About the unitary dual of GL(r,D)

Dubrovnik, June 2005,

David Renard, Centre de mathématiques Laurent Schwartz, Ecole Polytechnique

Joint work with A.I Badulescu, Université de Poitiers.

http://www.math.polytechnique.fr/~renard/

Introduction.

F: p-adic field (finite extension of \mathbb{Q}_p).

D : central division algebra over F , $\dim_F D = d^2$.

$$G_n = GL(n, F), \quad G'_r = GL(r, D).$$

INTERESTING PROBLEMS:

- Classification of the unitary dual of G^{\prime}
- Properties of the Jacquet-Langlands correspondence with respect to unitarity.

ref : -Bernstein-Zelevinski, Tadic, Deligne-Kazhdan-Vigneras, Badulescu.

Notation for $G_n = GL(n, F)$.

 $\mathcal{M}(G_n)$: category of smooth rep. of G_n .

 R_n : Grothendieck group of $\mathcal{M}(G_n)$.

 $\overline{\operatorname{Irr}_{\mathbf{n}}}$: equiv. classes of irr. rep. in $\mathcal{M}(G_n)$.

 Irr_n^u : unitary rep. in Irr_n :

$$\mathcal{C}_n \subset \mathcal{D}_n \subset \operatorname{Irr}_n$$

respectively cuspidal and essentially square integrable representations.

$$C_n^u \subset D_n^u \subset \operatorname{Irr}_n^u$$

respectively cuspidal unitary and square integrable representations.

$$R=igoplus_{n\in\mathbb{N}}R_n$$

$$\mathcal{C} = \coprod_{n \in \mathbb{N}} \mathcal{C}_n, \quad \mathcal{D} = \coprod_{n \in \mathbb{N}} \mathcal{D}_n.$$

$$\mathcal{C}^u = \coprod_{n \in \mathbb{N}} \mathcal{C}^u_n, \quad \mathcal{D}^u = \coprod_{n \in \mathbb{N}} \mathcal{D}^u_n.$$

Standard parabolic and Levi subgroups of G_n : $eta = (n_1, n_2, \dots n_k)$ partition of n.

$$L_{eta} \simeq G_{n_1} imes G_{n_2} imes \ldots imes G_{n_k}$$

$$\lambda = (n_1, n_2), \quad n_1 + n_2 = n,$$

$$P = P_{\lambda}, \quad L = L_{\lambda} \simeq G_{n_1} \times G_{n_2}.$$

$$i_P^G: \mathcal{M}(G_{n_1}) imes \mathcal{M}(G_{n_2}) o \mathcal{M}(G_n) \ (\pi_1, \pi_2) \mapsto i_P^G(\pi_1 \otimes \pi_2)$$

extend to a bilinear associative and commutative product $R_{n_1} imes R_{n_2} o R_n$ and to :

$$R imes R o R \quad (\pi_1,\pi_2) \mapsto \pi_1 imes \pi_2.$$

Determinant character:

$$u:G o \mathbb{R}_+^ imes,\quad g\mapsto |\det(g)|_F$$

Notation : $\nu^{\alpha}\pi$ for $\nu^{\alpha}\otimes\pi$, $\alpha\in\mathbb{R}$.

$$\nu(\pi_1 \times \pi_2) = \nu \pi_1 \times \nu \pi_2$$

$$m_1 \leq m_2 \in \mathbb{R}, \quad m_2 - m_1 \in \mathbb{Z}$$

segment:

$$||m_1, m_2|| := \{m_1, m_1 + 1, \dots, m_2 - 1, m_2\}$$

$$ho\in\mathcal{C}^u$$
 ,

$$\|m_1, m_2\|^{
ho} := \{
u^{m_1}
ho,
u^{m_1+1}
ho, \dots,
u^{m_2-1}
ho,
u^{m_2}
ho\}$$

Zelevinski segments.

