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we prove that the associated hypercontractivity property is 
equivalent to a suitable functional inequality.
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Initiated by Nelson in the late sixties [16–18] in quantum field theory, the notion of 
hypercontractivity of the Ornstein-Ulhenbeck process was put in light by Gross’ seminal 
work [10]. One of the main observation of Gross is that hypercontractivity is equivalent 
to the so called log-Sobolev inequality. See also [8,23] for earlier papers on related topic.

More precisely, let γn be the standard Gaussian measure on Rn. Then the Ornstein-
Uhlenbeck semi-group (Pt)t≥0, whose infinitesimal generator is L := Δ − x · ∇ (with 
the dot sign standing for the Euclidean scalar product), is reversible with respect to γn
and satisfies the following remarkable hypercontractivity property: for any f : Rn → R

smooth enough it holds

‖Ptf‖q(t) ≤ ‖Psf‖q(s), s ≤ t

where q(t) = 1 +(q(0) −1)e2t, q(0) ≥ 1, and ‖g‖pp :=
∫
|g|pdγn, p ≥ 1. Such a contraction 

property is equivalent [10] to the following log-Sobolev inequality: for any f : Rn → R

smooth enough, it holds

Entγn
(f2) :=

∫
f2 log f2dγn −

∫
f2dγn log

∫
f2dγn ≤ 2

∫
|∇f |2dγn.

Using Gross’ paper and Γ2-calculus of Bakry-Emery [5,2], it can be immediately proved 
that any semi-group associated to a diffusion of the form L := Δ − ∇V · ∇, with V
satisfying Hess(V ) ≥ ρ > 0, as a matrix, enjoys the hypercontractivity property as 
above with reference measure having density e−V with respect to the Lebesgue measure 
and q(t) = 1 + (q(0) − 1)e(4/ρ)t, q(0) ≥ 1.

From the seventies, both the hypercontractivity property and the log-Sobolev inequal-
ity found a huge amount of applications in various fields, including Analysis (isoperime-
try, concentration of measure phenomenon, convex geometry), Statistical mechanics, 
Information Theory and others. Giving an exhaustive presentation of the literature is 
out of reach. We refer to the textbooks [1,14,11,6,15,19] for an introduction and refer-
ences.

Now, let Φ: R+ → R+ be a continuous convex function satisfying Φ(x) = 0 iff x = 0. 
Later on we may call such a function a Young function.1 Then, given f : Rn → R such 
that 

∫
Φ(αf)dγn < +∞ for some α > 0, one can define the so-called Luxembourg norm 

associated to Φ and γn as

‖f‖Φ = inf
{
λ > 0 :

∫
Φ
(
|f |
λ

)
dγn≤ 1

}
.

The power function Φ(x) = |x|p, p ≥ 1, trivially corresponds to the usual Lp-norm 
introduced above ‖f‖Φ = ‖f‖p. The space of all functions with finite Luxembourg norm 

1 Note however that, usually, one does not require in the definition of a Young function neither the 
regularity assumption, nor the condition φ(x) = 0 iff x = 0.
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will be denoted by LΦ(γn) (or simply LΦ when there is no confusion, note however that 
norms are always computed with an underlying measure).

With this definition at hand, for the family of Young functions Φt(x) = |x|q(t), x ∈ R, 
t ≥ 0 with q(t) = 1 +(q(0) −1)e2t, q(0) ≥ 1, the hypercontractivity above can be restated 
as follows

‖Ptf‖Φt
≤ ‖Psf‖Φs

, s ≤ t.

In other words, the Ornstein-Uhlenbeck semi-group is a contraction along the family of 
Orlicz spaces (LΦt

)t≥0.
Following Gross’ ideas, in [3] the authors proved that some contraction property along 

a different type of family of Orlicz spaces could hold. Consider the following infinitesimal 
generator2 in dimension n, L := Δ −∇V ·∇, with V (x) =

∑n
i=1 |xi|α, α ∈ [1, 2], x ∈ Rn. 

Denote by (Pt)t≥0 the associated semi-group and by μ(dx) = Z−1e−V (x)dx, x ∈ Rn, 
the associated reversible probability measure, Z :=

∫
e−V (x)dx being the normaliza-

tion constant. Finally define Φt(x) = |x|peq(t)F (x) with F (x) := log(1 + x)2(α−1)/α −
log(2)2(α−1)/α, q(t) = Ct for some constant C > 0, and p > 1. By construction 
LΦt

⊂ LΦs
⊂ Lp for any s ≤ t and Lp+ε 
⊂ LΦt

for any ε > 0, t ≥ 0 and α ∈ [1, 2) (since 
eq(t)F (x) � |x|ε near infinity, for any α ∈ [1, 2)).

In [3] it is proved that (Pt)t≥0 is a contraction along the family of Orlicz spaces 
(LΦt

)t≥0: namely that, for any s ≤ t, it holds ‖Ptf‖Φt
≤ ‖Psf‖Φs

. Moreover, such 
a contraction property is equivalent to the following, known as F -Sobolev inequality 
([20,24]): for any f : Rn → R it holds∫

f2F

(
f2∫
f2dμ

)
dμ ≤ C ′

∫
|∇f |2dμ

where C ′ is a constant that depends on C and α. Note that α = 2 corresponds to the 
Gaussian case depicted above. Such inequalities and contraction properties were used 
to establish dimension free isoperimetric inequalities and concentration properties for μ
[3,4]. We refer the reader to [25] for explicit criterion for a F -Sobolev inequality to hold, 
and to [24] for associated contraction property of the semi-group.

Motivated by the previous two fundamental examples, the aim of this paper is to 
investigate on contraction properties ‖Ptf‖Φt

≤ ‖Psf‖Φs
, s ≤ t, along abstract gen-

eral family of Orlicz spaces (LΦt
)t≥0, together with possible connection with functional 

inequalities of F -Sobolev type.
The second objective of the paper is to explore a more general setting which would 

include inhomogeneous diffusion operators associated to one parameter families of proba-
bility measures that we now introduce. Consider Lt := Δ −∇Vt ·∇, t ≥ 0, on Rn, with Vt

2 More precisely one should consider a regularized version of |x|α in a neighborhood of the origin. For the 
sake of simplicity we may avoid such technical considerations in this introduction, that are irrelevant for 
our purpose, and we refer to [3] for details.
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smooth enough and such that 
∫
e−Vt = 1 so that μt(dx) = e−Vt(x)dx is a probability mea-

sure on Rn for all t ≥ 0. The associated semi-group will be denoted by (P (t)
s )s≥0 (we refer 

to e.g. [2,11] for its construction and related technicalities) which is reversible in L2(μt). 
One wishes to obtain contraction bounds of the type ‖P (t)

t f‖Φt
≤ m(t, s)‖P (s)

s f‖Φs
, 

s ≤ t for some function m possibly equal to 1.
Thus in the more general setting we not only change with time the Orlicz functions, 

but also the underlying probability measures. Here we are interested in a class of flows 
through Orlicz spaces and how it relates to an action of contractions.

Besides interesting generalizations, we hope that our results can be used in the future 
to study linear and nonlinear parabolic time dependent problems. Note that in case of a 
time dependent parabolic problem of the form

∂tu = Lu + βt · ∇u ≡ Ltu

u|t=0 = f

under suitable conditions on the coefficient βt, one can hope to approximate the solution 
on small intervals s ∈ [tn, tn+1] by P (tn)

s−tnutn . Then one needs to setup a suitable frame-
work to control convergence of such approximation when supn |tn+1 − tn| → 0. While 
we mention here as an example a linear problem, we remark that nonlinear semigroups 
with hypercontractivity properties has been studied in [9] and one could possibly extend 
the above given idea to the nonlinear time dependent parabolic problems.

Moreover, as suggested to us by a referee, since Gross’s theorem is established for 
symmetric Markov processes associated with Dirichlet forms, it is reasonable to conjec-
ture that most of the result of this paper can be extended to such an abstract framework 
and leave this to future investigation.

After Section 2, that collects some technical facts about Orlicz functions/norms, we 
deal in Section 3 with the homogeneous setting.

Our first main theorem is Theorem 3.9 that asserts that, for any properly chosen 
family of Orlicz spaces (see Section 3.2), we have

‖Ptf‖Φt
≤ ‖Psf‖Φs

if and only if some inequality of log-Sobolev type holds. Theorem 3.9 encompasses the 
above two known fundamental examples and can therefore be seen as a generalization 
of Gross’ theorem.

Section 4 is devoted to the time-inhomogeneous setting. Our second main result is 
Theorem 4.1 which constitutes some analog of Gross’ theorem for inhomogeneous Markov 
semi-groups.

Acknowledgment. We warmly thank T. Tao for useful discussion on the topic of this 
paper, and the anonymous referees for their suggestions to improve its content and 
presentation.
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2. Technical preparations

In this section we collect some useful technical facts on various aspects of Young 
Functions and Luxembourg norms.

2.1. Youngs functions

An even continuous convex function Φ: R → R+ satisfying Φ(x) = 0 iff x = 0 is 
called a Young function. If in addition limx→0 Φ(x)/x = 0, limx→∞ Φ(x)/x = +∞, and 
Φ(R) ⊂ R+, Φ is called a nice Young function, or N -function [21].

