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Abstract. We show that for log-concave real random variables with fixed variance the
Shannon differential entropy is minimized for an exponential random variable. We apply
this result to derive upper bounds on capacities of additive noise channels with log-concave
noise. We also improve constants in the reverse entropy power inequalities for log-concave
random variables.

1. Introduction

For a real random variable X with density f its differential entropy is defined via the
formula h(X) = h(f) = −

∫
f log f . This definition goes back to the celebrated work of

Shannon [13], but the same quantity was also considered, without the minus sign, by physi-
cists, including Boltzmann, in the context of thermodynamics of gases. In fact, it is a classical
fact going back to Boltzmann [4] that under fixed variance the entropy is maximized for a
Gaussian random variable. This leads to the translation and scale invariant inequality

h(X) ≤ 1

2
logVar(X) +

1

2
log(2πe).

One can see that in general one cannot hope for a reverse bound, since for the density
fε(x) = (2ε)−11[1,1+ε](|x|) the variance stays bounded while the entropy goes to −∞ as

ε → 0+. However, a reverse bound still holds if one imposes some extra assumption on X,
such as log-concavity. Recall that X is said to be log-concave if its density is of the form
f = e−V , where V : R → (−∞,∞] is convex. In [3] Bobkov and Madiman showed that
indeed in this class, the inequality can be reversed, up to an absolute additive constant and it
became a well-known open problem to find the optimal such bound. The sharpest inequality
to date can be found in [10] where Marsiglietti and Kostina proved that if X is log-concave,
then h(X) ≥ 1

2 log Var(X)+ log 2. The goal of this article is to prove the following inequality.

Theorem 1.1. For a log-concave random variable X we have

h(X) ≥ 1

2
logVar(X) + 1

with equality for the standard one-sided exponential random variable with density e−x1[0,∞)(x).

Probably the most significant generalization of entropy is the so-called Rényi entropy of order
α ∈ (0,∞) \ {1}, which is defined as

hα(X) = hα(f) =
1

1− α
log

(∫
fα(x)dx

)
,

assuming that the integral converges, see [12]. If α → 1 one recovers the usual Shannon
differential entropy h(f) = h1(f) = −

∫
f ln f . Also, by taking limits one can put h0(f) =
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log |Suppf |, where Suppf stand for the support of f and h∞(f) = − log ∥f∥∞, where ∥f∥∞
is the essential supremum of f . For p ≥ q > 0 one has

0 ≤ hq(f)− hp(f) ≤
log q

q − 1
− log p

p− 1
,

where the fraction log t
t−1 is interpreted as 1 for t = 1, see [5]. Thus using this bound together

with Theorem 1.1 gives the following corollary.

Corollary 1.2. For α > 1 and a log-concave random variable X one has

hα(X) ≥ 1

2
logVar(X) +

logα

α− 1
.

Let us mention that the problem of minimizing Rényi entropy under fixed variance for sym-
metric log-concave random variables was solved in [8] for the case α ≤ 1 and in [2] for α > 1.
Here the worst case in the uniform random variable on an interval for α ≤ α∗ and symmetric
exponential random variable for α > α∗, where α∗ ≈ 1.241 is the solution to the equation
logα∗

α∗−1 = 1
2 log 6.

2. Applications

2.1. Additive noise channels. We now briefly discuss an application of our main result
in the context of information theory. For more details we refer the reader to [9], where the
case of symmetric log-concave random variables was discussed. Consider the memoryless
transmission channel with power budged P subject to additive noise N , that is, if the input
of the channel is X, then output produced by the channel is Y = X + N , where N is the
noise independent of X. Shannon’s celebrated channel coding theorem [13] asserts that the
so-called capacity of such a channel is gives by the formula

CP (N) = sup
X: Var(X)≤P

(h(X +N)− h(N)).

We have the following fact.

Proposition 2.1. Let N be a random variable with finite variance and let Z be a centered
Gaussian random variable with the same variance. Then

CP (Z) ≤ CP (N) ≤ CP (Z) +D(N),

where D(N) = h(Z)− h(N) is the relative entropy of N from Gaussianity.

Our Theorem 1.1 gives

D(N) = h(Z)− h(N) ≤ h(Z)− 1

2
logVar(N)− 1 =

1

2
log(2πe)− 1 =

1

2
log

(
2π

e

)
.

We can therefore formulate the following corollary.

Corollary 2.2. Let N be a log-concave noise and let Z be a centered Gaussian noise with
the same variance. Then

CP (Z) ≤ CP (N) ≤ CP (Z) +
1

2
log

(
2π

e

)
.

It other words, using an arbitrary log-concave noise instead of the Gaussian does not increase
capacity by more than 1

2 log
(
2π
e

)
< 0.42 nats.
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2.2. Reverse EPI. Recall that the entropy power of a random variable X is defined by
N (X) = 1

2πe exp(2h(N)). Note that for a Gaussian random variable one has N (Z) = Var(Z)
and in general Var(X) = Var(Z) implies N (X) ≤ N (Z). Theorem 1.1 can be rewritten in
the form N (X) ≥ e

2π Var(X). The entropy power inequality of Shannon and Stam [13, 14]
states that for independent random variables X,Y one has

N (X + Y ) ≥ N (X) +N (Y ).

It is of interest to obtain reverse bounds. Under log-concavity assumption the authors of [10]
showed that if X,Y are uncorellated, then N (X + Y ) ≤ πe

2 (N (X) +N (Y )). Using Theorem
1.1 we can improve this result.

Corollary 2.3. Let X,Y be log-concave uncorrelated real random variables. Then

N (X + Y ) ≤ 2π

e
(N (X) +N (Y )) .

Indeed, one has

N (X + Y ) ≤ Var(X + Y ) = Var(X) + Var(Y ) ≤ 2π

e
(N (X) +N (Y )) .

We can also define the Rényi entropy power via Nα(X) = exp(2hα(X)), where we removed
the normalizing constant 2πe for simplicity. Similarly as in [2], Theorem 2 from [7] together
with our Theorem 1.1 gives the inequality

(1) C−(α)Var(X) ≤ Nα(X) ≤ C+(α)Var(X), α > 1

where

C−(α) = α
2

α−1 , C+(α) =
3α− 1

α− 1

(
2α

3α− 1

) 2
1−α

B

(
1

2
,

α

α− 1

)2

.

Here B(x, y) = Γ(x)Γ(y)
Γ(x+y) stands for the Beta function. The right inequality does not need

log-concavity. Thus, using the same computation as for the case α = 1 we get the following
corollary.

Corollary 2.4. If X,Y are log-concave uncorrelated real random variables, then for α > 1
one has

Nα(X + Y ) ≤ C+(α)

C−(α)
(Nα(X) +Nα(Y )) .

3. Reductions

3.1. Decreasing Rearrangement.

Definition 3.1 (Decreasing Rearrangement). For a measurable set A ⊆ R let |A| denote its
Lebesgue measure and let us define

A↓ = (0, |A|)
with the interpretation of (0, 0) as the empty set.

Definition 3.2. For a measurable function f : R → [0,∞], define f↓ : (0,∞) → [0,∞]

f↓(x) =

∫ ∞

0
1{y:f(y)>λ}↓(x)dλ.

We observe that f↓ is fully characterized by the equality {f > λ}↓ = {f↓ > λ} and in
particular, equimeasurable (with respect to the Lebesgue measure) functions possess identical
decreasing rearrangements.
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Proposition 3.3. For f : R → [0,∞), its rearrangement f↓ satisfies,

f↓(x) = sup{λ : x ∈ {f > λ}↓}(2)

and

{f↓ > λ} = {f > λ}↓.(3)

Proof. Representation (2) follows directly from the definition of f↓. To prove (3) observe
that by (2) the condition f↓(x) > λ is equivalent to the existence of λ′ > λ such that
x ∈ {f > λ′}↓. It is therefore enough to prove the following equivalence

∃λ′>λ x ∈ {f > λ′}↓ ⇐⇒ x ∈ {f > λ}↓.
By the nestedness the implication =⇒ is trivial. To show the other direction assume that
x ∈ {f > λ}↓. This is equivalent to x < |{f > λ}|. By the continuity of Lebesgue measure

x < |{f > λ}| =

∣∣∣∣∣⋃
n

{
f > λ+

1

n

}∣∣∣∣∣ = lim
n

|{f > λ+ 1/n}|.

By taking λ′ = λ+ 1
n for large enough n we get λ′ > λ such that x ∈ {f > λ′}↓. □

Proposition 3.4. For φ measurable and f non-negative,∫
φ(f(x))dx =

∫
φ(f↓(x))dx.

Proof. This is equivalent to the statement that f pushes the Lebesgue measure dm forward
to the same measure f↓ pushes the Lebesgue measure to. Thus it suffices to check

f#m(λ,∞) = f↓
#m(λ,∞).

This is just |{f > λ}| = |{f↓ > λ}|, which follows from the characterization {f↓ > λ} =
{f > λ}↓. □

Note that taking φ(x) = −x log x shows that the decreasing rearrangement f↓ preserves
the entropy of a density function f .

Definition 3.5. For a random variable X with density function f , define X↓ to be a random
variable drawn from the density function f↓.

When X has density f we will write the variance as Var(X) and Var(f) interchangeably.

Lemma 3.6. For non-negative X, and increasing, non-negative φ,

Eφ(X↓) ≤ Eφ(X).

Proof. The proof follows from the elementary observation that for a ≥ 0,

|(a,∞) ∩A| ≥
∣∣∣(a,∞) ∩A↓

∣∣∣ .(4)

Using the layer-cake decomposition,

Eφ(X) =

∫ ∞

0

∫ ∞

0

(∫ ∞

0
1{φ>λ}(x)1{f>σ}(x)dx

)
dλdσ

=

∫ ∞

0

∫ ∞

0
|{φ > λ} ∩ {f > σ}| dλdσ

≥
∫ ∞

0

∫ ∞

0

∣∣∣{φ > λ} ∩ {f↓ > σ}
∣∣∣ dλdσ = Eφ(X↓),

where the inequality follows from (4). □
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Lemma 3.7. For probability densities f0, f1 and λ ∈ [0, 1] the density f = λf0 + (1 − λ)f1
has variance,

Var(f) = λVar(f0) + (1− λ)Var(f1) + λ(1− λ)(µ1 − µ0)
2

where µi denotes the barycenter of fi, that is µi =
∫
xfi(x)dx.

Proof.

Var(f) =

∫
x2(λf0(x) + (1− λ)f1(x))dx−

(∫
x(λf0(x) + (1− λ)f1(x))dx

)2

=λ

(∫
x2f0(x)dx−

(∫
xf0(x)dx

)2
)

+ (1− λ)

(∫
x2f1(x)dx−

(∫
xf1(x)dx

)2
)

+ λ

(∫
xf0(x)dx

)2

+ (1− λ)

(∫
xf1(x)dx

)2

−
(∫

x(λf0(x) + (1− λ)f1(x))dx

)2

=λVar(f0) + (1− λ)Var(f1) + λ(1− λ)(µ1 − µ0)
2.