(*)
$$\nu^{m_1} \rho \times \nu^{m_1+1} \rho \times \cdots, \nu^{m_2-1} \rho \times \nu^{m_2} \rho$$

has a unique irreducible quotient

$$\delta(\|m_1,m_2\|^
ho)\in\mathcal{D}$$

and all rep. in \mathcal{D} are obtained uniquely in this way.

(*) also have a unique irr. subrep.

$$Z(\|m_1,m_2\|^
ho)$$

Langlands classification for G.

 $\delta \in \mathcal{D}$, there exists unique $e(\delta) \in \mathbb{R}$, $\delta^u \in \mathcal{D}^u$ s.t.

$$\delta = \nu^{e(\delta)} \delta^u$$
.

If
$$\delta = \delta(\|m_1, m_2\|^
ho)$$
, $e(\delta) = rac{m_2 - m_1}{2}$.

$$\delta_1,\ldots\delta_k\in\mathcal{D}$$
, s.t. $e(\delta_1)\geq\ldots\geq e(\delta_k)$ $\underline{d}=(\delta_1,\ldots\delta_k)$.

$$\lambda(\underline{d}) = \delta_1 \times \cdots \times \delta_k$$
, (standard rep.)

has a unique irreducible quotient

$$L(\underline{d}),$$
 (Langlands quotient.)

- All irreducible rep. can be obtained in this way.
- ullet R is a polynomial ring over ${\cal D}$.
- ullet $(\lambda(\underline{d}))_{\underline{d}}$ and $(L(\underline{d}))_{\underline{d}}$ are bases of R.

Classification by multisegments.

Notation for $G_r' = GL(r, D)$.

 $\mathcal{M}(G'_r)$: category of smooth rep. of G'_r .

 R_r' : Grothendieck group of $\mathcal{M}(G_r')$.

 $\overline{\operatorname{Irr}_{\mathbf{r}}'}$: equiv. classes of irr. rep. in $\mathcal{M}(G_{r}')$.

 $Irr_r'^u$: unitary rep. in Irr_r' :

$$\mathcal{C}'_r \subset \mathcal{D}'_r \subset \operatorname{Irr}'_r$$

respectively cuspidal and essentially square integrable representations.

$${\mathcal{C}'}^u_r \subset {\mathcal{D}'_r} \subset \operatorname{Irr}'_r$$

respectively cuspidal unitary and square integrable representations.

$$egin{aligned} R' &= igoplus_{r \in \mathbb{N}} R'_r \ & \mathcal{C}' &= \coprod_{r \in \mathbb{N}} \mathcal{C}'_r, \quad \mathcal{D}' &= \coprod_{r \in \mathbb{N}} \mathcal{D}_r. \ & \mathcal{C'}^u &= \coprod_{r \in \mathbb{N}} \mathcal{C'}^u, \quad \mathcal{D'}^u &= \coprod_{r \in \mathbb{N}} \mathcal{D}'^u_r. \end{aligned}$$

Similar notation for standard Levi and parabolic subgroups...

$$R' imes R' o R' \quad (\pi_1, \pi_2) \mapsto \pi_1 imes \pi_2.$$

Associative and commutative bilinear product.

"Determinant" character of G^{\prime} :

$$u': G' o \mathbb{R}_+^{ imes}, \quad g \mapsto |R.N(\det(g))|_F$$

$$\nu'(\pi_1' \times \pi_2') = \nu' \pi_1' \times \nu' \pi_2$$

Langlands Classification for G^{\prime}

 $\delta' \in \mathcal{D}'$ decomposes as ${\nu'}^{e(\delta')} {\delta'}^u$, $e(\delta') \in \mathbb{R}$, ${\delta'}^u \in {\mathcal{D}'}^u$.

$$\delta_1',\ldots\delta_k'\in\mathcal{D}'$$
, s.t. $e(\delta_1')\geq\ldots\geq e(\delta_k')$ $\underline{d'}=(\delta_1',\ldots\delta_k')$ $\lambda(\underline{d'})=\delta_1'\times\cdots\times\delta_k'$

has a unique irreducible quotient

$$L(\underline{d'})$$

- All irreducible rep. can be obtained in this way.
- ullet R' is a polynomial ring over \mathcal{D}' .
- ullet $(\lambda(\underline{d'}))_{\underline{d'}}$ and $(L(\underline{d'}))_{\underline{d}}$ are bases of R'.

