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Introduction by the Organisers

The workshop Differentialgeometrie im Großen was held June 29- July 3, 2015.
The participants were specialists in differential geometry and its neighboring fields,
covering a broad spectrum of subareas which are in the focus of current develop-
ments.

The lectures during the five days of the meeting were roughly organized accord-
ing to different thematic themes.

The first day of the meeting, was devoted to differential geometric aspects of
Kähler geometry and special holonomy.

The talks of the second day centered around the interplay between differential
geometry and geometric analysis, in particular new developments concerning the
Ricci flow and geometric measure theory.

On Wednesday (with only three lecture due to the traditional hike), metrics of
non-negative curvature were discussed.

The morning lectures of the last two days were mainly devoted to metric geom-
etry and geometric representations of groups. On Thursday afternoon, four young
people gave short talks.
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The meeting gave a good overview of the current developments, and showed
significant progress in the field. The workshop was attended by researchers from
around the world, ranging from graduate students to scientific leaders in their
areas.

The atmosphere during the meeting was lively and open, and greatly benefited
from the ideal environment at Oberwolfach.

Acknowledgement: The MFO and the workshop organizers would like to thank
the National Science Foundation for supporting the participation of junior re-
searchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach
Fellows”.
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Abstracts

Desingularisation of Einstein manifolds

Olivier Biquard

I describe a work contained in the articles [2] and [3]. The first article is about a
new obstruction to desingularizing Einstein orbifolds with singularity of the type
C2/Z2. The second article is on more precise information on the desingulariza-
tion in the setting of asymptotically hyperbolic manifolds and on a ‘wall crossing
formula’ arising in that case.

In this report I focus on the second part, since the first part was already de-
scribed in the Oberwolfach report [1].

The setting is the following. Let M4 be a compact 4-manifold with boundary
X3. Let x be a defining function of X . Then a Riemannian metric g on M is said
to be asymptotically hyperbolic (AH) if near X it has the behaviour

g ∼ dx2 + γ

x2
,

where γ is a metric on X . Actually, only the conformal class of γ is well defined
and is called the conformal infinity of g.

Dirichlet problem for asymptotically hyperbolic metrics. Given a confor-
mal class [γ], find an AH metric g on X such that in addition g is Einstein:

Ric(g) = −3g.

This problem, or at least its local version near X , originates to Fefferman-
Graham in the 80’s as a part of their program to study of conformal metrics.

Now suppose that M contains a 2-sphere of self-intersection −2, and let M0 be
the orbifold obtained from M by contracting the sphere to a point. The resulting
point p0 is an orbifold point, with a singularity of type C2/Z2. Suppose that
(M0, g0) is an AH Einstein orbifold metric with conformal infinity [γ0] on X =
∂M0 = ∂M . If g0 is nondegenerate (meaning that the L2-kernel of the linearization
of the Einstein equation vanishes at g0), then for any nearby γ on X , one can find
an orbifold AH Einstein metric g0(γ) which is a solution of the Dirichlet problem
on M0 with conformal infinity [γ].

It was shown in [2] that g0 can be desingularized by a family of AH Einstein
metrics on M if g0 satisfies a curvature condition at the point p0, namely

detRg0
+ (p0) = 0,

where Rg0
+ is the part of the curvature operator acting on selfdual 2-forms (recall

that the curvature operator is a symmetric endomorphism of the 2-forms). The
desingularized metrics have a varying conformal infinity, and the main result I want
to explain is that there is a constraint on which conformal infinities are possible.

Let C be the space of conformal metrics on X , and

C0 = {[γ] ∈ C, detR
g0(γ)
+ (p0) = 0}.
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So C0 is the space of conformal infinities such that the corresponding Einstein
metric can be desingularized. Of course this makes sense only in a neighbourhood
of [γ0].

Theorem. Suppose g0 is generic in the sense that rkRg0
+ (p0) = 2 (the maximal

possible rank for a non invertible endomorphism of the selfdual 2-forms). Then C0

is a smooth hypersurface of C at [γ0], and all the desingularizations of the Einstein
metrics g0(γ) for [γ] ∈ C0 have their conformal infinity on the side of C0 given by

detR
g0(γ)
+ > 0.

This result fits well with the known example of the 4-ball modulo Z2, where
the orbifold hyperbolic metric has detR+(p0) < 0 and its conformal infinity (the
round metric on S3/Z2) is probably never the conformal infinity of an AH Einstein
metric.

More generally, the result can be interpreted as a wall crossing formula for a
conjectural degree proposed by Anderson to count the number of solutions to the
Dirichlet problem. The number of solutions increases by 1 when one passes from

the side detR
g0(γ)
+ < 0 to the side detR

g0(γ)
+ > 0.
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A special Lagrangian type equation for line bundles

Adam Jacob

(joint work with Shing-Tung Yau)

In this talk I will introduce the deformed Hermitian-Yang-Mills equation, which
was considered in the physics literature [3] and later described by Leung-Yau-
Zaslow in a more geometric setting [2]. First, consider a holomorphic line bundle L
over a Calabi-Yau manifold X of complex dimension n. The deformed Hermitian-
Yang-Mills equation seeks a metric h on L so that the form (ω−F )n has constant
argument. Here ω is the Kähler form and F is the curvature of the metric h. For
example, if X is a Calabi-Yau three-fold, the equation can be written as

ω2

2
∧ iF − (iF )3

6
= tanθ̂

(
ω3

6
− ω ∧ (iF )2

2

)
,

where θ̂ is a fixed angle which is independent of the metric h. For an alternate
formulation, working in coordinates where F is diagonal with respect to ω with
eigenvalues λi, the deformed Hermitian-Yang-Mills equation takes the form

(1)
∑

i

arctan(λi) = θ̂.
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When a solution exists, it defines a special Lagrangian section of the torus fibration
in the mirror manifold, given the semiflat setup from SYZ mirror symmetry (here

θ̂ is the analogue of the phase of the Lagrangian).
Our first main observation is that this equation makes sense on any compact

Kähler manifold, and we are interested in working in this general setting. As a
result, we are motivated by mirror symmetry, but never apply it directly, since
when the base is not Calabi-Yau, there is no meaningful notion of a mirror special
Lagrangian. We have the following natural conjecture:

Conjecture 1. Let L be a holomorphic line bundle over a compact Kähler mani-
fold X. Then there exists a solution to equation (1) if and only if for all irreducible
holomorphic subvarieties V ⊂ X, the following inequality holds

(2) Arg

(
−
ˆ

V

e−iωch(L)

)
> −Arg

(
ˆ

X

e−iωch(L)

)
.

Note that the above integrals are independent of a choice of metric on L, and as
a result (2) can be viewed as a geometric stability type condition. Along with S.-T.
Yau, in [1] we verified this conjecture in the case that X is a Kähler surface by
transforming equation (1) into a complex Monge-Ampère equation. Unfortunately
this method does not seem to generalize easily to higher dimensions.

To study existence in higher dimensions, we define a parabolic evolution equa-
tion which corresponds to Lagrangian mean curvature flow on the mirror side. We
show all metrics which solve (1) minimize a positive functional, for which our flow
is the gradient flow, and prove the following convergence result:

Theorem 1 (Jacob-Yau [1]). Let L be an ample line bundle over a compact Kähler
manifold X with non-negative orthogonal bisectional curvature. There exists a
natural number k so that L⊗k admits a solution to (1). Furthermore, this solution
is given by a smoothly converging family of metrics along the flow.

Currently, along with T.C. Collins, we are working on removing the condition
restricting the curvature of X and proving convergence under assumptions more
closely related to (2). However, the ampleness assumption is more central to our
argument, since it ensures concavity of the operator. We have a final regularity
result:

Theorem 2 (Jacob-Yau [1]). If the first derivative of the curvature |∇F | is uni-
formly bounded in C0, then the flow exists for all time and converges to a solution
of (1).

Extending the analogy to mean curvature flow, ∇F plays the role of the second
fundamental form. The above result shows this term either blows up, developing
a singularity, or the flow converges.
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New G2 holonomy cones and exotic nearly Kähler structures on the
6-sphere and on the product of two 3-spheres

Mark Haskins

(joint work with Lorenzo Foscolo)

The main focus of this talk is recent work constructing new nearly Kähler struc-
tures on both S6 and on S3 × S3. Our nearly Kähler structures provide the first
known complete inhomogeneous nearly Kähler structures in dimension 6 and re-
solve a longstanding open question in almost-Hermitian geometry. These new
nearly Kähler structures give rise to novel Einstein metrics of positive scalar cur-
vature on S6 and S3 ×S3. Our motivation for studying nearly Kähler 6-manifolds
comes from the study of singular spaces with G2-holonomy; the cone over a nearly
Kähler 6-manifold is a cone with holonomy group G2. Such G2-holonomy cones
provide the local models for the simplest isolated singularities of G2-holonomy
spaces.

The examples we construct are of cohomogeneity one. The proof of existence
of our examples also uses insights gained from considering singular nearly Kähler
6-dimensional spaces (sine cone and attempting to desingularise such spaces to
obtain smooth nearly Kähler spaces).

Gauduchon metrics with prescribed volume form

Ben Weinkove

(joint work with Gabor Székelyhidi, Valentino Tosatti)

Let M be a compact complex manifold of complex dimension n. A Hermitian
metric g = (gij̄) is Kähler if the associated (1, 1) form ω =

√
−1gij̄dz

i ∧ dz̄j is
d-closed. Kähler manifolds include all smooth projective varieties.

Not all complex manifolds admit a Kähler metric. For example, the Hopf man-
ifold

M = Cn \ {0}/ ∼, (z1, . . . , zn) ∼ (αz1, . . . , αzn),

for a fixed α ∈ C with |α| 6= 0, 1 is a compact complex manifold diffeomorphic to
S2n−1 × S1. It cannot admit a Kähler metric since H2(M ;R) = 0.
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On the other hand, Gauduchon [4] showed that if (M,ω0) is a compact Hermit-
ian manifold then there exists a smooth function f , unique up to the addition of
a constant, so that ω = efω0 satisfies the condition

∂∂̄(ωn−1) = 0.

Such a metric ω is called Gauduchon. Hence every compact complex manifold
admits many Gauduchon metrics.

in 1976, Yau [12] proved the Calabi conjecture, which states that the volume
form of a Kähler metric can be prescribed. Namely:

Theorem 1 (Yau [12]). Let (M,ω) be a compact Kähler manifold. Let F ∈
C∞(M) be given, and assume

´

M
eFωn =

´

M
ωn. Then there exists a unique

Kähler metric ω̃ with [ω̃] = [ω] ∈ H1,1(M ;R) such that

ω̃n = eFωn.

There is an equivalent version of Yau’s theorem, stated in terms of the first
Chern class c1(M) of the manifold M . We recall the definition

c1(M) := [Ric(ω)] ∈ H1,1(M ;R), Ric(ω) := −
√
−1∂∂̄ log det g,

where we ignore the usual factor of 2π. Yau’s Theorem can then be restated as
follows. Given any representative Ψ of c1(M) there exists a unique Kähler metric
ω̃ with [ω̃] = [ω] satisfying

Ric(ω̃) = Ψ.

To see this equivalence, note that given Ψ ∈ c1(M), we can define F by

Ψ = Ric(ω)−
√
−1∂∂̄F = −

√
−1∂∂̄ log(eF det g),

ˆ

M

eFωn =

ˆ

M

ωn,

and then the result follows by solving ω̃n = eFωn. The converse direction is
similar.

Notice that an immediate consequence of Yau’s Theorem is that every compact
Kähler manifold M with c1(M) = 0 admits a Ricci-flat Kähler metric in every
Kähler class.

