
HAMILTON JACOBI EQUATIONS ON METRIC SPACES AND

TRANSPORT ENTROPY INEQUALITIES

N. GOZLAN, C. ROBERTO, P-M. SAMSON

Abstract. We prove an Hopf-Lax-Oleinik formula for the solutions of some Hamilton-
Jacobi equations on a general metric space. As a first consequence, we show in full gener-
ality that the log-Sobolev inequality is equivalent to an hypercontractivity property of the
Hamilton-Jacobi semi-group. As a second consequence, we prove that Talagrand’s transport-
entropy inequalities in metric space are characterized in terms of log-Sobolev inequalities
restricted to the class of c-convex functions.

1. Introduction

Let L : Rm → R be a convex function with super linear growth, in the sense that L(h)/‖h‖ →
∞, when ‖h‖ → ∞, where ‖·‖ is any norm on R

m. It is well known that if f is some Lipschitz
function on R

m, the function Qtf defined by

(1.1) Qtf(x) = inf
y∈Rm

{f(y) + tL((x− y)/t)} , t ≥ 0, x ∈ R
m,

is a solution, in different weak senses, of the following Hamilton-Jacobi equation

(1.2) ∂tu(t, x) = −L∗(∂xu(t, x))

with initial condition u(0, x) = f(x), where L∗(v) = supu∈Rm{u · v − L(u)} is the Fenchel-
Legendre transform of L (see for instance [6]). It can be shown, for example, that the function
(t, x) 7→ Qtf(x) is almost everywhere differentiable in (0,∞)×R

m and that (1.2) is verified at
every such point of differentiability (see e.g [6, Chapter 3]). Formula (1.1) is usually referred
to as the Hopf-Lax-Oleinik formula for Hamilton-Jacobi equations.
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The objective of this paper is twofold:

(i) generalize the Hopf-Lax-Oleinik (HLO) formula to a class of Hamilton-Jacobi equa-
tions in a metric space framework;

(ii) use this aforementioned HLO formula to establish different connections between log-
arithmic Sobolev type inequalities and transport-entropy inequalities.

1.1. General framework. In this section we give the general setting of this article.

1.1.1. Assumptions on the space. In all the paper, (X, d) will be a complete and separable
metric space in which closed balls are compact. This latter assumption could be removed
at the expense of additional standard technicalities. We will sometimes assume that (X, d)
is a geodesic space, meaning that for every two points x, y ∈ X there is at least one curve
(γt)t∈[0,1] with γ0 = x, γ1 = y and such that d(γs, γt) = |t− s|d(x, y) for all s, t ∈ [0, 1]. Such
a curve is called a geodesic between x and y.

1.1.2. The sup and inf convolution “semigroups”. In all the paper, α : R+ → R
+ will be

an increasing convex function of class C1 such that α(0) = 0. If f : X → R is a bounded
function, we define for all t > 0 the functions Ptf and Qtf as follows:

(1.3) Ptf(x) = sup
y∈X

{

f(y)− tα

(

d(x, y)

t

)}

, ∀x ∈ X,

and

(1.4) Qtf(x) = inf
y∈X

{

f(y) + tα

(

d(x, y)

t

)}

, ∀x ∈ X.

The operators Pt and Qt are connected by the following simple relation

Qtf = −Pt(−f).

When the space (X, d) is geodesic, the families of operators {Qt}t>0 and {Pt}t>0 form non-
linear semigroups acting on bounded functions:

Qt+sf = Qt (Qsf) and Pt+sf = Pt (Psf) , ∀t, s > 0,

for all bounded function f : X → R. When (X, d) is not geodesic, only half of this property
is preserved:

Qt+sf ≤ Qt (Qsf) and Pt+sf ≥ Pt (Psf) , ∀t, s > 0.

Now we present our main results.

1.2. An Hopf-Lax-Oleinik formula on a metric space. Our objective is to show that
the Hamilton-Jacobi equation (1.2) is still verified by Qtf in the metric space framework
introduced above. To that purpose we first need to give a meaning to the state space partial
derivative ∂x in this context.

We will adopt the following classical measurements |∇+f |(x) and |∇−f |(x) of the local slope
of a function f : X → R around x ∈ X defined by

(1.5) |∇+f |(x) = lim sup
y→x

[f(y)− f(x)]+
d(x, y)

, |∇−f |(x) = lim sup
y→x

[f(y)− f(x)]−
d(x, y)

,

(by convention, we set |∇±f |(x) = 0, if x is an isolated point in X).
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If f is locally Lipschitz, then |∇±f |(x) are finite for every x ∈ X. Moreover, if f is Lipschitz
continuous with Lipschitz constant denoted by Lip(f), then |∇±f |(x) ≤ Lip(f) for all x ∈ X.
Finally, when X is a Riemannian manifold and f is differentiable at x, it is not difficult to
check that |∇±f |(x) is equal to the norm of the vector ∇f(x) ∈ TxX (the tangent space at
x).

One of our main result is the following theorem.

Theorem 1.6. If f : X → R is an upper semicontinuous function bounded from above, then
the following Hamilton-Jacobi differential inequalities hold

(1.7)
d

dt+
Ptf(x) ≥ α∗

(

|∇+Ptf |(x)
)

∀t > 0, ∀x ∈ X,

and
d

dt−
Ptf(x) ≥ α∗

(

|∇−Ptf |(x)
)

∀t > 0, ∀x ∈ X,

where α∗(u) = suph≥0 {hu− α(h)}, u ≥ 0, and where d/dt+ and d/dt− denote respectively
the right and left time derivatives.
Moreover, when the space (X, d) is geodesic, it holds

(1.8)
d

dt+
Ptf(x) = α∗

(

|∇+Ptf |(x)
)

∀t > 0, ∀x ∈ X.

The interesting feature of Theorem 1.6 is that there is no measure theory in its formulation:
the conclusion holds for all t > 0 and all x ∈ X. Theorem 1.6 extends previous results by Lott
and Villani [13, 20], where (1.8) was obtained on compact measured geodesic spaces (X, d, µ)
provided the measure µ verifies some additional assumptions. More precisely, it is proved
in [13] that if µ verifies a doubling condition together with a local Poincaré inequality, then
(1.8) holds true, for all t and for all x outside a set Nt of µ measure 0. Under the geometric
assumption that (X, d) is finite dimensional with Aleksandrov curvature bounded below,
Lott and Villani obtained the validity of (1.8) for all t and x. In [20, Theorem 22.46], Villani
proves (1.8) for all t and x on a Riemannian manifold.

We indicate that, during the preparation of this work, we learned that Theorem 1.6 has also
been obtained by Ambrosio, Gigli and Savaré in their recent paper [1] (see also [2]), with a
very similar proof. Let us underline that the inequality

(1.9)
d

dt+
Qtf(x) ≤ −α∗

(

|∇−Qtf |(x)
)

,

which is equivalent to (1.7), is an important ingredient in their study of gradient flows of
entropic functionals over general metric spaces. The main source of inspiration of the present
paper is the seminal work by Bobkov, Gentil and Ledoux [4] establishing the equivalence
between the logarithmic Sobolev inequality and hypercontractivity properties of Hamilton-
Jacobi solutions.

The main tool in the proof of Theorem 1.6 is the following result of independent interest.

Theorem 1.10. Let f : X → R be an upper semicontinuous function bounded from above.
For all t > 0 and x ∈ X, denote by m(t, x) the set of points where the supremum (1.3)
defining Ptf(x) is reached:

m(t, x) =

{

ȳ ∈ X : Ptf(x) = f(ȳ)− tα

(

d(x, ȳ)

t

)}

.
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These sets are always non empty and compact and it holds

d

dt+
Ptf(x) = β

(

1

t
max

ȳ∈m(t,x)
d(x, ȳ)

)

, ∀t > 0, ∀x ∈ X

and
d

dt−
Ptf(x) = β

(

1

t
min

ȳ∈m(t,x)
d(x, ȳ)

)

, ∀t > 0, ∀x ∈ X,

where β(h) = hα′(h) − α(h), h ≥ 0.

1.3. Hypercontractivity of Qt and the log-Sobolev inequality. Let µ be a Borel prob-
ability measure on X. Recall that the entropy functional Entµ( · ) is defined by

Entµ(g) =

∫

g log

(

g
∫

g dµ

)

dµ, ∀g > 0.

In order to introduce the log-Sobolev inequality, and for technical reasons, define, for r > 0,

Lip(f, r) = sup
x,y:

d(x,y)≤r

|f(y)− d(x)|

d(x, y)

and observe that the usual Lipschitz constant is Lip(f) = supr Lip(f, r). Then, we denote
by Fα the set of bounded functions f : X → R such that Lip(f, r) <∞ for some r > 0 and

Lip(f) ≤ lim
h→∞

α(h)

h

(observe that if α(h)/h → ∞ when h→ ∞, this last condition is empty).

The probability measure µ is said to satisfy themodified log-Sobolev inequality minus LSI−α (C)
for some C > 0 if

(LSI−α (C)) Entµ(e
f ) ≤ C

∫

α∗(|∇−f |)ef dµ ∀f ∈ Fα.

