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Abstract. Dirac cohomology is a new tool to study unitary and admissible represen-
tations of semisimple Lie groups. It was introduced by Vogan and further studied by
Kostant and ourselves [V2], [HP1], [K4]. The aim of this paper is to study the Dirac
cohomology for the Kostant cubic Dirac operator and its relation to Lie algebra coho-
mology. We show that the Dirac cohomology coincides with the corresponding nilpotent
Lie algebra cohomology in many cases, but in general it has better algebraic behavior
and it is more accessible for calculation.

1. Introduction

In 1926 Dirac discovered a matrix valued first-order differential operator as a square
root of the Laplacian operator in order to understand elementary particles. Since then
this operator and its various analogues are called Dirac operators in the scientific com-
munity. Dirac made many astonishing discoveries using this operator, such as half-spin
of the electron and the anti-matter positron. These discoveries laid the foundation for
molecular physics and molecular chemistry, as well as for the application of nuclear mag-
netic resonance to medical imaging. The impact of the Dirac operator on the development
of mathematics is also significant. The extension of the definition of Dirac operator to
a differentiable manifold and a proof of the corresponding index theorem by Atiyah and
Singer is one of the greatest achievements of mathematics in the twentieth century.

Kostant’s 1962 paper [K1] proving the Bott-Borel-Weil theorem by employing Lie al-
gebra cohomology (with respect to nilpotent Lie algebras) marks a new era of interaction
of topology and representation theory. Lie algebra cohomology also plays a significant
role in Schmid’s proof [S] of the Kostant-Langlands conjecture that discrete series rep-
resentations can be constructed from the Dolbeault cohomology of L2-sections of certain
holomorphic line bundles. Lie algebra cohomology is a fundamental tool in Vogan’s 1976
MIT dissertation, which introduced an algebraic approach to the study of Harish-Chandra
modules and revolutionized the field. Furthermore, Lie algebra cohomology is related to
asymptotics of matrix coefficients (as shown by Casselman and Miličić), to embeddings
into “standard modules” (both in real and in cohomological induction), and to geometric
realization of representations via D-modules. Lie algebra cohomology is also the main
tool throughout the classic book of Borel and Wallach [BW].

An analogue of the Dirac operator was defined and successfully used for geometric re-
alization of most discrete series representations by Parthasarathy [P]. This approach was

1991 Mathematics Subject Classification. 22E47.
Key words and phrases. semisimple Lie group, unitary representation, admissible representation, Dirac

operator, Lie algebra cohomology.
The research of the first author was partially supported by RGC-CERG grants of Hong Kong SAR and

National Nature Science Foundation of China. The research of the second author was partially supported
by a grant from the Ministry of Science and Technology of Republic of Croatia. Parts of this work
were done during authors’ visits to CNRS, University of Paris VII, Mathematisches Forschungsinstitut
Oberwolfach, and Institute of Mathematical Sciences and Department of Mathematics at the National
University of Singapore. The authors thank these institutions for their generous support and hospitality.

1



2 JING-SONG HUANG, PAVLE PANDŽIĆ, AND DAVID RENARD

further developed by Atiyah and Schmid [AS], who constructed all discrete series repre-
sentations as kernels of the Dirac operator acting on the associated spinor bundles. It has
been clear for decades that the Dirac operators are formally similar to the differentials of
the de Rham or Dolbeault cohomology. There have been two problems with using that
analogy in representation theory. First, the Dirac operator on non-symmetric homoge-
neous spaces is not as nicely behaved. Second, the index of the Dirac operator behaves
well only for some unitary representations, like the discrete series; so the algebraic tools
of representation theory do not work well with it. The first problem was resolved by
Kostant [K2], who introduced the modified cubic Dirac operator that works well also on
non-symmetric homogeneous spaces. The second problem was resolved by Vogan [V2].
Vogan introduced the concept of Dirac cohomology which applies both to unitary and
nonunitary representations, and made a conjecture on the infinitesimal character of irre-
ducible representations with nonzero Dirac cohomology. This conjecture was proved in
[HP1]. Kostant generalized this result to the case of his cubic Dirac operator and applied
it to the topology of homogeneous spaces [K4]. Recently, Kumar [Ku] and Alexeev and
Meinreken [AM] found further generalizations of the results in [HP1] and [K4]. They put
these results into the broader setting of non-commutative equivariant cohomology.

The aim of this paper is to explore the relation between Dirac cohomology and (nilpo-
tent) Lie algebra cohomology. Our results show that Dirac cohomology coincides with
the corresponding Lie algebra cohomology for a large family of unitary representations,
including the discrete series representations, and for all unitary representations in certain
special cases. On the other hand, Dirac cohomology seems to have a better algebraic
behavior.

We have also been able to use Dirac cohomology and the proved Vogan’s conjecture
to obtain improvements of some classical results. In [HP2] we describe how to simplify
certain parts of Atiyah-Schmid’s construction of discrete series representations [AS] and
sharpen the Langlands’ formula on automorphic forms [L], [HoP]. The details will appear
in a forthcoming book by the first and second named authors. This suggests that Dirac
cohomology may prove useful also in other situations, as a new tool for tackling problems
not accessible to classical cohomology theories.

Let us now describe our main results on Dirac cohomology and its relation to (nilpotent)
Lie algebra cohomology more precisely. Let G be a connected semisimple Lie group with
finite center and complexified Lie algebra g. Let θ be a Cartan involution of G (and
g), let K = Gθ be the corresponding maximal compact subgroup, and let g = k ⊕ p be
the complexified Cartan decomposition. As usual, the corresponding real forms will be
denoted by g0, k0, etc. (One could also work in a more general setting of a reductive group
G in the Harish-Chandra class.)

If G is of hermitian type, then p decomposes as a sum of two abelian subalgebras, p+

and p−. We prove a Hodge decomposition for p−-cohomology and p+-homology for all
unitary (g,K)-modules, and show that they are both isomorphic to the Dirac cohomology
up to a twist by a modular character. We note that in this setting Enright [E] found an
explicit formula for the p−-cohomology of unitary highest weight modules.

For general g, and any two reductive subalgebras r1 ⊂ r2 ⊂ g to which the Killing form
restricts nondegenerately, we show that Kostant’s cubic Dirac operator D(g, r1) can be
decomposed as a sum of two anti-commuting Dirac operators D(g, r2) +D∆(r2, r1). Here
∆ denotes a certain “diagonal embedding”.

In particular, we consider the case when r ⊂ k is a reductive subalgebra, which is real,
i.e., r is the complexification of r0 = r ∩ g0 Then we can show that for any admissible
(g,K)-module, the Dirac cohomology with respect to D(g, r) is the same as the kernel
of D∆(k, r) on the Dirac cohomology with respect to D(g, k). Furthermore, the Dirac
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cohomology with respect to D(g, r) is also the same as the Dirac cohomology with respect
to D(g, k) of the kernel of D∆(k, r).

In particular, if g and k have equal rank, then r can be a Levi subalgebra l of a θ-stable
parabolic subalgebra q = l ⊕ u of g, with l ⊂ k. It follows that the Dirac cohomology
with respect to D(g, l), which is closely related to the ū-cohomology, has the advantage
of being much easier to calculate. For instance, let t be a compact Cartan subalgebra,
and t ⊕ n be a Borel subalgebra. Then we show how to (easily) explicitly calculate the
Dirac cohomology of the discrete series representations with respect to the Dirac operator
D(g, t). Comparing the obtained result with Schmid’s formula for n̄-cohomology in [S],
we see that they are the same up to an expected modular twist. In case G is of hermitian
type, the Dirac cohomology with respect to D(g, l) coincides with the ū-cohomology or
u-homology (up to a modular twist) for all unitary representations.

We now describe the organization of our paper. In Sections 2 and 3 we decompose the
Kostant cubic Dirac operator as sum of two “half Dirac operators”, which correspond to
the differentials of ū-cohomology and u-homology. Section 3 also contains a new proof
of the Casselman-Osborne theorem on Lie algebra cohomology using an approach similar
to that of [HP1]. This is aimed at explaining the formal similarity of the two results.
In Section 4 we prove a Hodge decomposition for p−-cohomology or p+-homology for
unitary representations in the Hermitian case, with the Dirac cohomology providing the
“harmonic representatives” of both. The same proof applies to any finite-dimensional
representation of an arbitrary semisimple group. In Section 5 we define the relative Dirac
operators and show that in some cases Dirac cohomology can be calculated in stages. In
Section 6 we develop this further and show how to use it to calculate Dirac cohomology
explicitly. In particular, we compare the Dirac cohomology for a Levi subalgebra with
the ū-cohomology in some cases. In Section 7 we obtain a Hodge decomposition and
equality of Dirac and ū-cohomology for arbitrary unitary modules in the Hermitian case.
We conclude the paper by showing that the homological properties of Dirac cohomology
are quite different from those of Lie algebra cohomology. In fact, under certain conditions,
we show that there is a six-term exact sequence of Dirac cohomology corresponding to
a short exact sequence of (g,K)-modules. So Dirac cohomology resembles a K-theory,
rather than a cohomology theory.

This work was initiated by David Vogan [V3]. We would like to thank him for many
interesting and stimulating conversations. We believe that the results in this paper are
not the end of the theory of Dirac cohomology in representation theory, but rather the
beginning of further investigations and applications. For example, the results of this paper
should be related to the results of Connes and Moscovici [CM] in a similar way as the
results of [HP1] are related to [AS].

2. Construction of certain Dirac operators

Let g be a complex semisimple Lie algebra, q = l⊕ u a parabolic subalgebra, q̄ = l⊕ ū

the opposite parabolic subalgebra, and s = u⊕ ū. Then

g = l⊕ s.

Furthermore, the restrictions of the Killing form B to l and s are non-degenerate, and
the above decomposition is orthogonal. Since u and ū are isotropic subspaces in perfect
duality under B, we can identify ū with u∗; this identification is l-invariant. Let u1, . . . , un

be a basis of u, and let u∗1, . . . , u
∗
n be the dual basis of ū.

Let C(s) be the Clifford algebra of s. Unlike in [HP1], we will use the same defining
relations as Kostant, namely

vw + wv = 2B(v, w);
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in particular, if B(v, v) = 1, then v2 = 1, and not −1 like in [HP1]. Of course, over C

there is no substantial difference between the two conventions.

We are going to make use of the well known principle of constructing invariants by
contracting dual indices. The aim is to construct a family of interesting l-invariants in
U(g)⊗C(s). These will include Kostant’s cubic Dirac operator D, but we will get D as a
sum of four members of the family, and we will also be able to combine them in different
ways, to get other operators with properties similar to the properties of D. For example,
we will have nice expressions for their squares. The form of this principle we need is the
statement of the following lemma; the proof is quite easy and essentially reduces to the
fact that under the identification Hom(u, u) ∼= u∗⊗u, the identity map corresponds to the
sum

∑
i u

∗
i ⊗ ui.

