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1 How exponential sums appear in nature

Ever since Gauss, exponential sums of the form

S(f, p) =
∑
x∈Fnp

exp

(
2πif(x)

p

)
,

where p is a prime number and f is some function, play a key role in number theory. The

simplest example probably being the case f(x) = x2, which appeared in Gauss’ fourth

proof of quadratic reciprocity.

A large part of twentieth-century analytic number theory was devoted to the study of

these sums. For example, they can be used to estimate ζ(s) on vertical lines. Indeed, the

approximation

ζ(s) =

N∑
n=1

n−s +
N1−s

s− 1
+O(N−σ),

reduces the problem to sums of the form

∑
n n

−it
, which are of the form considered

above for f(x) = −t log(x)/2π. The reader interested in more alike examples may find a

plethora thereof in the book Analytic Number Theory by H. Iwaniec and E. Kowalski.

Whenever the function f is well-approximated by another function g, the sums S(f, p)

and S(g, p) are very close. This allows us to focus our attention on the case where f is a

polynomial. As we shall see, this case already encodes much of number theory.

Most foundational questions in number theory aim to describe the set of integer or

rational solutions of an equation like f(x) = 0 for some f ∈ Z[x1, . . . , xn]. Is this set

finite or infinite? If it’s finite, what’s its cardinality? If it’s infinite, can we describe some

numbers which "generate" all the solutions in some sense?

Very often these questions are way out of reach for our methods. This leads us to

consider solutions mod p of the desired equations. Let’s then define a function Sol(f, p, t)
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which counts the number of solutions to

f(x) ≡ t (mod p).

Now, we lose no information if we consider t 7→ Sol(f, p, t) as being complex-valued and

if we take its Fourier transform. This Fourier transform is given by

ψ 7→
∑
t∈Fp

ψ(t) Sol(f, p, t) =
∑
x∈Fnp

ψ(f(x)).

The Pontryagin dual of Fp is itself, since every additive character is of the form x 7→
ψa(x) := exp(2πiax/p) for a unique a ∈ Fp. Via this identification, the function above

is none other than

a 7→
∑
x∈Fnp

exp

(
2πiaf(x)

p

)
;

an exponential sum!

Another omnipresent example of exponential sums first appeared on Poincaré’s

posthumous paper on modular forms. Those are the Kloosterman sums given by

Kln(a, q) :=
∑

x1,...,xn∈F×
q

x1···xn=a

ψq(x1 + · · ·+ xn)

=
∑

x1,...,xn−1∈F×
q

ψq

(
x1 + · · ·+ xn−1 +

a

x1 · · · xn−1

)
,

where ψq := ψ1 ◦ trFq/Fp . Such sums appear, among a myriad of places, in the Fourier

expansion of the Poincaré series. Bounds on Kloosterman sums form an important part

of Y. Zhang’s celebrated Annals of Mathematics paper about the twin-prime conjecture.

•

In order to deal systematically with exponential sums, let’s give a proper definition

which encompasses all our polynomial examples and many interesting others.

Definition 1.1 — Exponential sum. Let k be a finite field and X be a finite-type scheme

over k. An exponential sum is an expression of the form

S(f, φ) :=
∑

x∈X(k)

φ(f(x)),

where G is a commutative algebraic group over k, φ is a character of G(k), and

f : X→ G is a morphism of schemes over k.
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As before, we remark that

Ĝ(k) → C

φ 7→
∑

x∈X(k)

φ(f(x))

is the Fourier transform of

G(k) → C
t 7→ #{x ∈ X(k) | f(x) = t}.

This definition allows for more natural descriptions of some of the exponential sums

we encountered. For example, sums of the form (called Gauss sums)∑
x∈F×

p

χ(x)ψ(x),

where ψ is an additive and χ is a multiplicative character of Fp, appear in this way by

taking X = A1 \ {0}, G = Gm×Ga, and f as the product of the identity and the inclusion.

