Exponential Sums

A tour through number theory

Gabriel Ribeiro
École Polytechnique

Summary

1. How exponential sums appear in nature
2. Cohomology to the rescue!
3. Let's work out the case of Gauss' sums

How exponential sums appear in nature

Exponential sums

Ever since Gauss, exponential sums of the form

$$
S(f, p)=\sum_{x \in \mathbb{F}_{p}^{n}} \exp \left(\frac{2 \pi i f(x)}{p}\right)
$$

where p is a prime number and f is some function, play a key role in number theory.

Exponential sums

Ever since Gauss, exponential sums of the form

$$
S(f, p)=\sum_{x \in \mathbb{F}_{p}^{n}} \exp \left(\frac{2 \pi i f(x)}{p}\right),
$$

where p is a prime number and f is some function, play a key role in number theory.

The simplest example probably being the case $f(x)=x^{2}$, which appeared in Gauss' fourth proof of quadratic reciprocity.

ES in analytic number theory

A large part of twentieth-century analytic number theory was devoted to the study of these sums.

ES in analytic number theory

A large part of twentieth-century analytic number theory was devoted to the study of these sums.

For example, they can be used to estimate $\zeta(s)$ on vertical lines. Indeed, the approximation

$$
\zeta(s)=\sum_{n=1}^{N} n^{-s}+\frac{N^{1-s}}{s-1}+O\left(N^{-\sigma}\right)
$$

reduces the problem to sums of the form $\sum_{n} n^{-i t}$, which are of the form considered above for $f(x)=-t \log (x) / 2 \pi$.

ES in analytic number theory

A large part of twentieth-century analytic number theory was devoted to the study of these sums.

For example, they can be used to estimate $\zeta(s)$ on vertical lines. Indeed, the approximation

$$
\zeta(s)=\sum_{n=1}^{N} n^{-s}+\frac{N^{1-s}}{s-1}+O\left(N^{-\sigma}\right)
$$

reduces the problem to sums of the form $\sum_{n} n^{-i t}$, which are of the form considered above for $f(x)=-t \log (x) / 2 \pi$.
Whenever the function f is well-approximated by another function g, the sums $S(f, p)$ and $S(g, p)$ are very close. This allows us to focus our attention on the case where f is a polynomial.

Can we solve polynomial equations?

Foundational problem in NT: given $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, describe the set of solutions (in \mathbb{Z} or \mathbb{Q}) of $f(x)=0$.

Can we solve polynomial equations?

Foundational problem in NT : given $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, describe the set of solutions (in \mathbb{Z} or \mathbb{Q}) of $f(x)=0$. Is this set finite or infinite? If it's finite, what's its cardinality? If it's infinite, can we describe some numbers which "generate" all the solutions in some sense?

Can we solve polynomial equations?

Foundational problem in NT: given $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, describe the set of solutions (in \mathbb{Z} or \mathbb{Q}) of $f(x)=0$. Is this set finite or infinite? If it's finite, what's its cardinality? If it's infinite, can we describe some numbers which "generate" all the solutions in some sense?

Very often these questions are way out of reach for our methods. This leads us to consider solutions mod p of the desired equations.

Can we solve polynomial equations?

Foundational problem in NT: given $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, describe the set of solutions (in \mathbb{Z} or \mathbb{Q}) of $f(x)=0$. Is this set finite or infinite? If it's finite, what's its cardinality? If it's infinite, can we describe some numbers which "generate" all the solutions in some sense?

Very often these questions are way out of reach for our methods. This leads us to consider solutions mod p of the desired equations. Let's then define a function $\operatorname{Sol}(f, p, t)$ which counts the number of solutions to $f(x) \equiv t(\bmod p)$.

Taking a Fourier transform

Now, we lose no information if we consider $t \mapsto \operatorname{Sol}(f, p, t)$ as being complex-valued and if we take its Fourier transform.

Taking a Fourier transform

Now, we lose no information if we consider $t \mapsto \operatorname{Sol}(f, p, t)$ as being complex-valued and if we take its Fourier transform. This Fourier transform is given by

$$
\psi \mapsto \sum_{t \in \mathbb{F}_{p}} \psi(t) \operatorname{Sol}(f, p, t)=\sum_{x \in \mathbb{F}_{p}^{n}} \psi(f(x)) .
$$

Taking a Fourier transform

Now, we lose no information if we consider $t \mapsto \operatorname{Sol}(f, p, t)$ as being complex-valued and if we take its Fourier transform. This Fourier transform is given by

$$
\psi \mapsto \sum_{t \in \mathbb{F}_{p}} \psi(t) \operatorname{Sol}(f, p, t)=\sum_{x \in \mathbb{F}_{p}^{n}} \psi(f(x)) .
$$

Since $\widehat{\mathbb{F}_{p}}=\mathbb{F}_{p}$, every character is of the form $\psi_{a}(x):=\exp (2 \pi i a x / p)$.

Taking a Fourier transform

Now, we lose no information if we consider $t \mapsto \operatorname{Sol}(f, p, t)$ as being complex-valued and if we take its Fourier transform. This Fourier transform is given by

$$
\psi \mapsto \sum_{t \in \mathbb{F}_{p}} \psi(t) \operatorname{Sol}(f, p, t)=\sum_{x \in \mathbb{F}_{p}^{n}} \psi(f(x)) .
$$

Since $\widehat{\mathbb{F}_{p}}=\mathbb{F}_{p}$, every character is of the form $\psi_{a}(x):=\exp (2 \pi i a x / p)$. Via this identification, the function above is none other than

$$
a \mapsto \sum_{x \in \mathbb{F}_{p}^{n}} \exp \left(\frac{2 \pi i a f(x)}{p}\right)
$$

an exponential sum!