In particular, when α(h) = hp/p, h ≥ 0, with p > 1, it holds α∗(h) = hq/q, h ≥ 0 with
1/p + 1/q = 1. In this case, we write LSI−q for LSI−α . If X is a Riemannian manifold and

µ is absolutely continuous with respect to the volume element, the inequality LSI−2 is the
usual logarithmic Sobolev inequality introduced by Gross [12].

Following Bobkov, Gentil and Ledoux [4] we relate LSI−α (C) to hypercontractivity properties
of the family of operators {Qt}t>0. To perform the proof, we need to make some restrictions
on the function α. We will say that α verifies the ∆2-condition [17] if there is some positive
constant K such that

α(2x) ≤ Kα(x), ∀x ≥ 0.

Theorem 1.11. Suppose that α verifies the ∆2-condition. Then the exponents rα ≤ pα
defined by

rα = inf
x>0

xα′(x)

α(x)
≥ 1 and 1 < pα = sup

x>0

xα′(x)

α(x)

are both finite. Moreover, the measure µ satisfies LSI−α (C) if and only if for all t > 0, for
all to ≤ C(pα − 1) and for all bounded continuous function f : X → R,

∥

∥

∥
eQtf

∥

∥

∥

k(t)
≤
∥

∥

∥
ef
∥

∥

∥

k(0)
,(1.12)
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with

k(t) =











(

1 + C−1(t−to)
pα−1

)pα−1
1t≤to +

(

1 + C−1(t−to)
rα−1

)rα−1
1t>to if rα > 1

min

(

1;
(

1 + C−1(t−to)
pα−1

)pα−1
)

if rα = 1
,

where ‖g‖k =
(∫

|g|kdµ
)1/k

for k 6= 0 and ‖g‖0 = exp
(∫

log g dµ
)

.

Our proof follows the line of [4]. Let us explain in few words how to derive (1.12) from LSI−α .
Since Qtf → f when t→ 0, it is enough to show that H : t 7→ log

∥

∥eQtf
∥

∥

k(t)
is non-increasing.

The left derivative of H has an expression involving Entµ(e
k(t)Qtf ) and

∫

d
dt+

Qtfe
k(t)Qtf dµ

(see Proposition 4.1). To bound the first term from above, we apply the inequality LSI−α . To
bound the second term, we use the inequality (1.9) which is precisely in the right direction
to prove that the left derivative of H is negative.

1.4. From log-Sobolev to transport-entropy inequalities. Following [4, 13], a byprod-
uct of the above hypercontractivity result is a metric space extension of Otto-Villani’s theorem
[15] that indicates that log-Sobolev inequalities imply transport-entropy inequalities.

Let c : X×X → R be a continuous function; recall that the optimal transport cost Tc(ν1, ν2)
between two Borel probability measures ν1, ν2 ∈ P(X) (the set of all Borel probability mea-
sures on X) is defined by

Tc(ν1, ν2) = inf
π∈P (ν1,ν2)

∫∫

c(x, y)π(dxdy),

where P (ν1, ν2) is the set of all probability measures π onX×X such that π(dx×X) = ν1(dx)
and π(X × dy) = ν2(dy).

The probability measure µ is said to satisfy the transport-entropy inequality Tc(C), for some
C > 0 if

(Tc(C)) Tc(µ, ν) ≤ CH(ν|µ), ∀ν ∈ P(X),

where

H(ν|µ) =

{ ∫

log dν
dµ dν if ν ≪ µ

+∞ otherwise

is the relative entropy of ν with respect to µ. This class of inequalities was introduced by
Marton and Talagrand [14, 19]. When c(x, y) = α(d(x, y)) we denote the optimal transport
cost by Tα( · , · ) and the corresponding transport inequality by Tα. In the particular case,
when α(x) = xp/p, p ≥ 2 we use the notation Tp and Tp.

The first point of the next theorem will appear to be an easy consequence of Theorem 1.11
and of Bobkov and Götze dual formulation of the inequality Tα (which roughly speaking
corresponds to the hypercontractivity with to = C(pα − 1) or equivalently k(0) = 0).

Theorem 1.13. Suppose that α verifies the ∆2-condition. If µ verifies LSI−α (C), then it
verifies Tα(A), with

A = max
(

((pα − 1)C)rα−1; ((pα − 1)C)pα−1
)

,

where the numbers rα, pα are defined in Theorem 1.12.
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In a Riemannian framework and for the quadratic function α(t) = t2/2, Theorem 1.13 was
first obtained by Otto and Villani in [15], closely followed by Bobkov, Gentil and Ledoux [4].
Extensions to other functions α were provided in [4, 7]. The path space case was treated
by Wang in [21]. In [13], Lott and Villani extended to certain geodesic measured spaces
(X, d, µ) the Hamilton-Jacobi approach of [4] in the quadratic case. They proved Theorem
1.13 under additional assumptions on µ (doubling property and local Poincaré). Under the
same assumptions Balogh, Engoulatov, Hunziker and Maasalo [3] treated the case of LSI−q
for all q ≤ 2. The first proofs of Otto-Villani theorem valid on any complete separable
metric space appeared in [9] and [11]. Their common feature is the use of the stability of
the log-Sobolev inequality under tensor products of the reference probability measure. In
a recent paper [8], Gigli and Ledoux give another quick proof of Otto-Villani theorem on
metric spaces. It is based on calculations along gradient flows in the Wasserstein space.

Using some rough properties of the operators Qt, we also provide a metric space generalization
of another result by Otto and Villani [15] relating transport-entropy inequalities to Poincaré
inequality.

Proposition 1.14. Let θ : R+ → R
+ be any function such that θ(x) ≥ min(x2, a2) for some

a > 0. If µ verifies Tθ(C) for some C > 0, then it verifies the following Poincaré inequality:

Varµ(f) ≤
C

2

∫

|∇−f |2 dµ,

for all bounded function f such that Lip(f, r) <∞, for some r > 0.

1.5. Transport-entropy inequalities as restricted log-Sobolev inequalities. A sec-
ond consequence of the Hamilton-Jacobi approach on metric spaces is a characterization of
transport-entropy inequalities in terms of log-Sobolev inequalities restricted to a certain class
of functions depending on the cost function α.

To be more precise, let us say that a function f is c-convex with respect to a cost function
(x, y) 7→ c(x, y) defined on X ×X if there is a function g : X → R ∪ {±∞} such that

f(x) = Pcg(x) = sup
y∈X

{g(y) − c(x, y)} ∈ R ∪ {±∞}, ∀x ∈ X.

The class of c-convex functions is intimately related to optimal-transport, via for instance
the Kantorovich duality theorem (see e.g [20]).

An important case is when c(x, y) = 1
2‖x − y‖22 on R

m (see Proposition 2.3 below). In this

case, a function f : Rm → R is c-convex if and only if the function x 7→ f(x) + ‖x‖22/2 is
convex on R

m. If f is of class C2, this amounts to say that Hess f ≥ −Id.

In what follows, we consider the cost cp(x, y) = dp(x, y)/p, p ≥ 2. The second main result of
this paper is the following

Theorem 1.15. Let µ be a probability measure on a geodesic space (X, d) and p ≥ 2. The
following properties are equivalent:

(1) There is some C > 0 such that µ verifies Tp(C).
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(2) There is some D > 0 such that µ verifies the following (τ)-log-Sobolev inequality: for
all bounded continuous f and all 0 < λ < 1/D, it holds

Entµ(e
f ) ≤

1

1− λD

∫

(f −Qλf)ef dµ,

where for all λ > 0, Qλf(x) = infy∈X {f(y) + λcp(x, y)} .

(3) There is some E > 0 such that µ verifies the following restricted log-Sobolev inequality:
for all Kcp-convex function f , with 0 < K < 1/E it holds

Entµ(e
f ) ≤

βp(u)− 1

pKq−1(1−KEu)

∫

|∇+f |qef dµ, ∀u ∈ (1, 1/(KE)),

where q = p/(p− 1) and βp(u) =
u

[u1/(p−1)−1]p−1 for all u > 1.

The optimal constants Copt,Dopt, Eopt are related as follows

Eopt ≤ Dopt ≤ Copt ≤ κpEopt,

where κp is some universal constant depending only on p. For p = 2, one can take κ2 = e2.

Let us make some comments on Theorem 1.15.

• The implication (1) ⇒ (2) is true for any cost function c. It was first proved in [10].
• In [11], we proved that (1) is equivalent to (2) for cost functions c(x, y) = α(d(x, y))
as soon as α verifies the ∆2-condition. Our proof (in [11]) makes use of a tensorization
technique and is thus rather different from the one presented here.

• In [10], we proved that (1) is equivalent to (3) in a framework essentially Euclidean:
X = R

m and c(x, y) = 1
2‖x− y‖22.

Theorem 1.15 thus provides a wide extension of the results in [10] and unifies nicely the
results of [10] and [11].

Let us mention that Theorem 1.15 as stated above is not as general as possible. Indeed, we
will see in Section 5 that this equivalence is still true when the space is not geodesic (Theorem
5.1). In this more general framework (3) has to be replaced by a slightly weaker version of
the restricted log-Sobolev inequality. The main tool to prove this extension is Theorem 1.10.
It would also be possible to consider more general costs of the form c(x, y) = α(d(x, y)) with
α satisfying the ∆2-condition but, to avoid some lengthy developpements, this will not be
treated here.

