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Why étale morphisms?



Local inversion theorem

Let f : M→ N be a smooth map between smooth manifolds. The
local inversion theorem says that if dfp : TpM→ Tf(p)N is an
isomorphism, then there exists neighborhoods U of p and V of f(p)
such that U→ V is an isomorphism.

Let f : X→ S a map between smooth varieties over k̄. If
dfx : TxX→ Tf(x)S is an isomorphism, then there exists étale
neighborhoods U of x and V of f(x) such that U→ V is an
isomorphism.
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Sites and sheaves



Grothendieck pretopology

We want to generalize the category OpenX with its notion of open
cover.

Definition - Grothendieck pretopology
Let C be a small category with fibered products. A Grothendieck
pretopology on C is the data, for each object U ∈ C, of a set Cov(U)
of coverings. The elements of Cov(U) are collections of morphisms
{Ui → U}i∈I which satisfy

• If f : V→ U is an isomorphism, then {f} ∈ Cov(U).
• If {Ui → U}i∈I ∈ Cov(U), and g : V→ U is any morphism, then
{V×U Ui → V}i∈I ∈ Cov(V).

• If {Ui → U}i∈I ∈ Cov(U) and, for every i ∈ I,
(Uij → Ui)j∈J ∈ Cov(Ui), then (Uij → Ui → U)i,j ∈ Cov(U).
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Bullshit remarks ([Stacks, Tag 020K] & [Vistoli, §2.3.5])

Naturally, we’ll want to consider presheaves as functors Cop → Set.
But if C is not small, the objects of Fun(Cop, Set) doesn’t even form a
class!

That’s why C has to be small. In practice, it often suffices to
replace it by an equivalent category or to consider all spaces
contained in a fixed universe. (Keyword: comparison lemma.)

There’s also a notion of Grothendieck topology, defined using sieves.
We’ll see why this may be important later, but for now we remark
that a pretopology always gives rise to a, not necessarily unique,
topology. As it has became usual, we’ll now forget about this and use
the word topology to mean pretopology.
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Sites

A site is a category equipped with a Grothendieck topology.

There’s a
simple way to obtain sites.

Site construction lemma
Let S be a scheme and C/S be a full subcategory of Sch/S closed
under fiber products. Moreover, suppose that P is a property of
morphisms that’s

• true for isomorphisms
• stable under base change
• stable under composition.

Define Cov(U) to be the set of all families {fi : Ui → U}i∈I such that
fi satisfies P and U =

⋃
i∈I fi(Ui). This defines a topology on C/S.
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Sites (see bit.ly/3FSSBv6 for set-theoretical bullshit)

Examples - Small sites
If we let P be open immersions / étale morphisms and C/S consist
of those morphisms X→ S which satisfy P, we obtain the small
sites Szar and Sét.

Examples - Big sites
If we let P be open immersions / étale morphisms / faithfully flat
morphisms locally of finite presentation and C/S = Sch/S, we
obtain the big sites (Sch/S)zar, (Sch/S)ét, and (Sch/S)fppf.
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The fpqc site ([Vistoli, §2.3.2])

Definition - fpqc morphism
A faithfully flat morphism of schemes f : X→ S is said to be fpqc is
every quasi-compact open subset of S is the image of a
quasi-compact open subset of X.

Main facts:

• open immersion =⇒ étale =⇒ fppf =⇒ fpqc
• fpqc morphisms are stable under base change and composition,
yielding a ”site” (Sch/S)fpqc

• if X→ S is fpqc, S has the quotient topology
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Sheaves

Definition - Sheaf
Let C be a site and A be an algebraic category. A sheaf on C with
values in A is a presheaf F : Cop → A such that, for every U ∈ C and
every covering {Ui → U}i of U, the diagram

F (U)
∏

i F (Ui)
∏

i,j F (Ui ×U Uj)

is an equalizer. If only the left arrow is monic, we say that F is
separated.
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Čech stuff

Let U = {Ui → U}i∈I be a covering. Recall the usual construction of
the 0-th Čech cohomology group:

Ȟ0(U ,F ) :=

{
(si)i∈I ∈

∏
i∈I

F (Ui)
∣∣∣∣∣ si|Ui×UUj = sj|Ui×UUj for all i, j ∈ I

}
.