Kloosterman sums

Another omnipresent example of exponential sums first appeared in Poincaré's posthumous paper on modular forms. Those are the Kloosterman sums given by

$$
\begin{aligned}
\mathrm{KI}_{n}(a, q) & :=\sum_{\substack{x_{1}, \ldots, x_{n} \in \mathbb{F}_{a}^{\times} \\
x_{1}, x_{n}=a}} \psi_{q}\left(x_{1}+\cdots+x_{n}\right) \\
& =\sum_{x_{1}, \ldots, x_{n-1} \in \mathbb{F}_{q}^{\times}} \psi_{q}\left(x_{1}+\cdots+x_{n-1}+\frac{a}{x_{1} \cdots x_{n-1}}\right),
\end{aligned}
$$

where $\psi_{q}:=\psi_{1} \circ \operatorname{tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}$.

Let's properly define ES

In order to deal systematically with exponential sums, let's give a proper definition which encompasses all our polynomial examples and many interesting others.

Definition - Exponential sum

Let A be a finite-type algebra over \mathbb{Z} and X be a finite-type scheme over A. An exponential sum is a sum of the form

$$
S(f, \varphi):=\sum_{x \in X(k)} \varphi(f(x)),
$$

where $A \rightarrow k$ is a morphism of rings into a finite field k, G is a commutative algebraic group over \mathbb{Z}, φ is a character of $G(k)$, and $f: X \rightarrow G$ is a morphism of schemes.

We're still counting solutions!

As before, we remark that

$$
\begin{aligned}
\widehat{G(k)} & \rightarrow \mathbb{C} \\
\varphi & \mapsto \sum_{x \in X(k)} \varphi(f(x))
\end{aligned}
$$

is the Fourier transform of

$$
\begin{aligned}
G(k) & \rightarrow \mathbb{C} \\
t & \mapsto \#\{x \in X(k) \mid f(x)=t\} .
\end{aligned}
$$

Remarks on the def

This point of view also allows us to put numerous number-theoretic questions under the umbrella of exponential sums.

Remarks on the def

This point of view also allows us to put numerous number-theoretic questions under the umbrella of exponential sums.

The case where φ is the trivial character is already interesting and highly non-trivial.

Let's consider an example

Take $A=\mathbb{Z}[1 / 26]$ and X as the elliptic curve defined by $y^{2}=4 x^{3}-x-1$. We denote by $N(X, q)$ the number of \mathbb{F}_{q}-points of X and wonder how the numbers $N(X, q)$ vary as a function of q.

Let's consider an example

Take $A=\mathbb{Z}[1 / 26]$ and X as the elliptic curve defined by
$y^{2}=4 x^{3}-x-1$. We denote by $N(X, q)$ the number of \mathbb{F}_{q}-points of X and wonder how the numbers $N(X, q)$ vary as a function of q.

In analytic number theory, we usually divide the analysis into two cases: either we consider only the cases where q varies between the prime numbers (which are not 2 or 13), or we fix one such prime number p and make q vary among the numbers of the form p^{n}, for some n.

Vertical distribution

We begin with the latter. Ever since Artin's thesis in the 1920's, it is known that there exist two complex numbers α_{p} and β_{p}, satisfying $\alpha_{p} \beta_{p}=p$, such that

$$
N\left(X, p^{n}\right)=p^{n}+1-\alpha_{p}^{n}-\beta_{p}^{n}
$$

for all $n \geq 1$.

Vertical distribution

We begin with the latter. Ever since Artin's thesis in the 1920's, it is known that there exist two complex numbers α_{p} and β_{p}, satisfying $\alpha_{p} \beta_{p}=p$, such that

$$
N\left(X, p^{n}\right)=p^{n}+1-\alpha_{p}^{n}-\beta_{p}^{n}
$$

for all $n \geq 1$.
In particular, in order to determine $N\left(X, p^{n}\right)$ for all n, it suffices to know $N(X, p)$.

Horizontal distribution

The former case is much harder. By the Hasse bound, we know that

$$
|N(X, p)-(p+1)| \leq 2 \sqrt{p}
$$

and so there exists a unique "angle" $\theta_{p} \in[0, \pi]$ such that

$$
N(X, p)-(p+1)=2 \sqrt{p} \cos \left(\theta_{p}\right)
$$

How do the angles vary?

Our question, then, is about how the angles θ_{p} vary as a function of p.

How do the angles vary?

Our question, then, is about how the angles θ_{p} vary as a function of p. If X is an elliptic curve with complex multiplication, it's known since Deuring's 1955 paper Die Zetafunktion einer algebraischen Kurve von Geschlechte Eins that the θ_{p} are uniformly distributed in $[0, \pi]$.

How do the angles vary?

Our question, then, is about how the angles θ_{p} vary as a function of p. If X is an elliptic curve with complex multiplication, it's known since Deuring's 1955 paper Die Zetafunktion einer algebraischen Kurve von Geschlechte Eins that the θ_{p} are uniformly distributed in $[0, \pi]$.

Our elliptic curve, however, doesn't have complex multiplication (its j-invariant is not an algebraic integer, for example).

Sato-Tate

The distribution of the angles θ_{p} for elliptic curves without complex multiplication was the subject of a famous conjecture of Sato and Tate, which says that the sequence $\left(\theta_{p}\right)$ is equidistributed in $[0, \pi]$ for the Sato-Tate measure $\mu_{S T}:=(2 / \pi) \sin ^{2} \theta \mathrm{~d} \theta$.

Sato-Tate

The distribution of the angles θ_{p} for elliptic curves without complex multiplication was the subject of a famous conjecture of Sato and Tate, which says that the sequence $\left(\theta_{p}\right)$ is equidistributed in $[0, \pi]$ for the Sato-Tate measure $\mu_{S T}:=(2 / \pi) \sin ^{2} \theta \mathrm{~d} \theta$.
This conjecture very recently became a theorem by Clozel, Barnet-Lamb, Geraghty, Harris, Sheperd-Barron and Taylor, whose proof builds from all the arithmetic geometry used on the modularity theorem.

