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QUANTITATIVE FORM OF BALL’S CUBE SLICING IN R
n AND

EQUALITY CASES IN THE MIN-ENTROPY POWER

INEQUALITY

JAMES MELBOURNE AND CYRIL ROBERTO

(Communicated by Zhen-Qing Chen)

Abstract. We prove a quantitative form of the celebrated Ball’s theorem on
cube slicing in R

n and obtain, as a consequence, equality cases in the min-
entropy power inequality. Independently, we also give a quantitative form of
Khintchine’s inequality in the special case p = 1.

1. Introduction

In his seminal paper [1], Keith Ball proved that the maximal (n−1)-dimensional

volume of the section of the cube Cn := [− 1
2 ,

1
2 ]

n by an hyperplane is
√
2. Therefore

proving a conjecture by Hensley [13].

More precisely, for a = (a1, . . . , an) ∈ R
n with |a| :=

√
a21 + · · ·+ a2n = 1, put

σ(a, t) = |Cn ∩ Ha,t|n−1 for the volume of the intersection of the cube with the
hyperplane Ha,t = {x ∈ R

n : 〈x, a〉 = t}, where 〈·, ·〉 is the usual scalar product in
R

n and | · |n−1 stands for the ((n− 1)-dimensional) volume.

Theorem 1 (Ball [1]). For all unit vector a and all t ∈ R, it holds σ(a, t) ≤
√
2.

Moreover, equality holds only if t = 0 and a has only two non-zero coordinates
having absolute value 1√

2
.

Ball’s result means that the maximal volume of the sections of the cube by
hyperplanes is achieved when the section is a product of a (n−2)-dimensional cube
Cn−2 with the diagonal of a 2-dimensional cube C2. The original proof is based
on Fourier transform and series expansion. Alternative proofs can be found in [28]
(based on distribution functions) and very recently in [27] (by mean of a transport
argument).

Ball used Theorem 1 to give a negative answer to the famous Busemann-Petty
problem in dimension 10 and higher [2]. His paper has inspired significant research
in convex geometry and is still very current. We refer to [7, 8, 14, 17–19] to quote
just a few of the most recent papers in the field and refer to the reference therein
for a more detailed description of the literature.
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Our first main result is the following quantitative version of Ball’s theorem.

Theorem 2. Fix ε ∈ (0, 1
75 ). Let a ∈ R

n with |a| = 1 and t ∈ R be such that

σ(a, t) ≥ (1− ε)
√
2. Then, there exists two indices jo, j1 such that

1√
2
(1− 37.5ε) ≤ |ajo |, |aj1 | ≤

1√
2
(1 + 2ε).

Moreover,
∑

j �=jo,j1
a2j ≤ 50ε and in particular, for all j 	= jo, j1, |aj | ≤

√
50ε.

Ball’s slicing theorem, combined with a result of Rogozin [34], was used by
Bobkov and Chistyakov [3] to derive an optimal inequality for min-entropy power.
Namely, they proved that

(1) N∞(X1 + · · ·+Xn) ≥
1

2

∞∑
i=1

N∞(Xi)

for any independent (R-valued) random variables X1, . . . , Xn, with N∞ the min-
entropy power we now define. We may call the latter Bobkov-Chistyakov’s min-
entropy power inequality.

For a (R-valued) random variable X, the min-Entropy power is defined as

N∞(X) = M−2(X),

when

M(X) := inf {c : P(X ∈ A) ≤ c |A| for all Borel A} < ∞
and N∞(X) = 0 otherwise. When X is absolutely continuous with respect to the
Lebesgue measure, with density f , then M(X) = ‖f‖∞ is the essential supremum
of f with respect to the Lebesgue measure.

The nomenclature “min-entropy power” is information theoretic. In that field
the entropy power inequality refers to the fundamental inequality due to Shannon
[35] which demonstrates that Xi independent random variables with densities fi
satisfy

N(X1 + · · ·+Xn) ≥
∑
i

N(Xi),

where N(X) = e2h(X) denotes the “entropy power”, with the Shannon entropy
h(X) = −

∫
f(x) log f(x)dx. The Rényi entropy [32], for α ∈ [0,∞] defined as

hα(X) =
∫
fα(x)dx
1−α for α ∈ (0, 1) ∪ (1,∞) and through continuous limits otherwise,

gives a parameterized family of entropies that includes the usual Shannon entropy as
a special case (by taking α = 1). It can be easily seen (through Jensen’s inequality,

and the expression hα(X) =
(
Efα−1(X)

) 1
1−α ) that for a fixed variable X, the

Rényi entropy is decreasing in α. Thus for a fixed variableX, the parameter α = ∞,
h∞(X) = − log ‖f‖∞, furnishes the minimizer of the family {hα(X)}α, and is often
referred to as the “min-entropy”. Hence the notation N∞(X) = e2h∞(X) and the
terminology “min-entropy power” is in analogy with the Shannon entropy power
N(X) = e2h(X). Entropy power inequalities for the full class of Rényi entropies
have been a topic of recent interest in information theory, see e.g. [4–6, 20, 21, 23,
26, 31, 33], and for more background we refer to [24] and references therein.

