
Part I.

Complex Geometry
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1. Complex analysis in one variable

1.1. Basic definitions
Let U ⊂ C be a connected open set and z = x + iy be the complex variable, where
x, y ∈ R. If f is a function of class C1 on U, then

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz+

∂f

∂z
dz,

where dz := dx + idy, dz := dx − idy (both elements of Γ(T∨C) so that, for all p ∈ C
dzp, dzp ∈ HomR(T

∨
p C,C))1, and

∂

∂z
:=
1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
:=
1

2

(
∂

∂x
+ i

∂

∂y

)
as vector fields onU. (Note that the signs in the vector fields are opposite to the signals
in the differential forms!) We say that f is holomorphic at p ∈ U if dfp is C-linear. In
other words, if ∂f/∂z(p) = 0. This gives the famous Cauchy-Riemann equations. By
the same token, this implies that the differential of a holomorphic function f = u+ iv

is

df =

(
a −b

b a

)
, where a =

∂u

∂x
=
∂v

∂y
, b =

∂v

∂x
= −

∂u

∂y
.

Since a conformal function is one such that its differential is a positive scalar multiple
of a rotation, this implies that holomorphic functions with non-zero derivative are
conformal.

Finally, we denote by O(U) the rings of holomorphic functions defined on U. If
f ∈ C1(U) and g ∈ C1(V) is such that g(V) ⊂ U, then

∂

∂z
(f ◦ g) =

(
∂f

∂z
◦ g
)
∂g

∂z
+

(
∂f

∂z
◦ g
)
∂g

∂z

∂

∂z
(f ◦ g) =

(
∂f

∂z
◦ g
)
∂g

∂z
+

(
∂f

∂z
◦ g
)
∂g

∂z
.

In particular, if f and g are holomorphic, then so is f ◦ g.

1Note that while dz is C-linear, dz is anti-C-linear.
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1. Complex analysis in one variable

1.2. Cauchy integral formula
In this section we prove the Cauchy integral formula and its many striking conse-
quences.

Theorem 1.2.1 — Cauchy integral formula. Let K ⊂ C a compact set with piecewise C1
boundary ∂K. If f : K→ C is a C1 function, then

f(z) =
1

2πi

∫
∂K

f(w)

w− z
dw+

1

2πi

∫
K

∂f

∂w
(w)

dw∧ dw

w− z

for every z ∈ K◦.

� Even though dzp and dzp span T∨p C for all p ∈ C, dz ∧ dz is not the Lebesgue
measure on C. The Lebesgue measure is dx ∧ dy = 1

2
(dz + dz) ∧ 1

2i
(dz − dz) =

i
2
dz∧ dz.

Proof. We fix z ∈ K◦ and consider the 1-form

η =
1

2πi

f(w)

w− z
dw

defined on K \ {z}. Note that

dη = −
1

2πi

∂f

∂w
(w)

dw∧ dw

w− z
.

Let r > 0 be sufficiently small so that Dr(z) ⊂ K◦. By Stokes’ theorem,∫
∂Dr(z)

η =

∫
∂K

η−

∫
K

dη+

∫
Dr(z)

dη.

It suffices then to show that

lim
r→0

∫
∂Dr(z)

η = f(z) and lim
r→0

∫
Dr(z)

dη = 0.

Both of them follow quickly from the parametrization w = z+ reit.

Many of the fundamental theorems in complex analysis follow rather quickly from
the Cauchy integral formula. We now present some of them.

Corollary 1.2.2 — Particular case of Cauchy theorem. Let f : U→ C be a holomorphic
function. Then, if D is a disc whose closure is contained in U,∫

∂D

f(w) dw = 0.
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1.2. Cauchy integral formula

Proof. Fix z ∈ D. This result is just a particular case of the Cauchy integral formula
applied to the function w 7→ (w− z)f(w).

The general form of this result says that if γ is a closed piecewise C1 curve which
is contractible, then the integral of f over γ is zero. This version can be proven by
noticing that the 1-formω := f(w) dw is closed2 and then using Stokes’ theorem.

As one can easily verify, analytic functions are holomorphic. The next result shows
that the converse is also true.

Corollary 1.2.3 Let f : U → C be a holomorphic function. Then f is analytic. That
is, if D is a disc centered at z0 whose closure is contained in U, then f has a power
series expansion at z0 which converges for all z ∈ D.

Proof. Fix z ∈ D. Using the geometric series we have that

1

w− z
=

1

w− z0
· 1

1− (z− z0)/(w− z0)
=

1

w− z0

∞∑
n=0

(
z− z0
w− z0

)n
.

This series converges uniformly for z ∈ D and w ∈ ∂D. The Cauchy formula then
implies that

f(z) =

∞∑
n=0

(
1

2πi

∫
∂D

f(w)

(w− z0)n+1
dw

)
(z− z0)

n,

which concludes the proof.

This implies that a holomorphic function has derivatives of all orders, whichwas not
clear from the definition. Moreover, the proof shows that the power series expansion
converges in any disc, no matter how big, as long as its closure is contained in the
domain. In particular, if f is holomorphic on all ofC (we then say that it is entire), then
f has a power series expansion with infinite radius of convergence.

Corollary 1.2.4 Let f : U → C be a holomorphic function. Then, if D is a disc
centered at z0 contained in U,

f(n)(z0) =
n!

2πi

∫
∂D

f(w)

(w− z0)n+1
dw.

Proof. Its clear from the fact that the n-th derivative at z0 of a power series

f(z) =

∞∑
n=0

an(z− z0)
n

is given by n!an.

2Since dω = −∂f
∂z
dz∧ dz,ω is closed if and only if f is holomorphic.
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1. Complex analysis in one variable

Corollary 1.2.5 — Cauchy inequalities. Let f : U → C be a holomorphic function.
Then, if D is a disc centered at z0 and of radius rwhose closure is contained in U,

|f(n)(z0)| 6
n! ‖f‖∂D
rn

,

where ‖f‖∂D is the supremum of |f(z)| for all z ∈ ∂D.

Proof. Its just the triangular inequality applied at our previous corollary:

|f(n)(z0)| 6
n!

2π

∣∣∣∣∫
∂D

f(w)

(w− z0)n+1
dw

∣∣∣∣ = n!

2π

∣∣∣∣∫2π
0

f(z0 + re
it)

(reit)n
dt

∣∣∣∣ 6 n! ‖f‖∂D
rn

,

where w = z0 + re
it.

We endow the ring O(U) with the compact-open topology. In other words, a
sequence of functions (fn) converges to f in O(U) if it converges uniformly on ev-
ery compact subset of U. (Since U is σ-compact, this topology is metrizable.) The
Cauchy inequalities imply that the differentiation operator O(U) → O(U) is contin-
uous. Moreover, we’ll soon show that it is a closed subset of C0(U,C) and so it is a
Fréchet space.

The next result shows that O(U) has the Heine-Borel property: a subset is compact
if and only if it is closed and bounded.

Corollary 1.2.6 — Montel’s theorem. LetA ⊂ O(U) a family of holomorphic functions
which is locally uniformly bounded. Then there is a sequence of elements of A
which converges uniformly on every compact subset of U.

Proof. The Cauchy integral formula implies that any family in O(U) which is locally
uniformly bounded is locally equicontinuous. For this it suffices to observe that if the
elements ofA are bounded byM on a disk of radiusM, then they are equicontinuous
on every smaller disk. Let r < R, and choose ρwith r < ρ < R. If f ∈ A is holomorphic
on DR(0), bounded in absolute value byM, and if z, z0 ∈ Dr(0), then

|f(z) − f(z0)| =

∣∣∣∣ 12πi
∫
|w|=ρ

f(w)

w− z
dw−

1

2πi

∫
|w|=ρ

f(w)

w− z0
dw

∣∣∣∣
=

∣∣∣∣z− z02πi

∫
|w|=ρ

f(w)

(w− z)(w− z0)
dw

∣∣∣∣
6

|z− z0|M

2π

∫2π
0

ρ

|ρeit − z| |ρeit − z0|
dt

6
|z− z0|Mρ

(ρ− r)2
.

The result then follows by an application of the Arzelà-Ascoli theorem.
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1.2. Cauchy integral formula

Corollary 1.2.7 — Liouville’s theorem. Let f : C → C be an entire function which is
bounded. Then f is constant.

Proof. Since C is connected, if suffices to prove that f ′ = 0. If f(z) 6M for all z ∈ C,
the Cauchy inequalities imply that

|f ′(z0)| 6
M

r

for all z0 ∈ C and r > 0. The result follows by taking the limit r→∞.

