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Summary

1. Exponential sums in nature

2. Cohomology to the rescue!

3. Deligne’s equidistribution theorem

4. The general equidistribution result

5. Let’s work out the case of Gauss’ sums
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Exponential sums in nature



Can we solve polynomial equations?

Foundational problem in NT: given f ∈ Z[x1, . . . , xn], describe the set
of solutions (in Z or Q) of f (x) = 0.

Is this set finite or infinite? If it is
finite, what is its cardinality? If it’s infinite, can we describe some
numbers which ”generate” all the solutions in some sense?

Very often, these questions are way out of reach for our methods.
This leads us to consider solutions mod p of the desired equations.

Let us then define a function Sol(f ,p, t) which counts the number of
solutions to f (x) ≡ t (mod p).
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Taking a Fourier transform

We lose no information if we consider t 7→ Sol(f ,p, t) as
complex-valued and if we take its Fourier transform.

This Fourier
transform is given by

ψ 7→
∑
t∈Fp

ψ(t) Sol(f ,p, t) =
∑
x∈Fnp

ψ(f (x)).

Since F̂p = Fp, every character is of the form ψa(x) := exp(2πiax/p).
Via this identification, the function above is none other than

a 7→
∑
x∈Fnp

exp

(
2πiaf (x)

p

)
;

an exponential sum!
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Let’s properly define ES

In order to deal systematically with exponential sums, let us give a
proper definition which encompasses the previous sum and many
interesting others.

Definition - Exponential sum
Let k be a finite field and X be a finite-type scheme over k. An
exponential sum is a sum of the form

S(f , E, χ) :=
∑
x∈X(E)

χ(f (x)),

where E/k is a finite extension, G is a commutative algebraic group,
χ is a character of G(E), and f : X → G is a morphism of schemes.
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We’re still counting solutions!

As before, we remark that

Ĝ(E) → C

χ 7→
∑
x∈X(E)

χ(f (x))

is the Fourier transform of

G(E) → C

t 7→ #{x ∈ X(E) | f (x) = t}.
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Remarks on the def

This point of view also allows us to put numerous number-theoretic
questions under the umbrella of exponential sums.

The case where χ is the trivial character is already interesting and
highly non-trivial.
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Let’s consider an example

Take X as the elliptic curve defined by y2 = 4x3 − x − 1. We denote by
N(X,q) the number of Fq-points of X and wonder how the numbers
N(X,q) vary as a function of q.

In analytic number theory, we usually divide the analysis into two
cases: either we consider only the cases where q varies between the
prime numbers (which are not 2 or 13), or we fix one such prime p
and make q vary among the numbers of the form pn, for some n.
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Vertical distribution

We begin with the latter. Ever since Artin’s thesis in the 1920’s, it is
known that there exist two complex numbers αp and βp, satisfying
αpβp = p, such that

N(X,pn) = pn + 1− αnp − βnp

for all n ≥ 1.

In particular, to determine N(X,pn) for all n, it suffices to know
N(X,p).
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Horizontal distribution

The former case is much harder. By the Hasse bound, we know that

|N(X,p)− (p+ 1)| ≤ 2
√
p

and so there exists a unique ”angle” θp ∈ [0, π] such that

N(X,p)− (p+ 1) = 2
√
p cos(θp).
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How do the angles vary?

Our question is then: how the angles θp vary as a function of p.

If X is an elliptic curve with complex multiplication, it’s known since
Deuring’s 1955 paper Die Zetafunktion einer algebraischen Kurve von
Geschlechte Eins that the θp are uniformly distributed in [0, π].

Our elliptic curve, however, does not have complex multiplication (its
j-invariant is not an algebraic integer, for example).
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Sato-Tate

The distribution of angles θp for elliptic curves without complex
multiplication was the subject of a famous conjecture of Sato and
Tate, which says that the sequence (θp) is equidistributed in [0, π] for
the Sato-Tate measure µST := (2/π) sin2 θ dθ.

This conjecture very recently became a theorem by Clozel,
Barnet-Lamb, Geraghty, Harris, Sheperd-Barron and Taylor, whose
proof builds from all the arithmetic geometry used on the
modularity theorem.

