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Summary

The objective of this thesis is to present the developments in pluripotential theory made
with my collaborators and how these were used to study the existence and uniqueness of
singular canonical metrics on (singular) Kähler varieties.

Finding canonical (Kähler-Einstein, constant scalar curvature, extremal) metrics on
compact Kähler manifolds is one of the central questions in differential geometry. Given
a Kähler metric ω on a compact Kähler manifold X, one looks for a Kähler potential ϕ
such that ωϕ := ω + ddcϕ is “canonical”.

In this thesis we will focus on two type of canonical metrics, Kähler-Einstein met-
rics and constant scalar curvature Kähler (cscK) metrics. In both cases the problem of
looking for such special metrics can be reformulated in terms of complex Monge-Ampère
equations. This explains also why the study of complex Monge-Ampère operators has
played an important role in Kähler geometry in the last 50 years.

In parallel to the study of the existence and regularity of solutions of complex Monge-
Ampère equations (that represents the core of the proof of the Calabi conjecture given by
Yau in the end of the 70’s), pluripotential theory was introduced at the beginning of the
80’s.

Pluripotential theory is the several complex variables analogue of classical potential
theory in the complex plane (or on Riemann surfaces). While the latter is a linear the-
ory associated to the Laplacian of a Kähler metric, the former is highly non-linear and
associated to the complex Monge-Ampère operator ϕ 7→ (ω + ddcϕ)n.

Since the beginning of the theory, pluripotential tools were found to be very flexible
and suitable to study degenerate complex Monge-Ampère equations, that in turn were
related to the study of singular (canonical) metrics.
Indeed, given (Y, ωY ) a singular variety Y endowed with a Kähler metric ωY and π :
X → Y a resolution of singularities, the Kähler-Einstein equation on Y writes as a
degenerate complex Monge-Ampère equation on the smooth manifold X, where the ref-
erence form θ := π?ωY is degenerate, i.e. it is not necessarily Kähler but merely semi-
positive. Pluripotential theory in the compact setting has its roots in the early 2000s
[GZ05, GZ07, BEGZ10].
Motivated by the study of singular Kähler-Einstein metrics, with Tamas Darvas and
Chinh Lu [DDNL18c, DDNL19, DDNL18a, DDNL18c, DDNL21] we made a systematic
study of pluripotential theory and we developed it in the very general setting where the
reference form θ represents a big cohomology class.
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The main class of objects studied by pluripotential theory is the class of quasi-
plurisubharmonic functions (qpsh for short). A classical way to construct qpsh func-
tions is to use an envelope construction. The study of envelops first in domains of Cn

and later on compact Kähler manifold attracted a lot of attention from people working
in pluripotential theory ([Zah77], [Sic81], [BT76]) and then from the Kähler community
([Che00, Dar17, Ber15, RWN14, CTW19, DDNL18c], to cite only a few).

Important applications of envelopes are for example the trascendental holomorphic
Morse inequalities on projective manifolds [WN19a] and the regularity of geodesics in the
space of Kähler potentials

Hω := {ϕ ∈ C∞(X,R), ωϕ > 0}.

The work with Stefano Trapani [DNT20] fits in these circle of ideas. More precisely, we
get a better understanding of the support of the Monge-Ampére measures of envelopes.

The study of the geometry of the space of Kähler metrics is closely connected with
the uniqueness and existence of canonical Kähler metrics, since these metrics are critical
points of suitable functionals defined on Hω.

Mabuchi introduced a Riemannian structure on the space of Kähler potentials Hω.
As shown by Chen [Che00], Hω endowed with the Mabuchi d2 distance is a metric space.
Darvas [Dar17] showed that its metric completion coincides with a finite energy class
E 2(X,ω) of quasi-plurisubharmonic functions previously introduced by Guedj and Zeriahi
[GZ07] (for completely different reasons!). Other Finsler geometries dp, p ≥ 1, on Hω were
studied by Darvas [Dar15] who showed that the metric completion of Hω w.r.t. dp is yet
another Monge-Ampère energy class, denoted by E p(X,ω). This led to several spectacular
results related to a longstanding conjecture that relates the existence of cscK metrics with
the properness of a functional, called K-energy (see [DR17], [BDL20], [CC20a, CC20b,
CC18]). More precisely, while in [DR17] the authors proved the existence of a Kähler-
Einstein metric on a Fano manifold if and only if the Ding functional is proper (w.r.t. d1);
in [CC20a, CC20b, CC18]) the authors, using a combination of novel PDE techniques,
proved the existence of a cscK metric if and only if the K-energy is proper (w.r.t. d1).
The key step of the last result is to establish uniform estimates. In a joint work with
Alix Deruelle [DDN21] we give a simpler proof of such estimates also using pluripotential
theory. This paper represents the first step of a possible generalization of the existence
of cscK metrics on a singular Kähler variety.

Moreover, employing the same technique as in [DR17] and extending the L1-Finsler
structure of [Dar15] to big and semipositive classes in a work joint with Vincent Guedj
[DNG18], we establish analogous results for singular normal Kähler varieties. Motivated
by the same geometric applications, we also studied the Lp (p ≥ 1) Finsler geometry in
big and semipositive cohomology classes via an approximation method.

This study was then generalized to big and nef classes in the work with Chinh Lu
[DNL20].

The Ding functional and the K-energy play a central role in the variational approach
to look for canonical metrics. Indeed, their critical points are Kähler-Einstein and cscK
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metrics, respectively. The leading term of the Ding functional is the Monge-Ampère
energy while the leading term of the K-energy is an entropy term.
In the work joint with Chinh Lu and Vincent Guedj [DNGC21] we compare the two
notions of probability measures with finite energy and with finite entropy.

Going back to earlier developments, Donaldson conjectured that a constant scalar
curvature metric exists in a Kähler class if and only if the K-energy has certain growth
along the geodesic rays of this space [Don99]. This is closely related to the notion of K-
stability and is the focus of intense research to this day. Motivated by this picture, there
is special interest in regularity of geodesic segments and rays, as well as their geometric
significance (see [Che00, Tos18, CTW19, RWN14] to name only very few works in a fast
expanding literature).

Given their importance in the above mentioned applications, with Tamas Darvas
and Chinh Lu we were interested to see how one can construct weak geodesic rays in-
side (E 1(X, θ), d1). This is done in [DDNL18c, DDNL18a, DDNL21]. In particular, in
[DDNL21] we characterize the limit of weak geodesic rays through the study of the space
of singularity types of quasi-plurisubharmonic functions.

A better understanding of singularities of quasi-plurisubharmonic functions and their
masses allowed us to work in the big setting and to define relative Monge-Ampère energy
classes E p(X, θ, φ) w.r.t. a model potential φ [DDNL18b, DDNL19, Min19b, Tru20]. In
this classes we looked for (weak) solutions of complex Monge-Ampère equations with
prescribed singularities. The resolution of such equations gives the existence of singular
Kähler-Einstein metrics with prescribed singularities.

We describe now the organization of the thesis. It is divided into two chapters:
1. The first chapter is devoted to introduce some new notions in pluripotential theory

together with some of the developments made with my collaborators. These results
are fundamental and they are used in a deep way in all of the proofs of the results
presented in Chapter 2.
We start with the notion of envelopes and their regularity. We then continue with
a particular example of envelopes, the geodesic segments and rays, and we present
a construction of the latter in the big setting.
We then present some new results concerning Monge-Ampère energy classes that
give a positive answer to some open questions in pluripotential theory. This is the
place where we define as well the “relative” version of them.
We continue the discussion with the theory of generalized capacities that will be
essential for later purposes (more precisely for the resolution of complex Monge-
Ampère equations with prescribed singularities).
We conclude the Chapter introducing the space of singularity types.

2. In Chapter 2 we present the geometric results we obtained on the existence (and
uniqueness) of singular canonical metrics. All the latter results make use of the
pluripotentials tools introduced in Chapter 1.
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In particular we present the results of existence (and uniqueness) for singular Kähler-
Einstein metrics (on a singular Kähler variety) together with its family version,
singular Kähler-Einstein metrics with prescribed singularities (on a smooth Calabi-
Yau or general type manifold). We end the Chapter discussing the case of cscK
metrics.
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Chapter 1

Pluripotential Theory

We recall some notions and facts also in order to fix notations.
Let (X,ω) be a compact Kähler manifold of dimension n and fix θ a smooth closed real
(1, 1)-form. A function u : X → R ∪ {−∞} is called quasi-plurisubharmonic if locally
u = ρ+ ϕ, where ρ is smooth and ϕ is a plurisubharmonic function. We say that u is θ-
plurisubharmonic (θ-psh for short) if it is quasi-plurisubharmonic and θu := θ+ddcu ≥ 0 in
the weak sense of currents on X. We let PSH(X, θ) denote the space of all θ-psh functions
on X. The cohomology class {θ} ∈ H1,1(X,R) is big if there exists ψ ∈ PSH(X, θ) such
that θ + ddcψ ≥ εω for some ε > 0.

A potential u ∈ PSH(X, θ) has analytic singularities if it can be written locally as
u(z) = c log∑k

j=1 |fj(z)|2 + h(z), where c > 0, the f ′js are holomorphic functions and h is
smooth. By the fundamental approximation theorem of Demailly [Dem92], if {θ} is big
there are plenty of θ-psh functions with analytic singularities. Following [BEGZ10] the
ample locus of {θ} (denoted by Amp (θ)) is defined to be the set of all x ∈ X such that
there exists a θ-psh function on X with analytic singularities, smooth in a neighborhood of
x. It follows from [Bou04] that there exists a θ-psh function ψ with analytic singularities
such that Amp (θ) is the open set on which ψ is smooth and ψ = −∞ on X \ Amp (θ).

Given u, v ∈ PSH(X, θ), we say that

• u is more singular than v, i.e., u � v, if there exists C ∈ R such that u ≤ v + C;

• u has the same singularity as v, i.e., u ' v, if u � v and v � u.

The classes [u] of this latter equivalence relation are called singularity types.
When θ is non-Kähler, elements of PSH(X, θ) can be quite singular, and we distinguish

the potential with the smallest singularity type in the following manner:

Vθ := sup{u ∈ PSH(X, θ) such that u ≤ 0}.

A function u ∈ PSH(X, θ) is said to have minimal singularities if it has the same singular-
ity type as Vθ, i.e., [u] = [Vθ]. By the analysis above it follows that Vθ is locally bounded
in the Zariski open set Amp (θ).

1



2 1. Pluripotential Theory

Given θ1, ..., θn closed smooth (1, 1)-forms representing big cohomology classes and
uj ∈ PSH(X, θj), j = 1, ...n, following the construction of Bedford-Taylor [BT82, BT87]
in the local setting, it has been shown in [BEGZ10] that the sequence of positive measures

1
⋂
j
{uj>Vθj−k}

θ1
max(u1,Vθ1−k) ∧ . . . ∧ θnmax(un,Vθn−k) (1.0.1)

has total mass (uniformly) bounded from above and is non-decreasing in k ∈ R, hence
converges weakly as k → +∞ to the so called non-pluripolar product

θ1
u1 ∧ . . . ∧ θ

n
un .

The resulting positive measure does not charge pluripolar sets. In the particular case
when u1 = u2 = . . . = un = u and θ1 = ... = θn = θ we will call θnu the non-pluripolar
measure of ui, which generalizes the usual notion of volume form in case θu is a smooth
Kähler form. As a consequence of Bedford-Taylor theory it can be seen that the measures
in (1.0.1) all have total mass less than

∫
X θ

n
Vθ

:= vol(θ), in particular, after letting k →∞
we notice that

∫
X θ

n
u ≤

∫
X θ

n
Vθ
. In fact it was recently proved in [WN19b, Theorem 1.2]

that for any u, v ∈ PSH(X, θ) the following monotonocity property holds for the total
masses:

u � v =⇒
∫
X
θnu ≤

∫
X
θnv .

This result, together with the generalization [DDNL18b, Theorem 1.1], opened the door to
the development of relative finite energy pluripotential theory, that is going to be treated
in Section 1.3.