Lemma 2.1. Let

ψ : s⊗2k → U(g)⊗ C(s)

be a linear map which is l-equivariant with respect to the adjoint actions. Then
∑

I

ψ(uI ⊗ u∗I) ∈ U(g)⊗ C(s)

is independent of the chosen basis ui and l-invariant. Here I = (i1, . . . , ik) ranges over
all k-tuples of integers in {1, . . . , n}, uI = ui1 ⊗ · · · ⊗ uik , and u∗I = u∗i1 ⊗ · · · ⊗ u∗ik . �

For example, ψ can be composed of the obvious inclusions s ↪→ g ↪→ U(g) and s ↪→ C(s),
products, commutators in g and the Killing form B(., .). Here are several examples of this
kind which we will study in the following:

Examples 2.2.

A =
∑

i

u∗i ⊗ ui;

A− =
∑

i

ui ⊗ u∗i ;

1⊗ a = −1

4

∑

i,j

1⊗ [u∗i , u
∗
j ]uiuj ;

1⊗ a− = −1

4

∑

i,j

1⊗ [ui, uj ]u
∗
i u

∗
j ;

E = 1⊗ e = −1

2

∑

i

1⊗ u∗iui.

Note the symmetry obtained by exchanging the roles of u and ū. To see how the Dirac
operator fits in here, note that one can build an orthonormal basis (Zi) of s from ui and
u∗i , by putting

Zj :=
uj + u∗j√

2
, Zn+j :=

i(uj − u∗j)√
2

,

for j = 1, . . . , n. Then it is easy to check that

A+A− =

2n∑

i=1

Zi ⊗ Zi.

Also, we can rewrite a, a− and e as follows:
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Lemma 2.3.

a = −1

2

∑

i<j

∑

k

B([u∗i , u
∗
j ], uk)ui ∧ uj ∧ u∗k = −1

4

∑

i,j

uiuj [u
∗
i , u

∗
j ];

a− = −1

2

∑

i<j

∑

k

B([ui, uj ], u
∗
k)u

∗
i ∧ u∗j ∧ uk = −1

4

∑

i,j

u∗iu
∗
j [ui, uj ];

e = −1

2

∑

i

(−uiu
∗
i + 2) =

1

2

∑

i

uiu
∗
i − n.

Proof. Since [u∗i , u
∗
j ] ∈ ū, we can write it as

∑

k

B([u∗i , u
∗
j ], uk)u

∗
k.

Also, the sum in the definition of a is clearly twice the same sum over only those i, j
for which i < j. The only issue is thus to pass from the Clifford product to the wedge
product. For this, we use (1.6) in [K2]. First, since u is isotropic, uiuj = ui ∧ uj. Next,
we calculate

u∗k(ui ∧ uj) = u∗k ∧ ui ∧ uj +B(u∗k, ui)uj −B(u∗k, uj)ui.

The second two terms here are clearly zero if k is different from i and j. For k = i, the
second term is uj while the third is zero. For k = j, the second term is zero while the
third is −ui. It follows that we will be done if we can show

∑

i,j

(
B([u∗i , u

∗
j ], ui)uj −B([u∗i , u

∗
j ], uj)ui

)
= 0.

However, using Lemma 2.1, we see that
∑

i,j B([u∗i , u
∗
j ], ui)uj is an l-invariant element

of u. Since there are no nonzero l-invariants in u, this sum must be 0. Analogously,∑
i,j B([u∗i , u

∗
j ], uj)ui = 0.

So we proved the first equality for a. Now in the form with wedge product, we can
clearly commute u∗k in front of ui and uj , and then we obtain the second equality by
reversing the above argument.

The formulas for e are obvious from the defining relations of C(s). �

Consider now the basis (bj)j=1,...,2n of s, given by

b1 = u1, . . . , bn = un, bn+1 = u∗1, . . . , b2n = u∗n;

the dual basis is then

d1 = u∗1, . . . , dn = u∗n, dn+1 = u1, . . . , d2n = un.

Notice that for any i, j, k

B([ui, uj ], uk) = B([u∗i , u
∗
j ], u

∗
k) = 0.

Hence we can write Kostant’s cubic element v as

v = −1

2

∑

1≤i<j<k≤2n

([di, dj ], dk) bi ∧ bj ∧ bk = a+ a−.

In particular, we obtain Kostant’s cubic Dirac operator as



6 JING-SONG HUANG, PAVLE PANDŽIĆ, AND DAVID RENARD

D = A+A− + 1⊗ (a+ a−).

We are also particularly interested in the elements

C = A+ 1⊗ a; C− = A− + 1⊗ a−; and D− = C − C−.

Note that D = C+C−. We will use the fact that commuting with E operates on C,C−, D
and D− in the following way:

Proposition 2.4.

[E,C] = C; [E,C−] = −C−; [E,D] = D− and [E,D−] = D.

Proof. The second two relations follow from the first two, and the first two are immediate
from the following lemma. �

Lemma 2.5. Commuting with e in the Clifford algebra C(s) acts as I on u and as −I
on ū.

Proof. Clearly, for j 6= i, [u∗juj, ui] = 0. For j = i, we calculate

u∗iu
2
i − uiu

∗
i ui = −ui(−uiu

∗
i + 2) = −2ui.

Namely, since u is isotropic, u2 = 0 for any u ∈ u. The first claim now follows, and the
second is analogous. �

Kostant [K2], Theorem 2.16, has calculated

D2 = Ωg ⊗ 1− Ωl∆ + C.

Here Ωg denotes the Casimir element of Z(g) ⊂ U(g). Further, Ωl∆ is the Casimir element
for the diagonal copy l∆ of l, embedded into U(g)⊗ C(s) via

X 7−→ X ⊗ 1 + 1⊗ α(X), X ∈ l,

where α : l→ so(s)→ C(s) is the action map followed by the standard inclusion of so(s)

into C(s) using the identification so(s) ∼=
∧2

s. Finally, C is the constant ||ρ||2 − ||ρl||2.
Using this result and the above remarks, we can now quickly calculate the squares of

C, C− and D−:

Proposition 2.6.

C2 = (C−)2 = 0 and (D−)2 = −D2.

Proof. From Kostant’s expression for D2, it is clear that D2 commutes with all l-invariant
elements of U(g) ⊗ C(s). In particular, D2 commutes with E, and using Proposition 2.4
we see

DD− +D−D = [E,D2] = 0.

Since D +D− = 2C and D −D− = 2C−, it follows that

4C2 = (D +D−)2 = D2 + (D−)2 = (D −D−)2 = 4(C−)2,

so C2=(C−)2. On the other hand, Proposition 2.4 implies that

[E,C2] = 2C2 and [E, (C−)2] = −2(C−)2.

So we see that C2 = (C−)2 = 0, and also D2 + (D−)2 = 4C2 = 0. �
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Now we can completely describe the Lie superalgebra D spanned by E, C, C− and Ω =
D2 inside the superalgebra U(g)⊗C(s). Here U(g)⊗C(s) is an associative superalgebra
with Z2-grading of the Clifford factor; so it is also a Lie superalgebra in the usual way,
with the supercommutator [a, b] = ab− (−1)deg a deg bba.

D is a subalgebra of the Lie superalgebra U(g)⊗C(s), with the commutation relations
from Propositions 2.4 and 2.6. Namely, Ω is central, and

[E,C] = C, [E,C−] = −C−, [C,C] = [C−, C−] = 0 and [C,C−] = Ω.

The last relation is obtained as follows: Ω = D2 = (C+C−)2 = CC−+C−C = [C,C−].
Note that we can regard D as a Z-graded Lie superalgebra with, C−, E,Ω and C of degrees
−1, 0, 0 and 1 respectively. Note also that the subalgebra of D spanned by C, C− and Ω
is a Heisenberg superalgebra.

The Lie superalgebra D can be identified with gl(1, 1), i.e., the endomorphisms of the
superspace C ⊕ C, with the first C even and the second C odd. In Kac’s classification
[Kac] it is denoted by l(1, 1). It was extensively used by physicists under the name
supersymmetric algebra. It is a completely solvable Lie superalgebra, and its irreducible
finite-dimensional representations are described in [Kac].

To finish this section, let us note that D is independent not only of the choice of basis
(ui) but also of the choice of u ⊂ s. On the other hand, E, C and C− do depend on the
choice of u.

3. ū-cohomology and u-homology

We retain the notation from previous sections. Let V be an admissible (g,K)-module.
For p ∈ N, let

Cp(ū, V ) := Hom(
∧p

ū, V ),

be the set of p-cochains of the complex defining the ū-cohomology of V . The differential
d : Cp(ū, V )→ Cp+1(ū, V ) is given by the usual formula

(dω)(X0 ∧ . . . ∧Xp) =

p∑

i=0

(−1)i Xi · ω(X0 ∧ . . . ∧ X̂i ∧ . . . ∧Xp)+

∑

0≤i<j≤p

(−1)i+j ω([Xi, Xj ] ∧X0 ∧ . . . ∧ X̂i ∧ . . . ∧ X̂j ∧ . . . ∧Xp)

We have the following identifications :

Cp(ū, V ) = Hom(
∧p

ū, V ) ' Hom(
∧p(u∗), V ) ' Hom((

∧p
u)∗, V ) ' V ⊗∧p

u

Like in the previous section, we fix a basis (ui)i=1,...,n of u and denote the dual basis of
ū by (u∗i )i=1,...,n.
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Lemma 3.1. Through the above identifications, the differential d : V ⊗∧p
u→ V ⊗∧p+1

u

is given by

d(v ⊗ Y1 ∧ . . . ∧ Yp) =

n∑

i=1

u∗i · v ⊗ ui ∧ Y1 ∧ . . . ∧ Yp

+
1

2

n∑

i=1

p∑

j=1

v ⊗ ui ∧ Y1 ∧ . . . ∧ [u∗i , Yj]u ∧ . . . ∧ Yp

where [u∗i , Yj ]u denotes the projection of [u∗i , Yj ] on u.

Proof. This is a straigtforward calculation, starting from the fact that the identification∧p(u∗) = (
∧p

u)∗ is given via (f1 ∧ · · · ∧ fp)(X1 ∧ · · · ∧Xp) = det fi(Xj). �

The space V ⊗∧p
u is also the space of p-chains for the u-homology of V , with differential

∂ : V ⊗∧p
u→ V ⊗∧p−1

u given by :

∂(v ⊗ Y1 ∧ . . . ∧ Yp) =

p∑

i=1

(−1)iYi · v ⊗ Y1 ∧ . . . Ŷi ∧ . . . ∧ Yp+

∑

1≤i<j≤p

(−1)i+jv ⊗ [Yi, Yj] ∧ Y1 ∧ . . . ∧ Ŷi ∧ . . . ∧ Ŷj ∧ . . . Yp

Note that we are tensoring with
∧·

u from the right and not from the left as usual; this
is because we will have an action of U(g)⊗ C(s) on V ⊗ ∧· u which will be more natural
in this order.

For reasons that will become apparent later, we will instead of ∂ consider the operator
δ = −2∂. Of course, δ defines the same homology as ∂.