□

Theorem 3.8. For X log-concave,

Var(X) ≤ Var(X↓).

Proof. We prove the result when X has a density f given by a unimodal step function by
induction, that is f =

∑n
k=0 λk1Ik/|Ik| with Ik intervals satisfying Ik+1 ⊊ Ik and λk > 0. An

easy limiting argument gives the result for log-concave X. When n = 0, X is uniform and
the result is immediate. Assuming the result for n′ < n, we proceed. The density of f can

be written as λf0 + (1 − λ)f1, with λ = λ0, f0 =
1I0
|I0| , and f1 =

∑n
k=1

λk
1−λ0

1Ik
|Ik| . Observing

that f1 takes strictly less values than f and that by affine invariance of the inequality we
may assume that I0 = (0, 1), and by considering X̃ = 1−X, we may assume without loss of
generality, that

∫
xf1(x)dx ≤ 1

2 .

By Lemma 3.7,

Var(f) = λVar(f0) + (1− λ)Var(f1) + λ(1− λ)

(
1

2
−
∫

xf1(x)dx

)2

.

Observe that f↓ = λf↓
0 + (1− λ)f↓

1 . Applying Lemma 3.7 to f↓,

Var(f↓) = λVar(f↓
0 ) + (1− λ)Var(f↓

1 ) + λ(1− λ)

(
1

2
−
∫

xf↓
1 (x)dx

)2

.

Clearly f↓
0 = f0. By induction Var(f1) ≤ Var(f↓

1 ) and by Lemma 3.6, applied to φ(x) = x,

we have 1
2 ≥

∫
xf1(x)dx ≥

∫
xf↓

1 (x)dx. The result follows. □

Lemma 3.9. For X log-concave,

e2h(X)

Var(X)
≥ e2h(X

↓)

Var(X↓)

This follows immediately from Theorem 3.8 and Proposition 3.4 (with φ(x) = −x log x) since
decreasing rearrangement will preserve entropy and increase variance. The following result,
a special case of a result from [11], will thus allow us to reduce our problem to X log-concave
with monotone decreasing density.

Proposition 3.10 ([11] Proposition 7.5.8). For X log-concave, X↓ is log-concave as well.
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Proof. Note that X has a log-concave density f if and only if

(1− t){f > λ1}+ t{f > λ2} ⊆ {f > λ1−t
1 λt

2}.(5)

Thus, to show that X↓ is log-concave it suffices to prove

(1− t){f > λ1}↓ + t{f > λ2}↓ ⊆ {f > λ1−t
1 λt

2}↓

But since both sets are open intervals it suffices to prove that the right hand side has bigger
volume, which follows Brunn-Minkowski inequality and the set theoretic inclusion in (5),

|(1− t){f > λ1}↓ + t{f > λ2}↓| = |(1− t){f > λ1}+ t{f > λ2}|
≤ |{f > λ1−t

1 λt
2}|

= |{f > λ1−t
1 λt

2}↓|.

□

3.2. Degrees of freedom. Our goal is to show that in order to prove Theorem 1.1 it suffices
to consider functions of the form e−V where V is a two-piece affine on a finite interval. This
is a standard argument appearing e.g. in [8], so we only sketch it.

Step 1. Let σ2 = Var(X). By the previous subsection, in order to prove the inequality
h(f) ≥ log(eσ) it suffices to consider non-increasing densities on [0,∞). In fact by an ap-
proximation argument we can assume that the support of f is a finite interval. Indeed if
we define fn = e−V

1(0,n)/cn, where cn =
∫ n
0 e−V is the normalizing constant, then clearly

cn → 1 as n → ∞ and by the Lebesgue dominated convergence theorem Var(fn) → Var(f).
We also have

h(fn) =
1

cn

∫ n

0
V e−V +

log cn
cn

∫ n

0
e−V → h(f)

by the Lebesgue dominated convergence theorem, as |V |e−V = |V |e−V/2e−V/2 ≤ e−V/2 is
integrable.

Step 2. We can therefore fix the interval [0, L] on which the function f is defined. Let
A = AL,σ denote the set of log-concave non-increasing densities supported in [0, L] and
having variance σ2. We have f(0)2Var(X) ≤ f(0)2EX2 ≤ 2, see [1]. To see this we follow
the argument from [8]. By scaling we can assume that f(0) = 1. If g(x) = e−x

1[0,∞)(x) then
by log-concavity of f the function f − g changes sign in exactly one point a > 0 and thus

EX2 − 2 =

∫ ∞

0
x2(f(x)− g(x))dx =

∫ ∞

0
(x2 − a2)(f(x)− g(x))dx ≤ 0

since the integrant is non-positive. This shows that f is bounded by 2σ−2 and in particular
h(f) = −

∫
f log f ≥ − log f(0) is bounded from below. This shows that the quantity M =

inf{h(f) : f ∈ AL,σ} is finite. Let fn be such that h(fn) → M . By a straightforward
adaptation of Lemma 12 from [8] we get that (fn) has a convergent subsequence fnk

→ f0 ∈ A
and by the Lebesgue dominated convergence theorem h(f0) = M . This shows that the
infimum of h(f) is attained on A.

Step 3. We now apply the theory of degrees of freedom due to Fradelizi and Guédon from
[6]. We say that f ∈ A has d degrees of freedom in there exist ε > 0 and linearly independent

functions f1, . . . , fd such that fδ := f +
∑d

i=1 δifi is log-concave and non-incresing for all
|δi| ≤ ε. Suppose f has at least 4 degrees of freedom. Then∫

fδ(x)dx =

∫
f(x)dx,

∫
xfδ(x)dx =

∫
xf(x)dx,

∫
x2fδ(x)dx =

∫
x2f(x)dx
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is a system of 3 linear equations in variables δ1, . . . , δ4 and thus has nontrivial linear subspace
of solutions. Thus there is δ such that fδ, f−δ ∈ A and

h(f) = h(
1

2
fδ +

1

2
f−δ) >

1

2
h(fδ) +

1

2
h(f−δ)

since entropy is a strictly convex functional. Thus f is not the extremizer of h(f). This
shows that extremizers have to have at most 3 degrees of freedom and Step IV of the proof
of Theorem 1 from [8] shows that such functions must be piecewise log-affine with at most
two pieces.

3.3. Localization. Alternatively, we can proceed with extreme point analysis following
Fradelizi and Guedon [6]. For a fixed compact interval K ⊆ R, and upper semi-continuous
functions g1, g2 define Pg to be the space of log-concave probability measures µ supported in
K such that ∫

gidµ ≥ 0.

We will use the following special case of Fradelizi and Guedon.

Theorem 3.11 ([6] Theorem 1). Let ν be an extreme point of the convex hull of Pg, then
ν is a point mass, or ν has density e−V with respect to the Lebesgue measure where on the
support of ν, V = max{φ1, φ2} for φi affine.

When a density f has the form e−V for V = max{φ1, φ2} for φi affine, we will say that f
is two piece log-affine.

Lemma 3.12. For X log-concave on R,

e2h(X)

Var(X)
≥ inf

Z∈K

e2h(Z)

Var(Z)
,

where K is the space of compactly supported log-concave variables with monotone density on
this support of the form f = e−max{φ0,φ1} for φi affine.

Proof. Recalling the truncation argument it suffices to consider X ∼ µ with density, sup-
ported on [0, L] for some L > 0. Fix X and take

g1(x) = E[X]− x

g2(x) = x2 − E[X2].

For Z ∼ ν an extreme point of Pg, since Z is non-negative by
∫
gidν ≥ 0, we have

Var(Z) ≥ Var(X) > 0,

so ν is not a point mass and hence by Theorem 3.11, Z has density of the form f =
e−max{φ1,φ2}. Since X ∼ µ ∈ Pg by definition, if we let E(Pf ) denote the extreme points of
the convex hull of Pf , by the Krein-Milman µ belongs to the closure of the convex hull of
E(Pf ). Now let us show that this implies that

h(X) ≥ inf
Z∼ν∈E(Pg)

h(Z).(6)

Indeed the entropy is concave and upper semi-continuous in the weak topology on when
restricted to compact sets (as can be seen from the more well known fact that the relative
entropy is lower semicontinuous, and on compact sets h(X) = h(U) −D(X||U) where U is
the uniform distribution on the compact set), thus writing µ as limn µn for a sequence of µn
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that can be expressed as convex combination of extreme points, that is µn =
∑kn

i=1 λn(i)νn(i)
for νn(i) ∈ E(Pg), we have

h(µ) ≥ lim sup
n

h(µn) = lim sup
n

h

(
kn∑
i=1

λn(i)νn(i)

)
≥ lim sup

n

kn∑
i=1

λn(i)h(νn(i)) ≥ inf
ν∈E(Pg)

h(ν).

Since every element of Pg has variance no smaller than X, it follows that

e2h(X)

Var(X)
≥ inf

Z∼ν∈E(Pg)

e2h(Z)

Var(Z)
.

Consider Z↓ for Z ∈ E(Pg), and applying Lemma 3.9, we have

e2h(X)

Var(X)
≥ inf

Z∼ν∈E(Pg)

e2h(Z
↓)

Var(Z↓)

Direct computation, shows that if Z has a two-piece log-affine density, then Z↓ does as well,
completing the proof. □

4. The scheme of the computation

4.1. Three-point inequality. From the previous section we can assume that f = e−V ,
where V is two-piece affine and non-decreasing on an interval [0, L]. In fact by scale invariance
we can assume that we have the following parametrization of our function

g(t) = e−
t
a1[−ax,0](t) + e−

t
b1[0,−yb](t), f =

g

c
, c =

∫
g = a(ex − 1)− b(ey − 1),

where
a ≥ b > 0, x ≥ 0, y ≤ 0.

Then f is a probability density and we have∫
xg(x)dx = a2 (ex(1− x)− 1)− b2 (ey(1− y)− 1)

and ∫
x2g(x)dx = a3

(
ex
(
x2 − 2x+ 2

)
− 2
)
− b3

(
ey
(
y2 − 2y + 2

)
− 2
)
.

Also

−
∫

g log g = a (ex(1− x)− 1)− b(ey(1− y)− 1).

We want to prove the inequality

−
∫

f log f ≥ 1

2
logVar(f) + 1.

This is
e−2

∫
f log f ≥ e2Var(f).

In terms of g

e−2e−2
∫ g

c
log g

c ≥ 1

c

∫
x2g(x)dx− 1

c2

(∫
xg(x)dx

)2

.