Several natural variants and generalizations remain wide-open.
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Cohomology to the rescue!



Étale cohomology

The hero of our story is the theory of étale cohomology and, more
precisely, Deligne’s groundbreaking paper La Conjecture de Weil II.
Since this is a huge machinery, we will begin by explaining its main
features.

• Let k = Fq, where q = pn;
• ` 6= p a prime number;
• X a smooth geometrically connected variety over k.
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The étale fundamental group

Since the Zariski topology is so coarse, lots of spaces of interest have
a trivial fundamental group.

In other words, the usual tools from
algebraic topology are not adapted to the study of these varieties.

This led Grothendieck to define the étale fundamental group π1(X), a
profinite group that classifies the finite étale covers of X.
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Basic properties

The étale fundamental group is independent of a base point up to
inner automorphism.

As in topology, a morphism of schemes
f : X → Y induces a morphism

f∗ : π1(X) → π1(Y).

Moreover, if X = Spec k, its fundamental group is nothing but the
absolute Galois group of k.
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Frobenii

In our case, where k is Fq, this is the free profinite group Ẑ on one
canonical generator given by

Fq → Fq, x 7→ xq.

This is the so-called arithmetic Frobenius. As we’ll see, its inverse,
denoted by Frobk and called geometric Frobenius, will play a key role
in the theory.
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Local systems

In topology, the category of local systems is equivalent to the
category of finite-dimensional representations of the fundamental
group by taking the fiber of a local system on a fixed point.

This
suggests the following definition.

Definition - Local system
An `-adic local system L of rank r over X is a continuous
representation ρ : π1(X) → GLr(Q`).
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Trace functions

Given a finite extension E of k, we may define a trace function
trL : X(E) → Q` in the following way:

a point x ∈ X(E) is a morphism
Spec E → X, and so induces a map

Gal(E) → π1(X).

We denote by FrobE,x the image of FrobE through this morphism. It
follows that ρ(FrobE,x) is a conjugation class in GLr(Q`), and we may
take its trace.

This number is the image of x by trL .
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The Lang isogeny

Let G be a (nice) commutative group scheme over k. We consider the
absolute Frobenius FG : G→ G.

The Lang isogeny

idG−FG : G→ G

is a finite étale cover, which is also Galois with group G(k).
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Character sheaves

Since π1(G) is the limit of the Galois groups of all finite étale Galois
covers, we obtain a natural surjection π1(G) → G(k).

Now, if
χ : G(k) → Q×

` is a character, we may compose those morphisms to
obtain a representation

π1(G) → G(k) → Q×
` ,

corresponding to a rank one local system over G; denoted Lχ.
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Character sheaves

More generally, given a morphism f : X → G of k-schemes, we
compose the morphism above with f∗ to obtain a rank one local
system f ∗Lχ, commonly denoted Lχ(f ).

Its trace at a point x ∈ X(E) is given by χ(trGE/k f (x)), where
trGE/k : G(E) → G(k) sends g ∈ G(E) to g+ FrobE(g) + . . .+ Frobn−1E (g)
for n = [E : k].
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Constructible sheaves

To go further into the world of étale cohomology, we need to expand
our category of `-adic local systems to the so-called constructible
sheaves, which behave much better functorially.

In topology, the constructible sheaves are those that restrict to local
systems on a given stratification. Up to some minor technical details,
the same definition works in the `-adic setting.
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The six-functors on étale cohomology

We can define the derived category Db
c (X,Q`) of constructible

sheaves.

These categories possess a rich functoriality!

• We have tensor products ⊗ and inner homs RHom.

For a morphism f : X → Y ,

• we have a direct image and a compactly supported direct image
functor Rf∗,Rf! : Db

c (X,Q`) → Db
c (Y,Q`);

• we have a inverse image and an exceptional inverse image
functor f ∗, f ! : Db

c (Y,Q`) → Db
c (X,Q`).

These functors satisfy a large number of compatibility relations
which are encapsulated in the designation six-functor formalism.
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The trace formula

Since constructible sheaves “locally” are local systems, we may
extend trace functions to objects of Db

c (X,Q`).

It satisfies the
so-called trace formula

trRf!M(t) =
∑
f (x)=t

trM(x).