When ψ = ψ1 and χ is Legendre’s symbol we recover the sum used in Gauss’ fourth

proof of quadratic reciprocity in a possibly more natural way than before.

This point of view also allows us to put numerous number-theoretic questions under

the umbrella of exponential sums. The case where φ is the trivial character is already

interesting and highly non-trivial. Indeed, the exponential sum becomes the number of

k-points of X (independently of G and f).

•

Let’s consider an explicit example. TakeA = Z[1/26] andX as the elliptic curve defined

by y2 = 4x3 − x − 1. We denote by N(X, q) the number of Fq-points of X and wonder

how the numbers N(X, q) varies as a function of q.

In analytic number theory, we usually divide the analysis into two cases: either we

consider only the cases where q varies between the prime numbers (which are not 2 or

13), or we fix one such prime number p and make q vary among the numbers of the

form pn, for some n.

We begin with the latter. Ever since Artin’s thesis in the 1920’s, it is known that there

exist two complex numbers αp and βp, satisfying αpβp = p, such that

N(X, pn) = pn + 1− αnp − βnp

for all n ⩾ 1. In particular, in order to determine N(X, pn) for all n, it suffices to know

N(X, p).
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The former case is much harder. By the Hasse bound, we know that

|N(X, p) − (p+ 1)| ⩽ 2
√
p

and so there exists a unique "angle" θp ∈ [0, π] such that

N(X, p) − (p+ 1) = 2
√
p cos(θp).

Our question, then, is about how the angles θp vary as a function of p. If X is an elliptic

curve with complex multiplication, it’s known since Deuring’s 1955 paper Die Zetafunktion
einer algebraischen Kurve von Geschlechte Eins that the θp are uniformly distributed in [0, π].

Our elliptic curve, however, doesn’t have complex multiplication (its j-invariant is not an

algebraic integer, for example).

The distribution of the angles θp for elliptic curves without complex multiplication

was the subject of a famous conjecture of Sato and Tate, which says that the sequence

(θp) is equidistributed in [0, π] for the Sato-Tate measure µST := (2/π) sin2 θ dθ. This

conjecture very recently became a theorem by Clozel, Barnet-Lamb, Geraghty, Harris,

Sheperd-Barron and Taylor, whose proof builds from all the arithmetic geometry used on

the modularity theorem. Several natural variants and generalizations remain wide-open.

2 Cohomology to the rescue!

The hero of our story is the theory of étale cohomology and, more precisely, Deligne’s

groundbreaking paper La conjecture de Weil II, which we’ll henceforth call "Weil II". Since

this is a huge machinery, we’ll begin by explaining its main features.

For now, let k be a finite field with q elements, and ℓ a prime different from the

characteristic of k. Moreover, let X be a (smooth geometrically connected) variety over k

of dimension d.

Since the Zariski topology is so coarse, lots of spaces of interest have trivial fundamental

group. This happens, for example, for every variety as above. In other words, the usual

tools from algebraic topology are not very adapted to the study of algebraic varieties

over fields which have no natural topology. This led Grothendieck to define the étale
fundamental group π1(X), a profinite group which classifies the finite étale covers of X.

Given the assumption that X is connected, the étale fundamental group is independent

of a base point up to inner automorphism. As in topology, a morphism of schemes

f : X→ Y induces a morphism

f∗ : π1(X) → π1(Y).

Moreover, if X = Speck, its fundamental group is nothing but the absolute Galois group

of k. In our case, where k is Fq, this is the free profinite group Ẑ on one canonical

generator given by

Fq → Fq, x 7→ xq.
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This is the so-called arithmetic Frobenius. As we’ll see, its inverse, denoted by Frobk and

called geometric Frobenius, will play a key role on the theory.

•

In topology, the category of local systems is equivalent to the category of finite-

dimensional representations of the fundamental group by taking the fiber of a local

system on a fixed point. This suggests the following definition.

Definition 2.1 A ℓ-adic local system L of rank r over X is a continuous representation

ρ : π1(X) → GLr(Qℓ).