To get our Dirac operators act, we need to consider the U(g) ⊗ C(s) - module V ⊗ S,
where S is the spin module for the Clifford algebra C(s). We will use the identification
of

∧·
u with S, given explicitly in [K4] and [K3]. Namely, one can construct S as the left

ideal in C(s) generated by the element u∗top = u∗1 . . . u
∗
n. One then has S = (

∧·
u)u∗top,

which is isomorphic to
∧·

u as a vector space, and the action of C(s) is given by left
Clifford multiplication. Explicitly, u ∈ u and u∗ ∈ ū act on Y = Y1 ∧ · · · ∧ Yp ∈

∧p
u by

u · Y = u ∧ Y

u∗ · Y = 2

p∑

i=1

(−1)i+1B(u∗, Yi)Y1 ∧ . . . Ŷi · · · ∧ Yp.

Namely, since u and ū are isotropic, the Clifford and wedge products coincide on each
of them; in particular, u∗u∗top = 0.

The natural action of l on V ⊗S is the tensor product of the restriction of the g-action
on V and the spin action on S. On the other hand, the usual l action on ū-cohomology
and u-homology is given by the adjoint action on

∧·
ū and

∧·
u. Thus, our identification

of
∧·

u⊗V with V ⊗S is not an l-isomorphism. However, as was proved in [K3], Prop.3.6,
the two actions differ only by a twist with the one dimensional l-module Zρ(ū) of weight
ρ(ū).

This means that, if we consider d and δ as operators on V ⊗ S via the above identi-
fication, then as an l-module, the cohomology of d gets identified with H ·(ū, V ) ⊗ Zρ(ū),
while the homology of δ gets identified with H·(u, V )⊗ Zρ(ū).
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Proposition 3.2. Under the action of U(g)⊗C(s) on V ⊗S, the operators C = A+1⊗a
and C− = A− +1⊗a− from Section 2 act as d and δ respectively. In particular, the cubic
Dirac operator D = C + C− acts as d+ δ = d− 2∂.

Proof. We are going to use the explicit formulas for the action of C(s) on S given above.
From these formulas, it is immediate that the action of A coincides with the first (single)
sum in the expression for d, while the action of A− transforms v⊗Y1∧· · ·∧Yp ∈ V ⊗

∧p
u

into

n∑

i=1

uiv ⊗ 2

p∑

k=1

(−1)k+1B(u∗i , Yk)Y1 ∧ . . . Ŷk · · · ∧ Yp.

Since
∑

iB(u∗i , Yk)ui = Yk, we see that this is equal to minus twice the first (single)
sum in the expression for the u-homology operator ∂.

It remains to identify the action of the cubic terms a and a−.

We use the expression for a from Lemma 2.3, i.e., a = − 1
4

∑
i,j uiuj[u

∗
i , u

∗
j ]. This

element transforms v ⊗ Y1 ∧ · · · ∧ Yp ∈ V ⊗
∧p

u into

−1

4
v ⊗

∑

i,j

uiuj 2

p∑

k=1

(−1)k+1B([u∗i , u
∗
j ], Yk)Y1 ∧ . . . Ŷk · · · ∧ Yp

=
1

2
v ⊗

∑

i,j,k

(−1)k+1B([u∗i , Yk], u
∗
j )ui ∧ uj ∧ Y1 ∧ . . . Ŷk · · · ∧ Yp.

Now we sum
∑

j B([u∗i , Yk], u
∗
j )uj = [u∗i , Yk]u, and after commuting [u∗i , Yk]u into its

proper place, we get the second (double) sum in the expression for d.

For a− we use its definition from 2.2. To write the calculation nicely, we introduce the
following notation: for Y = Y1 ∧ · · · ∧ Yp, let

Ŷk,l = Y1 ∧ . . . Ŷk . . . Ŷl · · · ∧ Yp, if k < l.

If k > l then we change the sign and define

Ŷk,l = −Y1 ∧ . . . Ŷl . . . Ŷk · · · ∧ Yp, if k > l.

If k = l, we set Ŷk,l = 0. This now allows us to write

u∗iu
∗
j · Y1 ∧ · · · ∧ Yp = 4

∑

k,l

(−1)k+lB(u∗i , Yk)B(u∗j , Yl)Ŷk,l.

It follows that 1⊗ a− transforms v ⊗ Y1 ∧ · · · ∧ Yp into

−1

4
4 v ⊗

∑

i,j,k,l

(−1)k+lB(u∗i , Yk)B(u∗j , Yl) [ui, uj ] ∧ Ŷk,l.

Upon summing up
∑

iB(u∗i , Yk)ui = Yk and
∑

j B(u∗j , Yl)uj = Yl, we get that this is
equal to

−v ⊗
∑

k,l

(−1)k+l[Yk, Yl] ∧ Ŷk,l.

This is now clearly invariant for exchanging the roles of k and l, hence it is twice the
same sum extending just over k < l, i.e., minus twice the second (double) sum in the
expression for ∂. �
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It is now clear why we considered δ = −2∂ instead of just ∂; in this way we have the
action of D being equal to d+ δ.

Before we go on, let us note how the element E of Section 2 acts on V ⊗ S; it is in
fact a degree operator up to a shift. This means E can be used to identify the degrees in
which the cohomology (homology) is appearing.

Proposition 3.3. The element E of U(g)⊗C(s) from 2.2 acts on V ⊗
∧k

u as multipli-
cation by the scalar k − n. Consequently, it preserves the kernel and image of both d and
δ, and hence acts on the k-th cohomology of d and the k-th homology of δ, by the same
scalar k − n. In particular, E + n is the degree operator.

Proof. Using Lemma 2.5 we see that for any u ∈ u, eu = ue + u. On the other hand, by
Lemma 2.3, e = 1

2

∑
i uiu

∗
i − n, hence eu∗top = −nu∗top. It now immediately follows that

in C(s) we have e(Y1 ∧ · · · ∧ Yk u
∗
top) = (k − n)Y1 ∧ · · · ∧ Yk u

∗
top, so the action of E on

V ⊗∧k
u is indeed multiplication by the scalar k − n.

It now immediately follows that E preserves the kernel and image of d and δ, as these are
homogeneous operators (of degree 1 and −1 respectively). (Note that this last assertion
can also be obtained from the commutation relations of Proposition 2.4.) �

We will now state a result for the operators C and C− analogous to the one obtained
for D in [HP1] and [K4]. A corollary will be the Casselman-Osborne Theorem. Our goal
here is not to give a new proof of the Casselman-Osborne Theorem, the existing ones
being completely satisfactory, but to shed some light on the formal similarity between the
Casselman-Osborne Theorem and the main result of [HP1].

Define dD, dC , dC− : U(g)⊗ C(s)→ U(g)⊗ C(s) by

dD(x) = Dx− εxxD
dC(x) = Cx− εxxC
dC−(x) = C−x− εxxC−

where εx is 1 for even x and −1 for odd x. In the following we fix a compact group L
with complexified Lie algebra l.

Theorem 3.4. dD, dC and dC− are L-equivariant. They induce maps from (U(g)⊗C(s))L

into itself and d2
D = d2

C = d2
C− = 0 on (U(g)⊗ C(s))L.

Furthermore Z(l∆) ⊂ Ker dD (resp. Ker dC , Ker dC−), and one has Ker dD = Z(l∆)⊕
Im dD, (resp. Ker dC = Z(l∆)⊕ ImdC , Ker dC− = Z(l∆)⊕ ImdC−).

Proof. The result for dD is due to Kostant [K4]. The proof is the same as the proof of
the main result of [HP1]. We give details for dC , the proof for dC− being entirely similar.
As in [HP1], we use the standard filtration on U(g), which induces a filtration (FnA)n∈N

on A := U(g) ⊗ C(s). This filtration being L-invariant, it induces in turn a filtration on
AL. Clearly,

C =

n∑

j=1

u∗j ⊗ uj + (1⊗ a) ∈ F1A
L.

The Z2-gradation on the Clifford algebra C(s) induces a Z2-gradation on A. We set
A0 = U(g)⊗C(s)0 and A1 = U(g)⊗ C(s)1. Then A = A0

⊕
A1 and this Z2-gradation is

compatible with the filtration (FnA)n∈N

If x ∈ FnA
0, then dC(x) = d0

C(x) = Cx − xC ∈ Fn+1A
1. If x ∈ FnA

1, then dC(x) =
d1

C(x) = Cx+ xC ∈ Fn+1A
0. Thus
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d0
C : FnA

0 → Fn+1A
1 and d1

C : FnA
1 → Fn+1A

0

induce

d̄0
C : Grn A

0 → Grn+1A
1 and d̄1

C : ; Grn A
1 → Grn+1 A

0.

Let C̄ =
∑n

j=1 u
∗
j ⊗uj ∈ S1(g)⊗C(s) be the image of C in

(
Gr1 A

1
)L

(notice that the

cubic term disappears since it is in F0A
1). If x ∈ FnA

0,

d̄0
C(x̄) = Cx− xC = C̄x̄− x̄C̄

and if x ∈ FnA
1,

d̄1
C(x̄) = Cx+ xC = C̄x̄+ x̄C̄.

Therefore d̄C = d̄0
C ⊕ d̄1

C : GrA→ GrA. Note also that unlike dD, dC is a differential on
all of U(g)⊗ C(s), because C2 = 0. Hence d̄C is a differential on S(g)⊗ C(s).

Let us compute d̄C(x̄) for x̄ = y⊗ui1 · · · uiku
∗
j1
· · · u∗jl

∈ S(g)⊗C(s). We can assume ir
are different from each other and likewise for js.

d̄C(x̄) =




n∑

j=1

u∗j ⊗ uj


(

y ⊗ ui1 · · · uiku
∗
j1 · · · u

∗
jl

)
−

(−1)k+l
(
y ⊗ ui1 · · · uiku

∗
j1 · · · u

∗
jl

)



n∑

j=1

u∗j ⊗ uj




=

n∑

j=1

u∗jy ⊗
(
(−1)kui1 · · · uikuju

∗
j1 · · · u

∗
jl
− (−1)k+lui1 · · · uiku

∗
j1 · · · u

∗
jl
uj

)

If j 6= js for all s, then the contribution to the sum is zero. If j = js, then

ujs
u∗j1 · · · u

∗
jl
− (−1)lu∗j1 · · · u

∗
jl
ujs

= (−1)s−1u∗j1 · · · u
∗
js−1

(ujs
u∗js

+ u∗js
ujs

)u∗js+1
· · · u∗jl

= 2(−1)s−1u∗j1 · · · û∗js
· · · u∗jl

.

So we see

d̄C(x̄) =
l∑

s=1

−2(−1)k+su∗js
y ⊗ ui1 · · · uiku

∗
j1 · · · û∗js

· · · u∗jl
.

Since g = l⊕ u⊕ ū and C(s) ' ∧·
s =

∧·
u⊗∧·

ū, one has

S(g)⊗ C(s) = S(l)⊗ S(u)⊗∧·
u⊗ S(ū)⊗∧·

ū.