It is important to mention that the generalization of Witt-Nÿstrom’s result we gave
in the joint paper with Tamas Darvas and Chinh Lu (see Section 1.3), and all the contri-
butions we made in pluripotential theory in the big setting deeply relies on the following
lower-semicontinuity property of non-pluripolar products:

Theorem 1.1 ([DDNL18b, DDNL19]) Let θj, j ∈ {1, . . . , n} be smooth closed real
(1, 1)-forms on X whose cohomology classes are big. Suppose that for all j ∈ {1, . . . , n}
we have uj, ukj ∈ PSH(X, θj) such that ukj → uj in capacity as k → ∞. Then for all
positive bounded quasi-continuous functions χ we have

lim inf
k→+∞

∫
X
χθ1

uk1
∧ . . . ∧ θnukn ≥

∫
X
χθ1

u1 ∧ . . . ∧ θ
n
un .

If additionally, ∫
X
θ1
u1 ∧ . . . ∧ θ

n
un ≥ lim sup

k→∞

∫
X
θ1
uk1
∧ . . . ∧ θnukn , (1.0.2)

then θ1
uk1
∧ . . . ∧ θnukn → θ1

u1 ∧ . . . ∧ θ
n
un in the weak sense of measures on X.

We recall that a sequence {uk}k converges in capacity to u if for any δ > 0 we have

lim
k→+∞

Capω{|uk − u| ≥ δ} = 0,

where Capω is the Monge-Ampère capacity associated to ω (see [GZ17, Definition 4.23]).
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1.1 Envelopes
Starting from the works of Zaharjuta [Zah77] and Siciak [Sic81], which years later have
been taken over by Bedford and Taylor [BT76, BT82, BT87], envelopes of plurisubhar-
monic functions started to be of interest and to play an important role in the development
of the pluripotential theory on domains of Cn.

When, relying on the Bedford and Taylor theory in the local case, the foundations of
a pluripotential theory on compact Kähler manifolds has been developed [GZ05, GZ07],
envelopes of quasi-plurisubharmonic functions started to be intensively studied.

The two basic (and related) questions are about the regularity of envelopes and the
behavior of their Monge-Ampère measures.

In the following we are going to work with some well known envelope constructions:

Pθ(f), Pθ(f1, . . . , fk), Pθ[ϕ](f), Pθ[ϕ].

Given f, f1, . . . fk functions onX bounded from above, we consider the “rooftop envelopes”

Pθ(f) := (sup{v ∈ PSH(X, θ), v ≤ f)})∗

and

Pθ(f1, . . . , fk) := Pθ(min(f1, . . . , fk)) = (sup{v ∈ PSH(X, θ), v ≤ min(f1, . . . fk)})∗.

Then, given a θ-psh function ϕ, the above procedure allows us to introduce

Pθ[ϕ](f) :=
(

lim
C→+∞

Pθ(ϕ+ C, f)
)∗
.

Note that by definition we have Pθ[ϕ](f) = Pθ[ϕ](Pθ(f)). When f = 0, we will simply
write Pθ[ϕ] := Pθ[ϕ](0) and refer to this potential as the envelope of the singularity type
[ϕ]. Also, in the following when no confusion can arise we drop the dependence of the
smooth form and we simply write P (f), P [ϕ].
We emphasize that the functions Pθ(f), Pθ(f1, . . . , fk) and Pθ[ϕ](f) are either θ-psh or
identically equal to −∞. Observe that if −C ≤ f ≤ C, then Vθ − C ≤ Pθ(f) ≤ Vθ + C;
hence Pθ(f) is a well defined θ-psh function.

The study of such envelopes has lead to several works. In particular, in a joint paper
with Stefano Trapani [DNT20] we study the support of the Monge-Ampère measure of
such envelopes and we prove a very general result:

Theorem 1.2 ([DNT20]) Let θ be smooth closed real (1, 1)-form on X such that the
cohomology class {θ} is pseudoeffective. Let ϕ be a θ-plurisubharmonic function and
f ∈ C1,1(X). Assume ϕ ≤ f . Then the non-pluripolar product θnϕ satisfies the equality

1{ϕ=f}θ
n
ϕ = 1{ϕ=f}θ

n
f . (1.1.3)
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Here we denote by C1,1(X) the space of continuous function with bounded distribu-
tional laplacian w.r.t. ω. Elliptic regularity and Sobolev’s embedding theorem imply that
C1,1(X) ⊂ W 2,p for all p ≥ 1, and ⋂p≥1W

2,p ⊂ C1,α for any α ∈ (0, 1). Here W 2,p denotes
the Sobolev space of functions with all derivatives up to second order in Lp.

As an almost immediate consequence we get:

Corollary 1.3 ([DNT20]) Let ϕ ∈ PSH(X, θ) and f ∈ C1,1(X) be such that ϕ ≤ f .
We have:

i) θnPθ(f) = 1{Pθ(f)=f}θ
n
f .

ii) θnP [ϕ](f) = 1{P [ϕ](f)=f}θ
n
f .

The result in i) was already known in the case of a smooth barrier function f and
θ ∈ c1(L) where L is a big line bundle over X [Ber09] or when {θ} is big and nef (not
necessarily representing the first Chern class of a line bundle) [Ber19]. It is also worth to
mention that at the best of our knowledge, the equality in ii) is new even in the case of
a Kähler class.

The fact that the Monge-Ampère measure of an envelope is supported in the contact
set {Pθ(h) = h} is used in a key way in several works dealing with problems of an algebraic
geometric flavor. I can mention for example the work of Witt-Nyström [WN19a] where
he solves a conjecture of Boucksom-Demailly-Păun-Peternell on the duality between the
pseudoeffective and the movable cone on a projective manifold.

It is important to observe that one cannot expect Theorem 1.2 to hold when the barrier
function f is singular. The following counterexample shows indeed that (1.1.3) does not
hold when f is merely continuous.
Let B ⊂ X be a small open ball and let ρ be a smooth potential such that ω = ddcρ in a
neighborhood of B. Using the Poisson formula we solve the Dirichlet problem

(ddc(ρ+ v))n = 0 in B, v|∂B = 0.

Since the boundary data is continuous, we have existence of a continuous solution v ≥ 0
which is ω-psh in B. We then define

f :=
v in B

0 in X \ B.

By construction f ≥ 0 is a continuous function and, since max(v, 0) = v, f is also ω-psh.
On the other hand we observe that∫

X\B
ωnf =

∫
X
ωnf =

∫
X
ωn >

∫
X\B

ωn.

Since {f = 0} ⊆ X \ B, we then deduce that the two measures 1{f=0}ω
n and 1{f=0}ω

n
f

can not coincide.
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Regularity questions about envelopes for functions f that are less regular have been
also addressed in the literature: Guedj, Lu and Zeriahi [GLZ19] proved that if f is a
continuous function, Pθ(f) is also continuous. They also proved that its Monge-Ampère
measure (w.r.t. any big class {θ}) is supported on the contact set {Pθ(f) = f}.

It is important to mention that the equality

θnPθ(f) = 1{Pθ(f)=f}θ
n
f

can be proved as a consequence of the C1,1̄-regularity of the envelope Pθ(f) on Amp (θ),
that is now unavailable in its full generality. There are several recent works which prove
the regularity C1,1̄ in less degenerate cases but the problem in the case of a big class is
still open.
Assume that {θ} is big and nef, Berman [Ber19], using PDE methods, proved that the
envelope Pθ(h) is in C1,1̄ on Amp (θ). The optimal regularity C1,1 in the Kähler case was
then proved independently by [Tos18] and [CZ19], while the big and nef case was settled
in [CTW19].

As the list of papers suggests the community of Kähler geometers is particularly in-
terested in the subject. But all known techniques seems not to work in the big case.
Question 1: Let {θ} be a big class and let f be a C1,1̄ function. Is Pθ(f) a C1,1̄ function
in Amp (θ)?

1.2 Weak geodesics segments & rays
Geodesic segments connecting Kähler potentials were first introduced by Mabuchi [Mab87].
Semmes [Sem92] and Donaldson [Don99] independently realized that the geodesic equa-
tion can be reformulated as a degenerate homogeneous complex Monge-Ampère equation.
The best regularity of a geodesic segment connecting two Kähler potentials is known to
be C1,1 (see [Che00], [Bło12], [CTW19]).

In the context of a big cohomology class, the regularity of geodesics is very delicate. To
avoid this issue in a work in collaboration with Tamas Darvas and Chinh Lu [DDNL18c]
we follow an idea of Berndtsson [Ber15] and we adapt the definition of (sub)geodesics to
the context of big cohomology classes as well.

Fix 0 < ` ≤ ∞. For a curve (0, `) 3 t 7→ ut ∈ PSH(X, θ) we define its complexification
as a function in X ×D`,

X ×D` 3 (x, z) 7→ U(x, z) := ulog |z|(x),

where D` := {z ∈ C
∣∣∣ 1 < |z| < e`}, and π is the projection on X.

We say that t 7→ ut is a subgeodesic segment (resp. ray) if U(x, z) ∈ PSH(X×D`, π
∗θ)

with ` <∞ (resp. U(x, z) ∈ PSH(X ×D∞, π∗θ)).
For ϕ, ψ ∈ PSH(X, θ), we let S(0,`)(ϕ, ψ) denote the set of all subgeodesic segments

(0, `) 3 t 7→ ut ∈ PSH(X, θ) that satisfy lim supt→0 ut ≤ ϕ and lim supt→` ut ≤ ψ.
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Now, for ϕ, ψ ∈ PSH(X, θ), the weak (Mabuchi) geodesic segment connecting ϕ and ψ
is defined as the upper envelope of all subgeodesic segments in S(0,`)(ϕ, ψ), i.e.

ϕt := sup
S(0,`)(ϕ,ψ)

ut. (1.2.4)

For general ϕ, ψ ∈ PSH(X, θ) it is possible that ϕt is identically equal to −∞ for any
t ∈ (0, `), meaning that geodesic segments connecting two general θ-psh functions may
not exist. But when ϕ, ψ ∈ E p(X, θ) it was shown that P (ϕ, ψ) ∈ E p(X, θ) as well (this
is a very nice result we proved in [DDNL18c] from which it follows the convexity of the
energy class E ). Since P (ϕ, ψ) ≤ ϕt, we obtain that ϕt ∈ E p(X, θ) for any t ∈ [0, `]. By
R-invariance each subgeodesic segment is in particular t-convex, hence we get that

ϕt ≤
(

1− t

`

)
ϕ+ t

`
ψ, ∀t ∈ [0, `]. (1.2.5)

Consequently the upper semicontinuous regularization (with respect to both variables
x, z) of t→ ϕt is again in S(0,`)(ϕ, ψ), hence so is t→ ϕt.

In particular, if ϕ and ψ have minimal singularity type, the function h := |ϕ − ψ| is
bounded and t → ut := max

(
ϕ − ‖h‖L∞ t

`
, ψ − ‖h‖L∞ `−t

`

)
is a subgeodesic. Therefore

ϕt ≥ ut for any t ∈ (0, `) and hence ϕt ∈ PSH(X, θ) has minimal singularity type for
any t ∈ (0, `). Moreover, by this last fact and (1.2.5) it follows that limt→1 ϕt = ϕ and
limt→` ϕt = ψ. Consequently, in the particular case when ϕ, ψ have minimal singularity
type, it is natural to extend the curves (0, `) 3 t → ϕt ∈ PSH(X, θ) at the endpoints by
ϕ0 := ϕ and ϕ1 := ψ. As we will see, a similar pattern will arise when ϕ, ψ ∈ E 1(X,ω).
Collecting and expanding the above thought we proved:

Proposition 1.4 ([DDNL18c]) Let t 7→ ϕt be the weak Mabuchi geodesic joining ϕ0, ϕ` ∈
PSH(X, θ) with minimal singularity type, constructed as above. Then for C := supX |ϕ`−
ϕ0|/` > 0 we have that

|ϕt − ϕt′ | ≤ C|t− t′|, t, t′ ∈ [0, `].

Additionally, for the complexification Φ(x, z) := ϕlog |z|(x) we have

(π∗θ + ddcΦ)n+1 = 0 in Amp (θ)×D`,

where equality is understood in the weak sense of measures.

Finally we say that a curve [0,+∞) 3 t → ϕt ∈ PSH(X, θ) is a weak geodesic ray,
with minimal singularity type, if for any fixed ` > 0 [0, `] 3 t→ ϕt ∈ PSH(X, θ) is a weak
geodesic segment joining ϕ0 and ϕ`, potentials with minimal singularity.

