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abstract:

This paper is concerned with path techniques for quantitative analysis of the logarithmic

Sobolev constant on a countable set. We present new upper bounds of the logarithmic

Sobolev constant that generalize those given by Sinclair in [18] in the case of the

spectral gap constant involving path combinatorics. Some examples of applications are

given. We compare our bounds to the Hardy constant in the particular case of birth

and death processes.

1. Introduction

Let X be a countable set and K(x; y) a transition matrix for an irreducible chain. This

means that for all x; y 2 X � X , K(x; y) � 0 and for x 6= y, there exists a sequence

x

0

; : : : ; x

k

such that K(x

i

; x

i+1

) > 0, i = 0; : : : ; k � 1, x

0

= x and x

k

= y. We assume

throughout that K is reversible with respect to the probability measure �, that is, for

all x; y 2 X �X , it satis�es the detailed balance condition

�(x)K(x; y) = �(y)K(y; x) :

De�ne the matrix L as L(x; y) = K(x; y) if x 6= y and L(x; x) = �

P

y2X

K(x; y).

Then, L is the generator of a process (in continuous time) that acts in particular on the

functions f null excepted on a �nite numbers of points in X as

L(f)(x) =

X

y2X

K(x; y)(f(y) � f(x)); for all x 2 X :

By irreductibility, the law of the position of the process converges to the equilibrium

state � as t goes to in�nity.

By irredutibility, � charges all the points, i.e. for all x 2 X , �(x) > 0.



2 Cyril Roberto

Now, for any function f 2 L

2

(�), we de�ne the Dirichlet form of f associated to K

and � by

E

�;K

(f; f) :=

1

2

X

x;y2X�X

�(x)K(x; y)(f(y) � f(x))

2

:

We also de�ne the variance of f ,

Var

�

(f) = �((f � �(f))

2

) ;

and the entropy of f

2

,

Ent

�

�

f

2

�

:=

X

x2X

f

2

(x) ln

f

2

(x)

P

x2X

f

2

(x)�(x)

�(x)

In order to study the behavior of the process, functional inequalities play a crucial role.

We have in particular in mind the Poincar

�

e and the logarithmic Sobolev inequalities:

we say that � satis�es a Poincar

�

e inequality (or spectral gap inequality) if there exists

a constant � > 0 such that for all f 2 L

2

(�),

Var

�

(f) � �E

�;K

(f; f) : (1)

We say that � satis�es a logarithmic Sobolev inequality if there exists a constant � > 0

such that for all f 2 L

2

(�),

Ent

�

�

f

2

�

� �E

�;K

(f; f ) : (2)

The best ergodic constants �

�1

and � such that (1) and (2) hold are called respectively

the spectral gap and the logarithmic Sobolev constant of �. Both are of interest. They

give in particular the speed of convergence of the chain to equilibrium and thus answer the

question: starting from an arbitrary distribution, how many time must we wait to be near

the equilibrium?We refer the reader principally to [5], [4], [17] and the references therein

for details on this convergence. There are also applications to theorical computation

science, see for instance [19] or [18].

In our context, we mention that it is not interesting to consider a Markov kernel,

i.e. satisfying for all x 2 X ,

P

y2X

K(x; y) = 1. First because the logarithmic Sobolev

inequality and the poincar

�

e inequality considered above correspond to continuous time

and not to discrete time (for discrete time, we would have considered the multiplicative

symmetrized kernel KK

�

instead of K). The second reason is that a bounded kernel is

often (and always on an in�nite set as we will see after) an obstacle to the existence of

the logarithmic Sobolev constant.

The spectral gap and the logarithmic Sobolev constants give di�erent bounds on the

speed of convergence and it is often convenient to control both of them. To study the

spectral gap, a lot of techniques can be used, from analytic tools to geometric tools like

the Cheeger inequality (see [3] and [9]), or also paths combinatorics. Those one have

been introduced by Jerrum and Sinclair [7] in theorical computation science in their

study of a stochastic algorithm that counts perfect matchings in a graph. One of the

initial idea was to control the Cheeger constant. The method was further developed

by Diaconis and Stroock [5], Fill [6] and Sinclair [18] on �nite sets. Rosenthal
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generalized them to countable sets (and even continuous sets) in [16]. In [11] the authors

adapt the paths techniques on the inequalities of Mathieu (see [10]).

This present paper develops the same kind of paths combinatorics to bound the loga-

rithmic Sobolev constant. To that aim, we make use of an interesting idea of Bobkov

and G

�

otze [2] to reduce the study of the logarithmic Sobolev inequality (2) to an

inequality of type Poincar

�

e that allows us to generalize Sinclair's bounds.

We now present one of our results to illustrate our purpose. Look at X as a graph

whose vertices are the points of X and edges are all couples e = (x; y) 2 X �X such that

Q(e) = �(x)K(x; y) > 0. Set E for the set of all edges. Then, by irreductibility, we can

construct a path 

xy

from any x to any y, that is, a sequence of vertices  = (x

0

; : : : ; x

k

)

such that (x

i

; x

i+1

) is an edge, i = 1 : : :k � 1, x

0

= x and x

k

= y. The length of such a

path  is jj = k. Then, we have the following result.

Theorem. Let K be an irreductible chain with reversible probability measure � on a

countable set X . For all (x; y) 2 X � X , x 6= y, choose one path 

xy

without repeated

edges (i.e. for all i 6= j, e

i

6= e

j

). Assume that for all x 2 X , �(x) � 1=2. Then, the

logarithmic Sobolev constant � de�ned in (2) satis�es � � 20A, where

A := sup

e2E

8

<

:

1

Q(e)

X

x;y:

xy

3e

j

xy

j�(x)�(y) ln

1

�(y)

9

=

;

:

In the sequel, we will often write sup

e2E

even when jEj <1. The latter theorem corre-

sponds to Theorem 5 of [18].

Next we extend the constant A through family of weight functions. A weight function

is simply a positive function on the set of edges, w : E! (0;1). The bound of Theorem

1 may then be improved (see Theorem 3.2 below) replacing A by

A

w

:= sup

e2E

8

<

:

w(e)

Q(e)

X



xy

3e

j

xy

j

w

�(x)�(y) ln

1

�(y)

9

=

;

where j

xy

j

w

=

P

e2

xy

1=w(e). Note that if w � 1 then A

w

= A. One of the advantages

of A and A

w

is that they are easily computable. Several examples will be discussed.