We end this introduction with a short roadmap of the paper. Section 2 is devoted to c-convex
functions. In particular, we will recall and prove some well known facts about the subdif-
ferential ∂cf(x) of a c-convex function. In Proposition 2.8, we will relate their gradients
|∇±f |(x) to the minimal or maximal distance between x and the subdifferential ∂cf(x). Sec-
tion 3 contains the proof of the HLO formula. In Section 4, we prove the hypercontractivity
property of Theorem 1.12, and deduce as a corollary the Otto-Villani Theorem 1.13. Section
5 contains the proof of an improved version of our main result Theorem 1.15. Finally, the
appendix gathers some technical results.
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2. About c-convex functions

In this section we introduce the somehow classical notions of c-convex (and c−concave)
functions and of c-subdifferential. We will also give several useful facts about these notions.
The interested reader may find more results and comments, and some bibliographic notes, in
[20, Chapter 5].

2.1. Definition of c-convex functions and first results. Let X,Y be two polish spaces
and c : X × Y → R be a general cost function and set R = R ∪ {±∞}. For any function
f : X → R, we define Qcf : Y → R by

Qcf(y) := inf
x∈X

{f(x) + c(x, y)}.

For any function g : Y → R, we define Pcg : X → R, by

Pcg(x) := sup
y∈Y

{g(y) − c(x, y)}.
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Definition 2.1 (c-convex and c-concave functions). A function f : X → R is said to be
c-convex if there is some function g : Y → R such that f = Pcg. A function g : Y → R is
said to be c-concave if there is some function f : X → R such that g = Qcf.

In the definition above, we follow the convention of Villani’s book for c-convex functions [20].
Other authors as Rachev and Rüschendorf [16] define c-convex functions as those functions f :
X → R such that there is some function g : Y → R such that f(x) = supy∈Y {g(y) + c(x, y)}.

Proposition 2.2. For any function f : X → R, the inequality PcQcf ≤ f holds. Moreover,
f : X → R is c-convex if and only if PcQcf = f.

Proof. For the first point observe that; for z = x,

PcQcf(x) = sup
y∈Y

inf
z∈X

{f(z) + c(z, y) − c(x, y)} ≤ f(x).

Let us prove the second point. Trivially, a function f such that f = PcQcf is c-convex.
Conversely, if f : X → R is c-convex, then there is some function g on Y such that f(x) =
supy∈Y {g(y) − c(x, y)} = Qcg(y). Hence g verifies g(y) ≤ infx∈X{f(x) + c(x, y)}. Plugging
this inequality into f = Pcg gives f ≤ PcQcf . Since the other direction always holds, the
proof is complete. �

Recall that a function f : Rm → R is said to be closed (see [18]) if either f = −∞ everywhere
or f takes its values in R ∪ {+∞} and is lower semicontinuous. It is said to be convex if its
epigraph {(x, α) ∈ R

m×R : α ≥ f(x)} is a convex subset of Rm×R. Let us denote by Γ(Rm)
the set of all closed and convex functions on R

m.

Proposition 2.3 (Examples). Assume that X = Y = R
m, m ∈ N

∗, equipped with its
standard Euclidean structure and let f : Rm → R. Then,

(1) If c(x, y) = x · y, f is c-convex if and only if f ∈ Γ(Rm).
(2) If c(x, y) = 1

2‖x−y‖
2
2, f is c-convex if and only if f+‖·‖22/2 ∈ Γ(Rm). In particular,

if f : Rm → R is of class C2 then it is c-convex if and only if Hess f(x) ≥ −Id, for
all x ∈ R

m.

Proof.
(1) By definition, a function f is c-convex for c(x, y) = x · y if and only if f = h∗ for some
function h : Rm → R. It is well known (and easy to check) that h∗ ∈ Γ(Rm) for all h.
Conversely, if f ∈ Γ(Rm) then f = f∗∗ (see e.g [18]) and so f is c-convex.
(2) The function f is a c-convex function for c(x, y) = ‖x− y‖22/2 if and only if f = Pcg, for
some g : Rm → R. Since

f(x) +
‖x‖22
2

= sup
y∈Rm

{

x · y −

(

‖y‖22
2

− g(y)

)}

,

the conclusion follows from the first point. �

2.2. The c-subdifferential of a c-convex function. In this section we define the notion
of c-subdifferential of a c-convex function and derive some facts that will appear to be useful
later.
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Definition 2.4 (c-subdifferential). Let f : X → R be a c-convex function and x ∈ X; the
c-subdifferential of f at point x is the set, denoted by ∂cf(x) ⊂ Y , of the points ȳ ∈ Y such
that

f(z) ≥ f(x) + c(x, ȳ)− c(z, ȳ), ∀z ∈ X.

The next lemma gives a characterisation of the c-subdifferential.

Lemma 2.5. For all x ∈ X, ∂cf(x) is the set of points y ∈ Y achieving the supremum in
f(x) = PcQcf(x). More precisely,

∂cf(x) = {y ∈ Y : f(x) = Qcf(y)− c(x, y)}.

More generally, if f = Pcg, for some function g : Y → R, then

{y ∈ Y : f(x) = g(y)− c(x, y)} ⊂ ∂cf(x).

Proof. The first part of the lemma is simple and left to the reader. Let us prove the second
part. Since f(x) = supy∈Y {g(y) − c(x, y)}, x ∈ X, we have g ≤ Qcf . So if, f(x) =
g(ȳ) − c(x, ȳ) then f(x) ≤ Qcf(ȳ) − c(x, ȳ) ≤ f(z) + c(z, ȳ) − c(x, ȳ), for all z ∈ X which
proves that ȳ ∈ ∂cf(x). �

Lemma 2.6. Suppose that the function c : X × Y → R is continuous and bounded from
below and that, for all x ∈ X, the level sets {y ∈ Y ; c(x, y) ≤ r}, r ∈ R, are compact. If
f : X → R∪{−∞} is a c-convex function bounded from above, then ∂cf(x) 6= ∅ for all x ∈ X.

Proof. The function Qcf is an infimum of continuous functions on Y , so it is upper semi-
continuous on Y . For all x ∈ X, the function ϕx : y 7→ Qcf(y) − c(x, y) is thus upper
semicontinuous on Y . Since f is bounded from above and c from below, the function ϕx is
bounded from above. Finally if y ∈ {ϕx ≥ r} then c(x, y) ≤ sup f + infz c(x, z) − r. Hence
{ϕx ≥ r} is compact. From this follows that ϕx achieves its supremum at some point ȳ
which, according to Lemma 2.5, necessarily belongs to ∂cf(x). �

For a better understanding of the notion, in the next lemma we express the c-subdifferential
of a c-convex function f in term of its gradient in some simple cases.

Lemma 2.7. Suppose that X = Y = R
m and that c(x, y) = L(x− y) where L : Rm → R

+ is
a differentiable convex function with superlinear growth, i.e L(x)/‖x‖ → +∞ when x → ∞,
where ‖ · ‖ denotes any norm on R

m. Let f be a c-convex function bounded from above
differentiable at some point x. Then

∂cf(x) = {x−∇(L∗)(−∇f(x))},

where L∗(y) = supx∈Rm{x · y − L(y)} is the Fenchel-Legendre transform of L.

We recall that if L is strictly convex and has a superlinear growth, then its Fenchel-Legendre
transform is differentiable everywhere [18]. Lemma 2.7 is well known. However, for the sake
of completeness, we will recall its proof in the appendix.
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2.3. Comparisons of gradients. In this last section, as in the rest of the paper, we will
assume that (X, d) is a complete separable metric space in which closed balls are compact.
We take Y = X and we consider a cost function c on X ×X of the form

c(x, y) = α(d(x, y)),

where α : R+ → R
+ is an increasing convex function of class C1 such that α(0) = 0.

If f : X → R is c-convex for the cost c(x, y) = α(d(x, y)), we introduce the following quantities

|∇−
c f |(x) = α′

(

inf
ȳ∈∂cf(x)

d(x, ȳ)

)

and |∇+
c f |(x) = α′

(

sup
ȳ∈∂cf(x)

d(x, ȳ)

)

.

The following proposition compares |∇±
c f | to |∇±f | defined in (1.5).

Proposition 2.8. Let f : X → R be a c-convex function for the cost c(x, y) = α(d(x, y)).
Suppose that f = Pcg for some upper semicontinuous function g : X → R bounded from above
and consider for all x ∈ X the set m(x) defined by m(x) = {y ∈ X : f(x) = g(y)−α(d(x, y))}.

(1) The following inequalities hold

|∇+f |(x) ≤ α′( max
ȳ∈m(x)

d(x, ȳ)) ≤ |∇+
c f |(x).

(2) If (X, d) is a geodesic space, then

|∇+f |(x) = α′( max
ȳ∈m(x)

d(x, ȳ)) = |∇+
c f |(x).

(3) The following inequalities hold

|∇−f |(x) ≤ |∇−
c f |(x) ≤ α′( min

ȳ∈m(x)
d(x, ȳ)).