Sato-Tate

The distribution of the angles θ_{p} for elliptic curves without complex multiplication was the subject of a famous conjecture of Sato and Tate, which says that the sequence $\left(\theta_{p}\right)$ is equidistributed in $[0, \pi]$ for the Sato-Tate measure $\mu_{S T}:=(2 / \pi) \sin ^{2} \theta \mathrm{~d} \theta$.
This conjecture very recently became a theorem by Clozel, Barnet-Lamb, Geraghty, Harris, Sheperd-Barron and Taylor, whose proof builds from all the arithmetic geometry used on the modularity theorem.

Several natural variants and generalizations remain wide-open.

Cohomology to the rescue!

Étale cohomology

The hero of our story is the theory of étale cohomology and, more precisely, Deligne's groundbreaking paper La conjecture de Weil II, which we'll henceforth call "Weil II". Since this is a huge machinery, we'll begin by explaining its main features.

Étale cohomology

The hero of our story is the theory of étale cohomology and, more precisely, Deligne's groundbreaking paper La conjecture de Weil II, which we'll henceforth call "Weil II". Since this is a huge machinery, we'll begin by explaining its main features.

- Let $k=\mathbb{F}_{q}$, where $q=p^{n}$;

Étale cohomology

The hero of our story is the theory of étale cohomology and, more precisely, Deligne's groundbreaking paper La conjecture de Weil II, which we'll henceforth call "Weil II". Since this is a huge machinery, we'll begin by explaining its main features.

- Let $k=\mathbb{F}_{q}$, where $q=p^{n}$;
- $\ell \neq p$ a prime number;

Étale cohomology

The hero of our story is the theory of étale cohomology and, more precisely, Deligne's groundbreaking paper La conjecture de Weil II, which we'll henceforth call "Weil II". Since this is a huge machinery, we'll begin by explaining its main features.

- Let $k=\mathbb{F}_{q}$, where $q=p^{n}$;
- $\ell \neq p$ a prime number;
- X a nice variety over k of dimension d.

The étale fundamental group

Since the Zariski topology is so coarse, lots of spaces of interest have a trivial fundamental group.

The étale fundamental group

Since the Zariski topology is so coarse, lots of spaces of interest have a trivial fundamental group. In other words, the usual tools from algebraic topology are not very adapted to the study of these varieties.

The étale fundamental group

Since the Zariski topology is so coarse, lots of spaces of interest have a trivial fundamental group. In other words, the usual tools from algebraic topology are not very adapted to the study of these varieties.

This led Grothendieck to define the étale fundamental group $\pi_{1}(X)$, a profinite group which classifies the finite étale covers of X.

Basic properties

The étale fundamental group is independent of a base point up to inner automorphism.

Basic properties

The étale fundamental group is independent of a base point up to inner automorphism. As in topology, a morphism of schemes
$f: X \rightarrow Y$ induces a morphism

$$
f_{*}: \pi_{1}(X) \rightarrow \pi_{1}(Y) .
$$

Basic properties

The étale fundamental group is independent of a base point up to inner automorphism. As in topology, a morphism of schemes
$f: X \rightarrow Y$ induces a morphism

$$
f_{*}: \pi_{1}(X) \rightarrow \pi_{1}(Y) .
$$

Moreover, if $X=\operatorname{Spec} k$, its fundamental group is nothing but the absolute Galois group of k.

Frobenii

In our case, where k is \mathbb{F}_{q}, this is the free profinite group $\widehat{\mathbb{Z}}$ on one canonical generator given by

$$
\overline{\mathbb{F}}_{q} \rightarrow \overline{\mathbb{F}}_{q}, \quad x \mapsto x^{q} .
$$

Frobenii

In our case, where k is \mathbb{F}_{q}, this is the free profinite group $\widehat{\mathbb{Z}}$ on one canonical generator given by

$$
\overline{\mathbb{F}}_{q} \rightarrow \overline{\mathbb{F}}_{q}, \quad x \mapsto x^{q} .
$$

This is the so-called arithmetic Frobenius. As we'll see, its inverse, denoted by Frob_{k} and called geometric Frobenius, will play a key role in the theory.

Local systems

In topology, the category of local systems is equivalent to the category of finite-dimensional representations of the fundamental group by taking the fiber of a local system on a fixed point.

Local systems

In topology, the category of local systems is equivalent to the category of finite-dimensional representations of the fundamental group by taking the fiber of a local system on a fixed point. This suggests the following definition.

Definition - Local system

A ℓ-adic local system \mathscr{L} of rank r over X is a continuous representation $\rho: \pi_{1}(X) \rightarrow \mathrm{GL}_{r}\left(\overline{\mathbb{Q}}_{\ell}\right)$.

Trace functions

Given a finite extension E of k, we may define a trace function $t_{\mathscr{L}}: X(E) \rightarrow \overline{\mathbb{Q}}_{\ell}$ in the following way:

Trace functions

Given a finite extension E of k, we may define a trace function $t_{\mathscr{L}}: X(E) \rightarrow \overline{\mathbb{Q}}_{\ell}$ in the following way: a point $x \in X(E)$ is a morphism $\operatorname{Spec} E \rightarrow X$, and so it induces a map

$$
\operatorname{Gal}(E) \rightarrow \pi_{1}(X)
$$

Trace functions

Given a finite extension E of k, we may define a trace function $t_{\mathscr{L}}: X(E) \rightarrow \overline{\mathbb{Q}}_{\ell}$ in the following way: a point $x \in X(E)$ is a morphism $\operatorname{Spec} E \rightarrow X$, and so it induces a map

$$
\operatorname{Gal}(E) \rightarrow \pi_{1}(X)
$$

We denote by $\mathrm{Frob}_{E, x}$ the image of Frob_{E} via this morphism.