We shall say that weak geodesic rays are not easy to construct. As opposed to this,
test curves can be easily constructed and they can also be conveniently “maximized”.
Suppose φ ∈ PSH(X, θ) has minimal singularity. Roughly speaking, we say that R 3 τ 7→
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ψτ ∈ PSH(X, θ) it is a test curve, if it is τ -concave, ψτ = φ ∈ PSH(X, θ) for all τ ≤ −Cψ,
and ψτ = −∞ for all τ ≥ Cψ, for some constant Cψ > 0. Additionally a test curve is
maximal, if it satisfies:

P [ψτ ](φ) = ψτ , τ ∈ R.

Test curves were introduced by Ross and Witt Nyström [RWN14] in order to deal with
geodesic rays in the Kähler case. To this end, we emphasize that the construction of Ross
and Witt Nyström not only generalizes to the big case, but in [DDNL18a] we show that
their very flexible method gives all possible weak geodesic rays (with minimal singularity)
in a unique manner. More precisely we point out a duality between rays and maximal
test curves, via the partial Legendre transform:

Theorem 1.5 ([DDNL18a]) The correspondence ψ 7→ ψ̌ gives a bijective map between
maximal τ -usc test curves τ 7→ ψτ and weak geodesic rays with minimal singularity type
t 7→ ut. The inverse of this map is u 7→ û.

Here ψ̌ and û represent the partial (inverse) Legendre transforms of ψ and u respectively,
defined by:

ψ̌t := sup
τ∈R

(uτ + tτ), ûτ := inf
t≥0

(ut − tτ).

As a corollary we recover the main analytic result of [RWN14] in the big context:

Corollary 1.6 ([DDNL18a]) Let τ 7→ ψτ be a test curve such that ψ−∞ = φ. Define

wt = sup
τ∈R

(P [ψτ ](φ) + tτ), t ≥ 0.

Then the curve t 7→ wt is a weak geodesic ray, with minimal singularity, emanating from
φ.

1.3 Energy Classes
Relative finite energy class E (X, θ, φ). As we briefly mentioned the mass is monotone
w.r.t. the singularity type [DDNL18b], meaning that given ui, vi ∈ PSH(X, θ), i =
1, · · · , n

ui � vi =⇒
∫
X
θu1 ∧ · · · ∧ θun ≤

∫
X
θv1 ∧ · · · ∧ θvn ,

and
ui ' vi =⇒

∫
X
θu1 ∧ · · · ∧ θun =

∫
X
θv1 ∧ · · · ∧ θvn .

It is worth noticing that the reverse implication in the latter statement is not true, meaning
that there are examples of θ-psh functions not having the same singularity type but having
the same mass. One can then wonder if, given u ∈ PSH(X, θ), there exists a least singular
potential that is less singular than u but has the same full mass as u. As we will see this
is indeed the case.
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The ceiling operator and model potentials. In joint works with Tamas Darvas and
Chinh Lu [DDNL21], we introduce the ceiling operator C : PSH(X, θ) 7→ PSH(X, θ)
defined by

C (u) := usc(sup Fu),
where

Fu :=
{
v ∈ PSH(X, θ)

∣∣∣ [u] ≤ [v], v ≤ 0,
∫
X
θkv ∧ θn−kVθ

=
∫
X
θku ∧ θn−kVθ

, k ∈ {0, ..., n}
}
.

As it turns out, there is no reason to take the upper semi-continuous regularization
in the definition above, as C (u) is a candidate in its defining family Fu. Indeed we show
that for any u ∈ PSH(X, θ) and u ≤ 0,

C (u) = lim
ε 7→0+

P [(1− ε)u+ εVθ] ∈ Fu. (1.3.6)

In particular, if φ, ψ ∈ PSH(X, θ) with [φ] ≤ [ψ] then C (φ) ≤ C (ψ), i.e., C is monotone
increasing. In the important particular case of non-vanishing mass, i.e.

∫
X θ

n
u > 0, it can

be checked that the equality of the full masses
∫
X θ

n
u =

∫
X θ

n
v implies equality at all the

intermediate levels,
∫
X θ

k
v ∧ θn−kVθ

=
∫
X θ

k
u ∧ θn−kVθ

, for any k. As a consequence C (u) can be
expressed as

C (u) = sup
{
v ∈ PSH(X, θ)

∣∣∣ [u] ≤ [v], v ≤ 0 and
∫
X
θnu =

∫
X
θnv

}

We then say that a potential φ ∈ PSH(X, θ) is a model potential if φ = C (φ), i.e., if φ
is a fixed point of C . Similarly, the corresponding singularity types [φ] are called model
type singularities.

Examples of model potentials are functions with analytic singularities. As a more
specific example we have that the potential Vθ is a model potential.

In the case of non-vanishing mass we can show that P [u] = C (u). We conjecture
that his is the case in general as well, i.e. that for any u ∈ PSH(X, θ) we have that
P [u] = C (u).

Although we treated both the non-vanishing mass case and the zero mass case up to a
good level of generality, in what follows we decide, for simplicity, to present the theory in
the non-vanishing mass case. So, we will always assume that all θ-psh functions we work
with have strictly positive mass.

Fixing a model potential φ ∈ PSH(X, θ), it is natural to consider the set of φ-relative
full mass potentials:

E (X, θ, φ) :=
{
u ∈ PSH(X, θ), [u] ≤ [φ] such that

∫
X
θnu =

∫
X
θnφ

}
.

Observe that when φ = Vθ, the relative class E (X, θ, Vθ) is nothing else than the full
Monge-Ampère energy class E (X, θ), previously introduced by [GZ07].

Using envelopes we conveniently characterized membership in E (X, θ, φ):



1.3. Energy Classes 9

Theorem 1.7 ([DDNL18c]) Suppose φ ∈ PSH(X, θ), φ = P [φ] and
∫
X θ

n
φ > 0. Then

u ∈ E (X, θ, φ) if and only if u ∈ PSH(X, θ), [u] ≤ [φ] and Pθ[u] = φ. Also, if u ∈
E (X, θ, φ), then

ν(u, x) = ν(φ, x), for any x ∈ X.

Here ν(u, x) denotes the Lelong number of u at the point x.
The last statement in the particular case of φ = Vθ and u ∈ E (X, θ) positively answers to
an open question in pluripotential theory asked in [BEGZ10].

The finite energy classes E p. Fix p ≥ 1. We start recalling the definition of the Monge-
Ampère energy Ip and of the class E p(X, θ).
Given any θ-psh function u with minimal singularities (that w.l.o.g. we can suppose such
that u ≤ Vθ), we define the Monge-Ampère energy as

Ip(u) := 1
n+ 1

n∑
k=0

∫
X
−(Vθ − u)pθku ∧ θn−kVθ

.

We then define the Monge-Ampère energy for arbitrary u ∈ PSH(X, θ) as

Ip(u) := inf{Ip(v)
∣∣∣ v ∈ PSH(X, θ), v has minimal singularities, and u ≤ v}.

In the case p = 1 we simply use the notation I instead of I1.

We let E p(X, θ) denote the set of all u ∈ PSH(X, θ) such that Ip(u) is finite.
In the Kähler case, these classes were introduced in [GZ07] in relation to the existence of
weak solutions for Monge-Ampère equations with degenerate data, but it then played a
crucial role in the study of the space of Kähler potentials

Hω := {ϕ ∈ C∞(X,R)
∣∣∣ ωϕ := ω + ddcϕ > 0}.

Darvas [Dar15] introduced indeed a family of distances in Hω :

Définition 1.1 Let ϕ0, ϕ1 ∈Hω. For p ≥ 1, we set

dp,ω(ϕ0, ϕ1) := inf{`p(ψ) |ψ is a smooth path joining ϕ0 to ϕ1},

where `p(ψ) :=
∫ 1

0

(
1
V

∫
X |ψ̇t|pωnψt

)1/p
dt and V := vol(ω) =

∫
X ω

n.

It was then proved in [Dar17] (generalizing Chen’s original arguments [Che00]) that dp
defines a distance on Hω, and for all ϕ0, ϕ1 ∈Hω,

dp,ω(ϕ0, ϕ1) =
( 1
V

∫
X
|ϕ̇t|pωnϕt

)1/p
, ∀t ∈ [0, 1], (1.3.7)

where t 7→ ϕt is the Mabuchi geodesic (defined in Section 1.2).
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By [Dem92, BK07], potentials in E p(X,ω) can be approximated from above by smooth
Kähler potentials. As shown in [Dar17] the metric dp can be extended for potentials in
ϕ0, ϕ1 ∈ E p(X,ω): if ϕki are smooth strictly ω-psh functions decreasing to ϕi, i = 0, 1
then the limit

dp,ω(ϕ0, ϕ1) := lim
k→+∞

dp,ω(ϕk0, ϕk1)

exists and it is independent of the approximants. By [Dar15], dp defines a metric on
E p(X,ω) and (E p(X,ω), dp,ω) is a complete geodesic metric space.

In the work [DNL20] joint with Chinh Lu we deal with the case of {θ} being a big and
nef class. In this context we define a distance dp on E p(X, θ) and prove that the space
(E p(X, θ), dp) is a complete geodesic metric space.
Typically there are no smooth potentials in PSH(X, θ) but the following class contains
plenty of potentials sufficiently regular for our purposes:

H∆ := {ϕ ∈ PSH(X, θ)
∣∣∣ ϕ = Pθ(f), f ∈ C (X,R), ddcf ≤ C(f)ω}.

Here C(f) denotes a positive constant which depends only on f . Note that any u =
Pθ(f) ∈ H∆ has minimal singularities because, for some constant C > 0, Vθ − C is a
candidate defining Pθ(f).

Theorem 1.8 ([DNL20]) Assume that ϕ0 := Pθ(f0), ϕ1 := Pθ(f1) ∈ H∆. Let dp,ε be
the Mabuchi distance w.r.t. ωε := θ+ εω, where ω is a Kähler form and ε > 0. We define

dp(ϕ0, ϕ1) := lim
ε→0

dp,ε(ϕ0,ε, ϕ1,ε),

where ϕ0,ε := Pωε(f0) and ϕ1,ε := Pωε(f1). Then, the limit exists and is independent of
the choice of ω. Moreover dp, defined as above, is a distance on H∆.

Observe that by nefness of θ, ωε := θ+εω represents a Kähler cohomology class for any
ε > 0. Note that ωε is not necessarily a Kähler form but there exists a smooth potential
hε ∈ C∞(X, R) such that ω′ε := ωε + ddchε is a Kähler form. Observe that, a priori, by
Darvas [Dar15], it is the Mabuchi distance dp,ω′ε to be well defined on E p(X,ω′ε). What
is hidden behind the statement of the above Theorem is that we can actually show that
the Mabuchi distance behaves well when we change the Kähler representative in {ωε}.

Given ϕ0, ϕ1 ∈ E p(X, θ), we then define

dp(ϕ0, ϕ1) := lim
j→+∞

dp(Pθ(f0,j), Pθ(f1,j)),

where fi,j is a sequence of smooth functions decreasing to ϕi, i = 0, 1.

Theorem 1.9 ([DNL20]) The space (E p(X, θ), dp) is a complete geodesic metric space
which is the completion of (H∆, dp).
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The above result extends results in another works of mine [DNG18] to the context of
big and nef cohomology classes. Also, the case when p = 1 was established in a work in
collaboration with Tamas Darvas and Chinh Lu [DDNL18a] in the more general case of
big cohomology classes using the Monge-Ampère energy I. It is worth to underline that
the distance d1 defined by approximation in Theorem 1.8 coincides with the one defined
[DDNL18a] and that I am going to describe in the next lines.

The starting point of the definition of d1 in the setting of a big class is that, given u, v ∈
E 1(X, θ), it has been shown in [DDNL18c] that P (u, v) belongs to E 1(X, θ). Consequently,
we can define d1(u, v) as the following finite quantity:

d1(u, v) = I(u) + I(v)− 2I(P (u, v)). (1.3.8)

Thus defined, d1 is symmetric, and non-degeneracy is a simple consequence of the domi-
nation principle. The main difficulty is to show that the triangle inequality also holds. We
accomplish this, and we are also able to show that the resulting metric space (E 1(X, θ), d1)
is complete, with metric geodesics running between any two points. The construction of
these geodesic segments has been recalled in Section 1.2. We record all of this in a
theorem:

Theorem 1.10 ([DDNL18a]) (E 1(X, θ), d1) is a complete geodesic metric space.

As we pointed out, in the Kähler case the d1 metric is introduced quite differently. In
the Kähler case, formula (1.3.8) is a result of a theorem ([Dar15, Corollary 4.14]), but in
the big case we take it as our definition for d1!