It follows that d̄C is (up to a sign depending on the
∧·

u-degree) equal to −2 Id⊗dū,
where dū is the Koszul differential for the vector space ū. It is well known that dū is
exact except at degree zero, where the cohomology is C, embedded as the constants. It
follows that d̄C is exact except at degree zero, where the cohomology is S(l)⊗S(u)⊗∧·

u

embedded in the obvious way. It remains to pass to the invariants:
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Lemma 3.5. The differential d̄C on (S(g)⊗ C(s))L is exact except at degree zero. The

zeroth cohomology is (S(l)⊗ S(u)⊗∧·
u)

L
= S(l)L ⊗ 1, embedded in the obvious way.

More precisely

Ker d̄C =
(
S(l)L ⊗ 1

)
⊕ Im d̄C

To prove the lemma, we need to show that (S(l)⊗ S(u)⊗ ∧· u)
L

= S(l)L ⊗ 1 ⊗ 1. To
see this, we may choose some element h in the center of l, such that l is the centralizer
of h in g, adh has real eiganvalues and u is the sum of the positive eigenspaces of adh.

Making h act on an element in (S(l)⊗ S(u)⊗
∧·

u)
L
, we see that this element has to be

in S(l)L ⊗ 1⊗ 1.

We can now finish the proof of the theorem. We proceed as in [HP1] by induction on
the degree of the filtration. �

Let z ∈ Z(g). Since z ⊗ 1 ∈ Ker dC , we can write

z ⊗ 1 = ηl(z) + Ca+ aC

for some a ∈ (U(g)⊗ C(s))L and ηl(z) ∈ Z(l∆).

Our goal is now to compute ηl(z). Let h be a Cartan subalgebra of l, and let us denote
respectively by Wl and Wg the Weyl groups of h in l and g.

We have Harish-Chandra isomophisms

µl/h : Z(l)→ S(h)Wl , µg/h : Z(g)→ S(h)Wg ,

and an obvious inclusion i : S(h)Wg → S(h)Wl . Set µg/l := µ−1
l/h
◦ i ◦ µg/h. With this

notation we have:

Lemma 3.6. For all z ∈ Z(g), ηl(z) = µg/l(z).

Proof. The proof is similar to the proof of Theorem 4.2 in [K4], but much simpler. We
give only a sketch. Let b be a Borel subalgebra of g containing ū, and suppose the Cartan
algebra h has been chosen to lie in b.

Let Vλ be the irreducible finite dimensional representation with highest weight λ (rel-
ative to b), and let vλ be a non-zero highest weight vector in Vλ. Recall the element u∗top
in C(s) used to define the spin module S.

One can see easily that C ·(vλ⊗u∗top) = 0 and that vλ⊗u∗top ∈ Vλ⊗S defines a non-zero

cohomology class in H0(ū, Vλ). Since the infinitesimal character of Vλ is given by λ + ρ,
and any q ∈ Z(l∆) acts by the scalar µl/h(q)(λ+ ρ) on vλ ⊗ u∗top (see [K4], Theorem 4.1),
we get

µg/h(z)(λ + ρ) = µl/h(ηl(z))(λ + ρ)

for all z ∈ Z(g).

Since this is true for all dominant weights λ, and since these form a Zariski dense set
in h∗, we conclude that indeed µg/h(z) = µl/h(ηl(z)). �

Let V be a representation of g admitting an infinitesimal character χV and let z ∈ Z(g).
Then z acts on H ·(ū, V ) by the scalar χV (z).

Notice that z ⊗ 1 acts on KerC/ ImC as ηl(z). Namely, Ca + aC leaves KerC and
ImC stable, and induces the zero action on KerC/ ImC.

Thus, the induced action of ηl(z) on KerC/ ImC ∼= H ·(ū, V ) ⊗ Zρ(ū) is equal to the
scalar multiplication by χV (z). This is exactly the statement of the Casselman-Osborne
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Theorem (see [CO], or [V1], Theorem 3.1.5). Namely, our definition of µg/l = ηl differs
from the map Z(g) → Z(l) from the Casselman-Osborne Theorem exactly by the above
ρ-shift.

4. Hodge decomposition for p− - cohomology

In this section we will study hermitian forms on V ⊗S for unitary modules V . Ideally we
would like our d and δ to be adjoints or minus adjoints of each other. This will in general
be possible only for an indefinite form. It is however much easier to obtain Hodge-type
decompositions in the presence of a positive definite form. In this section we will mostly
study a special case when l is equal to k; this can happen only when the pair (g, k) is
hermitian symmetric. In this case, d and δ are minus adjoints of each other with respect
to a positive definite form, and we can use a variant of standard Hodge decomposition to
conclude that the Dirac cohomology, p−-cohomology and p+-homology are all isomorphic
to the space of ”harmonics”. In Section 7 we will do something similar when l is only
contained in k.

Assume that V is unitary, i.e., V posseses a positive definite hermitian form invariant
with respect to the real form g0. We denote by ¯ the conjugation with respect to g0 and
by θ the Cartan involution of g0 extended to g. Let g = k⊕p be the corresponding Cartan
decomposition.

Note that if our parabolic l ⊕ u is θ-stable, then ū is indeed the complex conjugate of
u, and thus, our notation is coherent. Furthermore, we can choose the basis ui so that
each ui is either in k or in p. Then, after suitable normalization of the ui’s, we can take
u∗i = −θūi; so u∗i = ūi for ui ∈ p, and u∗i = −ūi for ui ∈ k. We denote by εi the sign in
these formulas; so u∗i = εiūi for all i. In the following we assume that q is θ-stable.

We consider the positive definite form on S ∼=
∧·

u, given by 〈X,Y 〉pos := −2B(X, θȲ )
on u, and extended to all of S in the usual way, using the determinant. Notice that we
have 〈ui, uj〉pos = 2δij .

This form is in general not l-invariant (but it will be l-invariant in the special cases we
study below).

Lemma 4.1. With respect to the form 〈X,Y 〉pos on S, the adjoint of the operator ui ∈
C(s) is u∗i .

Proof. We need to show that

〈ui ∧X1 ∧ · · · ∧Xk, Y1 ∧ · · · ∧ Yk+1〉pos = 〈X1 ∧ · · · ∧Xk, u
∗
i · (Y1 ∧ · · · ∧ Yk+1)〉pos.

We can check this assuming that Xa = usa
and Yb = utb are basis elements, with sa

and tb increasing. The left hand side of the equality we have to prove is nonzero if and
only if ui = Yj for some j, and Xa’s equal the rest of Yb’s. In that case, the left hand side
is

(−1)j−12k+1.

The right hand side is again nonzero if and only if ui = Yj for some j, and Xa’s equal
the rest of Yb’s. In that case, the right hand side is exactly the same as the left hand
side. �

Lemma 4.2. With respect to the form 〈X,Y 〉pos on S, the adjoint of the operator uiuj [u
∗
i , u

∗
j ]

is the operator [ui, uj ]u
∗
iu

∗
j . Consequently, the adjoint of a is a−.
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Proof. We can write [u∗i , u
∗
j ] =

∑
k B([u∗i , u

∗
j ], uk)u

∗
k and hence by Lemma 4.1 the adjoint

of [u∗i , u
∗
j ] is

∑

k

B([u∗i , u
∗
j ], uk)uk =

∑

k

B([ū∗i , ū
∗
j ], ūk)uk =

∑

k

εiεjεkB([ui, uj ], u
∗
k)uk.

If ui and uj are both in k, then so is [ui, uj ], and in the above sum we can assume
uk ∈ k. Then εi, εj and εk are all -1, and their product is -1. If ui ∈ k, uj ∈ p, then
[ui, uj ] ∈ p, we can assume uk ∈ p and again εiεjεk = −1. If ui, uj ∈ p, then [ui, uj ] ∈ k,
we can assume uk ∈ k and again εiεjεk = −1. So in all cases the above sum is

−
∑

k

B([ui, uj ], u
∗
k)uk = −[ui, uj ],

i.e., the adjoint of [u∗i , u
∗
j ] is −[ui, uj ]. Thus the adjoint of uiuj[u

∗
i , u

∗
j ] is −[ui, uj ]u

∗
ju

∗
i =

[ui, uj ]u
∗
i u

∗
j , as claimed.

The adjointness of a and a− is now clear from the definitions in 2.2. �

Let now V be a unitary (g,K)-module. Then the adjoint of the operator ui on V is
−ūi = −εiu∗i . So the adjoint of ui ⊗ u∗i on V ⊗ S is −εiu∗i ⊗ ui. Here we consider the
tensor product hermitian form on V ⊗ S; this form will again be denoted by 〈., .〉pos. In
other words, if we denote by Ak and Ap the k respectively p - parts of A, then we see:

Corollary 4.3. With respect to the form 〈., .〉pos on V ⊗S, the adjoint of Ak is A−
k while

the adjoint of Ap is −A−
p . Hence the adjoint of C = Ak +Ap + 1⊗ a is A−

k + 1⊗ a−−A−
p

and the adjoint of C− = A−
k +A−

p + 1⊗ a− is Ak + 1⊗ a−Ap. �

We will use this corollary in Sections 5 and 7. Now we turn our attention to the case
when Ak and 1 ⊗ a do not appear in C. This is the already mentioned case, when l = k,
and u is contained in p. Then u is forced to be abelian and we denote as usual u = p+,
ū = p−. In this case, the Dirac operator D = D(g, l) is the “ordinary” Dirac operator
corresponding to k, there is no cubic part, and we conclude

Corollary 4.4. Let (g, k) be a hermitian symmetric pair and set l = k. Let V be a unitary
(g,K)-module and consider the form 〈., .〉pos on V ⊗ S. Then the operators C = d and
C− = δ are minus adjoints of each other. Hence the Dirac operator D = D(g, l) = D(g, k)
is anti-self-adjoint.

More generally, if l contains k (this can happen when g is not simple), then D(g, l) is
anti-self-adjoint with respect to 〈., .〉pos. �

Remark 4.5. There is another form one can put on S ∼=
∧·

u, and then combine it
with the unitary form on V . This form is simply induced by B: on u, it is given by
〈X,Y 〉inv = 2B(X, Ȳ ). Unlike 〈X,Y 〉pos, this form is always l-invariant. On the other
hand it is rarely positive definite. (In the situation of Corollary 4.4, it is however the same
as 〈X,Y 〉pos.)