Trace functions

Given a finite extension E of k, we may define a trace function $t_{\mathscr{L}}: X(E) \rightarrow \overline{\mathbb{Q}}_{\ell}$ in the following way: a point $x \in X(E)$ is a morphism $\operatorname{Spec} E \rightarrow X$, and so it induces a map

$$
\operatorname{Gal}(E) \rightarrow \pi_{1}(X)
$$

We denote by $\mathrm{Frob}_{E, x}$ the image of Frob_{E} via this morphism. It follows that $\rho\left(\operatorname{Frob}_{E, x}\right)$ is a conjugation class in $\mathrm{GL}_{r}\left(\overline{\mathbb{Q}}_{\ell}\right)$, and we may take its trace.

Trace functions

Given a finite extension E of k, we may define a trace function $t_{\mathscr{L}}: X(E) \rightarrow \overline{\mathbb{Q}}_{\ell}$ in the following way: a point $x \in X(E)$ is a morphism $\operatorname{Spec} E \rightarrow X$, and so it induces a map

$$
\operatorname{Gal}(E) \rightarrow \pi_{1}(X)
$$

We denote by $\mathrm{Frob}_{E, x}$ the image of Frob_{E} via this morphism. It follows that $\rho\left(\mathrm{Frob}_{\mathrm{E}, \mathrm{x}}\right)$ is a conjugation class in $\mathrm{GL}_{r}\left(\overline{\mathbb{Q}}_{\ell}\right)$, and we may take its trace.

This number, often denoted $\operatorname{tr}\left(\operatorname{Frob}_{E, x} \mid \mathscr{L}\right)$, is the image of x by $t_{\mathscr{L}}$.

The Lang isogeny

Let G be a (nice) commutative group scheme over k. We consider the absolute Frobenius $F_{G}: G \rightarrow G$.

The Lang isogeny

Let G be a (nice) commutative group scheme over k. We consider the absolute Frobenius $F_{G}: G \rightarrow G$. The Lang isogeny

$$
\mathrm{id}_{G}-F_{G}: G \rightarrow G
$$

is a finite étale cover, which is also Galois with group $G(k)$.

The "Artin-Schreier" sheaf

Since $\pi_{1}(G)$ is the limit of the Galois groups of all finite étale Galois covers, we obtain a natural surjection $\pi_{1}(G) \rightarrow G(k)$.

The "Artin-Schreier" sheaf

Since $\pi_{1}(G)$ is the limit of the Galois groups of all finite étale Galois covers, we obtain a natural surjection $\pi_{1}(G) \rightarrow G(k)$. Now, if $\varphi: G(k) \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times}$is a character, we may compose those morphisms to obtain a representation

$$
\pi_{1}(G) \rightarrow G(k) \rightarrow \overline{\mathbb{Q}}_{\ell}^{\times},
$$

corresponding to a rank one local system over G ; denoted \mathscr{L}_{φ}.

The "Artin-Schreier" sheaf

More generally, given a morphism $f: X \rightarrow G$ of k-schemes, we compose the morphism above with f_{*} to obtain a rank one local system $f^{*} \mathscr{L}_{\varphi}$, commonly denoted $\mathscr{L}_{\varphi(f)}$.

The "Artin-Schreier" sheaf

More generally, given a morphism $f: X \rightarrow G$ of k-schemes, we compose the morphism above with f_{*} to obtain a rank one local system $f^{*} \mathscr{L}_{\varphi}$, commonly denoted $\mathscr{L}_{\varphi(f)}$.
Its trace in a point $x \in X(E)$ is simply $\varphi\left(\operatorname{tr}_{E / k}^{G} f(x)\right)$, where the $\operatorname{tr}_{E / k}^{G}: G(E) \rightarrow G(k)$ function sends $g \in G(E)$ to
$g+\operatorname{Frob}_{E}(g)+\ldots+\operatorname{Frob}_{E}^{n-1}(g)$ for $n=[E: k]$.

Exponential sums are traces of Frobenii!

In particular, up to identifying $\overline{\mathbb{Q}}_{\ell}$ with \mathbb{C}, we may write our exponential sum $S(f, \varphi)$ as

$$
S(f, \varphi)=\sum_{x \in X(k)} \operatorname{tr}\left(\operatorname{Frob}_{k, x} \mid \mathscr{L}_{\varphi(f)}\right) .
$$

Exponential sums are traces of Frobenii!

In particular, up to identifying $\overline{\mathbb{Q}}_{\ell}$ with \mathbb{C}, we may write our exponential sum $S(f, \varphi)$ as

$$
S(f, \varphi)=\sum_{x \in X(k)} \operatorname{tr}\left(\operatorname{Frob}_{k, x} \mid \mathscr{L}_{\varphi(f)}\right) .
$$

Believe it or not, this is a tremendous achievement!

Constructible sheaves

In order to go further in the étale cohomology world, we need to enlarge our category of ℓ-adic local systems to the so-called constructible sheaves, which behave much better functorially.

Constructible sheaves

In order to go further in the étale cohomology world, we need to enlarge our category of ℓ-adic local systems to the so-called constructible sheaves, which behave much better functorially.

In topology, the constructible sheaves are those which restrict to local systems on a given stratification.

Constructible sheaves

In order to go further in the étale cohomology world, we need to enlarge our category of ℓ-adic local systems to the so-called constructible sheaves, which behave much better functorially.

In topology, the constructible sheaves are those which restrict to local systems on a given stratification. Up to some minor technical details, the same definition works in the ℓ-adic setting.