The last generalization uses the notion of ow introduced by Sinclair in [18], see

Theorem 3.3 at the end of section 3.

We �nish our discussion by some comparison result between path techniques and

Hardy's inequalities in the particular case of a birth and death process on N. We

exhibit a special weight function such that the Sinclair constant

A

w

S:G

:= sup

e2E

8

<

:

w(e)

Q(e)

X



xy

3e

j

xy

j

w

�(x)�(y)

9

=

;

corresponding to A

w

introduced above is optimal with respect to the spectral gap. More

precisely, we prove that for this special weight function w,

A

w

S:G

8

� � � A

w

S:G

:
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The same weight function gives also a result on the logarithmic Sobolev constant, but

(unfortunately) not so sharp.

We must notice that on an in�nite set X , if the chain is given by a bounded transition

matrixK, i.e. if there exists a constant, say 1, such that for all x 2 X ,

P

y2X

K(x; y) � 1,

then, the logarithmic Sobolev constant � is certainly in�nite (see [12]). To see that

claim, it is enough to consider a sequence of test functions 1I

A

n

in the logarithmic

Sobolev inequality (2) with �(A

n

) ! 0 as n goes to in�nity. This remark shows that

to study the logarithmic Sobolev constant on an in�nite set, we must consider an un-

bounded transition matrix. All our examples on in�nite sets are built at the light of this

remark.

At last, we mention that the results of this work hold true with a transition matrix for

an irreductible chain with invariant (not necessarily reversible) measure �. In that case,

it is enough to consider

1

2

(�(x)K(x; y) +�(y)K(y; x)) instead of �(x)K(x; y) in all what

follow.

2. Logarithmic Sobolev inequality as Poincar�e type inequality

This section reduces the study of the logarithmic Sobolev inequality to the study of

an inequality of Poincar

�

e type. This reduction is the starting point of our geometric

approach of the logarithmic Sobolev constant in term of path combinatorics. The main

idea comes from [2].

Let K be an irreductible chain with reversible probability measure � on a countable set

X . In [2], the authors introduce the quantity L(f) := sup

t2R

Ent

�

(f+t)

2

for all functions

f 2 L

2

(�). Then, by translation invariance of the Dirichlet form, it is equivalent to

consider, for all f 2 L

2

(�), the logarithmic Sobolev inequality (2)

Ent

�

�

f

2

�

� �E

�;K

(f; f )

or the inequality

L(f) � �E

�;K

(f; f) :

One of the features of the previous elementary remark is that for all functions f 2 L

2

(�),

the quantity L(f) is linked to an Orlicz norm of f . Let us present this link after some

notations and useful facts on Orlicz norms.

Let (
; �) be a probability space and � : R! [0;1) a Young function, that is an even

convex function with �(x) > 0 for all x > 0 and �(0) = 0. Note that �

�1

: [0;1) !

[0;1) exists. The Orlicz space associated to � is

L

�

(
; �) :=

�

f : 
! R measurable : 9� 6= 0;

Z




�(�f)d� <1

�

:

On L

�

(
; �) we can de�ne two equivalent norms de�ning a Banach space structure,

namely:

kfk

�

:= inf

�

� > 0 :

Z




�

�

f

�

�

d� � 1

�
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and

N

�

(f) := sup

g2G

�

�

Z




jf jgd�

�

:

Here, G

�

is a suitable family of non negative measurable functions g on 
 (see [15] or

[1, chapter 6] for more details on this family). In particular, in [15] we learn that for all

f 2 L

�

(
; �), N

�

(f) � kfk

�

� 2N

�

(f).

De�ne now �(x) = jxj ln(1 + jxj). Clearly � is a Young function. Miclo in [14,

proposition 11] gives the following result: for all functions f

2

2 L

�

(X ; �),

2

3

inf

t2R





(f � t)

2





�

� L(f) �

5

2

inf

t2R





(f � t)

2





�

:

Hence, for all x 2 X , we have

L(f) �

5

2





(f � f(x))

2





�

:

Now observe that for all functions h such that h

2

2 L

�

(X ; �),





h

2





�

� 2N

�

(h

2

). Thus,

by de�nition of the norm N

�

,

L(f) � 5 sup

g2G

�

X

y2X

jf(y) � f(x)j

2

�(y)g(y)

� 5

X

y2X

jf(y) � f(x)j

2

�

sup

g2G

�

�(y)g(y)

�

� 5

X

y2X

jf(y) � f(x)j

2

N

�

(1I

fyg

)

for a suitable familyG

�

of non negative measurable functions g onX . Then, an integration

over all x 2 X gives

L(f) =

X

x2X

L(f)�(x) � 5

X

x;y2X�X

jf(y) � f(x)j

2

�(x)N

�

(1I

fyg

) :

The latter inequality will be the starting point of our study that we summarize in the

next statement.

Lemma 2.1. Let � be the best constant such that for all f 2 L

2

(�) on X

X

x;y2X�X

jf(y) � f(x)j

2

�(x)N

�

(1I

fyg

) � �E

�;K

(f; f) :

Then, if � is �nite, the logarithmic Sobolev constant � de�ned in (2) satis�es

� � 5� :

Remark. The inequality in the lemma above is of Poincar

�

e type. Indeed, the usual

Poincar

�

e inequality states that for all functions f 2 L

2

(�),

Var

�

(f) � �E

�;K

(f; f)
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for some constant � > 0. As it is classical, we can write

Var

�

(f) =

1

2

X

x;y2X�X

jf(y) � f(x)j

2

�(x)�(y) :

Remark. It is well known (see [1, chapter 1] for instance) that the entropy has the

following variational caracterization: for all f 2 L

2

(�),

Ent

�

�

f

2

�

= sup

g:�(e

g

)�1

�(f

2

g) :

Here, the supremum is taken over a set of functions g possibly negative. On the con-

trary, in Bobkov and G

�

otze approach L(f) is linked, up to universal constants, to

sup

g2G

�

�(f

2

g) where g is non negative. The main feature of the non negativity of g is

that it keeps the order of the inequalities.