We have
e−2e−2

∫ g
c
log g

c = e−2e−
2
c

∫
g log g+2 log c = e−2c2e−

2
c

∫
g log g,

so after multiplying both sides by c2 we want to prove

e−2c4e−
2
c

∫
g log g ≥ c

∫
x2g(x)dx−

(∫
xg(x)dx

)2

.
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Observe that

e−2e−
2
c

∫
g log g = exp

(
2
a (ex(1− x)− 1)− b(ey(1− y)− 1)

a(ex − 1)− b(ey − 1)
− 2

)
= exp

(
2

−axex + byey

a(ex − 1)− b(ey − 1)

)
.

Our goal is therefore to prove

c4 exp

(
2

−axex + byey

a(ex − 1)− b(ey − 1)

)
≥ c

∫
x2g(x)dx−

(∫
xg(x)dx

)2

.

Equivalently

(a(ex − 1)− b(ey − 1))4 exp

(
−2

aexx− beyy

a(ex − 1)− b(ey − 1)

)
≥ (a(ex − 1)− b(ey − 1))

(
a3
(
ex
(
x2 − 2x+ 2

)
− 2
)
− b3

(
ey
(
y2 − 2y + 2

)
− 2
))

−
(
a2 (ex(1− x)− 1)− b2 (ey(1− y)− 1)

)2
.

The inequality is invariant under (a, b) → (ta, tb) and therefore we can assume that b = 1
and a ≥ 1. Let us define the function

G(c, x, y) = (c(ex − 1)− (ey − 1))4 exp

(
−2

cexx− eyy

c(ex − 1)− (ey − 1)

)
− (c(ex − 1)− (ey − 1))

(
c3
(
ex
(
x2 − 2x+ 2

)
− 2
)
−
(
ey
(
y2 − 2y + 2

)
− 2
))

+
(
c2 (ex(1− x)− 1)− (ey(1− y)− 1)

)2
.

Our goal is to prove that G(c, x, y) ≥ 0 for x ≥ 0, y ≤ 0 and c ≥ 1.

4.2. Fifth derivative. The first crucial observation of the proof is that ∂5G
∂c5

has a sign. We
have the following lemma.

Lemma 4.1. For a positive integer n and some real numbers A,B,C,D let hn(t) = (At +

B)n−1e
Ct+D
At+B . Then

h(n)n (t) =
(BC −AD)n

(At+B)n+1
e

Ct+D
At+B .

Proof. Taylor expanding the exponent and using Leibniz rule under the sum we get

h(n)n (t) =

( ∞∑
k=0

1

k!
(Ct+D)k(At+B)n−1−k

)(n)

=

( ∞∑
k=n

1

k!
(Ct+D)k(At+B)n−1−k

)(n)

=
∞∑
k=n

1

k!

n∑
j=0

(
n

j

)
CjAn−j(Ct+D)k−j(At+B)j−k−1 k!

(k − j)!
· (k − j)!

(k − n)!
(−1)n−j

=
n∑

j=0

(
n

j

)
CjAn−j(−1)n−j

∞∑
k=0

(Ct+D)k+n−j(At+B)j−k−n−1

=

n∑
j=0

(
n

j

)
CjAn−j(−1)n−j(Ct+D)n−j(At+B)j−n−1e

Ct+D
At+B

= e
Ct+D
At+B (At+B)−(n+1)

n∑
j=0

(
n

j

)
[C(At+B)]j [−A(Ct+D)]n−j

= e
Ct+D
At+B (At+B)−(n+1)[C(At+B)−A(Ct+D)]n

= e
Ct+D
At+B (At+B)−(n+1)(CB −AD)n.
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□

Applying this lemma with

A = ex − 1, B = −(ey − 1), C = −2xex, D = 2yey

we get

∂5G

∂c5
=

32 (ex+y(x− y)− exx+ eyy)
5
e
−2 cexx−eyy

c(ex−1)−(ey−1)

(c (ex − 1)− (ey − 1))6
.

To prove that this is non-positive one has to show that exx − eyy − ex+y(x − y) ≥ 0. For
x = 0 we have equality, thus it is enough to show positivity of the derivative in x, namely
ex(x+ 1)− ex+y(x− y + 1) ≥ 0 for x ≥ 0. Equivalently x+ 1− ey(x− y + 1) ≥ 0. For y = 0
we have equality and the derivative in y is −ey(x − y), which is clearly non-positive. Thus
the inequality holds for y ≤ 0.

4.3. From G(5) to G. By G(j) we denote the jth derivative of G(c, x, y) in c. We claim that
in order to show that G(c, x, y) ≥ 0 it is enough to prove the following inequalities

G(4)(∞, x, y) ≥ 0, G(3)(1, x, y) ≥ 0, G(2)(1, x, y) ≥ 0, G(1)(1, x, y) ≥ 0, G(1, x, y) ≥ 0.

Indeed, the first inequality together with G(5)(c, x, y) ≤ 0 implies that G(4)(c, x, y) ≥ 0. This

together with G(3)(1, x, y) ≥ 0 implies that G(3)(c, x, y) ≥ 0. Repeating the argument based
on the above list of inequalities finishes the argument. The rest of the proof is a verification
of these inequalities.

4.4. Crucial technical bound. The inequalities G(j)(1, x, y) ≥ 0 can always be written in
the form

(7) e2
eyy−exx
ex−ey Aj(x)−Bj(x) ≥ 0,

where Aj and Bj are polynomials in x, y, ex, ey. The problematic exponential factor makes
the inequalities intractable in the current form. Therefore, one needs to bound the exponent.
The following lemma provides a very tight bound on this expression.

Lemma 4.2. For every x, y ∈ R we have((
e2

6
− 1

)
(x− y)2ex+y + (ex − ey)2 + e2+x+y

)
e−2 exx−eyy

ex−ey ≥ 1

In the proof we shall need the following lemma, see [2].

Lemma 4.3. Suppose the sequence of coefficients of the series
∑∞

n=0 anx
n has sign pattern

(+,−). Then f(x) = 0 for exactly one point x > 0.

Proof. Let f(x) = a0+a1x+ . . .+akx
k − bk+1x

k+1+ . . ., where ai, bi are non-negative. Then
f(x) = 0 is equivalent with

a0
xk

+
a1

xk−1
+ . . .+ ak = bk+1x+ bk+2x

2 + . . .

The left hand side is decreasing and the right hand side is increasing. □

Proof of Lemma 4.2. This inequality is invariant under (x, y) → (x + t, y + t) and therefore
it is enough to consider y = −x in which case we get((

2e2

3
− 4

)
x2 + 4 sinh2(x) + e2

)
e−2x coth(x) ≥ 1

Let us define

f(x) =

((
2e2

3
− 4

)
x2 + 4 sinh2(x) + e2

)
e−2x coth(x)
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It is enough to prove the inequality for x ≥ 0 since the function is even. We will show that
f ′ on R+ has sign pattern (+,−). This together with f(0) = limx→∞ f(x) = 1 will finish the
proof.

We have

e2x coth(x)f ′(x) =
2

3

(
x
(
−12x2 + 2e2

(
x2 + 1

)
+ e2 cosh(2x)

)
sinh2(x)

+

(
12x2 − e2

(
2x2 + 3

))
cosh(x)

sinh(x)

)
.

We therefore have to examine the sign pattern of

x
(
−12x2 + 2e2

(
x2 + 1

)
+ e2 cosh(2x)

)
+
(
12x2 − e2

(
2x2 + 3

))
cosh(x) sinh(x).

This is

x
(
−12x2 + 2e2

(
x2 + 1

)
+ e2 cosh(2x)

)
+

1

2

(
12x2 − e2

(
2x2 + 3

))
sinh(2x)

Taking t = 2x gives

1

2

(
3t2 − e2

(
t2

2
+ 3

))
sinh(t) +

1

2
t

(
−3t2 + 2e2

(
t2

4
+ 1

)
+ e2 cosh(t)

)
This is an odd function whose odd Taylor coefficient in front of tn for n ≥ 5 is equal to

−
2e2(n− 2)!(3(n− 1)!− n!) +

(
e2 − 6

)
(n− 1)!n!

4(n− 2)!(n− 1)!n!
= −2e2(3− n) + (e2 − 6)n(n− 1)

4n!
,

while the lower coefficients vanish. We have to show that the sequence

cn = 2e2(3− n) + (e2 − 6)n(n− 1)

has sign pattern (−,+). Since c5 = −1.7751 < 0 this follows from the fact that cn is a convex
quadratic function of n.

□

Remark. The rest of the proof highly relies on symbolic computational software (Mathemat-
ica) in order to generate relevant formulas without making mistakes. We shall mention the
Mathematica commands that we use in the crucial computations.

In the case of the first, second and third derivative the proof has the following structure.
Let

C(x, y) =

(
e2

6
− 1

)
(x− y)2ex+y + (ex − ey)2 + e2+x+y

be the function from Lemma 4.2. After ensuring that Ai(x, y) ≥ 0, we estimate the exponent
using the above bound. This leads to the inequality

Ai(x, y) + C(x, y)Bi(x, y) ≥ 0.

We then expand the left hand side in x and show that the coefficients Pn(y) in front of xn

n!
are non-negative, which finishes the proof. In the main body of the paper we only show the
nonnegativity of Pn(y) for n ≥ n0, where n0 is some explicit small number. The verification
of Pn(y) for n < n0 is a straightforward algorithmic (but sometimes a bit lengthy) exercise,
we therefore move this part to the appendix.
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5. Nonnegativity of G(1, x, y) and G(4)(∞, x, y)

5.1. The function. We are going to show the inequality

G(1, x, y) = e−2 exx−eyy
ex−ey (ex − ey)4 − (ex − ey)2 + ex+y(x− y)2 ≥ 0.

The inequality is invariant under the scaling (x, y) → (x+ t, y+ t). This is understendable,
since the case c = 1 corresponds to only one slope, so we gain the freedom of shifting.
Therefore we can assume that x+ y = 0. In this case one has to prove

e
−2x ex+e−x

ex−e−x
(
ex − e−x

)4 − (ex − e−x)2 + 4x2 ≥ 0.

This can be rewritten as

f(x) := 4e−2x cothx sinh4 x

sinh2 x− x2
≥ 1.

It is enough to consider only x > 0 since the expression is even. The left hand side converges
to 1 as x → ∞ and therefore it is enough to show that the function is decreasing. We have

f ′(x) = −
8x sinh2(x)e−2x coth(x)

(
x2 − 2 sinh2(x) + x sinh(x) cosh(x)

)(
x2 − sinh2(x)

)2 .

It is therefore enough to show the inequality

x2 + x sinh(x) cosh(x)− 2 sinh2(x) ≥ 0.

This is

2x2 + x sinh(2x)− 4 sinh2(x) ≥ 0.

It is enough to show that the derivative is non-negative for x ≥ 0, that is

4x+ sinh(2x) + 2x cosh(2x)− 4 sinh(2x) ≥ 0.

Therefore for t ≥ 0 one needs to show

g(t) := 2t+ t cosh(t)− 3 sinh(t) ≥ 0.