The same argument also proves a more general result: if there exist a, b > 0 and a
positive integerm such that |f(z)| 6 a+ b|z|m, then f is a polynomial of degree 6 m.
Liouville’s theoremprovides an incredibly simpleproof to the fundamental theorem

of algebra which we now present.

Corollary 1.2.8 — Fundamental theorem of algebra. Let P : C → C be a non-constant
polynomial. Then there exists z ∈ C such that P(z) = 0. In other words, C is
algebraically closed.

Proof. Suppose P(z) 6= 0 for all z ∈ C. Then 1/P is a entire function. Since |P(z)|→∞
as |z|→∞, there exists a compact set K such that∣∣∣∣ 1P(z)

∣∣∣∣ < 1
for all z ∈ C \ K. Moreover, 1/P is bounded on K by compactness. Then Liouville’s
theorem implies that P is constant, which is absurd.

We end this section by interpreting the Cauchy integral formula in the language of
distributions.

Corollary 1.2.9 The function z 7→ 1/πz ∈ L1loc(C) is a fundamental solution of the
operator ∂/∂z onC. In other words, if T is the distribution defined by this function,
then ∂T/∂z = δ0. As a consequence, if v is a distribution with compact support on
C, then the convolution u = T ∗ v is a solution of ∂u/∂z = v.

For the proof, recall that the Lebesgue measure on C is given by i
2
dz∧ dz.

Proof. Letϕ ∈ D(C) be a test function and K a compact containing its support. Then,

∂T

∂z
(ϕ) = −T

(
∂ϕ

∂z

)
=

1

2πi

∫
∂K

ϕ(z)

z
dz︸ ︷︷ ︸

=0

+
1

2πi

∫
K

1

z

∂ϕ

∂z
dz∧ dz = ϕ(0)

by the Cauchy integral formula.

Note that, even though supp v is compact, there’s no reason for suppu to be.
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1. Complex analysis in one variable

1.3. The normal form of a holomorphic function
Locally, every holomorphic function is basically z 7→ zk for some positive integer k.
This is the so-called normal form of a holomorphic function, which has another myriad
of striking consequences.
Definition 1.3.1 Let f : U → C be a holomorphic function and z0 ∈ U. The order of
z0, denoted ordz0(f), is the smallest non-negative integer n such that f(n)(z0) 6= 0.

Equivalently, the order of z0 is the index of the smallest non-zero coefficient in
the power series expansion of f in a neighborhood of z0. If z0 has order n, then
f(z) = (z− z0)

nh(z), where h is a holomorphic function such that h(z0) 6= 0.

Theorem 1.3.1 — Normal form. Let f : U → C be a holomorphic function and z0 ∈ U
be a point of order n. Then there exists a neighborhood V of p and a injective
holomorphic function g : V → C such that

f ◦ g−1(z) = zn

for all z ∈ g(V).

Proof. Without loss of generality, we may suppose z0 = 0. Let h be a holomorphic
function such that f(z) = znh(z) and h(0) 6= 0. Since exp : C → C \ {0} is the
universal over of C \ {0} and the exponential function is a local biholomorphism (that
is, locally exp has holomorphic inverses), there exists a holomorphic function H such
thatH(z)n = h(z). As the derivative of z 7→ zH(z) at 0 isH(0) 6= 0, the inverse function
theorem3 implies that this function is our desired g.

Corollary 1.3.2 — Open mapping theorem. Let f : U → C be a non-constant holomor-
phic function. Then f(U) is an open subset of C.

Proof. Since openness is a local condition, this follows from the preceding theorem
and the fact that z 7→ zk is an open map for k > 1.

Corollary 1.3.3 — Maximum modulus principle. Let f : U→ C be a non-constant holo-
morphic function. Then |f| does not attain a maximum on U. In particular, if U is
bounded and f is continuous on U, then |f| attains a maximum on ∂U.

Proof. Suppose that |f| attains a maximum on z0 ∈ U. Since f is a non-constant
holomorphic function, the open mapping theorem implies that there exists a disk
3The local inverse ψ of a holomorphic function ϕ given by the standard inverse function theorem is
also holomorphic since dψ = (dϕ)−1.
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1.4. Morera’s theorem

D ⊂ f(U) centered at f(z0). But then some of the points in D have a larger absolute
value than f(z0), which is a contradiction.

Corollary 1.3.4 — Analytic continuation. Let f, g : U → C be holomorphic functions
such that f(z) = g(z) for all z in a set with a limit point. Then f = g.

Proof. Without loss of generality we assume g = 0. Since z 7→ zk has discrete zeros if
k > 0, the result follows from the normal form.

1.4. Morera’s theorem
In this section we present a converse to the Cauchy theorem which allows us to pass
the stability of integrals under uniform limits to holomorphic functions.

Proposition 1.4.1 — Morera’s theorem. Let f : U → C be a continuous function such
that for every triangle ∆ ⊂ Uwe have that∫

∆

f(z) dz = 0.

Then f is holomorphic.

Proof. We fix z0 ∈ U and r > 0 such that Dr(z0) ⊂ U. We denote by F the function
defined by

F(z) =

∫
[z0,z]

f(w) dw, for all z ∈ Dr(z0).

By the Lebesgue differentiation theorem, we have that

lim
h→0

F(z+ h) − F(z)

h
= lim
h→0

1

h

∫
[z,z+h]

f(w) dw = f(z).

This implies that F is holomorphic at z0. Since F ′ = f, so is f.

� Note that we needed the hypothesis that f integrates to 0 over triangles to obtain that
F(z+ h) − F(z) is the integral of f over [z, z+ h].

As promised, we now see that O(U) is a closed subset of C0(U,C).

Corollary 1.4.2 Let fk : U → C be a sequence of holomorphic functions which con-
verge uniformly on every compact subset ofU to f : U→ C. Then f is holomorphic.
Moreover, the sequence of derivatives f(n)k converges uniformly to f(n) on every
compact subset of U.
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1. Complex analysis in one variable

Proof. Let D be a disc whose closure is contained in U and ∆ a triangle in D. By the
Cauchy theorem, ∫

∆

fk(z) dz = 0.

But integrals are stable over uniform limits so∫
∆

f(z) dz = 0

and then Morera’s theorem implies that f is holomorphic onU. The demonstration of
the second statement is not so enlightening and can be seen in [?].

1.5. Meromorphic functions
In this section we study the behavior of functions which may have singularities. As
we shall see, those singularities tell us much about the function itself.

Proposition 1.5.1 — Laurent series. Let R > r > 0 be real numbers and consider the
annulusAR,r = {z ∈ C | r < |z| < R}. If f : AR,r → C is a holomorphic function, then
f can be expanded as

f(z) =

∞∑
n=−∞anz

n.

This series is called the Laurent series of f. The same reasoning can be applied for
annuli centered around other points.

Proof. Let R ′, r ′ be such that 0 6 r < r ′ < R ′ < R. The Cauchy integral formula
implies that

f(z) =
1

2πi

∫
|w|=R ′

f(w)

w− z
dw−

1

2πi

∫
|w|=r ′

f(w)

w− z
dw

for all z such that r ′ < |z| < R ′. Since |z| < |w| = R ′ in the first integral and |z| > |w| = r ′

in the second, we expand (w− z)−1 as

1

w− z
=
1

w

1(
1− z

w

) =
1

w

∞∑
n=0

( z
w

)n
and 1

w− z
= −

1

z

1(
1− w

z

) = −
1

z

∞∑
n=0

(w
z

)n
.

This gives our desired expansion with

an =
1

2πi

∫
|w|=ρ

f(w)

wn+1
dw.

By the Cauchy theorem this value is independent of the choice of ρ ∈ (r, R).

We now classify the different kinds of singularities.
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1.5. Meromorphic functions

Definition 1.5.1 Let f be a holomorphic function defined on a annulus centered at
z0 ∈ C. Also, let ∞∑

n=−∞an(z− z0)
n

be its Laurent series. We say that

• f has a removable singularity at z0 if an = 0 for all n < 0;

• f has a pole of order k at z0 if a−k 6= 0 but a−n = 0 for all n > k;

• f has an essential singularity at z0 if its Laurent series has infinitely many
negative coefficients.

Removable singularities are the tamest of all such beasts. The next results shows
that it is very easy to recognize these kinds of singularities.

Proposition 1.5.2—Riemann removable singularities theorem. LetUbe aneighborhood
of a point z0 ∈ C and f : U \ {z0} → C be a holomorphic function. If f is bounded
on U \ {z0} then z0 is a removable singularity.

Proof. Without loss of generality we assume z0 = 0. LetM be an upper bound on |f|

on U \ {z0}. Proceeding as in the proof of the Cauchy estimates, we have that the n-th
coefficient of the Laurent series of f satisfies

|an| 6
M

ρn

for all sufficiently small ρ. Taking ρ→ 0 we get that an = 0 for all n < 0.