In 1984 Gauduchon [5] conjectured that there is a version of Yau’s theorem for
Gauduchon metrics.

Conjecture 1 (Gauduchon [5]). Let (M,ω) be a compact Gauduchon manifold.
Given Ψ ∈ cBC

1 (M), there exists ω̃ Gauduchon with

Ric(ω̃) = Ψ.

Here, cBC
1 (M) := [Ric(ω)] ∈ H1,1

BC(M ;R), where

H1,1
BC(M ;R) :=

{d-closed real (1, 1) forms}
{Im

√
−1∂∂̄}

and Ric(ω) := −
√
−1∂∂̄ log det g is the Chern-Ricci form of the metric g.

We remark that, by the same argument as above, this is equivalent to prescribing
the volume form of a Gauduchon metric, up to a scaling. Note that there is no
uniqueness statement given in the conjecture.
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Our main result is as follows:

Theorem 2 (Székelyhidi-Tosatti-Weinkove [8]). Let (M,ω) be a compact Gaudu-
chon manifold. Given Ψ ∈ cBC

1 (M) there exists ω̃ Gauduchon with ω̃n−1−ωn−1 =
∂γ + ∂γ for some (n− 2, n− 1) form γ, such that

Ric(ω̃) = Ψ.

In particular, this establishes the conjecture of Gauduchon. We make a few
remarks:

(1) The statement that ω̃n−1 − ωn−1 = ∂γ + ∂γ is equivalent to saying that

[ω̃n−1] = [ωn−1] in the Aeppli cohomology group Hn−1,n−1
A (M ;R).

(2) We have the following precise statement about prescribing volume forms
of Gauduchon metrics: given F ∈ C∞(M) there exists ω̃ Gauduchon with
[ω̃n−1] = [ωn−1] in Aeppli cohomology, and b ∈ R such that ω̃n = eF+bωn.

(3) In n = 2 this result follows from solving the complex Monge-Ampère equa-
tion (ω +

√
−1∂∂̄u)n = eFωn which was already carried out by Cherrier

[1] (see [9] for this equation with n > 2). Note that when n > 2, ω being
Gauduchon does not imply in general that ω+

√
−1∂∂̄u > 0 is Gauduchon,

and so one has to consider a different equation.
(4) A consequence of our result is that cBC

1 (M) = 0 if and only if M admits a
Gauduchon metric with vanishing Chern-Ricci form.

To prove this theorem, we solve a certain equation of Monge-Ampère type,
which we now describe. First note the simple fact that, at each fixed point, the
map

ω 7→ ωn−1,

from positive definite (1, 1) forms to positive definite (n − 1, n − 1) forms is a
bijection. We have the following:

Theorem 3 (Székelyhidi-Tosatti-Weinkove [8]). Let (M,ω) be a compact Gaudu-
chon manifold. Given F ∈ C∞(M) there exists a unique pair (u, b) where u ∈
C∞(M) and b ∈ R such that if we define ω̃ by

ω̃n−1 := ωn−1 +
√
−1∂∂̄u ∧ ωn−2 +Re(

√
−1∂u ∧ ∂̄ωn−2) > 0

then
ω̃n = eF+bωn.

Note that we can write this equation as

(∗) det(ωn−1+
√
−1∂∂̄u∧ωn−2+Re(

√
−1∂u∧ ∂̄ωn−2)) = e(n−1)(F+b) det(ωn−1),

where the determinant of an (n− 1, n− 1) form is defined by applying the Hodge
star operator in the obvious way.

To see that Theorem 3 implies Theorem 2 note that ω̃n−1 from Theorem 3
satisfies

∂∂̄ω̃n−1 = 0

and hence ω̃ is indeed Gauduchon. Moreover, note that ω̃n−1 − ωn−1 = ∂γ + ∂γ

for γ =
√
−1
2 ∂̄u ∧ ωn−2.
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We make a few remarks about Theorem 3. In the case when ω is Kähler, the
equation (∗) becomes

(†) det(ωn−1 +
√
−1∂∂̄u ∧ ωn−2) = e(n−1)(F+b) det(ωn−1),

which was introduced by Fu-Wang-Wu [2], who solved it if ω is Kähler with non-
negative orthogonal bisectional curvature [3]. In [10, 11], equation (†) was solved
more generally for any ω Hermitian. Note that the equation (†) can be regarded as
the Monge-Ampère equation for (n− 1)-plurisubharmonic functions, in the sense
of Harvey-Lawson [6].

Equation (∗) was introduced by Popovici (and slightly later, independently, in
[11]). In [11] it was shown that the existence of a solution to (∗) can be reduced
to an a priori second order estimate of the form

∆u ≤ C(1 + sup
M

|∇u|2),

and this is precisely the estimate that we establish in [8].
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Ricci-flat metrics on Ak singularities

Hans-Joachim Hein

(joint work with Aaron Naber)

1. Introduction

This is a talk about singularities of Kähler-Einstein metrics.

• Unlike in the general Riemannian case, we know how to define and con-
struct weak solutions to the Einstein equations for Kähler metrics. The
idea is to work at the level of Kähler potentials, solving the complex
Monge-Ampère equation in a suitable class of rough Kähler potentials
such as L∞ ∩ PSH.

• The price to pay is that we know almost nothing about the metric behav-
ior of the distance function distg associated with the Riemannian metric
g(·, ·) = ω(·, J ·), where ω = i∂∂̄φ with φ ∈ L∞ ∩PSH is our weak Kähler-
Einstein form.

In this project, which has been in progress since 2012, we were able to resolve
this tension in one particular basic example, exhibiting a new phenomenon.

2. The A1 singularity in Cn+1 This is the singular complex hypersurface cut

out by z20 + z21 + · · · + z2n = 0 in Cn+1. Topologically A1 is a cone with link
L = A1 ∩ S2n+1 = SO(n + 1)/SO(n − 1). Notice that L is a smooth manifold,
diffeomorphic to RP 3 if n = 2 and to S2 × S3 if n = 3. It is a classical fact that
this picture can be metrized in a canonical way: A1 admits a Ricci-flat Kähler
cone metric ω = i

2∂∂̄r
2. Here r denotes the metric distance to the origin, and the

associated Riemannian metric g can be written as a warped product g = dr2⊕r2gL
for a certain homogeneous Einstein metric gL of positive scalar curvature on L.
(gL is the round metric on RP 3 if n = 2, but not a product of round metrics
on S2 × S3 if n = 3.) There is a simple formula for r: r = |z|(n−1)/n, where
|z| = (|z0|2 + · · ·+ |zn|2)1/2. See [8] for all of this.

3. The Ak singularity in Cn+1

Let us now destroy the SO(n + 1) symmetry of this example in a minimal way,

introducing the Ak singularity zk+1
0 + z21 + · · ·+ z2n = 0 in Cn+1. Topologically Ak

is still a cone over some smooth closed manifold, hence in particular has only one
isolated singular point. The easiest case, n = 2, gives some hope for a nice metric
picture: if n = 2, then Ak is biholomorphic to the quotient space C2/〈diag(ζ, ζ̄)〉,
where ζ denotes any primitive (k + 1)-st root of unity. On this space, we have an
obvious flat Kähler cone metric pushed down from C2 for every k. Unfortunately,
if n > 2, Ak is not isomorphic to a complex orbifold for any k, but we still have
an abstract existence theorem for singular Ricci-flat Kähler metrics on Ak.

The key underlying property of this existence theorem is that Ak is a so-called
“log-terminal” singularity. This is a fairly restrictive condition, and log-terminal
singularities have to some extent been classified in low dimensions. Here we only
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record one important feature: that there exists a holomorphic volume form Ω on
the regular locus Ak \ 0 such that

´

U
|Ω ∧ Ω̄| <∞, where U = Ak ∩ {|z| 6 1}.

With this understood, we can now state (a simplified version of) the existence
theorem mentioned above: there exists a potential φ ∈ L∞(U) ∩ C∞(U \ 0) such
that i∂∂̄φ > 0 and (i∂∂̄φ)n = |Ω ∧ Ω̄| in the sense of distributions on U . This
follows from the work of many authors; see [7] for the required local version. As
a consequence, the Riemannian metric g derived from the Kähler form ω = i∂∂̄φ
on U \ 0 is Ricci-flat of finite volume, hence [9] of finite diameter, and therefore
incomplete. However, we know nothing about the asymptotics of g near 0 ∈ U ; it
is not even clear whether the completion of (U \ 0, distg) is homeomorphic to U .
By contrast, the link ∂U = Ak ∩ {|z| = 1} is just a smooth boundary.

4. A nonexistence theorem

The story gets more interesting due to the following nonexistence theorem [4]:
there is no Ricci-flat Kähler cone metric on Ak if n > 3 and (∗) k + 1 > 2n−1

n−2 .

5 X × × ×
4 X ⊗ × ×
3 X ? ⊗ ×
2 X X X X

n, k 1 2 3 4

X : there is a Ricci-flat Kähler cone metric. × (⊗): there is no Ricci-flat Kähler
cone metric (and, in addition, (∗) is an equality). ?: left open in [4].

Remarks: (1) Strictly speaking, [4] assume that the Hopf vector field J(r∂r) of
the Ricci-flat Kähler cone structure lies in u(1)⊕ so(n), where U(1) acts on Cn+1

with weights (2, k + 1, . . . , k + 1) and SO(n) acts naturally on (z1, . . . , zn).
(2) Under the same additional assumption, it was proved in [2] that ? = ×. On

the other hand, motivated by our project, [5, 6] showed that ? = X and that this
new Ricci-flat Kähler cone metric on A2 ⊂ C4 is in fact U(1)× SO(3)-invariant.

5. Main result

Theorem (H-Naber). If the inequality (∗) is strict, then there exists a potential
φ ∈ C0,α(U) ∩C∞(U \ 0), invariant under U(1)× SO(n) and satisfying i∂∂̄φ > 0
and (i∂∂̄φ)n = |Ω ∧ Ω̄| in the sense of distributions on U , such that the Ricci-flat
metric g on U \ 0 derived from the Kähler form i∂∂̄φ has the following geometric
property: the completion of (U \ 0, distg) is homeomorphic to U , but the Gromov-
Hausdorff tangent cone of this completion at its only singular point is isometric to
C×A1. In particular, the tangent cone has a 2-plane of singularities.

To see the geometry of this situation, project Ak onto the z0-coordinate. This
yields a fibration of Ak over C (essentially a slicing by conic sections) whose fiber
over ǫ ∈ C is the variety z21 + · · ·+ z2n = −ǫk+1. For ǫ = 0 this is an A1 singularity
in one dimension less, and for ǫ 6= 0, a smooth algebraic manifold diffeomorphic
to T ∗Sn−1. The zero sections of these copies of T ∗Sn−1 in Ak give us a family of
(n− 1)-spheres in Ak, parametrized by ǫ ∈ C∗, collapsing to a point as ǫ→ 0.
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If the inequality (∗) is strict, then the diameters of these (n − 1)-spheres with
respect to g go to zero faster than linearly in |ǫ|. Thus, if we rescale and pass to
the tangent cone, these spheres pinch off, creating a 2-plane of singularities.

We prove this theorem by first writing down an explicit approximate solution
φ̃ to the complex Monge-Ampère equation (i∂∂̄φ)n = |Ω∧ Ω̄| such that g̃ behaves
as in the above picture. Then we prove an appropriate implicit function theorem,
thereby producing an honest solution φ with essentially the same geometry.