One can make calculations very similar to the above ones, and conclude that the adjoint
of ui on S is now εiu

∗
i . It follows that the adjoint of a is −a−; furthermore, the adjoint of A

is −A− and hence the adjoint of C is −C−. So D is now anti-self-adjoint, in a completely
general situation, but with respect to a typically indefinite form. We have been unable to
use this to get a Hodge decomposition like the one below. �

For the rest of this section we assume that l = k. So D is anti-self-adjoint with respect
to the positive definite form 〈., .〉pos on V ⊗S. In particular, the operators D and D2 have
the same kernel on V ⊗ S.
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By [P], Proposition 3.2 (or more generally, [K2], Theorem 2.16), we know that

D2 = Ωg ⊗ 1− Ωk∆ + C,

where Ωg and Ωk∆ are the Casimir operators for g and diagonally embedded k, and C is
the constant ||ρg||2 − ||ρk||2. It follows that if Ωg acts on V by a constant, then Ωk∆ is up

to a constant equal to D2 on V ⊗S. Since Ωk∆ acts by a scalar on each K̃-type in V ⊗S,
the same is true for D2. So D2 is a semisimple operator, i.e., V ⊗ S is a direct sum of
eigenspaces for D2. In particular:

Corollary 4.6. If the (g,K)-module V has infinitesimal character, then V⊗S = Ker(D2)⊕
Im(D2)

Proof. We have seen that V ⊗ S is a direct sum of eigenspaces for D2. Clearly, the zero
eigenspace is KerD2, and the sum of the nonzero eigenspaces is ImD2. �

It is now easy to obtain a variant of the usual Hodge decomposition. The following
arguments are well known; see e.g. [W], Scholium 9.4.4. We first have

Lemma 4.7. (a) KerD = Ker d ∩Ker δ;

(b) Im δ is orthogonal to Ker d and Im d is orthogonal to Ker δ.

Proof. (a) Since D = d + δ, it is clear that Ker d ∩ Ker δ is contained in KerD. On
the other hand, if Dx = 0, then dx = −δx, hence δdx = −δ2x = 0. So 〈dx, dx〉pos =
〈−δdx, x〉pos = 0, hence dx = 0. Now Dx = 0 implies that also δx = 0.

(b) is obvious since d and δ are minus adjoint to each other. �

Combining Corollary 4.6, Lemma 4.7 and the fact KerD = KerD2, we get

Theorem 4.8. Let (g, k) be a hermitian symmetric pair and set l = k and u = p+. Let V
be an irreducible unitary (g,K)-module. Then:

(a) V ⊗ S = KerD ⊕ Im d⊕ Im δ;

(b) Ker d = KerD ⊕ Im d;

(c) Ker δ = KerD ⊕ Im δ.

In particular, The Dirac cohomology of V is equal to p−-cohomology and to p+-homology,
up to modular twists:

KerD ∼= H ·(p−, V )⊗ Zρ(p−)
∼= H·(p

+, V )⊗ Zρ(p−).

More precisely, (up to modular twists) the Dirac cohomology KerD is the space of har-
monic representatives for both p−-cohomology and p+-homology. �

Remark 4.9. There is a variant of the above results for a finite dimensional module V .
In this case one puts a positive definite form on V invariant under the compact form
k0⊕ ip0 of g; this is sometimes called an admissible form. In this way the adjoint of ui on
V will be ūi if ui ∈ p and −ūi if ui ∈ k. Hence the adjoint of ui on V is u∗i for all i.

So this form combines with 〈 , 〉pos on S better than a unitary form. In particular, d
and δ are now adjoint to each other with respect to 〈 , 〉pos, D is self-adjoint, and the
above arguments, including Theorem 4.8, apply without change. There is no need here
to assume that l = k; q = l⊕ u can be any θ-stable parabolic subalgebra of (any) g.

This case was however already known; it is implicit in [K3] and it is explicitly mentioned
in [V3]. �

Remark 4.10. For a finite-dimensional module V , one can generalize the above remark
and prove self-adjointness of D for the more general setting when r ⊂ g is not necessarily a
Levi subalgebra of a parabolic subalgebra, but any real and θ-stable reductive subalgebra
(to which B then restricts nondegenerately). Namely, let s be the orthocomplement of r
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and let s+ be a maximal isotropic subspace of s. Let S =
∧·

s+ be a spin module for C(s).
Define the form 〈 , 〉pos on S and V ⊗ S in the same way as above, using the admissible
form on V . One shows as in Lemma 4.1 that the adjoint of any X ∈ s on S with respect
to 〈 , 〉pos is −θX̄. In particular, if we take bases Zi of s0∩ k0 and Z ′

i of s0∩p0 orthonormal
with respect to 〈 , 〉pos, then the adjoint of Zi is −Zi and the adjoint of Z ′

i is Z ′
i. So the

linear term
∑
Zi ⊗ Zi +

∑
Z ′

i ⊗ Z ′
i of D is self adjoint with respect to 〈 , 〉pos on V ⊗ S.

Moreover, the dual bases of Zi, Z
′
i with respect to B are −Zi, Z

′
i, and so the cubic term

of D can be written as

v = −1

2


 ∑

i<j<k

B([−Zi,−Zj ],−Zk)ZiZjZk +
∑

i;j<k

B([−Zi, Z
′
j ], Z

′
k)ZiZ

′
jZ

′
k




=
1

2


 ∑

i<j<k

B([Zi, Zj ], Zk)ZiZjZk +
∑

i;j<k

B([Zi, Z
′
j ], Z

′
k)ZiZ

′
jZ

′
k




(the other terms are zero). Since the adjoint of ZiZjZk is (−Zk)(−Zj)(−Zi) = ZiZjZk,
the adjoint of ZiZ

′
jZ

′
k is Z ′

kZ
′
j(−Zi) = ZiZ

′
jZ

′
k, and the coefficients are real, we see that v

is also self-adjoint. Hence D is self-adjoint.

5. Relative Dirac operators

In this section we compare various Dirac operators arising from two compatible decom-
positions

g = r⊕ s = r′ ⊕ s′.

Here both decompositions are like in the Kostant’s setting for the cubic Dirac operator: r

and r′ are reductive subalgebras of g such that the Killing form B restricts to a nondegen-
erate form on each of them, while s respectively s′ are the orthogonals of r respectively
r′. Compatibility of the two decompositions means

r = r ∩ r′ ⊕ r ∩ s′; s = s ∩ r′ ⊕ s ∩ s′; r′ = r′ ∩ r⊕ r′ ∩ s; s′ = s′ ∩ r⊕ s′ ∩ s.

Clearly, all these decompositions are orthogonal.

Example 5.1. If l is a θ-stable Levi subalgebra of g, then r = l and r′ = k satisfy the
above conditions.

Now r∩ r′ is also a reductive subalgebra of g to which B restricts nondegenerately. The
corresponding decomposition is

g = r ∩ r′ ⊕ (s⊕ r ∩ s′).

The corresponding Dirac operator will be denoted by D(g, r ∩ r′). To write it down, take
orthonormal bases Zi for s, and Z ′

i for r ∩ s′. Identify

(1) U(g)⊗ C(s⊕ r ∩ s′) = U(g)⊗ C(s)⊗̄C(r ∩ s′),

where ⊗̄ denotes the Z2-graded tensor product. Now if Wj is the union of the bases Zi

and Z ′
i, then by Kostant’s definition, D(g, r ∩ r′) is the element

D(g, r ∩ r′) =
∑

j

Wj ⊗Wj −
1

2

∑

i<j<k

B([Wi,Wj],Wk)⊗WiWjWk

of U(g)⊗ C(s⊕ r ∩ s′).

Kostant’s original definition uses exterior multiplication instead of Clifford multipli-
cation in the second sum (with the Clifford and exterior algebras identified as vector
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spaces via Chevalley identification). For orthogonal vectors, there is however no differ-
ence between exterior and Clifford multiplication, so the above definition is the same as
Kostant’s.

Taking into account the decomposition (1), we see

(2)

D(g, r ∩ r′) =
∑

i

Zi ⊗Zi ⊗ 1 +
∑

j

Z ′
j ⊗ 1⊗Z ′

j −
1

2

∑

i<j<k

B([Zi, Zj ], Zk)⊗ZiZjZk ⊗ 1−

1

2

∑

i<j

∑

k

B([Zi, Zj ], Z
′
k)⊗ ZiZj ⊗ Z ′

k −
1

2

∑

i<j<k

B([Z ′
i, Z

′
j ], Z

′
k)⊗ 1⊗ Z ′

iZ
′
jZ

′
k.

Note that the terms with Zi, Z
′
j and Z ′

k do not appear, because B([Zi, Z
′
j ], Z

′
k) =

B(Zi, [Z
′
j , Z

′
k]) = 0, as [Z ′

j , Z
′
k] ∈ r is orthogonal to s.

We consider U(g)⊗C(s) as the subalgebra U(g)⊗C(s)⊗ 1 of U(g)⊗C(s)⊗̄C(r ∩ s′).
In view of this, we see that the first and third sum in (2) combine to give D(g, r), the
Kostant’s cubic Dirac operator corresponding to r ⊂ g.

The remaining three sums come from the cubic Dirac operator corresponding to r∩r ′ ⊂
r. However, this is an element of the algebra U(r) ⊗ C(r ∩ s′), and this algebra has to be
embedded into U(g)⊗C(s)⊗̄C(r∩ s′) diagonally, not as U(r)⊗ 1⊗C(r∩ s′). Namely, we
use the diagonal embedding U(r) ∼= U(r∆) ⊂ U(g)⊗ C(s) from the setting g = r⊕ s; the
definition is the same as for r = l above Proposition 2.6. Thus we embed

∆ : U(r) ⊗C(r ∩ s′) ∼= U(r∆)⊗̄C(r ∩ s′) ⊂ U(g)⊗ C(s)⊗̄C(r ∩ s′).

We will denote ∆(D(r, r ∩ r′)) by D∆(r, r ∩ r′) and call it a relative Dirac operator.

Theorem 5.2. With notation as above,

(i) D(g, r ∩ r′) = D(g, r) +D∆(r, r ∩ r′);

(ii) The summands D(g, r) and D∆(r, r ∩ r′) anticommute.

Proof. To prove (i), we need to describe the image under ∆ of

(3) D(r, r ∩ r′) =
∑

i

Z ′
i ⊗ Z ′

i −
1

2

∑

i<j<k

B([Z ′
i, Z

′
j ], Z

′
k)⊗ Z ′

iZ
′
jZ

′
k ∈ U(r)⊗ C(r ∩ s′),

and see that it matches the second, fourth and fifth sum in (2). In fact, it is obvious that
the image under ∆ of the second sum in (3) equals the fifth sum in (2), and it remains to
identify

(4)
∑

i

∆(Z ′
i ⊗ Z ′

i) =
∑

i

Z ′
i ⊗ 1⊗ Z ′

i + 1⊗ α(Z ′
i)⊗ Z ′

i.

Namely, ∆(Z ⊗ Z ′) = Z ⊗ 1 ⊗ Z ′ + 1 ⊗ α(Z) ⊗ Z ′, where α : r → so(s) ↪→ C(s) is the
action map of r on s, followed by the standard inclusion of so(s) into C(s), given by

Eij −Eji 7→
1

2
ZiZj ,

where Eij are the matrix units relative to the basis Zi.

Thus we are left with showing that the second sum in (4) equals the third sum in (2),
i.e., that ∑

k

1⊗ α(Z ′
k)⊗ Z ′

k = −1

2

∑

i<j

∑

k

B([Zi, Zj ], Z
′
k)⊗ ZiZj ⊗ Z ′

k.
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This will follow if we see that

α(Z ′
k) = −1

2

∑

i<j

B([Zi, Zj ], Z
′
k)ZiZj

for any k. But this last equality is clear from the definition of α. Namely, the matrix of
adZ ′

k on s in the basis Zi is
∑

i<j B([Z ′
k, Zj ], Zi)(Eij −Eji).

