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1 Motivation

Let C be a complete category and I be a small category. The sole reasonable notion of
a limit functor is a functor lim : Fun(I,C) → C, whose value at an object F is lim F. Of
course, in order to define a functor it does not suffice to associate an isomorphism class
of objects in the codomain to each object in the domain. In particular, this limit functor
is not canonically defined; it requires an arbitrary choice of a limit for F : I→ C.

Now, suppose that we have made all the choices above. If α : F → G is a natural
transformation between functors I→ C, what’s the induced morphism lim F→ limG in
C?

By the very definition of limit, we have maps lim F→ F(X) for all X ∈ I, and we have
morphisms αX : F(X)→ G(X). Since both maps are natural with respect to maps on I,
we obtain morphisms lim F→ G(X) such that, for all morphisms X→ Y in I, the diagram

lim F

G(X) G(Y)

commutes. In other words, we have a cone on G. The universal property of limG then
induces our desired map lim F→ limG, proving that lim is indeed a functor.

In this case, we were lucky to have a universal property which allowed us to prove
that lim is a functor. In other contexts, given two categories C and D, we may know how
to associate an object of D to each object of C, but its construction may be so inexplicit
that we cannot simply prove that this yields a functor.

This happens in the very foundations of homological algebra. If A is a Grothendieck
abelian category, we have K-injective resolutions for objects of D(A). That is, to each
object M• in D(A) we may associate a K-injective complex i(M•) in K(A). But is this a
functor i : D(A)→ Kinj(A)?

Of course we have the same problem as before; we don’t really have a construction of
i(M•). We know that there exists such an object. We know that it’s unique up to unique

1



isomorphism. But we don’t have an explicit representant. This can be solved by the
axiom of choice.

But now we have a harder problem! Even if we choose some i(M•) for each M•,
it’s not clear that we can make functorial choices. That is, we must also choose a
morphism i(M•)→ i(N•) for every morphism M• → N• in a way compatible with the
compositions.

We remark that this is a serious problem! Indeed, if F : A→ B is an additive functor
between abelian categories, our functor i above is part of the construction of the derived
functor RF:

D(A) Kinj(A) K(B) D(B).
i F Q

RF

(Just to be clear, here K(A) is the homotopy category of A, Kinj(A) is the full subcategory
composed of the K-injective complexes, F : Kinj(A)→ K(B) is the induced functor acting
degree by degree, and Q : K(B)→ D(B) is the localization functor.)

2 The solution

The goal of these notes is to show that there’s an elegant way of getting around both of
these problems.

Definition 2.1 Let G : D → C be a functor. Given objects N in C and M in D, and a
morphism η : N→ G(M) in C, we say that η witnesses M as a left-adjoint object to N

under G if the composite HomD(M,−)
G−→ HomC(G(M), G(−))

η∗
−→ HomC(N,G(−))

is a natural isomorphism of functors D→ Set.

We recall that in order to check if a natural transformation is an isomorphism, it suffices
to check it on objects. Also, we clearly have a natural dual notion for right-adjoints.

A surprisingly not-so-well-known consequence of the Yoneda lemma is the proposition
below.

Proposition 2.1 A functor G : D→ C admits a left-adjoint if and only if every N in C

has a left-adjoint object under G.

Proof. If F : C → D is a left-adjoint of G, then it suffices to take F(N) as a left-adjoint
object to N witnessed by the unit. As for the converse, recall that the Yoneda lemma says
that the natural functor

よ : Dop → Fun(D, Set)

gives an equivalence of categories between Dop and the full subcategory of Fun(D, Set)
composed of the representable functors. Now, the functor

HomC(−, G(−)) : Cop × D→ Set
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gives rise via currying to a functor H : Cop → Fun(D, Set), whose image is composed of
representable functors. Indeed, if N ∈ C we may let M be a left-adjoint object of N under
G and then

H(N) = HomC(N,G(−)) ∼= HomD(M,−).

In particular, we may compose it with the inverse of the Yoneda embedding to obtain a
functor Cop → Dop and so a functor F : C→ D.