We now begin our study of the most interesting of all singularities: poles.
Definition 1.5.2 — Residue. Let f be a holomorphic function defined on punctured
neighborhood of z0 ∈ Cwhere it has a pole. The coefficient a−1 of its Laurent series
centered at z0 is the residue of f at z0, denoted resz0(f).

If f has a pole of order k at z0, we can use a combination of derivatives and limits
to isolate the coefficient a−1 of its Laurent series, getting an explicit formula for the
residue:

resz0(f) = lim
z→z0

1

(k− 1)!

(
d

dz

)k−1
(z− z0)

k f(z).

Surprisingly, the integral of a function which is holomorphic except at a finite
number of poles is determined by its residues. This is the content of our next theorem,
which is very useful both theoretically and in concrete calculations.
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1. Complex analysis in one variable

Theorem 1.5.3 — Residue theorem. Let z1, . . . , zn ∈ U be a finite collection of points
and let f : U \ {z1, . . . , zn} be a holomorphic function. If γ is closed piecewise C1
curve contained in U and whose interior contains all these points, then∫

γ

f(w) dw = 2πi

n∑
k=1

reszk(f).

Proof. Without loss of generality, we assume that we have a single point z1 = 0. Also,
by the Cauchy theorem, it suffices to prove the result when γ is the boundary of a disk
centered at 0. In this case, the theorem follows from the fact that∫

|w|=1

1

wk
dw =

{
2πi if k = −1

0 otherwise

by integrating the Laurent series of f centered at 0.

Definition 1.5.3 — Meromorphic function. We say that a function f : U → C is mero-
morphic if there exists a subset A ⊂ U without limit points (necessarily at most
countable) such that the restriction of f to U \A is holomorphic and f has poles at
the points of A. We denote the set of meromorphic functions on U by M(U).

It is clear that the set of meromorphic functions is a field. A non-trivial fact which
we’ll see in the next section is that M(U) is precisely the fraction field of the ring of
holomorphic functions O(U).
The notion of order can be extended a meromorphic function f in the following

way. If f is holomorphic at z0, then the our notion of order still applies. Else, if f has
a pole of order k at z0, then ordz0(f) := −k.

Proposition 1.5.4 — Argument principle. Let f : U → C be a meromorphic function
and D a disk whose closure is contained in U. If ∂D does not contain any zeros or
poles of f, then

1

2πi

∫
∂D

f ′(w)

f(w)
dw =

∑
z∈D

ordz(f).

Since an infinite sequence in a compact set as necessarily a limit point, this sum is
finite. Moreover, it is usually interpreted as being the number of zeros of f minus
the number of poles, counted with their respective orders.

Proof. The proof is based on the clever observation that if f has order k at z0 then
f(z) = (z − z0)

kg(z), where g is holomorphic and non-zero in a neighborhood of z0,
and so

f ′(z)

f(z)
=

k

z− z0
+
g ′(z)

g(z)
.
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1.6. Harder results

In other words, f ′/f has residue k at z0. The result then follows by the residue
formula.

We finish this section with Rouché’s theorem which is, in some sense, a continuity
statement. It says that slight perturbations of meromorphic functions does not change
the number of zeros and poles.

Corollary 1.5.5 — Rouché’s theorem. Let f, g : U→ C be meromorphic functions and
D a disk whose closure is contained inU. If |f(z)−g(z)| < |g(z)| for all z ∈ ∂D, then∑

z∈D

ordz(f) =
∑
z∈D

ordz(g).

Proof. Firstly, we note that the condition of f and g implies that ∂D does not contain
any zeros or poles of these functions. Let h = f/g. Since |h(z) − 1| < 1 on ∂D, the
image of ∂D by h is contained in D1(1) and so

0 =

∫
h(∂D)

1

w
dw =

∫
∂D

h ′(w)

h(w)
dw =

∫
∂D

f ′(w)

f(w)
dw−

∫
∂D

g ′(w)

g(w)
dw.

The result then follows by the argument principle.

Just for fun, we give another quick proof of the fundamental theorem of algebra.
Let f(z) = anzn+ . . .+a0 be a non-constant polynomial and g(z) = anzn. Since f− g
is a polynomial of degree at most n − 1, we have that |f(z) − g(z)| < |g(z)| for all z in
the border of a sufficiently large disk centered at 0. Rouché’s theorem then implies
that f has precisely n zeros inside this disk.

1.6. Harder results

In this last section we gather, mostly without proof, a few difficult theoremswhich are
nonetheless very important in complex analysis. We begin our quest with a simple
theorem which admits a massive generalization.

Proposition 1.6.1 — Casorati-Weierstrass. Let U be a connected open set, z0 ∈ U and
f : U \ {z0} a holomorphic function with an essential singularity at z0. Then, if V is
any neighborhood of z0 contained in U, f(V \ {z0}) is dense in C.

Proof. Suppose that there is a disc D centered at a ∈ C which is not in f(V \ {z0}).
Then

g(z) =
1

f(z) − b

13



1. Complex analysis in one variable

defines a bounded holomorphic function on V \ {z0}. Proposition 1.5.2 implies that g
can be holomorphically extended to all of V . Observe that

f(z) =
1

g(z)
+ b.

Depending on whether g(z0) is zero or not, 1/g has either a pole or is holomorphic at
z0. Both cases contradict the hypothesis that z0 is an essential singularity of f.

Actually, much more is true!

Theorem 1.6.2 — Great Picard’s theorem. In the hypothesis of the preceding proposi-
tion, the function f restricted to V \ {z0} takes every complex value, with at most a
single exception, infinitely often.

The reader interested in its (hard) proof may check the beautiful book [?]. With a
similar spirit, we also have the following generalization of Liouville’s theorem.

Theorem 1.6.3 — Little Picard theorem. Let f : C → C be an entire non-constant func-
tion. Then the complement of its image C \ f(C) has at most one point.

One can prove this result by using that the unit diskD1(0) is the universal cover of
C minus two points, which can be proven either by using Riemann’s uniformization
theorem or by proving that the modular lambda function is such a cover. Then, if
f : C → C omits two points, we lift it a function f̃ : C → D1(0), which is necessarily
constant by Liouville’s theorem. This concludes the proof.

The little theorem also follows from the big one by using that an entire function f is
either a polynomial or has an essential singularity at infinity (that is, z 7→ f(1/z) has
an essential singularity at 0). In fact, if f is not a polynomial, we can write

f

(
1

z

)
=

∞∑
n=0

an

zn
,

where infinitely many an are non-zero. This implies that z 7→ f(1/z) has an essential
singularity at 0.
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1.6. Harder results

Riemann mapping theorem (uma função é biholomorfa se e somente se ela é con-
forme e injetiva. Então o teorema de Riemann diz que dois domínios são conforme-
mente equivalentes e isso nos dá um biholomorfismo entre eles)

Weierstrass factorization theorem (falar que o corpo de funções meromorfas é o
corpo de frações do anel de funções holomorfas. Thm 15.12 rudin. Falar que isso não
vale para superfícies de Riemann compactas mas vale para não-compactas. Forster
Thm. 26.5.)

Mittag-Leffler (provar usando feixes: corolário 10.24 do Wedhorn de variedades)
Runge’s approximation theory
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2. Complex analysis in several variables

In this chapter we study holomorphic functionswhich are defined on a open set ofCn.
Contrarily to what one could expect, there are a lot of new and interesting phenomena
that arise when n > 1. Notably, the fact that the zeros of a holomorphic function are
never isolated! This leads to Hartogs’ extension theorem and the notion of domains
of holomorphy.

Nevertheless, the study of some of these particular phenomena is best done us-
ing tools which naturally belong to the context of complex manifolds, which is the
content of the next chapter. Accordingly, in this chapter we will be content with the
generalization of some classic results and with the Hartogs’ extension theorem.

2.1. Basic definitions
Just as before, let U ⊂ Cn be a connected open set and zj = xj + iyj, for j = 1, . . . , n,
be the complex variables, where xj, yj ∈ R. If f is a function of class C1 on U, then

df =

n∑
j=1

(
∂f

∂xj
dxj +

∂f

∂yj
dyj

)
=

n∑
j=1

(
∂f

∂zj
dzj +

∂f

∂zj
dzj

)
,

where dzj = dxj + idyj, dzj = dxj − idyj, and

∂

∂zj
:=
1

2

(
∂

∂xj
− i

∂

∂yj

)
,

∂

∂zj
:=
1

2

(
∂

∂xj
+ i

∂

∂yj

)
as vector fields on U. We say that f is holomorphic at p ∈ U if dfp is C-linear. In other
words, if ∂f/∂zj(p) = 0 for all j. This gives the analogous Cauchy-Riemann equations.
A C1 function from U to Cm is said to be holomorphic at p ∈ U if all its components
are. Just as in the 1-dimensional case, the composition of holomorphic functions is
still holomorphic.