Classical examples include Φ(x) = |x|p, p ≥ 1 which is a nice Young function only for 
p > 1; Φ(x) = e|x| − |x| − 1, Φ(x) = e|x|

δ − 1, δ > 1 are nice Young functions.
We say that Φ satisfies the Δ2-condition if for some K > 0 and all x ≥ 0, it holds 

Φ(2x) ≤ KΦ(x). A useful consequence of the Δ2-condition is the fact that xΦ′(x) com-
pares to Φ. More precisely,

Φ(x) ≤ xΦ′(x) ≤ (K − 1)Φ(x). (2.1)

The first inequality follows from the convexity property of Φ and Φ(0) = 0, while the 
second is a consequence of the Δ2-condition and Φ(2x) − Φ(x) =

∫ 2x
x

Φ′(t)dt ≥ Φ′(x)x.
Given a Young function Φ and a probability measure μ, for any f : Rn → R we set

‖f‖Φ := inf
{
λ > 0 :

∫
Φ
(
|f |
λ

)
dμ≤ 1

}
∈ [0,∞]

with the convention that inf ∅ = +∞. When useful we may write ‖f‖Φ,μ to emphasize 
the underlying measure.

2.2. Derivative of Luxembourg norm

Here we give an explicit expression of the derivative with respect to time of the follow-
ing function t �→ ‖Ptf‖Φt

which will constitute the starting point of our investigations.
In the sequel we will use the following notations. Given a family of twice differentiable 

Young functions (Φt)t≥0 = (Φ(t, x))t≥0, we denote by Φ̇t the derivative with respect to 
t, and by Φ′

t and Φ′′
t the first and second order derivative with respect to the second 

variable x.
Consider the inhomogeneous diffusion generator Lt := Δ − ∇Vt · ∇, t ≥ 0, on Rn, 

with Vt sufficiently smooth and such that 
∫
e−Vtdx = 1 so that μt(dx) = e−Vt(x)dx is 

a probability measure on Rn for all t ≥ 0. Denote by (P (t)
s )s≥0 the associated semi-

group. By construction Lt is symmetric in L2(μt) and the following integration by parts 
formula holds for any differentiable function Ψ: R → R, any f, g : Rn → R, such that 
Ψ(f), ∇Ψ(f) ∈ L2(μt) and g is in the domain of Lt.
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∫
Ψ(f)Ltgdμt = −

∫
Ψ′(f)∇f · ∇gdμt. (2.2)

As we explain in Appendix A, formally we have

∂tP
(t)
t f = Ltf + Vtf

We prove the following differential property.

Lemma 2.1. Let f : Rn → R be a smooth bounded function not equal to zero a.e. and 

(Φt)t≥0 be a family of C2 Young functions. Let N(t) := ‖P (t)
t f‖Φt

and g := P
(t)
t f
N(t) , t ≥ 0. 

Suppose ∇Vt · ∇V̇t − ΔV̇t = −LtV̇t is μt-integrable. Then, it holds

N ′(t)
∫

gΦ′
t(g)dμt = N(t)

(∫
Φ̇t(g)dμt −

∫
Φ′′

t (g)|∇g|2dμt −
∫

Φt(g)V̇tdμt

)

+
∫ t∫

0

P
(t)
t−sf∇P (t)

s (Φ′
t(g)) · ∇V̇tdsdμt

−
∫ [

∇Vt · ∇V̇t − ΔV̇t

] t∫
0

P
(t)
t−sfP

(t)
s (Φ′

t(g))dsdμt

In particular, when Vt does not depend on t (homogeneous case), the latter reduces to

N ′(t)
∫

gΦ′
t(g)dμ = N(t)

(∫
Φ̇t(g)dμ−

∫
φ′′
t (g)|∇g|2dμ

)
.

Remark 2.2. We assumed C2 for Young functions for simplicity. Most of the results in 
this paper can easily be understood for any Young function using the notion of second 
order derivative in the sense of Aleksandrov.

Proof. Let f : Rn → R be a smooth bounded function not equal to zero a.e. From the 

definition of the Luxembourg norm, we observe that for any t ≥ 0, 
∫

Φt

(
P

(t)
t f
N(t)

)
dμt = 1. 

Therefore, taking the derivative, we get

∫
Φ̇t(g)dμt +

∫
Φ′

t(g)
d

dt

(
P

(t)
t f

N(t)

)
dμt −

∫
Φt(g)V̇tdμt = 0

where as already mentioned the dot stands for the derivative with respect to the variable 
t. Observe that,

d

dt

(
P

(t)
t f

N(t)

)
= Ṗ

(t)
t f

N(t) + LtP
(t)
t f

N(t) − P
(t)
t fN ′(t)
N(t)2 = Ṗ

(t)
t f

N(t) + Ltg −
N ′(t)
N(t) g
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where we set

Ṗ
(t)
t f := lim

ε→0

P
(t+ε)
t f − P

(t)
t f

ε
= lim

ε→0

1
ε

t∫
0

d

ds

(
P (t+ε)
s (P (t)

t−sf)
)
ds

= lim
ε→0

1
ε

t∫
0

P (t+ε)
s

(
[Lt+ε − Lt]P (t)

t−sf
)
ds

=
t∫

0

P (t)
s

(
−∇V̇t · ∇P

(t)
t−sf

)
ds.

Therefore, using (2.2), we get

∫
Φ′

t(g)
d

dt

(
P

(t)
t f

N(t)

)
dμt = − 1

N(t)

∫ t∫
0

Φ′
t(g)P (t)

s

(
∇V̇t · ∇P

(t)
t−sf

)
dsdμt

−
∫

Φ′′
t (g)|∇g|2dμt −

N ′(t)
N(t)

∫
gΦ′

t(g)dμt.

The previous computations lead to

N ′(t)
N(t)

∫
gΦ′

t(g)dμt =
∫

Φ̇t(g)dμt −
∫

Φ′′
t (g)|∇g|2dμt −

∫
Φt(g)V̇tdμt

− 1
N(t)

∫ t∫
0

Φ′
t(g)P (t)

s

(
∇V̇t · ∇P

(t)
t−sf

)
dsdμt

and we are left with the study of the last term on the right hand side of the latter. By 
reversibility of the semi-group, we have∫

Φ′
t(g)P (t)

s

(
∇V̇t · ∇P

(t)
t−sf

)
dμt =

∫
P (t)
s (Φ′

t(g))∇V̇t · ∇P
(t)
t−sfdμt

=
∫

P
(t)
t−sf∇∗

t

(
P (t)
s (Φ′

t(g))∇V̇t

)
dμt

where ∇∗
t is the adjoint of ∇ in L2(μt), namely such that 

∫
u∇vdμt =

∫
v∇∗

tudμt. One 
can see that ∇∗

t = −div + ∇Vt where ∇Vt acts multiplicatively. Therefore,∫
Φ′

t(g)P (t)
s

(
∇V̇t · ∇P

(t)
t−sf

)
dμt = −

∫
P

(t)
t−sf∇P (t)

s (Φ′
t(g)) · ∇V̇tdμt

+
∫

P
(t)
t−sfP

(t)
s (Φ′

t(g))
[
∇Vt · ∇V̇t − ΔV̇t

]
dμt

From this the desired result follows. �
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2.3. Expansion of the square

Here we may recall the expansion of the square method or, as it is called in [13], U -
bounds. That is the bounds obtained by using Leibnitz rule together with integration by 
parts as follows. Let U : Rn → R be such that 

∫
e−Udx < ∞. Then, for any differentiable 

function f : Rn → R, one has∫
f2(|∇U |2 − 2ΔU)e−Udx ≤ 4

∫
|∇f |2e−Udx. (2.3)

In fact, expanding the square, one has

0 ≤
∫

|∇(fe−U/2)|2dx =
∫

|∇f |2e−Udx−
∫

f∇f · ∇Ue−Udx + 1
4

∫
f2|∇U |2e−Udx.

The expected inequality (2.3) then follows by applying an integration by parts on the 
cross term.

The expansion of the square method revealed to be very powerful. It can be used for 
instance to prove Hardy’s inequality with optimal constant on Rd, d ≥ 3, or Poincaré 
inequality for the Gaussian measure. We refer the interested reader to [13,7] for more 
results and references.

3. Hypercontractivity for homogeneous Markov semi-groups

In this section our aim is to introduce the notion of standard Orlicz family that will 
play a key role for proving the equivalence between some functional inequality and a 
hypercontractivity property along the corresponding family of Orlicz spaces. We need 
first to analyze how to get a hypercontractivity property along a general family of Orlicz 
spaces.

All along the section we set L = Δ −∇V · ∇, with V smooth enough and such that 
μ(dx) = e−V dx is a probability measure on Rn. We denote by (Pt)t≥0 the associated 
semi-group which is reversible with respect to μ. Orlicz spaces and their corresponding 
Luxembourg norms are understood with respect to μ.

3.1. Hypercontractivity along Orlicz spaces

Using Lemma 2.1 we first prove that hypercontractivity is a direct and immediate 
consequence of some family of functional inequalities. Our second result shows how that 
family can, under some assumptions, be reduced to one single functional inequality of 
log-Sobolev-type.

Proposition 3.1. Let (Φt)t≥0 be a family of C2 Young functions. Assume that for any 
t ≥ 0, any sufficiently smooth function f , we have
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‖f‖2
Φt

∫
Φ̇t

(
f

‖f‖Φt

)
dμ ≤

∫
Φ′′

t

(
f

‖f‖Φt

)
|∇f |2dμ. (3.1)

Then, for any t ≥ s,

‖Ptf‖Φt
≤ ‖Psf‖Φs

.