In [3] it was observed in a closing remark that the constant 1
2 in (1) is sharp.

Indeed by taking n = 2 and X1 and X2 to be i.i.d. uniform on an interval (1) is seen
to hold with equality. In Theorem 3, we demonstrate that this is (essentially) the
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QUANTITATIVE CUBE SLICING 3597

only equality case. In fact, thanks to the quantitative form of Ball’s slicing theorem
above, we can derive a quantitative form of Bobkov-Chistyakov’s min entropy power
inequality, see Corollary 6, that, in turn, allows us to characterize equality cases in
(1) which constitutes our second main theorem.

Theorem 3. For X1, . . . , Xn independent random variables,

N∞(X1 + · · ·+Xn) ≥
1

2

n∑
i=1

N∞(Xi)(2)

with equality if and only if there exists i1 and i2 and x ∈ R such that Xi1 is uniform
on a set A, and Xi2 is a uniform distribution on x − A and for i 	= i1, i2, Xi is a
point mass.

Note that this is distinct from the d-dimensional case, see [25], where sharp
constants can be approached asymptotically for Xi i.i.d. and uniform on a d-
dimensional ball. More explicitly, for d ≥ 2, if Λ denotes all finite collections
of independent Rd-valued random variables

sup
X∈Λ

N∞(X1 + · · ·+Xm)∑m
i=1 N∞(Xi)

= lim
n→∞

N∞(Z1 + · · ·+ Zn)∑n
i=1 N∞(Zi)

,

where Zi are i.i.d. and uniform on a d-dimensional Euclidean unit ball.
We end with a quantitative Khintchine’s inequality. Though our result is inde-

pendent, we stress that, as it is well known in the field and as it was pointed out
by Ball himself in [1, Additional remarks], the inequality σ(a, t) ≤

√
2 of Theorem

1 is related to Khintchine’s inequalities.
Denote by B1, B2, . . . symmetric −1, 1-Bernoulli variables. Khintchine’s inequal-

ities assert that, for any p ∈ (0,∞) there exist some constant Ap, A
′
p such that for

all n and all a = (a1, . . . , an) ∈ R
n it holds

(3) Ap

(
n∑

i=1

a2i

) p
2

≤ Rp(a) := E

[∣∣∣∣∣
n∑

i=1

aiBi

∣∣∣∣∣
p]

≤ A′
p

(
n∑

i=1

a2i

) p
2

.

Such inequalities were proved by Khintchine in a special case [16], and studied in
a more systematic way by Littlewood [22] and Paley and Zygmund [29, 30].

The best constants in (3) are known. This is due to Haagerup [11], after partial
results by Stečkin [36], Young [38] and Szarek [37]. In particular, Szarek proved

that A1 = 1/
√
2, that was a long outstanding conjecture of Littlewood, see [12].

The connection between Theorem 1 and Khintchine’s inequalities goes as follows:
as fully derived in [7], Ball’s theorem can be rephrased as

E

⎡
⎣
∣∣∣∣∣

n∑
i=1

aiξi

∣∣∣∣∣
−1
⎤
⎦ ≤

√
2

(
n∑

i=1

a2i

)− 1
2

,

where ξi are i.i.d. random vectors in R
3 uniform on the centered Euclidean unit

sphere S2. As a result Ball’s slicing of the cube can be seen as a sharp L−1 − L2

Khintchine-type inequality.
Our last main result is a quantitative version of (the lower bound in) Khint-

chine’s inequality for p = 1, that has the same flavour as Theorem 2 (though being
independent).
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3598 JAMES MELBOURNE AND CYRIL ROBERTO

Theorem 4. Fix ε ∈ (0, 1/100), an integer n and a = (a1, . . . , an) ∈ R
n such that

|a| = 1, satisfying

R1(a) ≤
1 + ε√

2
.

Then, there exists two indices i1, i2 such that

1− 30ε√
2

≤ |ai1 |, |ai2 | ≤
1 + ε√

2
.

Also, it holds
∑

a2i ≤ 57ε and in particular, for any i 	= i1, i2, |ai| ≤
√
57ε.

The proofs of Theorem 2 and Theorem 4 are based on a careful analysis of Ball’s
integral inequality ∫ ∞

−∞

∣∣∣∣ sin(πu)πu

∣∣∣∣
s

du ≤
√

2

s
, s ≥ 2

and, respectively, Haagerup’s integral inequality∫ ∞

0

(
1−
∣∣∣∣cos

(
u√
s

)∣∣∣∣
s)

du

up+1
≥
∫ ∞

−∞

(
1− e−u2/2

) du

up+1
, s ≥ 2

in the special case p = 1. It is worth mentioning that our proof of Theorem 4 is
restricted to p = 1 because the latter integrals can be made explicit only in that
case. In order to deal with general p (at least p ∈ [po, 2), say, with po  1.85
implicitly defined through the Gamma function, see [11]), one would need to study

very carefully the map Fp : s �→
∫∞
0

(
1−
∣∣∣cos( u√

s

)∣∣∣s) du
up+1 and prove that it is

increasing and then decreasing on [2,∞) with careful control of its variations. The
difficulty is also coming from the fact that, at p = po, Fp(2) = Fp(∞). This in
particular makes the quantitative version difficult to state properly. Indeed, for
0 < p < po, the extremizers in the lower bound of (3) are those a with two indices

equal to 1/
√
2 and the others vanishing. While for p > po, there are no extremizers

for finite n (the “extremizer” is a = ( 1√
n
, . . . , 1√

n
) in the limit (by the central limit

theorem)). At p = po the two “extremizers” coexist. Theorem 4 is therefore only
an attempt in the understanding of quantitative forms of Khintchine’s inequalities.