To be more precise, our approximate solution is given by φ̃ = as + scψ(s−
ℓ
2 r)

where a is a constant, s = |z0|2, r = |z1|2 + · · ·+ |zn|2, c = ℓ
2
n−2
n−1 > 1, ℓ = k + 1,

and ψ(|y1|2 + · · ·+ |yn|2) is the potential function of Stenzel’s complete Ricci-flat
Kähler metric [8] on the smooth affine variety y21 + · · ·+ y2n = 1.

One important point is that φ̃ satisfies the Monge-Ampère equation to leading
order as r, s → 0, but g̃ has unbounded Ricci curvature, so we cannot hope for φ
to be more than C2,α or perhaps C3,α close to φ̃. Another important point: the
required C2,α Schauder type estimates for the Laplacian associated with g̃ would
definitely fail if we did not restrict to U(1)× SO(n)-invariant functions on U .

6. An application

Interestingly, the geometry of our Ricci-flat metrics on U ⊂ Ak approaches the
product geometry on C× A1 not only if we fix k and blow up the scale, but also
if we fix the scale and let k → ∞. Since we can smooth out and/or resolve the Ak

singularity with unbounded topology as k → ∞, and since these smoothings carry
Ricci-flat Kähler metrics with sufficient control for us to be able to assert that the
topology added in the smoothing has arbitrarily small diameter, we obtain infinite
sequences of smooth Ricci-flat Kähler unit balls of complex dimension n > 3 with
volume pinched between two positive constants,

´

|Rm|2 uniformly bounded, but
bn → ∞ (and alternatively b2 → ∞ if n = 3). Of course this would be impossible
for n = 2 even without the L2 curvature bound, by [1].

7. Concluding remarks

• Our theorem is not “obvious because the first coordinate scales differ-
ently” because the first coordinate scales differently for all k > 1 if n = 2.
The condition that k + 1 > 2n−1

n−2 has an interpretation in terms of “K-

instability” [3].
• It would be nicer to have compact examples without a boundary. We can’t

imagine any way of achieving this short of proving that all weak solutions
to the complex Monge-Ampère equation on U (with arbitrary Dirichlet
boundary values on ∂U) have the same asymptotics at the origin as our
particular examples.

• If k + 1 < 2n−1
n−2 , then φ̃ is an almost solution to the Monge-Ampère

equation on the complementary region Ak \ U , with interesting geometry
at infinity.
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Almost non-negatively curved spin manifolds have vanishing Â-genus.

Burkhard Wilking

(joint work with Esther Cabezas-Rivas)

We give an affirmative answer to a problem posed by John Lott. Recall that
a compact manifold M is almost non-negatively curved if there is a sequence of
metrics gi such that diam(M, gi) = 1, Kgi ≥ −1/i. John Lott asked whether in

the spin case this implies vanishing of the Â-genus. More precisely we show

Theorem 1. Suppose (Mi, gi) is a sequence of n-dimensional spin manifolds,
satisfying diam(M, gi) ≤ D, Kgi ≥ 1/i and the Dirac operator /Dgi has a nontrivial
kernel. Then Mi is finitely covered by a nilmanifold for all large i.

Metric cones smoothed out by gradient Ricci expanders

Alix Deruelle

Given a geometric object with singularities, one can ask if there exists a (geometric)
flow that smooths it out instantaneously. We focus on metric cones for mainly two
reasons : on one hand, this is the simplest geometric singularity one can think of,
on the other hand, metric cones are the building blocks of the collapsing theory
developed by Cheeger, Colding and Naber, to mention a few. The flow we are
interested in is the Ricci flow. Formally speaking, it amounts to solve the following
initial value problem.

Let (C(X), dr2 + r2gX , o) be a metric cone on a smooth compact boundaryless
Riemannian manifold (X, gX). We look for a one parameter family of smooth
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complete Riemannian manifolds (Mn, g(t))t∈(0,T ) where T is a positive number
(eventually infinite) satisfying for some p ∈Mn,





∂tg = −2Ric(g(t)) on M × (0, T ),

(Mn, g(t), p) → (C(X), dr2 + r2gX , o), as t→ 0+,

where the convergence to the initial condition is understood in the pointed Gromov-
Hausdorff topology and in the C∞

loc topology outside the tip o.
In this short note, we impose further restrictions on the way the Ricci flow

smooths out these metric cones : we want (Mn, g(t))t∈(0,T ) to be a fixed point of
the Ricci flow under the action of homotheties and the group of diffeomorphisms,
i.e. a solution that looks like g(t) = σ(t)φ∗t g, where σ(t) ∈ R∗

+ and φt ∈ Diff(Mn),
t ∈ (0, T ). If the one parameter family of diffeomorphisms (φt)t∈(0,T ) is generated
by the gradient of a smooth function, we call such a Ricci soliton gradient. After
a time reparameterization, one can assume that σ(t) = 1 + ǫt, with ǫ ∈ {−1, 0, 1}.
This leads us to consider three cases according to the lifetime of the solution : a
Ricci soliton with ǫ = −1 (respectively ǫ = 0, ǫ = 1) is called a shrinker, (respec-
tively a steady soliton, an expander). Ricci expanders are the only candidates that
can answer our problem. Finally, we give an equivalent and more tractable defini-
tion of an expanding gradient Ricci soliton. It consists in the triplet (Mn, g,∇gf)
where (Mn, g) is a smooth complete Riemannian manifold and where f :Mn → R

is a smooth function called the potential function such that the following static
equation holds :

Ric(g) +∇g,2(−f) = −g
2
.

In other words, this means that the Bakry-Émery tensor associated to (g,∇gf) is
constantly negative.

The main questions are then related to the solvabilty of this kind of Dirichlet
problem at infinity. Which metric cones can be smoothed out by gradient Ricci
expanders ? Can one deform conical gradient Ricci expanders implicitly ? Are
these deformations (globally) unique ?

As shown in [6], the analysis strongly depends on the convergence rate to the
asymptotic cone.

Either the convergence is polynomial (generic case) : explicit asymptotically
conical Ricci expanders are given by the rotationally symmetric examples due to
Bryant [Chap. 1,[5]] coming out of the cones (C(Sn−1), dr2+r2c2gSn−1 , r∂r/2)c>0.
In the Kähler setting, similar examples have been built by Cao [4]. This ansatz
has been extended by [9] where they produced Kähler Ricci expanders coming out
of the cones (C(S2n−1/Zk), i∂∂̄| · |2p/p, r∂r/2) where k > n (condition equivalent
to negative first Chern class) and where p, the angle, is positive different from 1.
Implicit deformations of the Bryant examples have been proved to exist by the
author [6], [7] :
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Theorem 1. Let (X, gX) be a smooth simply connected compact Riemmanian
manifold such that Rm(gX) ≥ 1.

Then there exists a unique expanding gradient Ricci soliton with nonnegative
curvature operator asymptotic to

(
C(X), dr2 + r2gX , r∂r/2

)
.

In other terms, theorem 1 gives a classification of conical gradient Ricci ex-
panders with positive curvature operator. The method we use to prove theorem 1
is a continuity method : it shows that the moduli space of such Ricci expanders is
connected. Roughly speaking, the main idea comes from the following observation
: given a simply connected Riemannian manifold (X, gX) such that Rm(gX) ≥ 1,
one starts the (normalized) Ricci flow and ends up with a one parameter family of
metrics (g(s))s∈[0,+∞] on X of constant volume connecting (X, gX) to (X, c2gSn−1)

where cn−1 = vol(X, gX)/ vol(Sn−1, gSn−1) thanks to the fundamental work of
Böhm and Wilking [3]. Therefore, the initial metric cone (C(X), dr2 + r2gX)
is connected to the cone (C(Sn−1), dr2 + (cr)2gSn−1) which is smoothed out by
the corresponding Bryant soliton. Then one has to prove the closedness and the
openness of the set of such solutions. The openness is the most technical by far,
especially because the Fredholm theory for the linearized operator was not avail-
able, even in the Euclidean case. Moreover, the use of the Nash-Moser implicit
function theorem is required to provide deformations smooth up to the boundary
at infinity. Besides, matrix Hamilton Harnack inequalities or adequate entropies
not necessarily well-defined in general are essential to get rid of the action of the
diffeomorphisms.

Either the convergence is exponential (asymptotically Ricci flat case). The first
non flat asymptotically conical Ricci expanders coming out of a Ricci flat cone
are the examples due to [9] mentioned above with p = 1. [10] provided a more
systematic study of Kähler Ricci expanders coming out of Kähler Ricci flat cones.
Implicit examples have been built by Siepmann [12], where some of the previous
examples are recovered.

It turns out that the uniqueness at infinity should not be true in general, more-
over, a continuity method does not seem to be adequate in the asymptotically
Ricci flat case. Besides, conical Ricci expanders share many analogies with con-
formally compact Einstein metrics. In this regard, we benefited from the work of
Biquard [2] and Anderson-Herzlich [1] dealing with uniqueness issues at infinity of
such metrics. In this context, the obstruction at infinity is given by a symmetric
2-tensor defined on the conformal infinity : it is a global invariant, i.e. is not an
invariant depending locally on the metric at the boundary. It turns out that there
is a similar obstruction in the setting of conical Ricci expanders : see [8] for the
definition of the obstruction tensor at infinity. To conclude, we notice that the
main motivation comes from the recent work of Kotschwar-Lu [11] dealing with
the uniqueness at infinity of conical Ricci shrinkers : as the asymptotic cone is at
the end of the lifetime of such a singularity, there is no obstruction at infinity.
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Weak solutions for the Ricci flow

Robert Haslhofer

(joint work with Aaron Naber)

We introduce a new class of estimates for the Ricci flow, and use them both to
characterize solutions of the Ricci flow and to provide a notion of weak solutions
for the Ricci flow in the nonsmooth setting.

As a motivation, let us first explain the much easier task of characterizing super-
solutions of the Ricci flow. Let (M, gt)t∈I be a one-parameter family of Riemannian
manifolds. We consider the heat equation (∂t −∆gt)w = 0 on our evolving mani-
folds (M, gt)t∈I . For every s, T ∈ I with s ≤ T , and every smooth function u with
compact support, we write PsTu for the solution at time T with initial condition
u at time s, i.e. (PsTu)(x) =

´

M
u(y)H(x, T | y, s)dVs(y), where H(x, T | y, s) is

the heat kernel with pole at (y, s). We write dν(x,T )(y, s) = H(x, T | y, s)dVs(y).

Proposition ([1]). The following are equivalent:

(1) ∂tgt ≥ −2Rcgt
(2) |∇PsTu| ≤ PsT |∇u|
(3) |∇PsTu|2 ≤ PsT |∇u|2
(4)
´

M
u2 log u2 dν ≤ 4(T − s)

´

M
|∇u|2dν

(5)
´

M (u − ū)2 dν ≤ 2(T − s)
´

M |∇u|2dν.
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In essence, the proposition follows easily from the parabolic Bochner-formula

(∂t −∆)|∇u|2 = 2〈∇u,∇(∂t −∆)u〉 − 2|∇2u|2 − (∂tg + 2Rc)(∇u,∇u).
To characterize solutions of the Ricci flow, and not just supersolutions, we

prove infinite-dimensional generalizations of the above estimates. Let (M, gt)t∈I

be a smooth family of Riemannian manifolds. Let M = M × I be its space-time
with the usual space-time connection, i.e. ∇tY = ∂tY + 1

2∂tgt(Y, ·)♯gt . For each
(x, T ) ∈ M, we consider the based path space P(x,T )M consisting of all space-
time curves of the form {γτ = (xτ , T−τ)}τ∈[0,T ], where {xτ}τ∈[0,T ] is a continuous
curve in M with x0 = x. Let Γ(x,T ) be the Wiener measure of Brownian motion
on our evolving family of manifolds based at (x, T ), i.e. the probability measure
uniquely characterized by the following property. If eσ1,...,σk

: P(x,T )M → Mk,
γ 7→ (xσ1

, . . . , xσk
), is the evaluation map at 0 ≤ σ1 ≤ . . . ≤ σk ≤ T then

eσ1,...,σk∗dΓ(x,T )(y1, . . . , yk) = dν(x,T )(y1, s1) · · · dν(yk−1,sk−1)(yk, sk),

where si = T − σi. Path space can be equipped with two natural notions of
gradient, the parallel gradient ∇‖ and the Malliavin gradient ∇H, see [1]. Our
main theorem characterizes solutions of the Ricci flow in terms of certain sharp
estimates on path space.