Since g(0) = g′(0) = g′′(0), it is enough to observe that g′′′(t) = t sinh(t) ≥ 0.

5.2. The fourth derivative. Using the Mathematica command

Limit[D[G[c, x, y], c, c, c, c], c → Infinity]

and simplifying further the expression shows that

G(4)(∞, x, y) = 24
(
e−

2exx
ex−1 (ex − 1)4 + exx2 − (ex − 1)2

)
.

We are going to prove that this is nonnegative. We first observe that

(ex − 1)2 − exx2 ≥ 0, x ≥ 0

The coefficient in front of xn

n! is 2n−n(n−1)−2 > 0 for n ≥ 4, whereas the lower coefficients

vanish. Putting the term (ex − 1)2 − exx2 to the right hand side and taking the logarithm
shows that it is enough to prove

f(x) := −2
exx

ex − 1
+ 4 log(ex − 1)− log((ex − 1)2 − exx2) > 0.

The limit of the left hand side as x → ∞ is equal to 0. Therefore it is enough to show that
the function is decreasing. We have

(ex − 1)2f ′(x) = −
exx

(
2ex

(
x2 + 4

)
+ e2x(x− 4)− x− 4

)
(ex − 1)2 − exx2

.
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It is therefore enough to show that

h(x) := 2ex
(
x2 + 4

)
+ e2x(x− 4)− x− 4 ≥ 0.

First five derivatives of h at x = 0 vanish. We have

h′′(x) = 2ex
(
x2 + 4x+ 2ex(x− 3) + 6

)
It is therefore enough to show that

g(x) := x2 + 4x+ 2ex(x− 3) + 6 ≥ 0.

First three derivatives of g at 0 vanish, so it is enough to observe that g′′′(x) = 2exx ≥ 0.

6. First derivative

We have

G(1)(1, x, y) = e
2eyy−2exx

ex−ey A1(x) +B1(x)

where

A1(x, y) = 2 (ex − ey)2
(
ex+y(x− y − 2)− ex(x+ 2) + 2e2x + ey(y + 2)

)
and

B1(x, y) = ex+y
(
3x2 − 2x(2y + 1) + y2 + 2y + 4

)
+ex

(
x2 + 2x+ 4

)
−4e2x−ey

(
y2 + 2y + 4

)
.

6.1. The factor A1 is non-negative. We now claim that the factor

A(x, y) = ex+y(x− y − 2)− ex(x+ 2) + 2e2x + ey(y + 2)

is non-negative and therefore A1(x, y) ≥ 0. We have A(0, y) = 0 and

e−x∂A

∂x
= ey(x− y − 1)− x+ 4ex − 3.

It is enough to show that this expression is non-negative. For x = 0 we get 1− ey(y+1) ≥ 0
since for y < −1 there is nothing to prove and for y ∈ [−1, 0] we have ey(y + 1) ≤ y + 1 ≤ 1.
Thus it is enough to see that

∂

∂x
(ey(x− y − 1)− x+ 4ex − 3) = ey − 1 + 4ex ≥ 4ex − 1 ≥ 3 > 0.

Using Lemma 4.2 we are left with proving

A1(x, y) + C(x, y)B1(x, y) ≥ 0.

6.2. Taylor expansion. Now, the left hand side L(x, y) can be expanded in x and the
coefficient R[n,y] can be found using Mathematica command

R[n , y ] := SeriesCoefficient[L[x, y], {x, 0, n}].

After manually multiplying by n! (obtaining P[n,y]) and using the command

Collect[P [n, y], {ey, y, 3n, 2n, n}]

to collect terms one gets that the coefficient in front of xn

n! is of the form

Pn(y) = a0 + ey(b0 + b1y + b2y
2) + e2y(c0 + c1y + c2y

2 + c3y
3 + c4y

4) + e3y(d0 + d1y + y2),

where for n ≥ 4 we have

a0(n) = 3n−2(n− 1)n, d0 = 3n(n− 1), d1 = −4n,
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b0(n) = 3n−3
((
21− 2e2

)
n2 +

(
2e2 − 21

)
n− 108e2

)
+

1

27
2n−5

((
9e2 − 54

)
n4 +

(
108− 18e2

)
n3 +

(
351e2 − 1242

)
n2 +

(
1188 + 522e2

)
n+ 3456e2

)
b1(n) = 4

(
e2 − 9

)
3n−2n− 1

3

(
e2 − 6

)
2n−3n

(
n2 + n+ 14

)
b2(n) =

1

3
2n−3

((
e2 − 6

)
n2 +

(
3e2 − 18

)
n+ 16e2 − 120

)
+
(
15− 2e2

)
3n−1

and

c0(n) =

((
5− 2e2

3

)
n2 +

(
2e2

3
− 5

)
n− 4e2

)
+

1

3
2n−5

((
3e2 − 18

)
n4 +

(
132− 22e2

)
n3 +

(
133e2 − 510

)
n2 +

(
396− 210e2

)
n+ 384e2

)
c1(n) =

(
2− e2

3

)
n2 +

(
5e2

3
− 10

)
n− 2e2

+
1

3
2n−3

((
30− 5e2

)
n3 +

(
21e2 − 126

)
n2 +

(
288− 80e2

)
n+ 48e2

)
c2(n) = 2n

((
e2

2
− 3

)
n2 +

(
6− e2

)
n+

5e2

3
− 6

)
+

((
1− e2

6

)
n2 +

(
5e2

6
− 5

)
n− 5e2

3
+ 6

)
c3(n) = −1

6

(
e2 − 6

)
(2n(3n− 2)− 2n+ 2)

c4(n) =
1

6

(
e2 − 6

)
(2n − 1) .

6.3. Signs of the coefficients. We first examine the signs of the coefficients of Pn for n ≥ 4.
Clearly

a0(n) > 0, d0(n) > 0, d1(n) < 0, c3(n) < 0, c4(n) > 0, b1(n) < 0.

We also have

c2(n) ≥ 2n
(
1

2
n2 − 3

2
n+ 6

)
+ (−7 + n+

1

4
n2) ≥ 16

(
1

2
n2 − 3

2
n+ 6

)
+

(
−7 + n− 1

4
n2

)
≥ 7n2 − 23n+ 89 > 0.

Also

c1(n) ≤
(
−14 +

5

2
n− 2

5
n2

)
+ 2n

(
15− 12n+

3

2
n2 − 1

4
n3

)
≤
(
−14 +

5

2
n− 2

5
n2

)
+ 16

(
15− 12n+

3

2
n2 − 1

4
n3

)
= −4n3 +

118n2

5
− 379n

2
+ 226 =

1

5
n2 (118− 20n)− 379n

2
+ 226.

This is obviously negative for n ≥ 6. The case n = 4, 5 is checked directly. We also have

c0(n) ≥
7n2

100
+ 2n

(
n4

25
− 8n3

25
+

49n2

10
− 13n+ 29

)
− 2n

25
− 30

≥ 7n2

100
+ 16

(
n4

25
− 8n3

25
+

49n2

10
− 13n+ 29

)
− 2n

25
− 30

=
1

100

(
64n4 − 512n3 + 7847n2 − 20808n+ 43400

)
.
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We have

64n4 − 512n3 + 7847n2 − 20808n+ 43400 = 64n3(n− 8) + n(7847n− 20808) + 43400.

which is clearly positive for n ≥ 8. The cases n = 4, 5, 6, 7 are checked directly.
We have

b2(n) ≥ 2n
(
n2

20
+

17n

100
− 2

25

)
+

7

100
3n > 0.

Summarizing, we get

c2(n) > 0, c1(n) < 0, c0(n) > 0, b2(n) > 0.

The only coefficient which may not have the correct sign is b0(n). We have

b0(n) ≥ 2n
(

n4

100
− 3n3

100
+

3n2

2
+ 5n+ 29

)
+ 3n

(
23

100
n(n− 1)− 30

)
.

The first term is positive. The second term is positive for n ≥ 12. In fact also b0(11) > 0.
We therefore have

b0(n) > 0, n ≥ 11, b0(n) < 0, 4 ≤ n ≤ 10.

6.4. Positivity of Pn(y) for n ≥ 6. Note that for n ≥ 11 all the coefficients have correct
signs, which implies Pn(y) ≥ 0.

For n = 9, 10 one has Pn(y) ≥ a0(n)+ eyb0(n) ≥ a0(n)+ b0(n) > 0. For n = 6, 7, 8 we keep
more terms

Pn(y) ≥ a0(n) + eyb0(n) + e2yc0(n).

We now have to show that for t ∈ [0, 1] one has a0(n) + tb0(n) + t2c0(n) ≥ 0. It is enough to
observe that the discriminant b0(n)

2 − 4a0(n)c0(n) is negative.

Positivity of Pn(y) for 1 ≤ n ≤ 5 is proved in the Appendix. We discourage the reader
from checking these computations, since they are almost algorithmic. We provide a graph of
these functions of readers convenience.

-7 -6 -5 -4 -3 -2 -1 0

0

1

2

3

4

5

6

1

2

3

4

5

Figure 1. The graphs of 7P1(y), P2(y),
1
3!P3(y),

1
4!P4(y) and

1
5!P5(y).
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7. Second derivative

Using the command

Simplify[D[G[c, x, y], c, c]/.c → 1]

and further simplifying the expressions for A2 and B2 we find

G(2)(1, x, y) = e−2 exx−eyy
ex−ey A2(x, y) +B2(x, y),

where

A2(x, y) =12 (ex − 1)2 (ex − ey)2 + 12 (ex − 1)
(
ex+y(x− y)− exx+ eyy

)
(ex − ey)

+ 4
(
ex+y(x− y)− exx+ eyy

)2
and

B2(x, y) = ex+y
(
6x2 − 4x(y + 2) + 4(y + 2)

)
+ 2ex

(
3x2 + 4x+ 8

)
− 12e2x − 4ey(y + 2)− 4.

7.1. The factor A2 is non-negative. We shall show A2(x, y) > 0 by showing that the first
two terms sum up to something positive. This sum is of the form 12 (ex − 1) (ex − ey)R(x, y),
where

(8) R(x, y) = ex+y(x− y − 1)− ex(x+ 1) + e2x + ey(y + 1).

We have R(0, y) = 0 and using ex ≥ 1 + x

∂R

∂x
= ex (ey(x− y) + 2 (ex − 1)− x) ≥ ex (2 (ex − 1)− x) ≥ exx ≥ 0.