We end this introduction with two remarks, pointed out to us by Tomasz Tkocz
after the manuscript was submitted to the journal, related to the current literature.

First, Theorem 2 was independently proved by Chasapis, Nayar, and Tkocz,
see [8, Theorem 2, (4)]. The authors were motivated by quantifying all known
extremal-volume hyperplane section results for �p-balls. Both their motivations
and proof are different from ours, making both approaches of possible interest for
the community.

On the other hand, Theorem 4 is reminiscent of a result of De, Diakonikolas
and Servedio [9]. Indeed, the authors prove the following quantitative form of
Khintchine’s inequality (they call it “robust”): for a = (a1, . . . , an), a unit vector
with a1 ≥ a2 ≥ · · · ≥ an,

R1(a) ≥
1√
2
+ c|a− a∗|

for some constant c and a∗ = ( 1√
2
, 1√

2
, 0, . . . , 0). Under the assumption of Theorem

4 the latter leads (after few simplification) to |a1 − 1√
2
|2 + |a2 − 1√

2
|2 + 1 − a21 −

a22 ≤ ε2

2c2 . Therefore, |a1 − 1√
2
| ≤ c′ε, and similarly for a2, for some universal

constant c′. Theorem 4, with a non explicit constant, is in turn a consequence of
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QUANTITATIVE CUBE SLICING 3599

De, Diakonikolas and Servedio’s result. We observe however that our proof of the
quantitative Khintchine’s inequality is very different from that of [9], making our
approach again of potential interest for the readers.

The next sections are devoted to the proof of Theorem 2, Theorem 3 and Theo-
rem 4.

2. Quantitative slicing: Proof of Theorem 2

In this section, we give a proof of Theorem 2. We need first to recall part of the
original proof by Ball, based on Fourier and anti-Fourier transform. We may omit
some details that can be found in [1].

By symmetry we can assume without loss of generality that aj ≥ 0 for all j.
Reducing the dimension of the problem if necessary, we will further reduce it to
aj 	= 0 for all j.

In [1] it is proved that σ(a, t) ≤ 1
aj

for all j (see also [28, step 1]). The argument

is geometric. Put ej := (0, . . . , 0, 1, 0, . . . 0) for the j-th unit vector of the canonical
basis. Then it is enough to observe that the volume of Cn∩Ha,t equals the volume
of its projection to the hyperplane Hej ,0 (orthogonal to the j-th direction) divided
by the cosine of the angle of a and ej , that is precisely aj , while the projection of
Cn on Hej ,0 has volume 1. Therefore aj ≤ 1√

2(1−ε)
≤ 1√

2
(1 + 2ε) for all j, which

proves one inequality of Theorem 2.
We follow the presentation of [28, step 2]. Let Ŝ be the Fourier transform of

S : t �→ σ(a, t). By definition, we have

Ŝ(u) =

∫
R

σ(a, t)e−2iπutdt

=

∫
Cn

e−2iπu<x,a>dx

=
n∏

j=1

∫ 1
2

− 1
2

e−2iπuajajdxj

=
n∏

j=1

sin(πaju)

πaju
.

Therefore, taking the anti-Fourier transform, Ball obtained the following explicit
formula1 for σ(a, t):

σ(a, t) =

∫ ∞

−∞
Ŝ(u)e2iπutdu

=

∫ ∞

−∞
e2πiut

n∏
j=1

sin(πaju)

πaju
du.

1An alternative explicit formula is given by Franck and Riede [10] (with different normaliza-
tion). The authors ask if there could be an alternative proof of Ball’s theorem based on their
formula.
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Applying Hölder’s inequality, since a21 + · · ·+ a2n = 1, one gets

σ(a, t) ≤
∫ ∞

−∞

n∏
j=1

∣∣∣∣ sin(πaju)πaju

∣∣∣∣ du

≤
n∏

j=1

(∫ ∞

−∞

∣∣∣∣ sin(πaju)πaju

∣∣∣∣
1/a2

j

du

)a2
j

.(4)

Ball’s theorem follows from the fact that I(aj) :=
∫∞
−∞

∣∣∣ sin(πaju)
πaju

∣∣∣1/a2
j

du ≤
√
2 with

equality only if aj = 1/
√
2. Changing variable, this is equivalent to proving that

(5)

∫ ∞

−∞

∣∣∣∣ sin(πu)πu

∣∣∣∣
s

du <

√
2

s

for every s > 2 (for s = 2 this is an identity). The latter is known as Ball’s integral
inequality and was proved in [1]2 (see [27, 28] for alternative approaches).