Remark 2.9. We do not know if there is equality in (3) when the space is geodesic.

Proof of Proposition 2.8. (1) First observe that, since f = Pcg with g bounded above, f
is locally Lipschitz (see [11, Lemma 3.8]), so that |∇+f | is finite everywhere. The second
inequality is an immediate consequence of the definition of |∇+

c f |(x) and the fact that,
according to Lemma 2.5, m(x) ⊂ ∂cf(x). Let us prove the first inequality. Let (xn)n∈N be a
sequence of points converging to x, with xn 6= x for all n. For all n, fix yn ∈ m(xn). It holds

f(xn)− f(x) ≤ g(yn)− α(d(xn, yn))− (g(yn)− α(d(x, yn)))

≤ d(x, xn)α
′ (max(d(xn, yn); d(x, yn))) ,

where the last inequality follows from the mean value theorem, the triangle inequality, the
non-negativity and the monotonicity of α′. Since the function t 7→ [t]+ is non-decreasing, we
get

[f(xn)− f(x)]+
d(xn, x)

≤ α′(max(d(xn, yn); d(x, yn))).

So letting n→ ∞,

lim sup
n→∞

[f(xn)− f(x)]+
d(xn, x)

≤ α′

(

lim sup
n→∞

d(x, yn)

)

= α′ (max{d(x, ȳ) : ȳ limit point of (yn)n∈N}) .

≤ α′

(

max
ȳ∈m(x)

d(x, ȳ)

)

,
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where the last inequality comes from Lemma 2.10 bellow.

(2) To prove the second point it is enough to show that |∇+
c f |(x) ≤ |∇+f |(x) for all x ∈ X.

Let ȳ ∈ ∂cf(x). According to the definition of the c-subdifferential,

f(z)− f(x) ≥ α(d(x, ȳ))− α(d(z, ȳ)), ∀z ∈ X.

From the definition of |∇+f |(x), it follows that

|∇+f |(x) ≥ lim sup
z→x

α(d(x, ȳ))− α(d(z, ȳ))

d(x, z)
.

Let (zt)t∈[0,1] be a geodesic connecting x to ȳ, it holds d(x, zt) = td(x, ȳ), d(zt, ȳ) = (1 −
t)d(x, ȳ) and therefore

|∇+f |(x) ≥ lim sup
t→0

α(d(x, ȳ))− α((1 − t)d(x, ȳ))

td(x, ȳ)
= α′(d(x, ȳ)).

Optimizing over all ȳ ∈ ∂cf(x) completes the proof.

(3) Let (xn)n∈N be a sequence of points converging to x, with xn 6= x for all n. If ȳ ∈ ∂cf(x),
then it holds

f(xn)− f(x) ≥ α (d(x, ȳ))− α (d(xn, ȳ))

≥ −d(x, xn)α
′ (max(d(xn, ȳ); d(x, ȳ))) ,

where the second inequality follows from the mean value theorem and the triangle inequality.
Since the function t 7→ [t]− is non-increasing, it holds

lim sup
n→+∞

[f(xn)− f(x)]−
d(x, zn)

≤ α′ (d(x, ȳ)) .

Optimizing over all ȳ ∈ ∂cf(x) leads to the first bound in (3). As above, the second inequality
in (3) is an immediate consequence of the definition of |∇−

c f |(x) together with the fact that,
according to Lemma 2.5, m(x) ⊂ ∂cf(x). This achieves the proof. �

During the proof we have used the following simple lemma whose proof can be found in the
appendix.

Lemma 2.10. Let X be a complete separable metric space with compact balls and g : X → R

be an upper semicontinuous function bounded from above. Define, for all x ∈ X, Ptg(x) =

supy∈X

{

g(y) − tα
(

d(x,y)
t

)}

and m(t, x) as the set of points y ∈ X where this supremum is

reached. Then,

(1) The set m(t, x) is a non empty compact set of X.
(2) Let xn → x ∈ X and tn → t > 0 be two converging sequences and consider a sequence

(yn)n∈N such that yn ∈ m(tn, xn) for all n. Then (yn)n∈N is bounded and all its limit
points belong to m(t, x).

3. Proof of the Hamilton-Jacobi equations

This part is devoted to the proof of Theorem 1.6 and 1.10.
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Proof of Theorem 1.10. According to Lemma 2.10, m(t, x) is a non empty compact set of
X. We treat the case of the right derivative; the other case is completely analogous. Let
t > 0, x ∈ X and (hn)n∈N a sequence of positive numbers converging to 0. For all n ∈ N, we
consider zn ∈ m(t+ hn, x). Then,

1

hn
(Pt+hnf(x)− Ptf(x)) ≤

1

hn

[

f(zn)− (t+ hn)α

(

d(x, zn)

t+ hn

)

−

(

f(zn)− tα

(

d(x, zn)

t

))]

=
1

hn

[

tα

(

d(x, zn)

t

)

− (t+ hn)α

(

d(x, zn)

t+ hn

)]

.

Define D = lim supk→∞ d(x, zk) and take ε > 0. For all n large enough,

d(x, zn) ≤ D + ε.

For all h ≥ 0, all t > 0, by the convexity assumption on α, the map

d 7→ tα

(

d

t

)

− (t+ h)α

(

d

t+ h

)

is non-decreasing. Hence

lim sup
n→∞

1

hn

[

tα

(

d(x, zn)

t

)

− (t+ hn)α

(

d(x, zn)

t+ hn

)]

≤ lim
n→∞

1

hn

[

tα

(

D + ε

t

)

− (t+ hn)α

(

D + ε

t+ hn

)]

= β

(

D + ε

t

)

where we recall that β(h) = hα′(h) − α(h), h ≥ 0. Since α is of class C1, as ε goes to 0 we
get

lim sup
n→+∞

1

hn
(Pt+hnf(x)− Ptf(x)) ≤ β

(

D

t

)

.

Applying Lemma 2.10, it is not difficult to check that

D = lim sup
n→∞

d(x, zn) = max{d(x, z̄) : z̄ limit point of (zn)n∈N} ≤ max
ȳ∈m(t,x)

d(x, ȳ).

The conditions on α ensure that β is non-decreasing and therefore

(3.1) lim sup
n→+∞

1

hn
(Pt+hnf(x)− Ptf(x)) ≤ β

(

maxȳ∈m(t,x) d(x, ȳ)

t

)

.

Analogously, if ȳ ∈ m(t, x) then

1

hn
(Pt+hnf(x)− Ptf(x)) ≥

1

hn

(

tα

(

d(x, ȳ)

t

)

− (t+ hn)α

(

d(x, ȳ)

t+ hn

))

So, letting n go to ∞, and optimizing over ȳ yields

(3.2) lim inf
n→∞

1

hn
(Pt+hnf(x)− Ptf(x)) ≥ β

(

maxȳ∈m(t,x) d(x, ȳ)

t

)

.

We conclude from (3.1) and (3.2) that

lim
n→∞

1

hn
(Pt+hnf(x)− Ptf(x)) = β

(

maxȳ∈m(t,x) d(x, ȳ)

t

)

.

This completes the proof of proposition 1.10. �
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Proof of Theorem 1.6. According to Theorem 1.10,

d

dt+
Ptf(x) = β

(

maxȳ∈m(t,x) d(x, ȳ)

t

)

,

with β(u) = uα′(u)− α(u), for all u ≥ 0. By definition of the c-convexity, the function x 7→

Ptf(x) is c-convex for the cost c(x, y) = tα
(

d(x,y)
t

)

. Applying the point (1) of Proposition

2.8, it holds

|∇+Ptf |(x) ≤ α′

(

maxȳ∈m(t,x) d(x, ȳ)

t

)

.

Observing that β(u) = α∗(α′(u)) gives the result. According to point (3) of Proposition 2.8,
equality holds in the geodesic case. The proof of the inequality involving the left derivative
of Ptf is similar. �

4. log-Sobolev inequality and hypercontractivity on a metric space

In this section, following [4], we show that log-Sobolev inequalities on metric spaces are
equivalent to some hypercontractivity property of the “semigroup” Qt. The proof of Theorem
1.11 relies on the differentiation of the left hand side of (1.12). To that purpose, we use the
next technical proposition whose proof is postponed to the appendix.

Proposition 4.1. Let f be a bounded and continuous function on X and k : (a, b) → (0,+∞)
be a function of class C1 defined on an open interval (a, b) ⊂ (0,∞) and such that k′(t) 6= 0
for all t. Define

H(t) =
1

k(t)
log

(
∫

ek(t)Qtf dµ

)

and K(t) =
1

k(t)
log

(
∫

ek(t)Ptf dµ

)

, t ∈ (a, b).

The functions H and K are continuous and differentiable on the right and on the left on
(a, b). Moreover, for all t ∈ (a, b), it holds

dH

dt+
(t) =

k′(t)

k(t)2
1

∫

ek(t)Qtf dµ

[

Entµ

(

ek(t)Qtf
)

+
k(t)2

k′(t)

∫
(

d

dt+
Qtf

)

ek(t)Qtf dµ

]

.

The same formula holds for dH/dt−, dK/dt+ and dK/dt− (replacing Qt by Pt).