Proof. We need to prove is that N : t �→ ‖Ptf‖Φt
is non-increasing. Lemma 2.1 asserts 

that

N ′(t)
N(t)

∫
gΦ′

t (g) dμ =
∫

Φ̇t (g) dμ−
∫

Φ′′
t (g) |∇g|2dμ

where g := Ptf
N(t) . Since for any t ≥ 0, Φt is a Young function, it satisfies xΦ′

t(x) ≥ 0 for 
any x ∈ R. It follows by (3.1) that N ′(t) ≤ 0 which is the expected result. �

Using an isometry between LΦt
and LΦs

, we may translate (3.1) for Φs into a similar 
inequality for Φt, therefore reducing the family of inequalities (3.1) possibly to a single 
one.

Proposition 3.2. Let (Φt)t≥0 be a family of C2 Young functions. Assume that for some 
t, s ≥ 0 there exist two positive constants C(t, s) and C̃(t, s) such that
(i)

Φ̇t(Φ−1
t ) ≤ C(t, s)Φ̇s(Φ−1

s ),

(ii)

Φ′′
t

Φ′
t
2 ◦ Φ−1

t ≥ C̃(t, s) Φ′′
s

Φ′
s
2 ◦ Φ−1

s .

Assume furthermore that for some constant c > 0 and for any f (smooth enough), it 
holds

‖f‖2
Φs

∫
Φ̇s

(
f

‖f‖Φs

)
dμ ≤ c

∫
Φ′′

s

(
f

‖f‖Φs

)
|∇f |2dμ. (3.2)

Then, it holds

‖f‖2
Φt

∫
Φ̇t

(
f

‖f‖Φt

)
dμ ≤ c

C(t, s)
C̃(t, s)

∫
Φ′′

t

(
f

‖f‖Φt

)
|∇f |2dμ.

for any f for which the right hand side is well defined.
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Proof. Let

Is,t : LΦt
→ LΦs

f �→ ‖f‖Φt
Φ−1

s ◦ Φt

(
f

‖f‖Φt

)
.

For any f ∈ LΦt
, by the very definition of the Luxembourg norm, it holds ‖Is,t(f)‖Φs

=
‖f‖Φt

. Therefore, Is,t(f) is an isometry between the two Orlicz spaces LΦt
and LΦs

. 
Applying (3.2) to Is,t(f) leads to

‖f‖2
Φt

∫
Φ̇s

(
Φ−1

s ◦ Φt

( f

‖f‖Φt

))
dμ ≤

c

∫
Φ′′

s ◦ Φ−1
s ◦ Φt

(
f

‖f‖Φt

) Φ′
t

(
f

‖f‖Φt

)2
|∇f |2

Φ′
s ◦ Φ−1

s ◦ Φt

(
f

‖f‖Φt

)2 dμ.

The result follows by (i) and (ii). �
The simplest example is given by the Lp scale Φt(x) = |x|q(t) for some function q that 

we assume to be increasing. Then, it holds

Φ̇t(Φ−1
t ) = q′(t)

q(t) x log x and Φ′′
t

Φ′
t
2 ◦ Φ−1

t = q(t) − 1
q(t)

1
x
.

Therefore assumptions (i) and (ii) hold with C(t, s) = q′(t)q(s)
q(t)q′(s) and C̃(t, s) = (q(t)−1)q(s)

q(t)(q(s)−1) . 
In particular, the choice q(t) = 1 + e(4/ρ)t, ρ > 0, guarantees that C(t, s) = C̃(t, s) for all 
s, t. Hence, the family of inequalities (3.2) are all equivalent to (3.2) with s = 0, which 
reads

Entμ(f2) ≤ ρ

∫
|∇f |2dμ

since Φ0 = |x|2 (and therefore Φ̇0(x) = (2/ρ)x2 log x2 and Φ′′
0(x) = 2). This is the log-

Sobolev inequality and therefore Proposition 3.2 is just one direction in Gross’ theorem 
[10].

In the above example, both Φ̇t(Φ−1
t ) and Φ′′

t

Φ′
t
2 ◦ Φ−1

t are of the form a(t)b(x). Based 
on this simple observation, we may construct a generic family of Orlicz functions that, 
by construction, will automatically satisfies assumptions (i) and (ii) of the latter. This 
is the object of the next section.

3.2. The standard Orlicz family

We define a large class of family of N -functions that we will call the standard Orlicz 
family.
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Definition 3.3 (standard Orlicz family). Let F : (0, ∞) → R be a C2 increasing function 
with F (1) = 0. Assume that (0, ∞) � x �→ xF (x) is convex and that 1/xF (x) is not 
integrable at x = 0, x = 1 and x = +∞. Let F1 : (0, 1) → R and F2 : (1, +∞) → R be 
two primitives of x �→ 1/(xF (x)).

Let Φ0 be a nice Young function and xo the unique positive point such that Φ0(xo) = 1. 
We assume that − 

(
Φ0
Φ′

0

)′
F (Φ0) − Φ0F

′(Φ0) is non-increasing on R+ and that Φ0 is of 
class C2 on (0, ∞).

Given an increasing function λ : [0, ∞) → [0, ∞), with λ(0) = 0, we define the family 
of functions (Φt)t≥0 by

Φt(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for x = 0
F−1

1 (F1(Φ0(x)) + λ(t)) for x ∈ (0, xo)
1 for x = xo

F−1
2 (F2(Φ0(x)) + λ(t)) for x ∈ (xo,+∞).

∀t > 0.

We shall call the family (Φt)t≥0 the standard Orlicz family built from F , Φ0 and λ.

Remark 3.4. The Lemma below will prove that all Φt are indeed Young functions and 
in fact nice Young functions. This justifies the terminology “Orlicz family”. Also, it is 
not difficult to check that the definition above does not depend on the choice of the 
primitives: any two different primitives lead to the same final function Φt.

Example 3.5. As an example consider F (x) = log(x) and any nice Young function Φ0. 
Then, F1(x) = log(log(1/x)), x ∈ (0, 1) and F2(x) = log(log(x)), x > 1 so that F−1

1 (x) =
e−ex and F−1

2 (x) = ee
x , x ∈ R. Hence, Φt(x) = Φeλ(t)

0 . This corresponds to an Lp

scale when Φ0(x) = |x|q for some q > 1. More specifically, if q(t) = 1 + e(4/ρ)t and 
λ(t) = log(q(t)/2), with Φ0(x) = x2, we have Φt(x) = |x|q(t) and we are back to Gross’ 
setting.

The more general choices F (x) = log(1 + x)β − log(2)β , β ∈ (0, 1), can also be con-
sidered, but lead to non explicit F1 and F2. Although one can easily give an asymptotic 
of the corresponding Φt(x), when x tends to 0 or +∞. For instance, Φt is equivalent to 
Φ0e

aβλ(logφ0)β when x tends to infinity, where aβ is a numerical constant that depends 
only on β. This amounts to the family of Young functions x2ectF (x) considered in [3, 
Section 7].

In the next lemma we collect some property of the standard Orlicz families.

Lemma 3.6. Let F , Φ0 and λ satisfying the assumptions of Definition 3.3 and let (Φt)t≥0
be the standard Orlicz family built from F , Φ0 and λ. Then,
(i) F1 and F2 are C2 functions respectively on (0, 1) and (1, +∞). F1 is decreasing with 
limx→0 F1(x) = − limx→1 F1(x) = +∞. While F2 is increasing with limx→1 F2(x) =
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− limx→+∞ F2(x) = −∞. In particular Φt is well defined and continuous. Moreover, for 
t ≥ s, Φt ≤ Φs on (0, x0) and Φt ≥ Φs on (x0, +∞).
(ii) For any t ≥ 0, Φt is a nice Young function of class C2 on (0, ∞) (with Φ′

t(xo) =
Φ′

0(xo) and Φ′′
t (xo) = Φ′′

0(xo)).
(iii) For any t ≥ 0, Φ̇t ◦ Φ−1

t = λ′(t)xF (x).
(iv) For any t ≥ s ≥ 0. Φ′′

t

Φ′
t
2 ◦ Φ−1

t ≥ Φ′′
s

Φ′
s
2 ◦ Φ−1

s .
(v) Assume that λ tends to infinity at infinity. Then for any f ∈ L∞, limt→+∞ ‖f‖Φt

=
1
x0
‖f‖∞.

Proof. Points (i) and (iii) are simple consequences of the definitions of the object in-
volved.

It is not difficult but tedious to prove that for all t ≥ 0, Φt is C2 (we omit the proof). 
Using that Φt ≤ Φ0 on (0, xo) and since Φ0 is a nice Young function we deduce that 
limx→0

Φt(x)
x = 0. Similarly, limx→∞

Φt(x)
x = +∞. In order to prove that Φt is a nice 

Young function it therefore remains to show that Φt is convex. For x 
= x0, a simple 
differentiation gives

Φ′′
t

Φ′
t
2 = F ′(Φt)

(
− F ′′(Φt)
F ′(Φt)2

+ F ′′(Φ0)
F ′(Φ0)2

+ Φ′′
0

F ′(Φ0)Φ′
0
2

)
(3.3)

= F ′(Φt)
((

1
F ′

)′
(Φt) −

(
1
F ′

)′
(Φ0) + Φ′′

0

F ′(Φ0)Φ′
0
2

)

where F = F1 when x ∈ (0, x0) and F = F2 when x > x0. A Taylor expansion of 
( 1
F ′

)′
at the first order insures that

Φ′′
t

Φ′
t
2 = F ′(Φt)

(
(Φt − Φ0)

(
1
F ′

)′′
(θ) + Φ′′

0

F ′(Φ0)Φ′
0
2

)

for some θ ∈ (Φt, Φ0) when x ∈ (0, x0) and θ ∈ (Φ0, Φt) when x > x0. Since x �→ xF (x)
is convex, 1

F ′ is convex. It follows that 
( 1
F ′

)′′ (θ) ≥ 0 and thus that (Φt−Φ0) 
( 1
F ′

)′′ (θ) +
Φ′′

0
F ′(Φ0)Φ′

0
2 has the same sign as F ′(Φt). This proves that Φt is convex.