Given a finite extension E of k, we may define a trace function tL : X(E) → Qℓ in the

following way: a point x ∈ X(E) is a morphism SpecE→ X, and so it induces a map

Gal(E) → π1(X).

We denote by FrobE,x the image of FrobE via this morphism. Since all of this is only

canonical up to a choice of base point, FrobE,x is a conjugation class in π1(X). It follows

that ρ(FrobE,x) is a conjugation class in GLr(Qℓ), and we may take its trace. This number,

often denoted tr(FrobE,x | L ), is the image of x by tL .

There’s an interesting way to obtain local systems. Let G be a (smooth connected)

commutative group scheme over k. We consider the absolute Frobenius FG : G→ G; the

morphism of k-schemes which is the identity on the underlying topological space and

acts as x 7→ xq on the structure sheaf OG. The Lang isogeny

idG−FG : G→ G

is a finite étale cover, which is also Galois with group G(k).

Since π1(G) is the limit of the Galois groups of all finite étale Galois covers, we obtain a

natural surjection π1(G) → G(k). Now, ifφ : G(k) → Q×
ℓ is a character, we may compose

those morphisms to obtain a representation

π1(G) → G(k) → Q×
ℓ ,

corresponding to a rank one local system over G; denoted Lφ. More generally, if we’re

also given a morphism f : X→ G of k-schemes, we compose the morphism above with

f∗ to obtain a rank one local system f∗Lφ, commonly denoted Lφ(f). Its trace in a point

x ∈ X(E) is the image of FrobE through the composition

Gal(E)
x−→ π1(X)

f∗−→ π1(G) −→ G(k)
φ−→ Q×

ℓ .

As one may verify, this is simply φ(trGE/k f(x)), where the trGE/k : G(E) → G(k) function

sends g ∈ G(E) to g+ FrobE(g) + . . .+ Frobn−1E (g) for n = [E : k]. (This coincides with
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the usual trace when G = Ga and with the usual norm when G = Gm .) In particular,

up to identifying Qℓ with C, we may write our exponential sum S(f, φ) as

S(f, φ) =
∑

x∈X(k)

tr(Frobk,x | Lφ(f)).

Believe it or not, this is a tremendous achievement!

•

In order to go further in the étale cohomology world, we need to enlarge our category

of ℓ-adic local systems to the so-called constructible sheaves, which behave much better

functorially. In topology, the constructible sheaves are those which restrict to local

systems on a given stratification. Up to some minor technical details, the same definition

works in the ℓ-adic setting.

Since constructible sheaves are "locally" local systems, given a constructible sheaf F

and a geometric point x over x ∈ X(E), the fiber Fx is a local system. As before, we may

make the Frobenius automorphism act on this local system, extending the trace function

to constructible sheaves.

Given a constructible sheaf F on X, Grothendieck defined the cohomology groups

Hi(Xk̄,F ) and the compactly supported cohomology groups Hic(Xk̄,F ). These are

finite-dimensional Qℓ-vector spaces, endowed with actions of Gal(k), which vanish for

i < 0 or i > 2d. They satisfy the Grothendieck trace formula

∑
x∈X(E)

tr(FrobE,x | F ) =

2d∑
i=0

(−1)i tr(FrobE |H
i
c(Xk̄,F )).

Our approach then becomes clear. We’ll write exponential sums as the left-hand side

of the equation above, and we’ll estimate the eigenvalues of FrobE acting on Hic(Xk̄,F ).

Definition 2.2 Let F be a constructible sheaf and let ι : Qℓ ↪→ C be an embedding. We

say that F is ι-pure of weight w if, for all finite extensions E/k and for all x ∈ X(E),
the eigenvalues αi of FrobE acting on Fx satisfy |ι(αi)| = |E|w/2. It is ι-mixed of

weight ⩽ w (resp. ⩾ w) if we have ⩽ (resp. ⩾) on the equation above. We say that F

is pure / mixed of some weight if it is ι-pure / ι-mixed of the same weight for all ι.