If f is holomorphic, then it is clear that f is holomorphic individually on each
variable. Remarkably, the converse, a deep theorem of Hartogs, is also true.1 For the
rest of these notes we will assume this result. The reader should compare this with

1The original proof of this result is deep and intricate. As far as the writer knows, there are no other
known proofs.
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2. Complex analysis in several variables

the real case, where a function which has partial derivatives in each variable need not
even be continuous.

As before, we denote by O(U) the ring of holomorphic functions defined onUwith
values on C. If α = (α1, · · · , αn) ∈ Nn is a multi-index, we denote by |α| the sum
α1+. . .+αn, byα! the numberα1! · · ·αn!, byα+1 themulti-index (α1+1, · · · , αn+1),
and by zα the monomial zα11 · · · zαnn , which is an element of C[z1, . . . , zn]. A product
of discs will be called a polydisk. If z0 ∈ Cn, r ∈ Nn is a multi-index, and

Dr(z) := Dr1(z1)× · · · ×Drn(zn)

is a polydisk, we will denote by Γr(z) the distinguished boundary

Γr(z) := ∂Dr1(z1)× · · · × ∂Drn(zn).

Notice that this is not the topological boundary of Dr(z).

2.2. Cauchy integral formula
Just as in the n = 1 case, the Cauchy integral formula is the main ingredient in many
important results.

Theorem 2.2.1 — Cauchy integral formula. Let K1, . . . , Kn be compact sets in C with
piecewiseC1 boundary. If f isC1 onK1×· · ·×Kn and holomorphic onK◦1×· · ·×K◦n,
then

f(z) =
1

(2πi)n

∫
∂K1

· · ·
∫
∂Kn

f(w)

(w1 − z1) · · · (wn − zn)
dw1 ∧ · · ·∧ dwn

for every z ∈ K◦1 × · · · × K◦n.

Proof. This is just an iteration of Theorem 1.2.1.

We now describe the results of section 1.2 which generalize nicely to n > 1. Since
the proofs are identical, they will be omitted.

Corollary 2.2.2 — Cauchy theorem. Let f : U→ C be a holomorphic function. Then, if
D is a polydiskwhose closure is contained inU and Γ is its distinguished boundary,∫

Γ

f(w) dw = 0,

where we denote dw1 ∧ · · ·∧ dwn by dw.

As before, holomorphic and analytic functions are one and the same.
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2.3. Other generalizations

Corollary 2.2.3 Let f : U→ C be a holomorphic function. Then f is analytic. That is,
ifD is a polydisc centered at z0 whose closure is contained inU, then f has a power
series expansion at z0

f(z) =
∑
α∈Nn

aα(z− z0)
α,

which converges for all z ∈ D.

Corollary 2.2.4 Let f : U → C be a holomorphic function. Then, if D is a polydisc
centered at z0 contained in U and Γ is its distinguished boundary,

f(α)(z0) =
α!

(2πi)n

∫
Γ

f(w)

(w− z0)α+1
dw.

Corollary 2.2.5 — Cauchy inequalities. Let f : U → C be a holomorphic function.
Then, ifD is a polydisc centered at z0 and of radius rwhose closure is contained in
U and Γ is its distinguished boundary,

|f(α)(z0)| 6
α! ‖f‖Γ
rα

,

where ‖f‖Γ is the supremum of |f(z)| for all z ∈ Γ .

Just as before, we endow the ring O(U) with the compact-open topology. This is a
Fréchet space (since we can prove in a similar fashion as before that O(U) is closed on
C0(U,C)) on which the differentiation operator acts continuously.

Corollary 2.2.6 — Montel’s theorem. LetA ⊂ O(U) a family of holomorphic functions
which is locally uniformly bounded. Then there is a sequence of elements of A
which converges uniformly on every compact subset of U.

Following the obvious generalization, we say that a holomorphic function defined
on all of Cn is entire.

Corollary 2.2.7 — Liouville’s theorem. Let f : Cn → C be an entire function which is
bounded. Then f is constant.

By the same token, the polynomial variant of Liouville’s theorem still holds.

2.3. Other generalizations
Unlike in section 1.3, there’s no normal form for a holomorphic function of several
variables. Notwithstanding, we can still prove the same corollaria. Analytic continu-
ation still holds by a simple argument, the open mapping theorem holds by reducing

19



2. Complex analysis in several variables

to the one dimensional case and the maximum modulus principle is proved exactly
in the same way as before.

Corollary 2.3.1 — Analytic continuation. Let f, g : U → C be holomorphic functions
such that f(z) = g(z) for all z in an open subset of U. Then f = g.

Proof. Without loss of generality, we assume g = 0. Let Z be the subset of U where
all the derivatives of f vanish. By supposition, Z is non-empty. Since f has a power
series expansion centered at every point of Z, Z is open. By continuity, Z is closed.
The result now follows by the connectedness of U.

In order to prove the open mapping theorem, we’ll use the following lemma.

Lemma 2.3.2 Let f : U→ C be a holomorphic function, a ∈ U and b ∈ Cn. Then the
set V := {t ∈ C | a+ tb ∈ U} is open, contains 0 and the function

fa,b : V → C, t 7→ f(a+ tb)

is holomorphic.

Proof. The openness of U clearly implies that of V and 0 is in V since a is in U. The
function fa,b : t 7→ f(a+tb) is holomorphic since it’s the composition of a holomorphic
function with an affine mapping.

Corollary 2.3.3 — Open mapping theorem. Let f : U → C be a non-constant holomor-
phic function. Then f(U) is an open subset of C.

Proof. We must show that for any point z0 ∈ U and any ball B centered at z0 whose
closure is contained in U, the image f(B) contains a neighborhood of f(z0). By
translation we may assume that z0 = 0 and f(z0) = 0.
By analytic continuation, there exists a pointb ∈ B such that f 6= 0 in a neighborhood

of b. Consider the line V := {t ∈ C | tb ∈ U}. The image f(V) is precisely the image
of f0,b, which is open by the previous lemma and the open mapping theorem in one
dimension. In particular, f(B) contains a neighborhood of f(0).

Finally, the maximum modulus principle follows in the exact same way by using
that f(U) is open on C.

Corollary 2.3.4 — Maximum modulus principle. Let f : U→ C be a non-constant holo-
morphic function. Then |f| does not attain a maximum on U. In particular, if U is
bounded and f is continuous on U, then |f| attains a maximum on ∂U.
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2.4. The theorems of Riemann and Hartogs

2.4. The theorems of Riemann and Hartogs
In this last section we touch the subject of extending holomorphic functions beyond
their original domain. In the one-dimensional case, this can only be done around a
removable singularity. As we shall see, in several complex variables the situation is
much richer. Our main result is the theorem below.

Theorem 2.4.1 — Hartogs’ extension theorem. Let K be a compact subset of U ⊂ Cn,
with n > 1, and suppose that U \ K is connected. Then, if f : U \ K → C is a
holomorphic function, there exists F ∈ O(U) which coincides with f on U \ K.

Before we prove this marvelous result, we need a lemma which says that we can
find a solution with compact support for the differential equation in corollary 1.2.9,
under a certain integrability condition when n > 1.

Lemma 2.4.2 Let f1, . . . , fn : Cn → C, be smooth functions with compact support
satisfying the integrability condition

∂fj

∂zk
=
∂fk

∂zj
, for all j, k ∈ {1, . . . , n}.

Then, there exists a smooth function u : Cn → C such that

∂u

∂zj
= fj

for all j ∈ {1, . . . , n}. If n > 1, u has compact support. Moreover, if K is the support
of (f1, . . . , fn) and Cn \ K is connected, then suppu = K.

Proof. We affirm that the function defined by

u(z) :=
1

2πi

∫
C
f1(w, z2, . . . , zn)

dw∧ dw

w− z1
=

1

2πi

∫
C
f1(w+ z1, z2, . . . , zn)

dw∧ dw

w

is the desired solution. Let K be a compact in C large enough so that fj(w, z2, . . . , wn)
is zero when w /∈ K for all j. Then the Cauchy integral formula implies that

fj(z) =
1

2πi

∫
K

∂fj

∂z1
(w, z2, . . . , zn)

dw∧ dw

w− z1
.