Since any two coverings admit a common refinement,

F+(U) := Ȟ0(U,F ) := colim
U ∈Cov(U)

Ȟ0(U ,F )

is a filtered colimit. This defines a presheaf F+, along with a
canonical map F → F+ given by

F (U) = Ȟ0({idU},F )→ colim
U ∈Cov(U)

Ȟ0(U ,F ) = F+(U).
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Sheafification [LM, Thm 11.25]

Proposition - Grothendieck’s ++ construction

• The presheaf F+ is separated.

• If F is separated, F+ is a sheaf.
• The map F → F++ satisfies the universal property of
sheafification.

In particular, Γ(X,F ) = Ȟ0(X,F ) if F is a sheaf. We didn’t define
cohomology yet, but it’s always true that H1(X,F ) = Ȟ1(X,F ) and
Hiét(X,F ) = Ȟi(X,F ) holds for X quasiprojective over an affine
scheme. [Milne, Thm 2.17]
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Categorical remarks

The universal property of sheafification says that the inclusion
functor ι from presheaves to sheaves is right adjoint to
sheafification. This gives many things for free:

• Since ι is right adjoint and fully faithful, it not only preserves
limits but creates them.

• Since (−)++ is left adjoint, it preserves colimits.
• But (−)++ is a filtered colimit, so it preserves finite limits as well!

In particular, sheaves with values in an abelian category form an
abelian category.
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Direct and inverse images

Let C/X and C/S be sites constructed using our site construction
lemma relative to a property P.

Definition - Direct image
Let f : X→ S be a morphism of schemes, and let F be a presheaf
on X. The direct image f∗F is the presheaf on S defined by

Γ(V, f∗F ) := Γ(V×S X,F ),

where V→ S is an element of C/S.

As usual, f∗F is a sheaf if F is.
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Direct and inverse images

The same construction as in the topological case works for inverse
images. Namely, let G be a sheaf on S and U→ X be an element of
C/X and consider commutative squares of the form

U V

X S,f

where V→ S is in C/S.

Definition - Inverse image image
The inverse image f∗G is the presheaf on X defined by

Γ(U, f∗G ) := colim Γ(V,G ),

where the colimit is taken over all possible commutative diagrams
as above.
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Direct and inverse images

The inverse image f∗G need not be a sheaf even if G is (as usual). In
this case, we redefine it to be the sheafification of the presheaf
inverse image.

This satisfies all the properties one should expect!

• The colimit in the definition of f∗ is filtered if C/S has finite
limits.

• f∗ a f∗. Moreover, f∗ is exact if C/S has finite limits.
• If the categories of sheaves are monoidal, then so is f∗ when C/S
has finite limits.

The condition about finite limits is satisfied for all the sites under
consideration.
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Recollement

Let j : U→ X be an open immersion, i : Z→ X be the complementary
closed immersion, and endow all schemes with the étale topology.

Let F be a sheaf on X. We define F1 := i∗F , F2 := j∗F , and
φF : F1 → i∗j∗F2 as the image under i∗ of the unit for j∗ a j∗. This
defines a functor

Ab(Xét)→ T(X),

where T(X) is the category of such triples.
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φF : F1 → i∗j∗F2 as the image under i∗ of the unit for j∗ a j∗. This
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Recollement

Proposition
This functor is an equivalence of categories.

Using this, it’s easy to define the following functors:

i∗ : F1 ←[ (F1,F2, φ)

i∗ : F1 7→ (F1, 0, 0)
i! : kerφ← [ (F1,F2, φ)

i! := i∗

j∗ : (F1,F2, φ) 7→ F2

j∗ : (i∗j∗F2,F2, id)← [ F2

j! := j∗

j! : (0,F2, 0)← [ F2,

which, of course, behave as expected.
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Recollement

• Not only i∗ a i∗ and j∗ a j∗, but also i! a i! and j! a j!.

• Not only i∗ and j∗ are exact, but also i! and j!.
• i!i! ∼= i∗i∗ ∼= id and j!j! ∼= j∗j∗ ∼= id.
• i∗j! ∼= i!j! ∼= i!j∗ ∼= 0 and j∗i∗ ∼= 0.
• The sequence 0→ j!j!F → F → i∗i∗F → 0 is exact.

The functors f! and f!, for a general morphism f, weren’t yet defined.
But they will generalize (the derived functors of) the functors above.
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Derived functors [Categories and Sheaves, Chap 18]

Let C be a site.

From our work on sheafification, it’s clear that Ab(C)
is an abelian category with coproducts where filtered colimits are
exact. That is, it’s an AB5 category.