3. Geometric bounds on the logarithmic Sobolev constant

From Lemma 2.1, we will be able to adapt the proof of Sinclair [18] (see also [17]) on

geometric bounds for the spectral gap to the logarithmic Sobolev constant. To that aim

we introduce some notations.

Our setting is that one de�ned in introduction: the state space X is viewed as a graph

with vertices the points of X and with edges all couples e = (x; y), x 6= y, such that

�(x)K(x; y) > 0. We write E for the set of all edges. Then, a path from x to y is a

sequence of vertices  = (x

0

; : : : ; x

k

) such that (x

i

; x

i+1

) is an edge, i = 1 : : :k � 1,

x

0

= x and x

k

= y, and jj = k is the length of the path. Let � be the set of all paths

 which have no repeated edges (i.e. for all i 6= j, e

i

6= e

j

) and for all (x; y) 2 X � X ,

let �

xy

be the set of all paths 

xy

2 � starting at x and ending at y. By irreductibility

of K, for all (x; y) 2 X �X , �

xy

6= ;.

It is also convenient to introduce for any edge e = (x; y) 2 E and any function f on

X , df(e) = f(y) � f(x). De�ne now Q(e) = �(x)K(x; y) and observe that

E

�;K

(f; f ) =

1

2

X

e2E

jdf(e)j

2

Q(e) :

We start with the simplest result on path combinatorics.

Theorem 3.1. Let K be an irreductible chain with reversible probability measure � on

a countable set X . For all (x; y) 2 X �X , x 6= y, choose one path 

xy

in �

xy

. Then, the

logarithmic Sobolev constant � de�ned in (2) satis�es � � 10A

�

, where

A

�

:= sup

e2E

8

<

:

1

Q(e)

X

x;y:

xy

3e

j

xy

j�(x)N

�

(1I

fyg

)

9

=

;

:

Proof. We will make use of Lemma 2.1. For all x; y 2 X � X , write

f(y) � f(x) =

X

e2

xy

df(e) :
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By the Cauchy-Schwarz inequality,

jf(y) � f(x)j

2

� j

xy

j

X

e2

xy

jdf(e)j

2

:

Thus,

X

x;y2X�X

jf(y) � f(x)j

2

�(x)N

�

(1I

fyg

)

�

X

x;y2X�X

j

xy

j

X

e2

xy

jdf(e)j

2

�(x)N

�

(1I

fyg

)

�

X

e2E

8

<

:

1

Q(e)

X

x;y:

xy

3e

j

xy

j�(x)N

�

(1I

fyg

)

9

=

;

jdf(e)j

2

Q(e)

� 2A

�

E

�;K

(f; f ) :

Applying Lemma 2.1 achieves the proof.

The constant A

�

of Theorem 3.1 must be compared to the one given by Sinclair in

[18] in the case of the Poincar

�

e inequality:

A

S:G:

:= sup

e2E

8

<

:

1

Q(e)

X

x;y:

xy

3e

j

xy

j�(x)�(y)

9

=

;

:

In our case, one can ask how to compute the spurious term N

�

(1I

fyg

) (instead of �(y))?

Indeed, we have the following result:

Corollary 3.1. Let K be an irreductible chain with reversible probability measure � on

a countable set X . For all (x; y) 2 X � X , x 6= y, choose one path 

xy

in �

xy

. Assume

that for all x 2 X , �(x) � 1=2. Then, the logarithmic Sobolev constant � de�ned in

(2) satis�es � � 20A, where

A := sup

e2E

8

<

:

1

Q(e)

X

x;y:

xy

3e

j

xy

j�(x)�(y) ln

1

�(y)

9

=

;

:

Proof. One of the Bobkov and G

�

otze results [2, Lemma 5.4] states that for all t � 2,

1

2

t

ln t

� �

�1

(t) � 2

t

ln t

: (3)

(where we recall that �(t) = jtj ln(1+ jtj)). Thus, by de�nition of k�k

�

, it is easy to check

that for all y 2 X ,

N

�

(1I

fyg

) �





1I

fyg





�

=

1

�

�1

�

1

�(y)

�

� 2�(y) ln

1

�(y)

: (4)

Applying Theorem 3.1 concludes the proof.
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The constant A of corollary 3.1 can now be compared to A

S:G:

introduced above.

Obviously A

S:G:

� A= ln 2.

Remark. In practice, the hypothesis �(x) � 1=2 is often true and thus, Corollary

3.1 can be applied in many cases. However, we can be more precise. Indeed, De�ne

�

�

:= sup

x2X

�(x). It is not di�cult to check that we can �nd a function 	 such that

for all y 2 X ,

N

�

(1I

fyg

) �

1

�

�1

�

1

�(y)

�

� 	(�

�

)�(y) ln

1

�(y)

:

Going back the proof of Corollary 3.1 yields � � 10	(�

�

)A. Note that 	(t) goes to

in�nity as t goes to 1.

There is an other way to compute N

�

(1I

fyg

). Indeed, there exists a universal constant

c such that for any 0 � �(y) � 1,

N

�

(1I

fyg

) �

1

�

�1

�

1

�(y)

�

� c�(y) ln

�

2 _

1

�(y)

�

:

Then, de�ne A := sup

e2E

8

<

:

1

Q(e)

X

x;y:

xy

3e

j

xy

j�(x)�(y) ln

�

2 _

1

�(y)

�

9

=

;

. Going back the

proof of Corollary 3.1 yields � � 5cA.

Example 1 (the simple random walk). We start with a simple example : let X =

f�N; : : : ; 0; : : : ; Ng, K(x + 1; x) = K(x; x+ 1) = 1=2 for all �N � x < N , K(x; y) = 0

if jx� yj 6= 1. K is reversible with respect to the uniform measure � � 1=(2N +1) on X .

