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Abstract

We give a new proof of the fact that Gaussian concentration implies the logarithmic Sobolev inequality
when the curvature is bounded from below, and also that exponential concentration implies Poincaré in-
equality under null curvature condition. Our proof holds on non-smooth structures, such as length spaces,
and provides a universal control of the constants. We also give a new proof of the equivalence between
dimension free Gaussian concentration and Talagrand’s transport inequality.
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This paper deals with the concentration of measure phenomenon and coercive inequali-
ties, namely: transport inequalities, Poincaré and logarithmic Sobolev inequalities, isoperimetry.
These notions are briefly introduced in the next section. We refer respectively to the books and
surveys [29,27,5,35,38,23,49,2,45,20] for a more general introduction and a complete list of ref-
erences on these topics.

It is well known that if a probability measure μ on, say, (X,d) a smooth Riemannian mani-
fold, satisfies the logarithmic Sobolev inequality with constant C (see (1.3)), then the following
Gaussian concentration property holds: for all subset A with μ(A) � 1/2,

μ
(
Ar

)
� 1 − Me−ar2

, ∀r � 0,

where Ar = {x ∈ X; d(x,A) � r}, with M = 1 and a = 1/C. Conversely, in a smooth Rie-
mannian framework, under some curvature condition, Wang has shown in [46] that the above
Gaussian concentration property implies a logarithmic Sobolev inequality. This result has been
improved by Milman in a series of papers [34–36], showing that the logarithmic Sobolev constant
C only depends on the concentration constants and on the lower bound on the Ricci curva-
ture.

In the present paper, one of the main contribution is to extend Milman’s result to non-smooth
structures, such as length spaces (see Theorem 1.13). The curvature condition of the length space
is defined in the sense of Lott–Villani–Sturm (see Definition 1.9). In the same spirit, we show
that the exponential concentration property implies Poincaré inequality when the curvature of the
length space is bounded below by 0 (see Theorem 1.14).

The main ingredient in the proof of these new results is a characterization of the concentration
property in terms of non-tight transport inequality (see Section 2). A byproduct of this charac-
terization (see Corollary 2.23) is a new simple proof of the equivalence between dimension free
Gaussian concentration and Talagrand’s transport inequality first established by the first named
author in [18].

1. Introduction

In this section, we introduce the different inequalities related to concentration of measure and
the notion of curvature in the sense of Lott–Villani–Sturm. Then we state our main results and
we outline the proof.
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1.1. Inequalities related to Gaussian concentration

In the sequel, (X , d) is a polish space. A probability measure μ on X enjoys the Gaussian
concentration inequality if there are two positive constants M and a such that for all A ⊂ X with
μ(A) � 1/2, the following inequality holds

μ
(
Ar

)
� 1 − Me−ar2

, ∀r � 0, (1.1)

where Ar = {x ∈ X; d(x,A) � r}.
Gaussian concentration can be seen as a weak version of the Gaussian isoperimetric inequality.

Namely, one says that μ verifies the Gaussian isoperimetric inequality with a positive constant
C (G.Isop(C)) if, for all A ⊂ X ,

Cμ+(A) � Φ ′ ◦ Φ−1(μ(A)
)
, (1.2)

where

μ+(A) = lim inf
r→0

μ(Ar \ A)

r
,

and where Φ denotes the cumulative distribution function of the standard Gaussian measure
on R:

Φ(t) = 1√
2π

t∫
−∞

e−x2/2 dx, ∀t ∈ R.

It can be shown (see e.g. [29, Proposition 2.1]) that μ verifies (1.2), if and only if μ verifies the
following concentration property: for all A ⊂ X ,

μ
(
Ar

)
� Φ

(
Φ−1(μ(A)

) + r/C
)
, ∀r � 0.

It is not difficult to check that if μ(A) � 1/2, then Φ(Φ−1(μ(A)) + r/C) � 1 − e−r2/(2C2),
r � 0, and so μ verifies the Gaussian concentration property with M = 1 and a = 1/(2C2).

There are two other important functional inequalities giving Gaussian concentration: the log-
arithmic Sobolev inequality and Talagrand’s transport inequality. One says that μ verifies the
logarithmic Sobolev inequality (a notion introduced by Gross [22], see also [42]) with the posi-
tive constant C (LSI(C)), if

Entμ
(
f 2) � C

∫ ∣∣∇−f
∣∣2

dμ, (1.3)

for all bounded Lipschitz function f , where |∇−f | is defined by

∣∣∇−f
∣∣(x) = lim sup

[f (y) − f (x)]−
d(x, y)

, with [A]− = max(0,−A),

y→x
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when x is not isolated in X and 0 otherwise. If μ verifies LSI(C), then by Herbst’s argument
(see e.g. [2, Section 7.4.1]), it verifies the Gaussian concentration property (1.1) with M = 1 and
a = 1/C.

On the other hand, one says that μ verifies the transport inequality T2(C) with some positive
constant C if

T2(ν,μ) � CH(ν|μ) (1.4)

holds for all probability measure ν ∈ P (X ) (the set of all the Borel probability measures on
X ), where T2(ν,μ) denotes the quadratic optimal transport cost between ν and μ and is defined
by

T2(ν,μ) = inf
π

∫∫
d2(x, y) dπ(x, y),

where the infimum runs over all probability measures π on X × X having ν and μ as marginal
distributions. The quantity H(ν|μ) is the relative entropy of ν with respect to μ:

H(ν|μ) =
{∫

log dν
dμ

dν if ν � μ,

+∞ otherwise.

If μ satisfies T2(C), then by Marton’s argument [33], it verifies (1.1), with a = u/C, u ∈ (0,1)

and some positive constant M depending only on C and u.
There is a natural hierarchy between these inequalities: when (X , d) is, for example, a com-

plete Riemannian manifold (in this case, ∇−f is the usual gradient), then

G.Isop(
√

C/2 ) ⇒ LSI(C) ⇒ T2(C) ⇒ (1.1). (1.5)

The first implication is due to Ledoux (see [26,28]), the second one to Otto and Villani [37]
(see also [11], and [31] or [21] for an extension on metric spaces) and the last one follows from
Marton’s argument [33], as already mentioned.

1.2. From concentration to functional inequalities

In recent years, different authors have shown that this hierarchy can be reversed under the
curvature condition,

Ric+HessV � K, (1.6)

where dμ(x) = e−V (x) dx and K � 0 (for K > 0, it is known from [3] that the Gaussian isoperi-
metric inequality G.Isop(1/

√
K ) holds). Let us recall some of these contributions.

When |K|/2a < 1, it was first shown by Wang in [46] that the condition

I =
∫

ead2(x,xo) dμ(x) < +∞, (1.7)
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for some (and thus all) xo ∈ X was enough to ensure that LSI(C) holds for some constant C.
This constant C depends on a, K and I .

It can be deduced from Bakry and Ledoux’s paper [3], that if the probability measure μ verifies
LSI(C) with a constant C such that |K|C/2 < 1, then μ verifies the Gaussian isoperimetric
inequality with some other constant C̃ depending only on C and K .

In [37], Otto and Villani proved that T2(C) implies LSI(C̃) for some C̃ depending on K and
C as soon as |K|C/2 < 1.