It’s, moreover, Grothendieck. In particular, we have K-injective and
K-flat resolutions. So, for a morphism of schemes f : X→ S, we
define the derived functors

Rf∗ : D(X)→ D(S)
f∗ : D(S)→ D(X)
RΓ : D(X)→ D(Ab)

RHom : D(X)× D(X)op → D(Ab)
RHom : D(X)× D(X)op → D(X)
−⊗L − : D(X)× D(X)→ D(X).
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Local cohomology

Also, if we’re in the small étale site and i : Z→ X is a closed
immersion, we define

ΓZ := Γ ◦ i! = Γ ◦ i! ◦ i!.

As usual, all the expected properties follow formally. I can talk a
little about this later, if someone wants.
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Stalks and topoi



Topoi

Definition - Topoi
A topos X is a category equivalent to C̃ := Sh(C), for some site C.

The topos, instead of the site, should be thought as the fundamental
object. Indeed,

• X has arbitrary limits and colimits (and finite limits commute
with filtered colimits!)

• X has internal homs (i.e. exponential objects)
• X has a sub-object classifier
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Examples

Examples
• If C = openX, where X = pt, the associated topos is Set.

• If C is any small category with the trivial Grothendieck topology,
the associated topos is PSh(C).

• Let G be a topological group. The category BG, whose objects are
discrete sets with a continuous G-action, is a topos.

Remark: Different sites may generate the same topos! For example,
˜(Sch/S)zar ∼= S̃zar and ˜(Sch/S)ét ∼= ˜(Sch/S)smooth. [Stacks, Tag 055V]
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Geometric morphism

There’s a natural notion of maps between topoi.

Definition - Geometric morphism
Let X and Y be two topoi. A geometric morphism f : X → Y is a
pair of functors f∗ : Y →X and f∗ : X → Y , such that f∗ is left
adjoint to f∗ and f∗ preserves finite limits.

• If X, Y are topological spaces and Y is sober, every geometric
morphism Sh(X)→ Sh(Y) comes from a continuous map X→ Y.
[SGA4, §IV.4.2]

• If X is a topos, there’s a unique geometric morphism
f : X → Set. Namely, f∗(F ) = Hom(F,F ) and f∗(A) =

∐
A F,

where F is the final object of X . [SGA4, §IV.4.3]
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Topos-theoretic points

A point x of a topological space X determines a geometric morphism
Set→ Sh(X). Indeed, we have a pair of adjunct functors ”skyscraper
sheaf at x” and ”stalk at x”.

Definition - Point of a topos
Let X be a topos. A point of X is a geometric morphism
x : Set→X .

The stalk at a point x of some object F ∈X is the
set Fx := x∗F .
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Topos-theoretic points

When dealing with sheaves over topological spaces, basically
everything can be checked in the stalks. But a non-trivial topos may
have no points!

Definition - Enough points
Let X be a topos. We say that X has enough points if the inverse
image functors are jointly conservative. That is, if for every
morphism φ : F → G in X , the stalk φx : Fx → Gx being an
isomorphism for all points x implies that φ is also an isomorphism.
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Topos-theoretic points

In this case, everything works as with sheaves in a topological space!

Proposition - [SGA4, Corollaire I.6.3]
Let X be a topos. The following are equivalent:

• X has enough points;

• For every morphism φ in X , if φx is a monomorphism for every
point x, then so is φ;

• For every morphism φ in X , if φx is an epimorphism for every
point x, then so is φ;

• For every pair of morphisms φ,ψ : F → G in X , if φx = ψx for
every point x, then φ = ψ.
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Examples

Examples
• If X is a sober topological space, the topos-theoretic points of
Sh(X) correspond precisely to the points of X. This holds, in
particular, for S̃zar, where S is a scheme.

• It seems that there’s no simple description of the
topos-theoretic points of the fppf topos. (Also there’s no fpqc
topos!)

These all have enough points.
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Points of the étale topos

Definition / Proposition - [Stacks, Tag 04HU]
Let S be a scheme. A geometric point of S is a morphism
SpecΩ→ S, where Ω is a separably closed field. We denote a
geometric point by s̄ and its set-theoretic image by s.

These
correspond to the points of the étale topos, which has enough
points.

The proof of this result is not so simple, but this has to be the
answer! Since the Zariski topology is coarser, we may expect a point
of the étale topos to also be a point of the Zariski topos. That is, a
morphism Spec k→ S.