Constructible sheaves also have traces

Since constructible sheaves are "locally" local systems, given a constructible sheaf \mathscr{F} and a geometric point \bar{x} over $x \in X(E)$, the fiber $\mathscr{F}_{\bar{x}}$ is a local system.

Constructible sheaves also have traces

Since constructible sheaves are "locally" local systems, given a constructible sheaf \mathscr{F} and a geometric point \bar{x} over $x \in X(E)$, the fiber $\mathscr{F}_{\bar{x}}$ is a local system.

As before, we may make the geometric Frobenius act on this local system, extending the trace function to constructible sheaves.

Étale cohomology

Given a constructible sheaf \mathscr{F}, Grothendieck defined the cohomology groups $\mathrm{H}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$ and the compactly supported cohomology groups $\mathrm{H}_{c}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$.

Étale cohomology

Given a constructible sheaf \mathscr{F}, Grothendieck defined the cohomology groups $\mathrm{H}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$ and the compactly supported cohomology groups $\mathrm{H}_{c}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$.

These are finite-dimensional $\overline{\mathbb{Q}}_{\ell}$-vector spaces, endowed with actions of $\operatorname{Gal}(k)$, which vanish for $i<0$ or $i<2 d$.

The trace formula

The Grothendieck trace formula is

$$
\sum_{x \in X(E)} \operatorname{tr}\left(\operatorname{Frob}_{E, x} \mid \mathscr{F}\right)=\sum_{i=0}^{2 d}(-1)^{i} \operatorname{tr}\left(\operatorname{Frob}_{E} \mid H_{c}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)\right) .
$$

The trace formula

The Grothendieck trace formula is

$$
\sum_{x \in X(E)} \operatorname{tr}\left(\operatorname{Frob}_{E, x} \mid \mathscr{F}\right)=\sum_{i=0}^{2 d}(-1)^{i} \operatorname{tr}\left(\operatorname{Frob}_{E} \mid \mathrm{H}_{C}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)\right)
$$

Our approach then becomes clear. We'll write exponential sums as the left-hand side of the equation above, and we'll estimate the eigenvalues of Frob ${ }_{E}$ acting on $H_{C}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$.

Weights

Let \mathscr{F} be a constructible sheaf and let $\iota: \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$ be an embedding.

Weights

Let \mathscr{F} be a constructible sheaf and let $\iota: \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$ be an embedding.

Definition - Weights

We say that \mathscr{F} is ι-pure of weight w if, for all finite extensions E / k and for all $x \in X(E)$, the eigenvalues α_{i} of Frob $_{E}$ acting on $\mathscr{F}_{\bar{x}}$ satisfy $\left|\iota\left(\alpha_{i}\right)\right|=|E|^{w / 2}$.

Weights

Let \mathscr{F} be a constructible sheaf and let $\iota: \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$ be an embedding.

Definition - Weights

We say that \mathscr{F} is ι-pure of weight w if, for all finite extensions E / k and for all $x \in X(E)$, the eigenvalues α_{i} of Frob $_{E}$ acting on $\mathscr{F}_{\bar{x}}$ satisfy $\left|\iota\left(\alpha_{i}\right)\right|=|E|^{w / 2}$. It is ι-mixed of weight $\leq w($ resp. $\geq w)$ if we have \leq (resp. \geq) on the equation above.

Weights

Let \mathscr{F} be a constructible sheaf and let $\iota: \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}$ be an embedding.

Definition - Weights

We say that \mathscr{F} is ι-pure of weight w if, for all finite extensions E / k and for all $x \in X(E)$, the eigenvalues α_{i} of Frob $_{E}$ acting on $\mathscr{F}_{\bar{x}}$ satisfy $\left|\iota\left(\alpha_{i}\right)\right|=|E|^{w / 2}$. It is ι-mixed of weight $\leq w($ resp. $\geq w)$ if we have \leq (resp. \geq) on the equation above. We say that \mathscr{F} is pure / mixed of some weight if it is ι-pure / ι-mixed of the same weight for all ι.

Weil II

The relation between the definition above and our desired estimates is given by (a particular case of) the main theorem in Weil II.

Theorem (Deligne) - Weil II

If \mathscr{F} is ι-mixed of weight $\leq w$, then $\mathrm{H}_{c}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$ is ι-mixed of weight $\leq w+i$.

A Poincaré duality argument

We remark that, in this case, Poincare duality implies that $\mathrm{H}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$ is ι-mixed of weight $\geq w+i$.

A Poincaré duality argument

We remark that, in this case, Poincare duality implies that $\mathrm{H}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$ is ι-mixed of weight $\geq w+i$.

If the natural morphism $\mathrm{H}_{c}^{i}\left(X_{\bar{k}}, \mathscr{F}\right) \rightarrow \mathrm{H}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$ is an isomorphism (which happens if X is proper over k), then $\mathrm{H}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)=\mathrm{H}_{c}^{i}\left(X_{\bar{k}}, \mathscr{F}\right)$ is ι-pure of weight $w+i$.

The Weil conjectures

We define the zeta function of X as the formal power series

$$
Z(X, t):=\exp \left(\sum_{n=1}^{\infty}\left|X\left(\mathbb{F}_{q^{n}}\right)\right| \frac{t^{n}}{n}\right) \in \mathbb{Q} \llbracket t \rrbracket .
$$

The Weil conjectures

We define the zeta function of X as the formal power series

$$
Z(X, t):=\exp \left(\sum_{n=1}^{\infty}\left|X\left(\mathbb{F}_{q^{n}}\right)\right| \frac{t^{n}}{n}\right) \in \mathbb{Q} \llbracket t \rrbracket .
$$

If X is supposed to be projective, the Weil conjectures say, among other things, that $Z(X, t)$ may be written as

$$
\frac{P_{1}(t) P_{3}(t) \cdots P_{2 d-1}(t)}{P_{0}(t) P_{2}(t) \cdots P_{2 d}(t)},
$$

where each P_{i} is a polynomial in $\mathbb{Z}[t]$, which factors over \mathbb{C} as $\prod_{j}\left(1-\alpha_{i j} t\right)$ for some complex numbers $\alpha_{i j}$ satisfying $\left|\alpha_{i j}\right|=q^{i / 2}$ for all i, j.