One key ingredient in the proof of Theorem 2 is a reverse form of Ball’s integral
inequality given in Lemma 5.

Turning to our quantitative question, observe that if for all j = 1, . . . , n, I(aj) <

(1−ε)
√
2, then (4) would imply that σ(a, t) < (1−ε)

√
2, a contradiction. Therefore,

there must exist jo such that I(ajo) ≥ (1 − ε)
√
2. The aim is now to prove that

ajo is close to 1/
√
2. In fact, changing variables (s = 1/a2jo ≥ 2(1− ε)), we observe

that

I(ajo) =

∫ ∞

−∞

∣∣∣∣ sin(πaju)πaju

∣∣∣∣
1/a2

j

du

=
√
s

∫ ∞

−∞

∣∣∣∣ sin(πu)πu

∣∣∣∣
s

du.

Hence, I(ajo) ≥ (1− ε)
√
2 is equivalent to saying that

∫ ∞

−∞

∣∣∣∣ sin(πu)πu

∣∣∣∣
s

du ≥ (1− ε)

√
2

s
.

Lemma 5 guarantees that, if s ≥ 2, then s = 1
a2
jo

≤ 2 + 50ε. If s ≤ 2 then 1
a2
jo

≤ 2

which amounts to ajo ≥ 1√
2
. In any case

ajo ≥ 1√
2 + 50ε

≥ 1√
2
(1− 25

2
ε)

since 1√
1+t

≥ 1− 1
2 t for any t ∈ (0, 1).

2An asymptotic study of such integrals can be found in [15].

Licensed to Universite Bordeaux I. Prepared on Sun Oct  2 08:35:41 EDT 2022 for download from IP 147.210.130.33.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUANTITATIVE CUBE SLICING 3601

Iterating the argument, assume that for all j 	= jo, I(aj) < (1 − 3ε)
√
2. Since

I(ajo) ≤
√
2, (4) would imply that

σ(a, t) < (1− 3ε)1−a2
jo

√
2

≤ (1− 3ε)
1− 1

2(1−ε)2
√
2

≤ (1− ε)
√
2,

where we used that ajo ≤ 1/(
√
2(1− ε)) and some algebra. This is a contradiction.

Therefore, there exists a second index j1 	= jo such that I(aj1) ≥ (1 − 3ε)
√
2.

Proceeding as for jo, we can conclude that necessarily

aj1 ≥ 1√
2
(1− 75

2
ε).

The expected result concerning ajo , aj1 follows.
Since a21 + · · ·+ a2n = 1 we can conclude that∑

j �=j0,j1

a2j ≤ 1− 1

2
(1− 25

2
ε)2 − 1

2
(1− 75

2
ε)2 ≤ 50ε.

Thus, a2j ≤ 50ε for all j 	= jo, j1. This ends the proof of the theorem.

Lemma 5. Let s ≥ 2 be such that∫ ∞

−∞

∣∣∣∣ sin(πu)πu

∣∣∣∣
s

du ≥ (1− δ)

√
2

s

for some small δ > 0. Then, s ≤ 2 + 50δ.

Proof. Set σ = s
2 − 1. We use the technology developed in [1] where it is proved

that∫ ∞

−∞

∣∣∣∣ sin(πu)πu

∣∣∣∣
s

du =
1

π

∫ ∞

−∞

∣∣∣∣ sin2(t)t2

∣∣∣∣
1+σ

dt = 1−
∞∑

n=1

|σ(σ − 1) . . . (σ − n+ 1)|
n!

βn

and√
2

s
=

√
1

1 + σ
=

1

π

∫ ∞

−∞

(
e−t2/π

)1+σ

dt = 1−
∞∑

n=1

|σ(σ − 1) . . . (σ − n+ 1)|
n!

αn

with

αn :=
1

π

∫ ∞

−∞
e−t2/π

(
1− e−t2/π

)n
dt, βn :=

1

π

∫ ∞

−∞

sin2(t)

t2

(
1− sin2(t)

t2

)n

dt.

Therefore, the assumption∫ ∞

−∞

∣∣∣∣ sin(πu)πu

∣∣∣∣
s

du ≥ (1− δ)

√
2

s

can be recast
∞∑
n=1

|σ(σ − 1) . . . (σ − n+ 1)|
n!

(βn − αn) ≤ δ

√
1

1 + σ
.
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Note that, in [1], it is proved that αn < βn so that the left hand side of the latter is
positive and in fact an infinite sum of positive terms. Hence, the first term of the

sum must not exceed the right hand side. Since β1 = 1
3 and α1 =

√
2−1√
2

, it holds

σ
3− 2

√
2

3
√
2

= σ(β1 − α1) ≤ δ

√
1

1 + σ
≤ δ.

Returning to the variable s it follows that s ≤ 2+ δ 6
√
2

3−2
√
2
from which the expected

result follows since 6
√
2

3−2
√
2
 49.46 ≤ 50. �

3. min-Entropy power inequality

In this section we extend the quantitative slicing results for the unit cube to a
quantitative version (Corollary 6) of Bobkov and Chistyakov’s min-entropy power
inequality (Inequality (1)) for random variables in R. Then we prove the full charac-
terization of extremizers of this min-entropy power inequality, i.e. we prove Theorem
3.