Next, we deal with Point (iv). From (3.3) we have with the same notation as before

Φ′′
t

Φ′
t
2 ◦ Φ−1

t (x) = −F ′′(x)
F ′(x) + F ′(x)

(
F ′′(Φ0)
F ′(Φ0)2

+ Φ′′
0

F ′(Φ0)Φ′
0
2

)
◦ Φ−1

t (x).

Note that by hypothesis,

F ′′(Φ0)
F ′(Φ0)2

+ Φ′′
0

F ′(Φ0)Φ′
0
2 = −

(
Φ0

Φ′
0

)′
F (Φ0) − Φ0F

′(Φ0)

is non-increasing. Thus, by Point (ii) and using the sign of F ′(x) on each domain (0, x0)
and (x0, +∞), we have



C. Roberto, B. Zegarlinski / Journal of Functional Analysis 282 (2022) 109439 13
Φ′′
t

Φ′
t
2 ◦ Φ−1

t (x) ≥ −F ′′(x)
F ′(x) + F ′(x)

(
F ′′(Φ0)
F ′(Φ0)2

+ Φ′′
0

F ′(Φ0)Φ′
0
2

)
◦ Φ−1

s (x)

= Φ′′
s

Φ′
s
2 ◦ Φ−1

s (x)

which is the expected result.
Finally we will prove Point (v). Let f ∈ L∞. Then, 

∫
Φt

(
x0|f |
‖f‖∞

)
dμ ≤ Φt(x0) = 1. 

Hence, by definition of the norm, ‖f‖Φt
≤ 1

x0
‖f‖∞. In order to prove the bound from 

below, fix ε > 0 small enough. Then note that for any x > x0, limt→+∞ Φt(x) = +∞. 
Thus∫

Φt

(
|f |x0

‖f‖∞(1 − ε)

)
dμ ≥

∫
{|f |≥‖f‖∞(1− ε

2 )}

Φt

(
|f |x0

‖f‖∞(1 − ε)

)
dμ

≥ Φt

(
x0

(
1 + ε

2(1 − ε)

))
μ
(
{|f | ≥ ‖f‖∞(1 − ε

2)}
)
≥ 1

provided t is large enough. It follows that 1
x0
‖f‖∞(1 − ε) ≤ ‖f‖Φt

for t large enough. 
This leads to the expected result and achieves the proof of the lemma. �
Remark 3.7. When λ(t) = αt for some α > 0, the standard Orlicz family enjoy a shift 
type property. Indeed, in that case Φt = F−1

i (Fi(Φs) +λ(t − s)), i = 1, 2. Therefore, the 
standard Orlicz families (Φt)t≥0 built from Φ0, F and λ and (Ψt)t≥0 built from Φs, F
and λ, satisfy Ψt = Φt+s for any t ≥ 0.

Remark 3.8. When Φ0(x) = x2,

−
(

Φ0

Φ′
0

)′
F (Φ0) − Φ0F

′(Φ0) = −1
2F (x2) − x2F ′(x2).

Thus, this function is non-increasing if and only if 3
2F

′(x) + xF ′′(x) ≥ 0 if and only if 
x �→ xF (x2) is convex. Thus, in that case, one can only assume that x �→ xF (x2) is 
convex (which implies that x �→ xF (x) is convex).

3.3. Gross-Orlicz’ theorem

Thanks to the above definition of the standard Orlicz family, we can state one of our 
main results which generalizes Gross’s theorem.

Theorem 3.9 (Gross-Orlicz). Let (Φt)t≥0 be a standard Orlicz family built from F , Φ0 and 
λ satisfying the hypotheses of Lemma 3.6. Let c > 0. Then the following are equivalent
(i)
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‖f‖2
Φ0

∫
Φ0

( f

‖f‖Φ0

)
F

(
Φ0

( f

‖f‖Φ0

))
dμ ≤ c

∫
Φ′′

0

(
f

‖f‖Φ0

)
|∇f |2dμ; (3.4)

for any function f for which the right hand side is well defined;
(ii) ∀t ≥ s ≥ 0, it holds

‖Ptf‖Φt
≤ ‖Psf‖Φs

,

for any function f for which the right hand side is well defined.
Moreover (i) ⇒ (ii) with any (increasing) λ such that Φ′′

t

Φ′
t
2 ◦ Φ−1

t ≥ cλ′(t) Φ′′
0

Φ′
0
2 ◦ Φ−1

0
for any t ≥ 0 (in particular, any λ satisfying λ′(t) ≤ 1/c would do); and (ii) ⇒ (i) with 
c = 1/λ′(0).

Proof. We first prove that (i) implies (ii). Item (iv) of Lemma 3.6 guarantees that 
Φ′′

t

Φ′
t
2 ◦ Φ−1

t ≥ cλ′(t) Φ′′
0

Φ′
0
2 ◦ Φ−1

0 with λ(t) = t/c. Hence, the set of functions λ, increasing, 

satisfying Φ′′
t

Φ′
t
2 ◦Φ−1

t ≥ cλ′(t) Φ′′
0

Φ′
0
2 ◦Φ−1

0 for any t ≥ 0 is non empty and we may fix one of 
them.

Consider the standard Orlicz family (Φt)t≥0 built from F , Φ0 and λ.
Note that by definition of the standard Orlicz family, Φ̇0 = λ′(0)Φ0F (Φ0). Thus 

Inequality (3.4) reads as

‖f‖2
Φ0

∫
Φ̇0

(
f

‖f‖Φ0

)
dμ ≤ λ′(0)c

∫
Φ′′

0

(
f

‖f‖Φ0

)
|∇f |2dμ.

From the properties proved in Lemma 3.6 we can apply Proposition 3.2 with C(t, 0) =
λ′(t)
λ′(0) and C̃(t, 0) = cλ′(t). We get that, for any t ≥ 0, any smooth function f satisfies

‖f‖2
Φt

∫
Φ̇t

(
f

‖f‖Φt

)
dμ ≤ λ′(0)cC(t, 0)

C̃(t, 0)

∫
Φ′′

t

(
f

‖f‖Φt

)
|∇f |2dμ

=
∫

Φ′′
t

(
f

‖f‖Φt

)
|∇f |2dμ.

The result of Point (ii) follows by Proposition 3.1.
Now we prove that (ii) implies (i). Let N(t) = ‖Ptf‖Φt

. By Lemma 2.1 at t = 0, we 
infer that

N ′(0)
N(0)

∫
f

‖f‖Φ0

Φ′
0

(
f

‖f‖Φ0

)
dμ =

∫
Φ̇0

(
f

‖f‖Φ0

)
dμ

−
∫

Φ′′
0

(
f

‖f‖Φ0

)
|∇ f

‖f‖Φ0

|2dμ.

The hypercontractivity property of point (ii) insures that N ′(0) ≤ 0. Thus, since 
xΦ′

0(x) ≥ 0, we get that
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‖f‖2
Φ0

∫
Φ̇0

(
f

‖f‖Φ0

)
dμ ≤

∫
Φ′′

0

(
f

‖f‖Φ0

)
|∇f |2dμ.

The result follows by the formula Φ̇0 = λ′(0)Φ0F (Φ0) proved in Lemma 3.6. �
Remark 3.10. When Φ0(x) = x2, Inequality (3.4) reads as

∫
f2F

(
f2

μ(f2)

)
dμ ≤ 2c

∫
|∇f |2dμ.

This is the usual F -Sobolev inequality introduced by Rosen [20] (see also Wang [24]), 
and corresponds to the log-Sobolev inequality when F (x) = log x.

When F = log, one can consider λ(t) = log(1 + e(4/ρ)t) − log 2, with ρ = 2c. Then, as 
already mentioned in Example 3.5, the standard Orlicz family built from Φ0(x) = x2, F
and λ, is Φt(x) = |x|q(t) with q(t) = 1 + e(4/ρ)t. In that case Theorem 3.9 is nothing but 
Gross’ equivalence between the log-Sobolev inequality and the hypercontractivity in Lp

scale recalled in the introduction.
Theorem 3.9 has to be compared to [3, Theorem 6]. When F = log, [3, Theorem 

6] asserts that ‖Ptf‖q̃(t) ≤ ‖f‖2 with q̃(t) = 2eρt which is off by a factor of 2 in the 
exponential (though capturing the exponential character of the Lp scale).

Furthermore, for F (x) := log(1 +x)β−log(2)β , β ∈ (0, 1), [3, Theorem 6 and Corollary 
34] does not give an hypercontractivity property, but only hyper-boundedness (see sec-
tion 3.5 below for more on hyper-boundedness). One of the main differences comes from 
the fact that in [3] the authors deals with an explicit family of Young functions which 
imposes in some situation stronger assumptions. This happens for the second assumption 
of [3, Theorem 6] which reads in our setting as Φt(x)F (x2) ≤ �(t)Φt(F (Φt(x))) +m. We 
do not need such an assumption here.

To conclude with the comparison between the two theorems, we observe that the first 
assumption of [3, Theorem 6] is implied by x �→ xF (x2) convex, see Remark 3.8 above 
and [3, Proposition 7].