The Weil conjectures

These conjectures shaped the development of algebraic geometry for over twenty years. All of it now falls under the umbrella of the formalism above.

The Weil conjectures

These conjectures shaped the development of algebraic geometry for over twenty years. All of it now falls under the umbrella of the formalism above.

Indeed, we may define P_{i} to be the (image under some ι of the) determinant of $1-t$ Frob $_{k}$, acting on $H_{c}^{i}\left(X_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$.

The Weil conjectures

These conjectures shaped the development of algebraic geometry for over twenty years. All of it now falls under the umbrella of the formalism above.

Indeed, we may define P_{i} to be the (image under some ι of the) determinant of $1-t$ Frob $_{k}$, acting on $H_{c}^{i}\left(X_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$.

A simple calculation using the Grothendieck trace formula then implies that $Z(X, t)$ is indeed the desired rational function on the P_{i}.

The Riemann Hypothesis

The hardest part of these conjectures was the Riemann Hypothesis; the fact that the $\alpha_{i j}$ satisfy $\left|\alpha_{i j}\right|=q^{i / 2}$ for all i, j.

The Riemann Hypothesis

The hardest part of these conjectures was the Riemann Hypothesis; the fact that the $\alpha_{i j}$ satisfy $\left|\alpha_{i j}\right|=q^{i / 2}$ for all i, j.

This is now a simple consequence of Deligne's theorem, for the $\alpha_{i j}$ are precisely the (image under the same ι as before of the) eigenvalues of Frob_{k} acting on $\mathrm{H}_{c}^{i}\left(X_{\bar{R}}, \overline{\mathbb{Q}}_{\ell}\right)$, which is ι-pure of weight i. (Since $\overline{\mathbb{Q}}_{\ell}$ is pure of weight 0 .)

The Lang-Weil bound

Another magnificent example of the applications of Weil II is given by the so-called Lang-Weil bound.

The Lang-Weil bound

Another magnificent example of the applications of Weil II is given by the so-called Lang-Weil bound. By taking $\mathscr{F}=\overline{\mathbb{Q}}_{\ell}$ on the Grothendieck trace formula we obtain

$$
|X(E)|=\sum_{i=0}^{2 d}(-1)^{i} \operatorname{tr}\left(\operatorname{Frob}_{E} \mid \mathrm{H}_{c}^{i}\left(X_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)\right) .
$$

The Lang-Weil bound

Consider the numbers

$$
b_{c}^{i}(X):=\operatorname{dim}_{\overline{\mathbb{Q}}_{\ell}} H_{c}^{i}\left(X_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right) \quad \text { and } \quad A(X):=\sum_{i=0}^{2 d} b_{c}^{i}(X)
$$

The Lang-Weil bound

Consider the numbers

$$
b_{c}^{i}(X):=\operatorname{dim}_{\overline{\mathbb{Q}}_{\ell}} H_{c}^{i}\left(X_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right) \quad \text { and } \quad A(X):=\sum_{i=0}^{2 d} b_{c}^{i}(X)
$$

Since $H_{c}^{2 d}\left(X_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$ is a one-dimensional vector space endowed with an action of Frob $_{E}$ given by multiplication by $|E|^{d}$, and $\overline{\mathbb{Q}}_{\ell}$ is pure of weight 0, we obtain

$$
\left|X(E)-|E|^{d}\right| \leq \sum_{i=0}^{2 d-1} b_{c}^{i}(X)|E|^{i / 2} \leq A(X)|E|^{(2 d-1) / 2}
$$

The Lang-Weil bound

Consider the numbers

$$
b_{c}^{i}(X):=\operatorname{dim}_{\overline{\mathbb{Q}}_{\ell}} H_{c}^{i}\left(X_{\bar{R}}, \overline{\mathbb{Q}}_{\ell}\right) \quad \text { and } \quad A(X):=\sum_{i=0}^{2 d} b_{c}^{i}(X) .
$$

Since $H_{c}^{2 d}\left(X_{\bar{k}}, \overline{\mathbb{Q}}_{\ell}\right)$ is a one-dimensional vector space endowed with an action of Frob $_{E}$ given by multiplication by $|E|^{d}$, and $\overline{\mathbb{Q}}_{\ell}$ is pure of weight 0 , we obtain

$$
\left|X(E)-|E|^{d}\right| \leq \sum_{i=0}^{2 d-1} b_{c}^{i}(X)|E|^{i / 2} \leq A(X)|E|^{(2 d-1) / 2}
$$

In particular, as soon as $|E|>A(X)^{2}$, the variety X has a E-point.

Let's work out the case of Gauss'

 sums
Gauss sum

Let's recall an ancient friend that we encountered in our tour; the Gauss sum $g(\psi, \chi)$, defined as

$$
g(\psi, \chi):=\sum_{x \in \mathbb{F}_{q}^{\times}} \psi(x) \chi(x),
$$

where ψ is an additive and χ is a multiplicative character of \mathbb{F}_{q}.

Gauss sum

Let's recall an ancient friend that we encountered in our tour; the Gauss sum $g(\psi, \chi)$, defined as

$$
g(\psi, \chi):=\sum_{x \in \mathbb{F}_{q}^{\times}} \psi(x) \chi(x),
$$

where ψ is an additive and χ is a multiplicative character of \mathbb{F}_{q}.
Consider, for each prime p, a non-trivial additive character ψ_{p} of \mathbb{F}_{p} and denote by ψ_{q} the character of \mathbb{F}_{q} obtained by composing with the trace.

