' MIC(X/S) is compatible with the
forgetful functor to QCoh(X), line bundles on XdR ×SdR S correspond to line bundles on
X with integrable connection relative to S. In particular, H1fppf(XdR ×SdR S,Gm) is the
group of isomorphism classes of such objects.
Let us now consider functoriality from all these different points of view. Given a

commutative (but not necessarily cartesian) square

X′ X

S′ S,

f

g

where g is an arbitrary morphism of k-schemes, we obtain a map (f, g)dR : X
′
dR×S′dR S

′ →
XdR ×SdR S giving rise to an inverse image functor (f, g)∗dR : Crys(X/S)→ Crys(X′/S′).
Similarly, let M be a quasi-coherent sheaf on X endowed with a morphism of OX-

algebrasDX/S → EndOS(M). That is, letM be a quasi-coherentDX/S-module. The trans-
fer module f∗DX/S = OX′ ⊗f−1OX f

−1DX/S is naturally a (DX′/S′ , f
−1DX/S)-bimodule11,

and we define (f, g)∗M as f∗DX/S ⊗f−1DX/S
f−1M, with its structure of DX′/S′-module.

Proposition A.22. The following diagram

Crys(X/S) QCoh(DX/S)

Crys(X′/S′) QCoh(DX′/S′)

(f,g)∗dR (f,g)∗

∼

∼

commutes up to isomorphism.

In characteristic zero, one can also define the inverse image of relative connections as
in [ABC20, §5.1], and a quick verification shows that it coincides with the inverse image
ofD-modules. Consequently, it also coincides with the inverse image functor for crystals
defined above. Therefore, we will denote all the inverse image functors simply as (f, g)∗.
Whenever g is the identity morphism of S, we shorten it further as f∗.

Finally, there also exists a direct image functor (f, g)+ : Dqc(DX′/S′)→ Dqc(DX/S) for
relative D-modules [Vig21, Déf. 2.1.12]. (As above, when g is the identity morphism
we denote (f, g)+ simply as f+.) However, defining it at the level of crystals requires a
detour through the world of ind-coherent sheaves. We refer the reader to [GR17] for
more on this.

B. The six-functor formalism of holonomic D-modules

Even though it is well known that the derived category of holonomic D-modules admits
a six-functor formalism, the notations in the literature are not consistent, and very often
11Here f−1DX/S acts only on the second factor but DX′/S′ acts on both.
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we have formulas which are similar, but not equal, to corresponding formulas in other
formalisms.

The goal of this appendix is to gather all the needed results and to redefine the tensor
product of D-modules, shedding light on the striking similarity between holonomic
D-modules and (wildly ramified) `-adic perverse sheaves in positive characteristic.

B.1. Definitions and simple calculations

Let X be an algebraic variety (separated scheme of finite-type) smooth over a field k
of characteristic zero. (Henceforth, every k-variety is supposed to be smooth.) We
denote by Hol(DX) the abelian category of holonomic DX-modules, and by Dbh (DX)

the full subcategory of Db(Mod(DX)), the bounded derived category of the abelian
category of leftDX-modules, composed of the complexesMwhose cohomology H i(M)

is holonomic for all i. The latter is a triangulated category [HT07, Cor. 3.1.4] and we
endow it with its standard t-structure.

Integrable connections

Asusual, we identify vector bundles (locally free sheaves)with integrable connections and
OX-coherent DX-modules. We will hereafter address these objects simply as connections.
Since connections correspond to local systems under the analogy between holonomic
D-modules and `-adic perverse sheaves, we systematically put connections in degree
dimX. As it will soon become clear, under this convention, every functor works as it
should. Finally, we denote by Dbint(DX) the full subcategory of Dbh (DX) whose objects
have connections as cohomologies.

Exceptional inverse image

Given a morphism f : X→ S, define f! to be Lf∗[dimX−dimS]with its naturalD-module
structure. (As in [HT07, §1.3].) This defines a triangulated functor Dbh (DS)→ Dbh (DX)

[HT07, Thm. 3.2.3] and, if g : S → S ′ is another morphism, we have (g ◦ f)! ' f! ◦ g!
[HT07, Prop. 1.5.11].

Example B.1. If f is flat or ifM ∈ Dbint(DS), then H i(f!M) ' f∗H i+d(M) holds for all
i, where we pose d = dimX − dimS. In particular, f! restricts to Dbint(DS) → Dbint(DX).
Moreover, the functor f∗ coincides with the usual inverse image for connections.

Direct image

Given a morphism f : X→ S, we define f+ as in [HT07, p. 40]. This defines a triangulated
functor Dbh (DX)→ Dbh (DS) [HT07, Thm. 3.2.3] and, if g : S→ S ′ is another morphism,
we have (g ◦ f)+ ' g+ ◦ f+ [HT07, Prop. 1.5.21].
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Duality functor

Given a variety X, we define the duality functor DX as in [HT07, Def. 2.6.1]. This defines
a t-exact triangulated functor Dbh (DX) → Dbh (DX)

op [HT07, Cor. 2.6.8] and there is a
natural isomorphism of functors id→ DXDX [HT07, Prop. 2.6.5].
Example B.2. The duality functor restricts to DX : Dbint(DX)→ Dbint(DX)op, and we have
that H i(DX(M)) ' HomOX

(H −i(M),OX) forM ∈ Dbint(DX) [HT07, Ex. 2.6.10].