Though there is no apparent connection with the infinite dimensional L1 Finsler ge-
ometry in the case when the reference form is big. By the double estimate below, we will
still refer to d1 as the L1 metric of E 1(X, θ). Indeed, by this double inequality, it seems
that one should think of d1 as a kind of L1 metric with “moving measures”:

d1(u, v) ≤
∫
X
|u− v|θnu +

∫
X
|u− v|θnv ≤ 3 · 2n(n+ 1)d1(u, v), u, v ∈ E 1(X, θ).

Energy & Entropy.

The class E 1 is the most studied in the literature since it appears in a natural way in
the variational approach to look for Kähler-Einstein metrics. More precisely, the Monge-
Ampère energy I is the leading term of the Ding functional. Maximizing such a functional
is equivalent to the search for Kähler-Einstein metrics on Fano manifolds. In parallel to
this, the notion of probability measures with finite entropy [BBE+19] has played an impor-
tant role in recent developments in Kähler geometry: indeed, a constant scalar curvature
Kähler metric minimizes another functional, the so-called K-energy, whose leading term is
an entropy. The purpose of the work joint with Chinh Lu and Vincent Guedj [DNGC21]
is to compare these two notions.
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We consider µ = fωn, 0 ≤ f , µ(X) =
∫
X ω

n, a probability measure with finite entropy

0 ≤ Entωn(µ) :=
∫
X
f log f ωn < +∞.

Since µ is absolutely continuous with respect to the volume form ωn, it is in particular
“non-pluripolar” hence it follows from [GZ07] that there exists a unique full mass potential
ϕ ∈ E (X,ω) such that supX ϕ = 0 and

(ω + ddcϕ)n = µ.

It has been observed in [BBE+19] that

Ent(X,ω) ⊂ E 1(X,ω),

and the injection Ent(X,ω) ↪→ E 1(X,ω) is compact, where Ent(X,ω) is the set of ω-
psh functions whose Monge-Ampère measure has finite entropy. However all computable
examples suggest that Ent(X,ω) is actually contained in a higher energy class E p(X,ω)
for some p > 1 depending on the dimension. We confirm this experimental observation
by showing the following:

Theorem 1.11 ([DNGC21]) Let µ = (ω + ddcϕ)n = fωn be a probability measure with
finite entropy Entωn(µ) =

∫
X f log fωn < +∞. Then

ϕ ∈ E
n
n−1 (X,ω).

Moreover the inclusion Ent(X,ω) ↪→ E p(X,ω) is compact for any p < n
n−1 .

This exponent is sharp when n ≥ 2. If n = 1 then ϕ is continuous, hence it belongs to
E p(X,ω) for all p > 0.

The case of Riemann surfaces deserves a special treatment: finite entropy potentials
turn out to be bounded (and even continuous), but this is no longer the case in higher
dimension. The proof of Theorem 1.11 relies on a Moser-Trudinger inequality which
provides a strong integrability property of finite energy potentials. This is the content of
our second main result:

Theorem 1.12 ([DNGC21]) Fix p > 0. There exist positive constants c, C > 0 de-
pending on X,ω, n, p such that, for all ϕ ∈ E p(X,ω) with supX ϕ = −1,∫

X
exp

(
c|Ip(ϕ)|−1/n|ϕ|1+ p

n

)
ωn ≤ C.

Theorem 1.12 is an interesting variant of Trudinger’s inequality on compact Kähler
manifolds. The case p = 1 settles a conjecture of Aubin (called Hypothèse fondamentale
[Aub84]) which is motivated by the search for Kähler-Einstein metrics on Fano manifolds.
The conjecture was previously proved by Berman-Berndtsson [BB11] under the assump-
tion that the cohomology class of ω is the first Chern class of an ample holomorphic line
bundle.
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The relative finite energy class E 1. In [DDNL18b], we develop the variational ap-
proach in order to study degenerate complex Monge-Ampère equations with prescribed
singularities (see Section 2.3). In order to do so we need to understand the relative version
of the Monge-Ampère energy, and its bounded locus E 1(X, θ, φ).

For u ∈ E (X, θ, φ) with relatively minimal singularities, we define the Monge-Ampère
energy of u relative to φ as

Iφ(u) := 1
n+ 1

n∑
k=0

∫
X

(u− φ)θku ∧ θn−kφ .

In the next theorem we collect basic properties of the Monge-Ampère energy:

Theorem 1.13 ([DDNL18b]) Suppose u, v ∈ E (X, θ, φ) have relatively minimal singu-
larities. The following hold:
(i) Iφ(u)− Iφ(v) = 1

n+1
∑n
k=0

∫
X(u− v)θku ∧ θn−kv .

(ii) If u ≤ φ then,
∫
X(u− φ)θnu ≤ Iφ(u) ≤ 1

n+1
∫
X(u− φ)θnu .

(iii) Iφ is non-decreasing and concave along affine curves. Additionally, the following
estimates hold:

∫
X(u− v)θnu ≤ Iφ(u)− Iφ(v) ≤

∫
X(u− v)θnv .

We can thus define the Monge-Ampère energy for arbitrary u ∈ PSH(X, θ, φ) using a
familiar formula:

Iφ(u) := inf{Iφ(v)
∣∣∣ v ∈ E (X, θ, φ), v has relatively minimal singularities, and u ≤ v}.

We then show that if u ∈ PSH(X, θ, φ) then Iφ(u) = limt→∞ Iφ(max(u, φ − t)). We let
E 1(X, θ, φ) denote the set of all u ∈ PSH(X, θ, φ) such that Iφ(u) is finite.

It is important to stress that the definition of Iφ is given and its properties are proved
in the case of a model potential φ with small unbounded locus (i.e. φ locally bounded
outside a closed complete pluripolar set A ⊂ X). The latter assumption is heavily used
in order to justify integration by parts.
In later works Mingchen Xia [Min19a] and Chinh Lu [Chi21] proved a very general inte-
gration by parts formula. This result allows us to work with the relative Monge-Ampère
Iφ without assuming that the model potential φ has small unbounded locus.

In analogy with what we saw in the paragraph 1.3, one could wonder whether it is
possible to define relative Monge-Ampère classes E p(X, θ, φ) and if the geometry of these
classes in interesting. A positive answer is given by Mingchen Xia [Min19b]. The case
p = 1 was independently treated in [Tru20].

1.4 The theory of Capacities
We recall the circle of ideas related to the φ-relative Monge-Ampère capacity. This notion
has its roots in [DNL17, DNL15], and it was treated in detail in a couple of works in
collaboration with Tamas Darvas and Chinh Lu [DDNL18b, DDNL19].
We start by introducing the main concepts. For this we fix χ ∈ PSH(X, θ).
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Définition 1.2 Let E be a Borel subset of X. We define the χ-relative capacity of E as

Capχ(E) := sup
{∫

E
θnu
∣∣∣ u ∈ PSH(X, θ), χ− 1 ≤ u ≤ χ

}
. (1.4.9)

It can be proved that Capχ is inner regular, i.e.,

Capχ(E) = sup{Capχ(K)
∣∣∣ K ⊂ E ; K is compact}.

Moreover it is elementary to see that Capχ is continuous along increasing sequences, i.e.,
if {Ej}j increases to E then

Capχ(∪Ej) = lim
j

Capχ(Ej).

In particular, if ψ is a quasi-psh function then the function t 7→ Capχ(ψ < χ − t) is
right-continuous on R.
Such capacity can be compared with the one defined in [GZ05] and [BEGZ10]. We indeed
show that if χ = (1 − ε)w + εVθ, where w ∈ PSH(X, θ), w ≤ 0 and ε ∈ (0, 1), then for
any Borel subset E ⊂ X one has

Capθ(E) := CapVθ(E) ≤ ε−nCapχ(E).

The relative χ-extremal function of E is defined as

hE,χ := sup{u ∈ PSH(X, θ)
∣∣∣ u ≤ χ− 1 on E and u ≤ χ on X}.

The global χ-extremal function of E is defined as

VE,χ := sup{u ∈ PSH(X, θ, χ)
∣∣∣ u ≤ χ on E}.

We set Mχ(E) := supX V ∗E,χ, where V ∗E,χ denotes the upper semicontinuous regulariza-
tion of VE,χ. The Alexander-Taylor capacity is then defined as Tχ(E) := exp(−Mχ(E)).

We obtain that sets with zero capacity are small, i.e. given a Borel set B ⊂ X, then
Capχ(B) = 0 if and only if B is pluripolar.

In similar spirit, we mention that Mχ(B) = +∞ implies that Capχ(B) = 0.
In order to use Capχ in an effective manner, additional assumptions need to be made

on the potential χ. We assume that χ := φ, where φ is a model potential and has
non-collapsing mass:

C (φ) = P [φ] = φ and
∫
X
θnφ > 0.

For elementary reasons h∗E,φ is a θ-psh function on X which has the same singularity
type as φ, in fact φ − 1 ≤ h∗E,φ ≤ φ. A similar conclusion holds for V ∗E,φ if E is non-
pluripolar, more precisely:

φ ≤ V ∗E,φ ≤ φ+Mφ(E).
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Indeed, the first estimate is trivial, while for the second one we notice that every candidate
potential of V ∗E,φ−Mφ(E) is non-positive and more singular than φ. Hence the supremum
of all these potentials has to be less than P [φ] = φ.

The Monge-Ampère measures of the relative extremal function h∗E,φ and the global
extremal function V ∗E,φ are quite well understood. We indeed prove that given E a (non-
pluripolar) Borel set then

(i) θnh∗
E,φ

vanishes in the open set {h∗E,φ < 0} \ Ē. Moreover if E = K is a compact
subset of X then

Capφ(K) =
∫
K
θnh∗

K,φ
=
∫
X

(φ− h∗K,φ)θnh∗
K,φ
.

(ii) θnV ∗
E,φ

vanishes in X \ E.

Lastly we point out that the Alexander-Taylor and Monge-Ampère capacities are
related by the following estimates:

1 ≤
( ∫

X θ
n
φ

Capφ(K)

)1/n

≤ max(1,Mφ(K)),

for any compact subset K ⊂ X with Capφ(K) > 0.

1.5 The space of Singularity Types
In [DDNL21] we study the space of singularities classes [w], w ∈ PSH(X, θ) that we denote
by S (X, θ). This latter space plays an important role in transcendental algebraic geome-
try, as its elements represent the building blocks of multiplier ideal sheaves, log-canonical
thresholds, etc., bridging the gap between the algebraic and the analytic viewpoint on the
subject.

The space PSH(X, θ) has a natural complete metric space structure given by the L1

metric. However the L1 metric does not naturally descend to S (X, θ) making the study
of variation of singularity type quite awkward and cumbersome.

On the other hand, “approximating" an arbitrary singularity type [u] with one that
is much nicer goes back to the beginnings of the subject. Perhaps the most popular of
these approximation procedures is the one that uses Bergman kernels, as first advocated
in this context by Demailly [Dem92]. Here, using Ohsawa-Takegoshi type theorems one
obtains a (mostly decreasing) sequence [uj] that in favorable circumstances approaches [u]
in the sense that multiplier ideal sheaves, log-canonical thresholds, vanishing theorems,
intersection numbers etc. can be recovered in the limit (see for example [Bou02a, Bou02b,
Bou04]). Still, no metric topology seems to be known that could quantify the effectiveness
or failure of the “convergence" [uj] 7→ [u]. In the work with Tamas Darvas and Chinh Lu
we propose an alternative remedy to this.
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We introduce a natural (pseudo)metric dS on S (X, θ) and point out that it fits well
with some already existing approaches in the literature. The precise definition of dS uses
the language of geodesic rays from our previous works and that we already described in
Section 1.2.

By R(X, θ) we denote the space of finite energy geodesic rays emanating from Vθ:

R(X, θ) := {[0,∞) 3 t 7→ ut ∈ E 1(X, θ) s.t. u0 = Vθ and t 7→ ut is a d1 geodesic ray}.

As shorthand convention we will use the notation {ut}t ∈ R(X, θ) when referring to rays.
We then introduce the chordal L1 geometry on R(X, θ):

dc1({ut}t, {vt}t) := lim
t→∞

d1(ut, vt)
t

. (1.5.10)

Note that (basically) from [BDL20] it follows that t 7→ d1(ut, vt) is convex, hence the map
t 7→ d1(ut, vt)/t is increasing, implying that the limit in (1.5.10) is well defined. We also
show that:

Theorem 1.14 ([DDNL21]) The space (R(X, θ), dc1) is a complete metric space.