By construction,よ ◦ Fop ∼= H as functors Cop → Fun(D, Set). By currying, this
equivalence means precisely that HomD(F

op(−),−) ∼= HomC(−, G(−)) as functors Cop ×
D→ Set.

•

Now, let’s see how this solves our problems. I affirm that in both examples, the desired
functors can be defined as adjoints.

Let ∆ : C→ Fun(I,C) be the diagonal functor, which sends an object X of C to the functor
I→ C which sends every object of I to X and every morphism of I to idX. For X ∈ C and
F ∈ Fun(I,C), the elements of the set

HomFun(I,C)(F, ∆(X))

are precisely the cocones over F with nadir X. It follows that a left-adjoint object to F

under ∆ is precisely the same as a colimit of F. In particular, our proposition implies
that if C has all I-colimits, then we have a colimit functor colim : Fun(I,C) → C. (And
similarly for limits, of course!)

For the homological algebra part, we have to recall a couple of facts. Let A be an
abelian category. A complex I• in A is said to be K-injective if the map (induced by the
localization functor)

HomK(A)(−, I•)→ HomD(A)(−, I•)

is a natural isomorphism of functors K(A)op → Set. We’ll need a different way to
characterize K-injective complexes.

Lemma 2.2 A complex I• ∈ K(A) is K-injective if and only if HomK(A)(N
•, I•) = 0 for

all exact complexes N•.

Proof. A K-injective complex I• ∈ K(A) certainly hasHomK(A)(N
•, I•) ∼= HomD(A)(N

•, I•)

equal to zero for all exact complexes N•. Now, suppose that this condition is satisfied.
The universal property of the quotient implies that HomK(A)(−, I•) : K(A)op → Set
descends to a functor D(A)op → Set, which we denote by the same name. We have a
natural transformation

HomK(A)(−, I•)→ HomD(A)(−, I•),
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and the Yoneda lemma says that natural transformations in the other direction coincide
with elements of HomK(A)(I

•, I•). Finally, the identity on I• induces an inverse to the
natural transformation above.

A K-injective resolution of a complex M• in A is an isomorphism M• → I• in D(A),
where I• is K-injective. Finally, the K-injective complexes form a thick subcategory of
K(A), which we denote by Kinj(A).

Proposition 2.3 Let M• ∈ K(A). The following are equivalent.

1. M• has a K-injective resolution.

2. M• has a right-adjoint object under the quotient functor Q : K(A)→ D(A).

Proof. Suppose that M• ∈ K(A) has a K-injective resolution M• → i(M•). Then, we
have the following isomorphisms

HomD(A)(−,M•)
∼−→ HomD(A)(−, i(M•))

∼←− HomK(A)(−, i(M•)),

where the first arrow is induced from the quasi-isomorphism M• → i(M•) and the
second is from the definition of K-injective. This means that i(M•) is a right-adjoint
object to M• under Q. (Witnessed by the inverse of M• → i(M•) in D(A).)

Conversely, suppose that M• has a right-adjoint object I• under Q, witnessed by a
map ε : I• →M• in D(A). By supposition we know that the composition

HomK(A)(−, I•)
Q−→ HomD(A)(−, I•)

ε∗−→ HomD(A)(−,M•)

is a natural isomorphism. We need to show that actually both arrows above are
isomorphisms. Indeed, the one on the left encodes the fact that I• is K-injective and
the one on the right encodes the fact that ε is an isomorphism in D(A). Now, our
isomorphism implies that

HomK(A)(N
•, I•) ∼= HomD(A)(N

•,M•) = 0

whenever N• is exact. The previous lemma then implies that I• is K-injective and so both
arrows above are isomorphisms.

Combining both propositions, we conclude that if every complex M• has a K-injective
resolution M→ i(M•), then we obtain a functor i : D(A)→ K(A), which is a right adjoint
to the quotient functor Q : K(A)→ D(A), and which takes values in Kinj(A).

Since the counit of the adjunction is an isomorphism, the general theory of reflective
localizations [HK, Proposition 1.1.3] imply that i restricts to an isomorphism D(A) ∼−→
Kinj(A).
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