At this step, it is worth noting an important difference between these three results. In Bakry
and Ledoux, or Otto and Villani results, the relation between constants C and C̃ is universal: in
both cases, the constant C̃ depends only on K and C. In particular, the dimension of X does
not appear in the expression of C̃. On the other hand, the constant C̃ in Wang’s result depends
on the integral I . Since I always depends on the dimension of the manifold X , Wang’s result is
dimensional.

After these pioneer works, many developments appear to unify and to generalize these obser-
vations [7,9,10,6]. We refer to [34] for a detailed bibliography.

In a series of papers [34–36], E. Milman has recently obtained the most general results in
this direction. Under the curvature condition (1.6), Milman has shown with a great generality
that concentration inequalities imply isoperimetric inequalities. The most remarkable feature of
his work is the purely adimensional character of the relations between constants. Let us give a
direct corollary of Milman’s study in the context of Gaussian inequalities. According to Milman’s
results, if (1.6) holds with K � 0, and if μ verifies the Gaussian concentration inequality (1.1)
with constants a and M such that |K|/(2a) < 1, then μ verifies the inequality G.Isop(

√
C/a ),

where C is a constant depending solely on a, M and K . In particular μ verifies LSI(2C/a), and
contrary to what happen in Wang’s theorem, the constant appearing in the logarithmic Sobolev
inequality is not affected by the dimension of X .

Milman’s proof uses rather difficult tools of Riemannian geometry. Recently, Ledoux [30],
gave a simplified approach to some of Milman’s results relying on semigroup tools and Γ2 calcu-
lus. The purpose of this article is to propose a first step in the challenging problem of extending
Milman’s equivalence between concentration and functional inequalities in the framework of
metric measured spaces with curvature, in the sense of Lott–Villani–Sturm, bounded from below
(see [32,43,44]). In this non-smooth context, the tools used by Milman and Ledoux are no longer
available.

In the next subsection, we present the notions of length spaces and curvature.

1.3. Lott–Villani–Sturm curvature

In all what follows, (X , d) is a complete separable and locally compact metric space. We will
further assume that (X , d) is a length space. This means that the distance between two points
equals the infimum of the lengths of the curves joining these points: for all x, y ∈ X ,

d(x, y) = inf
{
�(γ ); γ : [0,1] → X , continuous, γ (0) = x, γ (1) = y

}
,

where

�(γ ) = sup
N�1

sup
0=t <t <···<tN=1

{
N∑

d
(
γ (ti−1), γ (ti)

)}
.

0 1 i=1
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Let W2 = √
T2 denote the Wasserstein distance on the space P2(X ) of Borel probability mea-

sures ν on X with finite second moment:
∫

d(xo, x)2 dν(x) < +∞, for some (and thus all)
xo ∈ X . The metric space (P2(X ), W2) is canonically associated to the original metric space
(X , d). Following Lott and Villani [32], we define D C∞ to be the set of continuous convex func-
tions U : [0,∞) → R, with U(0) = 0 and such that λ �→ eλU(e−λ) is convex on (−∞,∞). For
any U ∈ D C∞, let

U ′(∞) = lim
x→∞

U(x)

x
∈ R ∪ {∞}.

According to our reference probability measure μ, define the function Uμ : P2(X ) → R∪{−∞}
by

Uμ(ν) =
∫

U(f )dμ + U ′(∞)νsing(X ),

where ν = f μ + νsing is the Lebesgue decomposition of ν with respect to μ into an absolutely
continuous part f μ and a singular part νsing. For any U ∈ D C∞, let p(x) = xU ′+(x) − U(x)

(U ′+ stands for the right derivative of U ), and for K ∈ R we define

κ(U) = inf
x>0

K
p(x)

x
∈ R ∪ {−∞}. (1.8)

Definition 1.9. The space (X , d,μ) has ∞-Ricci curvature bounded below by K , K ∈ R, if for
all ν1, ν2 ∈ P2(X ) whose supports are included in the support of μ, there exists a Wasserstein
geodesic {νt }t∈[0,1] from ν0 to ν1 (this means that W2(νs, νt ) = |s − t |W2(ν0, ν1) for all s, t ∈
[0,1]) such that for all U ∈ D C∞ and all t ∈ [0,1],

Uμ(νt ) � tUμ(ν1) + (1 − t)Uμ(ν0) − 1

2
κ(U)t (1 − t)W 2

2 (ν0, ν1). (1.10)

As explained in [32, Theorem 7.3.b], this definition is exactly equivalent to the usual cur-
vature condition (1.6) when X is a smooth Riemannian manifold (M,g). A straightforward
consequence of this curvature condition is the inequality (1.12) below called HWI inequality.
This inequality is at the heart of the proofs of our main results.

Proposition 1.11 (HWI inequality). (See Proposition 3.36 in [32].) Let U ∈ D C∞ ∩ C 2; if
(X , d,μ) has ∞-Ricci curvature bounded below by K , then for any probability measure ν ab-
solutely continuous with respect to μ, such that f = dν/dμ is a positive Lipschitz function on X
with

∫
U(f )dμ < ∞, it holds

Uμ(ν) � U(1) + √
Iμ,U (ν)

√
T2(ν,μ) − κ(U)

2
T2(ν,μ), (1.12)

where Iμ,U is the generalized Fisher information associated to U ,

Iμ,U (ν) =
∫

f U ′′(f )2
∣∣∇−f

∣∣2
dμ.
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The sketch of the proof of this result is to choose ν0 = ν, ν1 = μ and let t go to 0 in (1.10)
(see [32]).

1.4. Main results

Now we are in position to give our results concerning logarithmic Sobolev and Poincaré in-
equalities.

Theorem 1.13 (Logarithmic Sobolev inequality). Suppose (X , d,μ) has ∞-Ricci curvature
bounded below by K � 0 and that μ verifies the Gaussian concentration property (1.1) with
positive constants a and M . If the constants a, M and K satisfy the relation

|K|
2a

< τ(M) := log(2)

(2
√

M + √
log(2) )2

,

then μ verifies the logarithmic Sobolev inequality LSI(C) for some C depending only on K,a

and M .
In particular, when K = 0, one has, for any bounded Lipschitz function f : X → R,

Entμ
(
f 2) � DM

a

∫ ∣∣∇−f
∣∣2

dμ,

where D is some universal constant.

Let us make a few comments on the above theorem. For K = 0, the result is as good as pos-
sible: the logarithmic Sobolev inequality is (up to numerical factors) equivalent to the Gaussian
concentration. When K < 0, it is known, in a Riemannian setting, that the Gaussian concen-
tration implies the logarithmic Sobolev inequality, only when |K|/(2a) < 1. Here, we recover
the qualitative condition that the concentration constant a has to be larger than the curvature
constant K , but with a wrong ratio. Moreover this ratio τ depends on the constant M . Though
perfectible, this result is the first extension of Wang’s theorem available on this very general
non-smooth framework.

Our second main result deals with Poincaré inequality.