7.2. Taylor expansion. We expand the expression

A2(x, y) + C(x, y)B2(x, y)

in x. The coefficient in front of 1
n!x

n is

Pn(y) = a0 + ey(b0 + b1y + b2y
2) + e2y(c0 + c1y + c2y

2 + c3y
3) + e3y(d0 + d1y),

where for n ≥ 4 one has

a0(n) =
2

3
3n
(
n2 − 3n− 12

)
+ 2n

(
n2 + 5n+ 8

)
and

d0(n) = 6n2 − 14n+ 8

d1(n) = −4(n− 1)

b0(n) =
1

3

((
12− 2e2

)
n2 +

(
2e2 − 48

)
n− 12e2 − 48

)
+ 3n−2

((
18− 2e2

)
n2 +

(
2e2 − 6

)
n− 108e2 + 72

)
+

1

3
2n−4

((
3e2 − 18

)
n4 +

(
60− 10e2

)
n3 +

(
113e2 − 486

)
n2 +

(
60 + 86e2

)
n+ 768e2 + 384

)
b1(n) =

1

3
2n−2

(
−3
(
e2 − 6

)
n3 +

(
e2 − 6

)
n2 − 6

(
5e2 − 38

)
n+ 240

)
+

4

3

((
e2 − 12

)
n− 9

)
+

4

3
3n
((
e2 − 7

)
n− 6

)
b2(n) =

1

3

(
e2 − 6

)
2n−2

(
3n2 + 5n+ 32

)
+ 2

(
6− e2

)
3n +

(
4− 2e2

3

)



MINIMUM ENTROPY OF A LOG-CONCAVE VARIABLE WITH FIXED VARIANCE 17

and moreover

c0(n) =
1

3
2n−4

((
3e2 − 18

)
n4 +

(
156− 26e2

)
n3 +

(
145e2 − 534

)
n2 +

(
492− 314e2

)
n+ 384e2 − 768

)
+

(
14− 4e2

3

)
n2 +

(
6 +

4e2

3

)
n− 8e2 + 8

c1(n) =
1

3
2n−1

((
12− 2e2

)
n3 +

(
11e2 − 66

)
n2 +

(
102− 29e2

)
n+ 24e2 + 24

)
+

(
4− 2e2

3

)
n2 +

(
10e2

3
− 12

)
n− 4e2 − 16

c2(n) =
1

3
2n−2

((
7e2 − 42

)
n2 +

(
138− 23e2

)
n+ 16e2 − 48

)
+

(
4e2

3
− 8

)
n− 4e2

3

c3(n) =
1

3

(
6− e2

)
2n(n− 2)− 2e2

3
+ 4

We have P1 ≡ 0.

7.3. Signs of the coefficients. It is straightforward to see that

a0(n) > 0, d0(n) > 0, d1(n) < 0, c3(n) < 0.

We have

c2(n) ≥ 2n
(
0.8n2 − 3n+ 5

)
+ n− 10 > 16

(
0.8n2 − 3n+ 5

)
+ n− 10 > 0.

We now claim that c1(n) < 0. We have

c1(n) < −0.9n2 + 2n
(
−0.4n3 + 2.6n2 − 18n+ 34

)
+ 13n− 45.

It is easy to prove that −0.4n3 + 2.6n2 − 18n + 34 < 0 for n ≥ 4 and thus we can bound
2n ≥ 16 and get

c1(n) < −6.4n3 + 40.7n2 − 275n+ 499 < 0.

Finally let us show that c0(n) > 0. We have

c0(n) ≥ (4n2 + 15n− 52) + 2n
(
0.08n4 − n3 + 11n2 − 39n+ 43

)
> 0.

since both terms are positive for n ≥ 4.
We shall now show that b0(n) > 0 for n ≥ 12. We can assume that n ≥ 21, since the

remaining cases can be checked directly. Bounding crudely

b0(n) ≥ −2nn3 + 3n
(
0.3n2 − 81

)
− n2 − 12n− 46 ≥ −2nn3 + 3n

(
0.3n2 − 81

)
− 3n2

≥ −2nn3 +
1

9
3nn2 − 3n2 ≥ −2nn3 +

1

10
3nn2 =

1

10
n22n

((
3

2

)n

− 10n

)
> 0.

7.4. Positivity of Pn(y) for n ≥ 7. From the signs of ci and di we see that

Pn(y) ≥ a0 + ey(b0 + b1y + b2y
2).

We are going to show that

(9) a0 + ey(b0 + b1y + b2y
2) ≥ 0 for n ≥ 7.

We first assume that 8 ≤ n ≤ 11, in which case we write

a0 + ey(b0 + b1y + b2y
2) ≥ a0 − |b0| − e−1|b1| −

1

4
e−2|b2| > 0.

where the last inequality can be verified directly. Now assume that n ≥ 12. In this case
b0(n) > 0 and we have

a0 + ey(b0 + b1y + b2y
2) ≥ a0 + ey(b1y + b2y

2) ≥ a0 − e−1|b1| −
1

4
e−2|b2| > 0.



18 JAMES MELBOURNE, PIOTR NAYAR, AND CYRIL ROBERTO

Observe that

|b1(n)| ≤ 2n
(
n3 + n2 + n+ 20

)
+ 3nn+ 7n+ 12 ≤ 2n · 4n3 + 3nn+ 2nn3 = 2n · 5n3 + 3nn

and

|b2(n)| ≤ 2n
(
0.35n2 + 0.6n+ 4

)
+ 3 · 3n + 1 ≤ 2nn2 + 3 · 3n.

Therefore

e−1|b1|+
1

4
e−2|b2| ≤ 2n · 2n3 + 3nn.

We also have

a0(n) ≥
2

3
3n(n2 − 3n− 12) ≥ 3n−1n2.

It is therefore enough to show that for n ≥ 12 one has

3n−1n2 ≥ 2n · 2n3 + 3nn.

Note that

3n−1n2 − 3nn ≥ 1

4
n23n ≥ 2n · 2n3,

since 8n < (32)
n for n ≥ 12.

Let us now prove (9) for n = 7. One has

1 + ey
(
b0
a0

+
b1
a0

y +
b2
a0

y2
)

≥ 1 + ey
(
−1− 3

5
y − 1

10
y2
)
.

Since the right hand side vanishes for y = 0, it is enough to show that it is decreasing. This
is true since the derivative is equal to − 1

10e
y(y + 4)2.

We have P0 ≡ P1 ≡ 0. Positivity of Pn(y) for 2 ≤ n ≤ 5 is proved in the Appendix. We
provide a graph of these functions of readers convenience.
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Figure 2. The graphs of P2(y),
1
3!P3(y),

1
4!P4(y),

1
5!P5(y) and

1
6!P6(y).
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8. Third derivative

Using the command
Simplify[D[G[c, x, y], c, c, c]/.c → 1]

and further simplifying the expressions, we find that

G(3)(1, x, y) = e−2 exx−eyy
ex−ey

(
S(x, y) + 24

(ex − 1)T (x, y)2

ex − ey
− 8

T (x, y)3

(ex − ey)2

)
+ U(x, y),

where

S(x, y) = 12 (ex − 1)2
(
ex+y(3x− 3y − 2)− ex(3x+ 2) + 2e2x + ey(3y + 2)

)
T (x, y) = exx− eyy − ex+y(x− y)

U(x, y) = −6
((
x2 − 2x+ 2

) (
−ex+y

)
− ex

(
3x2 + 2x+ 6

)
+ 4e2x + 2ey + 2

)
.

8.1. Preparatory bound. Our first step is to show that

(ex − 1)T (x, y)2

ex − ey
≥ T (x, y)3

(ex − ey)2
.

This is equivalent to
(ex − 1)(ex − ey) ≥ T (x, y),

which simplifies to

R(x, y) = ex+y(x− y − 1)− ex(x+ 1) + e2x + ey(y + 1) ≥ 0.

The function R appeared in (8) and the inequality R(x, y) ≥ 0 was already verified.
It is therefore enough to show that

e−2 exx−eyy
ex−ey

(
S(x, y) + 16

(ex − 1)T (x, y)2

ex − ey

)
+ U(x, y) ≥ 0

or equivalently

e−2 exx−eyy
ex−ey A3(x, y) +B3(x, y) ≥ 0

with

A3(x, y) = S(x, y)(ex − ey) + 16(ex − 1)T (x, y)2, B3(x, y) = U(x, y)(ex − ey).

8.2. The factor A3 is non-negative. We now show that the first term in the above ex-
pression is positive, which is needed to use our standard bound on the exponent. Since
A3(x, y) = 4(ex − 1)V (x, y), where

V (x, y) = 4
(
exx− eyy − ex+y(x− y)

)2
+ 3 (ex − 1) (ex − ey)

(
ex+y(3x− 3y − 2)− ex(3x+ 2) + 2e2x + ey(3y + 2)

)
,

thus reduces to the inequality V (x, y) ≥ 0. We shall expand V (x, y) in x and show that the
coefficients are non-negative. The coefficient in front of xn

n! is of the form

Qn(y) = α0 + ey(β0 + β1y) + e2y(γ0 + γ1y + γ2y
2)

with

α0(n) = 2n
(
n2 +

7n

2
+ 6

)
− 3n+1(n+ 4) + 6 · 4n

β0(n) = 2n
(
−2n2 + 2n+ 24

)
−9n+3n(3n−12)−12, β1(n) = −8n−3n+2+2n(4n+18)−9

and

γ0(n) = 2n
(
n2 − 11n

2
+ 6

)
+9n−12, γ1(n) = 8n+2n(9−4n)−18, γ2(n) = 2n+2−8,
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whereas Q0 and Q1 vanish. It is straightforward to check that

α0(n) > 0, β1(n) < 0, γ0(n) > 0, γ2(n) > 0.

It is also easy to show that γ1(n) < 0 if and only if n ≥ 3. We show that β0 > 0 if and only
if n ≥ 5. For n ≥ 11 we have

β0(n) ≥ −2 · 2nn2 + 3 · 3n

where the last inequality can be proved by induction. The remaining case 2 ≤ n ≤ 10 are
proved directly.

Now, for n ≥ 5 all the terms have correct sign, so Qn(y) in nonnegative. We also have

Q2(y) = e2y
(
8y2 + 2y + 2

)
+ ey(−2y − 4) + 2 ≥ 2e2y(y + 1)− 2ey(y + 2) + 2

It is therefore enough to prove the inequality

e2y(y + 1)− ey(y + 2) + 1 ≥ 0.

If y < −2 then the second terms is positive and the first term is already smaller in absolute
value than 1, so the inequality holds. If y ∈ [−2, 0] then we shall show that the function
is decreasing. The derivative is ey (−y + ey(2y + 3)− 3) so it is enough to show that −y +
ey(2y + 3) < 3. The second derivative of the left hand side is ey(2y + 7) > 0, so by convexity
it is enough to verify the inequality for y = −2, 0.

We have

Q3(y) = e2y
(
24y2 − 18y + 3

)
+ ey(−36y − 24) + 21 ≥ 3e2y − 24ey + 21 = 3(e2y − 8ey + 7).