The choice of a path 

xy

from any x to any y is imposed by the model. Let e 2 E be an

edge. Clearly, e = (n; n+ 1) for some n 2 X (or (n+1,n)), and Q(e) = 1=2(2N + 1). As

j

xy

j � 2N + 1, we certainly have

A �

2(2N + 1)

2

(2N + 1)

2

ln(2N + 1)max

e

8

<

:

X

x;y:

xy

3e

1

9

=

;

� 2 ln(2N + 1) max

�N�n<N

8

<

:

X

x�n<y

1

9

=

;

� 2 ln(2N + 1) max

�N�n<N

(n+ N + 1)(N � n)

� 2N (N + 1) ln(2N + 1) :

By Corollary 3.1 we can conclude that the logarithmic Sobolev constant satis�es � �

40N (N + 1) ln(2N + 1). It is well known that the logarithmic Sobolev constant � is

actually of order O(N

2

) (to see that claim, we can use Hardy's inequalities, see Section

4).

Example 2 (the hypercube Z

N

2

). We follow [17]. Let X = f0; 1g

N

, � � 1=2

N

and
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K(x; y) = 0 unless jx � yj = 1 in which case K(x; y) = 1=N . De�ne a path from x to

y changing the coordinates of x to that one of y from the left to the right. Here, for all

edges e 2 E, Q(e) = 1=(N2

N

) and any path is at most of length N . Hence

A � N

3

1

2

N

ln 2max

e2E

8

<

:

X

x;y:

xy

3e

1

9

=

;

�

N

3

ln 2

2

N

max

e2E

# f(x; y) : 

xy

3 eg :

Let e = (u; v) be an edge of E. By de�nition of the paths, there exists i such that u

i

6= v

i

.

Then we have

x = (x

1

; : : : ; x

i�1

; u

i

; u

i+1

; : : : ; u

N

)

y = (v

1

; : : : ; v

i�1

; v

i

; y

i+1

; : : : ; y

N

) :

It follows that i� 1 coordinates of x and N � i coordinates of y are free, this yields that

max

e2E

# f(x; y) : 

xy

3 eg = 2

N�1

:

Therefore

A �

ln 2

2

N

3

:

Corollary 3.1 allows us to conclude that the logarithmic Sobolev constant � is bounded

from above by 10 ln2N

3

. It is known that the right order of the logarithmic Sobolev

constant � is O(N ). However, note the non trivial cancellation of the exponential.

Example 3 (a graph). It is interesting to study the order of magnitude of A on a

graph. Let X = G be a graph and consider the random walk on this graph. We assume

that G is connected and simple, that is, G has no loops or multiple edges. The random

walk starts at one point and choose a neighbor vertex with uniform probability. Thus, if

d(x) is the degree of x (i.e. the number of neighbors), we have

K(x; y) =

�

1=d(x) if x � y

0 otherwise .

Here, x � y means that x and y are neighbors in G. The chain is reversible with respect to

the measure �(x) = d(x)=(2jEj). Assume that for all x 2 G, �(x) � 1=2. Since the graph

is connected, the chain is irreductible. For any e 2 E, Q(e) = 1=(2jEj). Then, consider

any choice of geodesic path from any x to any y and de�ne d

�

:= sup d(x), d

�

:= inf d(x),



�

as the maximum number of edges in any path and b := sup

e

#f : e 2 g. Corollary

3.1 gives

� � 10

(d

�

)

2



�

b

jEj

ln

2jEj

d

�

:

Note that b can be interpreted as a measure of bottlenecks and 

�

as an upper bound of

the diameter of G.

As an application, consider the full binary tree of depth N (see [5, example 2.3]).

Diaconis and Stroock compute that d

�

= 3, d

�

= 2, 

�

= 2N , jEj = 2

N+1

� 2 and
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b = (2

N

� 1)2

N

. Thus, � � 90N

2

2

N

. In [5], we learn that the spectral gap (and so the

logarithmic Sobolev constant) of the tree is of order greater that O(2

N

). Hence, the

bound is reasonable thanks to the exponential term.

Example 4 (a birth and death process on N). Let X = N, the measure � such that

�(n) = Z

�1

exp(�n(n + 1)=2) with the normalization constant Z =

P

x2N

exp(�n(n +

1)=2) (note that Z � e), K(n; n+ 1) = 1 for all n 2N, K(n; n� 1) = e

n

for all n 2N

�

and K(x; y) = 0 if jx� yj 6= 1. The choice of a path from any x to any y is forced by the

model.

Fix n 2N and consider e = (n; n+ 1) and e

0

= (n + 1; n). Clearly

X

x;y:

xy

3e

j

xy

j�(x)�(y) ln

1

�(y)

�

X

x;y:

xy

3e

0

j

xy

j�(x)�(y) ln

1

�(y)

:

Thus, it is enough to study for each n 2N

X

x�n<y

j

xy

j�(x)�(y) ln

1

�(y)

�

X

x�n

�(x)

X

y�n+1

yZ

�1

e

�

y(y+1)

2

�

y(y + 1)

2

+ lnZ

�

�

X

y�n+1

y

2

(y + 1)Z

�1

e

�

y(y+1)

2

:

Here, we simply used that

P

x�n

�(x) � 1 and lnZ � 1 �

y

2

(y+1)

2

. Now it is not di�cult

to check that

X

y�n+1

y

2

(y + 1)Z

�1

e

�

y(y+1)

2

� 2(n+ 1)

2

(n+ 2)Z

�1

e

�

(n+1)(n+2)

2

:

As Q((n; n+ 1)) = �(n), it follows that

A � sup

n2N

2(n+ 1)

2

(n + 2)e

�

1

2

((n+1)(n+2)�n(n+1))

� sup

n2N

2(n+ 1)

2

(n + 2)e

�n�1

<1 :

In the case of an in�nite set, one of the important point is already to know if whether

or not � is �nite. Here, Corollary 3.1 yields � < 1. Note that a direct application of

Hardy's inequality (see section 4) also gives this result.

Example 5 (an in�nite star). Let X = N and choose a sequence of non negative

numbers (w

i

)

i2N

such that

P

1

i=1

w

i

= 1=2 and S := (1=2) +

P

1

i=1

w

i

ln(1=w

i

) < 1.

Then, de�ne the chain on X by its transition matrixK by K(i; 0) = 1=(2w

i

), K(0; i) = 1

for all i � 1 and K(i; j) = 0 otherwise. This chain is reversible with respect to the

probability measure �(0) = 1=2 and �(i) = w

i

for all i � 1.