Then, by the integrability condition,
∂u

∂zj
(z) =

1

2πi

∫
C

∂f1

∂zj
(w+ z1, z2, . . . , zn)

dw∧ dw

w

=
1

2πi

∫
C

∂fj

∂z1
(w+ z1, z2, . . . , zn)

dw∧ dw

w

=
1

2πi

∫
C

∂fj

∂z1
(w, z2, . . . , zn)

dw∧ dw

w− z1
= fj(z),
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2. Complex analysis in several variables

which means that u is a solution of our system of differential equations.
We now show that u has compact support when n > 1. When one of the z2, . . . , zn

is large, u(z1, . . . , zn) is zero since the function f1 in its definition is zero. In particular,
u is zero on an open set. Now, note that away from the support of the fj,

∂u

∂zj
= fj = 0

and so u is holomorphic there.

z2, . . . , zn

z1

fi 6= 0

z2, . . . , zn large so u = 0 ∂u = 0

∂u = 0

z2, . . . , zn large so u = 0 ∂u = 0

By analytic continuation, u is zero away from the support of the fj. In particular,
it has compact support. In particular, it is clear that if K is the compact of the fi and
Cn \ K is connected, then K is also the support of u.

Now that the hard part was over, the proof of the theorem follows by extending f in
an arbitrary way to a (not necessarily holomorphic) function f̃ and then "correcting"
it with the preceding lemma so that it becomes holomorphic.

Proof of the Hartogs’ extension theorem. Letϕ ∈ D(U) be a smooth function which
is 1 in a neighborhood of K and is compactly supported on U. We consider the
function f̃ := (1−ϕ)f, which is smooth onU, identically zero on K and coincides with
f near the boundary of U, where ϕ is zero. This condition implies that the functions
f1, . . . , fn : Cn → C defined by

fj :=
∂f̃

∂zj
on U and fj := 0 outside U,
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2.4. The theorems of Riemann and Hartogs

for all j ∈ {1, . . . , n}, are smooth. They are also compactly supported. In fact, they are
zero outside of U \ K and equal to

fj =
∂

∂zj
((1−ϕ)f) =

∂f

∂zj
−
∂ϕ

∂zj
f−ϕ

∂f

∂zj
= −

∂ϕ

∂zj
f

onU \K, where they are compactly supported sinceϕ is. Since the partial derivatives
commute, the fj satisfy the integrability condition of the preceding lemma. We then
let u ∈ D(U) be the function given by this result. We affirm that F := f̃ − u is the
desired extension. It is holomorphic:

∂F

∂zj
=
∂f̃

∂zj
−
∂u

∂zj
= fj − fj = 0.

Since u is compactly supported on U, F agrees with f near the boundary of U. The
connectedness of U \ K implies that F = f on U \ K.

By analytic continuation, the zero set of a holomorphic function in one variable is
always discrete. Moreover, by theWeierstrass factorization theorem, every discrete set
is the zero set of a non-constant holomorphic function. Hartogs’ extension theorem
shows that the situation is drastically different in higher dimensions.

Corollary 2.4.3 Suppose U ⊂ Cn, n > 1, and let f : U → C be a holomorphic
function. Then f has no isolated zeros.

Proof. If f had a isolated zero at z0, then 1/fwould be holomorphic in a neighborhood
of z0 by Hartogs’ extension theorem, which is absurd.

In the context of several complex variables we still have an analog of the Riemann
extension theorem. For that we begin with a definition.
Definition 2.4.1 — Local boundedness. Let X be a subset of U and f : U \ X→ C be a
holomorphic function. We say that f is locally bounded on U if for every z ∈ U there
exists a neighborhood V of p such that f is bounded on V ∩ (U \ X).

In one dimension, if a function is holomorphic and bounded on U \ {z0}, then the
function extends holomorphically to U (proposition 1.5.2). In several variables the
same theorem holds, provided that we change boundedness to local boundedness
and the single point to the zero set of a holomorphic function.

Theorem 2.4.4 — Riemann extension theorem. Let g : U → C be a non-zero holomor-
phic function and N = g−1(0). If f ∈ O(U \N) is locally bounded on U, then there
exists exactly one F ∈ O(U) which coincides with f on U \N.

Similarly to the case of the open mapping theorem, this result follows from the
one-dimensional case by considering complex lines.
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2. Complex analysis in several variables

Proof. Bearing in mind the principle of analytic continuation, we know that N has
empty interior and therefore the solution is unique. In particular, if we can solve this
locally, we can glue these to form a global solution, so we can suppose thatU = D1(0)

is the unit polydisk.
After perhaps another change of variables wemay suppose that zn 7→ f(0, . . . , 0, zn)

has an isolated zero at 0. Wemay achieve this by considering a line passing connecting
the origin and a non-zero point of f; after rotating this line to be the zn-axis, then
f(0, . . . , 0, zn) is not identically zero, so the zero is isolated.
Breaking up Cn = Cn−1 × C and writing z = (w, zn) where w ∈ Cn−1, zn ∈ C we

can see that there is a small enough r > 0 such that f is not zero for 0 < |zn| 6 r, and,
by continuity, there is a small enough δ > 0 such that

|f(0, zn) − f(w, zn)| < inf
|zn|=r

|f(0, zn)| (|w| < δ),

so by Rouché’s Theorem, f(w, zn) has precisely k (necessarily isolated) zeros as a
function of zn, where k is the order of the zero at zn = 0 of f(0, zn).
Now, we may finally switch our focus to g, noticing that for each slicew is constant,

g, as a funcion of zn, has k singularities which are removable from the well known
n = 1 case. Cauchy’s integral formula will then tell us that

g(w, zn) =
1

(2πi)n

∫
|ζn|=r

g(w, ζn)

(ζn − zn)
dζn

is an expression for g, which is not only continuous and holomorphic in zn for each
fixed w, but also, differentiating at an integral sign, holomorphic in w for each fixed
zn, and by Osgood’s lemma we’re done.

2.5. Domains of holomorphy
As we just saw, the world of several complex variables has a myriad of pairs of
connected open sets V ( U ⊂ Cn such that every function that is holomorphic on
V necessarily extends to a function holomorphic on the strictly larger set U. In this
section we try to understand the sets which does not admit such a property.
Definition 2.5.1 — Domain of holomorphy. Let U ⊂ Cn be a connected open set. We
say that U is a domain of holomorphy if, for every connected open set V ⊂ Cn which
meets ∂V and every connected componentW of U ∩ V there exists f ∈ O(U) such
that f|W has no holomorphic extension to V .

Under these hypotheses we have that ∅ 6= ∂W ∩ V ⊂ ∂U. Thus, in order to show
that a connected open set U is a domain of holomorphy, it suffices to find, for every
z0 ∈ ∂U, a function f ∈ O(U) which is unbounded near z0.
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2.5. Domains of holomorphy

� Example 2.5.1 Every connected open set in C is a domain of holomorphy. In fact, if
z0 is in its boundary, then the function z 7→ (z− z0)

−1 is unbounded near z0.
Using the supporting hyperplane theorem this result generalizes to convex con-

nected open sets in higher dimensions. In fact, such a supporting hyperplane con-
taining a point z0 of the boundary is necessarily of the form {z ∈ Cn | Re〈z−z0, w〉 = 0}
for some w ∈ Cn. Then the function 1 7→ 〈z− z0, w〉−1 is unbounded near z0. �

This illustrates the fact that convexity is a good notion to understand domains of
holomorphy. We know that often domains of holomorphy are not convex (in the case
n = 1, for example). But we are heading in the right direction.
Actually, the right notion has to be more than simply geometrical. For example, the

set C2 \ R2 is not a domain of holomorphy while C2 \ {(z1, z2) ∈ C2 | z2 = 0} is. Yet
they are geometrically the same: both are 4-dimensional real vector spaces minus a
2-dimensional subspace.
Definition 2.5.2 — Holomorphical convexity. Let K ⊂ U ⊂ Cn be a compact set. The
holomorphic hull of K in U is defined to be

K̂U :=

{
z ∈ U

∣∣∣∣ |f(z)| 6 sup
w∈K

|f(w)|, for all f ∈ O(U)

}
.

We say thatU is holomorphically convex if the holomorphic hull K̂U of every compact
K ⊂ U is compact.

In fact, this completely characterizes domains of holomorphy.

Theorem 2.5.1 — Cartan–Thullen. LetU ⊂ Cn be a connected open set. The following
are equivalent:

(a) U is a domain of holomorphy;

(b) for all compact K ⊂ U, dist(K, ∂U) = dist(K̂U, ∂U);

(c) U is holomorphically convex.

Proof. aaaaaaaa

We can prove that holomorphic convexity is a biholomorphic invariant. Thus,
being a domain of holomorphy is also a biholomorphic invariant. This fact is not easy
to prove from the definition of a domain of holomorphy, as the biholomorphism is
defined only on the interior of our domains.