The quantitative version of Bobkov and Chistyakov’s min-entropy power inequal-
ity reads as follows.

Corollary 6. For Xi independent random variables and ε ∈ (0, 1/75) if

N∞

(
(1− ε)

n∑
i=1

Xi

)
≤ 1

2

n∑
i=1

N∞(Xi),(6)

then there exists indices io and i1 such that

(1− 37.5ε)2

(
1

2

n∑
i=1

N∞(Xi)

)
≤ N∞(Xio), N∞(Xi1) ≤ (1 + 2ε)2

(
1

2

n∑
i=1

N∞(Xi)

)

while ∑
i �=io,i1

N∞(Xi) ≤ 50ε
n∑

i=1

N∞(Xi).

Its proof relies on the following result by Rogozin.

Theorem 7 (Rogozin [34]). For Xi independent random variables, let Zi be in-
dependent random variables uniform on an origin symmetric interval chosen such
that N∞(Xi) = N∞(Zi), with the interpretation that Zi is deterministic, and equal
to zero, in the case that N∞(Xi) = 0. Then,

N∞(X1 + · · ·+Xn) ≥ N∞(Z1 + · · ·+ Zn).(7)

Note that though our frame work here is formally more general than [34] and
[3], there is no difficulty extending these results to the measure theoretic setting.
Indeed, for independent X ∼ μ and Y ∼ ν, P(X + Y ∈ A) =

∫
R2 �A(x +

y)dμ(x)dν(y) =
∫
R
μ(A − y)dν(y) ≤ M(X)|A|. Thus adding variables without

density can only increase the left hand side of both (1) and (7) while preserving the
right hand sides, so the analogous results in the relaxed formulation follow.

Proof of Corollary 6. Suppose that, for δ > 1

N∞(X1 + · · ·+Xn) ≤
δ

2

n∑
i=1

N∞(Xi),(8)
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QUANTITATIVE CUBE SLICING 3603

then by Theorem 7,

N∞(Z1 + · · ·+ Zn) ≤
δ

2

n∑
i=1

N∞(Xi).

Writing Ui =
Zi√

N∞(Zi)
and θi =

N∞(Xj)∑
j N∞(Zj)

we can re-write this inequality as

N∞(θ1U1 + · · ·+ θnUn) ≤
δ

2
,

where we observe that θ = (θ1, . . . , θn) is a unit vector and U = (U1, . . . , Un)
is the uniform distribution on the unit cube. Moreover since Ui are log-concave
and symmetric,

∑
i θiUi = 〈θ, U〉 is as well, and hence N∞(θ1U1 + · · · + θnUn) =

f−2
〈θ,U〉(0) = σ−2(θ, 0). Thus, we have

σ(θ, 0) ≥
√

2

δ
.

Now observe that the min-entropy is 2-homegeneous, i.e. N∞(λX) = λ2N∞(X).
Therefore, (6) gives (8) with δ = (1− ε)−2. Hence

σ(θ, 0) ≥ (1− ε)
√
2.

Thus by Theorem 2, there exist io and i1 such that

1√
2
(1− 37.5ε) ≤ θio , θi1 ≤ 1√

2
(1 + 2ε)

while ∑
i �=io,i1

θ2i ≤ 50ε.

Interpreting this in terms of the definition θj =
√
N∞(Xj)/

∑
i N∞(Xi). This gives

(1− 37.5ε)2

(
1

2

n∑
i=1

N∞(Xi)

)
≤ N∞(Xio), N∞(Xi1))

≤ (1 + 2ε)2

(
1

2

n∑
i=1

N∞(Xi)

)
,

while

∑
i �=io,i1

N∞(Xi) ≤ 50ε

n∑
i=1

N∞(Xi).

This ends the proof of the Corollary. �

Proof of Theorem 3. We distinguish between sufficiency and necessity. The former
being simpler.
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Necessity. Writing for convenience N∞(X1) ≥ N∞(X2) ≥ · · · ≥ N∞(Xn), by
Corollary 6 when N∞(X1) > 0, and the equality in (2) imply that

N∞(X1) = N∞(X2), N∞(Xk) = 0 for k ≥ 3.

That is

N∞(X1 +X2 +X3 · · ·+Xn) = N∞(X1 +X2) = N∞(X1),

and since symmetric rearrangement preserves min-entropy and reduces the entropy
of independent sums, N∞(X1 + X2) ≥ N∞(X∗

1 +X∗
2 ) ≥ 1

2 (N∞(X∗
1 ) + N(X∗

2 )) =
N∞(X1) = N∞(X1 + X2). Letting f, g represent the densities of X∗

1 and X∗
2 re-

spectively, this implies

‖f ∗ g‖∞ = f ∗ g(0)

=

∫
f(y)g(y)dy

=

∫
{f=‖f‖∞}

‖f‖∞g(y)dy +

∫
{f<‖f‖∞}

f(y)g(y)dy

= ‖f‖∞
which can only hold if {g > 0} ⊆ {f = ‖f‖∞}. Reversing the roles of f and g, we
must also have {f > 0} ⊆ {g = ‖g‖∞}. Since {f = ‖f‖∞} ⊆ {f > 0} obviously
holds, we have the following chain of inclusions,

{g > 0} ⊆ {f = ‖f‖∞} ⊆ {f > 0} ⊆ {g = ‖g‖∞} ⊆ {g > 0}.
For this it follows that X∗

1 and X∗
2 are i.i.d. uniform distributions.