In particular, our exponential sums may be written as

S(f , E, χ) =
∑
x∈X(E)

χ(f (x)) =
∑
t∈G(E)

χ(t) #{x ∈ X(E) | f (x) = t}

=
∑
t∈G(E)

χ(t) trRf!Q`
(t).

Believe it or not, this is a tremendous simplification!
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Fourier-Deligne transform

Our sums S(f , E, χ) are Fourier transforms of traces of Frobenius
acting on complexes of `-adic sheaves.

Is it possible to do this
Fourier transform in a sheaf-theoretic way? At least when G = Ga,
yes!

Consider the diagram on the right, where
m : (x, y) 7→ xy is the multiplication map.
The Fourier-Deligne transform is the functor

FTχ : Db
c (A1

k,Q`) → Db
c (A1

k,Q`)

M 7→ Rpr2,!(pr∗1 M⊗ Lχ(m)).

A2
k

A1
k A1

k A1
k

pr1 pr2m
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ES as a single trace function

Recall that, if we fix a character χ̃ of k = A1(k), all χ ∈ Ê are of the
form t 7→ χ̃(trE/k(tx)) for a unique x ∈ E.

This, along with the trace
formula, implies that

{S(f , E, χ)}χ∈Ê =
{
trFTχ̃(Rf!Q`)

(x)
}
x∈E

.

In particular, we may focus our study in the distribution of a single
trace function.
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Perverse sheaves

Now, let’s understand the complex M := FTχ̃(Rf!Q`).

A priori, we
have a tough problem:

• neither Rf! nor FTχ̃ preserve constructible sheaves (in degree 0).

Luckily, there is another abelian subcategory of Db
c (A1

k,Q`) which
works much better; the category of perverse sheaves!
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Perverse sheaves

Let us recall a couple of facts about perverse sheaves:

• If L is a local system, L is also a perverse sheaf;
• (Artin vanishing) If f is affine and quasi-finite, Rf! preserves
perversity;

• The Fourier-Deligne transform preserves perversity.

In particular, for finite f , M = FTχ̃(Rf!Q`) is a perverse sheaf.
Moreover, there’s an open subscheme U ↪→ A1

k such that M|U is a
local system L .
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Monodromy groups

The previous discussion allows us to focus on the traces of a rank r
local system L , which is given by a representation ρ.

By a result of
Grothendieck, the natural map π1(Xk) → π1(X) is injective, and
therefore we may associate two algebraic groups to L :

• the arithmetic monodromy group Garith,L , which is the Zariski
closure of ρ(π1(X)) inside GLr(Q`);

• the geometric monodromy group Ggeom,L , which is the Zariski
closure of ρ(π1(Xk)) inside GLr(Q`).

Clearly Ggeom,L is a subgroup of Garith,L . Moreover, Deligne proved
that, in our case, Ggeom,L is reductive.
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Deligne’s equidistribution theorem

Fix an embedding Q` ↪→ C, and let K be a maximal compact
subgroup of Ggeom,L (C).

Theorem (Deligne)
Suppose that Ggeom,L = Garith,L . Then the sums (−1)d

|E|d/2
∑
x∈X(E)

χ̃(trE/k(tf (x)))


t∈U(E)

are distributed as traces of random matrices in K as the degree of
E/k tends to infinity.

More generally, we have equidistribution results for sums of the form∑
x∈E

χ̃(trE/k(tx)) trM(x),

where M is a “nice” (= pure of weight 0) perverse sheaf.
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The general equidistribution
result



Why generalizing Deligne’s result is hard

One crucial point in the discussion leading to Deligne’s theorem is
that, when G = Ga, there’s an algebraic variety (A1 itself) over k
whose E-points parameterize the characters of G(E).

This fails
already for G = Gm.

N. Katz had a brilliant idea: instead of considering a Fourier
transform, we should consider a convolution of sheaves. If
m : G× G→ G is the multiplication map, and M,N are objects of
Db
c (G,Q`), the complex M ∗! N := Rm!(pr

∗
1 M⊗ pr∗2 N) satisfies

trM∗!N(x) = (trM ∗ trN)(x) =
∑
t∈G(E)

trM(t) trN(xt−1).
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Tannakian categories

The so-called formalism of Tannakian categories gives conditions on
an abelian symmetric monoidal category that forces it to be
equivalent to Rep(H), for some group scheme H.