Holomorphic convexity is an intrinsic notion; it does not require knowing anything
about points outside of U. It is a much better way to think about domains of holo-
morphy. Holomorphic convexity generalizes easily to complex manifolds, while the
notion of a domain of holomorphy only makes sense for connected open sets in Cn.
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3. Complex manifolds

3.1. Basic definitions

Most basic facts about smoothmanifolds carry over perfectly to the context of complex
manifolds. In this section we explain them in order to fix some notations.
Definition 3.1.1— Complex manifold. A complex manifold is a topologicalmanifoldX of
dimension 2n endowed with a maximal atlas whose transition functions are holo-
morphic under the identification R2m ∼= Cn. We say that its (complex) dimension
is n.

One dimensional complex manifolds are called Riemann surfaces. If ϕ : U → Cn is
a chart, we let zj = prj ◦ϕ be its j-th component. The functions z1, . . . , zn are called
local coordinates on U.
Definition 3.1.2 — Holomorphic function. Let X and Y be complexmanifolds of dimen-
sion n andm, respectively. A continuous map f : X→ Y is said to be holomorphic at
a point p ∈ X if there are charts (V,φ) about f(p) in Y and (U,ϕ) about p in X such
that

ψ ◦ f ◦ϕ−1 : ϕ(f−1(V) ∩U)→ Cm

is holomorphic at ϕ(p). A biholomorphism is a bĳective holomorphic map f whose
inverse f−1 is also holomorphic.

Since the transition functions are holomorphic, if f : X → Y is holomorphic at p, if
(V,φ) is any chart about f(p) in Y and if (U,ϕ) is any chart about p in X, the function
ψ ◦ f ◦ ϕ−1 is holomorphic at ϕ(p). Clearly the composition of holomorphic maps
is still holomorphic. It is also clear that we can check if a map is holomorphic in its
components.

We say that f is a holomorphic function on a open set U of X if f : U → C is
holomorphic, where both U and C have their obvious atlases. We denote it by f ∈
OX(U). Clearly OX is a sheaf of C-algebras, which we will call the structure sheaf of X.

Lets see, for a moment, a complex manifold X as a smooth manifold of real dimen-
sion 2n. Let ϕ : U → Cn ∼= R2n be a chart with (real) coordinates x1, y1, . . . , xn, yn
and f : X → C a smooth function. We denote by r1, s1, . . . , rn, sn the standard coor-
dinates on R2n. Recall that, for p ∈ U, we define the partial derivative ∂f/∂xj at p to
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3. Complex manifolds

be
∂

∂xj

∣∣∣∣
p

f :=
∂f

∂xj
(p) :=

∂(f ◦ϕ−1)

∂rj
(ϕ(p)).

Similarly, the partial derivative ∂f/∂yj at p is defined to be

∂

∂yj

∣∣∣∣
p

f :=
∂f

∂yj
(p) :=

∂(f ◦ϕ−1)

∂sj
(ϕ(p)).

Now, as before, we define the operators

∂

∂zj
:=
1

2

(
∂

∂xj
− i

∂

∂yj

)
and ∂

∂zj
:=
1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

Contrarily to the real case, we have multiple natural notions of tangent space on a
complex manifold, which we’ll now study. Recall that if C∞p (X,R) is the stalk at p of
the sheaf (of R-algebras) of real-valued C∞ functions on X, a derivation at p in X is a
linear map D : C∞p (X,R)→ R such that

D(fg) = D(f)g(p) + f(p)D(g)

for all f, g ∈ C∞p (X,R). Similarly we define derivations on C∞p (X,C) and on OX,p,
where now the derivation is C-linear.
Definition 3.1.3 — Tangent spaces. Let X be a complex manifold. We define the real
tangent space to X at p ∈ X to be R-vector space TR,pX, which consists of all the
C∞p (X,R) derivations at p. The complexified tangent space to X at p ∈ X is the C
vector space TC,pX, which consists of all the C∞p (X,C) derivations at p. Finally, the
holomorphic tangent space to X at p ∈ X is the C vector space TpX, which consists of
all the OX,p derivations at p.

�

It is also usual in the real case to define the tangent space as the vector space of the
derivations at p on C∞(X,R). This does not work in the complex setting since a
compact complex manifold has no non-constant global functions. The equivalence
between these definitions in smooth manifolds uses the existence of bump functions,
which are unavailable in analytic manifolds.

We begin by observing some relations between these vector spaces. Since OX,p
is naturally a subspace of C∞p (X,C), TpX is naturally a subspace of TC,pX. Its clear
that TC,pX = TR,pX ⊗R C. Moreover, the subspace of TC,pX consisting of derivations
that vanish on antiholomorphic functions (i.e., those f such that f is holomorphic)
determines another C-vector space TpX such that

TC,pX = TpX⊕ TpX.
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3.1. Basic definitions

This is often called the antiholomorphic tangent space. If zj = xj+iyj are local coordinates
on a neighborhood of p, we have that

TR,pX = R

{
∂

∂xj

∣∣∣∣
p

,
∂

∂yj

∣∣∣∣
p

}
, TC,pX = C

{
∂

∂xj

∣∣∣∣
p

,
∂

∂yj

∣∣∣∣
p

}
= C

{
∂

∂zj

∣∣∣∣
p

,
∂

∂zj

∣∣∣∣
p

}

TpX = C

{
∂

∂zj

∣∣∣∣
p

}
and TpX = C

{
∂

∂zj

∣∣∣∣
p

}
.

Taking disjoint unions of the tangent spaces we obtain the correspondent tangent
bundles TRX, TCX, TX and TX. Similarly to the real case, these bundles are all smooth
manifolds. The holomorphic bundle TX is even a complex manifold. The decompo-
sition TC,pX = TpX⊕ TpX yields a decomposition of vector bundles

TCX = TX⊕ TX.

As usual, a C∞ map between complex manifolds induces a linear map between
tangent spaces, called its differential.
Definition 3.1.4 — Differential of a map. Let f : X→ Y be a C∞ map between complex
manifolds and p ∈ X. We define a map

dfp : TC,pX→ TC,f(p)Y

as follows. If v ∈ TC,pX, dfp(v) is the tangent vector in TC,f(p)Y defined by

dfp(v)g := v(g ◦ f) ∈ C

for all g ∈ C∞f(p)(X,C). The reader can verify that this map is linear and that
f is holomorphic if and only if dfp(TpX) ⊂ Tf(p)X. We denote the restriction
dfp : TpX→ Tf(p)X in the same way.

In practice we’ll can often be cavalier about the distinction between a germ and a
representative function for the germ since we’re only interested in the behavior of a
function in a sufficiently small neighborhood of a point.

As before, the chain rule holds in the form d(g ◦ f)p = dgf(p) ◦ dfp, which implies
that if f is a diffeomorphism then TC,pX and TC,f(p)Y are isomorphic and if f is a
biholomorphism then TpX and Tf(p)Y are isomorphic.

Let f : X→ Y be a C∞ map and p ∈ X. If z1, z1, . . . , zn, zn are local coordinates on a
neighborhood of p and w1, w1, . . . , wm, wm are local coordinates on a neighborhood
of f(p), the differential dfp is written locally as

dfp

(
∂

∂zj

∣∣∣∣
p

)
=

m∑
k=1

(
∂fk

∂zj

∂

∂wk

∣∣∣∣
p

+
∂fk

∂zj

∂

∂wk

∣∣∣∣
p

)
,
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3. Complex manifolds

where fk := wk ◦ f and fk := wk ◦ f. Similarly,

dfp

(
∂

∂zj

∣∣∣∣
p

)
=

m∑
k=1

(
∂fk

∂zj

∂

∂wk

∣∣∣∣
p

+
∂fk

∂zj

∂

∂wk

∣∣∣∣
p

)
.

Since the conjugate of∂fk/∂zj is∂fk/∂zj, if f is holomorphic its Jacobianmatrix relative
to these bases is (

J 0

0 J

)
,

where J = (∂fk/∂zj). In particular, if n = m, the determinant of the Jacobian matrix
of f is equal to det J · det J = | det J|2 > 0. I.e., holomorphic maps are orientation-
preserving. The same calculation shows that the transition functions have positive
determinant and so complex manifolds are always oriented.

3.2. Differential forms
The decomposition TCX = TX ⊕ TX on the tangent bundles induces a corresponding
decomposition on the cotangent bundles and thus∧k

T∨C X =
⊕
p+q=k

∧p
T∨X⊗

∧q
T∨X.

Passing to the sheaf of C∞ sections, we have a decomposition

ΩkX,C =
⊕
p+q=k

Ωp,qX ,

where, in local coordinates z1, . . . , zn, a local section of Ωp,qX (a form of type / bidegree
(p, q)) is written as

ω =
∑
|α|=p
|β|=q

aα,βdzα ∧ dzβ.