Thus, X1 and X2 are uniform distributions as well. Without loss of generality
we may assume that X1 and X2 are uniform on sets of measure 1, K1 and K2.
Denote fi = �Ki

. Then f1 ∗ f2 is uniformly continuous and f1 ∗ f2(x) → 0 with
|x| → ∞. Indeed, because continuous compactly supported functions are dense in
L2, it follows3 that for gτy (x) := g(x + y), ‖gτy − g‖2 → 0 for y → 0. Further
‖gτy1 −gτy2 ‖2 = ‖gτy1−y2

−g‖2, so that for |y1−y2| sufficiently small, ‖gτy1 −gτy2 ‖2
can be made arbitrarily small as well. Thus,

|f1 ∗ f2(x)− f1 ∗ f2(x′)| ≤
∫

|f1(−y)||f2(x+ y)− f2(x
′ + y)|dy

≤ ‖f1‖2‖(f2)τx − (f2)τx′‖2
= ‖(f2)τx−x′ − f2‖2

hence f1 ∗ f2 is indeed uniformly continuous.
Taking ϕi to be continuous, compactly supported functions approximating fi in

L2, we have

‖ϕ1 ∗ ϕ2 − f1 ∗ f2‖∞ ≤ ‖f1 ∗ (ϕ2 − f2)‖∞ + ‖ϕ2 ∗ (ϕ1 − f1)‖∞
≤ ‖f1‖2‖ϕ2 − f2‖2 + ‖ϕ2‖2‖ϕ1 − f1‖2.

Since the right hand side goes to zero, and ϕ1 ∗ϕ2 is compactly supported, it must
be true that f1 ∗ f2(x) tends to zero for large |x|. Thus f1 ∗ f2 attains its maximum
value at some point x, and thus we can rewrite the equality of the min-entropies

3Given an ε > 0, there exists ϕ continuous and compactly supported such that ‖ϕ−g‖2 < ε/3.
Since ϕ is continuous and compactly supported, it is uniformly continuous, and hence for small
enough y, ‖ϕτy − y‖2 < ε/3, Thus ‖gτy − g‖ ≤ ‖gτy − ϕτy‖+ ‖ϕτy − ϕ‖+ ‖ϕ− g‖ < ε.
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of X1 +X2, X1 and X2, as f1 ∗ f2(x) = |K1 ∩ (x−K2)| = |K1| = |K2| = 1. Thus
almost surely x−K1 = K2.

Put Y = X2 + · · · + Xn. By the same argument, since N∞(X1 + Y ) =
1
2 (N∞(X1) +N∞(Y )), Y is uniform on a set x′−K1. Thus, Var(Y )=

∑n
i=2 Var(Xi)

= Var(X2). Hence, for i > 2, Var(Xi) = 0 and the Xi are deterministic. Letting
A = K1, the proof of necessity is complete.

Sufficiency. To prove sufficiency, assume that X1 is uniform on a set A, X2 uniform
on x−A and Xi a point mass for i ≥ 3 then,

N∞(X1 +X2 +X3 + · · ·+Xn) = N∞(X1 +X2)

=

∥∥∥∥�A|A| ∗
�x−A

|A|

∥∥∥∥
−2

∞
.

Observe that

�A
|A| ∗

�x−A

|A| (x) =
1

|A|2
∫
�A(y)�x−A(x− y)dy

=
1

|A| .

Thus |A|2 ≥ N∞(X1 +X2) and it follows that |A|2 = N∞(X1 +X2) = N∞(X1) =
N∞(X2). �

4. Quantitative khintchine’s inequality

In this section we prove Theorem 4 that resembles the proof of Theorem 2. We
need to recall some results from [11].

Assume without loss of generality that ak 	= 0 for all k. Put

F (s) =
2

π

∫ ∞

0

(
1−
∣∣∣∣cos

(
t√
s

)∣∣∣∣
s)

dt

t2
, s > 0.

From [11, Lemma 1.4 (and its proof)], we can extract that

F (s) =
2√
πs

Γ
(
s+1
2

)
Γ
(
s
2

) =

√
2

π

∞∏
k=0

(
1− 1

(s+ 2k + 1)2

) 1
2

is an increasing function of s, with F (2) = 1/
√
2 and lims→∞ F (s) =

√
2
π . Haagerup

also proved [11, Lemma 1.3] that

(9) R1(a) ≥
n∑

k=1

a2kF

(
1

a2k

)

with the convention that a2kF
(

1
a2
k

)
= 0 if ak = 0 (recall the definition of R1

from (3)). For completeness, let us reproduce the argument using Nazarov and
Podkorytov’s presentation [28]. From the identity

|s| = 2

π

∫ ∞

0

(1− cos(st))
dt

t2
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applied to s =
∑n

k=1 akBk, we have

R1(a) = E

(∣∣∣∣∣
n∑

k=1

akBk

∣∣∣∣∣
)

=
2

π

∫ ∞

0

(
1− E

(
cos

(
t

n∑
k=1

akBk

)))
dt

t2

=
2

π

∫ ∞

0

(
1−

n∏
k=1

cos(akt)

)
dt

t2

where at the last line we used that

E

(
cos

(
t

n∑
k=1

akBk

))
= Re

(
E

(
eit

∑n
k=1 akBk

))

=

n∏
k=1

cos(akt).