Notice that, for the following smooth version of |x|α, α ∈ (1, 2),

uα(x) =
{

|x|α for |x| > 1
α(α−2)

8 x4 + α(4−α)
4 x2 + (1 − 3

4α + 1
8α

2) for |x| ≤ 1

it has been proved in [3, Proposition 33] that the probability measure dμn
α(x) =∏n

i=1 Z
−1
α e−uα(xi)dxi on Rn satisfies (3.4) with F (x) = log(1 + x)β − log(2)β with 

β = 2(1 − 1
α ), Φ0(x) = x2 and some constant c = c(α) > 0 (that does not depend 

on n). This in turn leads to the hypercontractivity property for the standard Orlicz 
family built from F , Φ0 and any λ satisfying λ′(t) ≤ 1/c.
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3.4. Perturbation of Orlicz families and hypercontractivity

In this section we show how to translate the hypercontractivity property from one 
family of Young functions to another.

Proposition 3.11. Let (Ψt)t≥0 and (Φt)t≥0 be two families of Young functions and (Pt)t≥0
be a linear semi-group acting on a set of functions A onto itself. Assume that for some 
t ≥ 0,
(i) any f ∈ A satisfies ‖Ptf‖Ψt

≤ ‖f‖Ψ0 ,
(ii) the function Ψ−1

t ◦Φt is convex, satisfies Ψ−1
t ◦Φt ≤ Ψ−1

0 ◦Φ0 and Ψ−1
t ◦Φt(A) ⊂ A,

(iii) for any function f ∈ A, any convex function F , F (Ptf) ≤ Pt(F (f)).
Then, any f ∈ A satisfies

‖Ptf‖Φt
≤ ‖f‖Φ0 .

Proof. By definition of the norm and Jensen’s inequality given in (iii), together with 
(ii), we have

1 =
∫

Φt

(
Ptf

‖Ptf‖Φt

)
dμ =

∫
Ψt ◦ Ψ−1

t ◦ Φt

(
Pt

f

‖Ptf‖Φt

)
dμ

≤
∫

Ψt

(
PtΨ−1

t ◦ Φt

(
f

‖Ptf‖Φt

))
dμ.

This implies by definition of the norm and the hypercontractivity for the family Ψt (given 
in (i)) that

1 ≤ ‖PtΨ−1
t ◦ Φt

( f

‖Ptf‖Φt

)
‖Ψt

≤ ‖Ψ−1
t ◦ Φt

( f

‖Ptf‖Φt

)
‖Ψ0 .

It follows that 1 ≤
∫

Ψ0◦Ψ−1
t ◦Φt

(
f

‖Ptf‖Φt

)
dμ. Hence by point (ii), 1 ≤

∫
Φ0

(
f

‖Ptf‖Φt

)
dμ. 

In turn, ‖f‖Φ0 ≥ ‖Ptf‖Φt
. This ends the proof. �

Example 3.12. Assume that Φt = Ψt ◦F for a fixed Young function F . Then hypotheses 
(ii) and (iii) are automatically satisfied. For instance, it is known that the linear semi-
group with diffusion generator L = Δ −∇U∇ with Hess(U) ≥ ρ > 0 satisfies log-Sobolev 
inequality with constant 2/ρ and in turn is hypercontractive in the sense that

‖Ptf‖q(t) ≤ ‖f‖2, with q(t) := 1 + e(4/ρ)t.

Now let Ψt(x) = |x|q(t). Hence, for any Young function F , the previous proposition 
asserts that

‖Ptf‖F q(t) ≤ ‖f‖F 2 .
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Similarily from [3] we learn that the semi-group associated to L = Δ − ∇U∇ with 
U(x) = |x|α (more precisely a smoothed version of |x|α), 1 ≤ α ≤ 2, is hypercontractive 

in the Orlicz’ spaces family LΦt
with Φt = x2ect log(1+|x|2)2(1−

1
α

)
for some constant c. It 

follows that for any Young function F , the semi-group (Pt)t≥0 is also hypercontractive 

in the Orlicz’ spaces family LΨt
with Ψt = F (x)2ect log(1+|F (x)|2)2(1−

1
α

)
.

3.5. Hypercontractivity versus hyper-boundedness

In this section, we deal with perturbation arguments that allows one to get some 
hyper-boundedness property starting from hypercontractivity.

Theorem 3.13. Let (Φt)t≥0 and (Ψt)t≥0 be two standard Orlicz families built respectively 
from F and F̃ , Φ0 and λ, both satisfying the hypotheses of Definition 3.3.

Assume that for any ε > 0 there exists D(ε) ≥ 0 such that all x ≥ 0 satisfy

F̃ (x) ≤ εF (x) + D(ε).

Suppose also that for any f and any t ≥ 0, it holds

‖Ptf‖Φt
≤ ‖f‖Φ0 .

Then, for any s2 ≥ s1 ≥ 0, any t ≥ 0, any C1 increasing function q : R+ → R+ with 
q(0) = s1 and q(t) = s2, it holds

‖Ptf‖Ψs2
≤ ‖f‖Ψs1

exp

⎧⎨⎩
t∫

0

q′(u)λ′(q(u))D
(

λ′(0)
q′(u)λ′(q(u))

)
du

⎫⎬⎭ ∀f ∈ LΨs1
.

Proof. Our aim is to use the hypercontractivity property in Orlicz spaces LΦt
together 

with Theorem 3.9 to get a functional inequality involving the Young functions Φt, and 
then use the assumption on F and F̃ to get a similar inequality for F̃ .

Fix s2 ≥ s1 ≥ 0, t ≥ 0 and a C1 increasing function q : R+ → R+ with q(0) = s1
and q(t) = s2. Fix f ∈ LΨs1

and let N(u) := ‖Puf‖Ψq(u) and g := Puf/N(u). Applying 

Lemma 2.1 to Ψ̃(t, x) := Φq(t)(x), and observing that ∂
∂t Ψ̃(t, x) := q′(t)Ψ̇q(t)(x), we get

N ′(u)
N(u)

∫
gΨ′

q(u) (g) dμ = q′(u)
∫

Ψ̇q(u) (g) dμ−
∫

Ψ′′
q(u) (g) |∇g|2 dμ.

Since Ψq(u) is a nice Young function, xΨ′
q(u)(x) ≥ Ψq(u)(x) for any x ≥ 0, any u. 

Therefore 
∫
gΨ′

q(u) (g) dμ ≥ 1 and in turn, when N ′(u) ≥ 0, we have

N ′(u) ≤ q′(u)
∫

Ψ̇q(u) (g) dμ−
∫

Ψ′′
q(u) (g) |∇g|2 dμ.
N(u)
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Now, thanks to Theorem 3.9, the hypercontractivity assumption guarantees that

‖f‖2
Φ0

∫
Φ0

(
f

‖f‖Φ0

)
F

(
Φ0

(
f

‖f‖Φ0

))
dμ ≤ 1

λ′(0)

∫
Φ′′

0

(
f

‖f‖Φ0

)
|∇f |2dμ.

By our assumption, item (iii) of Lemma 3.6 (recall that Ψ0 = Φ0), we have

Ψ̇0 = λ′(0)Φ0F̃ (Φ0) ≤ λ′(0)εΦ0F (Φ0) + λ′(0)D(ε)Φ0.

Therefore, for any f with ‖f‖Φ0 = 1,∫
Ψ̇0 (f) dμ ≤ λ′(0)ε

∫
Φ0 (f)F (Φ0 (f)) dμ + λ′(0)D(ε)

≤ ε

∫
Φ′′

0 (f) |∇f |2 dμ + λ′(0)D(ε) = ε

∫
Ψ′′

0 (f) |∇f |2 dμ + λ′(0)D(ε).

Recall the isometry

Is,t : LΨt
→ LΨs

f �→ ‖f‖Ψt
Ψ−1

s ◦ Ψt

(
f

‖f‖Ψt

)
from Proposition 3.2 that we may use with s = 0 and t = q(u). The previous in-
equality applied to I0,q(u)(f) ensures that for any f with ‖f‖Ψq(u) = ‖I0,q(u)(f)‖Ψ0 =
‖I0,q(u)(f)‖Φ0 = 1, it holds∫

Ψ̇0 ◦ Ψ−1
0 ◦ Ψq(u)(f)dμ ≤ ε

∫ Ψ′′
0

Ψ′
0
2 ◦ Ψ−1

0 ◦ Ψq(u)(f) |∇f |2 Ψ′
q(u)

2(f)dμ + λ′(0)D(ε).

It follows from items (iii) and (iv) of Lemma 3.6 that

λ′(0)
λ′(q(u))

∫
Ψ̇q(u)(f)dμ ≤ ε

∫
Ψ′′

q(u)(f) |∇f |2 dμ + λ′(0)D(ε).

This leads to

N ′(u)
N(u) ≤ q′(u)λ′(q(u))

λ′(0)

(
ε

∫
Ψ′′

q(u)(f) |∇f |2 dμ + λ′(0)D(ε)
)
−
∫

Ψ′′
q(u)(f) |∇f |2 dμ

for any u such that N ′(u) ≥ 0. The latter being valid for any ε > 0, choose ε such that 
q′(u)λ′(q(u))ε = λ′(0). Therefore, provided that N ′(u) ≥ 0 it holds

N ′(u)
N(u) ≤ q′(u)λ′(q(u))D

(
λ′(0)

q′(u)λ′(q(u))

)
.

This bound trivially holds when N ′(u) < 0. Hence
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log ‖Ptf‖Ψs2
− log ‖P0f‖Ψs1

=
t∫

0

d

du
log ‖Puf‖Ψq(u)du =

t∫
0

N ′(u)
N(u) du

≤
t∫

0

q′(u)λ′(q(u))D
(

λ′(0)
q′(u)λ′(q(u))

)
du.

The result follows. �
As an example of application, consider, for β ∈ (0, 1], Fβ(x) = (log(1 +x))β−(log 2)β . 