Such a point has trivial topological fundamental group, but may have
non-trivial étale fundamental group. It is trivial precisely when k is
separably closed.
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Stalks of the structure sheaf



Digression into henselian rings [LM, §13.3]

Proposition
Let (A,m, κ) be a local ring. If f ∈ A[x], we denote by f̄ its reduction
modulo m.

The following are equivalent:

• Let f ∈ A[x] be monic, and a0 ∈ κ be such that f̄(a0) = 0 and
f̄′(a0) 6= 0. Then there exists a unique a ∈ A such that f(a) = 0
and a ≡ a0 (mod m).

• Let f be monic and ḡ, h̄ ∈ κ[x] be coprime monic polynomials
such that f̄ = ḡh̄. Then there exists g,h ∈ A[x] such that f = gh,
and whose reductions are ḡ and h̄.

• Every finite A-algebra B is a finite product of local rings.
• Let X be an étale scheme over S = Spec A, s be the closed point
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Digression into henselian rings [LM, §13.3]

Definition
Let (A,m, κ) be a local ring. We say that A is henselian if it satisfies
the conditions of the preceding proposition.

If, moreover, κ is
separably closed, we say that A is strictly henselian.

Newton’s method implies that a complete local ring is henselian.

Our ring A is strictly henselian iff:

Let X be an étale scheme over S = Spec A, s be the closed point of S,
and x ∈ Xs. Then there exists a unique section g of X→ S such that
g(s) = x.
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Digression into henselian rings [LM, §13.3]

We shall need two results about henselian rings.

Proposition
Let (A,m, κ) be a henselian ring. Tensoring by κ yields an
equivalence of categories FEt(A) ∼−→ FEt(κ).

Proposition
Let (A,m, κ) be a strictly henselian ring, S = Spec A, and
s̄ : Specκ→ S. Then Γ(S,F ) = Fs̄ for every abelian sheaf F on Sét.

Indeed, our characterization of strictly henselian rings implies that
the identity map S→ S is cofinal in the category of all étale
neighborhoods of s.
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Stalks of the structure sheaf

Just for now, believe me that the structure sheaf OS of a scheme S is
a sheaf for the étale topology.

Proposition
Let s̄ be a geometric point of S. Then the stalk OS,s̄ is strictly
henselian.

Let’s see how this can be proven!
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(Strict) henselisation

Definition
Let (A,m, κ) be a local ring. We say that a local morphism
i : A→ Ash is the strict henselisation of A if whenever j : A→ H is a
local morphism and H is strict henselian, there exists a local
morphism k : Ash → H such that j = k ◦ i.

A somewhat long verification shows that this always exists. After
fixing a separable closure κsep of κ, it can be constructed as

Ash := colimB,

where the (filtered) colimit runs over the diagrams of the form

A B

κsep.

étale
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Stalks of the structure sheaf

By definition, the stalk OS,s̄ is the colimit of Γ(U,OU), where (U,u) is
an étale neighborhood of s̄.

The diagram defining a neighborhood
restricts to

OS,s OU,u

κsep.

étale

Also, OU,u is the colimit of Γ(V,OV), where V ⊂ U is a
Zariski-neighborhood of u. Those neighborhoods are, in particular,
étale neighborhoods of s̄; proving that

OS,s̄ = colimOU,u = Osh
S,s.
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Properties of the strict henselisation

Let A be a local ring.

• Ash is faithfully flat over A;

• If A is noetherian, then so is Ash.
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Hensel’s lemma vs inverse function theorem

Let f : X→ S be an étale map, and x̄ be a geometric point of X.

By
functoriality of the strict henselisation, we obtain a commutative
diagram

X S

SpecOX,x̄ SpecOS,f(x).

f

Clearly, every étale neighborhood of x̄ is also an étale neighborhood
of f(x). Our characterization of strictly henselian rings implies that
such neighborhoods are cofinal. It follows that
SpecOX,x̄ → SpecOS,f(x) is an isomorphism.
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Descent theory



The fundamental results

After almost 40 slides of abstract nonsense, we know lots of stuff
about S̃ét, but we don’t know a single element of it!

Of course, we should hope for quasi-coherent sheaves to be étale
sheaves... and this is our first theorem!

Theorem A
Let S be a scheme and F a quasi-coherent sheaf on S. Then the
presheaf (which we’ll still denote by F )

Sch/S→ Set
(f : X→ S) 7→ Γ(X, f∗F )

is a sheaf for the fpqc topology. In particular, it’s an étale sheaf.
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The fundamental results

Another large source of sheaves is our Theorem B.