Since
∑

a2k = 1, the following Young’s inequality
∏n

k=1 s
a2
k

k ≤
∑

a2ksk holds for any

non-negative s1, . . . , sn. Therefore, (take sk = | cos(akt)|a
−2
k ), it holds

R1(a) ≥
2

π

∫ ∞

0

(
1−

n∏
k=1

| cos(akt)|
)

dt

t2

≥ 2

π

∫ ∞

0

(
1−

n∑
k=1

a2k| cos(akt)|a
−2
k

)
dt

t2

=

n∑
k=1

a2k
2

π

∫ ∞

0

(
1− | cos(akt)|a

−2
k

) dt

t2

which amounts to (9).
Now observe that R1(a) ≥ maxk |ak|. Indeed, given ko, multiplying by Bko

, that
satisfies |Bko

| = 1, it holds

R1(a) = E

(
|Bko

|
∣∣∣∣∣

n∑
k=1

akBk

∣∣∣∣∣
)

= E

⎛
⎜⎝
∣∣∣∣∣∣∣ako

+
n∑

k=1
k �=ko

akBkBko

∣∣∣∣∣∣∣
⎞
⎟⎠

≥

∣∣∣∣∣∣∣E
⎛
⎜⎝ako

+
n∑

k=1
k �=ko

akBkBko

⎞
⎟⎠
∣∣∣∣∣∣∣

= |ako
|.

It follows by assumption that |ak| ≤ 1+ε√
2

for any k.
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QUANTITATIVE CUBE SLICING 3607

Assume that F (1/a2k) >
1+ε√

2
for all k. Then, by (9) and monotonicity of F , it

would hold

R1(a) ≥
n∑

k=1

a2kF

(
1

a2k

)
>

1 + ε√
2

.

This contradicts the starting hypothesis R1(a) ≤ 1+ε√
2
. Therefore, there exists at

least one index, say ko, such that F (1/a2ko
) ≤ 1+ε√

2
. Using Lemma 8 we can conclude

that

|ako
| ≥ 1√

2

1√
1 + 20ε

≥ 1− 10ε√
2

since 1/
√
1 + t ≥ 1− t

2 for any t ∈ (0, 1).

We iterate the argument. Assume that F (1/a2k) > 1+3ε√
2

for all k 	= ko. From

(9) and monotonicity of F , it would hold (recall that |ak| ≤ 1+ε√
2

for any k and in

particular for ko)

R1(a) ≥
n∑

k=1

a2kF

(
1

a2k

)

>
1 + 3ε√

2

∑
k �=ko

a2k + a2ko
F

(
1

a2ko

)

≥ 1 + 3ε√
2

∑
k �=ko

a2k + a2ko
F

(
2

(1 + ε)2

)
.

Now Lemma 9 guarantees that F
(

2
(1+ε)2

)
≥ 1−αε√

2
, with α = π2

12 , so that, since∑
k �=ko

a2k = 1− a2ko
and |ako

| ≤ 1+ε√
2
, it holds

R1(a) >
1 + 3ε√

2

∑
k �=ko

a2k + a2ko

1− αε√
2

=
1 + 3ε√

2
+ a2ko

(
1− αε√

2
− 1 + 3ε√

2

)

≥ 1 + 3ε√
2

−
(
1 + ε√

2

)2
(3 + α)ε√

2

=
1 + ε√

2
+

ε

4
√
2

(
4− (3 + α)(1 + ε)2

)
>

1 + ε√
2

since for ε ∈ (0, 1/100), 4 > (3 + α)(1 + ε)2. This again contradicts the hypothesis
R1(a) ≤ 1+ε√

2
. Therefore, there exists a second index k1 	= ko, such that F (1/a2k1

) ≤
1+3ε√

2
. Lemma 8 then implies that

|ak1
| ≥ 1√

2

1√
1 + 60ε

≥ 1− 30ε√
2

(since, again, 1/
√
1 + t ≥ 1− t

2 ). This proves the first part of the theorem.
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For the second part we use the previous results together with
∑n

k=1 a
2
k = 1 to

ensure that∑
k �=ko,k1

a2k = 1− a2ko
− a2k1

≤ 1−
(
1− 10ε√

2

)2

−
(
1− 30ε√

2

)2

≤ 80√
2
ε ≤ 57ε.

This ends the proof of the theorem.

Lemma 8. Fix ε ∈ (0, 3/100) and s > 0 such that F (s) ≤ 1+ε√
2
. Then

s ≤ 2(1 + 20ε).