Jacquet-Langlands correspondence

$$n = rd$$

Theorem(DKV) There is a bijection

 $JL: \mathcal{D}'_r \simeq \mathcal{D}_n$, with a lot of nice properties.

Basic exemple of Langlands functoriality principle.

Gives an injection $\mathcal{D}' \hookrightarrow \mathcal{D}$

Extends canonically to a ring morphism

 $JL: R' \hookrightarrow R$.

In practice : if $JL(\delta_i') = \delta_i$

$$\lambda(\delta_1',\ldots,\delta_k')\mapsto \lambda(\delta_1,\ldots,\delta_k).$$

Inverse : LJ: R o R'

 $LJ(\lambda(\delta_1,\ldots,\delta_k))=0$ if $\delta_i\in\mathcal{D}_k$, $k\nmid d$ for some i.

Remark : JL and LJ are easy to compute on standard rep. To compute them on irr.rep. requires Kazhdan-Lusztig algorithm for G and G'.

Classification of square integrable rep. of G'.

Fix $ho'\in\mathcal{C}'\subset\mathcal{D}'$ and $JL(
ho')=\delta=\delta(\|a,b\|^
ho)$, $ho\in\mathcal{C}^u$.

Put
$$b-a+1=s(\rho')$$
.

Tadic segments : $m_1,m_2\in\mathbb{R},\ m_2-m_1\in\mathbb{N},$ $ho'\in\mathcal{C}^u$, $u'_{
ho'}=(
u')^{s(
ho')}$,

$$\|m_1,m_2\|^{
ho'}:=\{{
u'_{
ho'}}^{m_1}
ho',{
u'_{
ho'}}^{m_1+1}
ho',\dots,{
u'_{
ho'}}^{m_2}
ho'\}$$

(*)
$$\nu'_{\rho'}^{m_1} \rho' \times \nu'_{\rho'}^{m_1+1} \rho' \times \cdots, \nu'_{\rho'}^{m_2-1} \rho' \times \nu'_{\rho'}^{m_2} \rho'$$

has a unique irreducible quotient

$$\delta'(\|m_1,m_2\|^{
ho'})\in \mathcal{D}'$$

and all rep. in \mathcal{D}' are obtained uniquely in this way.

Some distinguished rep.

Let
$$\delta \in \mathcal{D}^u$$
, say $\delta = \delta(\|m_1, m_2\|^
ho)$, $m_1 = -m_2$.

$$k \in \mathbb{N}^{ imes}, u(\delta,k) = L(
u^{rac{k-1}{2}}\delta,
u^{rac{k-3}{2}}\delta,\dots
u^{-rac{k-1}{2}}\delta)$$

For G' : put ' everywhere, and $u'_{
ho}$ instead of u

EX : for
$$G$$
, $u(\delta,4),\quad \delta=\delta(\|-\frac{5}{2},\frac{5}{2}\|^{
ho})$: for G' , $u(\delta',4),\quad \delta'=\delta'(\|-\frac{5}{2},\frac{5}{2}\|^{
ho'}),$ $s(\rho')=2$

Classification of Irr^u

Consider the following statements for G and G' (adding the ' in place)

$$U(0)$$
 If $\tau, \sigma \in Irr^{u}$, then $\tau \times \sigma \in Irr^{u}$.

$$U(1) \; \delta \in \mathcal{D}^u$$
, $n \in \mathbb{N}$, then $u(\delta,n) \in \mathrm{Irr}^{\mathrm{u}}$.