Theorem 1.14 (Poincaré inequality). Suppose (X , d,μ) has ∞-Ricci curvature bounded below
by 0 and that μ verifies the following exponential concentration property: for all A ⊂ X , with
μ(A) � 1/2,

μ
(
Ar

)
� 1 − Me−ar , ∀r � 0

with M,a > 0. Then, there exists a constant D that depends only on M such that for any bounded
Lipschitz function f : X → R, it holds

Varμ(f ) � D

a2

∫ ∣∣∇−f
∣∣2

dμ. (1.15)
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Since Poincaré inequality gives back exponential concentration, the conclusion of this theo-
rem is quite satisfactory. In [35], Milman has obtained the following striking result on a Rieman-
nian manifold: when K = 0, if μ verifies any non-trivial concentration property (not necessarily
exponential) then μ verifies Poincaré inequality (and even Cheeger linear isoperimetric inequal-
ity). The proof of this extremely powerful result uses as a main ingredient the fact that, in this
situation, the isoperimetric profile Jμ of μ, defined by Jμ(t) = inf{μ+(A); μ(A) = t}, t ∈ [0,1],
is a concave function of t . The difficult proof of the concavity of Jμ uses purely Riemannian ge-
ometric tools, and we do not know if it is reasonable to ask for an extension on metric spaces.
This is far beyond the scope of the present paper. The question to know if the conclusion of the
above mentioned result by Milman holds on metric spaces is open.

Let us end the presentation of our results by saying that during the preparation of this work,
we have made the drastic choice to restrict ourselves only to these two functional inequali-
ties. Many Sobolev type inequalities could be covered by our methods: F -Sobolev inequalities,
Beckner–Latała–Oleszkiewicz inequalities, super-Poincaré or Nash inequalities. Some results in
this direction, without proof, are given in the last section. The reason of this restriction is that
we wanted to put in light in the most transparent way the general methodology and the different
ingredients entering the proofs.

1.5. Method of proof

Here we briefly describe, in the Gaussian case, the method on which rely our proofs. As we
said above, the starting point is the HWI inequality which, in the case where U(x) = x log(x),
takes the form

H(ν|μ) �
√

T2(ν,μ)
√

Iμ,U (ν) − K

2
T2(ν,μ), ν ∈ P (X )

� λ − K

2
T2(ν,μ) + 1

2λ
Iμ,U (ν), (1.16)

for all λ > 0, with Iμ,U (ν) = ∫ |∇−f |2
f

dμ when ν = f μ with f Lipschitz.
In recent years, several authors have used this inequality (or the corresponding semiconvexity

property given by (1.10)) to derive functional inequalities see [14,1,15,7]. It was first noticed
by Otto and Villani in [37] (see also [32] for the metric space case), that (1.16) gives back the
Bakry–Emery condition when K > 0. Namely, taking λ = K , the right-hand side of (1.16) is in
this case smaller than 1

2K
Iμ,U (ν), and so LSI(2/K) holds.

Another application of (1.16) was given in [37] in the case K � 0. If μ verifies T2(C) for
some C such that |K|C/2 < 1, then plugging the inequality T2(ν,μ) � CH(ν|μ) into (1.16)
leads (for a convenient choice of λ) to the following logarithmic Sobolev inequality

H(ν|μ) � C

(1 + KC/2)2
Iμ,U (ν).

This last argument suggests that the HWI inequality is an efficient tool in order to reverse
the hierarchy (1.5), when K � 0. To show that Gaussian concentration implies the logarithmic
Sobolev inequality, our idea is to plug into (1.16) a transport inequality weaker than T2. Let us
say that μ verifies the (non-tight) transport inequality T2(c1, c2) for some c1, c2 � 0, if
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T2(ν,μ) � c1H(ν|μ) + c2, (1.17)

for all ν ∈ P (X ). One of the key ingredients of the proof of Theorem 1.13, is that it is possible to
encode the Gaussian concentration property (1.1) by an inequality T2(c1, c2) with a universal link
between the constants a,M,c1 and c2 (see Corollary 2.20). When plugging (1.17) into (1.16),
we naturally arrive to a defective logarithmic Sobolev inequality of the form

H(ν|μ) � d1Iμ,U (ν) + d2, (1.18)

for all ν with a Lipschitz density with respect to μ. The rest of the proof consists in tightening
this inequality. For that purpose, we use a result by Wang showing that, when d2 is small enough,
(1.18) implies LSI(C), for some C depending only on d1 and d2.

Non-tight transport inequalities like (1.17) have their own interest. In Section 2, we establish
a general link between concentration inequalities and non-tight transport inequalities involving
functionals Uμ in the right-hand side. We also give a dual formulation of them, extending a
celebrated theorem by Bobkov and Götze [12]. Moreover, this analysis enables us to recover,
in a completely analytic way, the fact that dimension free Gaussian concentration is equivalent
to T2, a result obtained by the first named author in [18] using large deviation techniques.

To conclude this introduction let us mention two closely related papers.
In [7], Barthe and Kolesnikov have followed a similar scheme of proof to go from concentra-

tion to functional inequalities. They have shown, that in a very general framework, integrability
conditions like (1.7) were sufficient to obtain Sobolev type and isoperimetric inequalities. So
the main difference between their paper and ours, is that our results do not involve dimensional
quantity like (1.7).

In [36], E. Milman has proved that concentration inequalities can be encoded by transport
inequalities involving the relative entropy and the L1-Wasserstein distance:

W1(ν,μ) = inf
π

∫∫
d(x, y) dπ,

where the infimum runs over all the couplings of ν and μ. The main difference with our work is
that we characterize concentration in terms of the quadratic transport cost T2. Replacing W1 by
T2 requires rather subtle techniques developed in Section 2.

2. Concentration, inf-convolutions and non-tight transport inequalities

In this section we deal with the links between concentration and non-tight transport inequal-
ities. Our first task is to establish a dual version of the latter, in the spirit of Bobkov and Götze
dual theorem [12]. Then we express the concentration property in term of inf-convolution opera-
tor. Finally, we use this approach to recover the characterization of the dimension free Gaussian
concentration of [18].

Let us introduce some general notation. In all the section, (X , d) is a polish space. A prob-
ability measure μ is said to satisfy a concentration inequality if there is a measurable function
α : [0,∞) → [0,∞) such that for all A ⊂ X with μ(A) � 1/2,

μ
(
Ar

)
� 1 − α(r), ∀r > 0, (2.1)

where Ar = {x ∈ X; d(x,A) � r}.
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2.1. Transport inequalities and their dual forms

In all what follows, we let U : [0,∞) → R be a lower semicontinuous strictly convex func-
tion which we moreover assume to be superlinear (i.e. U(x)/x → ∞ when x goes to ∞). We
also impose that U(1) � 0 so that, by Jensen’s inequality, Uμ(ν) � 0 for all ν ∈ P (X ). We
will mainly be concerned with the two following particular cases: U(x) = x log(x), for which
Uμ(ν) = H(ν|μ) is the relative entropy of ν with respect to μ, and U(x) = x log2(e + x).

One of our main object of interest is the following non-tight transport inequality.

Definition 2.2 (Non-tight transport inequality). One says that μ verifies the transport inequality
T2U(c1, c2), c1, c2 � 0, if

T2(ν,μ) � c1Uμ(ν) + c2, ∀ν ∈ P (X ).

When U(x) = x log(x), we denote this inequality by T2(c1, c2), and when c2 = 0, by T2(c1).

It is well known that T2(c1) implies the Gaussian concentration property applying the Mar-
ton’s argument. Proposition 2.3 below shows that more generally T2U(c1, c2) also implies con-
centration properties. Moreover we will show in Section 2.2 that for some specific choices of the
function U , T2U(c1, c2) is actually equivalent to the Gaussian or the exponential concentration
property.