For {ut}t ∈ R(X, θ) it is natural to introduce the radial Monge–Ampère energy I{·} :
R(X, θ) → R by the formula I{ut} = limt

I(ut)
t

= I(u1), where in the last equality we
have used the linearity of I along geodesic rays (previously proved in [DDNL18c]).

We then observe that S (X, θ) embeds naturally in R(X, θ), endowing the former
space with a natural pseudo-metric structure.

Given ψ ∈ PSH(X, θ) with ψ ≤ 0, we consider a geodesic ray {r[ψ]t}t ∈ R(X, θ)
whose potentials have minimal singularities. The specific construction is as follows. Let
[0, l] 3 t 7→ r(ψ)lt ∈ E 1(X,ω) be the geodesic segment with minimal singularity type
joining r(ψ)l0 = Vθ and r(ψ)ll = max(ψ, Vθ − l). It can be shown that for any fixed
t > 0 the family {r(ψ)lt}l≥0 is increasing as l → ∞, and its limit equals the geodesic ray
with minimal singularity type t 7→ r[ψ]t. Along the way we also obtain the lower bound
max(ψ, Vθ − t) ≤ r[ψ]t for all t ∈ [0,∞).

Since ψ ≤ ψ′ implies that r[ψ]t ≤ r[ψ′]t and r[ψ]t = r[ψ + C]t, C ∈ R, we obtain that
the construction of the ray only depends on the singularity type, giving us a map:

r[·] : S (X, θ)→ R(X, θ). (1.5.11)

The basic idea will be to pull back the metric geometry of R(X, θ) to S (X, θ) via this
map.

Via our embedding in (1.5.11), we can also introduce the Monge-Ampère energy of
singularity types

IS [ψ] := I{r[ψ]t}.

Theorem 1.15 ([DDNL21]) For ψ ∈ PSH(X, θ) we have

IS [ψ] = −
∫
X
θnVθ + 1

n+ 1

n∑
j=0

∫
X
θjVθ ∧ θ

n−j
ψ . (1.5.12)
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Finally, we consider the L1 (pseudo)metric structure of S (X, θ), by pulling back the
chordal metric structure from R(X, θ):

dS ([ψ], [χ]) := dc1({r[ψ]t}t, {r[χ]t}t).

In case [u] ≤ [v], using (1.5.12), the expression for dS ([u], [v]) is especially simple:

Proposition 1.16 ([DDNL21]) If [u], [v] ∈ S (X, θ) is such that [u] ≤ [v] then

dS ([u], [v]) = 1
n+ 1

n∑
j=0

(∫
X
θjVθ ∧ θ

n−j
v −

∫
X
θjVθ ∧ θ

n−j
u

)
.

When [u] 6≤ [v], then a similar simple expression for dS ([u], [v]) may not be available,
however one can find a useful expression that totally governs the behavior of dS ([u], [v]):

Proposition 1.17 ([DDNL21]) There exists an absolute constant C > 1 only depen-
dent on n such that:

dS ([u], [v]) ≤
n∑
j=0

(
2
∫
X
θjVθ ∧ θ

n−j
max(u,v) −

∫
X
θjVθ ∧ θ

n−j
v −

∫
X
θjVθ ∧ θ

n−j
u

)
≤ CdS ([u], [v]).

As we will see in the Theorem below, dS ([u], [v]) = 0 when the singularities of u and
v are essentially indistinguishable (the Lelong numbers, multiplier ideal sheaves, mixed
masses of [u] and [v] are the same). More precisely, dS ([u], [v]) = 0 if and only if u and
v belong to the same relative full mass class. In particular, u ∈ E (X, θ) if and only if
dS ([u], [Vθ]) = 0. Consequently, the degeneracy of dS is quite natural:

Theorem 1.18 ([DDNL21]) (S (X, θ), dS ) is a pseudo-metric space. More precisely,
the following are equivalent:
(i) dS ([ψ], [χ]) = 0.
(ii) r[ψ] = r[χ].
(iii) C (ψ) = C (χ).

Given the dS -continuity of [u] →
∫
X θ

n
u it is quite natural to introduce the following

subspaces for any δ ≥ 0:

Sδ(X, θ) := {[u] ∈ S (X, θ) :
∫
X
θnu ≥ δ}.

These spaces are dS -closed, and they are also complete:

Theorem 1.19 ([DDNL21]) For any δ > 0 the space (Sδ(X, θ), dS ) is complete.

Unfortunately the space (S (X, θ), dS ) is not complete. This is quite natural however,
as issues may arise if the non-pluripolar mass vanishes in the dS -limit. In the paper (see
[DDNL21, Section 4.2] we give an explicit example of this phenomenon.
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Chapter 2
Canonical metrics

2.1 Kähler-Einstein metrics
Given a compact Kähler manifold (X,ω) of complex dimension n, the geometric problem
of looking for a Kähler-Einstein (KE) metric ωϕ := ω+ddcϕ ∈ {ω} is equivalent to solving
a complex Monge-Ampère equation

(ω + ddcϕ)n = e−λϕfωn

where 0 < f ∈ C∞(X,R) is a data of the problem and λ ∈ R.
A Kähler manifold with a KE metric with λ > 0 is called Fano; if λ = 0 then we refer

to the manifold as Calabi-Yau; if λ < 0 the manifold is said to be of general type.
The positive curvature case (λ > 0) is the most complicated: Kähler-Einstein metrics

do not always exist. Recently, X.X. Chen, S. Donaldson and S. Sun [CDS15a, CDS15b,
CDS15c] proved the Yau-Tian-Donaldson conjecture for Kähler-Einstein metrics: a Fano
manifold X admits a Kähler-Einstein metric if and only if it is K-stable (where the K-
stability is a property of the manifold of an algebraic nature).

The existence and uniqueness of the solution ϕ ∈ C∞(X) in the case λ < 0 were
independently proved by Aubin [Aub78] and Yau [Yau78] while the case λ = 0 was settled
by Yau in [Yau78]. Yau’s proof of the Calabi conjecture relies on the continuity method
and the final goal is to establish uniform estimates for the solution ϕ, i.e. estimates of
the type

‖ϕ‖Ck ≤ Ck ∀k ∈ N,
where C is a positive constant under control, that does not depend on ϕ.

The most difficult step is the first one: C0-estimate. Once the C0 and the C2-estimates
are in hand, all the higher order estimates can be obtained from them using Evans-Krylov
theory, Schauder’s estimates and a bootstrap argument. Yau, in his proof notably pro-
vided the crucial C0 a priori estimate making a clever use of Moser’s iteration techniques.

In [Koł98], Kołodziej generalized the C0 a priori estimate. The strength of the latter
is that it can be applied to a larger family of Monge-Ampère equations:

(ω + ddcϕ)n = fωn,

19
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where we merely ask 0 ≤ f ∈ Lp for some p > 1. The beautiful proof of this result uses
techniques from pluripotential theory.

More precisely, in the case of Kołodziej’s approach, the key pluripotential tool is the
notion of Monge-Ampère capacity. Given a Borel set E ⊂ X, the capacity of E is defined
as

Capω(E) := sup
{∫

E
ωnv

∣∣∣ v ∈ PSH(X,ω), −1 ≤ v ≤ 0
}
.

Observe that the measure ωnv is well-defined since v is a bounded ω-psh function.

Kołodziej’s idea is to show that the Monge-Ampère capacity of the sub-level sets
{ϕ < −t} vanishes for t > 0 large enough (t ≥ T∞). This gives the L∞-bound since
qpsh-functions on a compact manifold are bounded from above.

Kołodziej’s work made clear that pluripotential methods were powerful enough to hope
to treat degenerate complex Monge-Ampère equations. His uniform estimate can indeed
be applied to complex Monge-Ampère equations of the type

(ω + ddcϕ)n = fdV

where dV is a smooth volume form, 0 ≤ f ∈ Lp(dV ) for some p > 1.
This opened the way to the works of Berman, Boucksom, Eyssidieux, Guedj and

Zeriahi ([GZ05], [GZ07], [BEGZ10], [BBGZ13], etc...) as we are going to discuss in the
next Sections.

2.2 Singular KE
The motivation to look for singular Kähler-Einstein metrics comes from the Minimal
Model Program (MMP) in birational geometry.
The MMP is part of the birational classification of projective manifolds and the problem
is the following: we fix a smooth manifold and we consider its birational equivalence class.
The goal is to find the “simplest manifold” (the Minimal Model) in this class. The case
of surfaces has been studied by the Italian school (guided by Castelnuovo, Enriques and
Severi) in the XX century. In higher dimension the situation is more complicated since
there exist manifolds which do not have a smooth minimal model. For this reason if we
want to have a chance to classify (projective) manifolds we need to work with singular
varieties.

One can still make sense of the Kähler-Einstein equation on a singular variety. Such
equation reduces to a degenerate complex Monge-Ampère equation. Indeed, given (Y, ωY )
a singular variety Y endowed with a Kähler metric ωY and π : X → Y a resolution of
singularities, the KE equation on Y writes as a complex Monge-Ampère equation on the
smooth manifold X of type:

(θ + ddcϕ)n = e−λϕµ, λ ∈ R. (2.2.1)

Here the word “degenerate” stands for the fact that
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• the reference form θ := π?ωY is not necessarily Kähler but merely semi-positive.
Indeed the (1, 1)-form θ is strictly positive where π is biholomorphic but it vanishes
along the exceptional divisor E.

• the measure µ is not necessarily a smooth volume form (it can have divisorial sin-
gularities for example). It is just a positive non-pluripolar measure with µ(X) =∫
X(π?ωY )n > 0.

We first look for a weak solution of (2.2.1) and then we study the regularity of it.
When λ ≤ 0, the existence and uniqueness (up to constant when λ = 0) of a weak
solution ϕ ∈ E (X, θ) is guaranteed by [BEGZ10].

The regularity problem (still in the case λ ≤ 0) was worked out by Eyssidieux, Guedj
and Zeriahi in [EGZ09]: they proved that when µ = f dV and f has very specific divisorial
singularities, i.e. f = |σ1|2k+···|σp|2k

|τ1|2`+···|τq |2` , with k, ` ∈ R+ with σi, τi holomorphic sections of some
line bundle, then the solution ϕ is smooth outside an analytic set (that is Amp (θ)c ∪
∩i{σi = 0} ∪ ∩i{τi = 0}).

As consequence they showed that general type varieties, as well as a very wide class of
Calabi-Yau varieties (precisely, polarized Q-Calabi-Yau varieties), admit a unique singular
Kähler-Einstein metric. This notion can be understood as smooth and Kähler-Einstein
in the usual sense on the ample locus of the canonical bundle and in a generalized sense
(of currents) on the exceptional locus.

Moreover, in the same article it is shown that the local potential of this singular
Kähler-Einstein metric is bounded on all X.

In the last years there have been a lot of attempts to establish the global continuity
of the potential. This was established in a very recent preprint by Guedj, Guenancia and
Zeriahi [GGZ21].

A more general case (when the reference form represents a big class) was treated in
[QT21] where the author proves that singular Kähler-Einstein metrics on log canonical
varieties of general type have continuous potentials on the ample locus outside of the
non-klt part.

Nevertheless, the problem of understanding the asymptotic behavior of a singular KE
metric near the boundary of the ample locus of θ = π∗ωY (or equivalently near the singular
points of Y ) is still widely open.

The strategy to prove the existence and regularity of a solution to (2.2.1) is to establish
a uniform a priori estimate. The first crucial step is the C0-estimates: in the case λ < 0
this is a simple consequence of the maximum principle; on the other hand, in the case
λ = 0 this estimate is quite delicate.

In a joint paper with Vincent Guedj and Henri Guenancia we revisit the proof by Yau
[Yau78], as well as its recent generalizations [Koł98, EGZ09], and establish the following:

Theorem 2.1 ([DNGG21]) Let {θ} be a big cohomology class of volume V > 0. Let ν
and µ = f ν be probability measures, with 0 ≤ f ∈ Lp(ν) for some p > 1. Assume the
assumptions (H1)-(H2) or (H1)-(H2’) are satisfied:
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(H1) ∃α > 0, Aα > 0 such that ∀ψ ∈ PSH(X, θ),
∫
X e
−α(ψ−supX ψ)dν ≤ Aα;

(H2) there exists C > 0 such that (
∫
X |f |p dν)1/p ≤ C;

(H2’) there exists C, ε > 0 such that
∫
X |f || log f |n+ε dν ≤ C.