The relation between the definition above and our desired estimates is given by (a

particular case of) the main theorem in Weil II.

Theorem 2.1 — Deligne. Let F be a constructible sheaf over X and let ι : Qℓ ↪→ C be

an embedding. If F is ι-mixed of weight ⩽ w, then Hic(Xk̄,F ) is ι-mixed of weight

⩽ w+ i.
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We remark that, in this case, Poincaré duality implies that Hi(Xk̄,F ) is ι-mixed of

weight ⩾ w + i. If the natural morphism Hic(Xk̄,F ) → Hi(Xk̄,F ) is an isomorphism

(which happens if X is proper over k), then Hi(Xk̄,F ) = Hic(Xk̄,F ) is ι-pure of weight

w+ i.

While this won’t really be needed for us, it would be a shame to not remark at this

point that this theorem finishes the proof of the Weil conjectures. Let us recall how. We

define the zeta function of X as the formal power series

Z(X, t) := exp

( ∞∑
n=1

|X(Fqn)|
tn

n

)
∈ Q[[t]].

If X is supposed to be projective, the Weil conjectures say, among other things, that

Z(X, t) may be written as

P1(t)P3(t) · · ·P2d−1(t)
P0(t)P2(t) · · ·P2d(t)

,

where each Pi is a polynomial in Z[t], which factors over C as

∏
j(1 − αijt) for some

complex numbers αij satisfying |αij| = q
i/2

for all i, j.

These conjectures shaped the development of algebraic geometry for over twenty years.

All of it now falls under the umbrella of the formalism above. Indeed, we may define Pi
to be the (image under some ι of the) determinant of 1− tFrobk, acting on Hic(Xk̄,Qℓ).
A simple calculation using the Grothendieck trace formula then implies that Z(X, t) is

indeed the desired rational function on the Pi.

The hardest part of these conjectures was the Riemann Hypothesis; the calculation that

the αij satisfy |αij| = qi/2 for all i, j. This is now a simple consequence of Deligne’s

theorem, for theαij are precisely the (image under the same ι as before of the) eigenvalues

of Frobk acting on Hic(Xk̄,Qℓ), which is ι-pure of weight i. (Since Qℓ is pure of weight 0.)

Another magnificent example of the applications of Weil II is given by the Lang-Weil
bound. (Here we don’t suppose X to be projective anymore.) By taking F = Qℓ on the

Grothendieck trace formula we obtain

|X(E)| =

2d∑
i=0

(−1)i tr(FrobE |H
i
c(Xk̄,Qℓ)).

(Since FrobE = Frobnk , this equation sheds light into the simple case where X is an

elliptic curve. Indeed, the complex numbers αp and βp that we encountered long ago

are nothing but the eigenvalues of the Frobenius acting on H1c(Xk̄,Qℓ)!) Consider the

numbers

bic(X) := dimQℓ H
i
c(Xk̄,Qℓ) and A(X) :=

2d∑
i=0

bic(X).

Since H2dc (Xk̄,Qℓ) is a one-dimensional vector space endowed with an action of FrobE
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given by multiplication by |E|d, and Qℓ is pure of weight 0, we obtain

∣∣X(E) − |E|d
∣∣ ⩽ 2d−1∑

i=0

bic(X)|E|
i/2 ⩽ A(X)|E|(2d−1)/2.

In particular, as soon as |E| > A(X)2, the variety X has a E-point.

3 Let’s work out the case of Gauss’ sums

Let’s recall an ancient friend that we encountered in our tour; the Gauss sum g(ψ, χ),

defined as

g(ψ, χ) :=
∑
x∈F×

q

ψ(x)χ(x),

where ψ is an additive and χ is a multiplicative character of Fq. Consider, for each

prime p, a non-trivial additive character ψp of Fp and denote by ψq the character of

Fq obtained by composing with the trace. If χ is trivial, g(ψq, χ) is simply −1. Else, its

absolute value is

√
q and we find q− 2 points

θq,χ :=
g(ψq, χ)√

q
∈ S1,

one for each non-trivial multiplicative character.