Proof of Theorem 1.11. Let us first show that the log-Sobolev inequality implies the hyper-
contractivity property:

(4.2)
∥

∥

∥
eQtf

∥

∥

∥

k(t)
≤
∥

∥

∥
ef
∥

∥

∥

k(0)
,

for all bounded continuous function f : X → R, with

(4.3) k(t) =

(

1 +
C−1(t− to)

pα − 1

)pα−1

1t≤to +

(

1 +
C−1(t− to)

rα − 1

)rα−1

1t>to ,

with the convention that k(t) = min

(

1;
(

1 + C−1(t−to)
pα−1

)pα−1
)

, if rα = 1. The exponents rα

and pα have the following property (see [11, proof of Lemma A.3]):

α∗(sx) ≤ s
pα

pα−1α∗(x), ∀x ≥ 0,∀s ∈ [0, 1]

α∗(sx) ≤ s
rα

rα−1α∗(x), ∀x ≥ 0,∀s > 1.
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Let H(t) = log
∥

∥eQtf
∥

∥

k(t)
, with f : X → R bounded and continuous. According to Proposi-

tion 4.1, we have for all t > 0

dH

dt+
(t) ≤

k′(t)

k2(t)

1
∫

ek(t)Qtf dµ

[

Entµ

(

ek(t)Qtf
)

+
k2(t)

k′(t)

∫

d

dt+
Qtfe

k(t)Qtf dµ

]

.

Applying LSI−α (C) to the function k(t)Qtf (which belongs to Fα thanks to Lemma 4.4
below), it follows that for all t > 0 (or all 0 < t ≤ to if rα = 1),

Entµ

(

ek(t)Qtf
)

≤ C

∫

α∗
(

k(t)|∇−Qtf |
)

ek(t)Qtf dµ

≤ C
(

k(t)
pα

pα−11t≤to + k(t)
rα

rα−11t>to

)

∫

α∗
(

|∇−Qtf |
)

ek(t)Qtf dµ

≤ −C
(

k(t)
pα

pα−11t≤to + k(t)
rα

rα−11t>to

)

∫

d

dt+
Qtfe

k(t)Qtf dµ,

where the last inequality follows from the Hamilton-Jacobi differential inequality (1.9). There-
fore,

dH

dt+
(t) ≤

1− Ck′(t)
(

k(t)
2−pα
pα−11t≤to + k(t)

2−rα
rα−11t>to

)

∫

ek(t)Qtf dµ

∫

d

dt+
Qtfe

k(t)Qtf dµ = 0

where the last equality is a consequence of the very definition of k. Hence H is non-increasing
on (0,+∞) (or on (0, to] if rα = 1). When α(h)/h → ∞, when h → ∞, then according to
point (3) of Proposition A.3 and the dominated convergence theorem, it holds

log
∥

∥

∥
eQtf

∥

∥

∥

k(t)
= H(t) ≤ lim

s→0+
H(s) = log

∥

∥

∥
ef
∥

∥

∥

k(0)
.

If α(h)/h → ℓ ∈ R
+, when h→ ∞, then according to point (3) of Proposition A.3, the same

conclusion holds if Lip(f) < ℓ. Consider now a bounded continuous function f : X → R and
fix ε ∈ (0, 1). Thanks to Lemma 4.4 below, Lip((1 − ε)Qsf) ≤ (1 − ε)ℓ for all s > 0. Since
Qsf ≤ f , we can conclude that

∥

∥

∥
eQt((1−ε)Qsf)

∥

∥

∥

k(t)
≤
∥

∥

∥
e(1−ε)Qsf

∥

∥

∥

k(0)
≤
∥

∥

∥
e(1−ε)f

∥

∥

∥

k(0)
.

Using Lebesgue’s Theorem and Lemma 4.4, as ε→ 0, we get
∥

∥

∥
eQt(Qsf)

∥

∥

∥

k(t)
≤
∥

∥

∥
ef
∥

∥

∥

k(0)
.

Since Qt+sf ≤ Qt(Qsf) and thanks to point (2) of Proposition A.3, we have lims→0Qt+sf =
Qtf so that (using Lebesgue’s theorem) the hypercontractivity property (4.2) still holds when
f is bounded and continuous, as expected.

Now we prove that if (4.2) holds for all bounded continuous f and all t > 0 with k defined
by (4.3), then µ verifies LSI−α (C). Observe that in the case α(h)/h → ℓ ∈ R

+, it is enough
to show that LSI−α holds for functions with Lip(f) < ℓ.

Let H(t) = log
∥

∥eQtf
∥

∥

k(t)
, for all t > 0, with f ∈ Fα and Lip(f) < ℓ when α(h)/h → ℓ ∈ R

+

as h→ ∞. By assumption, it holds

lim sup
t→0+

H(t)−H(0+)

t
≤ 0.
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Let us choose to < C(pα − 1) in the definition of k(t) so that k(0) and k′(0) > 0. It is not
difficult to check that

lim sup
t→0+

H(t)−H(0+)

t
=
k′(0)

k(0)2
Entµ

(

ek(0)f
)

∫

ek(0)f dµ
−

1

k(0)
∫

ek(0)f dµ
lim inf
t→0+

∫

ek(t)f − ek(t)Qtf

t
dµ.

According to the mean value theorem, there exists a function ϕ : (0,∞) × X → R taking
values in the interval [k(t)ek(t)Qtf(x); k(t)ek(t)f(x) ] such that

ek(t)f − ek(t)Qtf

t
=
f −Qtf

t
ϕ(t, x), ∀t > 0, x ∈ X.

Applying point (4) of Proposition A.3, we get

lim inf
t→0+

∫

ek(t)f − ek(t)Qtf

t
dµ ≤ lim sup

t→0+

∫

ek(t)f − ek(t)Qtf

t
dµ

≤ k(0)

∫

α∗(|∇−f |) ek(0)f dµ.

So

Entµ

(

ek(0)f
)

≤
k(0)2

k′(0)

∫

α∗
(

|∇−f |
)

ek(0)f dµ.

Since k(0) =
(

1− C−1to
pα−1

)pα−1
→ 1 and k(0)2/k′(0) = C

(

1− C−1to
pα−1

)pα−2
→ C, when to →

0+, we conclude that LSI−α (C) holds. This completes the proof. �

During the proof above, we used the following technical lemma whose proof is postponed to
the appendix for the clarity of the exposition.

Lemma 4.4. Set ℓ = limh→∞
α(h)
h ∈ R∪{+∞}. Let f : X → R be a bounded and continuous

function. Then,

(1) For all t > 0, Qtf ∈ Fα and Lip(Qtf) ≤ ℓ.
(2) For all t > 0 and all x ∈ X, limε→0Qt((1− ε)f)(x) = Qtf(x).

We are now in position to derive the Otto-Villani Theorem from Theorem 1.11.

Recall that, according to Bobkov and Götze characterization [5], µ verifies the transport-
entropy inequality Tα(C) if and only if

(4.5)

∫

eC
−1Q1f dµ ≤ exp

(

C−1

∫

f dµ

)

,

for all bounded continuous function f : X → R.

Proof of Theorem 1.13. Since µ verifies LSI−α (C), it verifies the hypercontractivity property
(1.12) of Theorem 1.11. Take to = C(pα − 1) in the definition of k(t), the hypercontractivity
inequality (1.12) yields for all bounded continuous function f ,

∫

ek(t)Qtfdµ ≤ ek(t)
∫
fdµ, ∀t > 0.

According to (4.5), this means that µ verifies the following family of transport-entropy in-
equalities

Tα( · /t)(µ, ν) ≤
1

tk(t)
H(ν|µ), ∀ν ∈ P(X),
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where α( · /t) denotes the function x 7→ α(x/t). According to [11, Proof of Lemma A.3],

α(x) ≤ max(trα ; tpα)α(x/t), ∀t > 0.

Therefore, µ verifies Tα(A), with the constant

A = inf
t>0

max(trα−1; tpα−1)

k(t)
.

Taking t = C(pα − 1) for which k(t) = 1, we see that

A ≤ max
(

((pα − 1)C)rα−1; ((pα − 1)C)pα−1
)

,

which ends the proof. �

Proof of Proposition 1.14. Define for all t > 0 the operators

Rtf(x) = inf
y∈X

{

f(y) +
1

t
θ(d(x, y))

}

and Qtf(x) = inf
y∈X

{

f(y) +
1

t
d2(x, y)

}

According to Bobkov and Götze dual formula (4.5) and by homogeneity, it holds for all t > 0
∫

eC
−1tRtf dµ ≤ eC

−1t
∫
f dµ,

for all bounded continuous function f. Take a function f such that |f | ≤M and Lip(f, r) <∞
for some r > 0. If d(x, y) ≥ a, and t ≤ a2/(2M), then it holds

f(y) +
1

t
θ(d(x, y)) ≥ −M +

(2M)

a2
a2 =M ≥ f(x) ≥ Rtf(x).

It follows that if t ≤ a2/2M , then

Rtf(x) ≥ inf
y:d(x,y)≤a

{

f(y) +
1

t
d2(x, y))

}

≥ Qtf(x).