$$U(2)$$
 $\delta \in \mathcal{D}^u$, $n \in \mathbb{N}$, $lpha \in]0,rac{1}{2}[$ then

$$u(\delta, n, \alpha) := \nu^{\alpha} u(\delta, n) \times \nu^{-\alpha} u(\delta, n) \in Irr^{u}.$$

(Complementary series)

$$U(3)$$
 $\delta \in \mathcal{D}^u$, $n \in \mathbb{N}$, then $u(\delta,n)$ prime in R .

U(4) $\underline{d_1},\underline{d_2}$ multisets in \mathcal{D} , then $L(\underline{d_1}\cup\underline{d_2})$ subquotient of $L(\underline{d_1}) imes L(\underline{d_2})$

Theorem (Tadic). Suppose $U(0), \ldots U(4)$ hold for G or G'. Set

$$B=\{u(\delta,n),u(\delta,n,lpha)\,|\,n\in\mathbb{N},lpha\in]0,rac{1}{2}[,
ho\in\mathcal{C}^u\}.$$

Then

$$(i) ext{ If } au_1, \ldots au_k \in B$$
, $au_1 imes \cdots au_k \in \operatorname{Irr}^{\mathrm{u}}$.

(ii) If $\sigma \in {
m Irr^u}$, there exists $au_1, \ldots au_k \in B$, s.t. $\sigma = au_1 imes \cdots au_k$

(iii) If $\sigma= au_1 imes\cdots au_k= au_1' imes\cdots au_m'$, $au_i, au_j'\in B$, then k=m and $au_i= au_i'$ after renumeration.

U(2), U(3), U(4) are established by Tadic for G and G', assuming U(0) and U(1).

For G, U(0) is due to Bernstein, U(1) to Tadic using a global argument due to Speh.

 \leadsto Classification of the unitary dual of G by Tadic.

On U(1)

For $G: u(\delta,n)$ appears as local component of a global automorphic rep. \leadsto unitarity.

For G' and $u(\delta',n)$: this is false if $s(\rho') \neq 1$ Define $\bar{u}(\delta',n)$ by

$$k \in \mathbb{N}^{ imes}, u(\delta',k) = L({
u'}^{rac{k-1}{2}}\delta, {
u'}^{rac{k-3}{2}}\delta, \dots {
u'}^{-rac{k-1}{2}}\delta)$$

EX : $\bar{u}(\delta',4)$ and $u(\delta',4)$, $\delta'=\delta'(\|-\frac{5}{2},\frac{5}{2}\|^{\rho'})$, $s(\rho')=2$

Theorem(Badulescu) The rep. $ar{u}(\delta',n)$ are unitary. Proof by global methods.

Corollary(Badulescu-Renard) The rep. $u(\delta',n)$ are unitary.

Proof by combinatorics on segments.

Related results

Theorem (Badulescu) $\delta \in \mathcal{D}^u$. Suppose $\delta = JL(\delta')$, $\delta' \in \mathcal{D'}^u$. then :

$$LJ(u(\delta,k)) = \bar{u}(\delta',k)$$

Cor $\bullet u(\delta, k) \in \operatorname{Irr}^{\mathbf{u}}$, then $LJ(u(\delta, k))$ is unitary irreducible or $\mathbf{0}$.

ullet If $\pi \in \operatorname{Irr}^{\mathrm{u}}$, then $LJ(\pi) \in \operatorname{Irr'}^{\mathrm{u}}$ or 0.

Also obtained by Tadic assuming U(0): Tadic writes a closed formula for the character of $u(\delta',k)$ (and thus of all irr. unitary reps) in terms of standard rep. , much simplier than KL algorithm.

Surprising from the point of view of KL algorithm, but similar things happen in other exemples of Langlands functoriality (Kazhdan-Patterson lifting).