Inverse image

Given a morphism f : X → S, we define f+ : Dbh (DS) → Dbh (DX) as DX ◦ f
! ◦ DS. This

functor is left-adjoint to f+ [HT07, Cor. 3.2.15].
Example B.3. If f : X→ S is smooth and d = dimX−dimS, we have f+ ' f![−2d] = f∗[−d]
[HT07, Ex. 2.4.5 and Thm. 2.7.1]. In particular, if f is étale, then f+ ' f! is t-exact.
Example B.4. As above, let d = dimX− dimS for a (not-necessarily smooth) morphism
f : X→ S and letM ∈ Dbint(DS). By Example B.1, we have H i(f+M) ' f∗H i−d(M) for
all i. (And so f+ restricts to Dbint(DS)→ Dbint(DX).) In particular, if E is a connection on S,
we have that f+(E [−dimS]) ' f∗E [−dimX]; showing that the functor f+ is compatible
with the usual inverse image of connections.

Proper direct image

Given amorphism f : X→ S, we define f! : Dbh (DX)→ Dbh (DS) asDS ◦f+ ◦DX. This func-
tor is left-adjoint to f! [HT07, Cor. 3.2.15]. Moreover, there exists a natural transformation
f! → f+, which is an isomorphism for proper f [HT07, Thm. 3.2.16].

Tensor product

Given two complexes M and N of DX-modules and DY-modules, we define their
external tensor productM�N as in [HT07, p. 39]. This defines a t-exact [Bei+18, §1.3.20]
triangulated bifunctor Dbh (DX)× Dbh (DY)→ Dbh (DX×Y) [HT07, Prop. 3.2.2].

Let∆X : X→ X×X be the diagonal embedding. We define the exceptional tensor product
⊗!
X : Dbh (DX)× Dbh (DX)→ Dbh (DX) as

M⊗!
X N := ∆!

X(M�N).

This is isomorphic toM ⊗L
OX
N[−dimX], as defined in [HT07, p. 38], and its identity

is 1!X := OX[dimX]. The main tensor product that we will use, denoted ⊗X : Dbh (DX) ×
Dbh (DX)→ Dbh (DX), is defined as

M⊗X N := ∆+
X(M�N).

This is isomorphic to DX(DX(M)⊗!
X DX(N)) and its identity is 1X := OX[−dimX].
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Given a morphism f : X→ S, we remark that the functor f+ is monoidal with respect
to ⊗ and f! is monoidal with respect to ⊗! [HT07, Prop. 1.5.18.(ii)]. Moreover, given
M ∈ Dbh (DX) and N ∈ Dbh (DY), we have natural isomorphisms

M�N ' pr+XM⊗X×Y pr+Y N ' pr!XM⊗!
X×Y pr!Y N,

where prX : X× Y → X and prY : X× Y → Y are the projections.

Inner hom

Given two complexesM,N ∈ Dbh (DX), we define their inner homHomX(M,N) ∈ Dbh (DX)

as DX(M⊗X DX(N)). The functor −⊗XM is left adjoint to HomX(M,−) [HT07, Prop.
2.6.14]. We can also define the dualM∨ := HomX(M, 1X) which, by smoothness of X,
coincides with DX(M)[−2 dimX].
Example B.5. Let E be a connection on X. The Example B.2 gives that (E [−dimX])∨ '
E ∗[−dimX], where E ∗ is the usual dual of connections. In other words, under our
convention of putting connections always in degree dimX, the dual defined above
coincides with the dual of connections.

Recall the definitions of reflexive and dualizable objects in a closed monoidal category:
an object M ∈ Dbh (DX) is said to be reflexive if the natural map M → ((M)∨)∨ is an
isomorphism and it is said to be dualizable is the naturalmap (M)∨⊗XM→ HomX(M,M)

is an isomorphism. IfM is dualizable, then we have an isomorphism (M)∨ ⊗X N '
HomX(M,N) for every N ∈ Dbh (DX). The following proposition is basically [Stacks, Tag
0FPD].

Proposition B.6. EveryM ∈ Dbh (DX) is reflexive, and it is dualizable precisely whenM ∈
Dbint(DX). In particular, we have that

M⊗X N 'M⊗!
X N[2 dimX] 'M⊗OX N[dimX],

forM ∈ Dbint(DX) and N ∈ Dbh (DX).

Example B.7. LetM ∈ Dbh (DX) and let E ′ be a connection on X. The isomorphisms above
specialize to

M⊗X E ′[−dimX] 'M⊗OX E ′;

showing that, under our convention of putting connections in degree dimX, the tensor
product ⊗X is compatible with the usual tensor product ⊗OX . If, moreover,M is also a
connection E in degree dimX, we have that

(E [−dimX])⊗X (E ′[−dimX]) ' E ⊗OX E ′[−dimX].

We also remark that the tensor product ⊗OX coincides with the one usually used for
connections.