To prove (ii), we use the fact that D(g, r) commutes with r∆, which is one of the most
basic properties of D(g, r). It follows that the anticommutator

[
D(g, r)⊗ 1, (Z ′

i ⊗ 1 + 1⊗ α(Z ′
i))⊗ Z ′

i

]
=

[
D(g, r), Z ′

i ⊗ 1 + 1⊗ α(Z ′
i)

]
⊗ Z ′

i

is zero for any i. Hence
[
D(g, r) ⊗ 1,∆(

∑
i Z

′
i ⊗ Z ′

i)
]

= 0. It remains to see that also

[
D(g, r) ⊗ 1, 1⊗ 1⊗ (−1

2
)

∑

i<j<k

B([Z ′
i, Z

′
j ], Z

′
k)Z ′

iZ
′
jZ

′
k

]
= 0.

This follows from the definition of ⊗̄, since all the C(s)-parts of the monomial terms of
D(g, r), and also all Z ′

iZ
′
jZ

′
k ∈ C(r ∩ s′), are odd. �

Example 5.3. In the setting of Example 5.1, we obtain

D(g, l ∩ k) = D(g, l) +D∆(l, l ∩ k) = D(g, k) +D∆(k, l ∩ k),

and both decompositions have anticommuting summands. If l is contained in k, which is
possible if and only if g and k have equal ranks, then we get only one nontrivial decom-
position, D(g, l) = D(g, k) +D∆(k, l). This case will be of special interest below.

We now want to use Theorem 5.2 to relate the Dirac cohomology of the various Dirac
operators involved. In some cases one can apply the following easy fact from linear algebra.
We define the cohomology of any linear operator T on a vector space V to be the vector
space H(T ) = KerT/(Im T ∩KerT ).

Lemma 5.4. Let A and B be anticommuting linear operators on a vector space V . Assume
that A2 diagonalizes on V , i.e. V =

⊕
λ Vλ, with A2 = λ on Vλ. Then the cohomology

H(A + B) of A + B on V is the same as the cohomology of the restriction of A + B to
V0 = KerA2.

Proof. Since A + B commutes with A2, its kernel, image and cohomology decompose
accordingly to eigenspaces Vλ. We thus have to prove that A+B has no cohomology on
Vλ for λ 6= 0. In other words, we are to prove that Ker(A+B) ⊂ Im(A+B) on Vλ.

Let v ∈ Vλ be such that (A+B)v = 0, i.e., Av = −Bv. Then

(A+B)Av = A2v +BAv = A2v −ABv = 2A2v = 2λv,

and hence v = 1
2λ(A+B)Av is in the image of A+B. �

Corollary 5.5. In the setting of Lemma 5.4, assume further that KerA2 = KerA =
H(A); so KerA ∩ ImA = 0. Then H(A + B) is equal to the cohomology of B restricted
to the cohomology (i.e., kernel) of A.

Proof. By Lemma 5.4, H(A + B) is the cohomology of A + B on KerA. But on KerA,
A+B = B. �

To apply this to Dirac cohomology, denote by HD(g, r;V ) the Dirac cohomology of a
(g,K)-module V with respect to D(g, r); analogous notation will be used for other Dirac
operators. The reader should bear in mind that HD(g, r;V ) is in fact the cohomology of
the operator D(g, r) on the space V ⊗ S.
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Corollary 5.6. Let r ⊂ k be a reductive subalgebra of g, with B|r×r nondegenerate. As
usual, let s be the orthocomplement of r. Assume that either dim p is even, or dim s∩ k is
even1. Let V be an irreducible unitary (g,K)-module. Then

HD(g, r;V ) = HD(k, r;HD(g, k;V )),

i.e., the Dirac cohomology can be calculated “in stages”, as the D(k, r)-cohomology of the
D(g, k)-cohomology.

Proof. Since V is unitary, we can consider the form 〈 , 〉pos on V ⊗ ∧·
p+ introduced in

Section 4. Here p+ is just a maximal isotropic subspace of p, it is not a subalgebra in
general. We can extend this form to all of V ⊗ S, by choosing any positive definite form
on the spin module S1 for C(s ∩ k). Here we identify S =

∧·
p+ ⊗ S1, which can be done

by the assumption on dimensions. Let A = D(g, k) and B = D∆(k, r).

By Corollary 4.3, A is anti-self-adjoint, and consequently the conditions of Corollary 5.5
are satisfied. So the cohomology with respect to D(g, r) is the cohomology with respect
to B of KerA = HD(g, k;V )⊗ S1.

Now HD(g, k;V ) ⊂ V ⊗∧·
p+ ⊂ V ⊗S is a K̃-module, with Lie algebra k acting through

k∆. The Dirac cohomology of this module with respect to D(k, r) is thus identified with
the cohomology with respect to B = D∆(k, r). �

6. The case of compact Levi subalgebra

In this section we first consider a reductive subalgebra r0 of g0 contained in k0. Later
on we will specialize to the case when r = l is a Levi subalgebra of a θ-stable parabolic
subalgebra of g.

The first thing we will do in this situation is generalize Corollary 5.6 to nonunitary
modules. Like there, we assume for simplicity that either dim p is even or dim s ∩ k is
even, so that we can write the spin module as S =

∧·
p+ ⊗ S1. The idea is to reverse

the roles of D(g, k) and D∆(k, r). Namely, for any admissible (g,K)-module V , we can
decompose V ⊗

∧·
p+ into a direct sum of finite dimensional (unitary) modules for the

spin double cover K̃ of K. Hence, by Remark 4.10, there is a positive definite form 〈 , 〉
on V ⊗ S = V ⊗∧·

p+ ⊗ S1, such that D∆(k, r) is self-adjoint with respect to 〈 , 〉.
It follows that B = D∆(k, r) is a semisimple operator, while for A = D(g, k) we still have

that A2 is semisimple. In this situation, we have the following lemma which complements
Corollary 5.5:

Lemma 6.1. Let A and B be anticommuting linear operators on a vector space V , such
that A2 and B are semisimple (i.e., can be diagonalized). Then H(A+B) is the cohomology
(i.e., the kernel) of B acting on H(A).

Proof. Applying Lemma 5.4, we can replace V by KerA2, i.e., assume A2 = 0. On the
other hand, by Corollary 5.5, H(A+B) is the cohomology of A acting on KerB.

Since B is semisimple, we can decompose

V = KerB ⊕
⊕

λ

Vλ ⊕ V−λ

into the (discrete) sum of eigenspaces for B. Here if both λ and −λ are eigenvalues, we
choose one of them to represent the pair. Since A anticommutes with B, it preserves
KerB, and maps Vλ to V−λ and vice versa. Therefore, H(A) decomposes into a KerB-
part and Vλ ⊕ V−λ-parts. The KerB-part is equal to H(A + B) and we will be done if

1It should be possible to eliminate this assumption by using the graded version of the spin module, as
explained at the end of Section 8.
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we show that B has no kernel on H(A|Vλ⊕V
−λ

). Let v = v1 + v2 ∈ Vλ ⊕ V−λ be in KerA,
and assume that Bv ∈ ImA. This implies λv1 − λv2 is in ImA, so v1 − v2 ∈ ImA. This
however can only happen if both v1 and v2 are in ImA, again because A exchanges Vλ

and V−λ. But then also v = v1 + v2 is in ImA, so v is zero in cohomology and we are
done.

�

This now immediately implies the following theorem which says that Dirac cohomology
with respect to a subalgebra r ⊂ k as above can be calculated “in stages”.

Theorem 6.2. Let r0 be a reductive subalgebra of g0 contained in k0. Let V be an admis-
sible (g,K)-module. Then the Dirac cohomology with respect to D(g, r) can be calculated
as the Dirac cohomology with respect to D(k, r) of the Dirac cohomology with respect to
D(g, k) of V . In other words:

HD(g, r;V ) = HD(k, r;HD(g, k;V )).

Also, we can reverse the order of taking Dirac cohomology, i.e.,

HD(g, r;V ) = H(D(g, k)
∣∣
HD(k,r;V )

).

Proof. The first formula was explained above, and the second is a direct application of
Corollary 5.5, with A = D∆(k, r) and B = D(g, k) (opposite from Corollary 5.6). �

For the rest of this section we consider a θ-stable parabolic subalgebra q = l ⊕ u of g,
with the Levi subalgebra l contained in k. In particular, there is a Cartan subalgebra t

of g contained in l ⊂ k; so g and k have equal rank. The opposite parabolic subalgebra is
q̄ = l⊕ ū. As before, we denote s = u⊕ ū, so g = l⊕ s.

We apply the above considerations to r = l. Since HD(g, k;V ) is a finite dimensional

K̃-module, and k and l have equal rank, HD(k, l;HD(g, k;V )) is given by [K4], Theorem
5.1. (This can also be read off from Remark 4.9, by using Poincaré duality to pass to
u-cohomology and then the better known Kostant’s formula for u-cohomology; in fact,
this is how Kostant proves it.) This gives HD(g, l;V ) very explicitly provided we know
HD(g, k;V ) explicitly. For example, one can in this way calculate the Dirac cohomology
of the discrete series representations with respect to the (compact) Cartan subalgebra t:

Example 6.3. Let V = Ab(λ) be a discrete series representation; here b = t⊕n is a Borel
subalgebra of g containing a compact Cartan subalgebra t. The infinitesimal character of
V is λ + ρ. Then the Dirac cohomology of V with respect to D(g, k) consists of a single

K̃-type V (µ), whose highest weight is µ = λ+ ρn, where ρn = ρ(u ∩ p). This is obtained
from the highest weight of the lowest K-type of V , λ+2ρn, by shifting by −ρn (the lowest
weight of S).

Namely, it is shown in [HP1], Proposition 5.4, that this K̃-type is contained in the Dirac
cohomology. Since V has a unique lowest K-type, and since −ρn is the lowest weight of
the spin module, with multiplicity one, it follows that any other K̃-type has strictly larger
highest weight, and thus can not contribute to the Dirac cohomology.

We now apply the above mentioned Kostant’s formula (Theorem 5.1 of [K4]) to calculate
the Dirac cohomology with respect to D(k, t) (we again stress that k and t have equal rank):

HD(k, t;V (µ)) = KerD(k, t) = ⊕w∈Wk
Cw(µ+ρc).

It follows from µ+ ρc = λ+ ρ that

HD(k, t;V (µ)) = ⊕w∈Wk
Cw(λ+ρ).
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Remark 6.4. Comparing with Schmid’s formula in Theorem 4.1 of [S], we have

H∗(n̄, Ab(λ)) = HD(g, t;Ab(λ))⊗ Cρ(n̄).

(note that Schmid’s n is our n̄, and his λ is our λ+ ρ.)