� We can also write such a form using the real basis dxα ∧ dyβ, for |α|+ |β| = k, but
this writing is not compatible with the splitting ofΩkX,C in its (p, q) components.

Taking the exterior derivative of such a form we see that

dω =
∑
|α|=p
|β|=q

daα,β ∧ dzα ∧ dzβ,

which is the sum of a form of type (p, q + 1) and a form of type (p + 1, q). This
motivates the next definition.
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3.2. Differential forms

Definition 3.2.1 Let ω be a form of type (p, q) on a complex manifold X. We define
∂ω to be the component of type (p + 1, q) and ∂ω to be the component of type
(p, q+ 1) of dω.

In local coordinates z1, . . . , zn, the operators ∂ and ∂ act as

∂

(∑
α,β

aα,βdzα ∧ dzβ

)
=

n∑
j=1

∑
α,β

∂aα,β

∂zj
dzj ∧ dzα ∧ dzβ

∂

(∑
α,β

aα,βdzα ∧ dzβ

)
=

n∑
j=1

∑
α,β

∂aα,β

∂zj
dzj ∧ dzα ∧ dzβ.

In particular, since the differential of a function f is given by

df =

∞∑
j=1

(
∂f

∂zj
dzj +

∂f

∂zj
dzj

)
,

the operators ∂ and ∂ act on functions as

∂f =

n∑
j=1

∂f

∂zj
dzj and ∂f =

n∑
j=1

∂f

∂zj
dzj.

Thenext twopropositionsdescribe the essential properties of theseoperators.

Proposition 3.2.1 — Leibniz’ rule. Let ω and η be forms of type (p, q) and (p ′, q ′),
respectively. Then

∂(ω∧ η) = ∂ω∧ η+ (−1)pω∧ ∂η

∂(ω∧ η) = ∂ω∧ η+ (−1)pω∧ ∂η.

Proof. The first relation follows by taking the component of type (p+ p ′ + 1, q+ q ′)

of d(ω∧ η). The second follows from the first by noting that ∂ω = ∂ω.

Proposition 3.2.2 The operators ∂ and ∂ satisfy the following relations:

∂2 = 0, ∂
2
= 0, ∂∂+ ∂∂ = 0.

Proof. This follows from the fact that d2 = 0 and d = ∂+ ∂. Indeed, we have that

0 = d2 = (∂+ ∂)2 = ∂2 + ∂∂+ ∂∂+ ∂
2
.

Now, ifω is a form of type (p, q), then ∂2ω is of type (p+ 2, q), (∂∂+ ∂∂)ω is of type
(p+ 1, q+ 1), and ∂ω is of type (p, q+ 2). Ergo, d2ω = 0 implies that

∂2ω = 0, ∂
2
ω = 0, (∂∂+ ∂∂)ω = 0.

The result follows.
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3. Complex manifolds

There’s yet another natural sheaf of differential forms: the sheaf of holomorphic
sections of

∧p
T∨X, which we denote byΩpX. Since TX is naturally a subbundle of TCX,

we have thatΩpX is naturally a subsheaf ofΩp,0X . A formω of type (p, 0) is inΩpX if its
coefficients in local coordinates are holomorphic. That is, if ∂ω = 0.

3.3. Dolbeault cohomology
Just like the fact that d2 = 0 allows us to define the de Rham cohomology, the fact that
∂
2
= 0 implies that

im
{
∂ : Ωp,q−1X (X)→ Ωp,qX (X)

}
⊂ ker

{
∂ : Ωp,qX (X)→ Ωp,q+1X (X)

}
,

where we adopt the convention thatΩp,−1X (X) = 0. This motivates our next definition.
Definition 3.3.1 — Dolbeault cohomology. Let X be a complex manifold. TheDolbeault
cohomology groups (C-vector spaces, in fact) are defined as

Hp,q
∂

(X) :=
ker
{
∂ : Ωp,qX (X)→ Ωp,q+1X (X)

}
im
{
∂ : Ωp,q−1X (X)→ Ωp,qX (X)

} ,
where p, q > 0 are integers.

If f : X → Y is a holomorphic map between complex manifolds, the pullback of a
form of type (p, q) on Y is again a form of type (p, q) on X, since the components fk
of f on any chart are holomorphic and so f∗dzk = dfk is C-linear. In particular, the
equality df∗ω = f∗dω implies that

∂f∗ω = f∗∂ω and ∂f∗ω = f∗∂.

In particular, the pullback by a holomorphic function sends ∂-closed forms to ∂-
closed forms and ∂-exact forms to ∂-exact forms. It follows that f∗ induces a map in
cohomology:

f∗ : Hp,q
∂

(Y)→ Hp,q
∂

(X).

Just as in the real case, the Leibniz rule implies that the operation

Hp,q
∂

(X)×Hp
′,q ′

∂
(X)→ Hp+p

′,q+q ′

∂
(X)

([ω], [η]) 7→ [ω∧ η]

is well-defined (in other words, ω ∧ η is ∂-closed and its cohomology class is inde-
pendent of any choice of representatives). This defines a product on

H∗
∂
(X) :=

∞⊕
p,q=0

Hp,q
∂

(X),
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3.3. Dolbeault cohomology

which turns H∗
∂
(X) into a anticommutative graded algebra over C. Since f∗(ω∧ η) =

f∗ω∧ f∗η, we obtain a contravariant functor from the category of complex manifolds
to the category of anticommutative graded algebras over C.
Recall that the de Rham theorem says that ifM is a smooth manifold, the pairing

of differential forms and chains, via integration, gives an isomorphism HkdR(M) →
Hk(M,R) between the de Rham cohomology group and the singular cohomology
group. In a similar fashion, the de Rham cohomology group HkdR(M) is isomorphic
to the Čech cohomology group Ȟk(M,R) with values on the constant presheaf R.
(Proposition 10.6 in [?].)

An analogous result has not the least possibility to exist in the context of this chapter
as the Dolbeault cohomology groups generally depend upon not just the topological
data, but upon the complex structure of the manifold as well. Nevertheless, we
shall see that the Dolbeault cohomology group Hp,q

∂
(X) is isomorphic to the Čech

cohomology of the sheaf of holomorphic p-forms Ȟq(X,ΩpX).
For that we need a result analogous to the Poincaré lemma.

Proposition 3.3.1 — Dolbeault-Grothendieck lemma. Let D ⊂ Cn be the unitary poly-
disk and U a neighborhood of D. If ω ∈ Ωp,qCn (U), with q > 0, satisfies ∂ω = 0,
then there exists η ∈ Ωp,q−1Cn (D) such that ∂η = ω on D.

Proof. First, we’ll show that the case p = 0 implies the general one: indeed, we can
write ω =

∑
αωα ∧ dzα where ωα ∈ Ω0,q(U), and since ∂ω = 0, a simple bidegree

analysis yields ∂ωα = 0; so if the lemma is proven for p = 0 we can write ωα = ∂ηα
in D and therefore

ω =
∑
α

ωα ∧ dzα =
∑
α

∂ηα ∧ dzα = ∂

(∑
α

ηα ∧ dzα

)
is ∂-exact.
Now, let k be the greatest index dzk which appears on the decomposition ofω, that

is, we write
ω = dzk ∧ α+ β,

whereα andβ involve onlydzjwith j < k. Ifwe can integrateωmodulodz1, . . . , dzk−1,
that is, find η such that ω − ∂η is a (necessarily closed) form involving only the
differentials dzj in the first k − 1 variables, then the result follows by induction (the
case k = 0 being trivial, since q > 0 implies thatω = 0).
So we write

α =
∑
k∈β

aβdzβ\{k}

(where we are summing only over indices β which include k, and β \ k stands for β
with the index k removed) and notice that, because ∂ω = 0we have dzk∧ ∂α = −∂β.
Doing some bidegree analysis, we must have aβ holomorphic on zl for l > k.
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3. Complex manifolds

Now, we need some analytical arguments: multiplying by an appropriate bump
function we can suppose that each aβ has compact support contained inU (while not
changing their values on D), so we can apply lemma 2.4.2 for n = 1, that is, we can
find a smooth functions uβ that satisfy

∂uβ

∂zk
= aβ.

We note that, as a corollary of the proof of lemma 2.4.2, that each uβ will also be
holomorphic on zj for j > k (by differentiation at an integral sign, since each aβ is).
Now we define η =

∑
k∈β uβdzβ\{k} and note that

∂η = dzk ∧ α+
∑
β,l>k

∂uβ

∂zl︸︷︷︸
=0

dzl ∧ dzβ\{k} + δ (in D),

where δ only involves dzj for j < k, finishing the proof.