Theorem ([1]). The following are equivalent:

(1) ∂tgt = −2Rcgt
(2) |∇x

´

PT M
FdΓ(x,T )| ≤

´

PT M
|∇‖F | dΓ(x,T )

(3)
´

PT M
d[F•]τ

dτ
dΓ(x,T ) ≤ 2

´

PT M
|∇

‖
τF |2 dΓ(x,T )

(4)
´

PT M
(F 2)τ2 log (F 2)τ2 − (F 2)τ1 log (F 2)τ1dΓ(x,T ) ≤

´

PT M
〈F,Lτ1,τ2F 〉dΓ(x,T )

(5)
´

PT M
(F τ2 − F τ1)2 dΓ(x,T ) ≤ 2

´

PT M
〈F,Lτ1,τ2F 〉 dΓ(x,T )

Here, F τ denotes the martingale induced by F ∈ L2(PTM,Γ(x,T )), and Lτ1,τ2

denotes the [τ1, τ2]-part of the Ornstein-Uhlenbeck operator L = ∇H∗∇H. The es-
timates from the theorem are infinite-dimensional generalizations of the estimates
from the proposition. In the very special case of 1-point test functions, i.e. test
functions of the form F (γ) = u(γ(t0)) for some u : M → R, our infinite dimen-
sional estimates reduce to the finite-dimensional estimates from the proposition.
Of course, there are many more test functions on path space, and this is one of the
reasons why our infinite-dimensional estimates are strong enough to characterize
solutions of the Ricci flow, and not just supersolutions.

Finally, let us briefly indicate how the above characterization of solutions of the
Ricci flow can be used to provide a notion of weak solutions for the Ricci flow [2].
We consider metric-measure spaces M equipped with a time function and a linear
heat flow. We call M a weak solution of the Ricci flow if and only if the infinite
dimensional gradient estimate |∇x

´

PT M FdΓ(x,T )| ≤
´

PT M |∇‖F | dΓ(x,T ) holds.

We establish various geometric and analytic estimates for these weak solutions. In
particular, one of our applications concerns a question of Perelman about limits of
Ricci flows with surgery [4]. Namely, the metric completion of the space-time of
Kleiner-Lott [3], which they obtained as a limit of Ricci flows with surgery where
the neck radius is sent to zero, is a weak solution in our sense.
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A local regularity theorem for Mean Curvature Flow with triple Edges

Felix Schulze

(joint work with Brian White)

We consider smooth families M = ∪t∈IMt ×{t} of n-dimensional surface clusters
in Rn+k. Such a cluster Mt consist of finitely many disjoint, embedded, open
hypersurfacesM i

t , i = 1, . . . , N , such that their closures M̄ i
t are smooth immersed

hypersurfaces with corners andMt =
⋃N

i=1 M̄
i
t . We assume that along each (n−1)-

dimensional face, which we call an edge, three sheets meet under equal angles.
Along the lower dimensional faces we assume that the sheets meet modelled on
n-dimensional unit density area minimizing cones in Rn+k. We call these higher
order junctions.

We say that M = ∪t∈IMt × {t} solves mean curvature flow, if, given a smooth
parametrisation X of the moving cluster, the speed vector satisfies

( ∂
∂t
X
)⊥

= ~H ,

where ⊥ is the projection onto the normal space along each sheet and ~H its mean
curvature vector. Along the edges and higher order junctions we require that this
holds for each sheet separately.

We denote the backwards parabolic cylinder with radius r, centered at a space-
time point X = (x, t) ∈ Rn+k × R, by

Cr(X) = Br(x) × (t− r2, t) .

We will write O to denote the origin (0, 0) in space-time.

Theorem 1. Let Mj be a sequence of smooth, n-dimensional mean curvature
flows with triple edges in Rn+k which converge as Brakke flows to a static union
of 3 unit density n-dimensional half-planes in C2(O). Then the convergence is
smooth in C1(O).

We also consider the class of integral Brakke flows, which are Y -regular, i.e.
any point of Gaussian density one and any point with a tangent flow, which is a
static union of 3 unit density half-planes, has a space-time neighborhood in which
the flow is smooth. Then the above theorem remains true.

Combining this with Ilmanen’s elliptic regularisation scheme we show:

Theorem 2. Let M0 be a smooth, compact n-surface cluster in Rn+k without
higher order junctions, i.e. a finite union of compact manifolds-with-boundary that
meet each other at 120 degree angles along their smooth boundaries. Then there
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exists a T > 0 and smooth solution to mean curvature flow with triple junctions
(Mt)0<t<T such that Mt →M0 in C1 and in C∞ away from the triple junctions.

Furthermore, Theorem 1 implies that the solution exists until either the supre-
mum of the second fundamental form over the cluster blows up, or two triple edges
collide.

The corresponding fundamental regularity theorem for smooth mean curvature
flow was proven by the second author, [10]. Mean curvature flow with triple edges
for curves in codimension one is the network flow. A similar regularity theorem for
the network flow was shown by Ilmanen and Neves together with the first author,
[7, Theorem 1.3]. For Brakke flows the fundamental regularity theorem is due
to Brakke, [1]. More recently, Tonegawa and Wickramasekera have proven the
analogous result for 1-dimensional integral Brakke flows close to a static union of
three half lines in the plane, [9].

Smooth short time existence for the network flow was first established by Man-
tegazza, Novaga and Tortorelli [8] using PDE methods, following Bronsard and
Reitich [2]. Short time existence of mean curvature flow with triple edges, also in
the PDE setting, was considered by Freire [4, 5] in the case of graphical hypersur-
faces and by Depner, Garcke and Kohsaka in [3] for special hypersurface clusters.
Both the results of Freire and of Depner, Garcke and Kohsaka require as well that
no higher order junctions are present.

Outline of proof: As a first step we show that a smooth mean curvature flow
with triple edges that is sufficiently close in C2,α to a static union of three unit
density half-planes, and converging in C2, converges also in C2,α. We do this by
writing the solution as a perturbation of an approximating solution of the heat
equation. We use standard Schauder estimates for the heat equation to show first
that the perturbation decays in C2,α, and use this information, together with the
120 degree condition along the triple edge, again using only standard Schauder
estimates for the heat equation, to show that also the approximating solutions of
the heat equation converge in C2,α. We use this, together with a blow up argument
which is analogous to the one used in [10], to prove Theorem 1.

As a second step we extend Theorem 1 to integral Brakke flows, which are
smooth in a space-time neighborhood of points with either Gaussian density one, or
which have a tangent flow which is a static union of three unit density half-planes.
The main ingredient is showing that any static union of three unit density half-
planes is, up to rotations, weakly isolated in the space of self-similarly shrinking
integral Brakke flows.

Finally, we prove Theorem 2, using Ilmanen’s elliptic regularisation scheme, [6],
in the setting of flat chains mod 3, together with the previous results. The main
ingredient is showing that the Brakke flow constructed via elliptic regularisation
has only unit density static planes and static unions of three unit density half
spaces as tangent flows at the initial time.
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Filling multiples of embedded cycles

Robert Young

Given a smooth curve T in RN , there is a minimal surface U with boundary T . If
we trace T twice to get a curve 2T , there is a minimal surface U ′ with boundary 2T .
One might guess that U ′ = 2U , and, by a theorem of Federer [1], this holds when
N ≤ 3, but a remarkable example of L. C. Young shows that U ′ and U may be
very different. Young [5] constructed a smooth curve T drawn on a nonorientable
surface in R4 such that areaU ′ ≈ (1+1/π) areaU . Morgan [3] and White [4] later
found other examples of this phenomenon with different multipliers. A version of
Young’s example is shown in Figure 1.

One can generalize this to arbitrary dimensions. If T is a d-cycle in RN , we
define FV(T ) to be the minimum mass of an integral d + 1-chain with boundary
T . Young’s example can then be generalized to an example of a d-cycle in Rd+3

such that FV(T ) > FV(2T )/2.
One might ask whether the ratio FV(2T )/FV(T ) can be made arbitrarily small.

In fact, the following holds:

Theorem 1. Let 0 < d < N be natural numbers. There is a C > 0 depending on
d and N such that if T ∈ Cd−1(R

N ;Z) is a boundary, then

FV(T ) ≤ C FV(2T ).
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T A filling of T A filling of 2T

Figure 1. Fillings of a 1-cycle on a Klein bottle. The 1-cycle T
consists of 2k + 1 loops in alternating directions. In the middle,
we fill T with k cylindrical bands and a disc, and on the right, we
fill 2T with 2k+1 cylindrical bands with alternating orientations.

This theorem can be reduced to the problem of proving that any mod-2 cellular
cycle U in RN (for instance, a minimal filling of 2T ) is congruent mod 2 to an
integral cycle of comparable mass. That is,

Proposition 1. There is a c > 0, depending on d and N such that for every
mod-2 cellular d-cycle U in the unit grid in RN , there is an integral d-cycle R such
that U ≡ R (mod 2) and massR ≤ cmassU .

A weaker version of the proposition, showing that there is an R such that U ≡ R
(mod 2) and massR ≤ cmassU(logmassU), can be proved by using the Federer-
Fleming Deformation Theorem to construct a sequence of approximations of U , a
method similar to those used in [6] and [2].

To remove this factor of logmassU , we use uniform rectifiability. Uniformly
rectifiable sets were developed by David and Semmes as a quantitative version
of the notion of rectifiable sets. Recall that a set E ⊂ Rn is d-rectifiable if it
can be covered by countably many Lipschitz images of Rd. Uniform rectifiability
quantifies this by bounding the Lipschitz constants and the number of images
necessary to cover E. We introduce a decomposition of cellular cycles in RN into
sums of cellular cycles supported on uniformly rectifiable sets.

Specifically, we prove:

Theorem 2. If A ∈ Cd(τ ;Z/2) is a d-cycle in the unit grid in RN , then there are
cycles M1, . . . ,Mk ∈ Cd(τ ;Z/2) and uniformly rectifiable sets E1, . . . , Ek ⊂ RN

such that

(1) A =
∑

iMi,
(2) suppMi ⊂ Ei,
(3) massMi ∼ |Ei|, and
(4)

∑
i |Ei| . massA.

Here, | · | represents d-dimensional Hausdorff measure.
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This reduces the proof of Proposition 1 to the case where T is supported on a
uniformly rectifiable set. We then prove Proposition 1 by using a corona decom-
position to break T into pieces that are close to d-planes in RN .

Open questions

We can ask a similar question about the relationship between real filling volume
and integral filling volume. That is, if FVR(T ) is the minimum mass of a d+1-chain
with boundary T and real coefficients, then is FVR(T )/FV(T ) bounded below?