As in Sato-Tate’s conjecture, we may wonder how do these "angles" are distributed on

the unit circle as q tends to infinity.

Theorem 3.1 — Deligne. As q tends to infinity, the angles {θq,χ}χ ̸=1 become equidis-

tributed on S1 with respect to its normalized Haar measure. In other words, the

equation

1

2π

∫2π
0

f(eiθ) dθ = lim
q→∞ 1

q− 2

∑
χ ̸=1

f(θq,χ)

is satisfied for all continuous functions f : S1 → C.

As the Laurent polynomials are dense in C (S1), it suffices to consider functions of

the form f(z) = zn, for n ∈ Z. The case n = 0 is trivial and the relation g(ψq, χ)
−1 =

g(ψq, χ)q
−1

allows us to only consider n ⩾ 1. In this case the integral always vanishes,

so we must prove that the sequence

1

q− 2

∑
χ ̸=1

f(θq,χ) =
1

qn/2(q− 2)

∑
χ ̸=1

g(ψq, χ)
n
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tends to zero as q goes to infinity. Then, we remark that

g(ψq, χ)
n =

∑
x1,...,xn∈F×

q

ψq(x1 + . . .+ xn)χ(x1 · · · xn)

=
∑
a∈F×

q

χ(a)
∑

x1,...,xn∈F×
q

x1···xn=a

ψq(x1 + · · ·+ xn)

=
∑
a∈F×

q

χ(a)Kln(a, q).

That is, χ 7→ g(ψq, χ)
n

is the Fourier transform of the Kloosterman sums that we

encountered before!

As we do now, Kloosterman himself needed to bound the sums Kln(a, q), but only for

n = 2. By calculating the fourth moment,∑
a∈F×

q

Kl2(a, q)
4 = 2q3 − 3q2 − 3q− 1,

he concluded that |Kl2(a, q)| < 2q
3/4

. The estimation of the sixth moment allowed Salié

and Davenport to upgrade the exponent from 3/4 to 2/3. Finally, Hasse observed that

the optimal bound |Kl2(a, q)| < 2
√
q would follow from the Riemann Hypothesis for

curves over finite fields.

The optimal bound for Kln(a, q) with n > 2 was only proved, by Deligne, almost

40 years after Weil proved the Riemann Hypothesis for curves over finite fields and

established the n = 2 case. Now, in great Grothendieckian style, it is a somewhat

straighforward application of all the breathtaking machinery of the previous section.

Let k = Fq, X be the vanishing set of x1 · · · xn − a inside Gnm, and take f : X→ Ga be

the "sum" function. As we explained, we have that

Kln(a, q) =

2n∑
i=0

(−1)i tr(Frobk |H
i
c(Xk̄,Lψq(f))).

In the SGA412 , Deligne calculated these cohomology groups and concluded that Hic = 0

for all i ̸= n− 1, and that Hn−1 = Hn−1c is n-dimensional. Moreover, since ψq(f(x)) is

always a p-th root of unity, Lψq(f) is pure of weight 0. All these facts, along with Weil II,

implies that

|Kln(a, q)| = | tr(Frobk |H
n−1
c (Xk̄,Lψq(f)))| ⩽ nq

(n−1)/2,

the optimal bound.

This allows us to finish our proof of the equidistribution of the angles of Gauss sums.

By summing over the non-trivial χ, we obtain∑
χ ̸=1

g(ψq, χ)
n = −g(ψq, 1)

n +
∑
a∈F×

q

Kln(a, q)
∑
χ

χ(a) = (−1)n+1 + (q− 1)Kln(1, q).
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Finally, using Deligne’s bound, we conclude that∣∣∣∣∣∣ 1

qn/2(q− 2)

∑
χ ̸=1

g(ψq, χ)
n

∣∣∣∣∣∣ ⩽ 2n+ 1
√
q
,

which goes to zero as q tends to infinity. This finishes the proof.
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