It is not difficult to check that for any ε > 0 and any β′ < β, it holds

Fβ′(x) ≤ εFβ(x) + D(ε)

with

D(ε) := −(log 2)β
′
+ ε(log 2)β +

(
β′

β

) β′
β−β′ β − β′

β

(
1
ε

) β′
β−β′

.

Now let

uα(x) =
{

|x|α for |x| > 1
α(α−2)

8 x4 + α(4−α)
4 x2 + (1 − 3

4α + 1
8α

2) for |x| ≤ 1

be a smooth version of |x|α, α ∈ (1, 2). Define the probability measure dμn
α(x) =∏n

i=1 Z
−1
α e−uα(xi)dxi on Rn. As already mentioned in Remark 3.10, it follows from [3, 

Proposition 33] that Inequality (3.4) holds for Fβ, Φ0(x) = x2 and some c = c(α) > 0
and therefore that the semi-group (Pt)t≥0 associated to μn

α is hypercontractive along the 
standard Orlicz family (Φt)t≥0 built from Fβ, Φ0 and any λ satisfying λ′(t) ≤ 1/c. Fix 
for simplicity λ(t) = t/c.

Consider the standard Orlicz families (Ψt)t≥0 built from Fβ′ , Φ0(x) = x2 and λ.
The previous theorem shows that (for s1 = 0 and s2 = s)

‖Ptf‖Ψs
≤ m(t)‖f‖2

where

m(t) = inf
q

exp

⎧⎨⎩1
c

t∫
0

q′(u)D
(

1
q′(u)

)
du

⎫⎬⎭
where the infimum is running over all increasing q : [0, t] → R+ with q(0) = 0 and 
q(t) = s. We stress that the Luxembourg norm is computed here with reference measure 
μn
α.
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One has

q′(u)D
(

1
q′(u)

)
= −q′(u)(log 2)β

′
+ (log 2)β + Cβ,β′(q′(u))

β
β−β′

where we set, for simplicity, Cβ,β′ :=
(

β′

β

) β′
β−β′ β−β′

β . Therefore,

inf
q

⎧⎨⎩
t∫

0

q′(u)D
(

1
q′(u)

)
du

⎫⎬⎭ = −s(log 2)β
′
+ t(log 2)β + Cβ,β′ inf

q

⎧⎨⎩
t∫

0

(q′(u))
β

β−β′ du

⎫⎬⎭ .

Since β/(β − β′) ≥ 1, by Holder’s inequality (and equality cases in Holder’s inequality), 
it is easy to see that

inf
q

⎧⎨⎩
t∫

0

(q′(u))
β

β−β′ du

⎫⎬⎭ = s
β

β−β′ t−
β′

β−β′ .

As a conclusion

m(t) = exp
{

1
c

(
−s(log 2)β

′
+ t(log 2)β + Cβ,β′s

β
β−β′ t−

β′
β−β′

)}
.

Note in particular that the factor in the exponential explodes for a fixed t, when s goes to 
infinity. This must be since the semi-group associated to μn

α can not be ultracontractive.

4. Contraction property for inhomogeneous Markov semi-groups

In this section we deal with the time-dependent diffusion operators Lt := Δ −∇Vt ·∇, 
t ≥ 0, on Rn, with Vt smooth enough and such that 

∫
e−Vt = 1. Recall that the associated 

semi-group (P (t)
s )s≥0 is reversible with respect to the probability measure μt(dx) :=

e−Vt(x)dx. All along this section Luxembourg norms are understood with respect to μt. 
We may omit such a dependence when not needed and write otherwise ‖ · ‖Φt,μt

.
In order to obtain contraction bounds for P (t)

t f , one could try to use the following 
natural simple strategy. For t fixed, one may assume that Hess(Vt) ≥ ρt for some ρt > 0
so that Gross’ theorem applies and leads to

‖P (t)
s f‖qt(s),μt

≤ ‖f‖2,μt
s, t ≥ 0,

with, say, qt(s) ≤ 1 + e(4/ρt)s where we set ‖g‖q,μt
:= (

∫
|g|qdμt)

1
q for the Lq norm of g

with respect to μt (we choose qt(0) = 2 for simplicity). Applying the latter at time s = t

leads to

‖P (t)
t f‖qt(t),μt

≤ ‖f‖2,μt
.
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Now observe that the latter might be very weak if ρt is small. Moreover and more 
essentially one would like to deal with a norm on the right hand side independent of t
(say related to μ0). Before achieving this program, by means of Lemma 2.1, let us end 
this introduction with an easy (and very specific) example of inhomogeneous Markov 
semi-group whose hypercontractivity property can be derived from the results of the 
previous section.

Consider for instance Vt = U1 for t ∈ [0, T ] and Vt = U2 for t > T where U1 and 
U2 are associated to hypercontractivity properties in Orlicz spaces LΦ(1)

t
and LΦ(2)

t
re-

spectively. Then, we can argue that ‖P (t)
t f‖Φ(1)

t
≤ ‖P (s)

s f‖Φ(1)
s

, for any s ≤ t ≤ T , and 

then ‖P (t)
t f‖Φ(2)

t
≤ ‖P (s)

s f‖Φ(2)
s

for any T < s ≤ t. Therefore, if the two families of 
Orlicz spaces coincide at time T, i.e. Φ(1)

T = Φ(2)
T , and potentially modulo some extra 

assumptions on the Young functions Φ(1)
t , Φ(2)

t , if we set Φt = Φ(1)
t for t ∈ [0, T ] and 

Φt := Φ(2)
t for t ≥ T , one has ‖P (t)

t f‖Φt
≤ ‖P (s)

s f‖Φs
for all s ≤ t. As already mentioned 

this is however very specific and somehow artificially inhomogeneous. We would like to 
deal with examples of potentials Vt that evolve all along the time t.

In the next section we will deal under the restricted hypothesis of the log-Sobolev 
inequality (4.1) related to the Orlicz family Φt(x) = |x|q(t) (Lp scale). This makes the 
presentation more precise and easier by reducing some technicalities. However, it already 
encompasses many of the difficulties. The last section (that comes after) will finally deal 
with a more general setting.

We stress that the results below are a first step in the understanding of contraction 
properties for inhomogeneous Markov semi-groups. Many remain to be discovered and 
we believe that our investigations open new lines of research with possible application, 
as mentioned in the introduction, to non-linear parabolic time dependent problems (in 
infinite dimension).

4.1. Lp-scales

In order to give the flavor of what is happening in the inhomogeneous setting (and 
avoid some technicalities), in this section we may only deal with contractivity properties 
in Lp-scales. Recall that X− = max(−X, 0) stands for the negative part.

Theorem 4.1. Consider the inhomogeneous diffusion operator Lt as above. Set at :=
‖(V̇t)−‖∞, bt := ‖|∇V̇t|‖∞, ct := ‖(∇Vt · ∇V̇t −ΔV̇t)−‖∞ and assume that at, bt, ct < ∞
for all t ≥ 0. Assume also that, for all t ≥ 0 there exists ρt ∈ R such that Hess(Vt) ≥ ρt. 
Finally, assume that there exists ρ̄t > 0 such that the following log-Sobolev inequality 
holds

∫
f2 log(f2)dμt ≤ ρ̄t

∫
|∇f |2dμt, (4.1)
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for all f with 
∫
f2dμt = 1 for which the right hand side is well defined. Then, for any 

f : Rn → R+ smooth enough, any p > 1 and any s ≤ t, it holds

‖P (t)
t f‖Φt,μt

≤ m(s, t)‖P (s)
s f‖Φs,μs

where Φt(x) = |x|q(t), q(t) = 1 + (p − 1) exp{
∫ t

0 (2/ρ̄s)ds}, t ≥ 0 and

m(s, t) := exp

⎧⎨⎩
t∫

s

au
q(u) + ucu + b2u

1 − e−ρuu

2ρu
(q(u) − 1)du

⎫⎬⎭ .

Remark 4.2. As already mentioned, one possible criterion for the log-Sobolev inequality 
(4.1) to hold, is Hess(Vt) ≥ ρt > 0 (as a matrix), which implies ρ̄t ≤ 2

ρt
. Alternatively, as 

will be used below, one can apply a perturbation argument à la Holley & Stroock [12].
If Vt does not depend on t then m(s, t) = 1 and q(t) = 1 +(p −1)e(2/ρ̄)t, which is Gross’ 

theorem off by a factor of 2 in the exponential (see the introduction). This is coming 
from a technical computation that uses Cauchy-Schwarz’ inequality. One can actually 
improve this and get q(t) = 1 +(p − 1) exp{(2 − ε) 

∫ t

0 (2/ρ̄s)ds}, for any ε > 0, but at the 
price of a factor m(s, t) that depends on ε, and that increases when ε decreases.

Modulo such a factor 2, the above theorem can therefore be seen as an inhomogeneous 
counterpart of Gross’ theorem.

Example 4.3. The above theorem contains some non trivial examples. For instance one 
can consider potentials of the form Vt(x) = U(x) + α(t)V (x) + γ(t) with V unbounded 
and γ(t) := log

∫
e−U−αV dx so that μt indeed defines a probability measure.