There are several related questions in geometric measure theory about the re-
lationship between real chains, integral chains, and mod-2 chains, several of which
were studied by Almgren. For instance, is the integral flat norm of a chain bounded
in terms of its real flat norm? Is every normal mod-2 current equivalent to a nor-
mal integral current? Generalizing Theorem 2 to the context of currents rather
than cellular cycles might help answer some of these questions.
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Index estimates in geometry

André Neves

(joint work with Fernando Marques)

I spoke about my ongoing work with Fernando Marques from Princeton University.

Second variation arguments have been quite used in Geometry and have been
at the core of some classical results such as the Positive Mass Theorem or the
Frankel Conjecture. Unfortunately the Almgren–Pitts Min-Max Theory does not
provide index estimates for the min-max hypersurfaces.

In an ongoing work, we are now able to show various index estimates for the
min-max hypersurfaces. I sketched the proof of those estimates.
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Metrics on spheres with all geodesics closed

Marco Radeschi

(joint work with Burkhard Wilking)

The talk concernes the study of Riemannian manifolds with all geodesics closed.
Clearly such a condition imposes strong, global restrictions on such a metric, so
much so that very few examples of such metrics are known.

The canonical simply connected examples are compact rank one symmetric
spaces (also known as CROSSes), i.e. spheres, projective (complex and quater-
nionic) spaces, and the so called Cayley plane, an exceptional example of dimension
16. These examples support a canonical metric, with respect to which all geodesics
are closed. To produce non simply connected examples, it is enough to start with a
simply connected example ant divide by the isometric action of a finite group act-
ing freely. Lens spaces are such examples, as they can be written a S2n−1/Zp where
S2n−1 denotes the unit sphere in Cn and Zp acts by k ·(z1, . . . zn) = (ξkz1, . . . ξ

kzn)
for some p-th root of unity ξ.

As a matter of fact, if a manifold admits a metric with all geodesics closed, then
nothing else can happen, at least at a level of cohomology ring:

Theorem (Bott-Samelson [1] Thm 7.37, Mc Cleary [3]). If (M, g) is a Riemannian
manifolds with all geodesics closed, then M is compact with finite fundamental
group, and the universal cover M̃ has the integral cohomology ring of a CROSS.

In order to get this result, one fundamental piece of information is about the
period of closed geodesics, which is provided by the following

Theorem (Wadsley [4]). If (M, g) has all geodesics closed, then the prime geodesics
have a common least period.

By prime geodesics we mean here a geodesic which is not simply obtained by
iterating a shorter one. One cannot in general expect all prime geodesics to have
the same period, as this is not the case for example in the lens spaces described
above. An important conjecture of Berger, however, states that this phenomenon
cannot occur if the manifold is simply connected:

Conjecture. If M is a simply connected Riemannian manifold all of whose geo-
desics are closed, then all the prime geodesics have the same length.

By a result of Weinstein [5], if an n-dimensional manifold has all prime geodesics
closed and of length, say, 2π, then its volume must be an integer multiple of that of
the unit round sphere Sn. Thus the conjecture of Berger, together with Weinstein’s
result, would provide a strong restriction on the geometry of simply connected
manifolds with all geodesics closed.

The conjecture of Berger was proved in the case of M = S2 by Grove and
Gromoll. In this talk we show that the conjecture also holds for all spheres of
dimension ≥ 4.

Theorem (Wilking, −). If (Sn, g), n > 3, has all geodesics closed, then all prime
geodesics have the same length.
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The proof proceeds by studying the energy functional E on the free loop space∧
M = C0(S1,M) of a manifold M with all geodesics closed. Wilking [6] already

proved a number of results about the energy functional in such a context, showing
for example that this is a Morse-Bott function. This is like a Morse function,
with the exception that isolated critical points are replaced with smooth critical
submanifolds Ci ⊂

∧
M and the space of negative directions at a critical point is

replaced by a vector bundle of negative directions N → C at a critical manifold C.
An important step toward the proof of the main theorem consists on the following
results, which hold for generic manifolds with all geodesics closed.

Theorem (Wilking, −). Let M be a Riemannian manifold with all geodesics
closed, and let E :

∧
M → R be the energy functional. Then

(1) For every critical manifold C ⊂ ∧
M of E, the bundle N → C of negative

directions is orientable.
(2) E is invariant under the S1 action on

∧
M by reparametrization, and

moreover it is a perfect Morse-Bott function with respect to rational, S1-
equivariant cohomology.
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On the Hopf conjectures

Manuel Amann

(joint work with Lee Kennard)

The question of whether a given smooth manifold admits a Riemannian metric with
positive sectional curvature is nearly as old as the subject of Riemannian geometry
itself. The classical Gauss–Bonnet theorem relating the sectional curvature K of
a compact surface M to its Euler characteristic, χ(M), can be considered a first
classification theorem of that kind.

So it seems surprising that until today only very few examples of simply-
connected closed manifolds admitting positively curved metrics are known; from
dimension 25 on this list only comprises the compact rank one symmetric spaces
Sn, CPn and HPn. At the same time there are not many obstructions to the
existence of such a metric.

It was a suggestion by Karsten Grove in the 1990s to study positive curvature
in the context of isometric Lie group actions, which seems natural in this context
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for many reasons. This programme has led to many classification results as for
example in [4], [3], [5]—passing from diffeomorphism classifications to cohomology
classifications whilst reducing the symmetry assumption.

In this talk we focus on effective isometric actions of a torus on a positively
curved manifoldM . We assume that the dimension of the torus acting is basically
a logarithm of dimM . As a next step we apply this—in the tradition of the classical
Gauss-Bonnet theorem—to derive results on the Euler characteristic χ(M) (cf. [1]).

The Euler characteristic plays a crucial role in a conjecture of Hopf which states
that χ(M) should be positive on an even-dimensional positively curved manifold
M and non-negative in non-negative curvature. A second conjecture of Hopf states
that the manifold S2×S2 should not admit a positively curved Riemannian metric.
It is our goal to illustrate how to use (generalisations of) the first conjecture in
order to prove generalised versions of the second conjecture—always assuming
logarithmic symmetry as above; see [2].

Theorem (Amann–Kennard). Let M2n be a simply connected, closed manifold
with b4(M) = 0. AssumeM admits a Riemannian manifold with positive sectional
curvature invariant under the action of a torus T with dim(T ) ≥ log4/3(2n). Then

we derive that χ(M) = χ(S2n) = 2.

We remark that this result leads to several classification results. For example
it implies that if M is a biquotient, it is a diffeomorphism sphere.

Corollary(Amann–Kennard). Let Nn be a simply connected, closed manifold.
The product N × N does not admit a Riemannian metric with positive sectional
curvature and an isometric torus action of rank at least log4/3(2n).

Similarly, if n is even and χ(N) 6= 2, the connected sum N#N does not admit
a positively curved metric invariant under a torus action of rank at least log4/3(n).

The Bott–Grove–Halperin conjecture states that an (almost) non-negatively
curved manifold should be (rationally) elliptic, so that in particular its homotopy
Euler characteristic χπ(M) =

∑
i(−1)i+1 dim πi(M) ⊗ Q is defined. We use this

in order to suggest and discuss the following generalisation (to odd dimensions) of
the Hopf conjecture on the Euler characteristic.

Conjecture. A closed manifold Mn of positive curvature satisfies

χπ(M) = n mod 2

A closed manifold Mn of non-negative curvature satisfies

χπ(M) ≡ n mod 2

(The first part asserts that the homotopy Euler characteristic equals either 1
or 0. Note that the second part of the conjecture merely claims rational ellip-
ticity; the statement on the homotopy Euler characteristic being as redundant as
the classical Hopf conjecture in non-negative curvature under the assumption of
rational ellipticity.)
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We prove the conjecture for rationally elliptic manifolds of positive curvature
and the usual logarithmic symmetry assumption, i.e. we show that their homotopy
Euler characteristic equals 0 or 1 depending on the parity of the dimension. (Note
that this excludes symmetric positive curvature on Sk × Sl with k, l odd, as the
simplest example.)

Motivated by the proof of the theorem above–which states that the fixed-point
set of a torus has to be a rational sphere—we now apply localisation theorems in
equivariant rational cohomology and homotopy theory in order to identify large
classes of manifolds which cannot carry positive curvature under logarithmic sym-
metry. (For this we investigate degeneration properties of the Leray–Serre spectral
sequence of the Borel construction in the light of rational homotopy techniques.)

Example. This class comprises Sk × Sl if one of the following holds: Either both
k, l are even or odd, or l > k and l is even and k is odd. As a further very concrete
example, also Sk × Sk × Sk#S2k × Sk is comprised.
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Finsler compactifications of symmetric and locally symmetric spaces

Bernhard Leeb

(joint work with Misha Kapovich)

Let X = G/K be a symmetric space of noncompact type, i.e. G is a noncompact
semisimple Lie group and K a maximal compact subgroup. We give a differential-
geometric interpretation of the maximal Satake compactification of X (see [BJ,
Chapter 2]) as a regular Finsler compactification

X
θ̄
= X ⊔ ∂ θ̄∞X

obtained by adding points at infinity represented by Finsler horofunctions. These
horofunctions arise as limits, modulo additive constants, of distance functions

dθ̄x = dθ̄(x, ·)

where dθ̄ is a certain “polyhedral” G-invariant Finsler distance on X associated
with a regular direction type θ̄ in the model spherical chamber σmod. It turns out
that the particular choice of θ̄ is irrelevant.
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If one applies the same construction to a G-invariant Riemannian metric on X ,
one obtains the familiar visual compactification

X = X ⊔ ∂∞X.

Theorem 1 ([KL]). The Finsler compactification X
θ̄
is a compactification of X

as a G-space with the following properties:
(i) There are finitely many G-orbits. The G-orbits at infinity are indexed by

the faces of the spherical Weyl chamber σmod.
(ii) The stratification by G-orbits determines a G-invariant manifold–with–

corners structure.
(iii) The compactification is homeomorphic to the closed ball. More precisely,

there exists a K-equivariant homeomorphism to the closed unit ball in X centered
at the fixed point of K with respect to the dual Finsler metric d∗

θ̄
.

(iv) It is independent of the regular type θ̄ in the sense that the identity map
idX extends to a natural homeomorphism of any two such compactifications.

(v) There exists a G-equivariant homeomorphism of manifolds with corners to
the maximal Satake compactification X̄S

max which yields a natural correspondence
of strata.

The Finsler view point had emerged in several instances during our earlier study
[KLP1, KLP2, KLP3] of asymptotic and coarse properties of discrete isometry
groups acting on symmetric spaces and euclidean buildings.

Our main application is to discrete subgroups Γ < G. For subgroups satisfying
a certain regularity condition we establish the existence of natural Finsler bor-
difications, as orbifolds with corners, of the associated locally symmetric spaces
X/Γ. Furthermore we show that these bordifications are under suitable conditions
compactifications, including all regular RCA subgroups, equivalently, B-Anosov
subgroups.

We recall that the G-orbits in the visual boundary ∂∞X are parametrized by the
model spherical Weyl chamber, ∂∞X/G ∼= σmod. The regular part ∂reg∞ X ⊂ ∂∞X
of the visual boundary consists of the ideal points which project to the interior
of σmod. It is the union of the open (spherical Weyl) chambers at infinity; these
are the top-dimensional simplices with respect to the spherical (Tits) building
structure on ∂∞X . There is a natural projection ∂reg∞ X → ∂FüX ∼= G/B to the
space of chambers ∂FüX , the so-called Fürstenberg boundary, which is identified
with the generalized full flag manifold G/B.