This example is presented in [16] in the case of aMarkov chain with K(0; i) = w

i

, in

such a way that K is a transition probability. But, as mentioned in the introduction, for

a markov chain on a in�nite set, the logarithmic Sobolev constant is certainly in�nite.
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Note that a �nite version of \the star" is discussed in [5, Remark 2.5] with equal

weights.

The graph of X can be drawned as a \star" with 0 at the center and with all positive

integers around, connected to 0.

The choice of path from i to j, i 6= j, i; j � 1 is forced: 

ij

= ((i; 0); (0; j)), while



0i

= (0; i) and 

i0

= (i; 0). We certainly have j

xy

j � 2 for all x; y 2 X � X . Now, let

e = (i; 0) for some i � 1, as Q(e) = 1=2, it follows that

1

Q(e)

X

x;y:

xy

3e

j

xy

j�(x)�(y) ln

1

�(y)

� 4�(i)

X

j 6=i

�(j) ln

1

�(j)

= 4w

i

�

S �w

i

ln

1

w

i

�

� 2S :

On the other hand, if e = (0; i) for i � 1, Q(e) = 1=2 and

1

Q(e)

X

x;y:

xy

3e

j

xy

j�(x)�(y) ln

1

�(y)

� 4�(i) ln

1

�(i)

X

j 6=i

�(j)

� 4w

i

ln

1

w

i

(1�w

i

)

� 2 :

Hence, Corollary 3.1 yields that the logarithmic Sobolev constant � de�ned in (2)

satis�es � � 40(S _ 1).

Now, we turn to more sophisticated geometric bounds. We introduce the notion of

weight function, that is a positive function on the set of edges, w : E ! (0;1) and we

de�ne its associated w-length of a path  2 � by jj

w

:=

P

e2

1

w(e)

.

Theorem 3.2 (weight function). Let K be an irreductible chain with reversible prob-

ability measure � on a countable set X . For all (x; y) 2 X�X , x 6= y, choose one path 

xy

in �

xy

. Then, for any weight function w, the logarithmic Sobolev constant � de�ned

in (2) satis�es � � 10A

w

�

, where

A

w

�

:= sup

e2E

8

<

:

w(e)

Q(e)

X

x;y:

xy

3e

j

xy

j

w

�(x)N

�

(1I

fyg

)

9

=

;

:

Proof. Fix a weight function w. The proof starts as in the proof of Theorem 3.1 but

introduce the weight function w in the Cauchy-Schwarz inequality to get

jf(y) � f(x)j

2

=

0

@

X

e2

xy

jdf(e)j

1

A

2

�

0

@

X

e2

xy

1

w(e)

1

A

0

@

X

e2

xy

jdf(e)j

2

w(e)

1

A

:

Then, follow step by step the proof of Theorem 3.1 to conclude.
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Taking back the proof of Corollary 3.1 gives the following result:

Corollary 3.2 (weight function). Let K be an irreductible chain with reversible

probability measure � on a countable set X . For all (x; y) 2 X � X , x 6= y, choose one

path 

xy

in �

xy

. Assume that for all x 2 X , �(x) � 1=2. Then, for any weight function

w, the logarithmic Sobolev constant � de�ned in (2) satis�es � � 20A

w

, where

A

w

:= sup

e2E

8

<

:

w(e)

Q(e)

X

x;y:

xy

3e

j

xy

j

w

�(x)�(y) ln

1

�(y)

9

=

;

:

Theorem 3.2 (resp. Corollary 3.2) is clearly a re�nement of Theorem 3.1 (resp. Corol-

lary 3.1). Indeed, it is enough to consider the trivial weight function w � 1.

In [5], the authors study the spectral gap by means of the equivalent constant of A

w

with the particular choice of weight function w : e 7! Q(e).

We now apply Corollary 3.2 to an example where a nice choice of weight function

improves considerably the bound A of Corollary 3.1.

Example 6 (birth and death process on f0; : : : ; Ng). On X = f0; : : : ; Ng, de�ne

�(n) = Z

�1

e

�n

with Z =

P

N

n=0

e

�n

, K(n; n+ 1) = 1 and K(n+ 1; n) = e for all 0 � n

and K(x; y) = 0 if jx� yj 6= 1. The choice of a path from any x to any y in X is forced

by the model.

Consider the following weight functionw : e = (n; n+1) 7!

p

�(n) and e = (n+1; n) 7!

p

�(n). Clearly,

A

w

� sup

0�n<N

8

<

:

w((n; n+ 1))

Q((n; n+ 1))

X

x�n<y

j

xy

j

w

�(x)�(y) ln

1

�(y)

9

=

;

_

sup

0�n<N

8

<

:

w((n+ 1; n))

Q((n+ 1; n))

X

y�n<x

j

xy

j

w

�(x)�(y) ln

1

�(y)

9

=

;

:

Fix 0 � n, x � n and y � n+1. For notational convenience, k denotes below a numerical

constant possibly changing from line to line. First, remark that

j

xy

j

w

=

y

X

i=x

1

p

�(i)

=

p

Z

y

X

i=x

e

i=2

� k

p

Ze

y=2

= k

1

p

�(y)

:

Then, an easy computation gives

X

x�n<y

j

xy

j

w

�(x)�(y) ln

1

�(y)

� k

X

y�n+1

p

�(y) ln

1

�(y)

� k

1

p

Z

X

y�n+1

ye

�y=2

� k

1

p

Z

(n + 1)e

�(n+1)=2

= k(n+ 1)

p

�(n+ 1) :
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As Q((n; n+ 1)) = �(n) and w((n; n+ 1)) =

p

�(n), it follows that

w((n; n+ 1))

Q((n; n+ 1))

X

x�n<y

j

xy

j

w

�(x)�(y) ln

1

�(y)

� k(n+ 1)

s

�(n+ 1)

�(n)

� k(n+ 1) :

On the other hand, the same kind of calculus gives

w((n+ 1; n))

Q((n+ 1; n))

X

y�n<x

j

xy

j

w

�(x)�(y) ln

1

�(y)

� k

1

p

�(n)

X

y�n<x

p

�(x)�(y) ln

1

�(y)

� k

(n + 1)

p

�(n)

X

x�n+1

p

�(x)

� k(n + 1)

s

�(n+ 1)

�(n)

� k(n + 1) :

Here, we used j

xy

j

w

� k=

p

�(x) for all x � y and the trivial bound �(y) ln

1

�(y)

� 1.