Take for instance U(x) = |x|2
2 , α : [0, ∞) → [0, ∞) non-decreasing and V (x) = (1 +

|x|2)β
2 , with β ∈ (0, 1] (this is an unbounded (time-dependent) perturbation of the 

standard Gaussian potential U).
Then, V̇t = α′(t)(1 + |x|2)β

2 so that at = 0; ∇V̇t = α′(t)β(1 + |x|2)β
2 −1x, whence 

bt = α′(t)β
√

(1−β)1−β

(2−β)2−β (which is understood as its limit when β = 1, namely bt = α′(t) if 
β = 1). Using crude estimates, it is not difficult to prove that ct ≤ n2α′(t)(α(t) + 2). On 
the other hand (again we omit details) Hess(Vt) ≥ 1 so that ρt = 1 and (4.1) holds with 
ρ̄t = 2. Theorem 4.1 then implies that the corresponding inhomogeneous semi-group 
(P (t)

t )t≥0 is hyper-bounded in the Lq(t) scale, with q(t) = 1 + (p − 1)et.
For V (x) = log(1 + |x|2) one can easily see that at = 0, bt = α′(t) and ct < ∞. 

The issue is coming from estimating ρ̄t. In fact Hess(Vt)(x) is bounded below by a 
positive matrix only outside a ball (of radius proportional to α). Therefore, one can 
write Vt = H + R, with H strictly convex, in the sense that Hess(H) ≥ 1/2, say, 
and R is bounded. Then Bakry-Émery criterion applies to the measure with density 
proportional to e−H , leading to a log-Sobolev constant at most 4, and then we use 
Holley-Stroock perturbation Lemma, see e.g. [1, Theorem 3.4.3] to get Inequality (4.1)
with constant ρ̄t at most 4eOsc(R) (therefore potentially exponentially big in α) where 
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Osc(R) = supR − inf R is the oscillation of R. Theorem 4.1 applies and finally leads to 
some contraction property with q(t) → ∞ for α bounded or slowly growing to infinity 
(for instance α(t) = log log t would do).

Proof of Theorem 4.1. Let Φt(x) := |x|q(t) with q : [0, ∞) → [0, ∞) increasing and satis-
fying q(0) > 1. Set N(t) := ‖P (t)

t f‖Φt,μt
for some non-negative smooth f , and g := P

(t)
t f
N

so that 
∫

Φt(g)dμt = 1. From Lemma 2.1, we have

N ′(t)
∫

gΦ′
t(g)dμt ≤ N(t)

(∫
Φ̇t(g)dμt −

∫
Φ′′

t (g)|∇g|2dμt + at

)

+ bt

∫ t∫
0

P
(t)
t−sf |∇P (t)

s (Φ′
t(g))|dsdμt + ct

∫ t∫
0

P
(t)
t−sfP

(t)
s (Φ′

t(g))dsdμt.

We observe that xΦ′
t(x) = qΦt(x) so that 

∫
gΦ′

t(g)dμt = q. Also, by reversibility, the 
last term of the latter satisfies

∫ t∫
0

P
(t)
t−sfP

(t)
s (Φ′

t(g))dsdμt =
t∫

0

∫
P (t)
s (P (t)

t−sf)Φ′
t(g)dμtds

= tN(t)
∫

gΦ′
t(g)dμt = tN(t)q(t).

Since Φ̇t(x) = q′(t)|x|q log(|x|) and Φ′′
t (x) = q(q − 1)|x|q−2, we get

q(t)N
′(t)

N(t) ≤ q′(t)
q(t) Entμt

(gq) − q(q − 1)
∫

gq−2|∇g|2dμt + at + tctq(t)

+ bt
N(t)

∫ t∫
0

P
(t)
t−sf |∇P (t)

s (Φ′
t(g))|dsdμt.

The condition Hess(Vt) ≥ ρt ensures that |∇P
(t)
s h| ≤ e−ρtsP

(t)
s (|∇h|) for all s ≥ 0 and 

all h (see e.g. [1][Proposition 5.4.5]). Hence, by reversibility

∫ t∫
0

P
(t)
t−sf |∇P (t)

s (Φ′
t(g))|dsdμt ≤

∫ t∫
0

e−ρtsP
(t)
t−sfP

(t)
s (|∇Φ′

t(g)|)dsdμt

=
∫ t∫

0

e−ρtsP
(t)
t fΦ′′

t (g)|∇g|dsdμt

= N(t)1 − e−ρtt

ρt
q(q − 1)

∫
gq−1|∇g|dμt.
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Using the inequality uv ≤ 1
2εu

2 + ε
2v

2 with ε = bt
1−e−ρtt

ρt
, u = g

q
2−1|∇g| and v = g

q
2 we 

get

1 − e−ρtt

ρt

∫
gq−1|∇g|dμt ≤

1
2bt

∫
gq−2|∇g|2dμt + 1

2bt
(

1 − e−ρtt

ρt

)2 ∫
gqdμt

so that, using 
∫
gqdμt =

∫
Φt(g)dμt = 1,

q(t)N
′(t)

N(t) ≤ q′(t)
q(t) Entμt

(gq) − q(q − 1)
2

∫
gq−2|∇g|2dμt + at + tctq(t)

+ b2t
1 − e−ρtt

2ρt
q(t)(q(t) − 1).

Next, we observe that 
∫
gq−2|∇g|2dμt = 4

q2

∫
|∇g

q
2 |2dμt. Hence, for q(t) := 1 + (p −

1) exp{
∫ t

0 (2/ρ̄s)ds} which satisfies 2(q−1)
q′ = ρ̄t, we are guaranteed by (4.1) that

q′(t)
q(t) Entμt

(gq) − q(q − 1)
2

∫
gq−2|∇g|2dμt

= q′(t)
q(t)

(
Entμt

(gq) − 2(q − 1)
q′(t)

∫
|∇g

q
2 |2dμt

)
= q′(t)

q(t)

(
Entμt

(gq) − ρ̄t

∫
|∇g

q
2 |2dμt

)
≤ 0.

It follows that

N ′(t)
N(t) ≤ at

q(t) + tct + b2t
1 − e−ρtt

2ρt
(q(t) − 1)

which leads to the desired conclusion. �
4.2. General result

In this section we establish a more general result than Theorem 4.1 that allows one 
to deal with more general Orlicz families, and not only the Lp-scales. As a motivation, 
one can consider for instance as above Vt(x) = U(x) +α(t)V (x) + γ(t) with U(x) � |x|α

α

(for large |x|), γ(t) := log
∫
e−U−αV dx and Φt(x) = x2ectF (x), with F (x) � log(x)β (for 

large x). This corresponds, with a proper choice of V , to a generalization of the hyper-
contractivity property proved in [4] in the homogeneous setting (recall the introduction, 
see also Remark 3.10.

Theorem 4.4. Consider the inhomogeneous diffusion operator Lt as above. Assume that 
for all t ≥ 0, bt := ‖|∇V̇t|‖∞ < ∞ and that there exists ρt ∈ R such that Hess(Vt) ≥ ρt
(as a matrix).
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Let (Φt)t≥0 be a family of Young functions satisfying Φt(x) ≤ xΦ′
t(x) ≤ BtΦt(x), 

Φ′
t
2 ≤ CtΦtΦ′′

t and x2Φ′′
t (x) ≤ DtΦt(x) + Et for all x ≥ 0 and some constants 

Bt, Ct, Dt, Et.
Assume that for all t ≥ 0 there exist δt ∈ [0, 1) and Ft ∈ R such that (V̇t)− ≤

δt
4Ct

(
|∇Vt|2 − 2ΔVt

)
+ Ft.

Set Wt := (∇Vt · ∇V̇t − ΔV̇t)− and denote by ρ̄t ∈ (0, ∞] the best constant such that 
for all f with ‖f‖Φ0 = 1 it holds∫

Φ̇t(f)dμt ≤ ρ̄t

∫
Φ′′

t (f)|∇f |2dμt. (4.2)

Finally, assume either that
(i) ct := ‖Wt‖∞ < ∞ and ρ̄t < 1 − δt;
or
(ii) c′t := max

(
2‖|∇Wt|‖∞/bt, supx:Wt(x) �=0

(
LtWt

Wt
− ρt

)
−

)
< ∞ and that for all t ≥

0 there exists δ′t ∈ [0, 1) and F ′
t ∈ [0, ∞) such that δ′t

∫ t

0 e(c′s−ρs)sds < 1 and Wt ≤
δ′t

4BtCt

(
|∇Vt|2 − 2ΔVt

)
+ F ′

t .
Then, for any f : Rn → R+ smooth enough, it holds

‖P (t)
t f‖Φt,μt

≤ m(s, t)‖P (s)
s f‖Φs,μs

where under assumption (i),

m(s, t) = exp

⎧⎨⎩
t∫

s

Fu +
(
bu

1 − e−ρuu

ρu

)2
Du + Eu

2(1 − δu − ρ̄u) + cuBuudu

⎫⎬⎭ ,

and under assumption (ii),

m(s, t) = exp
{ t∫

s

⎛⎝ u∫
0

e(c′v−ρv)vdv

⎞⎠2
bu(Du + Eu)

2(1 − δu − ρ̄u − δ′u
∫ u

0 e(c′v−ρv)vdv)

+
u∫

0

e(c′v−ρv)vdv (BuF
′
u + Fu) du

}
.

Remark 4.5. Observe that, when δt = 0, the assumption (V̇t)− ≤ δt
Ct

(
|∇Vt|2 − 2ΔVt

)
+

Dt amounts to at := ‖(V̇t)−‖∞ < ∞ which is the assumption that we used in Theo-
rem 4.1. Also, it might be that V̇t ≥ 0 so that, in that case, one chooses δt = Dt = 0.

Observe also that the first inequality in the assumption Φt(x) ≤ xΦ′
t(x) ≤ BtΦt(x)

is satisfied by all Young functions, while the second inequality is a consequence of the 
Δ2-condition.
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Finally we observe that, although we weakened most of the hypotheses of Theorem 4.1, 
one key assumption one would like to remove/reduce is bt = ‖|∇V̇t|‖∞ < ∞. Indeed one 
interesting example one would like to deal with is for instance Vt(x) = ((1 − t)+)2|x|2 +
|x|α, with α ∈ (1, 2), where we have a critical point t = 1 in which hypercontractivity 
property in Lp spaces is replaced by a weaker property. Such an example is not covered 
by Theorem 4.4 since bt = ∞.