Theorem B
Let S be a scheme and X ∈ Sch/S. Then hX is a sheaf for the fpqc
topology. In particular, it’s an étale sheaf.

This means precisely the following. Let U be a scheme over S and let
(Vi → U) be a fpqc cover of U. If we have morphisms fi : Vi → X such
that

fi|Vi×UVj = fj|Vi×UVj

for all i, j, then there exists a unique morphism f : U→ X such that
f|Vi = fi for all i.

37



The fundamental results

Another large source of sheaves is our Theorem B.

Theorem B
Let S be a scheme and X ∈ Sch/S. Then hX is a sheaf for the fpqc
topology. In particular, it’s an étale sheaf.

This means precisely the following. Let U be a scheme over S and let
(Vi → U) be a fpqc cover of U.

If we have morphisms fi : Vi → X such
that

fi|Vi×UVj = fj|Vi×UVj

for all i, j, then there exists a unique morphism f : U→ X such that
f|Vi = fi for all i.

37



The fundamental results

Another large source of sheaves is our Theorem B.

Theorem B
Let S be a scheme and X ∈ Sch/S. Then hX is a sheaf for the fpqc
topology. In particular, it’s an étale sheaf.

This means precisely the following. Let U be a scheme over S and let
(Vi → U) be a fpqc cover of U. If we have morphisms fi : Vi → X such
that

fi|Vi×UVj = fj|Vi×UVj

for all i, j, then there exists a unique morphism f : U→ X such that
f|Vi = fi for all i.

37



The first fundamental lemma

The proof of both theorems will follow rather quickly once we
establish two fundamental lemmas.

First fundamental lemma
Let S be a scheme and F be a presheaf on Sch/S. If

• F is a sheaf in the Zariski topology;
• whenever V→ U is a faithfully flat morphism of affine
S-schemes, the diagram

F (U) F (V) F (V×U V)

is an equalizer;

then F is a sheaf in the fpqc topology.
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The second fundamental lemma

We’ll also need another fundamental lemma.

Second fundamental lemma
Let φ : A→ B be a faithfully flat morphism of rings, and M a
A-module. Then

0 M M⊗A B M⊗A B⊗A B
φ δ

is an exact sequence of A-modules, where φ(m) = m⊗ 1 and
δ(m⊗ b) = m⊗ (b⊗ 1− 1⊗ b).

In great grothendieckian fashion, we dévissage until this becomes
obvious...
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Proof of theorem A

For now, write F for the presheaf (f : X→ S) 7→ Γ(X, f∗F ) on Sch/S
associated to the quasi-coherent sheaf F .

It’s a sheaf for the Zariski
topology since f∗F always is.

We then show that F satisfies the sheaf condition for faithfully flat
morphisms of affine schemes. If U = Spec A, V = SpecB and F = M̃,
this means precisely that

M M⊗A B M⊗A B⊗A B

is an equalizer. That is, the sequence

0 M M⊗A B M⊗A B⊗A B
φ δ

is exact. But that’s precisely our second fundamental lemma.
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Proof of theorem B

We don’t have time to see all the details, but you should do it! The
clearest reference probably is [Vistoli, Theorem 2.55].
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Descent of quasi-coherent sheaves

Let S be a scheme and (Ui → S) be a fpqc covering of S.

A descent
datum for quasi-coherent sheaves with respect to this covering
amounts to objects Fi ∈ QCoh(Ui), along with isomorphisms
φij : Fi|Ui×SUj → Fj|Ui×SUj that satisfy the cocycle condition.

We say that a descent datum is effective if it comes from a
quasi-coherent sheaf on S.

Theorem
Every descent datum is effective.

For the fancy reader, this means that the fibered category
QCoh/S→ (Sch/S)fpqc is a stack.
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Examples of sheaves

If G is a commutative group scheme over S, then (X→ S) 7→ G(X) is
an abelian sheaf for the fpqc topology.

In particular:

• for an abelian group C, the contant group scheme C
(C(X) = Cπ0(X))

• Ga,S(X) = HomS(X, SpecZ[x]×Z S) = Hom(X, SpecZ[x]) =
Hom(Z[x], Γ(X,OX)) = Γ(X,OX)

• Gm,S(X) = HomS(X, SpecZ[x, x−1]×Z S) = Hom(X, SpecZ[x, x−1]) =
Hom(Z[x, x−1], Γ(X,OX)) = Γ(X,O×

X )

• µn,S = SpecZ[x]/(xn − 1)×Z S = ker
(
Gm,S

×n−−→ Gm,S

)
• if S is a scheme over Fp,

αp,S = SpecFp[x]/(xp)×Fp S = ker

(
Ga,S

Frobp−−−→ Ga,S

)

are fpqc sheaves.
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At long last, some calculations



Quasi-coherent sheaves

Proposition - [LM, Thm 15.9]
Let F be a quasi-coherent sheaf on S. Then Hi(S,F ) = HiZar(S,F )

for all i.