In other words, n-cohomology of a discrete series representation coincides with the Dirac
cohomology up to a ρ-shift. This fact is however not covered by our results in Sections 4
and 7. This indicates that it should be possible to generalize our results, probably under
some conditions on the representations involved. �

We now want to similarly analyze the “half-Dirac” operators C and C−. Let u1, . . . , uk

be a basis for u∩ k and let v1, . . . , vp be a basis for u∩p. These can be taken to be the root
vectors corresponding to compact, respectively noncompact positive roots, with respect
to some ∆+(g, t) compatible with u. We normalize these bases so that the dual bases for
ū∩ k respectively ū∩ p with respect to the Killing form are u∗i = −ūi respectively v∗i = v̄i.

As before, D = D(g, l), C = C(g, l) = A + 1 ⊗ a and C− = C−(g, l) = A− + 1 ⊗ a−
denote the Dirac operator for the pair (g, l) and its parts. We can now further decompose
these parts and write

A = Ak +Ap; a = ak + akp + ap

and analogously for A− and a−. Here

Ak =
∑

i

u∗i ⊗ ui, Ap =
∑

i

v∗i ⊗ vi;

ak = −1

4

∑

i,j

[u∗i , u
∗
j ]uiuj , akp = −1

2

∑

i,j

[u∗i , v
∗
j ]uivj, ap = −1

4

∑

i,j

[v∗i , v
∗
j ]vivj.

The expressions for A−
k
, A−

p , a−
k
, a−

kp
and a−p are obtained by exchanging ui with u∗i and

vi with v∗i .

In the following, we will consider the Clifford algebra C(s) as a subalgebra of U(g) ⊗
C(s), embedded as 1⊗C(s). In particular, 1⊗ ak gets identified with ak, 1⊗ akp with akp

and so on.

Recall that by Theorem 5.2, D(g, l) = D(g, k)+D∆(k, l), where D∆(k, l) is the image of
D(k, l) under the diagonal embedding ∆ : U(k)⊗C(s ∩ k)→ U(g)⊗C(p)⊗̄C(s ∩ k). Here
∆ sends 1⊗ C(s ∩ k) identically onto 1⊗ 1⊗ C(s ∩ k), and for X ∈ k,

∆(X ⊗ 1) = X ⊗ 1⊗ 1 + 1⊗ α(X)⊗ 1,

with α : k→ C(p) given by the action of k on p as before.

Clearly, D(g, k) = Ap+A−
p , while D∆(k, l) is the sum of all other of the above parts. We

want to make this more precise; namely, in the obvious notation, D(k, l) = C(k, l)+C−(k, l),
and we want to identify the images of these summands under ∆. Denote these images by
C∆(k, l) and C−

∆(k, l).

To do this, we use an expression for α : k→ C(p) in terms of a basis and a dual basis:
if wr is a basis of p with dual basis w∗

r , then

α(X) = −1

4

∑

r,s

B([w∗
r , w

∗
s ], X) ⊗ wrws.

(This was already used in Section 5, for an orthonormal basis. The proof of this slightly
more general version is the same.) Applying this to the basis v1, . . . , vp, v

∗
1 , . . . , v

∗
p and the

dual basis v∗1 , . . . , v
∗
p , v1, . . . , vp, we get
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α(X) = −1

4

∑

j,k

B([v∗j , v
∗
k], X) ⊗ vjvk

− 1

2

∑

j,k

B([vj, v
∗
k], X) ⊗ v∗j vk −

1

4

∑

j,k

B([vj, vk], X) ⊗ v∗j v∗k.

Since C(k, l) =
∑

i u
∗
i ⊗ ui − 1

4 ⊗
∑

i,j[u
∗
i , u

∗
j ]uiuj , we see that ∆(C(k, l)) = Ak +

∑
i 1⊗

α(u∗i )⊗ ui + ak. We need to calculate the middle term,
∑

i 1⊗ α(u∗i )⊗ ui. Applying the
above expression for α, we get three sums over i, j and k.

We first notice that the first of these three sums is 0, since B is 0 on ū. To calculate the
second sum, write B([vj , v

∗
k], u

∗
i ) = B(vj , [v

∗
k, u

∗
i ]), and observe that since [v∗k, u

∗
i ] ∈ ū ∩ p,∑

j B(vj , [v
∗
k, u

∗
i ])v

∗
j = [v∗k, u

∗
i ]. Therefore the second of the three sums is

−1

2
⊗

∑

i,k

[v∗k, u
∗
i ]vkui = akp.

Finally, the third sum is calculated by noting that since [vj , vk] ∈ u∩k,
∑

iB([vj , vk], u
∗
i )ui =

[vj , vk]. It follows that the third sum is

−1

4
⊗

∑

j,k

v∗j v
∗
k[vj , vk] = a−p .

A completely analogous calculation applies to C−(k, l), so we proved:

Proposition 6.5. Under the diagonal map ∆ : U(k)⊗C(s∩ k)→ U(g)⊗C(p)⊗̄C(s∩ k),
C(k, l) and C−(k, l) correspond to

C∆(k, l) = Ak + ak + akp + a−p and C−
∆(k, l) = A−

k + a−k + a−kp + ap. �

Note the unexpected feature of this result, the mixing of the positive and negative
parts under the diagonal embedding. Namely, ap and a−p have opposite positions from the
ones one would expect. So we do not have an analogue of Theorem 5.2 for C and C−,
unless ap = a−p = 0. This last thing happens precisely when the pair (g, k) is hermitian
symmetric. This is the reason why we are able to obtain results about u-cohomology
only in hermitian case. Maybe this peculiar behavior has something to do with the fact
that some of the most concrete results about n-cohomology, like [E], [C] or [A], are also
obtained in hermitian situation only.

Another difficulty with the non-hermitian case is the fact that while we can write
D(g, k) = Ap + A−

p , the two summands here are not differentials (they are also not K-
invariant). So there is no hope to get a Hodge decomposition like the one in Section 4.
Of course, there is also no u∩ p-homology or cohomology, since u∩ p is not a Lie algebra.
Yet there is perfectly well defined Dirac cohomology for D(g, k), and one can hope that it
will somehow replace the nonexistent p−-cohomology.

What we do get without the hermitian assumption, is a copy of gl(1, 1) inside U(g) ⊗
C(s), spanned by C∆(k, l), C−

∆(k, l), Ek = ∆E(k, l) = − 1
2 ⊗

∑
i u

∗
iui and ∆D(k, l)2. This

follows immediately from the fact that ∆ is (obviously) a morphism of superalgebras.

If the pair (g, k) is hermitian symmetric, as we will assume in the following, then there
is another copy of gl(1, 1) inside U(g) ⊗ C(s), supercommuting with the first one. It is
spanned by Ap = C(g, k), A−

p = C−(g, k), Ep = E(g, k) = − 1
2 ⊗

∑
i v

∗
i vi, and D(g, k)2. The

fact that these two copies of gl(1, 1) supercommute is completely analogous to Theorem
5.2.(ii). (Without the hermitian assumption, one could try to replace this second gl(1, 1)
by a smaller superalgebra, spanned just by D(g, k) and D(g, k)2.)
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Note that C(g, l) = C∆(k, l) + C(g, k) and C−(g, l) = C−
∆(k, l) + C−(g, k). Clearly, an

analogous decomposition holds for E(g, l); it also holds for D(g, l)2. Namely, since the
two copies of gl(1, 1) supercommute, we have

D(g, l)2 = [C(g, l), C−(g, l)] = [C∆(k, l), C−
∆(k, l)]+[C(g, k), C−(g, k)] = D∆(k, l)2+D(g, k)2.

This last equality can also be obtained from Kostant’s formula for D2:

D∆(k, l)2 +D(g, k)2 =

∆(Ωk ⊗ 1−Ωl∆ + ||ρ2
k || − ||ρ2

l ||) + (Ωg ⊗ 1− Ωk∆ + ||ρ2
g|| − ||ρ2

k ||) =

Ωg ⊗ 1− Ωl∆ + ||ρ2
g|| − ||ρ2

l || = D(g, l)2.

(Note that this notation is not very precise, as in the equality ∆(Ωl∆) = Ωl∆ , the two
Ωl∆ ’s have different meanings. Still, there should be no confusion if one keeps track just
where the elements are.)

In other words, we see that the gl(1, 1) corresponding to the pair (g, l) sits diagonally
in the direct product of the two copies of gl(1, 1) described above. Let us summarize the
above discussion:

Corollary 6.6. Assume (g, k) is a hermitian symmetric pair, let q = l ⊕ u be a θ-stable
parabolic subalgebra of g, and assume that l ⊂ k and u ⊃ p+. Then there are two su-
percommuting copies of gl(1, 1) inside U(g)⊗ C(s). One is spanned by C∆(k, l), C−

∆(k, l),
∆E(k, l) and ∆D(k, l)2 and the other is spanned by C(g, k), C−(g, k), E(g, k), and D(g, k)2.
The diagonal of the product of these two super subalgebras is the copy of gl(1, 1) spanned
by C, C−, E and D2 from the end of Section 2. �

7. Hodge decomposition for ū-cohomology in hermitian case

In this section, (g, k) is a hermitian symmetric pair, q = l ⊕ u is a θ-stable parabolic
subalgebra of g, and we assume l ⊂ k and u ⊃ p+.

Let V be a unitary (g,K)-module, and consider the form 〈 , 〉pos on V ⊗ S introduced
in Section 4. To apply the results of Section 4, we decompose

V ⊗ S = V ⊗∧·
p+ ⊗∧·

u ∩ k,

and embed V ⊗∧·
p+ as V ⊗∧·

p+⊗1. The form 〈 , 〉pos restricts to the analogous definite
form on V ⊗∧·

p+.

Denote as before by D = D(g, l) the Dirac operator for the pair (g, l) and by C = C(g, l)
and C− = C−(g, l) its parts coresponding to u and ū. By Corollary 6.6, C = C∆(k, l) +
C(g, k), and similarly for C−. Moreover, the copy of gl(1, 1) corresponding to the pair
(g, k) supercommutes with the copy of gl(1, 1) corresponding to the pair (k, l).

By Corollary 4.3, the adjoints of C∆(k, l) and C(g, k) are respectively C−
∆(k, l) and

−C−(g, k). So the adjoint of C is Cadj = C−
∆(k, l) − C−(g, k).

We consider the positive semidefinite operator ∆ = CCadj +CadjC = [C,Cadj ]. By the
above remarks we have

∆ = [C∆(k, l) + C(g, k), C−
∆(k, l) − C−(g, k)] =

[C∆(k, l), C−
∆(k, l)] − [C(g, k), C−(g, k)] = D∆(k, l)2 −D(g, k)2.

We know from Section 4 that V ⊗ ∧·
p+ decomposes into eigenspaces of D(g, k)2 for

eigenvalues λ ≤ 0. Each eigenspace is K̃-invariant, and each K̃-isotypic component of
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V ⊗
∧·

p+ is contained in an eigenspace. We assume V is admissible, so the eigenspaces
are finite-dimensional.

Passing from V ⊗ ∧·
p+ to V ⊗ S is tensoring with the finite-dimensional l-module∧·

u ∩ k. On this last space, there is no action of U(g) or U(k∆). So every eigenspace of
D(g, k)2 on V ⊗∧·

p+ just gets tensored with
∧·

u ∩ k, and this gives the eigenspace on
V ⊗ S for the same eigenvalue.