Proposition 2.3. If μ verifies the inequality T2U(c1, c2), then μ verifies the following concen-
tration inequality: for all A ⊂ X with μ(A) � 1/2,

μ
(
Ar

)
� 1 − ϕ−1

U

(
1

c1
(r − ro)

2
)

, ∀r � ro +
√

c1
[
U ′+(0) + U(0)

]
+,

where ϕU(t) = tU(1/t) + (1 − t)U(0), t > 0, and ro = 2
√

c2 + c1
√

(U(0) + U(2))/2.

Remark 2.4. Observe that the function ϕU(t) = tU(1/t) + (1 − t)U(0), t > 0, is strictly de-
creasing on (0,∞) with values in (U ′+(0) + U(0),∞). Its inverse function ϕ−1

U is thus strictly
decreasing (and well defined) on (U ′+(0) + U(0),∞) and ϕ−1

U (r) → 0 when r → ∞ (all these
facts are an immediate consequence of the strict convexity and the superlinearity of U ).

For U(x) = x log(x), one has ϕ−1
U (t) = e−t , t ∈ R. So we conclude that T2(c1, c2) implies

Gaussian concentration.
For U(x) = x log2(e + x), one has ϕ−1

U (t) = e−√
t

1−e−√
t
, t � 1. In this case, T2U(c1, c2) implies

exponential concentration.

Proof of Proposition 2.3. What follows is a straightforward adaptation of Marton’s argument.
If T2U(c1, c2) holds then the sub-additivity property of W2 implies that for all ν1, ν2 ∈ P2(X ),

W2(ν1, ν2) � W2(ν1,μ) + W2(μ, ν2) �
√

c1Uμ(ν1) + √
c1Uμ(ν2) + 2

√
c2.

Let A be a subset of X . Choosing ν1 with density 1A/μ(A) and ν2 with density (1 − 1Ar )/
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(1 − μ(Ar)) with respect to μ, one has r � W2(ν1, ν2), Uμ(ν1) = ϕU(μ(A)) � ϕU(1/2) =
(U(0) + U(2))/2 (since ϕU is decreasing) and Uμ(ν2) = ϕU(μ(B)). Note that (U(0) + U(2))/

2 � U(1) � 0. So, r − ro �
√

c1ϕU(μ(B)) and if r is large enough, we get the desired concen-
tration inequality. �

Our next aim is to give a dual formulation of the non-tight transport inequalities introduced
above. Let Bb be the space of all bounded measurable functions on X and Cb the space of
bounded continuous functions on X . For all functions U : [0,∞) → R, define

Λμ(h) = sup
ν∈P (X )

{∫
hdν − Uμ(ν)

}
, ∀h ∈ Bb. (2.5)

If f : X → R ∪ {+∞} is a measurable function bounded from below, let us define the inf-
convolution operators (Qλ)λ>0 as follows

Qλf (x) = inf
y∈X

{
f (y) + 1

λ
d2(x, y)

}
, x ∈ X .

For λ = 1 we denote Q1f by Qf. The following result is a straightforward extension of Bobkov–
Götze theorem [12], providing a dual formulation of transport inequalities involving the relative
entropy.

Theorem 2.6. A probability μ verifies T2U(c1, c2) if and only if

Λμ(Qc1f ) �
∫

f dμ + c2/c1, ∀f ∈ Cb. (2.7)

Proof. According to Kantorovich’s theorem

T2(ν,μ) = sup
h∈Cb

{∫
Qhdν −

∫
hdμ

}
.

So, μ verifies the transport inequality if and only if for all h ∈ Cb , it holds∫
(Qh)/c1 dν − Uμ(ν) �

∫
h/c1 dμ + c2/c1, ∀ν ∈ P (X ).

Optimizing over ν and according to (2.5), we arrive at the equivalent condition

Λμ

(
(Qh)/c1

)
�

∫
h/c1 dμ + c2/c1, ∀h ∈ Cb.

Letting f = h/c1 gives (2.7). �
Define U∗(t) = sups�0{st − U(s)}, t ∈ R, then

Λμ(h) � inf
∫

U∗(h + t) − t dμ, ∀h ∈ Cb. (2.8)

t∈R



JID:YJFAN AID:5988 /FLA [m1+; v 1.128; Prn:24/11/2010; 16:29] P.12 (1-32)

12 N. Gozlan et al. / Journal of Functional Analysis ••• (••••) •••–•••
This easily follows from the fact that Λμ(h) = Λμ(h + t) − t for all t ∈ R, and from Young’s
inequality: xy � U(x) + U∗(y), x � 0, y ∈ R. A direct consequence of (2.8) is that T2U(c1, c2)

holds as soon as for all f ∈ Cb , there exists some tf ∈ R such that

∫
U∗(Qc1f + tf ) − tf dμ �

∫
f dμ + c2/c1.

This will be a key point to show that concentration implies T2U(c1, c2) (see Section 2.2 be-
low).

For the sake of completeness, let us show that (2.8) is actually an equality. It will follow that
Uμ is the dual function of Λμ.

Proposition 2.9. The following duality formulas hold

Λμ(h) = inf
t∈R

∫
U∗(h + t) − t dμ, ∀h ∈ Cb, (2.10)

and for all ν ∈ P (X ),

Uμ(ν) = sup
h∈Cb

{∫
hdν −

∫
U∗(h) dμ

}

= sup
h∈Cb

{∫
hdν − Λμ(h)

}
. (2.11)

For example, when U(x) = x log(x), x � 0, then U∗(y) = ey−1 and we recover the well-
known identity

Λμ(h) = inf
t∈R

{
et−1

∫
eh dμ − t

}
= log

(∫
eh dμ

)
.

Proof of Proposition 2.9. For the proof of (2.10), since (2.8) holds, it remains to show the
reverse inequality. We can restrict to the case where ν is absolutely continuous with respect to μ.

Let g = dν/dμ. Fix h ∈ Cb and set F(t) = ∫
U∗(h+ t)− t dμ, t ∈ R. Since U is superlinear, U∗

is finite everywhere, and so is F . Furthermore, as U is strictly convex and lower semicontinuous,
U∗ is differentiable (see [40, Chapter 26]). Obviously F(t) � −U(0) − t and therefore F(t) →
+∞ as t → −∞. Since for all t � 0, U(t) < ∞ and U∗(x)/x � t −U(t)/x it is easy to conclude
that U∗(x)/x → +∞ as x → +∞. As a consequence we also have F(t) → +∞ as t → +∞.
Therefore the infimum inft∈R

∫
U∗(h+ t)− t dμ is reached at some point t0 such that F ′(t0) = 0

or equivalently

∫ (
U∗)′

(h + t0) dμ = 1.

Being a supremum of increasing functions, U∗ is increasing and so (U∗)′(h + t0) � 0. Let ν0
denote the probability measure with density g0 = (U∗)′(h + t0) with respect to μ: one has
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sup
ν∈P (X )

{∫
hdν − Uμ(ν)

}
�

∫ (
hg0 − U(g0)

)
dμ

=
∫

U∗(h + t0) − t0 dμ

= inf
t∈R

∫
U∗(h + t) − t dμ,

where we used the fact that for all x ∈ R

x
(
U∗)′

(x) − U
((

U∗)′
(x)

) = U∗(x). (2.12)

Let us sketch the proof of this identity in the case when U is of class C 1 (but (2.12) is true
without this assumption). For x < U ′(0+), this follows from U∗(x) = −U(0) and (U∗)′(x) = 0.
For x � U ′(0+), since U is superlinear, the supremum U∗(x) is reached at some point s � 0
such that U ′(s) = x; the equality (2.12) then follows since (U∗)′(x) = U ′−1(x). The proof of
(2.10) is complete.