Let t = ey ∈ [0, 1]. We want to show t2 − 8t+ 7 = (t− 1)(t− 7) > 0, which is true. Finally

Q4(y) = e2y
(
56y2 − 98y + 24

)
+ ey(−226y − 48) + 168 > −48ey + 168 ≥ −48 + 168 > 0.

After using the bound on the exponent, we are left with proving

A3(x, y) + C(x, y)B3(x, y) ≥ 0.

8.3. Taylor expansion. We expand

L(x, y) := A3(x, y) + C(x, y)B3(x, y)

in x using the command

R[n , y ] := SeriesCoefficient[Expand[L[x, y]], {x, 0, n}].

The coefficient in front of xn

n! is of the form

Pn(y) = a0 + ey(b0 + b1y + b2y
2) + e2y(c0 + c1y + c2y

2) + e3y(d0 + d1y + d2y
2) + e4ye0,

for n ≥ 2 (we have P0 = P1 = P2 ≡ 0), where

a0(n) = 4n
(
9n2

8
− 57n

8
− 36

)
+ 3n

(
16n2

9
+

200n

9
+ 60

)
+ 2n

(
−4n2 − 14n− 24

)
e0(n) = −6n2 + 18n− 12,
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whereas the coefficients bi are given by

b0(n) = 2n
((

11− e2

2

)
n2 +

(
e2

2
− 29

)
n− 12e2 − 108

)
+ 4n

((
15

8
− e2

4

)
n2 +

(
33

8
+

e2

4

)
n− 24e2 + 36

)
+ 3n

((
e2

27
− 2

9

)
n4 +

(
8

9
− 4e2

27

)
n3 +

(
77e2

27
− 44

3

)
n2 +

(
34e2

27
− 10

)
n+ 36e2 + 24

)
+ (36n+ 48)

b1(n) = 3n
((

4

3
− 2e2

9

)
n3 +

(
2e2

9
− 4

3

)
n2 +

(
104

3
− 4e2

)
n+ 108

)
+ 2n

((
2e2 − 44

)
n− 108

)
+ 4n

((
2e2 − 12

)
n− 36

)
+ (32n++36)

b2(n) = 3n
((

e2

3
− 2

)
n2 +

(
e2

3
− 2

)
n+ 6e2 − 36

)
+
(
12− 2e2

)
2n +

(
24− 4e2

)
4n,

the coefficients ci equal to

c0(n) =
((
2e2 − 12

)
n2 +

(
−24− 2e2

)
n+ 12e2 + 36

)
+ 2n

((
9

8
− 3e2

16

)
n4 +

(
7e2

8
− 21

4

)
n3 +

(
235

8
− 125e2

16

)
n2 +

(
115

4
+

9e2

8

)
n− 48e2 + 72

)
+ 3n

((
e2

81
− 2

27

)
n4 +

(
8

9
− 4e2

27

)
n3 +

(
137e2

81
− 172

27

)
n2 +

(
50

9
− 50e2

9

)
n+ 36e2 − 84

)
c1(n) = 2n

((
3e2

4
− 9

2

)
n3 +

(
15

2
− 5e2

4

)
n2 +

(
17e2

2
− 19

)
n− 108

)
+ 3n

((
4

9
− 2e2

27

)
n3 +

(
2e2

3
− 4

)
n2 +

(
152

9
− 124e2

27

)
n+ 36

)
+
(
−8− 4e2

)
n+ 108

c2(n) = 2n
((

9

2
− 3e2

4

)
n2 +

(
3

2
− e2

4

)
n− 8e2

)
+ 3n

((
e2

9
− 2

3

)
n2 +

(
14

3
− 7e2

9

)
n+ 6e2 − 20

)
+
(
36 + 2e2

)
and finally the coefficients di equal to

d0(n) =
((
2e2 − 30

)
n2 +

(
18− 2e2

)
n+ 12e2 − 72

)
+ 2n

((
3

8
− e2

16

)
n4 +

(
5e2

8
− 15

4

)
n3 +

(
129

8
− 55e2

16

)
n2 +

(
71e2

8
− 123

4

)
n− 12e2 + 60

)
d1(n) = 2n

((
e2

4
− 3

2

)
n3 +

(
21

2
− 7e2

4

)
n2 +

(
7e2

2
− 21

)
n

)
+
(
24− 4e2

)
n

d2(n) = 2n
((

3

2
− e2

4

)
n2 +

(
5e2

4
− 15

2

)
n− 2e2 + 12

)
+
(
2e2 − 12

)
8.4. Signs of c0, c1, c2 for n ≥ 4. Let n ≥ 4. We show the inequalities

c0(n) > 0, c1(n) < 0, c2(n) > 0.

We start with c0(n). We have

c0(n) > (2n2 − 39n+ 124) + 2n
(
−0.27n4 + n3 − 29n2 + 37n− 283

)
+ 3n

(
0.01n4 − 0.21n3 + 6n2 − 36n+ 182

)
.
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If we now assume that n ≥ 25 then we can further estimate

2n2 − 39n+ 124 > 0, −0.27n4 + n3 − 29n2 + 37n− 283 > −0.27n4 − 29n2 − 283 > −n4

and

6n2 − 36n+ 182 > 0, 0.01n4 − 0.21n3 > 0.001n4

thus

c0(n) > −2nn4 + 3n · 0.001n4 = n4(3n · 10−3 − 2n) > 0.

The remaining cases are checked directly.
We now show that c1(n) < 0. For n ≥ 23 we have

c1(n) < 3n
(
−0.1n3 + n2 − 17n+ 36

)
+ 2n

(
1.05n3 − n2 + 44n− 108

)
− 37n+ 108

< 2n
(
1.05n3 + 44n

)
+ 3n

(
−0.1n3 + n2 + 36

)
< 2n · 2n3 + 3n(−0.1n3 + 2n2)

< 2n · 2n3 + 3n(−0.1n3 + 2n2) < 2n · 2n3 − 3n · 0.01n3 = −n3(3n10−3 − 2 · 2n) < 0.

The cases 4 ≤ n ≤ 23 are checked directly.
Finally, we show that c2(n) > 0. We can assume n ≥ 9 since other cases can be checked

directly. We have

c2(n) > 3n
(
0.15n2 − 1.1n+ 24

)
− 2n

(
1.05n2 + 0.35n+ 60

)
> 3n · 0.1n2 − 2n · 2n2

= n2(3n · 0.1− 2n · 2) > 0.

8.5. Bounding terms containing high powers of ey. We are going to obtain a useful
bound on Pn(y) by showing that

e2y(c0 + c1y + c2y
2) + e3y(d0 + d1y + d2y

2) + e4ye0 ≥ 0.

Since c1(n) < 0 and c2(n) > 0, it is enough to show that

c0 + ey(d0 + d1y + d2y
2) + e2ye0 ≥ 0

for all n ≥ 4. Since ey ≤ 1, |eyy| < 1 and e2yy2 < 1 it is enough to show that

(10) c0 − (|d0|+ |d1|+ |d2|+ |e0|) > 0.

We have

|d0| ≤ 16n2 + 4n+ 17 + 2n
(
0.1n4 + n3 + 10n2 + 35n+ 29

)
< 40n2 + 2n · 2n4 < 2n · 3n4.

Moreover

|d1| < 2n
(
0.35n3 + 2.5n2 + 5n

)
+ 6n < 2n · 2n3 ≤ 1

2
· 2n · n4

and

|d2| < 2n
(
0.35n2 + 2n+ 3

)
+ 3 < 2n · 2n2 <

1

8
· 2nn4.

Also

|e0| < 6n2 + 18n+ 12 < 12n2 <
1

4
2nn4.

As a result

|d0|+ |d1|+ |d2|+ |e0| < 2n · 4n4

We have already seen that for n ≥ 25 one has

c0 ≥ n4(3n · 10−3 − 2n).

Therefore it is enough to check that 3n ·10−3 > 5·2n, which is true for n ≥ 25. For 4 ≤ n ≤ 24
the inequality (10) is also valid.
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8.6. Positivity of Pn(y) for n ≥ 8. According to the previous subsection, it is enough to
prove that

a0 + ey(b0 + b1y + b2y
2) ≥ 0.

It turns out that for n ≥ 9 the inequality follows from the trivial bound

a0 + ey(b0 + b1y + b2y
2) ≥ a0 − (|b0|+ e−1|b1|+ 4e−2|b2|).

The right hand side is positive for 9 ≤ n ≤ 25. We have

a0(n) > 3n
(
n2 + 22n+ 60

)
+ 4n

(
1.125n2 − 8n− 36

)
− 2n

(
4n2 + 14n+ 24

)
.

Moreover

|b0| ≤ 4n
(
0.028n2 + 6n+ 142

)
+ 2n

(
8n2 + 26n+ 197

)
+ 3n

(
0.06n4 + 0.3n3 + 7n2 + n+ 291

)
+ 36n+ 48

|b1| ≤ 3n
(
0.4n3 + 0.4n2 + 6n+ 108

)
+ 32n+ 4n(3n+ 36) + 2n(30n+ 108) + 36

|b2| ≤ 3n
(
0.5n2 + 0.5n+ 9

)
+ 3 · 2n + 6 · 4n.

Putting these crude bounds together gives

a0 − (|b0|+ e−1|b1|+ 4e−2|b2|) ≥ a0 − (|b0|+ |b1|+ |b2|)
≥ 4n

(
1.097n2 − 17n− 220

)
+ 2n

(
−12n2 − 70n− 332

)
+ 3n

(
−0.06n4 − 0.7n3 − 6.9n2 + 14.5n− 348

)
− 68n− 84.

If n ≥ 26 then

1.097n2 − 17n− 220 ≥ 0.1n2, 12n2 + 70n+ 332 < 16n2, 68n+ 84 < 2nn2

and
0.06n4 + 0.7n3 + 6.9n2 − 14.5n+ 348 < 0.1n4.

Using these estimates we get a lower bound

4n · 0, 1n2 − 2n · 16n2 − 3n · 0.1n4 − 2nn2 = n2(4n · 0.1− 2n · 17− 3n · 0.1n2)

Note that
4n · 0.1− 2n · 17− 3n · 0.1n2 ≥ 4n · 0.1− 3n · 0.2n2 > 0.

It remains to prove the inequality in the case n = 8, in which case

1 + ey
(
b0
a0

+
b1
a0

y +
b2
a0

y2
)

> 1− ey(1 + y + 0.12y2).

The right hand side is clearly positive for, say, y < −5. The derivative of the right hand side
is ey(−0.12y2 − 1.24y − 2.) which on the interval [−5, 0] has sign pattern (+,−) and thus it
is enough to check the inequality for y = −5 and y = 0.