Gauss sum

If χ is trivial, $g\left(\psi_{q}, \chi\right)$ is simply -1 .

Gauss sum

If χ is trivial, $g\left(\psi_{q}, \chi\right)$ is simply -1 . Else, its absolute value is $\sqrt{9}$ and we find $q-2$ points

$$
\theta_{q, \chi}:=\frac{g\left(\psi_{q}, \chi\right)}{\sqrt{q}} \in S^{1},
$$

one for each non-trivial multiplicative character.

How do these angles are distributed?

As in Sato-Tate's conjecture, we may wonder how do these "angles" are distributed on the unit circle as q tends to infinity.

How do these angles are distributed?

As in Sato-Tate's conjecture, we may wonder how do these "angles" are distributed on the unit circle as q tends to infinity.

Theorem (Deligne)

As q tends to infinity, the angles $\left\{\theta_{q, \chi}\right\}_{\chi \neq 1}$ become equidistributed on S^{1} with respect to its normalized Haar measure.

How do these angles are distributed?

As in Sato-Tate's conjecture, we may wonder how do these "angles" are distributed on the unit circle as q tends to infinity.

Theorem (Deligne)

As q tends to infinity, the angles $\left\{\theta_{q, \chi}\right\}_{\chi \neq 1}$ become equidistributed on S^{1} with respect to its normalized Haar measure. In other words, the equation

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \mathrm{d} \theta=\lim _{q \rightarrow \infty} \frac{1}{q-2} \sum_{\chi \neq 1} f\left(\theta_{q, \chi}\right)
$$

is satisfied for all continuous functions $f: S^{1} \rightarrow \mathbb{C}$.

Proof of the equidistribution

As the Laurent polynomials are dense in $\mathscr{C}\left(S^{1}\right)$, it suffices to consider functions of the form $f(z)=z^{n}$, for $n \in \mathbb{Z}$.

Proof of the equidistribution

As the Laurent polynomials are dense in $\mathscr{C}\left(S^{1}\right)$, it suffices to consider functions of the form $f(z)=z^{n}$, for $n \in \mathbb{Z}$. The case $n=0$ is trivial, and the relation $g\left(\psi_{q}, \chi\right)^{-1}=g\left(\overline{\psi_{q}}, \bar{\chi}\right) q^{-1}$ allows us to only consider $n \geq 1$.

Proof of the equidistribution

As the Laurent polynomials are dense in $\mathscr{C}\left(S^{1}\right)$, it suffices to consider functions of the form $f(z)=z^{n}$, for $n \in \mathbb{Z}$. The case $n=0$ is trivial, and the relation $g\left(\psi_{q}, \chi\right)^{-1}=g\left(\overline{\psi_{q}}, \bar{\chi}\right) q^{-1}$ allows us to only consider $n \geq 1$.
In this case the integral always vanishes, so we must prove that the sequence

$$
\frac{1}{q-2} \sum_{\chi \neq 1} f\left(\theta_{q, \chi}\right)=\frac{1}{q^{n / 2}(q-2)} \sum_{\chi \neq 1} g\left(\psi_{q}, \chi\right)^{n}
$$

tends to zero as q goes to infinity.

Proof of the equidistribution

Then, we remark that

$$
\begin{aligned}
g\left(\psi_{q}, \chi\right)^{n} & =\sum_{x_{1}, \ldots, x_{n} \in \mathbb{F}_{q}^{\times}} \psi_{q}\left(x_{1}+\ldots+x_{n}\right) \chi\left(x_{1} \cdots x_{n}\right) \\
& =\sum_{a \in \mathbb{F}_{q}^{\times}} \chi(a) \sum_{\substack{x_{1}, \ldots, x_{n} \in \mathbb{F}_{q}^{\times} \\
x_{1} \cdots x_{n}=a}} \psi_{q}\left(x_{1}+\cdots+x_{n}\right) \\
& =\sum_{a \in \mathbb{F}_{q}^{\times}} \chi(a) \operatorname{KI}_{n}(a, q) .
\end{aligned}
$$

Proof of the equidistribution

Then, we remark that

$$
\begin{aligned}
g\left(\psi_{q}, \chi\right)^{n} & =\sum_{x_{1}, \ldots, x_{n} \in \mathbb{F}_{q}^{\times}} \psi_{q}\left(x_{1}+\ldots+x_{n}\right) \chi\left(x_{1} \cdots x_{n}\right) \\
& =\sum_{a \in \mathbb{F}_{q}^{\times}} \chi(a) \sum_{\substack{x_{1}, \ldots, x_{n} \in \mathbb{F}_{q}^{\times} \\
x_{1} \cdots x_{n}=a}} \psi_{q}\left(x_{1}+\cdots+x_{n}\right) \\
& =\sum_{a \in \mathbb{F}_{q}^{\times}} \chi(a) \operatorname{KI}_{n}(a, q) .
\end{aligned}
$$

That is, $\chi \mapsto g\left(\psi_{q}, \chi\right)^{n}$ is the Fourier transform of the Kloosterman sums that we encountered before!

A little history

As we do now, Kloosterman himself needed to bound the sums $\mathrm{KI}_{n}(a, q)$, but only for $n=2$.

A little history

As we do now, Kloosterman himself needed to bound the sums $\mathrm{KI}_{n}(a, q)$, but only for $n=2$. By calculating the fourth moment,

$$
\sum_{a \in \mathbb{F}_{q}^{\times}} \mathrm{KI}_{2}(a, q)^{4}=2 q^{3}-3 q^{2}-3 q-1,
$$

he concluded that $\left|\mathrm{KI}_{2}(a, q)\right|<2 q^{3 / 4}$.