The first equality in (2.11) is proved for instance in [32, Theorem B.2]. The second equality
follows from (2.10) and an immediate optimization noticing that Cb is stable under the transla-
tions h �→ h + t . �
2.2. From concentration to non-tight transport inequalities

The purpose of the next proposition is to give a new formulation of the concentration inequal-
ity (2.1) in terms of deviation inequalities of inf-convolution operators.

Proposition 2.13. A probability μ verifies the concentration property (2.1), if and only if, for all
λ > 0, and all measurable functions f : X → R ∪ {+∞} bounded from below, it holds

μ
(
Qλf > medμ(f ) + r

)
� α(

√
λr ), r � 0. (2.14)

Proof. We first show that (2.14) implies (2.1). Take A ⊂ X , with μ(A) � 1/2, and consider the
function fA which is 0 on A and +∞ otherwise. It is clear that 0 is a median for fA, and that
QλfA(x) = d2(x,A)/λ. So applying (2.14) yields

μ
({

x;d(x,A) >
√

λr
})

� α(
√

λr ), r � 0,

which gives back (2.1).
Now we prove that (2.1) implies (2.14). Let f : X → R ∪ {+∞} be a measurable function

bounded from below and define A = {x ∈ X ; f (x) � medμ(f )}. If x ∈ Ar , then there is some
y ∈ A such that d(x, y) � r . Consequently,

Qλf (x) � f (y) + d2(x, y)/λ � medμ(f ) + r2/λ.

So Ar ⊂ {x ∈ X ; Qλf (x) � medμ(f ) + r2/λ} and therefore
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μ
(
Qλf (x) > medμ(f ) + r2/λ

)
� α(r), r � 0,

which is (2.14). �
Now our objective is to deduce transport inequalities from concentration. We need some

preparation.

Lemma 2.15. If c1, λ1, λ2 are positive and such that c1 = λ1 + λ2, then for any f ∈ Cb ,

Λμ(Qc1f ) �
∫

f dμ + sup
g∈Bb

Λμ

(
Qλ1g − medμ(g)

) + sup
g∈Bb

{
medμ(Qλ2g) −

∫
g dμ

}
,

where Bb denotes the space of bounded and measurable functions on X .

Proof. First, the following inequality holds Qc1f � Qλ1(Qλ2f ), for all f ∈ Cb (see e.g.
[4, proof of Theorem 2.5(ii)]). Furthermore, it follows easily from its definition that Λμ is or-
der preserving: f1 � f2 ⇒ Λμ(f1) � Λμ(f2). So,

Λμ(Qc1f ) � Λμ

(
Qλ1(Qλ2f )

)
=

∫
f dμ + Λμ

(
Qλ1(Qλ2f ) − medμ(Qλ2f )

) + medμ(Qλ2f ) −
∫

f dμ,

where the last equality follows from the fact that Λμ(h + r) = Λμ(h) + r , for all h ∈ Bb and
r ∈ R. Since f and Qλ2f are bounded, the claim follows by taking supremums over g ∈ Bb . �

Now, we will use Proposition 2.13 to bound the two supremums in Lemma 2.15.

Lemma 2.16. Assume that (2.1) holds for some function α. Then,

sup
g∈Bb

{
medμ(Qλg) −

∫
g dμ

}
�

∞∫
0

α(
√

λt ) dt, ∀λ > 0.

Lemma 2.17. Assume that (2.1) holds for some function α. Then, if W : R → R is an increasing
function of class C 1 bounded from below, it holds

sup
g∈Bb

∫
W

(
Qλg − medμ(g)

)
dμ � W(0) +

∞∫
0

W ′(t)α(
√

λt ) dt, ∀λ > 0.

Proof of Lemma 2.16. Fix a bounded function g : X → R and assume without loss of generality
that

∫ ∞
0 α(

√
t ) dt < ∞. Since Qλg(x) � g(y) + 1

λ
d2(x, y) for any y ∈ X , it holds that

−g(y) � inf
x∈X

{
−Qλg(x) + 1

λ
d2(x, y)

}
= Qλ(−Qλg)(y).
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In particular,

−
∫

g dμ �
∫

Qλ(−Qλg)dμ. (2.18)

Set h = −Qλg. Then, integrating by part and using Proposition 2.13, one has

∫ (
Qλh − medμ(h)

)
dμ �

∫ (
Qλh − medμ(h)

)
+ dμ

=
∞∫

0

μ
((

Qλh − medμ(h)
)
+ > t

)
dt

�
∞∫

0

μ
(
Qλh − medμ(h) > t

)
dt

�
∞∫

0

α(
√

λt ) dt.

The expected result follows from (2.18) and the fact that −medμ(h) = medμ(Qλg). �
Proof of Lemma 2.17. Integrating by part and using Proposition 2.13 yields

∫
W

(
Qλg − medμ(g)

)
dμ = W(−∞) +

+∞∫
−∞

W ′(s)μ
(
Qλg − medμ(g) � s

)
ds

� W(−∞) +
0∫

−∞
W ′(s) ds +

+∞∫
0

W ′(s)α(
√

λs ) ds,

which proves the claim. �
We are now in position to prove that concentration implies non-tight transport inequalities.

Theorem 2.19. Assume in addition that U is of class C 1 on (0,∞). If μ verifies (2.1) for some
function α and

∫ +∞
0 (U∗)′(t)α(

√
λ1t ) dt < ∞ for some 0 < λ1, then μ verifies the inequality

T2U(c1, c2) for some constants c1, c2 > 0. More precisely, for all λ2 > 0, one can take

c1 = λ1 + λ2

and

c2 = (λ1 + λ2)

(
U∗(0) +

+∞∫
0

(
U∗)′

(t)α(
√

λ1t ) dt +
+∞∫
0

α(
√

λ2t ) dt

)
.
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Proof. The inequality (2.8) provides Λμ(h) �
∫

U∗(h) dμ for all bounded functions h. Apply-
ing Lemma 2.17 with W = U∗ (which is in this case of class C 1) yields

sup
g∈Bb

∫
U∗(Qλ1g − medμ(g)

)
dμ � U∗(0) +

+∞∫
0

(
U∗)′

(t)α(
√

λ1t ) dt.

The rest of the proof follows from Lemmas 2.15 and 2.16 and Theorem 2.6. �
Let us emphasize two important particular cases corresponding to Gaussian and exponential

concentrations.

Corollary 2.20 (Gaussian concentration). Let μ be a probability measure on X . If μ verifies the
concentration inequality (2.1) with α(r) = Me−ar2

, r � 0, for some a,M � 0, then μ verifies
T2(u/a, c(u)M/a), for all u > 1, with c(u) = 4u/(u − 1).

Proof. In this case, U(x) = x log(x)+1−x, x � 0 and U∗(x) = ex −1, x ∈ R. For all λ1 > 1/a,

+∞∫
0

(
U∗)′

(t)α(
√

λ1t ) dt = M

+∞∫
0

e−(aλ1−1)t dt = M

aλ1 − 1
.