Proof. Assume that s ≥ 2 (otherwise there is nothing to prove). By expansion,

F (s) = F (2) +
∫ s

2
F ′(t)dt ≤ 1+ε√

2
. Therefore, since F (2) = 1/

√
2,∫ s

2

F ′(t)dt ≤ ε√
2
.

Observe that F (3) = 4
π
√
3
 0.74 ≥ 0.71  1.01√

2
≥ 1+ε√

2
. Hence, since F is increasing,

necessarily s ≤ 3. It follows that

(s− 2) inf
2≤t≤3

F ′(t) ≤ ε√
2

and we are left with estimating inf2≤t≤3 F
′(t). Using the expression of F above as

a product, we deduce that, for t ∈ (2, 3)

F ′(t) = F (t)

∞∑
k=0

1

(t+ 2k)(t+ 2k + 1)(t+ 2k + 2)

≥ F (2)

∞∑
k=0

1

(2k + 3)(2k + 4)(2k + 5)

≥ 1

40
√
2

where in the last inequality we used that F (2) = 1/
√
2 and estimated from below

the infinite sum by the first 5 terms.4 The expected result follows. �
Lemma 9. Fix ε ∈ (0, 1/100). Then

F

(
2

(1 + ε)2

)
≥ 1− αε√

2

with α = π2/12.

Proof. By expansion,

F

(
2

(1 + ε)2

)
= F (2)−

∫ 2

2
(1+ε)2

F ′(t)dt ≥ 1√
2
−
(
2− 2

(1 + ε)2

)
sup

2
(1+ε)2

≤t≤2

F ′(t).

Now, as in the proof of Lemma 8, for any t ∈ ( 2
(1+ε)2 , 2), it holds

F ′(t) = F (t)
∞∑
k=0

1

(t+ 2k)(t+ 2k + 1)(t+ 2k + 2)
≤ F (2)

∞∑
k=0

1

8(k + 1)2
=

π2

48
√
2
,

4Alternatively one can argue that
∑∞

k=0
1

(2k+3)(2k+4)(2k+5)
≥

∑∞
k=0

1
(2k+4)3

= 1
8
(ζ(3) − 1)

where ζ(3) � 1.202 ≥ 1.2 is the Riemann zeta function, from which we deduce that the infinite
series is bounded below by 1/40.
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where the inequality follows from the rough estimate (t+2k)(t+2k+1)(t+2k+2) ≥
8(k+1)2, valid for any k and any t ∈ ( 2

(1+ε)2 , 2) (this is trivial for t ≥ 1 and k ≥ 1,

the case k = 0 has to be treated separately, details are left to the reader).
Combining this with the previous estimate, we get

F

(
2

(1 + ε)2

)
≥ 1√

2

(
1− π2

48

(
2− 2

(1 + ε)2

))

=
1√
2

(
1− π2

24

2ε+ ε2

(1 + ε)2

)

≥ 1√
2

(
1− π2

12
ε

)

which is the result we claimed. �

Remark 10. The range ε ∈ (0, 1/100) in Theorem 4 is technical and here to guar-

antee that (1 + ε)/
√
2 ≤

√
2/

√
π = lims→∞ F (s) and also that F (3) ≥ (1 + ε)/

√
2

(see the proof of Lemma 8).
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[33] Olivier Rioul, Rényi entropy power inequalities via normal transport and rotation, Entropy
20 (2018), no. 9, Paper No. 641, 17, DOI 10.3390/e20090641. MR3882497

Licensed to Universite Bordeaux I. Prepared on Sun Oct  2 08:35:41 EDT 2022 for download from IP 147.210.130.33.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=2999590
https://www.ams.org/mathscinet-getitem?mr=654838
https://www.ams.org/mathscinet-getitem?mr=404151
https://www.ams.org/mathscinet-getitem?mr=512066
https://www.ams.org/mathscinet-getitem?mr=4216758
https://www.ams.org/mathscinet-getitem?mr=3359575
https://www.ams.org/mathscinet-getitem?mr=1544623
https://www.ams.org/mathscinet-getitem?mr=4178930
https://www.ams.org/mathscinet-getitem?mr=3914180
https://www.ams.org/mathscinet-getitem?mr=4037492
https://www.ams.org/mathscinet-getitem?mr=3794336
https://www.ams.org/mathscinet-getitem?mr=4175759
https://arxiv.org/abs/2103.00896
https://www.ams.org/mathscinet-getitem?mr=3837279
https://arxiv.org/abs/1705.00642
https://www.ams.org/mathscinet-getitem?mr=3923176
https://arxiv.org/abs/2110.03641
https://www.ams.org/mathscinet-getitem?mr=1771767
https://www.ams.org/mathscinet-getitem?mr=3599071
https://www.ams.org/mathscinet-getitem?mr=0132570
https://www.ams.org/mathscinet-getitem?mr=3882497


QUANTITATIVE CUBE SLICING 3611

[34] B. A. Rogozin, An estimate for the maximum of the convolution of bounded densities
(Russian), Teor. Veroyatnost. i Primenen. 32 (1987), no. 1, 53–61. MR890930

[35] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948),
379–423, 623–656, DOI 10.1002/j.1538-7305.1948.tb01338.x. MR26286
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