The set Λ(Γ) = Γx ∩ ∂∞X of accumulation points of an orbit Γx ⊂ X in the
visual boundary is called the limit set of Γ. It is independent of the orbit. We call
Γ uniformly regular if its limit set consists of regular ideal points, Λ(Γ) ⊂ ∂reg∞ X .
In this case, we call the projection Λch(Γ) ⊂ ∂FüX of Λ(Γ) the chamber limit
set of Γ, cf. [Be]. A limit chamber σ ∈ Λch(Γ) is called conical if an(y) orbit Γx
has unbounded intersection with a sufficiently large tubular neighborhood of a(ny)
euclidean Weyl chamber asymptotic to σ. The chamber limit set is called conical
if all limit chambers are conical. This condition has been considered in [Al]. We
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call Γ antipodal if any two limit chambers in Λch(Γ) are opposite. Finally, we call
the subgroup Γ RCA if it is antipodal and has conical chamber limit set.

We recall that if X is a negatively curved symmetric space, then the locally
symmetric space X/Γ admits the visual bordification

X/Γ →֒ (X ∪ Ω(Γ))/Γ

as an orbifold with boundary by attaching at infinity the quotient Ω(Γ)/Γ of the
domain of discontinuity Ω(Γ) ⊂ ∂∞X . Furthermore, the subgroup Γ is convex
cocompact if and only if this bordification is a compactification.

In our earlier papers [KLP1, KLP2] we introduced and proved the equivalence
of several concepts generalizing to higher rank the notion of convex cocompact
subgroups of rank 1 Lie groups, among them the notion of RCA subgroups. These
properties are equivalent to the concept of Anosov subgroups defined in [La, GW],
see [KLP2, Theorem 1.7].

Theorem 2 ([KL]). Let Γ < G be a uniformly regular discrete subgroup.

(i) There exists a Γ-invariant open subset Ωθ̄(Γ) ⊂ ∂ θ̄∞X such that the action

(1) Γ y X ∪ Ωθ̄(Γ) ⊂ X
θ̄

is properly discontinuous. As a consequence, the quotient
(
X ∪Ωθ̄(Γ)

)
/Γ

provides a real-analytic bordification of X/Γ as an orbifold with corners.
(ii) If the chamber limit set Λch(Γ) ⊂ ∂FüX is conical, then the action (1) is

also cocompact, and the quotient provides a real-analytic compactification of X/Γ
as an orbifold with corners.
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Higgs bundles and applications

Laura P. Schaposnik

(joint work with David Baraglia, Nigel Hitchin)

Higgs bundles were first studied by Nigel Hitchin in 1987, and appeared as solutions
of Yang-Mills self-duality equations on a Riemann surface [5]. Classically, a Higgs
bundle on a compact Riemann surface Σ of genus g ≥ 2 is a pair (E,Φ) where
E is a holomorphic vector bundle on Σ, and Φ, the Higgs field, is a holomorphic
1-form in H0(Σ,End0(E)⊗KΣ), for KΣ the cotangent bundle of Σ and End0(E)
the traceless endomorphisms of E. Higgs bundles can also be defined for complex
groups Gc, and through stability conditions, one can construct their moduli spaces
MGc

.
A natural way of studying the moduli space of Higgs bundles is through the

Hitchin fibration, sending the class of a Higgs bundle (E,Φ) to the coefficients of
the characteristic polynomial det(xI −Φ). The generic fibre is an abelian variety,
which can be seen through line bundles on an algebraic curve S, the spectral curve
associated to the Higgs field. The spectral data is then given by a line bundle on S
satisfying certain conditions, and it provides a geometric description of the fibres
of the Hitchin fibration. For instance in the case of classical Higgs bundles, the
smooth fibres can be seen through spectral data as Jacobian varieties of S.

Higgs bundles and branes. The smooth locus of the moduli space MGc
of

Gc-Higgs bundles on a compact Riemann surface Σ for a a complex reductive
Lie group Gc is a hyper-Kähler manifold, so there are natural complex structures
I, J,K obeying the same relations as the imaginary quaternions (adopting the
notation of [8]). Adopting physicists’ language, a Lagrangian submanifold of a
symplectic manifold is called an A-brane and a complex submanifold a B-brane. A
submanifold of a hyper-Kähler manifold may be of type A or B with respect to each
of the complex or symplectic structures, and thus choosing a triple of structures
one may speak of branes of type (B,B,B), (B,A,A), (A,B,A) and (A,A,B).

It is hence natural to construct different families of branes inside the moduli
space MGc

, as was first done in [8] (see also [14]). Together with D. Baraglia
we introduced a naturally defined triple of commuting real structures i1, i2, i3 on
MGc

, and through the spectral data gave a detailed picture of their fixed point sets
as different types of branes. Given (E,Φ) a Gc-Higgs bundle on Σ, consider pairs
(∂A,Φ), where ∂A denotes a ∂-connection on E defining a holomorphic structure,
and Φ is a section of Ω1,0(Σ, ad(E)), for ad(E) the adjoint bundle of E. Through
the Cartan involution θ of a real form G of Gc one obtains

(1) i1(∂̄A,Φ) = (θ(∂̄A),−θ(Φ)).

Moreover, a real structure f : Σ → Σ on Σ induces an involution i2 given by

(2) i2(∂̄A,Φ) = (f∗(∂A), f
∗(Φ∗)) = (f∗(ρ(∂̄A)),−f∗(ρ(Φ))).



1790 Oberwolfach Report 31/2015

Lastly, by looking at i3 = i1 ◦ i2, one obtains i3(∂̄A,Φ) = (f∗σ(∂̄A), f∗σ(Φ)). The
fixed point sets of i1, i2, i3 are branes of type (B,A,A), (A,B,A) and (A,A,B) re-
spectively. In [3], with D. Baraglia we studied these branes through the associated
spectral data and described the topological invariants involved using KO, KR and
equivariant K-theory. In particular, it was shown that amongst the fixed points
of i1 are solutions to the Hitchin equations with holonomy in G.

Higgs bundles and (A,B,A)-branes. Amongst the fixed points of the involu-
tion i2 are representations of π1(Σ) that extend to certain 3-manifolds M whose
boundary is Σ. Indeed, consider the space Σ = Σ × [−1, 1] with involution
τ(x, t) = (f(x),−t), for f the anti-holomorphic involution on Σ giving i2. The
quotient M = Σ/τ is a 3-manifold with boundary ∂M = Σ, and satisfies the
following:

Theorem 1 (Baraglia, –). Let (E,Φ) be a fixed point of i2 with simple holonomy.
Then the associated connection extends over M as a flat connection if and only if
the class [E] ∈ K̃0

Z2
(Σ) in reduced equivariant K-theory is trivial.

Since Langlands duality can be seen in terms of Higgs bundles as a duality
between the fibres of the Hitchin fibrations for MGc

and MLGc
, for LGc the

Langlands dual group of Gc (as was first seen in [4]), it is natural to ask what the
duality between branes should be. In [3] we proposed the following:

Conjecture 1 (Baraglia, –). For Lρ the compact structure of LGc, the support
of the dual brane of the fixed point set of i2 is the fixed point set in MLGc

of

(3) Li2(∂̄A,Φ) = (f∗(Lρ(∂̄A)),−f∗(Lρ(Φ))).

Higgs bundles and (B,A,A)-branes. Higgs bundles can be defined for complex
Lie groups Gc, as well as for real forms G of Gc. Moreover, as mentioned in (A),
the moduli spaces of real Higgs bundles MG lie as (B,A,A) branes inside the
moduli spaces MGc

. It is thus natural to ask how MG intersects the Hitchin
fibration for the complex moduli space MGc

, which is the main subject of [11, 12]
(see [10]). Moreover, considering Langlands duality, in [3] we propose the following:

Conjecture 2 (Baraglia, –). The support of the dual brane to the fixed point
set of i1 is the moduli space MȞ ⊂ MLGc

of Ȟ-Higgs bundles for Ȟ the group

associated to the Lie algebra ȟ in [9, Table 1].

On (B,A,A)-branes having finite intersection with smooth fibres. In the case of
Higgs bundles for a split real form G of a complex reductive Lie group Gc, from
[12] one has the following description of the intersection:

Theorem 2 (–). The moduli space MG as sitting inside MGc
is given by points

of order two in the smooth fibres of the Hitchin fibration h : MGc
→ AGc

.

This result is used in [13] to study the moduli space of SL(2,R)-Higgs bundles
from a combinatorial point of view. The above theorem could also be used when
studying L-twisted Higgs bundles (E,Φ) in [1], where the Higgs field is now twisted
by any line bundle L obtaining Φ : E → E ⊗ L.
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Theorem 3 (Baraglia, –). The monodromy action of an element s̃γ in the Hitchin
base is the automorphism of H1(S,Z) induced by a Dehn twist of the spectral curve
S around a loop lγ. Let cγ ∈ H1(S,Z) be the Poincaré dual of the homology
class of lγ. Then the monodromy of s̃γ acts on H1(S,Z) as a Picard-Lefschetz
transformation: x 7→ x+ 〈cγ , x〉cγ .

As an application, one can obtain information about some real character vari-
eties Rep(G). For instance one may prove that there are 3.22g + g − 3 connected
components for Rep(GL(2,R)), and recover the number of components of maximal
representations Rep2g−2(Sp(4,R)), given by 3.22g + 2g − 4.

On (B,A,A)-branes having no intersection with smooth fibres. For other real forms
the brane MG may lie interlay inside the singular fibres of the Hitchin fibration
for Gc-Higgs bundles. By extending the approach from [12], together with N.
Hitchin we showed in [6] that this situation appears naturally when considering
Higgs bundles corresponding to flat connections on Σ with holonomy in the real Lie
groups G = SL(m,H) and SO(2n,H) (i.e., SU∗(2m) and SO∗(2n) respectively).

Theorem 4 (Hitchin, –). The fibres of the (B,A,A)-brane in the Hitchin fibration
for SL(m,H), SO(2n,H) and Sp(2m, 2m)-Higgs bundles are not abelian varieties,
but are instead moduli spaces of rank 2 bundles on a spectral curve, satisfying
certain natural stability conditions.
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Quasicircles

Yves Benoist

(joint work with Dominique Hulin)

We study the dynamics of the group G = PSL(2,C) on the set of compact subsets
K of the Riemann sphere S2 = C∪ {∞} containing at least two points. We prove
in [1] that the orbit closure GK contains only Jordan curves if and only if K is
a quasicircle. We prove in [2] that this G-orbit is closed if and only if K is the
limit set of a convex cocompact subgroup of G. We also construct in [2] nonclosed
G-orbits whose closure is minimal.
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On 1

2
-PIC 4-manifolds.

Thomas Richard

(joint work with Harish Seshadri)

An oriented riemannian 4-manifold (M4, g) is said to be 1
2 -PIC if for every p ∈M

and every oriented orthonormal 4-frame (e1, e2, e3, e4) the curvature tensor R of
(M4, g) at p satisfies :

R1313 +R1414 +R2323 +R2424 − 2R1234 > 0

where Rijkl denotes R(ei, ej , ek, el).
This is a weakening of the classical PIC (positive isotropic curvature) condition

which require the above inequality to hold for every 4-frame. Since the founda-
tional work of Micaleff-Moore, the PIC condition is known to have strong topo-
logical implications, and in dimension 4 the work of Hamilton and Chen-Zhu has
led to a complete classification of compact PIC 4-manifolds using Ricci flow with
surgery.

At first sight, 1
2 -PIC 4-manifolds share a great deal of similarities with PIC

4-manifolds :

• S4, S3 × R and their metric quotients are 1
2 -PIC.

• A connected sum of 1
2 -PIC 4-manifolds admits a 1

2 -PIC metric.

• The 1
2 -PIC condition is stable under the Ricci flow evolution equation.