Let ϕ be the unique θ-psh function with minimal singularities such that

V −1(θ + ddcϕ)n = µ,

and supX ϕ = 0. Then −M ≤ ϕ− Vθ ≤ 0 where

M = 1 + C1/nA1/nq
α eα/nqbn

[
5 + eα−1C(q!)1/qA1/q

α

]
,

where bn is a uniform constant such that exp(−1/x) ≤ bnnx
2n for all x > 0.

The importance of such a result is that gives a very explicit expression of the lower bound
for ϕ−Vθ. As we are going to see in Section 2.4, the above Theorem will be fundamental
in order to develop the first steps of pluripotential theory in family.

The above Theorem has to be thought as a (relative) C0-estimates for ϕ. But, what
about higher regularity?

Question 2:

• Let µ = f dV , f > 0, a smooth volume form with µ(X) = vol({θ}), and let ϕ be the
unique θ-psh function such that θnϕ = µ normalized with supX ϕ = 0. Is ϕ smooth
in Amp (θ)?

• Or more generally, assume that the density f is smooth outside some analytic set
D. Is ϕ is smooth in Amp (θ) ∩Dc?

When f is smooth and β := {θ} is a Kähler class, a positive answer is given by Yau’s
theorem. Building on the latter result, in [BEGZ10] they prove that this is still the case
when f is smooth and α is big and nef. Their strategy relies on the approximation of α
by Kähler classes βε.

The general case of a big cohomology class is widely open and as I am going to describe
in the next sections, achievements in this direction will lead the way to answer to other
regularity issues related to geometric problems, such as the regularity of singular Kähler-
Einstein metrics, and the existence and regularity of singular constant scalar curvature
metrics.

The case λ > 0 is completely different since solutions of the Monge-Ampère equation
θnϕ = e−λϕµ do not always exist. As consequence singular Kähler-Einstein metrics of
positive curvature are more difficult to construct. It is already so in the smooth case
[CDS15c]. Their first properties have been obtained in [BEGZ10, BBE+19].
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Pushing further these works, in a joint paper with Vincent Guedj we provide a nec-
essary and sufficient analytic condition for their existence, generalizing a result of Tian
[Tia97] and Phong-Song-Sturm-Weinkove [PSSW08]. More precisely, we work in the fol-
lowing singular context: we consider (Y,D) a log Fano pair, that is a klt pair (Y,D) such
that Y is projective and −(KY + D) is ample and we fix a reference smooth strictly psh
metric φY on −(KY +D), with curvature ωY . There is then a canonical measure attached
to φY , the so-called adapted measure µφY . The volume of (Y,D) is

V := c1(Y,D)n =
∫
Y
ωnY .

A Kähler-Einstein metric T for the log Fano pair (Y,D) is a finite energy current T ∈
c1(Y,D) such that T n = V · µT , where µT is the adapted measure associated to the
potential of the (1, 1)-current T .
If we choose a log resolution π : X → Y , the equation becomes

(θ + ddcϕ)n = e−ϕµ̃0

where θ = π∗ωY is semipositive and big and µ̃0 = ∏
i |fi|2aidV .

Following and idea of Darvas-Rubinstein [DR17], we then prove the following:

Theorem 2.2 ([DNG18]) Let (Y,D) be a log Fano pair. It admits a unique Kähler-
Einstein metric iff there exists ε,M > 0 such that for all ϕ ∈Hθ := π∗HωY ,

F (ϕ) ≤ −εd1(0, ϕ) +M.

Here the distance d1 is the L1-distance w.r.t. the semi-positive form θ (see Section 1.3)
and the functional F , known as the Ding functional, is defined as

F (ϕ) := I(ϕ) + log
[∫
X̃
e−ϕdµ̃0

]
,

where I is the Monge-Ampère energy w.r.t. θ. Let me observe that the statement of the
above Theorem is independent on the resolution π.
It is worth to mention that such result relies on a deep study and understand of the
geodesics in the space Hθ := π∗HωY = {ϕ ∈ PSH(X, θ), θϕ := θ + ddcϕ > 0 in Amp (θ)}
and on a consistent definition of the distances dp w.r.t. the degenerate form θ. A large
part of our work is indeed dedicated to this. This ideas were then taken into account,
simplified and generalized in the subsequent work with Chinh Lu [DNL20] (see Section
1.3).

2.3 Singular KE with prescribed singularities
In a series of works [DDNL18b, DDNL19] with Chinh Lu and Tamas Darvas, we studied
solutions to complex Monge-Ampère equations with prescribed singularity. One starts
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with a potential u ∈ PSH(X, θ) and a density 0 ≤ f ∈ Lp(X), p > 1, and looks for a
solution u ∈ PSH(X, θ) such that θnu = fωn and [u] = [φ]. The compatibility condition∫
X θ

n
φ =

∫
X fω

n > 0 is necessary for the probability of this equation. Beyond this nor-
malization condition, as it turns out, the necessary and sufficient condition for the well
posedness is that φ is a model potential (i.e. φ = C (φ) = P [φ]). The result we achieved
states as

Theorem 2.3 ([DDNL19]) Let λ ≥ 0. Assume φ is a model potential and that µ is a
non-pluripolar positive measure on X such that µ(X) =

∫
X θ

n
φ > 0. Then there exists a

unique (up to constant when λ = 0) u ∈ E (X, θ, φ) such that θnu = eλuµ.
In addition to this, in the particular case when µ = fωn with f ∈ Lp(X,ωn), p > 1

we have that
φ− C

(
λ, p, ω,

∫
X
θnφ, ‖f‖Lp

)
≤ u ≤ φ ≤ 0.

When θ is Kähler and φ = 0, the first part of the Theorem is due to [GZ07] while the
second part reduces to Kołodziej’s L∞-estimate [Koł98] in the context of the Calabi-Yau
theorem [Yau78]. In the general case {θ} a big class and φ = Vθ, then the above result
was proved in [BBGZ13] and [EGZ09].

This result is a significant generalization of Kołodziej’s L∞ estimate [Koł98] to our
relative context and it uses new pluripotential tools: the generalized Monge-Ampère
capacity Capχ in the big setting (see Section 1.4). In [DDNL18b] and [DDNL19] we use
two different approaches to prove such a result. In particular, in [DDNL18b] we develop
the variational approach using the relative Monge-Ampère energy Iφ (see paragraph 1.3)
following the ideas in [BBE+19].
On the other hand, in [DDNL19] we exploit the theory of capacities. One of the building
blocks for the arguments is the following:

Theorem 2.4 ([DDNL19]) Fix a ∈ [0, 1), A > 0, χ ∈ PSH(X, θ) and 0 ≤ f ∈
Lp(X,ωn) for some p > 1. Assume that u ∈ PSH(X, θ), normalized by supX u = 0,
satisfies

θnu ≤ fωn + aθnχ.

Assume also that ∫
E
fωn ≤ A[Capχ(E)]2, (2.3.2)

for every Borel subset E ⊂ X. If P [u] is less singular than ψ then

χ− C
(
‖f‖Lp , p, (1− a)−1, A

)
≤ u.

The ideas behind the proof of the above result are very similar to the ones in [Koł98],
with the “only” difference that before applying them we had to develop the whole theory
of generalized capacities (see Section 1.4) in the setting of big cohomology classes.
We give a sketch below of the arguments we used in order to get the reader more familiar
with these generalized capacities. For t > 0 we set g(t) := [Capχ(u < χ− t)]1/n. It can be
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proved that g : R+ → R+ is a decreasing right-continuous function and that g(+∞) = 0.
Let s ∈ [0, 1] and suppose v ∈ PSH(X, θ) satisfies χ − 1 ≤ v ≤ χ. Since P [u] is less
singular then χ, the comparison principle gives

sn
∫
{u<χ−t−s}

θnv ≤ sn
∫
{u<(1−s)χ+sv−t}

θnv ≤
∫
{u<(1−s)χ+sv−t}

θn(1−s)χ+sv

≤
∫
{u<(1−s)χ+sv−t}

θnu ≤
∫
{u<χ−t}

θnu ,

hence taking supremum over all candidates v we arrive at

snCapχ(u < χ− t− s) ≤
∫
{u<χ−t}

θnu . (2.3.3)

Also, for each t > 0, since P [u] is less singular than χ, it follows once again from the
comparison principle and our assumptions that∫

{u<χ−t}
θnu ≤

∫
{u<χ−t}

fωn + a
∫
{u<χ−t}

θnχ ≤
∫
{u<χ−t}

fωn + a
∫
{u<χ−t}

θnu .

Since a ∈ [0, 1) we thus get ∫
{u<χ−t}

θnu ≤
1

1− a

∫
{u<χ−t}

fωn.

Combining this with (2.3.3) we then get

snCapχ(u < χ− t− s) ≤ 1
1− a

∫
{u<χ−t}

fωn. (2.3.4)

Therefore, combining (2.3.2) with (2.3.4) we obtain

snCapχ(u < χ− t− s) ≤ A

1− a [Capχ(u < χ− t)]2, (2.3.5)

which implies
sg(t+ s) ≤ Bg2(t), ∀t > 0,∀s ∈ [0, 1],

where B = (A/(1− a))1/n.
By an application of Hölder’s inequality, there is a constant t0 > 0 depending only on
a, p, ‖f‖p such that
∫
{u<χ−t0}

fωn ≤
∫
X

|χ− u|
t0

fωn ≤ ‖f‖p
t0

(∫
X
|u−max(u, χ)|qωn

)1/q
≤ 1− a

(2B)n , (2.3.6)

where q > 1 is the conjugate exponent of p.
It is a technical but crucial point to observe that in the last line above both u and
max(u, χ) satisfy supX u = 0, supX max(u, χ) = 0, hence the constant t0 can be chosen to
be only dependent on p, ‖f‖p, (1− a)−1, A (but not on u and χ).
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It then follows from (2.3.4) and (2.3.6) that g(t0 + 1) ≤ (2B)−1. Thus g(t0 + 3) = 0.
We can then conclude that u ≥ χ− t0 − 3 almost everywhere on X, hence everywhere as
desired.

We emphasize that when µ = fωn with 0 ≤ f ∈ Lp for some p > 1, Theorem 2.3 gives
the relative L∞-estimate |u− φ| ≤ C. The following question on higher regularity is then
natural:
Question 3: Let φ ∈ PSH(X, θ)∩C∞(Ω), where Ω is a (dense) open subset of X. Assume
µ is a smooth volume form such that µ(X) =

∫
X θ

n
φ > 0. Let ϕ ∈ PSH(X, θ) be the unique

solution of 
θnϕ = µ,

[ϕ] = [φ],
supX ϕ = 0.

Is ϕ smooth in Amp (θ) ∩ Ω?

Question 3 can be viewed yet as an another generalization of Question 2, even if much
harder. In this setting indeed even the “baby” case when θ = ω is a Kähler form and f
is smooth is completely open.

Another question one could wonder about is stability of such solutions. More precisely,
one might ask what happens if one considers a family of such equations, where the pre-
scribed singularity type [φj] converges to some fixed singularity type [φ]. In such a case
we show that the solutions ψj converge to ψ in capacity as expected, further evidencing
the practicality of the dS -topology:

Theorem 2.5 ([DDNL21]) Given δ > 0 and p > 1 suppose that:
◦ [φj], [φ] ∈ Sδ(X,ω), j ≥ 0 satisfy [φj] = [P [φj]], [φ] = [P [φ]] and dS ([φj], [φ])→ 0.
◦ fj, f ≥ 0 are such that ‖f‖Lp , ‖fj‖Lp, p > 1, are uniformly bounded and fj →L1 f .
◦ ψj, ψ ∈ PSH(X, θ), j ≥ 0 satisfy supX ψj = 0, supX ψ = 0 andθnψj = fjω

n

[ψj] = [φj]
,

θnψ = fωn

[ψ] = [φ].

Then ψj converges to ψ in capacity, in particular ‖ψj − ψ‖L1 → 0.