Since D∆(k, l)2 commutes with D(g, k)2, it preserves these eigenspaces. Moreover, the

Levi subgroup L ⊂ K corresponding to l is compact. So is then the double cover L̃, which
acts on V ⊗S. Since L̃ commutes with D(g, k)2, it also preserves its eigenspaces and hence

these eigenspaces decompose into L̃-irreducibles. Since D∆(k, l)2 is up to a constant equal
to the Casimir element of l∆, it follows that D∆(k, l)2 diagonalizes on each eigenspace of
D(g, k)2. To conclude:

Lemma 7.1. V ⊗S is a direct sum of eigenspaces for ∆. In particular, V ⊗S = Ker∆⊕
Im∆. �

This is an analogue of Corollary 4.6 for ∆ in place of D2. Now the arguments proving
Lemma 4.7 and Theorem 4.8 work without change, and we obtain

Theorem 7.2. (a) Ker∆ = KerC ∩KerCadj;

(b) V ⊗ S = Ker∆⊕ ImC ⊕ ImCadj;

(c) KerC = Ker∆⊕ ImC;

(d) KerCadj = Ker∆⊕ ImCadj.

In other words, we have obtained a Hodge theorem for ū-cohomology.

To obtain it also for u-homology, we note that (C−)adj = (C−
∆(k, l) + C−(g, k))adj =

C∆(k, l) − C(g, k), and so

[C−, (C−)adj ] = [C−
∆(k, l) + C−(g, k), C∆(k, l) − C(g, k)] =

[C−
∆(k, l), C∆(k, l)] − [C−(g, k), C(g, k)] = ∆.

So the situation for C− is exactly the same as for C and we conclude

Theorem 7.3. (a) Ker∆ = KerC− ∩Ker(C−)adj ;

(b) V ⊗ S = Ker∆⊕ ImC− ⊕ Im(C−)adj ;

(c) KerC− = Ker∆⊕ ImC−;

(d) Ker(C−)adj = Ker∆⊕ Im(C−)adj.

In other words, Hodge decomposition also holds for u-homology. Moreover, we see that
ū-cohomology and u-homology have the same set of harmonic representatives, Ker∆. In
particular they are isomorphic.

We now want to relate ū-cohomology and u-homology to Dirac cohomology with respect
to D(g, l). The main observation here is

Lemma 7.4. Ker∆ = KerD∆(k, l)2 ∩KerD(g, k)2 = KerD∆(k, l) ∩KerD(g, k).

Proof. The operators D∆(k, l)2 and −D(g, k)2 are both positive semidefinite and their sum
is ∆. This immediately implies the first equality. The second follows from KerD∆(k, l)2 =
KerD∆(k, l) (since D∆(k, l) is self-adjoint) and KerD(g, k)2 = KerD(g, k) (since D(g, k) is
anti-self-adjoint). �

We can now combine Theorems 7.2 and 7.3 with Lemmas 7.4 and 4.7 to conclude

Corollary 7.5. Ker∆ = KerC∆(k, l) ∩KerC−
∆(k, l) ∩KerC(g, k) ∩KerC−(g, k).
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Proof. It is obvious that the left hand side contains the right hand side. Conversely, if
x ∈ Ker∆, then Cx = 0 by Theorem 7.2, D(g, k)x = 0 by Lemma 7.4, so C(g, k)x = 0 by
Lemma 4.7 and so also Cx − C(g, k)x = C∆(k, l)x = 0. Analogously, C−(g, k)x = 0 and
C−

∆(k, l)x = 0. �

Since KerC∆(k, l)∩KerC(g, k) can be thought of as the kernel of C∆(k, l) acting on the
kernel of C(g, k), and similarly for the C−-operators, in view of Theorem 4.8 and Remark
4.9 we can reinterprete Corollary 7.5 as follows:

Corollary 7.6. To calculate the ū-cohomology of V , one can first calculate the p−-
cohomology of V to obtain a K̃-module, and then calculate the ū ∩ k-cohomology of this
module. Analogously, to calculate the u-homology of V , one can first calculate the p+-
homology of V , and then the u ∩ k-homology of the resulting K̃-module. �

Remark 7.7. Note that this is in fact the Hochschild-Serre spectral sequence for the ideal
p− of ū respectively the ideal p+ of u. What we have obtained is that these Hochschild-
Serre spectral sequences are always degenerate for a unitary (g,K)-module V . �

We now turn our attention to the Dirac cohomology of D = D(g, l). In addition to
the above considerations, we bring in Corollary 5.6, and note that for both D∆(k, l) and
D(g, k) the cohomology is the same as the kernel or the kernel of the square. Thus we
obtain:

Theorem 7.8. The Dirac cohomology HD(g, l;V ) of a unitary (g,K)-module V is iso-
morphic to the ū-cohomology of V and the u-homology of V up to appropriate modular
twists. Moreover, all three cohomologies have the same set of harmonic representatives,
Ker∆. �

8. Homological properties of Dirac cohomology

Let us start by showing that although we proved that in some cases Dirac cohomology
of a unitary (g,K)-module with respect to D(g, l) can be identified with ū-cohomology or
u-homology, one should by no means expect that these notions agree for general (g,K)-
modules. Let us see that this is not the case even for (sl(2,C), SO(2))-modules.

Consider the module V which is a nontrivial extension of the discrete series represen-
tation W of highest weight −2 by the trivial module C:

0→ C→ V →W → 0.

(In other words, V is a dual Verma module.) The k-weights of V (for the basis element[
0 −i
i 0

]
of k) are 0,−2,−4, . . . . We are considering the case l = k, u is spanned by u =

1
2

[
1 i
i −1

]
and ū is spanned by u∗ = 1

2

[
1 −i
−i −1

]
.

For any (sl(2,C), SO(2))-module X we have

X ⊗ S = X ⊗ 1 ⊕ X ⊗ u,
with d : X ⊗ 1 → X ⊗ u given by d(v ⊗ 1) = u∗ · v ⊗ u, ∂ : X ⊗ u → X ⊗ 1 given by
∂(v ⊗ u) = u · v ⊗ 1, and D = d− 2∂. By an easy direct calculation, we see that

H0(u;V ) = 0; H1(u;V ) = Cv0 ⊗ u;
H0(ū;V ) = Cv0 ⊗ 1; H1(ū;V ) = Cv0 ⊗ u⊕ Cv−2 ⊗ u;

HD(V ) = KerD = Cv0 ⊗ u.
as vector spaces. Here vi denotes a vector in V of k-weight i. So we see

HD(V ) = H·(u;V ) 6= H ·(ū;V )
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On the other hand, for C and W another easy calculation (which can be shortened by
using Theorem 4.8, as both C and W are unitary) implies

H0(ū; C) = H0(u; C) = H0
D(C) = C1⊗ 1;

H1(ū; C) = H1(u; C) = H1
D(C) = C1⊗ u;

H0(ū;W ) = H0(u;W ) = H0
D(W ) = 0;

H1(ū;W ) = H1(u;W ) = H1
D(W ) = Cv−2 ⊗ u.

To explain why Dirac cohomology of V differs from the ū-cohomology of V , we will
examine their behavior with respect to extensions.

Recall the well known long exact sequences for Lie algebra homology and cohomology
corresponding to our short exact sequence

0→ C→ V →W → 0.

They are

0→ C1⊗ u→ Cv0 ⊗ u 0→ Cv−2 ⊗ u→ C1⊗ 1→ 0→ 0→ 0

for u-homology and

0→ C1⊗ 1→ Cv0 ⊗ 1→ 0→ C1⊗ u→ Cv−2 ⊗ u⊕ Cv0 ⊗ u→ Cv−2 ⊗ u→ 0

for ū-cohomology. Here all arrows are the obvious ones except for the one labelled by 0.

For Dirac cohomology, instead of a long exact sequence (which clearly does not makes
sense in general, as Dirac cohomology is not Z-graded), there is a six-term exact sequence.
In the above example, this sequence is

C1⊗ 1 −−−−→ 0 −−−−→ 0
x

y

Cv−2 ⊗ u 0←−−−− Cv0 ⊗ u ←−−−− C1⊗ u
We see that in this example the six-term sequence agrees with the u-homology long exact
sequence only because of the presence of zeros; in general, all three sequences are different.

To define the six-term sequence in a more general situation, let us assume that the
Dirac cohomology is Z2-graded. This happens whenever we are starting from g = r ⊕ s

with s even-dimensional; this is automatic when r = l is a Levi subalgebra. Let

0→ X
i→ Y

p→ Z → 0

be a short exact sequence of (g,K)-modules. Tensor this sequence by S, and denote the
arrows still by i and p (they get tensored by the identity on S). Assuming that D2 is
a semisimple operator for each of the three modules, we can construct a six-term exact
sequence

H0
D(X) −−−−→ H0

D(Y ) −−−−→ H0
D(Z)

x
y

H1
D(Z) ←−−−− H1

D(Y ) ←−−−− H1
D(X)

The horizontal arrows are induced by i and p. The vertical arrows are the connecting
homomorphisms, defined as follows. Let z ∈ Z ⊗ S represent a Dirac cohomology class,
so Dz = 0. Choose y ∈ Y ⊗ S such that py = z. Since D2 is semisimple, we can assume
D2y = 0. Since pDy = Dpy = Dz = 0, we see that Dy = ix for some x ∈ X. Since
D2y = 0, we see that Dx = 0, so x defines a cohomology class. This class is by definition
the image of the class of z under the connecting homomorphism. Clearly, we changed
parity when we applied D, and this defines both vertical arrows at once.
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It is easy to see that this map is well defined, and that the obtained six-term sequence
is exact. To conclude:

Theorem 8.1. Let g = r⊕s be an orthogonal decomposition, with r a reductive subalgebra
and s even-dimensional. Let 0 → X → Y → Z → 0 be a short exact sequence of (g,K)-
modules and assume that the square of the Dirac operator D(g, r) is a semisimple operator
for X, Y and Z. Then there is a six-term exact sequence corresponding to this short exact
sequence, as described above. �

Finally, let us comment on what can be done when s is odd dimensional, say dim s =
2n + 1. The usual spin modules S1 and S2 are not Z2-graded and thus it seems the
above construction does not make sense. Recall that S1 and S2 are defined by writing
s = C

2n⊕C, considering the spin module for C(C2n), and letting the last basis element of
s act in two different ways (preserving the even and odd subspace instead of exchanging
them).

We can instead consider the unique irreducible graded module S̃ of C(s). It can be con-
structed as the restriction of the (unique) spin module for C(C2n+2) to C(s) ⊂ C(C2n+2).

As a non-graded module, S̃ decomposes as S1 ⊕ S2. If we define Dirac cohomology using
S̃ in place of S1 or S2, we double it, but we do get a Z2-grading. Then the above con-
struction works also in the odd case. Thus, this is probably a more natural definition of
Dirac cohomology in the odd case.

It remains to see what can be done if D2 is not a semisimple operator. One possibility
might be to consider a more general definition of Dirac cohomology in that setting.
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