We can now conclude that A

w

� kN and thus by Corollary 3.2 that � � kN . It is

known that the logarithmic Sobolev constant � is of order O(N ) (as we can see using

Hardy's inequalities, see section 4). Note that the same kind of calculus as previously

would have given A � kN

2

(where A is de�ned in Corollary 3.1). This example shows

the e�ectiveness of the weight functions.

Our next step in complexifying geometric bounds is the notion of ow. In previous

theorems, we used exactly one path from any x to any y in X . We now consider more

than one path. Introduce a ow 	 on the set of paths �, that is, a non negative function

	 : �! [0;1) satisfying for all x; y 2 X � X , x 6= y,

X

2�

xy

	() = �(x)�(y) ln

1

�(y)

:

A ow can be viewed as a probability measure on the set of paths �

xy

starting at x and

ending at y, simply because

P

2�

xy

	()=�(x)�(y) ln

1

�(y)

= 1.

Theorem 3.3 (ow function). Let K be an irreductible chain with reversible prob-

ability measure � on a countable set X . Assume that for all x 2 X , �(x) � 1=2. Then,

for any ow function 	, the logarithmic Sobolev constant � de�ned in (2) satis�es

� � 20A

	

, where

A

	

:= sup

e2E

(

1

Q(e)

X

:3e

jj	()

)

:
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Proof. Fix a ow 	. For any x; y 2 X � X and any  2 �

xy

, we have

jf(y) � f(x)j

2

� jj

X

e2

jdf(e)j

2

:

Thus, by de�nition of the ow,

jf(y) � f(x)j

2

�(x)�(y) ln

1

�(y)

�

X

2�

xy

jj

X

e2

jdf(e)j

2

	() :

Then, as in the proof of Theorem 3.1, we get

X

x;y2X�X

jf(y) � f(x)j

2

�(x)�(y) ln

1

�(y)

�

X

e2

(

1

Q(e)

X

:3e

jj	()

)

jdf(e)j

2

Q(e)

� 2A

	

E

�;K

(f; f ) :

Now, thanks to inequality (4),

X

x;y2X�X

jf(y) � f(x)j

2

�(x)N

�

(1I

fyg

) � 4

X

x;y2X�X

jf(y)� f(x)j

2

�(x)�(y) ln

1

�(y)

Applying Lemma 2.1 achieves the proof.

Remark. If we de�ne a ow as a function satisfying for x; y 2 X �X ,

X

2�

xy

	() = �(x)N

�

(1I

fyg

) ;

the proof above gives � � 10A

	

.

Remark 1. If we choose one path 

xy

for all (x; y) 2 X �X , x 6= y and let 	(

xy

) =

�(x)�(y) ln

1

�(y)

and 	() = 0 for all  2 �

xy

nf

xy

g, then 	 is a trivial ow and Theorem

3.3 is Corollary 3.1. This is for example the case on a graph where the choice of any path

is forced. In that case, the notion of ow does not play any role.

Example 7 (on groups). To illustrate the notion of ow, we give a result relative to

the action of a group on a �nite set X . This is a direct adaptation of Saloff-Coste

result [17, corollary 3.6].

Let G be a group that acts on a �nite set X such that for all g 2 G, all x 2 X ,

�(gx) = �(x); Q(gx; gy) = Q(x; y) :

Hence, if e = (u; v) 2 E, then ge = (gu; gv) 2 E. Let E =

S

k

1

E

i

be the partition of E

into transitive classes for the action of G (this means that for all (e

i

; e

0

i

) 2 E

i

�E

i

, there

exists g 2 G such that ge

i

= e

0

i

and for all (e

i

; e

j

) 2 E

i

�E

j

, i 6= j, we cannot �nd g 2 G

such that e

i

= ge

j

). Denote Q(i) = Q(e

i

) for e

i

2 E

i

and d(x; y) the graph distance

between x and y. Consider the set G

xy

of all geodesic paths from x to y and de�ne the

ow 	 by

	() =

(

�

�(x)�(y) ln

1

�(y)

�

=#G

xy

if  2 G

xy

0 otherwise :
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Then, a direct adaptation of the proof of Corollary 3.6 of [17] (we omit the proof) yields

that � � 20A, where

A := max

1�i�k

(

1

jE

i

jQ(i)

X

x;y

d(x; y)

2

�(x)�(y) ln

1

�(y)

)

:

If we look at the hypercube (see Example 2), Z

N

2

acts on itself transitively, there are

N2

N

oriented edges and k = 1. Hence an easy calculus shows that � � 20 ln2N

3

. Note

that we loose a factor 2 with respect to Example 2 using Corollary 3.1.

We �nish this section with a re�nement on geometric bounds that have been suggested

to us by Laurent Miclo. The bound mix the notions of ow and of weight functions and

the weight functions depend not only of the edges but also of the paths. This bound is

certainly interesting in order to study the optimality of paths method.

We give the result without any proof because it a direct easy adaptation of the proofs

of Theorems 3.2 and 3.3.

We introduce the notion of path-weighted function, that is a set of positive functions

on the set of edges, indexed by the family of paths �, w



: E ! (0;1). Also, we de�ne

its associated w



-length of the path  by jj

w



=

P

e2

1

w



(e)

.

Then, we have the following result.

Theorem 3.4 (path-weighted and ow functions). Let K be an irreductible chain

with reversible probability measure � on a countable set X . Assume that for all x 2 X ,

�(x) � 1=2. Then, for any ow function 	 and any path-weighted function (w



)



, the

logarithmic Sobolev constant � de�ned in (2) satis�es � � 20A

	;(w



)



, where

A

	;(w



)



:= sup

e2E

(

1

Q(e)

X

:3e

jj

w

w



(e)	()

)

:

Remark. If we consider the trivial ow function introduced in Remark 1, then we have

� � 20A

(w



)



where

A

(w



)



:= sup

e2E

8

<

:

1

Q(e)

X

x;y:

xy

3e

j

xy

j

w



xy

w



xy

(e)�(x)�(y) ln

1

�(y)

9

=

;

:

4. Comparison results

In this section, we compare di�erent bounds on spectral gap and logarithmic Sobolev

constant. We start by the comparison of the Sinclair path bound to the Hardy con-

stant. Then, we turn to the same kind of comparison with A

w

. In both cases, we restrict

our study to the birth and death chains. At last, we compare our bound to a result of

Diaconis and Saloff-Coste result [4].