52

https://stacks.math.columbia.edu/tag/0FPD


Comparison of notations

For the convenience of the reader, we provide a table comparing our notations to those
of the most common references. As above, we consider a morphism f : X→ S and put
d = dimX− dimS.

Our notation [Ber] [Bor+87] [HT07] [Meb88] [KL85, §7]

Lf∗ Lf∆ Lf◦ Lf∗ Lf∗ f•

f! f! f! f† Lf∗[d] f!

f+ f∗ f+
∫
f

∫
f∗ f∗

DX D DX DX (−)∗ D

f+ f∗ f+ f? Lf![−d] f∗

f! f! f!
∫
f!

∫
f! f!

⊗L
OX

⊗LOX ⊗L
OX

⊗LOX ⊗L
OX

L
⊗OX

⊗!
X 4× - - - ‹⊗
⊗X - - - - -

HomX Hom - - - flHom
B.2. Main results

Recollement

Let i : Z ↪→ X be a closed immersion and let j : U ↪→ X be its complementary open
immersion. Recall that i is proper (and so i! ' i+) and j is étale (and so j! ' j+). This
data satisfies the recollement conditions [Bei+18, §1.4.3]. That is:

• i!j+ = 0 (so, by adjunction, i+j! = 0 and j+i+ = 0);

• for allM ∈ Dbh (DX), the adjunction maps i!i!M→M→ j+j
+M and j!j!M→M→

i+i
+M give rise to distinguished triangles;

• The adjunction maps i+i+ → id→ i!i! and j+j+ → id→ j!j! are all isomorphisms.

All of this is proven in [HT07, Cor. 1.6.2, Prop. 1.7.1; Bor+87, Prop. VI.8.2.(i)]. Since
the counit i+i+ → id is an isomorphism, the functor i+ is fully faithful and so the
composition i+i! → id→ i+i

+ yields a map i! → i+. Section 1.4 in [Bei+18] shows that
i+j+ ' i!j![1] and that

j!M→ j+M→ i+i
+j+M→ j!M[1]

i!N→ i+N→ i+j+j
+N→ i!N[1],

forM ∈ Dbh (DU) and N ∈ Dbh (DX), are distinguished triangles.
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Proper base change

Given morphisms f : X→ S and g : S ′ → S, suppose that the fiber product

X ′ S ′

X S
f

g

f̃

g̃

exists in our category of smooth algebraic varieties (i.e., that the fiber product of schemes
X×S S ′ is a smooth algebraic variety). Then, there exists an isomorphism g! ◦ f+ ' f̃+ ◦ g̃!
of functors Dbh (DX) → Dbh (DS ′) [HT07, Thm. 1.7.3; Dre13, Rem. 3.1.8]. By adjunction,
there is also an isomorphism f+ ◦ g! ' g̃! ◦ f̃+ of functors Dbh (DS ′)→ Dbh (DX).

Smooth base change

Consider the same diagram as above and suppose, moreover, that g : S ′ → S is smooth.
By the Example B.3, we have that g+ ' g![2(dimS − dimS ′)] and so we obtain an
isomorphism g+ ◦ f+ ' f̃+ ◦ g̃+ of functors Dbh (DX)→ Dbh (DS ′).

Projection formula

LetM ∈ Dbh (DX) andN ∈ Dbh (DS). Then, the projection formula f!M⊗SN ' f!(M⊗Xf+N)

holds. If f is proper orN is dualizable, we also have f+M⊗SN ' f+(M⊗X f+N) [HT07,
Cor. 1.7.5].

Mayer-Vietoris

Let i1 : Z1 → X and i2 : Z2 → X be closed immersions covering X, and consider the
cartesian diagram

Z1 ∩ Z2 Z2

Z1 X.
i1

i2

Denoting by i12 : Z1 ∩Z2 → X the diagonal map above, we have a distinguished triangle

M→ i1,!i
+
1M⊕ i2,!i

+
2M→ i12,!i

+
12M

for everyM in Dbh (DX).

Vanishing and nearby cycles

Let i : Z ↪→ X be a closed immersion of codimension one. Given this data, one can endow
a holonomic D-moduleM on X with the so-called V-filtration as in [Meb88, Chap. III.4].
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It is a filtration indexed by C/Z, whose graded pieces grVα(M) vanish unless −α is a root
of the Bernstein-Sato polynomial associated to i [Meb88, Prop. 4.2.1].

The unipotent nearby cycles functor ψ1 : Hol(DX)→ Hol(DZ) is defined as grV−1 and the
unipotent vanishing cycles functor φ1 : Hol(DX) → Hol(DZ) is defined as grV0 . They are
endowed with natural transformations

can : ψ1 → φ1 and var : φ1 → ψ1

given locally by −∂t and t, respectively, where t is a local equation for Z. Moreover, the
compositions can ◦ var and var ◦ can are nilpotent [Meb88, §4.3.3]. Finally, by [Meb88,
§§4.5.3 and 4.6.5], we have distinguished triangles

i+M→ ψ1(M)
can−−−→ φ1(M)

i!M→ φ1(M)
var−−→ ψ1(M)

for every holonomic D-module on X.
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