On the other hand, for all λ2 > 0,
∫ +∞

0 α(
√

λ2t ) dt = M
∫ +∞

0 e−aλ2t dt = M/(aλ2). According
to Theorem 2.19, we conclude that μ verifies the inequality T2(c1, c2) with

c1 = λ1 + λ2 and c2 = (λ1 + λ2)

(
M

aλ1 − 1
+ M

aλ2

)
, ∀λ1 > 1/a, ∀λ2 > 0.

Equivalently, for all u > 1, μ verifies T2(u/a, c2), with

c2 = Mu

a
inf

u>aλ1>1

(
1

aλ1 − 1
+ 1

u − aλ1

)
= 4Mu

a(u − 1)
,

since the infimum is attained at λ1 = (u + 1)/(2a). This completes the proof. �
Corollary 2.21 (Exponential concentration). Let μ be a probability measure on X . If μ verifies
the concentration inequality (2.1) with α(r) = Me−ar , r � 0, for some a,M � 0, then μ verifies
T2U(u/a2, c(u)M/a2), for all u > 1, with U(x) = x log2(e +x) and c(u) = 8u/(

√
2u − 1− 1).

Proof. According to Lemma A.1(iii), for all λ1 > 1/a2

+∞∫
0

(
U∗)′

(t)α(
√

λ1t ) dt � M

+∞∫
0

e−(a
√

λ1−1)
√

t dt < +∞.

Hence, applying Theorem 2.19, μ verifies T2U(c1, c2), with c1 = λ1 + λ2, λ1 > 1/a2 and
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c2 = (λ1 + λ2)M

( +∞∫
0

e−(a
√

λ1−1)
√

t dt +
+∞∫
0

e−a
√

λ2t dt

)

= 2(λ1 + λ2)M

(
1

(
√

a2λ1 − 1)2
+ 1

a2λ2

)
,

since
∫ +∞

0 e−√
t dt = 2. Equivalently, μ verifies T2U(c1, c2), with c1 = u/a2, u > 1 and

c2 = 2Mu

a2
inf

1<s<u

(
1

(
√

s − 1)2
+ 1

u − s

)
� 8Mu

a2(
√

2u − 1 − 1)
,

taking s = 1
2 (1 + √

2u − 1 ) ∈ (1, u) for which (u − s) = (
√

s − 1)2. �
Remark 2.22 (Integrability conditions for transport inequalities). Let us mention that in the
literature, many papers have adopted another point of view to relate transport inequalities with
tails estimates of μ. It was first observed by Djellout, Guillin and Wu [16] that the integrability
condition

I =
∫

ead2(x,xo) dμ(x) < ∞,

for some a > 0 and xo ∈ X , implies Talagrand’s T1 transport inequality:

W1(ν,μ) �
√

CH(ν|μ), ∀ν ∈ P (X ),

where the constant C depends on I . After that, many variants have been proposed to handle dif-
ferent transport costs with different tails behaviours [13,17,19]. All these results are dimensional
since the quantity I depends on the dimension of X . E. Milman [36] has obtained a universal
translation of concentration inequalities in terms of transport inequalities of the form

W1(ν,μ) � CΨ
(
H(ν|μ)

)
, ∀ν ∈ P (X ),

where Ψ is some concave function related to the concentration function, and C is a constant
independent of the dimension. For our purpose, Milman’s results are not adapted since we need
to control W2.

2.3. A characterization of dimension free Gaussian concentration

A consequence of the preceding section is that it enables us to give a completely analytic proof
of a recent result by the first named author about the equivalence between dimension free Gaus-
sian concentration and Talagrand’s inequality [18]. This was pointed out to us by M. Ledoux.

Corollary 2.23. A probability measure μ on X verifies T2(C) if and only if for all a < 1/C,
there is some positive M(a) such that for all positive integers n, the product probability measure
μn verifies the concentration inequality
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μn
(
Ar

)
� 1 − M(a)e−ar2

, ∀r � 0,

for all A ⊂ X n with μn(A) � 1/2, where the enlargement Ar is defined by

Ar =
{

x ∈ X n; inf
y∈A

n∑
i=1

d2(xi, yi) � r2

}
.

Proof. The fact that T2 implies dimension free Gaussian concentration is well known, so we
will only prove the converse. According to Corollary 2.20, the assumed concentration property
implies that for all a < 1/C, for all positive integers n and all u > 1,

T2
(
β,μn

)
� u

a
H

(
β|μn

) + 4M(a)u

a(u − 1)
,

for all probability measure β on X n (here the transport cost is defined with respect to the metric

d2(x, y) =
√∑n

i=1 d2(xi, yi) on X n). In particular, taking β = νn and using the following easy

to check relations: T2(ν
n,μn) = nT2(ν,μ) and H(νn|μn) = nH(ν|μ), we obtain

T2(ν,μ) � u

a
H(ν|μ) + 1

n
· 4M(a)u

a(u − 1)
.

Letting n → ∞ and then u → 1 and a → 1/C, we arrive at T2(C), which completes the
proof. �
3. Log-Sobolev inequality: proof of Theorem 1.13

This section is devoted to the proof of the following quantitative version of Theorem 1.13.

Theorem 3.1. Define c(u) = 4u/(u − 1), u > 1, and for M > 0

τ(M) = sup

{
r

Mc(u) + ru
; u > 1, 0 � r < log(2)

}
= log(2)

(2
√

M + √
log(2) )2

.

Suppose that (X , d,μ) has ∞-Ricci curvature bounded below by K � 0 and assume that μ

verifies the Gaussian concentration property (1.1) with positive constants a and M .
If the constants a, M and K satisfy the relation |K|/(2a) < τ(M), then μ verifies the loga-

rithmic Sobolev inequality LSI(C) for some C depending only on K , a and M .
More precisely, if |K|/(2a) < r/(Mc(u) + ru) for some u > 1 and r ∈ (0, log(2)), then μ

verifies for all f : X → R smooth enough

Entμ
(
f 2) � 1

a
B(u, r,M,K)

∫
|∇−f |2 dμ,

with B(u, r,M,K) = (Mc(u)+ru)2
(1 + 2 2+r

r ).
Mc(u)(2r−|K|(Mc(u)+ru)) 2−e
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In particular, when K = 0, the following logarithmic Sobolev inequality holds

Entμ
(
f 2) � DM

a

∫
|∇−f |2 dμ,

where D is some absolute numerical constant.

The sketch of the proof of this theorem is the following. Corollary 2.20 ensures that the Gaus-
sian concentration hypothesis implies T2(c1, c2). Proposition 3.2 indicates that T2(c1, c2) and the
curvature condition imply a non-tight logarithmic-Sobolev inequality. The proof is completed by
tightening this Sobolev inequality thanks to a Poincaré inequality.

Proposition 3.2. Suppose that (X , d,μ) has ∞-Ricci curvature bounded below by K � 0. If μ

verifies the transport inequality T2(c1, c2), then it verifies the following non-tight logarithmic
Sobolev inequality: for all bounded Lipschitz functions f

Entμ
(
f 2) � 2(c2 + c1r)

2

c2(2r − |K|(c2 + c1r))

∫ ∣∣∇−f
∣∣2

dμ + r

∫
f 2 dμ,

for all r > |K|c2/(2 − |K|c1).