We want to use it to construct our “monodromy groups” that govern
the distribution of exponential sums. However, we don’t have a good
candidate category...

• Convolution defines a symmetric monoidal operation on
Db
c (G,Q`), but this category is not abelian;

• Perv(G,Q`) is abelian, but perverse sheaves are not preserved
by convolution.
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Negligible objects

Gabber and Loeser had the idea to quotient Perv(G,Q`) by a Serre
subcategory composed of negligible objects.

Our convolution
functor should descend to the quotient, making

Perv(G,Q`)/Neg

a tannakian category.

When G = Gm, the negligible objects are precisely those with zero
Euler characteristic. This allowed Katz to prove an equidistribution
theorem similar to the previous one.
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Generic vanishing of cohomology

For higher-dimensional groups, the proof that a reasonable choice of
negligible objects indeed yields a Tannakian category rests on a
difficult cohomology vanishing theorem.

Such a result was not known before the very recent preprint
Arithmetic Fourier Transforms over Finite Fields by A. Forey, J. Fresán,
and E. Kowalski, which uses as a fundamental tool the Quantitative
Sheaf Theory of W. Sawin.
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The general equidistribution theorem

Let M be a semiperverse sheaf on G, mixed of weights ≤ 0. The
Tannakian formalism gives a “arithmetic monodromy group” Garith.

We denote by ν the direct image of the normalized Haar measure µ
on a maximal compact subgroup of Garith(C) by the trace function.

Theorem (Forey, Fresán, Kowalski)

The exponential sums S(M, E, χ) :=
∑

x∈G(E) χ(x) trM(x), for χ ∈ Ĝ(E),
become ν-equidistributed on average as the degree of E/k tends to
infinity. In other words,∫

K
f (tr(x)) dµ(x) = lim

n→∞

1
n

∑
[E:k]≤n

1
|G(E)|

∑
χ∈Ĝ(E)

f (S(M, E, χ)).

for every bounded continuous function f : C → C.
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become ν-equidistributed on average as the degree of E/k tends to
infinity.

In other words,∫
K
f (tr(x)) dµ(x) = lim

n→∞

1
n

∑
[E:k]≤n

1
|G(E)|

∑
χ∈Ĝ(E)
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Let’s work out the case of Gauss’
sums



Gauss sums

The Gauss sum g(ψ, χ) is defined as

g(ψ, χ) :=
∑
x∈F×

q

ψ(x)χ(x),

where ψ is an additive and χ is a multiplicative character of Fq.

Fix a nontrivial additive character ψ of Fp and denote by ψq the
character of Fq obtained by composing with the trace.
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Gauss sums

If χ is trivial, g(ψq, χ) is simply −1.

Else, its absolute value is √q and
we find q− 2 points

θq,χ :=
g(ψq, χ)√q

∈ S1,

one for each nontrivial multiplicative character.
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How do these angles are distributed?

As in Sato-Tate’s conjecture, we may wonder how do these “angles”
are distributed on the unit circle as q tends vertically to infinity.

Theorem (Deligne)
As q tends to infinity, the angles {θq,χ}χ6=1 become equidistributed
on S1 with respect to its normalized Haar measure. In other words,
the equation

1
2π

∫ 2π

0
f (eiθ) dθ = lim

q→∞

1
q− 2

∑
χ6=1

f (θq,χ)

is satisfied for all continuous functions f : S1 → C.
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Using our formalism

Our goal is to calculate

lim
q→∞

1
q− 2

∑
χ6=1

f (θq,χ).

We begin by generalizing the statement to all bounded continuous
functions f : C → C.

Since the trivial character amounts to nothing
in the limit, we may also consider all characters.

If j : Gm ↪→ A1 is the natural inclusion, our perverse sheaf is
M = Lψ(j)(1/2)[1]. Its Tannakian dimension is 1, and so
Ggeom ⊆ Garith ⊆ GL1. But no convolution power of Mk is the identity,
and so Ggeom = Garith = GL1. The maximal compact subgroup is
K = S1 and the result follows.

Thank you!
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