Proof of Theorem 4.4. We start as in the proof of Theorem 4.1. Set N(t) := ‖P (t)
t f‖Φt,μt

, 
g := P

(t)
t f
N so that from Lemma 2.1 for some non-negative smooth function f , it holds

N ′(t)
∫

gΦ′
t(g)dμt ≤ N(t)

(∫
Φ̇t(g)dμt −

∫
φ′′
t (g)|∇g|2dμt −

∫
Φt(g)V̇tdμt

)

+
∫ t∫

0

P
(t)
t−sf∇P (t)

s (Φ′
t(g)) · ∇V̇tdsdμt (4.3)

−
∫ t∫

0

[∇Vt · ∇V̇t − ΔV̇t]P (t)
t−sfP

(t)
s (Φ′

t(g))dsdμt.

We analyze each term separately.
Since xΦ′

t(x) ≥ Φt(x), it holds 
∫
gΦ′

t(g)dμt ≥
∫

Φt(g)dμt = 1. Hence, if N ′(t) ≥ 0, 
the left hand side of the latter is bounded below by N ′(t).

Since (V̇t)− ≤ δt
4Ct

(
|∇Vt|2 − 2ΔVt

)
+ Ft, we can use the expansion of the square, 

namely Inequality (2.3) with f =
√

Φt(g), to get that

−
∫

Φt(g)V̇tdμt ≤
∫

Φt(g)(V̇t)−dμt ≤
δt
Ct

∫ Φ′
t
2(g)

Φt(g)
|∇g|2dμt + Ft

≤ δt

∫
Φ′′

t (g)|∇g|2dμt + Ft.

Now assume first that assumption (i) holds, namely that ct = ‖(∇Vt · ∇V̇t −
ΔV̇t)−‖∞ < ∞. In that case we can proceed as in the proof of Theorem 4.1 to get

∫ t∫
0

P
(t)
t−sf∇P (t)

s (Φ′
t(g)) · ∇V̇tdsdμt −

∫ t∫
0

[∇Vt · ∇V̇t − ΔV̇t]P (t)
t−sfP

(t)
s (Φ′

t(g))dsdμt

≤ bt

∫ t∫
0

P
(t)
t−sf |∇P (t)

s (Φ′
t(g))|dsdμt + ct

∫ t∫
0

P
(t)
t−sfP

(t)
s (Φ′

t(g))dsdμt

≤ btN(t)1 − e−ρtt

ρ

∫
gΦ′′

t (g)|∇g|dμt + cttN(t)
∫

gΦ′
t(g)dμt.
t
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Using our assumption on Φt and uv ≤ 1
2εu

2 + ε
2v

2, the latter is bounded above, for any 
ε > 0, by

btN(t)1 − e−ρtt

ρt

(
1
2ε

∫
g2Φ′′

t (g)dμt + ε

2

∫
Φ′′

t (g)|∇g|2dμt

)
+ ctBttN(t)

∫
Φt(g)dμt

≤ btN(t)1 − e−ρtt

ρt

1
2ε (Dt + Et) + ctBttN(t) + ε

btN(t)(1 − e−ρtt)
2ρt

∫
Φ′′

t (g)|∇g|2dμt.

Choose ε so that ε bt(1−e−ρtt)
2ρt

= [1 − δ− ρ̄t]/2 so that, collecting the above computations 
together with inequality (4.2), we can conclude that for any t such that N ′(t) ≥ 0,

N ′(t) ≤ N(t)
(
Ft +

(
bt

1 − e−ρtt

ρt

)2
Dt + Et

2(1 − δt − ρ̄t)
+ ctBtt

)

from which the conclusion under assumption (i) follows.
Now we turn to assumption (ii). We need to bound the last two terms in (4.3). Using 

Proposition 4.6 with W := Wt/bt (observe that, since μt is a probability measure, bt 
= 0), 
it holds

∫ t∫
0

P
(t)
t−sf∇P (t)

s (Φ′
t(g)) · ∇V̇tdsdμt −

∫ t∫
0

[∇Vt · ∇V̇t − ΔV̇t]P (t)
t−sfP

(t)
s (Φ′

t(g))dsdμt

≤ bt

∫ t∫
0

P
(t)
t−sf

(
|∇P (t)

s (Φ′
t(g))| +

Wt

bt
P (t)
s (Φ′

t(g))
)
dsdμt

≤ bt

∫ t∫
0

e(cs−ρs)sP
(t)
t−sfP

(t)
s

(
|∇Φ′(g)| + Wt

bt
Φ′(g)

)

= N(t)
t∫

0

e(cs−ρs)sds

(
bt

∫
gΦ′′

t (g)|∇g|dμt +
∫

WtgΦ′
t(g)dμt

)

where we used the reversibility in the last inequality. For the first term in the right hand 
side of the latter, we proceed as for assumption (i). Namely, it holds for all ε > 0∫

gΦ′′
t (g)|∇g|dμt ≤

1
2ε

∫
g2Φ′′

t (g)dμt + ε

2

∫
Φ′′

t (g)|∇g|2dμt

≤ 1
2ε (Dt + Et) + ε

2

∫
Φ′′

t (g)|∇g|2dμt.

For the second term, we use the expansion of the square (inequality (2.3) with f =√
Φt(g)) to get that
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∫
WtgΦ′

t(g)dμt ≤ Bt

∫
WtΦt(g)dμt ≤

δ′

4Ct

∫
Φt(g)

(
|∇Vt|2 − 2ΔVt

)
dμt + BtF

′
t

≤ δ′

4Ct

∫ Φ′
t(g)2

Φt(g)
|∇g|2dμt + BtF

′
t ≤ δ′

∫
Φ′′

t (g)2‖∇g|2dμt + BtF
′
t .

Summarizing, under assumption (ii), when N ′(t) > 0, we obtain

N ′(t)
N(t) ≤

∫
Φ̇t(g)dμt −

(
1 − δt −

ε

2

t∫
0

e(c′s−ρs)sds + δ′t

t∫
0

e(c′s−ρs)sds

)∫
φ′′
t (g)|∇g|2dμt

+
t∫

0

e(c′s−ρs)sds

(
bt(Dt + Et)

2ε + BtF
′
t + Ft

)

≤
t∫

0

e(c′s−ρs)sds

(
bt(Dt + Et)

2ε + BtF
′
t + Ft

)
(thanks to (4.2))

=

⎛⎝ t∫
0

e(c′s−ρs)sds

⎞⎠2
bt(Dt + Et)

2(1 − δt − ρ̄t − δ′t
∫ t

0 e(c′s−ρs)sds)

+
t∫

0

e(c′s−ρs)sds (BtF
′
t + Ft)

for ε so that ε
2
∫ t

0 e(c′s−ρs)sds = 1−δt−ρ̄t−δ′t
∫ t
0 e(c

′
s−ρs)sds

2 . The desired conclusion fol-
lows. �

In the proof of Theorem 4.4 we used the following results borrowed from [22].

Proposition 4.6. Let L = Δ − ∇U · ∇, on Rn, and denote by (Pt)t≥0 its associated 
semi-group. Assume that U : Rn → R is smooth enough and satisfies 

∫
e−U = 1 so that 

μ(dx) = e−U(x)dx is a probability measure on Rn and Hess(U) ≥ ρ (as a matrix) for some 

ρ ∈ R. Let W : R → R+ be such that c := max
(
2‖|∇W |‖∞, supx:W (x) �=0

(
LW
W − ρ

)
−

)
<

∞. Then, for all f non negative

|∇Ptf | + WPtf ≤ e(c−ρ)tPt (|∇f | + Wf) .

Appendix A

Here we discuss the following formula

∂tP
(t)
t f = Ltf +

t∫ (
eτL(t)L̇te

(t−τ)L(t)f
)
dτ.
0
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Note that

∂tP
(t)
t f = lim

s→0

1
s

(
P

(t+s)
t+s f − P

(t)
t f

)
= lim

s→0

1
s

(
P

(t+s)
t f − P

(t)
t f

)
+ lim

s→0

1
s

(
P

(t+s)
t+s f − P

(t+s)
t f

)
For the first term on the right hand side we have

P
(t+s)
t f − P

(t)
t f =

t∫
0

(
eτL(t+s)

(
L(t+s) − L(t)

)
e(t−τ)L(t)f

)
dτ

provided e(t−τ)L(t)f is in the domain of L(t+s) − L(t) for every sufficiently small s and 
all τ ∈ [0, t]. Hence if the limit

lim
s→0

1
s

(
L(t+s) − L(t)

)
e(t−τ)L(t)f ≡ L̇te

(t−τ)L(t)f

is well defined, we have

lim
s→0

1
s

(
P

(t+s)
t f − P

(t)
t f

)
=

t∫
0

(
eτL(t)L̇te

(t−τ)L(t)f
)
dτ

On the other hand

P
(t+s)
t+s f − P

(t+s)
t f = L(t+s)

s∫
0

e(t+τ)L(t+s)fdτ

is well defined for C0-semigroup and for f in the domain of Ltwe have

lim
s→0

1
s

(
P

(t+s)
t+s f − P

(t+s)
t f

)
= Ltf.

Combining all the above yields

∂tP
(t)
t f = Ltf +

t∫
0

(
eτL(t)L̇te

(t−τ)L(t)f
)
dτ.
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