However, there are some differences :

• CP
2
is 1

2 -PIC whereas it is not PIC.

• Consequently, the second Betti number of a 1
2 -PIC 4-manifold can be non

zero whereas it must vanish on even-dimensional PIC manifolds.
• However, a standard Bochner formula can be used to show that b+2 (M

4)
(the dimension of the positive space of the intersection form onH2(M4,R))
must vanish.
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Adapting an argument of Brendle and using the classification by Hitchin of
compact half-conformally flat Einstein 4-manifolds allows to show the following

rigidity result: a compact Einstien 1
2 -PIC 4-manifold is isometric to S4 or CP

2
.

The 1
2 -PIC condition also has a peculiar relation to Ricci flow in 4-dimension:

every Ricci flow invariant positivity condition on the curvature of a 4-manifold
which is stronger that “positive scalar curvature” is actually stronger than the
1
2 -PIC condition (or the similar condition obtained by reversing the orientation).

A detailed exposition of these result can be found in [1]
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Projective surfaces, holomorphic curves and the SL(3,R)-Hitchin
component

Thomas Mettler

A projective structure on a smooth surfaceM is an equivalence class [∇] of torsion-
free connections on TM . Two such connections ∇ and ∇′ are projectively equiva-
lent if they share the same unparametrised geodesics. A projective structure [∇]
is called flat if locally [∇] is defined by a flat connection. Equivalently, a flat
projective structure on M can be defined as a maximal atlas mapping open sets in
M into RP

2 such that the transition functions are restrictions of fractional linear
transformations. The maximal atlas of a flat projective structure on M gives rise
to a developing map dev : M̃ → RP2 defined on the universal cover of M , as well
as a representation of the fundamental group of M into PSL(3,R), well defined
up to conjugation. A flat projective structure is called convex if the developing
map is a diffeomorphism onto a convex subset of RP2. A surface equipped with a
projective structure will be called a projective surface.

The space A(M) of torsion-free connections on TM is an affine space modelled
on the space of section of the vector bundle S2(T ∗M)⊗TM . By a classical result
of Weyl [6], two torsion-free connection on TM are projectively equivalent if and
only if their difference is pure trace. In particular, a projective structure [∇] on
M may be thought of as an affine subspace A[∇](M) ⊂ A(M) which is modelled
on the space of 1-forms on M .

A conformal connection ∇ (also called Weyl connection) is a torsion-free con-
nection on TM preserving some conformal structure [g] onM , that is, the parallel
transport maps of ∇ are angle-preserving with respect to some [g]. As in the case
of a projective structure [∇], the space of [g]-conformal connections is an affine
subspace A[g](M) ⊂ A(M) which is modelled on the space of 1-forms on M . It
easy to check that two subspaces A[g](M) and A[∇](M) intersect in at most one
point. More generally, denoting by P(M) the space of projective – and by C(M)
the space of conformal structure on M , we have the following:
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Proposition 1. There exists a Diff(M)-equivariant map

P(M)× C(M) → A(M)× Ω1(M,End(TM)), ([∇], [g]) 7→ ([g]∇, A[g])

having the property that [∇] is defined by [g]∇+A[g].

In particular, we obtain a Diff(M)-invariant non-negative functional

E : P(M)× C(M) → R, ([∇], [g]) 7→
ˆ

M

|A[g]|2gdµg

and a global invariant

Υ(M, [∇]) = inf
[g]∈C(M)

E([∇], [g]),

which measures how “far” [∇] is from being defined by a conformal connection. It
turns out that E can – up to a topological constant – be interpreted as a Dirichlet
energy. To this end one shows that one can canonically construct an indefinite
Kähler-Einstein 3-fold (Y, h, ω) fibering over (M, [∇]). Furthermore, a conformal

structure [g] on M gives rise to a section [̃g] of Y → M so that for M closed we
obtain

1

2

ˆ

M

trg [̃g]
∗
hµg =

ˆ

M

|A[g]|2gµg − 4πχ(M).

If we fix a projective structure [∇] and consider E[∇] := E([∇], ·) we have:

Theorem 1. A conformal structure [g] on M is a critical point of E[∇] with respect

to compactly supported variations if and only if [̃g] : M → (Y, h, ω) is weakly
conformal.

If the surface M satisfies χ(M) < 0, then E[∇] admits a unique absolute min-
imiser. The proof of this fact relies on complex geometric methods. Indeed, in [4] it
was shown that an oriented projective surface (M, [∇]) defines a complex surface
Z together with a projection to M whose fibres are holomorphically embedded
disks. Moreover, a conformal connection in the projective equivalence class cor-
responds to a section whose image is a holomorphic curve in Z. Locally such
sections always exist and hence every affine torsion-free connection on a surface
is locally projectively equivalent to a conformal connection. Furthermore every
conformal connection on the 2-sphere lies in a complex 5-manifold of conformal
connections sharing the same unparametrised geodesics. This is in contrast to the
case where M has negative Euler-characteristic. In this case the bundle Z → M
admits at most one section whose image is a holomorphic curve. In particular, a
Riemannian metric on M is uniquely determined – up to constant rescaling – by
its unparametrised geodesics [3]. This result was previously proved in [2].

One may naturally ask to characterise the projective surfaces that are globally
defined by a conformal connection. Whereas this question is wide open in general,
there is some evidence that a convex projective structure [∇] is defined by a con-
formal connection if and only if [∇] is defined by the Levi-Civita connection of a
hyperbolic metric. In fact, finding a minimiser of E[∇] turns out to be related to
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the parametrisation of the SL(3,R)-Hitchin component in terms of holomorphic
cubic differentials.

As a by-product of the above considerations one also obtains a Gauss-Bonnet
type identity for closed oriented projective surfaces:

Theorem 2. Let (M, [∇]) be a closed oriented projective surface. For any smooth
section s : M → Y , we have

(1)

ˆ

M

s∗c1(Y ) = 4χ(M),

where c1(Y ) denotes the first Chern-class of Y .

As a corollary one obtains a (slight) strengthening of a result by Benzécri [1]
(see also [5])

Corollary 1. A closed surface M carries a torsion-free connection ∇ on TM
whose Ricci curvature is totally skew-symmetric if and only if χ(M) = 0.
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Minimal entropy for symmetric spaces

Louis Merlin

Introduction

Given a metric space (X, d), together with a Borel measure µ, one defines the
upper and lower volume entropies of (X, d, µ) as

hu = lim sup
R→∞

logµ(B(x0, R))

R
, hl = lim inf

R→∞

logµ(B(x0, R))

R
,

It is known that these entropies do not depend on the chosen point x0 ∈ X ,
furthermore if X is the universal cover of a compact Riemannian manifold, then
both entropies coincide and they are equal to the topological entropy associated
to the geodesic flow, see [4].

Note that if the metric measure space has polynomial volume growth, that is
if µ(B(x0, R)) ≤ C · Rd for some d ∈ R and all R ≥ 1, then we obviously have
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hu = 0, while if µ(B(x0, R)) ∼ C · ehR for large R, then hu = hl = h. In particular
the volume entropy of the n-dimensional real hyperbolic space is h = (n− 1) and
that of the complex hyperbolic space is h = n (the complex dimension).

is elementary), yet it has surprisely deep connections with sophisticated geo-
metric invariants such as Gromov’s bounded cohomology and simplicial volume,
spectral and systolic geometry, the geodesic flow etc.

I propose to describe the so-called minimal entropy problem, give a brief state
of the art. I’ll be more precise on my own contribution.

The minimal entropy problem

In 1995 Besson, Courtois and Gallot [1] proved a theorem stating that on a
compact locally symmetric Riemannian manifold of negative curvature (M, g0),
the symmetric metric g0 minimizes the volume entropy among all Riemannian
metrics of same volume on M and, if dim(M) ≥ 3, the metric g0 is the unique
entropy minimizer.

This result answered a conjecture by Gromov and Katok and has a number
of deep consequences, including a new proof of Mostow’s rigidity theorem and
its generalizations by Siu, Corlette and Thurston. The question of extending the
above result in now known as the minimal entropy problem.

One of the main ingredient in the proof of the minimal entropy theorem by
Besson, Courtois and Gallot is the method of calibration which has its origin in
the work of Harvey and Lawson on minimal submanifolds. Let me give a very
rough sketch of the proof to illustrate some of the main concepts and ideas.

Let (M, g0) be a compact Riemannian manifold which is locally isometric to
symmetric space of strictly negative curvature X (so X is either the usual real
hyperbolic space, the complex or quaternionic hyperbolic space or the Cayley hy-
perbolic plane). In this case the manifold M is isometric to a quotient Γ\X with
Γ isomorphic to the fundamental group of M . The boundary at infinity of X
can be identified with the tangent unit sphere at a base point, and this identifi-
cation provides ∂∞X with a natural measure. Furthermore Γ acts by isometries
on L2(∂∞X) (Lemma 2.2 in [1]). If g is a metric on M , we denote by M̃ the Rie-
mannian universal cover of M (it is diffeomorphic to X). Now Besson, Courtois
and Gallot proceed as follows:

(1) To any Riemannian metric g on M , they associate a Γ-equivariant embed-

ding Φg : M̃ → L2(∂∞X). Furthermore Φg takes its values in the unit
sphere S∞ ⊂ L2(∂∞X).

(2) If now Ω is a closed Γ-equivariant n-form on S∞, then Φ∗
g(Ω) is a Γ-

invariant n-form on X which defines a volume form onM (still denoted by
Φ∗

g(Ω)). If g1 and g2 are two metrics onM , then an equivariant homotopy
argument together with Stoke’s theorem implies that

ˆ

M

Φ∗
g1(Ω) =

ˆ

M

Φ∗
g2(Ω)
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(3) To any element Φ ∈ S∞ one can associate a “barycenter”π(Φ) ∈ X . Com-

bining this with the previous construction, we have a map F : (M̃, g) → X ,
defined by F (x) = π(Φg(x)) and this maps decreases the volume up to a

ratio h(g)
h(g0)

.

(4) If ω0 is the canonical volume form on X and Ω0 = π∗(ω0), then

h0 · Ω0(ξ) ≤ (4n)n/2 voln(ξ)

for any n-vector ξ ∈ ΛnTS∞, where h0 is the volume entropy of the
canonical metric on X . Furthermore Ω0 is calibrating the immersion Φg0

in the sense that for any n-vector ξ tangent to the immersion Φg0 , the
above inequality is an equality [1, Proposition 5.7 ].

It then follows that

Vol(Φg) ≥
ˆ

M

Φ∗
g(Ω0) =

ˆ

M

Φ∗
g0(Ω0) = Vol(Φg0),

where the volume Vol(Φg) of the embedding is by definition the volume of the image
of a fundamental domain in X for the metric induced by the map Φg : X → L2.
The first inequality holds for any metric g, the middle equality is explained in item
(2) above and the last equality is due to Ω0 calibrating Φg0 . It is now not hard to
relate Vol(Φg) to the usual volume and to the entropy of g, which finally gives us

h(g)n Vol(g) > h(g0)
n Vol(g0).

The heart of the argument is thus to produce an equivariant immersion ofX in a
function space together with the construction of a calibration Ω0 to show that the
immersion is minimal. The calibration is the form π∗(ω0) where π is the projection
to the center of mass. What breaks down in higher rank symmetric spaces is
precisely the construction of the barycenter and new techniques are needed to
obtain a calibration.

My Ph.D dissertation brings a contribution to the minimal entropy conjecture.
The main result deals with the previously unknown case of compact quotient of
products of hyperbolic planes

(
H2

)n
. Les us state this result.