Solutions of complex Monge-Ampère equations are linked to existence of special Käh-
ler metrics. In particular, we can think of the solution to θnu = fωn as a potential
with prescribed singularity type and prescribed Ricci curvature in the philosophy of the
Calabi-Yau theorem. As an immediate application of the resolution of the Monge-Ampère
equation θnu = eλufωn with prescribed singularities [u] = [φ], we obtain existence of sin-
gular Kähler-Einstein (KE) metrics with prescribed singularity type on Kähler manifolds
of general type.
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Corollary 2.6 ([DDNL18b]) Let X be a smooth projective manifold with canonical am-
ple (KX > 0) and let h be a smooth Hermitian metric on KX with θ := Θ(h) > 0. Suppose
also that φ ∈ PSH(X, θ) is a model potential, has small unbounded locus and

∫
X θ

n
φ > 0.

Then there exists a unique singular KE metric he−φKE on KX (θnφKE = eφKE+fθθn, where
fθ is the Ricci potential of θ satisfying Ric θ = θ + ddcfθ), with φKE ∈ PSH(X, θ) having
the same singularity type as φ.

An analogous result also holds on Calabi-Yau manifolds. For the sake of completeness,
we should mention that the existence of singular Kähler-Einstein metrics with prescribed
singularities on a Fano manifold is studied in [Tru21].

As another application of the resolution of complex Monge-Ampère equations with
prescribed singularities we confirm the log-concavity conjecture of Boucksom-Eyssidieux-
Guedj-Zeriahi [BEGZ10, Conjecture 1.23], informally referred to as the “log-concavity
conjecture” of total masses:

Theorem 2.7 ([DDNL19]) Let θ1, . . . , θn be smooth closed real (1, 1)-forms and uj ∈
PSH(X, θj). Then

∫
X
θ1
u1 ∧ . . . ∧ θ

n
un ≥

(∫
X

(θ1
u1)n

) 1
n

· · ·
(∫

X
(θnun)n

) 1
n

. (2.3.7)

In particular, θu 7→ (
∫
X θ

n
u)

1
n is concave, and so is the map θu 7→ log (

∫
X θ

n
u).

If equality holds in (2.3.7), it does not necessarily mean that the singularity types of
the uj are the same up to scaling (as one would perhaps expect). Still, it remains an
interesting question to characterize the conditions under which equality is attained.

The proof of the above result is a clever combination of all the ingredients we have
in hands and here below we present a sketch. Without loss of generality we can assume
that the classes of {θj} are big and their masses are non-zero. Otherwise the right-hand
side of the inequality to be proved is zero. In fact, after re-scaling, we can assume that∫
X ω

n =
∫
X(θjuj)

n = 1, j ∈ {1, . . . , n}.
We know from [DDNL18b] (see Section 1.3) that Pθj [uj] is a model potential and that∫

X
θ1
Pθ1 [u1] ∧ ... ∧ θnPθn [un] =

∫
X
θ1
u1 ∧ ... ∧ θ

n
un .

For each j, Theorem 2.3 insures existence of ϕj ∈ E (X, θj, Pθ[uj]) such that
(
θjϕj

)n
= ωn,

therefore ∫
X
θ1
ϕ1 ∧ ... ∧ θ

n
ϕn =

∫
X
θ1
Pθ1 [u1] ∧ ... ∧ θnPθn [un].

Finally, an application of the mixed inequalities for the pluripolar products [BEGZ10]
gives θ1

ϕ1 ∧ . . . ∧ θ
n
ϕn ≥ ωn. The result follows after we combine the above identities and

we integrate.
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2.4 Singular KE in family
The solution of the (singular) Calabi Conjecture [Yau78, EGZ09] provides a very powerful
existence theorem for Kähler-Einstein metrics with negative or zero Ricci curvature. It
is important to study the ways in which these canonical metrics behave when they are
moving in families. In the joint work with Vincent Guedj and Henri Guenancia [DNGG21]
we consider the case when both the complex structure and the Kähler class vary and we
try and understand how the corresponding metrics can degenerate.

In all what follows, given a positive real number r, we denote by Dr := {z ∈ C; |z| < r}
the open disk of radius r in the complex plane. If r = 1, we simply write D for D1.

Let X be an irreducible and reduced complex Kähler space. We let π : X → D denote
a proper, surjective holomorphic map such that each fiber Xt = π−1(t) is a n-dimensional,
reduced, irreducible, compact Kähler space, for any t ∈ D.

We pick a covering {Uα}α of X by open sets admitting an embedding jα : Uα ↪→ CN

for some N ≥ n+1. Moreover, we fix a Kähler form ω on X . Up to refining the covering,
the datum of ω is equivalent to the datum of Kähler metrics on open neighborhoods of
jα(Uα) ⊂ CN that agree on each intersection U reg

α ∩ U reg
β . Equivalently, ω is a genuine

Kähler metric on Xreg such that (jα)∗(ω|Ureg
α

) is the restriction of a Kähler metric defined
on an open neighborhood of jα(Uα) ⊂ CN .

One important property that Kähler metrics satisfy is that their pull back under a
modification is a smooth form (i.e. locally the restriction of a smooth form under a local
embedding in CN); in particular, it is dominated by a Kähler form.

For each t ∈ D, we set
ωt := ω|Xt .

We fix a smooth, closed differential (1, 1)-form Θ on X and set θt = Θ|Xt . Up to shrinking
D, one will always assume that there exists a constant CΘ > 0 such that

− CΘω ≤ Θ ≤ CΘω. (2.4.8)
In particular, one has the inclusion PSH(Xt, θt) ⊆ PSH(Xt, CΘωt). We assume that the
cohomology classes {θt} ∈ H1,1(Xt,R) are psef, i.e. the sets PSH(Xt, θt) are non-empty
for all t.

The problem we focus on is to get a better understanding of the deformation of a family
of metrics θt + ddcϕt. The idea is to apply the previous uniform estimates Theorem 2.1
when the complex structure of the underlying manifold is moving, but in order to do so
we need insure that the assumptions (H1) and (H2) are satisfied (uniformly w.r.t. the
fiber).

One of the main results of the paper allows us to check hypothesis (H1), as soon as
the mean value of sup-normalized θt-psh functions is uniformly controlled.
Theorem 2.8 ([DNGG21]) In the above setting, there exist α > 0 and constants Aα, C >
0 such that for all t ∈ D1/2 and for all ϕt ∈ PSH(Xt, θt) with supXt ϕt = 0,∫

Xt
e−αϕtωnt ≤ C exp

{
−Aα

∫
Xt
ϕtω

n
t

}
. (2.4.9)
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The above result has to be thought as a family version of Skoda’s integrability theorem.
The proof basically follows the ideas in Zeriahi [Zer01]. It is worth mentioning that, in
parallel to the very general case (whose proof is very tricky), we provide a very explicit
result in the projective case:

Proposition 2.9 ([DNGG21]) Let V ⊆ PN be a projective variety of complex dimen-
sion n and degree d. Let ω = ωFS|V and ϕ ∈ PSH(V, ω) be such that supV ϕ = 0. Then

∫
V
e−

1
nd
ϕωn ≤ (4n)n · d · exp

{
− 1
nd

∫
V
ϕωn

}
.

Going back to assumption (H1) in Theorem 2.1: it is classical that one can compare
the supremum and the mean value of θ-psh functions on a fixed compact Kähler variety.
We conjecture that the following results holds:

Conjecture 2.1 There exists a constant C > 0 such that: the inequality

sup
Xt

ϕt − C ≤
1
V

∫
Xt
ϕt ωt

n ≤ sup
Xt

ϕt

holds for all t ∈ D1/2 and for every function ϕt ∈ PSH(Xt, θt).

In the paper, we propose a large class of families for which the conjecture holds.

Assumption 2.2 We consider the following settings:

1. The map π is projective,

2. The map π is locally trivial,

3. The fibers Xt are smooth for t 6= 0,

4. The fibers Xt have isolated singularities for every t ∈ D.

Proposition 2.10 ([DNGG21]) Assume 2.2 is satisfied. Then Conjecture 2.1 holds.
That is, there exists a constant C > 0 such that: the inequality

sup
Xt

ϕt − C ≤
1
V

∫
Xt
ϕt ωt

n ≤ sup
Xt

ϕt

holds for all t ∈ D1/2 and for every function ϕt ∈ PSH(Xt, θt).

By combining the above two results we get that the assumption (H1) is satisfied
(uniformly on t). The assumptions (H2)/(H2’) have to be checked for each specific case.
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Families of manifolds of general type
Let X be an irreducible and reduced complex space endowed with a Kähler form ω
and a proper, holomorphic map π : X → D. We assume that for each t ∈ D, the
(schematic) fiber Xt is a n-dimensional Kähler manifold Xt of general type, i.e. such
that its canonical bundle KXt is big. In particular, X is automatically non-singular and
the map π is smooth. We fix Θ a closed differential (1, 1)-form on X which represents
c1(KX /D) and set θt = Θ|Xt .

It follows from [BEGZ10], a generalization of the Aubin-Yau theorem [Aub78, Yau78],
that there exists a unique Kähler-Einstein current on Xt. This is a positive closed current
Tt in c1(KXt) which is a smooth Kähler form in the ample locus Amp (KXt), where it
satisfies the Kähler-Einstein equation

Ric(Tt) = −Tt.

It can be written Tt = θt + ddcϕt, where ϕt is the unique θt-psh function with minimal
singularities that satisfies the complex Monge-Ampère equation

(θt + ddcϕt)n = eϕt+htωnt on Amp (KXt),

where ht is such that Ric(ωt)− ddcht = −θt and
∫
Xt
ehtωnt = vol(KXt). For x ∈X , set

φ(x) := ϕπ(x)(x) (2.4.10)

and consider
VΘ = sup{u ∈ PSH(X ,Θ); u ≤ 0}. (2.4.11)

We prove that conditions (H1) and (H2) are satisfied in this setting. It then follows from
Theorem 2.1 and the plurisubharmonic variation of the Tt’s ([CGP17]) that φ − VΘ is
uniformly bounded on compact subsets of X :

Theorem 2.11 ([DNGG21]) Let π : X → D be a smooth Kähler family of manifolds of
general type, let Θ ∈ c1(KX /D) be a smooth representative and let φ be the Kähler-Einstein
potential as in (2.4.10). Given any compact subset K b X , there exists a constant MK

such that the following inequality

−MK ≤ φ− VΘ ≤MK

holds on K , where VΘ is defined by (2.4.11).

The same results can be proved if the family π : X → D is replaced by a smooth
family π : (X , B)→ D of pairs (Xt, Bt) of log general type, i.e. such that (Xt, Bt) is klt
and KXt +Bt is big for all t ∈ D.
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Families of Q-Calabi-Yau varieties
A Q-Calabi-Yau variety is a compact, normal Kähler space X with canonical singularities
such that the Q- line bundle KX is torsion. Up to taking a finite, quasi-étale cover one
can assume that KX ∼Z OX . Given any Kähler class α on X, it follows from [EGZ09] and
[Pău08] that there exists a unique singular Ricci flat Kähler metric ωKE ∈ α, i.e. a closed,
positive current ωKE ∈ α with globally bounded potentials inducing a smooth, Ricci-flat
Kähler metric on Xreg.

Now, we can consider families of such varieties and ask how the bound on the potentials
vary. This is the content of the following result

Theorem 2.12 ([DNGG21]) Let X be a normal, Q-Gorenstein Kähler space and let
π : X → D be a proper, surjective, holomorphic map. Let α be a relative Kähler coho-
mology class on X represented by a relative Kähler form ω. Assume additionally that

• The relative canonical bundle KX /D is trivial.

• The central fiber X0 has canonical singularities.

• Assumption 2.2 is satisfied.

Up to shrinking D, each fiber Xt is a Q-Calabi-Yau variety. Let ωKE,t = ωt + ddcϕt be
the singular Ricci-flat Kähler metric in αt, normalized by

∫
Xt
ϕtω

n
t = 0. Then, given any

compact subset K b D, there exists C = C(K) > 0 such that

oscXtϕt ≤ C

for any t ∈ K, where oscXt(ϕt) = supXt ϕt − infXt ϕt.

In the case of a projective smoothing (i.e. when X admits a π-ample line bundle and
Xt is smooth for t 6= 0), the result above has been obtained previously by Rong-Zhang
[RZ11] by using Moser iteration process.

2.5 CscK metrics
Up to now we focused on Monge-Ampère equations related to the construction of (singu-
lar) Kähler-Einstein metrics. But, these metrics do not always exist and the obstructions
to their existence are very well-known.

The next in line version of special metrics involves the notion of scalar curvature.
Given a Kähler form ω on a compact Kähler manifold X we define its scalar curvature as

S(ω) := trω(Ric(ω)) = n
Ric(ω) ∧ ωn−1

ωn
.