Corollary 3.3.2 Let X be a complex manifold. Then the sequence of sheaves

0→ ΩpX → Ωp,0X
∂−→ Ωp,1X

∂−→ . . .

is exact.

Proof. From the fact that exactness of a sequence of sheaves is a local property, in
view of the lemma of Dolbeaut-Grothendieck, it follows that this sequence is exact
from the termΩp,1X onward, andwemust only compute the kernel of ∂ : Ωp,0X → Ωp,1X .
But a simple bidegree analysis yields that all coefficients of a ∂-closed form involving
only dzj must be holomorphic.

Notice that this entails ΩpX(X) = H
p,0

∂
(X), connecting holomorphic forms and Dol-

beaut cohomology. This is the reason we choose ∂ in its definition: this way we can
properly extract information about the complex structure of our manifold.

Corollary 3.3.3 Let D be a polydisk on Cn (not necessarily with compact closure).
Then Hp,q(D) = 0 for q > 0.

Proof. Let ω be a ∂-closed form of type (p, q), q > 0. We can write D as a union
of concentric disks Dn where each of those are compactly contained in the next, that
is, Dn ⊂ Dn+1. Applying Dolbeaut-Grothendieck’s lemma to each Dn relative to
Dn+1 and multiplying by an appropriate bump function this gives us a sequence
ηn ∈ Ωp,q(D) such that ∂ηn|Dn = ϕ|Dn.

If ηn converges uniformly on compact sets to a form η, then we are done, since any
such limit ψ satisfies the equation ∂η = ω. We must show that we can find some
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3.3. Dolbeault cohomology

η̃n with this property, each cohomologous to the respective ηn. We’ll proceed by
induction on q (followed by an induction on n to construct η̃n):

For q = 1, ηn = ψn are, in fact, smooth functions and by hypothesis ψn+1 − ψn is
holomorphic on Dn. Let ψ̃0 = ψ0, and suppose that we have constructed ψ̃0, . . . , ψ̃n
with

sup
Dk−1

|ψ̃k+1 − ψ̃k| <
1

2k

for all appropriate k. Then, since ψn+1 − ψ̃n is holomorphic on Dn, its power series
expansion converging uniformily on Dn−1, we can find a polynomial pn+1 (which is
holomorphic on D!) such that

sup
Dn−1

|ψ̃n+1 − ψ̃n − pn+1| <
1

2n

and then ψ̃n+1 = ψn+1 − pn+1 will do.
Suppose the claim is true for q > 1, then we can do even better: we can find such

sequence η̃n that is eventually constant on compact subsets. Indeed, suppose we have
found such η̃n: then ηn+1 − η̃n is a closed form on Dn, so, by induction hypothesis,
since q− 1 > 0, we have

η̃n|Dn − ηn+1|Dn = ∂α|Dn, (α ∈ Ωp,q−2(D)),

and therefore we can choose η̃n+1 = ηn+1 + ∂α, which is cohomologous to ηn+1 and
equals to η̃n on Dn.

Theorem 3.3.4 — Dolbeault. Let X be a complex manifold. Then

Hp,q
∂

(X) ∼= Ȟq(X,Ω
p
X)

for all p, q > 0.

Proof. It all comes down to seeing that the sequence in corollary 3.3.2 is an acyclic
resolution forΩpX, for then sheaf cohomology yields

Hq(X,Ωp) = Hq(Ωp,•(X)) = Hp,q(X).

A simple corollary of this result is the fact that Ȟq(X,ΩpX) vanishes for sufficiently
big q.

35



3. Complex manifolds

Corollary 3.3.5 Let X be a complex manifold of dimension n. Then

Ȟq(X,ΩpX) = 0

for all p > 0 and q > n.

3.4. Currents

In order to understand better the relations between the de Rham and the singular
cohomologies, Georges de Rham developed in 1955 the formalism of currents, which
puts differential forms and chains in the same footing. This is the subject of this
section. For the sake of generality, we’ll deal with smooth manifolds and comment on
the specificities of the complex world.

LetM be a smooth oriented manifold of dimension n and U an open set ofM. We
denote by Dk(U) the R-vector space composed by the forms in ΩkM with compact
support on U. This space is endowed with a locally convex topology on which a
sequence (ωj) converges toω if

1. there exists a compact set K ⊂ U such that suppωj ⊂ K for all j;

2. for every chart V → Rn the derivatives of all orders of the component functions
ofωj converge to those ofω uniformly on every compact of V .

The reader should ponder the resemblance of this definition with that of the topol-
ogy of C∞c (Rn) in distribution theory. In fact, both notions coincide when k = 0.
Definition 3.4.1 — Current. The space of currents of dimension k onM is the topological
dual of Dk(M). We denote it by D ′k(M). We say that an element of this space has
degree n − k. The support of a current T ∈ D ′k(M) is the largest open set U ⊂ M
such that T(ω) = 0 whenever ω ∈ Dk(U). The subspace of all the currents with
compact support is denoted by E ′k(M).

The terminology used for the dimension and degree of a current is justified by the
following two fundamental examples.

� Example 3.4.1 Let η is a differential form of degree kwith L1loc coefficients. Associated
with η there is a current Tη ∈ D ′n−k(M) defined by

Tη(ω) :=

∫
M

η∧ω, forω ∈ Dn−k(M).

The current Tη evidently has degree k. The correspondence η 7→ Tη is injective, so will
identify ηwith its image in D ′n−k. �
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3.4. Currents

� Example 3.4.2 Let Γ be a piecewise smooth, oriented k-chain inM. Then Γ defines a
current TΓ ∈ D ′k(M) by

TΓ (ω) :=

∫
Γ

ω, forω ∈ Dk(M).

Similarly, a closed oriented submanifold Z ⊂ M of dimension k defines a current TZ
of dimension k with supp TZ = Z. �

When X is a complex manifold and U ⊂ X is an open set, we define similarly
Dp,q(U) (resp. Dk(U)) to be the C-locally convex space composed by the forms in
Ωp,qX (U) (resp. ΩkX,C(U)) with compact support on U and D ′p,q(U) (resp. D ′k(U)) to
be its topological dual. By duality we have that

D ′k(U) =
⊕
p+q=k

D ′p,q(U).

Many of the operations available for differential forms can be extended to currents.
We now describe a couple of them. We’ll leave to the reader the task of verifying that
they actually are continuous forms.
Definition 3.4.2 — Exterior derivative. Let T ∈ D ′k(M). Its exterior derivative dT ∈
D ′k−1(M) is defined by dT(ω) := (−1)k+1T(dω).

One can motivate this definition by noting that the Stokes’ theorem implies that

Tdη(ω) =

∫
M

dη∧ω =

∫
M

d(η∧ω)︸ ︷︷ ︸
=0

+(−1)k+1
∫
M

η∧ dω = (−1)k+1Tη(dω)

for all η ∈ Dk(M). In other words, dTη = Tdη. Similarly, the Stokes’ theorem says
precisely that TΓ (dω) = T∂Γ (ω) so that dTΓ = (−1)k+1T∂Γ . In the complex case
we define analogously the operators ∂ : D ′p,q(X) → D ′p−1,q(X) and ∂ : D ′p,q(X) →
D ′p,q−1(X).
Definition 3.4.3 — Wedge product. Let T ∈ D ′k(M) and η ∈ ΩrM be a differential
form with compact support. The wedge product T ∧ η ∈ D ′k−r(M) is defined by
(T ∧ η)(ω) := T(η∧ω).

Using Leibniz’ rule we readily verify that d(T ∧ η) = dT ∧ η + (−1)n−kT ∧ dη.
Moreover supp(T ∧ η) ⊂ (supp T) ∩ (suppη).
Let f :M→ N be a smooth map between oriented manifolds. We may wish to use

the pull-back morphism to define the direct image of a current T by f. The problem
is that even if ω ∈ ΩkN has compact support, there is no reason for f∗ω ∈ ΩkM to
have. Since supp f∗ω ⊂ f−1(suppω), this construction becomes well defined if the
restriction of f to supp T is proper. We summarize this discussion in the following
definition.

37



3. Complex manifolds

Definition 3.4.4 — Direct image. Let T ∈ D ′k(M) be a current and f :M→ N be a map
between oriented manifolds such that its restriction to supp T is proper. The direct
image f∗T ∈ D ′k(N) of T by f is defined by f∗T(ω) := T(f∗ω).

Under the conditions of this definition, it is clear that supp f∗T ⊂ f(supp T) and
d(f∗T) = f∗(dT). Furthermore, if η is a differential form with compact support on N
and g : N → P is a smooth map such that the restriction of g ◦ f to supp T is proper,
we have that f∗(T ∧ f∗η) = (f∗T)∧ η and g∗(f∗T) = (g ◦ f)∗T .
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