Theorem 1 ([2]). Let (M, g0) be a compact manifold, locally isometric to
(
H2

)n
.

Let g be any other metric on M (no curvature assumption is needed). Then

h(g0)
2n Vol(g0) 6 h(g)2n Vol(g).

Note that, unlike the quoted works of Besson, Courtois and Gallot, this theorem
does not characterize the equality case.

As explained above, the general method is to work out a method of calibra-
tion. But several steps in the construction of Besson, Courtois and Gallot are not
transposable.

A first difficulty is to choose the appropriate notion of boundary of a symmetric
space of higher rank (not negatively curved but only nonpositively curved). Indeed
there are several way to compactify a symmetric space which coincide in the rank
one case. A natural choice in this situation is to choose the so-called Furstenberg
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boundary which has, among other nice properties, the quality of being well be-
haved with respect to product. Indeed the Furstenberg boudary of a product of
symmetric space is the product of Furstenberg boundaries of the factors. Hence,
the Furstenberg boundary of

(
H2

)n
is the n-torus Tn. Since we only deal with(

H2
)n
-manifolds, we do not need a general definition of the Furstenberg boundary

(see however [3]).
A second more serious difficulty is that the barycenter method is no longer

efficient. One of the main ideas in this work is to use the following general process
to build appropriate differential forms that we can substitute to the barycenter
pull backed form.

We use objects from the field of bounded cohomology (see [5] for references on
the subject). We start with a bounded function which takes k parameters on Tn

c : (Tn)k 7→ R

and we construct a differential form on L2(Tn) by

Ω(c)ϕ(f1, · · · , fk) =
ˆ

(Tn)k+1

c(θ0, · · · , θk)ϕ2(θ0)ϕf1(θ1) · · ·ϕfk(θk)dθ0 · · · dθk.

The fact that c is bounded ensures that the integral converges. In order to make
a differential form (i.e an alternate form), one has to choose c alternate, that is,
for any permutation σ ∈ Sk and (θ1, · · · , θk) ∈ Tn,

c(θσ(1), · · · , θσ(k)) = sign(σ)c(θ1, · · · , θk)
This gives us plenty of candidates for being the calibrating form we are looking for.
In this construction the flexibility is of course that we can choose any function.
The question now becomes : What kind of function c can we choose in order to
make Ω(c) a calibrating form ? I found out some characterizations of c to make the

differential form closed and Isom(
(
H2

)n
) invariant (which are required conditions)

and he finally gave a function which can be turned into a calibrating form. More
precisely

Proposition 2. c must define a bounded cohomology class of the quotient manifold
M , that is c must be itself Isom(

(
H2

)n
)-invariant and must be cohomologically

closed.
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Sweepouts of Riemannian manifolds with Ricci curvature bounded
from below

Yevgeny Liokumovich

(joint work with Parker Glynn-Adey, Xin Zhou)

We prove two results about sweepouts of Riemannian manifolds by cycles of con-
trolled mass.

1. Let M be a closed Riemannian manifold of dimension n conformally equiv-
alent to a manifold M0 with Ricci curvature bounded from below by −a2(n −
1). In [1] we construct a sweepout of M by hypersurfaces of volume at most
Cmax{1, aV ol(M0)

1/n}V ol(M)(n−1)/n. This bound is sharp up to a constant. We
use this bound and similar bounds for higher parametric families of (n−1)−cycles
to estimate volumes of minimal hypersurfaces in M . This is a joint work with
Parker Glynn-Adey (Toronto).

2. Let M be a 3-manifold with positive Ricci curvature. In [2] we construct a
sweepout of M by 1-cycles of length at most CV ol(M)1/3. This is a joint work
with Xin Zhou (MIT).
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Complex deformations of n-Fuchsian representations

David Dumas

(joint work with Andrew Sanders)

An n-Fuchsian representation of the fundamental group Π = π1(S) of a compact
surface S is a homomorphism Π → SLnR which can be described as a composition
of an embedding Π → SL2R as a uniform lattice with the n-dimensional irreducible
representation SL2R → SLnR. The connected component of the SLnR-character
variety of Π containing the n-Fuchsian representations is the Hitchin component,
a central object of study in recent efforts to generalize classical Teichmüller theory
to higher-rank Lie groups.

We study the topology and complex geometry associated with deformations of
n-Fuchsian and Hitchin representations into the complex Lie group SLnC. Our
work focuses on the actions of such representations on the flag variety of SLnC, and
in particular on the cocompact domains of discontinuity constructed by Guichard-
Wienhard [2] and their associated quotient manifolds. We show that for n ≥ 3
these compact, complex quotient manifolds are non-Kähler and rationally chain-
connected, and we compute their cohomology. In the case n = 3 (and conjecturally
for all n) the manifold is a smooth fiber bundle over the surface S, however this
bundle structure cannot be made holomorphic.
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We also study the deformation theory of these manifolds and its relation to
the SLnC-character variety of the surface group. For example, in the n-Fuchsian
case the quotient manifold has a natural stratification in which the minimal strata
are holomorphically embedded Riemann surfaces diffeomorphic to S. It is natural
to ask whether this stratification, or some part of it, persists under the deforma-
tion of complex structure induced by a small change in the representation. We
establish holomorphic rigidity results showing that the only deformations of rep-
resentations in which these minimal strata persist to first order are tangent to the
image of the SL2C-character variety under the n-dimensional irreducible represen-
tation (i.e. they are “n-quasi-Fuchsian” to first order). We also classify first-order
deformations in which just one minimal stratum persists, identifying them with
the SLn-opers of Beilinson-Drinfeld [1].
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Smoothing properties of the Kähler-Ricci flow

Eleonora Di Nezza

(joint work with Lu C., Chalmers University of Technology)

Let X be a compact Kähler manifold of complex dimension n and let α0 ∈
H1,1(X,R) be a Kähler class. Fix ω0 ∈ α0 a Kähler form. We say that a family
of Kähler metrics ωt := ω(t) solves the Kähler-Ricci flow (KRF for short) starting
from ω0 if

(*)
∂ωt

∂t
= −Ric(ωt)

and ω(0) = ω0.
The Kähler-Ricci flow became one of the major tools in Kähler geometry through
the work of many authors starting from Cao [1] who proved that the Kähler-Ricci
flow on a compact Kähler manifold with non positive first Chern class c1(X) ≤ 0
converges to the unique Kähler-Einstein metric endowed by the manifold.

The existence and uniqueness of the Kähler-Ricci flow starting from any Kähler
form is due to Cao [1], Tsuji [7] and Tian-Zhang [6]:

Theorem. Let ω0 ∈ α0 be a Kähler form. Then there exists a unique family of
Kähler metrics (ω(t))t∈[0,Tmax)

satisfying (∗) and ω(0) = ω0 where

Tmax := sup{t > 0 |α0 − tc1(X) > 0}
is the maximal time of existence of the flow.
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In relation to the “analytic analogue” of the Minimal Model Program, recently
proposed by Song and Tian, one need to start the KRF from a “degenerate” initial
data rather than a Kähler form.
Observe that Tmax does not depend on the initial data but only on its cohomology
class α0, so at least it makes sense asking whether one can start the flow from any
positive closed (1, 1)-current T0 ∈ α0.

In this direction Song and Tian [5] proved that if T0 ∈ α0 is a positive (1, 1)-
current with continuous potential, then there exists a unique family of Kähler met-
rics (ω(t))t∈(0,Tmax)

satisfying (∗) and such that ω(t) converges to ω0 uniformly as
t goes to zero.

Recently, Guedj and Zeriahi [3] proved that if T0 ∈ α is a current with zero
Lelong numbers at any point, ν(T0, x) = 0 ∀x ∈ X , then there exists a family of
Kähler metrics (ω(t))t∈(0,Tmax)

satisfying (∗) and such that ω(t) converges to T0 in

the weak sense of currents as t goes to zero.
Observe that the above result insures that starting from any positive current with
zero Lelong numbers, the KRF immediately smooths out.

Then, a natural question is: what does it happen when T0 has positive Lelong
numbers?
The result that we were able to prove with Lu [2] is the following:

Theorem A. Let T0 ∈ α0 be any positive (1, 1)-current such that c(T0) >
1

2Tmax
.

Then there exists a unique family of positive (1, 1)-currents, (ω(t))t∈(0,Tmax)
such

that ω(t) is smooth on the Zariski open subset X \Dk(t) and here it solves (∗) in
the classical sense.
Moreover, ω(t) converges to T0 in the weak sense of currents as t goes to zero.

Here c(T0) denotes the critical exponent of integrability of T0.

For any t ∈ (0, Tmax), the subsetDk(t) in the statement of the Theorem is described
as the Lelong superlevel set of T0:

Dk(t) := {x ∈ X | ν(T0, x) > k(t)}

where the constant k(t) depends only on t and it is decreasing to 0 as t goes to 0.
Note that for any s > 0, Ds is an analytic subset of X [4].

We also give a more precise description of the flow. More precisely:

(i) for any t > 1/2c(T0), ωt is smooth everywhere, i.e. is a genuine Kähler
form on X .

(ii) for short time, precisely when t < 1/2nc(T0), ωt has positive Lelong num-
bers if T0 has.

In particular, (ii) insures that the result in Theorem A is sharp and that Lelong
numbers are indeed an obstruction for the smoothing.
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Alexandrov meets Dido

Alexander Lytchak

(joint work with Stefan Wenger)

In the talk I discuss the following theorem:
A proper metric space X satisfies the Euclidean isoperimetric inequality for

curves if and only if the space has globally non-positive curvature in the sense of
Alexandrov.

Here the first condition is understood in the sense that any closed Lipschitz
curve of length l bounds some Lipschitz disc of parametrized Hausdorff area at
most l2/4π. Our theorem extends to other curvature bounds and non-geodesic
quasi-convex spaces.

The if direction of the theorem is a simple consequence of Reshetnyak’s ma-
jorization theorem. Also the only if direction has been shown by Reshetnyak for
2-dimensional Riemannian manifolds with integral curvature bounds. Essentially,
our proof reduces the general case to the case of Riemann surfaces studied by
Reshetnyak. The main ingredients of the proof are the solution of the classical
Plateau problem in arbitrary proper metric spaces, the local Hoelder regularity of
such minimal discs, and the topological and geometric properties of the intrinsic
metric on minimal discs. The basic idea is very simple: In order to prove that
a triangle in the space is thin, we span it by a minimal disc and prove that this
disc comes along with a non-positively curved metric. This provides short curves
between sides of the triangles inside the minimal disc.
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On the total curvature of geodesics

Anton Petrunin

(joint work with Nina Lebedeva)

We give an upper bound for the total curvature of minimizing geodesics on convex
surfaces in the 3-dimensional Euclidean space.

In [1], J. Liberman gave an estimate for the total curvature for geodesics on
convex surface in terms of the length of geodesic and the diameter, inradius of the
surface. The question whether there is a universal upper bound for minimizing
geodesics was asked by D. Burago it was also mentioned in several papers, see
[2, 3, 4]

In addition we discuss the following related topics:

• The counterexample of A. Milka and V. Usov (see [5] and [6]) to a related
conjecture of A. Pogorelov from [7] on the length of spherical image of
minimizing geodesics.

• The construction of corkscrew geodesic given by I. Bárány, K. Kuperberg
and T. Zamfirescuin in [4].

• The optimal bound on total curvature of geodesics on the graphs of convex
Lipschitz functions and epigraph of arbitrary Lipschitz functions; these
results are by V. Usov and D. Berg correspondingly, see [8, 9].
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Mathematisches Institut
Universität Münster
48149 Münster
GERMANY

Prof. Dr. Marc Bourdon
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