We mention that this section arised from various interesting discussions with Laurent

Miclo that we warmly acknowledge for his hints.
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4.1. On Poincar�e inequality

Our setting is the following: let X = N and K be a birth and death chain on X , that

is, K(x; y) = 0 unless jx� yj = 1. We assume that K is reversible with respect to some

probability measure �. For technical reasons, we make the assumption that �(0) = 1=2

in such a way that 0 is a median of �. Note that there is only one way to construct a

path from any x to any y in X .

From [13], if

B

S:G:

:= sup

n�1

n�1

X

i=1

1

�(i)K(i; i + 1)

1

X

j=n

�(j) ;

we know that the spectral gap �

�1

de�ned in (1) satis�es

1

2

B

S:G:

� � � 4B

S:G:

: (5)

On the other hand, Sinclair's result (see [18]) states that for any weight function w

(see section 3 for notations),

� � A

w

S:G:

:= sup

e2E

8

<

:

w(e)

Q(e)

X

x;y:

xy

3e

j

xy

j

w

�(x)�(y)

9

=

;

: (6)

As the previous inequality holds for any weight function, one can ask for the optimality

of such a bound, i.e. can we �nd w such that � = A

w

S:G:

? Or at least, can we �nd w such

that for some universal constant k, � � kA

w

S:G:

? Kahale [8] answers such a question

in various cases. Let us present an easy result on that topic by means of the constant of

Hardy B

S:G:

de�ned above.

De�ne the weight function w : e = (n; n + 1) 7! (

P

n

i=0

1=Q(i))

1=2

Q(n) with Q(i) :=

�(i)K(i; i + 1), i 2 N. Now, note that by concavity, for any a; b 2 R

+

, b

1=2

� a

1=2

�

1

2b

1=2

(b � a), thus, if x � y,

j

xy

j

w

=

y�1

X

j=x

1

�

P

j

i=0

1=Q(i)

�

1=2

1

Q(j)

� 2

2

4

 

y�1

X

i=0

1=Q(i)

!

1=2

�

 

x

X

i=0

1=Q(i)

!

1=2

3

5

� 2

 

y�1

X

i=0

1=Q(i)

!

1=2

� 2

p

B

S:G:

1

q

P

1

j=y

�(j)

:

The last inequality comes from the de�nition of B

S:G:

. Then, for the edge e = (n; n+1) 2

E, we have

w(e)

Q(e)

X

x;y:

xy

3e

j

xy

j

w

�(x)�(y)
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� 2

p

B

S:G:

 

n

X

i=0

1=Q(i)

!

1=2

X

x�n<y

�(x)�(y)

q

P

1

j=y

�(j)

� 2

p

B

S:G:

 

n

X

i=0

1=Q(i)

!

1=2

1

X

y=n+1

�(y)

q

P

1

j=y

�(j)

(7)

� 2

p

B

S:G:

 

n

X

i=0

1=Q(i)

!

1=2

2

0

@

1

X

j=n+1

�(j)

1

A

1=2

� 4B

S:G:

:

Here, we used the trivial bound

P

x�n

�(x) � 1, the concave inequality b

1=2

� a

1=2

�

1

2b

1=2

(b � a) and the de�nition of B

S:G:

. The latter inequality holds for any edge e 2 E.

Hence, A

w

S:G:

� 4B

S:G:

. From (5) and (6) we thus deduce the following caracterization:

Proposition 4.1. Let X = N and K be such that K(x; y) = 0 unless jx � yj = 1.

Assume that K is reversible with respect to a probability measure � with �(0) = 1=2.

Then, if w : e = (n; n+1) 7! (

P

n

i=0

1=Q(i))

1=2

Q(n), with Q(i) := �(i)K(i; i+1), i 2 N,

we have

1

8

A

w

S:G:

� � � A

w

S:G:

:

The proposition above says that, up to universal constants, a particular choice of

weight function always gives the right order of magnitude for A

w

S:G:

. Exactly the same

result applies to birth and death chains on f0; : : : ; Ng.

4.2. On logarithmic Sobolev inequality

Consider the same setting as in Section 4.1 with X = f0; : : : ; Ng. From [13], if

B

L:S:

:= max

n�1

n�1

X

i=1

1

�(i)K(i; i + 1)

0

@

N

X

j=n

�(j)

1

A

ln

1

P

N

j=n

�(j)

;

we know that the logarithmic Sobolev constant � de�ned in (2) satis�es

1

31

B

L:S:

� � � 20B

L:S:

: (8)

We now want to compare B

L:S:

to the constant A

w

�

de�ned in Theorem 3.2. To that aim

introduce as in Section 4.1 the weight function

w : (n; n+ 1); (n+ 1; n) 7!

 

n

X

i=0

1=Q(i)

!

1=2

Q(n) ;
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with Q(i) := �(i)K(i; i + 1), i 2 X n fNg. De�ne for any g 2 G

�

(see section 2 for the

de�nitions of G

�

and �),

A

w;+

g

:= max

n2XnfNg

8

<

:

w(n; n+ 1)

Q(n)

X

x;y:

xy

3(n;n+1)

j

xy

j

w

�(x)�(y)g(y)

9

=

;

;

A

w;�

g

:= max

n2XnfNg

8

<

:

w(n+ 1; n)

Q(n)

X

x;y:

xy

3(n+1;n)

j

xy

j

w

�(x)�(y)g(y)

9

=

;

;

and

B

g

:= max

n�1

n�1

X

i=1

1

�(i)K(i; i + 1)

N

X

j=n

�(j)g(j) : (9)

We recall that in the proof of Theorem 3.2, we proved that the constant A

w

�

satis�es

A

w

�

� sup

g2G

�

�

A

w;+

g

_A

w;�

g

�

. On the other hand, using a comparison between a sum

and a supremum, it is not di�cult to check that A

w

�

� jX j

2

sup

g2G

�

�

A

w;+

g

_A

w;�

g

�

.