We then look for Kähler metrics with constant scalar curvature (cscK for short).
In particular, we look for a Kähler metric ωϕ ∈ {ω} such that S(ωϕ) = S̄, S̄ ∈ R.
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Integrating both sides with respect to ωnϕ, we find that S̄ is a cohomological constant
equal to nV −1c1(X) · {ω}n−1, where V =

∫
X ω

n.
In the 90’s Tian made an influential conjecture stating that the existence of a cscK

metric is equivalent to the properness of an energy functional, called (Mabuchi) K-energy.
There were several attempts by many authors in this direction. The conjecture was first
proved in the (Fano) KE case by Darvas and Rubinstein [DR17]; the fact that the existence
of a cscK metric implies the properness of the K-energy is due to [BDL20], while the
reverse implication was proved more recently by Chen and Cheng [CC20a, CC20b, CC18].

The K-energy is a functional on the space of Kähler potentials Hω defined as

K(ϕ) := Entωn(ωnϕ) + J−Ric(ω)(ϕ)

where we recall that the entropy of the measure ωnϕ is defined as

Entωn(ωnϕ) :=
∫
X

log
ωnϕ
ωn

ωnϕ ≥ 0

while

J−Ric(ω)(ϕ) := 1
n!

n−1∑
k=0

∫
X
ϕ (−Ric(ω)) ∧ ωk ∧ ωn−1−k

ϕ − 1
(n+ 1)!

n∑
k=0

∫
X
Cω ϕω

k ∧ ωn−kϕ ,

where Cω is a cohomological constant.
Tian introduced the notion of “J-properness” on the space H . We say that K is

J-proper if there exist A′, B′ > 0 such that for any ϕ ∈H we have

K(ϕ) ≥ A′ J(ϕ)−B′. (2.5.12)

The precise formulation of Tian’s conjecture is that existence of cscK metrics in H is
equivalent to J-properness of the K-energy.

As is going to be clear in the following, the resolution of this conjecture is very much
related to the developments in pluripotential theory in the last years.

First of all, we need to point out that thanks to [BEGZ10], the K-energy can be
extended as a functional on the all energy class E 1(X,ω),

K : E 1(X,ω)→ (−∞,+∞].

The relevance of this fact is that E 1 turned out to be the metric completion of H when
endowed with L1-type Mabuchi metric d1 [Dar17].
One can also show that d1 metric growth is comparable to J . As a consequence, condition
(2.5.12) is equivalent to asking that there exist A,B > 0 such that for any ϕ ∈ H we
have

K(ϕ) ≥ Ad1(0, ϕ)−B.
Going back to the cscK equation: it is easy to see that it can be re-written as a system

of coupled equations. Indeed, if we set ωnϕ = eFωn, then tracing the pointwise equality

Ric(ωϕ) = Ric(ω)− ddc log
ωnϕ
ωn
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with respect to ωϕ leads to

S̄ = S(ωϕ) = trωϕ(Ric(ω))−∆ωϕF.

It then follows that the cscK equation can be re-written as a system of coupled equations:

ωnϕ = eFωn, ∆ωϕF = −S̄ + trωϕ(Ric(ω)), (2.5.13)

where F and ϕ are the unknown functions.
The main difference between the KE equation and the cscK equation is that while the

first one involves second order derivatives, in the latter one has to deal with derivatives up
to the fourth order. This of course increases the difficulty. Nevertheless, the “innocent”
observation that allows to re-write the cscK equation as in (2.5.13) reduces in a significant
way the technical difficulties.

Moreover, the “artificial” Monge-Ampère equation ωnϕ = eFωn helps us in believing
that the strategy used in the KE case can be adapted and can lead to meaningful results.
This is indeed the case as showed by Chen and Cheng [CC20a, CC20b, CC18]: they
deform the system into a one parameter family of coupled equations and they establish
uniform estimates. In this concern the key result that Chen and Cheng [CC20a] are able
to obtain states as follows:

Key Result (Chen-Cheng [CC20a]): Assume ωϕ is a cscK metric for some smooth
function ϕ on X normalized such that supX ϕ = 0. Then all the derivatives of ϕ can
be estimated in terms of Ent(ϕ), i.e. for each k ≥ 0, there exists a positive constant
Ck = C(k,Ent(ϕ)) such that

‖ϕ‖Ck ≤ Ck.

It is worth underlining that, once the C0 and C2 estimates are in hand, higher order
estimates follow from standard regularity results for complex Monge-Ampère equations.

At this point it could be yet unclear how the above result implies the implication of
the conjecture “properness =⇒ ∃ cscK”. The reasoning goes as follows: in the framework
of the continuity method (specific to this setting) it suffices to prove uniform estimates for
cscK potentials. Indeed, such estimates generalize easily to potentials which are solutions
of the intermediate equations we have to deal with in the continuity method. We then
assume ϕ be such that ωϕ is a cscK metric.
Since K is proper, there exists B > 0 such that K(ϕ) ≥ Ad1(0, ϕ) − B. On the other
side, since ωϕ is a cscK metric we do know (by convexity of the K-energy along geodesics
in Hω [BB17]) that ϕ is a minimizer of the K-energy, hence K(ϕ) ≤ C for some C > 0.
Thus d1(0, ϕ) ≤ C1. From the latter inequality we obtain a control on the supX ϕ since
by [Dar17] we know that d1(0, ϕ) ≥ supX ϕ− C2. Therefore

J−Ric(ω)(ϕ) ≤
(

sup
X
ϕ

)
C0

∫
X
ωn ≤ C0(C1 + C2).
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where C0 depends on an upper bound of Ric(ω).
The upper bound of K(ϕ) and of J−Ric(ω)(ϕ) finally imply a (uniform) upper bound of the
entropy term Ent(ωϕ). The Theorem by Chen and Cheng insures that we have uniform
estimates along the continuity method.

2.6 Singular cscK metrics
The next step will be to answer to the (natural) urge of studying the singular case:
Problem. Study the existence, uniqueness and regularity of singular cscK on varieties.

One can expect an analogue of the smooth case to hold, i.e. the existence of a singular
cscK is equivalent to the properness of the K-energy on the singular space. But this is
just a hope at this point and it has to be exploited in a rigorous way.

In the singular setting, one can still make sense of (2.5.13). The latter reduces to a
system of equations (on a smooth resolution) which is degenerate:

θnϕ = eFµ, (ddcF + χ) ∧ θn−1
ϕ = − S̄

n
eFµ (2.6.14)

where χ is a smooth (1, 1)-form.
Here the reference form θ is not necessarily Kähler but merely semi-positive and big, and µ
is not necessarily a smooth volume form (it can have divisorial singularities for example).
Observe that, when µ = ωn and θ = ω, then (2.6.14) is exactly (2.5.13). Once again, the
LHS of (2.6.14) is understood as the non-pluripolar Monge-Ampère measure of ϕ.
We are then tempted to apply pluripotential methods and get a weak solution for (2.6.14)
but this equation has not been treated in this sense yet.
The regularity can be treated by looking to a perturbed system (for which we know the
existence of a smooth solution) and then passing to the limit. The first attempt in this
direction is to perturb the equation by adding some extra positivity (for example, adding
εω where ω is a Kähler form and ε > 0). More precisely, we study

ωnϕε = eFεµ, (ddcFε + χ) ∧ ωn−1
ϕε = − S̄ε

n
eFεµ (2.6.15)

where ωϕε = ωε + ddcϕε. Here ωε = θ + εω is the perturbed metric.
We assume that for any ε > 0 there exists a smooth solution ϕε of (2.6.15) and we need
to establish uniform estimates that do not depend on ε. If we do so, we can then pass
to the limit as ε → 0, ensuring uniform estimates for ϕ and F on each compact subset
K ⊂ Amp (θ).
Establishing uniform estimates is a key step. As I emphasized in the story of the Kähler-
Einstein case, one of the key steps is the C0-estimate. The original proof of the C0-
estimate in [CC20a] uses the Alexandroff maximum principle (for the real Monge-Ampère
operator): these kind of techniques unfortunately are not very flexible and not adapted
in the singular case.
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The desire for a pluripotential version of the proof of the C0-estimates is then justified.
This is the reason that brought to a joint work with Alix Deruelle [DDN21] where we
present an alternative proof of the C0-estimates.
The equation we look at is

ωnϕ = eFωn, ∆ωϕF = −S̄ + trωϕ(Ric(ω)),

where ω is a Kähler form. Let ψ be the unique smooth solution of

ωnψ = b−1eF
√
F 2 + 1ωn, sup

X
ψ = 0,

where b =
∫
X e

F
√
F 2 + 1ωn in order to have

∫
X ω

n
ψ =

∫
X ω

n = 1. The existence of
a smooth solution ψ is guaranteed by Yau’s theorem. Moreover, a simple observation
ensures that if Ent(ϕ) is uniformly bounded, so is b. The key result to which we provide
an alternative proof making use of pluripotential theory, states as following:

Theorem 2.13 ([CC20a],[DDN21]) Given ε ∈ (0, 1), there exists C = C(ε, ω, b) such
that

F + εψ − Aϕ ≤ C,

where A > 0 is a uniform constant depending only on the lower bound of the Ricci curva-
ture.

A sketch of the proof is provided with the aim of both identifying a delicate point and
showing how dealing with singular settings can be much easier once we master pluripo-
tential theory.

Let H := F + εψ − Aϕ, A0 be such that Ric(ω) ≥ −A0 ω and A = A0 + 1.

• By the maximum principle, applied to H, we can then infer that at a maximum
point x0 we have

F (x0) ≤ C0, C0 = C0(ε, A0, ω).

• Claim: There exists C1 > 0 depending on ε, A and b such that

εψ − Aϕ ≤ C1.

The proof of the claim is based on the observation that for any a, δ ∈ (0, 1) we have

ωnϕ ≤ aωnδψ + e
b
aδn ωn.

This (at first sight harmless) inequality allows us to invoke a deep result in [DDNL19].
We can then infer that ϕ ≥ δψ − C3, where C3 = C3(a, b, δ).

The naive idea behind this result is that if the Monge-Ampère measure of our
solution ϕ is dominated by the “right quantity”, then we can provide a sub-solution,
hence a lower bound.
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Starting from the information that F + εψ − Aϕ ≤ C, ε ∈ (0, 1) and C = C(ε, ω, b) one
can conclude that the functions ψ, ϕ, F are uniformly bounded by a constant that only
depends on ω and b. This makes use once again of pluripotential theory and in particular of
a powerful integrability result which is known as a uniform version of Skoda’s integrability
theorem.

At this stage the arguments work for a reference form that is Kähler: the first item
involves indeed the maximum principle. But, nevertheless, they opened the way to the
feasibility of establishing the “pluripotential C0-estimate” when the reference form is only
semi-positive and big.

Establishing uniform estimates does not yet give existence of singular cscK metrics.
Our starting point was indeed to assume the existence of ϕε smooth solutions of (2.6.15).
By the deep result of Chen and Cheng we do know that this is equivalent to the properness
of the K-energy w.r.t. the perturbed metric ωε. We then need to exploit the K-energy
condition.

One has to understand the relation between the properness of the K-energy w.r.t.
θ and the properness of the K-energy w.r.t. ωε. The latter not being clear because
PSH(X,ωε) is bigger than PSH(X, θ), hence we have more functions for which we should
test the properness of the functional. More precisely, the properness of the K-energy
w.r.t. θ reads as

K(ϕ) ≥ Ad1(0, ϕ)−B, A,B > 0
for any ϕ ∈ E 1(X, θ). Checking this property w.r.t. ωε amounts to proving the above
inequality for any ϕε ∈ E 1(X,ωε). An accurate study of the relation between the energy
classes E 1(X, θ) and E 1(X,ωε) is then also necessary.

The last (but not least) question to treat concerns the uniqueness. In the smooth case
this is a consequence of the convexity of the K-energy along geodesics in the space of
Kähler potentials Hω. This is a very delicate problem because geodesics in the space of
Kähler potentials are not smooth.
The convexity of the K-energy along weak geodesics was conjectured by Chen and proved
by Berman and Berndtsson in a paper published in [BB17]. Their proof is based on the
plurisubharmonic variation of Bergman kernels.
In the singular context of a merely semi-positive and big form, the study of the convexity
properties of theK-energy then require the preliminary study of the regularity of geodesics
in the space of singular Kähler varieties and of how Bergman kernels behave when we work
with a big line bundle.
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