We have P0 ≡ P1 ≡ P2 ≡ 0. Positivity of Pn(y) for 3 ≤ n ≤ 7 is proved in the Appendix.
Below we provide a graph of these functions.
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9. Appendix

9.1. Functions Pn(y) for the first derivative.

9.1.1. Positivity of P1(y). We have

6e−yP1(y) =
[(
18− 2e2

)
y2 − 24y − 12e2

]
+ ey

[(
e2 − 6

)
y4 +

(
12− 2e2

)
y3 +

(
8e2 − 24

)
y2 +

(
48− 12e2

)
y + 12e2

]
+ e2y

[
6y2 − 24y

]
.

The first step is to forget the positive terms including eyy4 and eyy3, which leads to

6e−yP1(y) ≥
[(
18− 2e2

)
y2 − 24y − 12e2

]
+ ey

[(
8e2 − 24

)
y2 +

(
48− 12e2

)
y + 12e2

]
+ e2y

[
6y2 − 24y

]
.

Case 1: y < −3. In this case the first bracket is positive and thus the whole function is

positive. Case 2: y ∈ [−2
5 , 0]. In this case we use the bound et ≥ 1 + t+ t2

2 + t3

6 which gives

6e−yP1(y) ≥
2

3
y3
((
6 + 2e2

)
y2 +

(
3e2 − 36

)
y + 6e2 − 54

)
.

We have(
6 + 2e2

)
y2+

(
3e2 − 36

)
y+6e2−54 ≤

(
6 + 2e2

) 4

25
+
(
3e2 − 36

)(
−2

5

)
+6e2−54 = −0.808033 < 0.

Case 3: y ∈ [−3,−2
5 ]. The derivative of the right hand side in the above estimate is

4
(
−6ey

(
y2 − 2

)
+ 3e2y

(
y2 − 3y − 2

)
− e2y + ey+2(2y + 1)y + 9y − 6

)
and therefore its absolute value is bounded by

4
(
6
(
y2 + 2

)
+ 3

(
y2 + 3|y|+ 2

)
+ e2|y|+ e2(2|y|+ 1)|y|+ 9|y|+ 6

)
≤ 1500.

Therefore it is enough to show that for yk = −3 + (−2
5 + 3) k

50000 for k = 0, . . . , 50000 the

values of our lower bound are greater than 1
10 , which is the case.

9.1.2. Positivity of P2(y). We have

P2(y) = e3y
(
y2

2
− 4y + 3

)
+ ey

((
15

2
− 5e2

6

)
y2 +

(
2e2

3
− 16

)
y − 5e2 + 1

)
+ e2y

((
e2

4
− 3

2

)
y4 +

(
7− 7e2

6

)
y3 +

(
3e2 − 12

)
y2 +

(
20− 17e2

3

)
y + 5e2 − 5

)
+ 1.

We can again neglect positive terms

e2y
((

e2

4
− 3

2

)
y4 +

(
7− 7e2

6

)
y3
)

and ey
(
15

2
− 5e2

6

)
y2 and e3y

y2

2

getting a bound

P2(y) ≥ e2y
((

3e2 − 12
)
y2 +

(
20− 17e2

3

)
y + 5e2 − 5

)
+ey

((
2e2

3
− 16

)
y − 5e2 + 1

)
+e3y(3−4y)+1.

Case 1. y < −4. In this case
(
2e2

3 − 16
)
y − 5e2 + 1 > 0 and the rest of the terms are also

positive.
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Case 2. y ∈ [− 1
10 , 0]. In this case we can assume that the bracket multiplied by ey is

negative, since otherwise there is nothing to prove. For this term we are going to use the

bound ey ≤ 1 + y + y2

2 and for the other exponents the bound et ≥ 1 + t+ t2

2 + t3

6 , yielding

P2(y) ≥
y2

18

((
72e2 − 288

)
y3 +

(
−276− 28e2

)
y2 +

(
30e2 − 57

)
y − 3e2 + 72

)
.

The polynomial(
72e2 − 288

)
y3 +

(
−276− 28e2

)
y2 +

(
30e2 − 57

)
y − 3e2 + 72

clearly increases with y (checking the signs of the coefficients) at thus it is enough to show
that it is positive for y = 1

10 , which is the case.

Case 3. y ∈ [−4,− 1
10 ]. The derivative of the estimate is

−1

3
ey
(
6ey

(
12y2 − 8y − 5

)
+ ey+2

(
−18y2 + 16y − 13

)
+ 48y + 3e2y(12y − 5) + e2(13− 2y) + 45

)
and thus its absolute value can be upper bounded by

1

3

(
6
(
12y2 + 8|y|+ 5

)
+ e2

(
18y2 + 16|y|+ 13

)
+ 48|y|+ 3(12|y|+ 5) + e2(13 + 2|y|) + 45

)
which is maximized for y = −4 and does not exceed 1600. Therefore it is enough to show
that for yk = −4 + (− 1

10 + 4) k
106

for k = 0, . . . , 106 the values of our lower bound are greater
than 0.02, which is the case.

9.1.3. Positivity of P3(y). We have

P3(y) = 3 + e3y
(
y2

6
− 2y + 3

)
+ ey

((
59

6
− 10e2

9

)
y2 +

(
5e2

3
− 28

)
y − 7e2 + 7

)
+ e2y

((
7e2

36
− 7

6

)
y4 +

(
26

3
− 13e2

9

)
y3 +

(
37e2

9
− 20

)
y2 +

(
28− 23e2

3

)
y + 7e2 − 13

)
.

We can neglect all the terms having powers of y greater than 1. We get

P3(y) ≥ e3y (−2y + 3)+ey
((

5e2

3
− 28

)
y − 7e2 + 7

)
+e2y

((
28− 23e2

3

)
y + 7e2 − 13

)
+3.

Case 1. y < −3. In this case the bracket multiplied by ey is positive and there is nothing to
prove.

Case 2. y ∈ [−3, 0]. We shall show that the bound is decreasing on [−3, 0]. The derivative
is

−1

3
ey
(
84y + 3e2y(6y − 7)− 6ey(28y + 1) + ey+2(46y − 19) + e2(16− 5y) + 63

)
.

It is therefore enough to show that

84y + 3e2y(6y − 7)− 6ey(28y + 1) + ey+2(46y − 19) + e2(16− 5y) + 63

is positive. The derivative of this expression is

12e2y(3y − 2)− 6ey(28y + 29) + ey+2(46y + 27)− 5e2 + 84

which in absolute value is bounded by

12(3|y|+ 2) + 6(28|y|+ 29) + e2(46|y|+ 27) + 5e2 + 84 < 2200.

Therefore it is enough to show that for yk = −3 k
1500 for k = 0, . . . , 1500 the values of our

lower bound are greater than 0.02, which is the case.
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9.1.4. Positivity of P4(y). We have the bound

ey(−357y − 894) + e2y(786− 569y) + 108

and the first term is positive for y < −2.6. Assume y ∈ [−2.6, 0]. It is enough to show that
this function is decreasing on this interval. Its derivative is

−ey (357y + ey(1138y − 1003) + 1251)

and thus it is enough to show that

357y + ey(1138y − 1003) + 1251 ≥ 0

Dividing by 357 and estimating gives the goal

y + ey
(
7y

2
− 3

)
+

7

2
≥ 0 y ∈ [−2.6, 0]

The derivative of this function is 1
2e

y(7y+1)+1 whose absolute value can be upper bounded

by 7|y|
2 + 3

2 < 10. Therefore it is enough to show that for yk = −2.6 k
3000 for k = 0, . . . , 3000

the values of our lower bound are greater than 0.001, which is the case.

9.1.5. Positivity of P5(y). We have

P5(y) ≥ ey(−1277y − 2758) + 2525e2y + 540

The first term is positive for y < −2.2. Let us therefore assume that y ∈ [−2.2, 0]. The
derivative of the estimate is

ey (−1277y + 5050ey − 4035)

So its absolute value is upper bounded by

1277|y|+ 5050 + 4035 ≤ 12000

Therefore it is enough to show that for yk = −2.2 k
300 for k = 0, . . . , 300 the values of our

lower bound are greater than 100, which is the case.

9.2. Functions Pn(y) for the second derivative.

9.2.1. Positivity of P2(y). We have

P2(y) =
2

3
ey
((
6− e2

)
y2 − 18y − 6e2 − 6

)
+

2

3
e2y
((
6− e2

)
y3 +

(
6 + e2

)
y2 +

(
24− 6e2

)
y + 6e2 − 6

)
+ 4e3y(1− y) + 4

Case 1: y < −3. Note that

P2(y) ≥
2

3
ey
((
6− e2

)
y2 − 18y − 6e2 − 6

)
+ 4 ≥ 4− ey(y2 + 34).

To prove that this is positive it is enough to observe that it is positive for y = −3 and then
show that the expression is decreasing. Equivalently, we want to show that ey(y2 + 34) is
increasing. The derivative is ey

(
y2 + 2y + 34

)
= ey

(
(y + 1)2 + 33

)
> 0

Case 2: y ∈ [−1
2 , 0]. It is enough to show that the derivative on this interval is negative.

The derivative is of the form −2
3e

yR(y), where

R(y) = (
(
e2 − 6

)
y2 +

(
6 + 2e2

)
y + 6e2 + 24) + e2y(18y − 12)

+ ey(
(
2e2 − 12

)
y3 +

(
e2 − 30

)
y2 +

(
10e2 − 60

)
y − 6e2 − 12).
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Using estimates et ≤ 1 + t+ t2

2 for t < 0 we get the bound

R(y) ≥ 1

2

(
2e2 − 12

)
y5 +

1

2

(
5e2 − 54

)
y4 +

1

2

(
16e2 − 72

)
y3 +

1

2

(
18e2 − 180

)
y2 +

1

2

(
12e2 − 144

)
y

≥ 2y5 − 8y4 + 24y3 − 24y2 − 27y.

The positivity of this expression is equivalent with the positivity of

−2y4 + 8y3 − 24y2 + 24y + 27.

Here the worst case is y = −1
2 .

Case 3: y ∈ [−3,−1
2 ]. We crudely bound the derivative

|P ′
2(y)| ≤ |R(y)| ≤

(
6 + e2

)
y2 +

((
12 + 2e2

)
|y|3 +

(
30 + e2

)
y2 +

(
60 + 10e2

)
|y|+ 6e2 + 12

)
+
(
6 + 2e2

)
|y|+ (18|y|+ 12) + 6e2 + 24

≤ 27y3 + 51y2 + 173y + 137 < 2000.

Therefore it is enough to show that for yk = −3+(−1
2 +3) k

6000 for k = 0, . . . , 6000 the values
of our lower bound are greater than 1, which is the case.

9.2.2. Positivity of P3(y). We have

P3(y) =
20

3
+

2

9
ey
((
24− 4e2

)
y2 +

(
3e2 − 96

)
y − 24e2 + 9

)
+

1

9
e2y
((
30− 5e2

)
y3 +

(
14e2 − 48

)
y2 +

(
96− 36e2

)
y + 48e2 − 108

)
+

2

3
e3y(5− 2y).