Proof. Under the curvature condition, by Proposition 1.11 applied with the function U(x) =
x log(x), the following HWI inequality holds

H(ν|μ) �
√

T2(ν,μ)
√

Iμ,U (ν) − K

2
T2(ν,μ), ν ∈ P (X )

� λ + |K|
2

T2(ν,μ) + 1

2λ
Iμ,U (ν),

for all λ > 0, where Iμ,U (ν) is the usual Fisher information (associated to U(x) = x logx).
Consequently, the transport inequality T2(c1, c2) yields

H(ν|μ) � (λ + |K|)c1

2
H(ν|μ) + 1

2λ
Iμ,U (ν) + (λ + |K|)c2

2
.

So, if λ + |K| < 2, it holds

H(ν|μ) � 1

λ(2 − (λ + |K|)c1)
Iμ,U (ν) + (λ + |K|)c2

(2 − (λ + |K|)c1)
.

Applying this inequality to dν = f 2∫
f 2 dμ

dμ, with a Lipschitz bounded function f , we get

Entμ
(
f 2) � 4

λ(2 − (λ + |K|)c1)

∫ ∣∣∇−f
∣∣2

dμ + (λ + |K|)c2

(2 − (λ + |K|)c1)

∫
f 2 dμ.

Letting r = (λ+|K|)c2 gives the result. �

(2−(λ+|K|)c1)
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To obtain a logarithmic Sobolev inequality we will take advantage of a self-tightening phe-
nomenon first observed by Wang [48] and described in the proposition below.

Proposition 3.3 (Self-tightening phenomenon). If a probability measure μ verifies the non-tight
logarithmic-Sobolev inequality

Entμ
(
f 2) � b1

∫ ∣∣∇−f
∣∣2

dμ + b2

∫
f 2 dμ,

with b2 < log(2), then it satisfies the logarithmic Sobolev inequality LSI(C) with

C = b1

(
1 + 2

2 + b2

2 − eb2

)
.

Remark 3.4. The condition b2 < log(2) is sharp. Wang has obtained a counterexample in [48].

The proof of Proposition 3.3 is based on the two following lemmas due to Wang [47,48].

Lemma 3.5 (Non-tight Poincaré inequality). If a probability measure μ verifies the non-tight
logarithmic-Sobolev inequality

Entμ
(
f 2) � b1

∫ ∣∣∇−f
∣∣2

dμ + b2

∫
f 2 dμ, (3.6)

for all bounded Lipschitz functions f , then it verifies the following Poincaré type inequality

∫
f 2 dμ � b1

∫ ∣∣∇−f
∣∣2

dμ + eb2

(∫
|f |dμ

)
. (3.7)

Proof. Below we improve the constants in a proof of Wang [47]. Take f such that
∫ |f |dμ = 1

and denote α = ∫
f 2 dμ and β = ∫ |∇−f |2 dμ. Then, we use the formula

x log
(
x2/α

) = sup
s∈R

{
sx − 2

√
αe

s
2 −1}.

So, for all s ∈ R,

sα − 2
√

αe
s
2 −1 �

∫
|f | log

(
f 2

α

)
|f |dμ � b1β + b2α.

So, in particular, (s − b2)α − 2
√

αe
s
2 −1 − b1β � 0, for all s > b2. One conclude from this that

√
α � e

s
2 −1 + √

es−2 + (s − b2)b1β

s − b2
,
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and this implies that

α � 2b1

s − b2
β + 4es−2

(s − b2)2
.

In other words, for all f it holds

∫
f 2 dμ � 2b1

s − b2

∫ ∣∣∇−f
∣∣2

dμ + 4es−2

(s − b2)2

(∫
|f |dμ

)2

, s > b2,

and therefore, since infs>b2 4es−2/(s − b2)
2 is reached for s = b2 + 2, one gets (3.7). �

The next lemma states that if the second constant in the Poincaré type inequality (3.7) is
sufficiently small then the Poincaré inequality holds.

Lemma 3.8. If a probability measure μ verifies the inequality

∫
f 2 dμ � d1

∫ ∣∣∇−f
∣∣2

dμ + d2

(∫
|f |dμ

)2

, (3.9)

for all bounded Lipschitz functions f with a constant d2 < 2, then it verifies the following
Poincaré inequality

Varμ(f ) � 2d1

2 − d2

∫ ∣∣∇−f
∣∣2

dμ.

Remark 3.10. Wang [48] has shown that the condition d2 < 2 is optimal.

Proof of Lemma 3.8. Take f a bounded Lipschitz function and consider the bounded Lipschitz
functions

f+ = max(f − m,0) and f− = min(f − m,0),

where m is the median of f . It is not difficult to check that

∣∣∇−f+
∣∣ = ∣∣∇−f

∣∣1{f >m} and
∣∣∇−f−

∣∣ = ∣∣∇−f
∣∣1{f �m}. (3.11)

Apply (3.9) to the function f+; then Cauchy–Schwarz inequality yields

∫
f >m

(f − m)2 dμ � d1

∫
f >m

∣∣∇−f
∣∣2

dμ + d2

2

∫
f >m

(f − m)2 dμ.

Doing the same with f− and summing the two inequalities yields

∫
(f − m)2 dμ � d1

∫ ∣∣∇−f
∣∣2

dμ + d2

2

∫
(f − m)2 dμ,
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and so

∫
(f − m)2 dμ � 2d1

2 − d2

∫ ∣∣∇−f
∣∣2

dμ.

Since, Varμ(f ) �
∫
(f − m)2 dμ, this ends the proof. �

Proof of Proposition 3.3. Lemma 3.5 and (3.6) imply that

∫
f 2 dμ � b1

∫ ∣∣∇−f
∣∣2

dμ + eb2

(∫
|f |dμ

)2

.

According to Lemma 3.8, we conclude that if b2 < log 2, then μ verifies the following Poincaré
inequality:

Varμ(f ) � 2b1

2 − eb2

∫ ∣∣∇−f
∣∣2

dμ. (3.12)

We can now tighten the inequality (3.6). Namely, according to Rothaus’ lemma [41] (see also
[2, Lemma 4.3.8]), it holds

Entμ
(
f 2) � Entμ

(
f̄ 2) + 2 Varμ(f ),

with f̄ = f − ∫
f dμ. So applying (3.6) together with (3.12) gives the result. �

Proof of Theorem 3.1. According to Corollary 2.20, μ verifies T2(u/a, c(u)M/a), for all
u > 1, with c(u) = 4u/(u − 1). Thus it follows from Proposition 3.2 that

Entμ
(
f 2) � 1

a
b(u, r,M,K)

∫ ∣∣∇−f
∣∣2

dμ + r

∫
f 2 dμ, (3.13)

with

b(u, r,M,K) = (Mc(u) + ru)2

Mc(u)(2r − |K|(Mc(u) + ru))
,

for all r >
|K|Mc(u)
2a−|K|u or equivalently when |K|

a
< 2r

Mc(u)+ru
. According to Proposition 3.3, we

conclude that if |K|
a

< 2r
Mc(u)+ru

for some u > 1 and r < log 2, then

Entμ
(
f 2) � 1

a
B(u, r,M,K)

∫ ∣∣∇−f
∣∣2

dμ,

with B(u, r,M,K) = b(u, r,M,K)(1 + 2 2+r
2−er ). The proof of Theorem 3.1 is complete. �
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4. Poincaré inequality: proof of Theorem 1.14

In this section we deal with probability measures verifying an exponential concentration in-
equality as follows

μ
(
Ar

)
� 1 − Me−ar , ∀r � 0, (4.1)

for all A ⊂ X such that μ(A) � 1/2. In all this part, the measured length space (X , d,μ) is
assumed to have ∞-Ricci curvature bounded below by 0. The basic reason is that we want to
use the HWI inequality with U(x) = x log2(e + x), x � 0, for which κ(U) = −∞ if K < 0
according to (1.8).