So the following inequality holds
∫

eC
−1tQtf dµ ≤ eC

−1t
∫
f dµ, ∀t ≤ a2/(2M).

Applying Taylor formula, we see that

eC
−1tQtf(x) = 1 + C−1tQtf(x) +

C−2(tQtf)
2(x)

2
eϕ(t,x),

where |ϕ(t, x)| ≤ tM , for all t, x. So, for all t ≤ a2/(2M),

C−1

∫

Qtf − f

t
dµ+

C−2

2

∫

(Qtf)
2(x)eϕ(t,x) µ(dx) ≤

eC
−1t

∫
f dµ − 1− tC−1

∫

f dµ

t2
.

Letting t go to 0 and using points (3) and (4) of Proposition A.3 together with the dominated
convergence theorem yields to

−
C−1

4

∫

|∇−f |2 dµ+
C−2

2

∫

f2 dµ ≤
C−2

2

(
∫

f dµ

)2

,

which is the announced Poincaré inequality. �
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5. Transport-entropy inequalities as restricted log-Sobolev inequalities

In this section, we show that a transport-entropy inequality can be characterized as a modified
log-Sobolev inequality restricted to a class of c-convex functions. Actually we will prove the
following improved version of Theorem 1.15 which holds even if the space is not geodesic.

Theorem 5.1. Let µ be a probability measure on (X, d) and p ≥ 2. Define the function βp
as follows:

(5.2) βp(u) =
u

[u1/(p−1) − 1]p−1
, ∀u > 1.

The following properties are equivalent:

(1) There is some C > 0 such that µ verifies Tp(C).

(2) There is some D > 0 such that µ verifies the following (τ)-log-Sobolev inequality: for
all bounded continuous f and all 0 < λ < 1/D, it holds

Entµ(e
f ) ≤

1

1− λD

∫

(f −Qλf)ef dµ,

where for all λ > 0, Qλf(x) = infy∈X {f(y) + λcp(x, y)} .

(3) There is some E > 0 such that µ verifies the following restricted log-Sobolev inequality:
for all Kcp-convex function f , with 0 < K < 1/E it holds

Entµ(e
f ) ≤

βp(u)− 1

(1−KEu)pKq−1

∫

|∇−
Kcp

f |qef dµ, ∀u ∈ (1, 1/(KE))

where q = p/(p − 1) and |∇−
Kcp

f |(x) = K
(

inf ȳ∈∂Kcpf(x)
d(x, ȳ)

)p−1
(see Proposition

2.8).

Moreover, when the space (X, d) is geodesic these properties are equivalent to the following

(3’) There is some F > 0 such that µ verifies the following restricted log-Sobolev inequality:
for all Kcp-convex function f , with 0 < K < 1/F it holds

Entµ(e
f ) ≤

βp(u)− 1

(1−KFu)pKq−1

∫

|∇+f |qef dµ, ∀u ∈ (1, 1/(KF ))

The optimal constants Copt,Dopt, Eopt, Fopt are related as follows

Fopt ≤ Eopt ≤ Dopt ≤ Copt ≤ κpFopt,

where κp is some universal constant depending only on p. For p = 2, one can take κ2 = e2.

5.1. From transport-entropy inequalities to (τ)-log-Sobolev inequalities. Let us re-
call the following proposition from [10] whose proof relies on a simple Jensen argument.

Lemma 5.3. If µ verifies the transport-entropy property Tc(C), for some continuous cost
function c on X2, then the following (τ)-log-Sobolev property holds: for all function f , for
all 0 < λ < 1/C,

Entµ(e
f ) ≤

1

1− λC

∫

(f −Qλf)ef dµ,(5.4)

where for all x ∈ X, Qλf(x) = inf{f(y) + λc(x, y)}.



HAMILTON JACOBI EQUATIONS ON METRIC SPACES 19

This proves the step (1) ⇒ (2) in Theorem 5.1.

5.2. From transport entropy inequalities to log-Sobolev inequalities for cp-convex
functions. The general link between the (τ)-log-Sobolev property and the restricted log-
Sobolev inequality is the following: if the function f is c-convex then the quantity f−Qλf in
the right-hand side of (5.4) can be bounded by a function of |∇−

c f | (see Lemma 5.5 below).

From now on, let us assume that c = cp is the cost function defined by: for all x, y in X,
cp(x, y) = dp(x, y)/p, for some p > 1.

Lemma 5.5. Let λ > 0. If f is a Kcp-convex function bounded from above, and if 0 < K < λ,
then for all x ∈ X and all ȳ in the Kcp-subdifferential of f at point x, ∂Kcpf(x),

f(x)−Qλf(x) ≤ K (βp (λ/K)− 1) cp(x, ȳ),

where Qλf(x) = infy∈X{f(y) + λcp(x, y)} and for all u > 1, βp(u) =
u

[u1/(p−1)−1]p−1 .

Equivalently, with the notation of Proposition 2.8,

f(x)−Qλf(x) ≤ (βp(λ/K) − 1)
1

pKq−1
|∇−

Kcp
f |q(x),

where q = p
p−1 .

Proof. According to Definition 2.4 of ∂Kcpf(x) and using the triangular inequality we get,
for all ȳ ∈ ∂Kcpf(x)

f(x)−Qλf(x) = sup
z∈X

{f(x)− f(z)− λcp(z, x)}

≤ sup
z∈X

{Kcp(z, ȳ)−Kcp(x, ȳ)− λcp(z, x)}

≤ sup
z∈X

{Kcp(z, ȳ)− λcp(z, x)} −Kcp(x, ȳ)

≤
1

p
sup
z∈X

{K(d(z, x) + d(x, ȳ))p − λdp(z, x)} −Kcp(x, ȳ)

≤
1

p
sup
r≥0

{K(r + d(x, ȳ))p − λrp} −Kcp(x, ȳ)

= Kcp(x, ȳ) (βp (λ/K)− 1) .

Thus optimizing over all possible ȳ ∈ ∂Kcpf(x) yields to the expected result

f(x)−Qλf(x) ≤ (βp (λ/K)− 1) inf
ȳ∈∂Kcpf(x)

Kcp(x, ȳ) = (βp(λ/K)− 1)
1

pKq−1
|∇−

Kcp
f |q(x).

�

From this lemma the (τ)-log-Sobolev property (5.4) provides immediately the first part of
the following statement by setting u = λ/C.

Proposition 5.6. If µ verifies the (τ)-log-Sobolev (5.4) with the cost c = cp, p > 1, then for
all K ∈ (0, 1/C) and all function f bounded from above and Kcp-convex, it holds

Entµ(e
f ) ≤

βp(u)− 1

(1−KCu)pKq−1

∫

|∇−
Kcp

f |q(x) ef(x) µ(dx), ∀u ∈ (1, 1/(KC)).
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Moreover, when (X, d) is geodesic, the same inequality holds with |∇+f | instead of |∇−
Kcp

f |

in the right-hand side.

This proves the steps (2) ⇒ (3) and (2) ⇒ (3′) (in the geodesic case) in Theorem 5.1.

Proof. Let us justify the statement in the geodesic case. According to Proposition 2.8 (applied
with the function θ(x) = Kxp/p), it holds |∇−

Kcp
f | ≤ |∇+

Kcp
f | and when the space is geodesic,

|∇+
Kcp

f | = |∇+f |, which completes the proof. �

5.3. From log-Sobolev inequalities for cp-convex functions to transport-entropy

inequalities. In this part we prove that a modified log-Sobolev inequality restricted to the
class of Kcp-convex functions also implies a transport entropy-inequality. One of the main
ingredient of the proof is Theorem 1.10.

Theorem 5.7. Let p ≥ 2. Suppose that for all K ∈ (0, 1/C) and all Kcp-convex function
f : X → R bounded from above, it holds

(5.8) Entµ(e
f ) ≤

βp(u)− 1

(1−KCu)pKq−1

∫

|∇−
Kcp

f |q(x) ef(x) µ(dx), ∀u ∈ (1, 1/(KC)).

then µ verifies the inequality Tp(κpC), where κp is some numerical constant depending only
on p. For p = 2, κ2 = e2. Moreover, if the space is geodesic, the same conclusion holds if
|∇−

Kcp
f | is replaced by |∇+f | in the right hand side of (5.8).

This proves the steps (3) ⇒ (1) and (3′) ⇒ (1) (in the geodesic case) and completes the proof
of Theorem 5.1.

Proof. For any bounded continuous function g, we define the function Ptg as follows

Ptg(x) = sup
y∈X

{

g(y)−
1

tp−1
cp(x, y)

}

.

Let ℓ : [a, 1] → (0,+∞) be a decreasing function of class C1 defined on some interval
[a, 1] with a > 0 and such that ℓ(1) = 0. For all bounded continuous g define Hg(t) =
C
ℓ(t) log

(

∫

eC
−1ℓ(t)Ptg dµ

)

, t ∈ [a, 1). If all the Hg’s were non-decreasing, then it would hold

that Hg(a) ≤ limt→1− Hg(t) =
∫

P1f dµ. Since g ≤ Pag, we would get
∫

eC
−1ℓ(a)g dµ ≤ eC

−1ℓ(a)
∫
P1g dµ

which in turn, according to Bobkov and Götze characterization Theorem, would prove that
µ verifies Tp(C/ℓ(a)).