After neglecting various positive terms we get a bound

P3(y) ≥
2

9
ey
((
24− 4e2

)
y2 +

(
3e2 − 96

)
y − 24e2 + 9

)
+

1

9
e2y
((
96− 36e2

)
y + 48e2 − 108

)
+

10e3y

3
+

20

3
.

Case 1: y < −2.1. Forgetting about additional positive terms we get

P3(y) ≥
20

3
+

2

9
ey
((
24− 4e2

)
y2 + (−24e2 + 9)

)
≥ 6− ey(2y2 + 38).

The derivative of ey(2y2 + 38) is 2ey
(
y2 + 2y + 19

)
and it therefore positive. Therefore the

bound is decreasing in y and so it is enough to observe that it is positive for y = −2.1.
Case 2: y ∈ [−2.1, 0]. The derivative of the estimate is 2

9e
yR(y) where

R(y) = (
(
24− 4e2

)
y2+

(
−48− 5e2

)
y− 21e2− 87)+45e2y + ey

(
−36e2y + 96y + 30e2 − 60

)
.

It is enough to show that R(y) < 0. The derivative of R is

R′(y) =
(
48− 8e2

)
y − 5e2 − 48 + 90e2y + ey(

(
96− 36e2

)
y − 6e2 + 36).

Thus

|R′(y)| ≤ 6 + 12|y|+ 90 + 9 + 171|y| = 105 + 183|y| < 500.

Therefore it is enough to show that for yk = −2.1 k
200 for k = 0, . . . , 200 the values of R(y)

are smaller than −20, which is the case.
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9.2.3. Positivity of P4(y). We use the bound

P4(y) ≥ a0 + ey(b0 + b1y + b2y
2) + e2yc0.

Therefore, bounding the coefficients crudely

(11) a−1
0 P5(y) ≥ ey

(
−0.2y2 − 1.5y − 3.7

)
+ 2.8e2y + 1.

Assume that y < −3. Then

ey
(
−0.2y2 − 1.5y − 3.7

)
+ 2.8e2y + 1 ≥ ey

(
−0.2y2 − 3.7

)
+ 1.

Note that for y < −3 one has eyy2 < 1
2 and thus

|ey
(
−0.2y2 − 3.7

)
| ≤ 0.1 + 3.7e−3 < 1.

and therefore the inequality holds in this case.
For y ∈ [−3, 0] we use the netting argument. The derivative of the right hand side of (11)

is

ey
(
−0.2y2 − 1.5y − 3.7

)
+ ey(−0.4y − 1.5) + 5.6e2y

and is therefore upper bounded in absolute value by(
0.2y2 + 1.5|y|+ 3.7

)
+ (0.4|y|+ 1.5) + 5.6 ≤ 20.

Therefore it is enough to show that for yk = −3 k
2000 for k = 0, . . . , 2000 the values of of the

right hand side of (11) is greater than 0.05, which is the case.

9.2.4. Positivity of P5(y). We are going to use the bound

P5(y) ≥ a0 + ey(b0 + b1y + b2y
2) + e2yc0.

Therefore, again bounding the coefficients crudely

a−1
0 P5(y) ≥ ey

(
−y2 − y − 3

)
+ 2e2y + 1.

The right hand side vanishes for y = 0 and therefore it is enough to show that the right
hand side is decreasing. The derivative is equal to ey

(
4ey − 4− 3y − y2

)
. To show that

4ey − 4 − 3y − y2 it is enough to show that it is increasing. The derivative is 4ey − 3 − 2y.
The minimum of this function is achieved for y = log 2 at is equal to −1 + 2 log 2 > 0.

9.2.5. Positivity of P6(y). We have

P6(y) ≥ a0 + ey(b0 + b2y
2) + e2yc0.

Therefore, again bounding the coefficients crudely gives

a−1
0 P6(y) ≥ ey

(
−y2 − 2

)
+ e2y + 1.

It is enough to show that the derivative of the right hand side is negative. This derivative is

equal to 2ey
(
ey − 1− y − y2

2

)
and the inequality ey ≤ 1 + y + y2

2 is well known.

9.3. Functions Pn(y) for the third derivative. Note that for n = 5, 6, 7 we have c0 > 0,
c1 < 0, c2 > 0 and e0 < 0. Thus we have the bound

Pn(y) > a0 + ey(b0 + b1y + b2y
2) + e3y(c0 + c1y + c2y

2) + e3y(d0 + d1y + d2y
2) + e3ye0

= a0 + ey(b0 + b1y + b2y
2) + e3y(c0 + d0 + e0 + (c1 + d1)y + (c2 + d2)y

2).

It is also true that c1 + d1 < 0 and c2 + d2 > 0 and thus

Pn(y) ≥ a0 + ey(b0 + b1y + b2y
2) + e3y(c0 + d0 + e0).
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9.3.1. Positivity of P7(y). We have

a−1
0 P7(y) > 1 + ey

(
−0.15y2 − 1.6y − 1.6

)
+ 1.8e3y > 0.9− 1.6ey + 1.8e3y

It is therefore enough to show that for t ∈ [0, 1] one has 0.9− 1.6t+ 1.8t3 > 0. By AM-GM
we have

0.9 + 1.8t3 = 0.45 + 0.45 + 1.8t3 > 3t
3
√
0.452 · 1.8 > 1.6t

9.3.2. Positivity of P6(y). We have

a−1
0 P6(y) > 1 + ey

(
−0.2y2 − 2y − 2.8

)
+ 2.8e3y > 0.89 + ey (−2y − 2.8) + 2.8e3y

The right hand side is clearly positive for y < −1.4. Assume y ∈ [−1.4, 0]. Then the derivative
of the right hand side is ey

(
−2y + 8.4e2y − 4.8

)
and can be upper bounded in absolute value

by 20. Therefore it is enough to show that for yk = −1.4 k
200 for k = 0, . . . , 200 the values of

the right hand side are greater than 0.2, which is the case.

9.3.3. Positivity of P5(y). We have

(12) a−1
0 P5(y) > 1 + ey

(
−0.24y2 − 3.45y − 4.68

)
+ 4.3e3y

We first assume that y < −2. In this case

1 + ey
(
−0.24y2 − 3.45y − 4.68

)
+ 4.3e3y > (1− 0.24eyy2) + ey(−3.45y − 4.68) > 0

Assume y ∈ [−2, 0]. The derivative of the right hands side of (12) is

ey
(
−0.24y2 − 3.93y + 12.9e2y − 8.13

)
and its absolute value can be upper bounded by 25. Therefore it is enough to show that for
yk = −2 k

5000 for k = 0, . . . , 5000 the values of the right hand side are greater than 0.01, which
is the case.

9.3.4. Positivity of P4(y). Let us first assume that y < −2.5. Then

P4(y) > 1 + e3y
(
−0.13y2 + 0.15y − 2

)
+ ey

(
−0.27y2 − 7

)
− 0.24e4y

and

|e3y
(
−0.13y2 + 0.15y − 2

)
+ ey

(
−0.27y2 − 7

)
− 0.24e4y|

≤ 0.005 · 0.13 + 0.002 · 0.15 + 0.002 + 0.52 · 0.27 + 0.58 + 0.24 · 0.001 < 0.73 < 1

Therefore the inequality holds in this case. Let y ∈ [−1, 0]. We have the bound P4(y) ≥ g(y)
where

g(y) = a0 + ey(b0 + b1y + b2y
2) + e2yc0 + e3y(d0 + d1y + d2y

2) + e4ye0
We are going to show that g′(y) < 0 on [−1, 0]. We have

e−yg′(y) = (b0+b1+(b1+2b2)y+b2y
2)+ey2c0+e2y(3d0+d1+(3d1+2d2)y+3d2y

2)+e3y4e0

and

(e−yg′(y))′ = b1+2b2+2b2y+ ey2c0+ e2y(6d0+5d1+2d2+(6d1+10d2)y+6d2y
2)+ e3y12e0

We therefore have

|(e−yg′(y))′| ≤ |b1|+ 4|b2|+ 2|c0|+ 6|d0|+ 11|d1|+ 18|d2|+ 12|e0| < 6013

Therefore it is enough to show that for yk = − k
100 for k = 0, . . . , 100 the values of e−yg′(y)

are smaller than −100, which is the case.
We are now left with y ∈ [−2.5,−1]. We shall show that g(y) > 0. We have

|g′(y)| ≤ |b0|+ 2|b1|+ 3|b2|+ 2|c0|+ 3|d0|+ 4|d1|+ 5|d2|+ 4|e0| < 6113

Therefore it is enough to show that for yk = −2.5 + (−1 + 2.5) k
200 for k = 0, . . . , 200 the

values of e−yg′(y) are greater than 100, which is the case.
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9.3.5. Positivity of P3(y). Let us first assume that y ∈ [−0.1, 0]. Then it is easy to check
that

b0 + b1y + b2y
2 < 0, c0 + c1y + c2y

2 > 0, d0 + d1y + d2y
2 < 0, e0 < 0

and therefore using standard bounds et ≤ 1 + t+ 1
2 t

2 and et ≥ 1 + t+ 1
2 t

2 + 1
6 t

3 for t < 0 we
get

P3(y) ≥
4

3

(
72 + 4e2

)
y5 +

(
2
(
72 + 4e2

)
+ 5

(
12− 2e2

)
+ 32

)
y4

+
(
2
(
72 + 4e2

)
+ 32e2 + 4

(
12− 2e2

)
− 28

)
y3 +

(
2
(
12− 2e2

)
− 8e2 + 120

)
y2

≥ y2(136y3 + 221y2 + 401y + 55) > y2(0.136− 40.1 + 55) > 0.

Assume now that y < −2.5. We have

P3(y) ≥ ey
(
−3y2 − 89

)
+ e3y

(
−3y2 − 41

)
+ 24e2yy − 12e4y + 12

and
ey
(
3y2 + 89

)
+ e3y

(
3y2 + 41

)
+ 24e2y|y|+ 12e4y

This expression is increasing in y for y < −2.5 and thus it is maximized for y = −2.5 in
which case the value is smaller than 10.

We are now left with the case y ∈ [−2.5,−0.1]. We have

P ′
3(y) = e2y

((
144 + 8e2

)
y2 +

(
192 + 8e2

)
y + 48e2 − 72

)
+ ey

((
12− 2e2

)
y2 − 4e2y − 12e2 − 24

)
+ e3y

((
36− 6e2

)
y2 +

(
24− 4e2

)
y − 36e2 + 144

)
− 48e4y

Therefore

|P ′
3(y)| ≤ 144+8e2+192+8e2+48e2−72+|12−2e2|+4e2+12e2+24+|36−6e2|+|24−4e2|+|−36e2+144|+48

This is smaller than 1070. Therefore it is enough to show that for yk = −2.5+(−0.1+2.5) k
7000

for k = 0, . . . , 7000 the values of e−yg′(y) are greater than 0.4, which is the case.
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