The proof is basically an application of the Čech-to-cohomology
spectral sequence, together with our second fundamental lemma for
the affine case.
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Artin-Schreier theory

Let S be a scheme over Fp.

Since

xp − x =
p−1∏
k=0

(x− k)

in Fp[x], Fp[x]/(xp − x) ∼= F⊕p
p and so

SpecFp[x]/(xp − x) ∼= Fp.

Thus, Fp(X) = {a ∈ Γ(X,OX) | ap = a}. In particular,

0→ Fp → Ga,S
Frobp − id−−−−−−→ Ga,S → 0

is exact on the left.

45



Artin-Schreier theory

Let S be a scheme over Fp. Since

xp − x =
p−1∏
k=0

(x− k)

in Fp[x], Fp[x]/(xp − x) ∼= F⊕p
p

and so

SpecFp[x]/(xp − x) ∼= Fp.

Thus, Fp(X) = {a ∈ Γ(X,OX) | ap = a}. In particular,

0→ Fp → Ga,S
Frobp − id−−−−−−→ Ga,S → 0

is exact on the left.

45



Artin-Schreier theory

Let S be a scheme over Fp. Since

xp − x =
p−1∏
k=0

(x− k)

in Fp[x], Fp[x]/(xp − x) ∼= F⊕p
p and so

SpecFp[x]/(xp − x) ∼= Fp.

Thus, Fp(X) = {a ∈ Γ(X,OX) | ap = a}. In particular,

0→ Fp → Ga,S
Frobp − id−−−−−−→ Ga,S → 0

is exact on the left.

45



Artin-Schreier theory

Let S be a scheme over Fp. Since

xp − x =
p−1∏
k=0

(x− k)

in Fp[x], Fp[x]/(xp − x) ∼= F⊕p
p and so

SpecFp[x]/(xp − x) ∼= Fp.

Thus, Fp(X) = {a ∈ Γ(X,OX) | ap = a}.

In particular,

0→ Fp → Ga,S
Frobp − id−−−−−−→ Ga,S → 0

is exact on the left.

45



Artin-Schreier theory

Let S be a scheme over Fp. Since

xp − x =
p−1∏
k=0

(x− k)

in Fp[x], Fp[x]/(xp − x) ∼= F⊕p
p and so

SpecFp[x]/(xp − x) ∼= Fp.

Thus, Fp(X) = {a ∈ Γ(X,OX) | ap = a}. In particular,

0→ Fp → Ga,S
Frobp − id−−−−−−→ Ga,S → 0

is exact on the left.

45



Artin-Schreier theory

We check that Frobp− id is surjective on stalks.

Indeed, the map
induced on stalks is of the form

A→ A
a 7→ ap − a,

where (A,m, κ) is a strictly henselian ring and char κ = p. If a ∈ A, the
polynomial f(x) = xp − x− a has a root and derivative −1 6= 0 in κ[x].
Hensel’s lemma then proves that a 7→ ap − a is surjective.
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Artin-Schreier theory

Let K/k be a cyclic extension of characteristic p and S = Spec k.

Our
exact sequence yields

0 H0(S,Fp) H0(S,Ga) H0(S,Ga)

H1(S,Fp) H1(S,Ga) H1(S,Ga) · · · ,

where H1(S,Ga) = H1Zar(S,OS) = 0 due to Grothendieck’s vanishing.
In particular,

0→ Fp → k x7→xp−x−−−−−→ k→ H1(S,Fp)→ 0

is exact. We’ll see next week that this gives precisely that K is the
splitting field of f(x) = xp − x+ a for some a ∈ k.
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Kummer theory

Let S be any scheme such that n be inversible in S. (That is,
n ∈ Γ(S,OS)

×.)

As before, the sequence

0→ µn,S → Gm,S
×n−−→ Gm,S → 0

is exact. And it yields classical Kummer theory.

The hard part is that Gm,S is not a quasi-coherent sheaf on S, so that
it’s not so clear that H1(S,Gm,S) = 0.

This is a result whose name shan’t be explicitly written.
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Questions?
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