Hence, our aim is to construct a function ℓ such that all the Hg’s are non-decreasing. Set
ft = C−1ℓ(t)Ptg. According to Proposition 4.1, Hg is continuous and differentiable on the
right and

d

dt+
Hg(t) =

Cℓ′(t)

ℓ2(t)
∫

eft dµ

[

Entµ

(

eft
)

+
ℓ(t)2

Cℓ′(t)

∫

dPtg

dt+
eft dµ

]

.

Since ℓ′ < 0, all we have to show is that the term into brackets is non-positive. For all t > 0,

the function ft is K(t)cp-convex, with K(t) = ℓ(t)
Ctp−1 . Hence, for all t such that ℓ(t) < tp−1
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and all u ∈ (1, 1/(CK(t)),

Entµ(e
ft) ≤

βp(u)− 1

(1−K(t)Cu)pK(t)q−1

∫

|∇−
K(t)cp

(ft)|
q(x)eft(x) µ(dx).

Since ft is K(t)cp-convex, it follows from Proposition 2.8 (applied with α(h) = K(t)hp/p)
that

|∇−
K(t)cp

ft|(x) = K(t)

(

min
ȳ∈∂K(t)cpft(x)

d(x, ȳ)

)p−1

≤ K(t)

(

max
ȳ∈m(t,x)

d(x, ȳ)

)p−1

,

denoting by m(t, x) the set of points ȳ where the supremum defining Ptg is reached. As a
result, it holds

1

pK(t)q−1
|∇−

K(t)cp
ft|

q(x) ≤ K(t) max
ȳ∈m(t,x)

cp(x, ȳ).

On the other hand, according to Proposition 1.10,

dPtg

dt+
(x) =

p− 1

tp
max

ȳ∈m(t,x)
cp(x, ȳ).

Therefore

(5.9)
1

pK(t)q−1
|∇−

K(t)cp
ft|

q(x) ≤
K(t)tp

(p − 1)

dPtg

dt+
(x) =

tℓ(t)

(p− 1)C

dPtg

dt+
(x).

So, for all t > 0 with ℓ(t) < tp−1 it holds
[

Entµ

(

eft
)

+
ℓ(t)2

Cℓ′(t)

∫

dPtg

dt+
eft dµ

]

≤
ℓ(t)

C

[

θp

(

ℓ(t)

tp−1

)

t

p− 1
+
ℓ(t)

ℓ′(t)

]
∫

dPtg

dt+
eft dµ,

where the function θp is defined by θp(x) = inf1<u<1/x

{

βp(u)−1
1−xu

}

, for x < 1. Observe that θp

is finite on [0, 1[. Consider the function

Ψp(r) =
1

p− 1

∫ r

0

θp(s)

s(θp(s) + 1)
ds, ∀r ∈ [0, 1].

According to Lemma 5.10 below, since p ≥ 2, the function Ψp is well defined, increasing and
of class C1 on (0, 1). Define v(t) = Ψ−1

p (− ln(t)), for all t ∈ [ap, 1], with ap = exp (−Ψp(1)).

The function v is increasing and v(t) ∈ [0, 1] for all t ∈ [ap, 1]. Finally, define ℓp(t) = tp−1v(t),
for all t ∈ [ap, 1]. A simple calculation shows that

θp

(

ℓp(t)

tp−1

)

t

p− 1
+
ℓp(t)

ℓ′p(t)
= 0, ∀t ∈ (ap, 1).

We conclude that µ verifies the inequality Tp with the constant

C

ℓp(ap)
= C exp

(
∫ 1

0

θp(s)

s(θp(s) + 1)
ds

)

= Cκp.

In the particular case p = 2, one has θ2(x) =
4x

(1−x)2
, and it is easy to check that κ2 = e2.

It remains to consider the geodesic case. In this case, the inequality (5.9) is replaced by the
equality

1

pK(t)q−1
|∇+ft|

q(x) =
K(t)tp

(p − 1)

dPtg

dt+
(x),

and the rest of the proof remains unchanged. �
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Lemma 5.10. The function s 7→ φ(s) =
θp(s)

s(θp(s)+1) is continuous on (0, 1). Moreover, φ(s)

goes to 1 as s goes to 1 and

φ(s) =
pp/(p−1)

s(p−2)/(p−1)
(1 + ε(s)),

with ε(s) → 0 as s→ 0.

Proof. After some computations, it is easily to check that for s ∈ (0, 1), the infimum θp(s) is
reached at some unique point u = u(s) ∈ (1, 1/s) such that

β′p(u)(1 − su) + s(βp(u)− 1) = 0,

or equivalently

u(s)p/(p−1) −
(

u(s)1/(p−1) − 1
)p

= 1/s.

It follows from this equality that u(s) is continuous on (0,1), u(s) → 1 as s → 1 and
u(s) → +∞ as s→ 0. As a first consequence, φ is continuous on (0, 1).

By a Taylor expansion at point 0, one has

1

su(s)p/(p−1)
= 1−

(

1−
1

u(s)1/(p−1)

)p

=
p

u(s)1/(p−1)
(1 + ε(s)),

with ε(s) → 0 as s → 0. It follows that su(s) → 1/p as s → 0. From all this observations,
we get

φ(s) =
1−

(

1− u(s)−1/(p−1)
)p−1

s
(

1− su(s)
(

1− u(s)−1/(p−1)
)p−1

) =
pp/(p−1)

s(p−2)/(p−1)
(1 + ε(s)),

with ε(s) → 0 as s→ 0. Since u(s) → 1 as s→ 1 we easily get that φ(s) → 1 as s→ 1. �

Appendix A. Proof of Lemma 2.7, Lemma 2.10, Proposition 4.1 and Lemma 4.4

In this appendix we collect all the technical proofs of Lemmas 2.7, 2.10 and 4.4 and of
Proposition 4.1.

Proof of Lemma 2.7. Let ȳ ∈ ∂cf(x). According to the definition of the c-subdifferential,

f(z)− f(x) ≥ L(x− ȳ)− L(z − ȳ), ∀z ∈ R
m.

Let z = x+ εu with ε > 0 and u ∈ R
m. Since L and f are smooth functions at point x, we

get as ε tends to 0, for all u ∈ R
m,

u · ∇f(x) ≥ −u · ∇L(x− ȳ),

and therefore ∇f(x) = −∇L(x − ȳ). Let vo = x − ȳ and uo = ∇L(v0), by the convexity
property of L,

(A.1) L(v) ≥ L(vo) + uo · (v − vo), ∀v ∈ R
m,

or equivalently L(vo) ≤ uo · vo − L∗(uo). Since L(vo) = supu∈Rm{u · vo − L∗(u)}, it follows
that the derivative of u 7→ u · vo − L∗(u) vanishes at uo, and so vo = ∇L∗(uo). Finally,
x− ȳ = ∇L∗(uo) = ∇L∗(−∇f(x)), which completes the proof. �
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Proof of Lemma 2.10. (1) The function h : y 7→ g(y)−tα (d(x, y)/t) is upper semicontinuous,
bounded from above and its level sets {h ≥ r} r ∈ R are compact. It follows that h reaches
its supremum and so m(t, x) = {h ≥ suph} is not empty and compact.

(2) Let hn(y) = g(y)−tnα
(

d(xn,y)
tn

)

, y ∈ X. The sequence of functions hn converges pointwise

to the function h, and the convergence is uniform on each bounded set. Since g is bounded
from above by some constant r ∈ R, it holds

(A.2) r−tnα

(

d(xn, yn)

tn

)

≥ g(yn)−tnα

(

d(xn, yn)

tn

)

≥ g(y)−tnα

(

d(xn, y)

tn

)

, ∀y ∈ X.

Since (xn)n∈N is bounded and limn→∞ tn = t > 0, we conclude that (yn)n∈N is a bounded
sequence. As balls are supposed to be compact, (yn)n∈N has converging subsequences. Passing
to the limit into the inequality (A.2) along a converging subsequence of (yn)n∈N, yields to
the conclusion that any limit point ȳ of (yn)n∈N belongs to m(t, x). �

Let us turn to the proof of Proposition 4.1. The proof requires some regularity properties of
Qtf in the t variable that are gathered in the following proposition.

Proposition A.3. Let f be a bounded lower semicontinuous function on X; define for all

t > 0 and x ∈ X Qtf(x) = inf
{

f(y) + tα
(

d(x,y)
t

)}

and let m(t, x) denote the set of points

where this infimum is attained. The following properties hold

(1) For all x ∈ X,

m(t, x) ⊂ B
(

x, tα−1 (Osc(f)/t)
)

.

(2) For all t, h > 0,

1

h
sup
x∈X

|Qt+hf(x)−Qtf(x)| ≤ β
(

α−1 (Osc(f)/t)
)

.

(3) If α(h)/h → ∞, when h → ∞, then for all bounded continuous function f and for
all x ∈ X,

lim
t→0+

Qtf(x) = f(x).

and

lim inf
t→0+

Qtf(x)− f(x)

t
≥ −α∗(|∇−f |(x)).