A little history

As we do now, Kloosterman himself needed to bound the sums $\mathrm{KI}_{n}(a, q)$, but only for $n=2$. By calculating the fourth moment,

$$
\sum_{a \in \mathbb{F}_{q}^{\times}} \mathrm{KI}_{2}(a, q)^{4}=2 q^{3}-3 q^{2}-3 q-1,
$$

he concluded that $\left|\mathrm{KI}_{2}(a, q)\right|<2 q^{3 / 4}$.
The estimation of the sixth moment allowed Salié and Davenport to upgrade the exponent from $3 / 4$ to $2 / 3$.

A little history

As we do now, Kloosterman himself needed to bound the sums $\mathrm{KI}_{n}(a, q)$, but only for $n=2$. By calculating the fourth moment,

$$
\sum_{a \in \mathbb{F}_{q}^{\times}} \mathrm{KI}_{2}(a, q)^{4}=2 q^{3}-3 q^{2}-3 q-1,
$$

he concluded that $\left|\mathrm{KI}_{2}(a, q)\right|<2 q^{3 / 4}$.
The estimation of the sixth moment allowed Salié and Davenport to upgrade the exponent from $3 / 4$ to $2 / 3$.

Finally, Hasse observed that the optimal bound $\left|\mathrm{KI}_{2}(a, q)\right|<2 \sqrt{q}$ would follow from the Riemann Hypothesis for curves over finite fields.

The optimal bound

The optimal bound for $\mathrm{KI}_{n}(a, q)$ with $n>2$ was only proved, by Deligne, almost 40 years after Weil proved the Riemann Hypothesis for curves over finite fields and established the $n=2$ case.

The optimal bound

The optimal bound for $\mathrm{KI}_{n}(a, q)$ with $n>2$ was only proved, by Deligne, almost 40 years after Weil proved the Riemann Hypothesis for curves over finite fields and established the $n=2$ case.

Now, in great Grothendieckian style, it is a somewhat straighforward application of all the breathtaking machinery of the previous section.

How the formalism applies

Let $k=\mathbb{F}_{q}, X$ be the vanishing set of $x_{1} \cdots x_{n}-a$ inside \mathbb{G}_{m}^{n}, and take $f: X \rightarrow \mathbb{G}_{a}$ be the "sum" function.

How the formalism applies

Let $k=\mathbb{F}_{q}, X$ be the vanishing set of $x_{1} \cdots x_{n}-a$ inside \mathbb{G}_{m}^{n}, and take $f: X \rightarrow \mathbb{G}_{a}$ be the "sum" function.

As we explained, we have that

$$
\mathrm{KI}_{n}(a, q)=\sum_{i=0}^{2 n}(-1)^{i} \operatorname{tr}\left(\operatorname{Frob}_{k} \mid \mathrm{H}_{c}^{i}\left(X_{\bar{反}}, \mathscr{L}_{\psi_{q}(f)}\right)\right)
$$

Deligne's bound

In the SGA $\frac{1}{2}$, Deligne calculated these cohomology groups and concluded that $H_{c}^{i}=0$ for all $i \neq n-1$, and that $H^{n-1}=H_{c}^{n-1}$ is n-dimensional. Moreover, since $\psi_{q}(f(x))$ is always a p-th root of unity, $\mathscr{L}_{w_{q}(f)}$ is pure of weight 0 .

Deligne's bound

In the SGA4 $\frac{1}{2}$, Deligne calculated these cohomology groups and concluded that $\mathrm{H}_{c}^{i}=0$ for all $i \neq n-1$, and that $\mathrm{H}^{n-1}=\mathrm{H}_{c}^{n-1}$ is n-dimensional. Moreover, since $\psi_{q}(f(x))$ is always a p-th root of unity, $\mathscr{L}_{\psi_{q}(f)}$ is pure of weight 0 .
All these facts, along with Weil II, implies that

$$
\left|\mathrm{KI}_{n}(a, q)\right|=\left|\operatorname{tr}\left(\operatorname{Frob}_{k} \mid \mathrm{H}_{c}^{n-1}\left(X_{\bar{k}}, \mathscr{L}_{\psi_{q}(f)}\right)\right)\right| \leq n q^{(n-1) / 2}
$$

the optimal bound.

Proof of the equidistribution

This allows us to finish our proof of the equidistribution of the angles of Gauss sums. By summing over the non-trivial χ, we obtain
$\sum_{\chi \neq 1} g\left(\psi_{q}, \chi\right)^{n}=-g\left(\psi_{q}, 1\right)^{n}+\sum_{a \in \mathbb{F}_{q}^{\times}} \mathrm{KI}_{n}(a, q) \sum_{\chi} \chi(a)=(-1)^{n+1}+(q-1) \mathrm{KI}_{n}(1, q)$

Proof of the equidistribution

This allows us to finish our proof of the equidistribution of the angles of Gauss sums. By summing over the non-trivial χ, we obtain
$\sum_{\chi \neq 1} g\left(\psi_{q}, \chi\right)^{n}=-g\left(\psi_{q}, 1\right)^{n}+\sum_{a \in \mathbb{F}_{q}^{\times}} \mathrm{KI}_{n}(a, q) \sum_{\chi} \chi(a)=(-1)^{n+1}+(q-1) \mathrm{KI}_{n}(1, q)$
Finally, using Deligne's bound, we conclude that

$$
\left|\frac{1}{q^{n / 2}(q-2)} \sum_{\chi \neq 1} g\left(\psi_{q}, \chi\right)^{n}\right| \leq \frac{2 n+1}{\sqrt{q}},
$$

which goes to zero as q tends to infinity. This finishes the proof.

Questions?