Thus,

sup

g2G

�

�

A

w;+

g

_A

w;�

g

�

� A

w

�

� jX j

2

sup

g2G

�

�

A

w;+

g

_A

w;�

g

�

: (10)

Now, the same proof as in Section 4.1 yields that for any g 2 G

�

, A

w;+

g

� 4B

g

.

A similar inequality holds for e = (n+1; n). Indeed, let e = (n+1; n) for n 2 X n fNg

and g 2 G

�

. Start the proof as in section 4.1 until inequality (7). Here, instead of

P

x�n

�(x) � 1, use

X

y�n

�(y)g(y) � N

�

(1I

X

) � k1I

X

k

�

=

1

�

�1

(1)

� 1 :

Recall that �(t) = jtj ln(1 + jtj). Then, complete the proof as in Section 4.1 to get that

for any g 2 G

�

, A

w;�

g

� 4B

1I

. Here B

1I

is de�ned in (9) with g � 1 (even if 1I =2 G

�

).

By de�nition of k�k

�

and from (3), we have

sup

g2G

�

N

X

j=n

�(j)g(j) � N

�

(1I

fn;:::;Ng

) �





1I

fn;:::;Ng





�

=

1

�

�1

(1=�(fn; : : : ;Ng))

� 2�(fn; : : : ; Ng) ln

1

�(fn; : : : ; Ng)

:

Hence, sup

g2G

�

B

g

� 2B

L:S:

and thus sup

g2G

�

A

w;+

g

� 8B

L:S:

.

On the other hand, there exists a universal constant c > 0 such that 1I=c 2 G

�

. It

follows that for any g 2 G

�

, A

w;�

g

� 8cB

L:S:

. Putting all together the previous results

gives

sup

g2G

�

�

A

w;+

g

_A

w;�

g

�

� 8(c _ 1)B

L:S:

:

Now, remark that there is a way to compute the constant c. Indeed, de�ne 	(x) :=

R

x

0

(�

0

)

�1

(t)dt for x � 0, then c � 1=	

�1

(1) (see [1, chapter 6]). Thus, a rought compu-

tation gives c � 2.
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Now, inequalities (8) and (10) and Theorem 3.2 allow us to conclude to the following

result.

Proposition 4.2. Let X = f0; : : : ; Ng and K be such that K(x; y) = 0 unless jx�yj =

1. Assume that K is reversible with respect to a probability measure � with �(0) = 1=2.

Then, if w : e = (n; n+ 1); (n+1; n) 7! (

P

n

i=0

1=Q(i))

1=2

Q(n), with Q(i) := �(i)K(i; i+

1), i 2 X n fNg, we have

1

496jX j

2

A

w

�

� � � 5A

w

�

:

Remark 2. From the inequalities N

�

(f) � kfk

�

� 2N

�

(f) (see [15]) and (3), we have

A

w

=4 � A

w

�

� 4A

w

. Thus, the previous proposition gives also a comparison between A

w

and �:

1

1984jXj

2

A

w

� � � 10A

w

.

Remark. Note that in example 6, if we take the weight function introduced above, we

�nd again that � � kN for some constant k, i.e. the right order for �. This is true simply

because for any n, (

P

n

i=0

1=Q(i))

1=2

Q(n) is of the same order, up to universal constants,

as

p

Q(n).

The latter proposition partially answers the question of the optimality of the constant

A

w

�

. We will now see how it can help us to compare the bound A

w

to the following result

of Diaconis and Saloff-Coste [4]: for any �nite set X , if �

�

:= min

x2X

�(x), they

proved that

� � �

ln(1=�

�

)� 1

1� 2�

�

: (11)

Here, �

�1

is the spectral gap de�ned in (1).

Assume that one can compute � (for example using path techniques). Then, the latter

inequality gives a bound for the logarithmic Sobolev constant �. One can ask whether

or not this bound is better than A

w

? Indeed, in examples 1 and 6, both bounds are of

the same order. In example 2, if one knows that � is of order O(N ), then, Diaconis and

Saloff-Coste's bound is better than ours. In this case, � must have been computed in

a di�erent way than path techniques. Actually, as we know, path techniques give nothing

better than O(N

2

), see [17]. Tensorization techniques give the right order for � (and

even, exactly the right constant) in the case of the hypercube.

More generally, if � is the uniform distribution over a �nite set X , then, even using

path techniques to compute �, the Diaconis and Saloff-Coste bound is certainly

better than A

w

(just use inequality (6)).

On the other hand a �rst remark is that inequality (11) is no more valid when jX j =1

while A

w

still has a meaning. This is the case of Examples 4 and 5 for instance.

Moreover, we have the following example suggested to us by Laurent Miclo: on X =

f0; 1; 2g, let the birth and death process K(0; 1) = "

2

and K(2; 1) = 1 reversible with

respect to �(0) = 1=2, �(1) = (1=2)� " and �(2) = ". Here "� 1 is a positive constant.

Proposition 4.1 and 4.2 yield that the spectral gap and the logarithmic Sobolev constant

are of order O(1="

2

), while inequality (11) gives � �

1

"

2

ln

1

"

. In that case, A

w

is certainly
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better than inequality (11). Note that the Hardy inequalities (5) and (8) are an other

way to compute the spectral gap and the logarithmic Sobolev constant (the maximum

is given by the edge (0; 1)).

If one computes the spectral gap using path techniques, then, we must remark that it

is certainly better to compute directly A or A

w

instead of computing �rst A

S:G:

or A

w

S:G:

and then using inequality (11). Indeed, in that case, note that in the de�nition of A or

A

w

we average ln(1=�(y)) over X while inequality (11) considers only ln(1=�

�

). As A

S:G:

and A are both easy (or di�cult) to compute, it is better to compute directly A (or A

w

).

At last, if one looks at the examples presented in [5] as the circle Z

N

[5, Example 2.1],

or the \star" (the �nite version of Example 5), or also the random walk on graphs (see

our Example 3), then, Diaconis and Saloff-Coste's bound is at least better than A

w

.

As a conclusion, inequality (11) and A

w

are not universally comparable. For �nite sets,

Diaconis and Saloff-Coste's bound seems to be more convenient to compute in a lot

of cases, while for in�nite sets, only A

w

makes sense.
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