If α(h)/h → ℓ ∈ R
+, when h→ ∞, the same conclusions hold for all function f with

Lip(f) < ℓ.
(4) Let µ be a probability measure and ϕ : (0,+∞) ×X → R be such that |ϕ| ≤ M for

some M > 0 and limt→0+ ϕ(t, x) = ψ(x) for all x ∈ X. If α(h)/h → ∞ when h→ ∞
and if f is such that Lip(f, r) < +∞ for some r > 0, then

lim sup
t→0

∫

f −Qtf

t
ϕ(t, x) dµ ≤

∫

α∗(|∇−f |(x))ψ(x) dµ.

The same conclusion holds if α(h)/h → ℓ ∈ R
+, when h→ ∞, and Lip(f) < ℓ.

Proof of Proposition A.3. (1) Let M = sup(f) and m = inf(f). If ȳ ∈ m(t, x), it holds

m+ tα

(

d(x, ȳ)

t

)

≤ f(ȳ) + tα

(

d(x, ȳ)

t

)

= Qtf(x) ≤M,

which proves the first claim.
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(2) Since t 7→ Qtf(x) is non-increasing, |Qt+hf(x) − Qtf(x)| = Qtf(x) − Qt+hf(x). If ȳ ∈
m(t+ h, x), then

1

h
(Qtf(x)−Qt+hf(x)) ≤

1

h

(

tα

(

d(x, ȳ)

t

)

− (t+ h)α

(

d(x, ȳ)

t+ h

))

≤ β
(

α−1 (Osc(f)/t)
)

,

where the last inequality comes from the mean value theorem, the monotonicity of the func-
tion β and point (1).

(3) Let us first assume that limh→∞ α(h)/h = +∞. In this case, limt→0 tα
−1
(

Osc(f)
t

)

= 0

and so, according to the first point,

inf
y∈B(x,tα−1(Osc(f)/t))

{f(y)} ≤ Qtf(x) ≤ f(x).

Since f is lower semicontinuous, the limit when t goes to 0 of the left hand side is greater than
or equal to f(x). This guarantees that limt→0+ Qtf(x) = f(x). Moreover, for all ȳt ∈ m(t, x),
f(ȳt) ≤ f(x) and therefore

f(x)−Qtf(x)

t
=
f(x)− f(ȳt)

t
− α

(

d(x, ȳt)

t

)

=
[f(ȳt)− f(x)]−

d(x, ȳt)

d(x, ȳt)

t
− α

(

d(x, ȳt)

t

)

≤ α∗

(

[f(ȳt)− f(x)]−
d(x, ȳt)

)

.(A.4)

Arguing as before, we see that ȳt → x as t→ 0 so that

lim sup
t→0+

f(x)−Qtf(x)

t
≤ α∗

(

|∇−f |(x)
)

.

Now let us assume that α(h)/h → ℓ ∈ R
+ when h → ∞. According to what precedes, it is

enough to show that there is a constant r > 0 such that

m(t, x) ⊂ B(x; rt), ∀t > 0, x ∈ X.

Let ȳ ∈ m(t, x). Then it holds f(ȳ)−f(x)+ tα (d(x, ȳ)/t) ≤ 0. Since f is assumed to be Lips-
chitz, we conclude that Lip(f)d(x, ȳ)/t ≥ α (d(x, ȳ)/t) . Since Lip(f) < ℓ = limh→+∞ α(h)/h,
this implies that d(x, ȳ) ≤ rt where r = sup{h : α(h)/h ≤ Lip(f)} < +∞, which proves the
claim.

(4) We already know, by point (3), that lim supt→0+
f(x)−Qtf(x)

t ≤ α∗ (|∇−f |(x)). Hence the
result of point (4) will follow from Fatou’s Lemma (in its limsup version) as soon as for some

t0 > 0, it holds supx supt∈(0,to)
f(x)−Qtf(x)

t <∞.

Assume first that limh→∞ α(h)/h = ∞ and let r > 0 be such that Lip(f, r) < ∞. Observe

that limt→0 tα
−1
(

Osc(f)
t

)

= 0 so that, by point (1), there exists to > 0 such that, for all

t ∈ (0, to), all x ∈ X and all ȳt ∈ m(t, x), d(x, ȳt) ≤ r. Using (A.4), we conclude that

supx supt∈(0,to)
f(x)−Qtf(x)

t ≤ α∗ (Lip(f, r)) <∞.

Assume now that α(h)/h → ℓ ∈ R
+, when h → ∞. Then, since Lip(f) < ℓ, (A.4) implies

that supx,t
f(x)−Qtf(x)

t ≤ α∗ (Lip(f)) < ∞. This ends the proof of point (4) and of the
proposition. �

Proof of Proposition 4.1. We will prove that H is right differentiable, the proof of the left-
differentiability being similar. By formally differentiating under the sign integral yields for
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all t > 0,

dH

dt+
(t) = −

k′(t)

k(t)2
log

(
∫

ek(t)Qtf dµ

)

+
1

k(t)
∫

ek(t)Qtf dµ

[
∫

k′(t)Qtfe
k(t)Qtf dµ+

∫

k(t)
d

dt+
Qtfe

k(t)Qtf dµ

]

,(A.5)

which easily gives the desired identity. Hence, it remains to justify the above calculation.
Define F (t) =

∫

ek(t)Qtf dµ. To obtain (A.5), it is enough to show that F is right differentiable
and that

dF

dt+
(t) =

∫

k′(t)Qtfe
k(t)Qtf dµ +

∫

k(t)
d

dt+
Qtfe

k(t)Qtf dµ.

For all s > 0, 1
s (F (t+ s)− F (t)) =

∫

Gs dµ, with Gs = 1
s

(

ek(t+s)Qt+sf − ek(t)Qtf
)

. Since
t 7→ Qtf(x) is right differentiable for t > 0,

Gs(x) −→
s→0

k′(t)Qtf(x)e
k(t)Qtf(x) + k(t)

d

dt+
Qtf(x)e

k(t)Qtf(x).

For a given t ∈ (a, b), let ηt > 0 be any number such that t+ ηt < b. Then, using the mean
value Theorem together with point (2) of Proposition A.3, it is not difficult to prove that
supx∈X sups≤ηt |Gs|(x) < +∞. Applying the dominated convergence theorem completes the
proof. �

Proof of Lemma 4.4. Let f : X → R be a bounded and continuous function. Fix t > 0.

(1) First, following [11, Lemma 3.8], we will prove that there exists r > 0 such that
Lip(Qtf, r) <∞. Set r = tα−1(Osc(f)/t). From point (1) of Proposition A.3, it holds

Qtf(u) = inf
d(y,u)≤r

{f(y) + tα(d(u, y)/t)} , ∀u ∈ X.

Fix u, v ∈ X with d(u, v) ≤ r. Then, given yo ∈ X such that d(v, yo) ≤ r, it follows from the
mean value theorem that

|tα(d(u, yo)/t)− tα(d(v, yo)/t)| ≤ |d(v, yo)− d(u, yo)| max
s∈[0,1]

α′([sd(u, yo) + (1− s)d(v, yo)]/t)

≤ α′(2r/t)d(u, v).

Now, let yo be such that Qtf(v) = f(yo) + tα(d(v, yo)/t) and observe that, thanks to the
previous observation, d(v, y0) ≤ r. It follows that (choosing y = yo),

Qtf(u)−Qtf(v) = inf
y
{f(y) + tα(d(u, y)/t)} − f(yo)− tα(d(v, yo)/t)

≤ tα(d(u, yo)/t) − tα(d(v, yo)/t)

≤ α′(2r/t)d(u, v),

which proves that Lip(Qtf, r) <∞.

Now assume that α(h)/h → ℓ ∈ R
+, when h → ∞ and let us prove that Qtf is ℓ-Lipschitz.

The convexity of α implies that

α(h)

h
≤ α′(h) ≤

α(2h) − α(h)

h
, ∀h > 0.

So suph α
′(h) = limh→∞ α′(h) = ℓ and it follows that Qtf is ℓ-Lipschitz as an infimum of

ℓ-Lipschitz functions.
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(2) Let (λn)n≥0 be a sequence of real numbers converging to 1. For any x ∈ X, let m(t, x)
be the set of points y ∈ X such that Qtf(x) = infz∈X{f(z) + tα(d(x, z)/t)} = f(y) +
tα(d(x, y)/t). For any n, let yn be such that Qt(λnf)(x) = λnf(yn) + tα(d(x, yn)/t). We
have, for all z ∈ X,

λn inf f + tα(d(x, yn)/t) ≤ λnf(yn) + tα(d(x, yn)/t) ≤ λnf(z) + tα(d(x, z)/t).

Since (λn)n converges, we deduce that the sequence (yn)n is bounded. Let y be a limit point
of a converging subsequence of (yn)n. Passing to the limit in the latter leads to

f(y) + tα(d(x, y)/t) ≤ f(z) + tα(d(x, z)/t) ∀z ∈ X.

Hence, y ∈ m(t, x). In turn, after easy considerations left to the reader, Qt(λnf)(x) →
Qtf(x), when n → ∞ as expected. The conclusion of point (2) follows and the proof is
complete. �
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