The proof of Theorem 1.14 is similar to the proof of Theorem 3.1. We first establish a non-tight
“U -Sobolev” inequality (see Proposition 4.2 below) that provides a non-tight Poincaré inequality
(Proposition 4.4). Under null curvature condition, we may also obtain a weak Poincaré inequal-
ity (see Proposition 4.7). And it is known in the literature that a non-tight Poincaré inequality
together with a weak Poincaré inequality implies a Poincaré inequality (see Proposition 4.7 be-
low). For completeness, this is recalled in Proposition A.2 in Appendix A. Our strategy can be
summarized as follows

Concentration ⇒ T2U(c1, c2)

+
Bounded curv. ⇒ HWI

⎫⎪⎬
⎪⎭

HWI

⇒ Non-tight “U -Sobolev”

+
⇒ Weak Poincaré

⎫⎪⎬
⎪⎭ ⇒ Poincaré.

Proposition 4.2. Suppose that (X , d,μ) has ∞-Ricci curvature bounded below by 0. If μ veri-
fies (4.1), then, it holds

∫
U(g)dμ � b1

∫
log2(e + g)

e + g

∣∣∇−g
∣∣2

dμ + b2, (4.3)

for all Lipschitz functions g, where b1 = 16u/a2 and b2 = 4 + 8M√
2u−1−1

.

Proof. The function U(x) = x log2(e + x), x ∈ [0,∞) is in the class D C∞ ∩ C 2. Under the
non-negative curvature condition, Proposition 1.11 ensures that for every probability measures
dν = g dμ with a positive Lipschitz function g such that

∫
U(g)dμ < ∞,

∫
U(g)dμ � U(1) +

√∫
gU ′′(g)2

∣∣∇−g
∣∣2

dμ
√

T2(ν,μ).

Using the inequalities
√

ab � εb+a/(4ε) for all ε > 0, U(1) = log2(e+1) � 2 and g/(e+g) �
1, and Lemma A.1(ii), we get for every ε > 0,

∫
U(g)dμ � 2 + εT2(ν,μ) + 4

ε

∫
log2(e + g)

e + g

∣∣∇−g
∣∣2

dμ.

Under the concentration property (4.1), Corollary 2.21 ensures that
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T2(ν,μ) � c1

∫
U(g)dμ + c2,

with c1 = u/a2, c2 = c(u)M/a2 for all u > 1 and c(u) = 8u√
2u−1−1

. It follows that for every
ε < 1/c1,

∫
U(g)dμ � b1

∫
log2(e + g)

e + g

∣∣∇−g
∣∣2

dμ + b2,

with b1 = 4/(ε(1 − εc1)) and b2 = (2 + εc2)/(1 − εc1). Taking ε = 1/(2c1) completes the
proof. �
Proposition 4.4 (Non-tight Poincaré inequality). Assume that there exist some non-negative con-
stants b1 and b2 such that for any positive Lipschitz function g : X → R

+ with
∫

g dμ = 1 and∫
U(g)dμ < ∞, it holds

∫
g log2(e + g)dμ � b1

∫
log2(e + g)

e + g

∣∣∇−g
∣∣2

dμ + b2. (4.5)

Then, one has the following non-tight Poincaré inequality: for any bounded Lipschitz function
h : X → R,

∫
h2 dμ � 16b1

∫ ∣∣∇−h
∣∣2

dμ + 4b2e
2b2

(∫
|h|dμ

)2

. (4.6)

Proposition 4.7 (Weak Poincaré inequality). Suppose that (X , d,μ) has ∞-Ricci curvature
bounded below by 0. If μ verifies

C = sup
g∈Bb

∫ [
Qg −

∫
g dμ

]
+

dμ < +∞, (4.8)

then for any bounded Lipschitz function h : X → R, for all s > 0, one has

Varμ(h) � C

s

∫ ∣∣∇−h
∣∣2

dμ + s Osc(h)2, (4.9)

where Osc(h) = sup(h) − inf(h).

We postpone the proof of these two propositions in order to prove Theorem 1.14.

Proof of Theorem 1.14. First let us show that under the concentration property (4.1), it holds

sup
g∈Bb

∫ [
Qg −

∫
g dμ

]
+

dμ � 8M

a2
.

Namely, for every bounded function g, it holds
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∫ [
Qg −

∫
g dμ

]
+

dμ �
∫ [

Q1/2(Q1/2g) −
∫

g dμ

]
+

dμ

�
∫ [

Q1/2(Q1/2g) − medμ(Q1/2g)
]
+ dμ

+
[

medμ(Q1/2g) −
∫

g dμ

]
+
,

where the first inequality comes from the inequality Qg � Q1/2(Q1/2g). According to Lem-
mas 2.16 and 2.17,

sup
g∈Bb

∫ [
Q1/2g − medμ(g)

]
+ dμ + sup

g∈Bb

[
medμ(Q1/2g) −

∫
g dμ

]
+

� 2M

+∞∫
0

e−a
√

t/2 dt = 8M

a2
,

which gives the result.
According to Propositions 4.2, 4.4, 4.7 and A.2 we conclude that μ verifies a Poincaré in-

equality of the form

Varμ(f ) � c(M)

a2

∫ ∣∣∇−f
∣∣2

dμ,

for all bounded Lipschitz functions f . �
The two following subsections are devoted to the proofs of Proposition 4.4 and Proposi-

tion 4.7.

4.1. Non-tight Poincaré inequality

Eq. (4.5) is close to (but yet different from) an inequality called I (τ ) introduced by Kolesnikov
[24] and further studied in [7]. Using some techniques from [7] we deduce from (4.5) a non-tight
Poincaré inequality.

Proof of Proposition 4.4. Let ψ : R
+ → R

+ be the inverse function of U , ψ = U−1. The func-
tion ψ is increasing and concave with ψ(0) = 0 since U is increasing and convex. Fix a bounded
positive Lipschitz function f on X with

∫
f dμ = 1 and consider its Luxembourg-norm like

L = inf

{
λ:

∫
ψ

(
f

λ

)
dμ � 1

}
.

Set g = ψ(f/L). By construction,
∫

g dμ = 1. Since ψ is increasing, one has |∇−g| =
ψ ′(f/L)|∇−(f/L)|. Hence, applying (4.5) to g leads to

∫
f dμ � b1L

∫
log2(e + ψ(f/L))(

ψ ′(f/L)
)2∣∣∇−(f/L)

∣∣2
dμ + b2L. (4.10)
e + ψ(f/L)
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Lemma A.1(i) implies that

(
ψ ′(u)

)2 = 1

U ′(ψ(u))2
� 1

log4(e + ψ(u))
= ψ(u)

u log2(e + ψ(u))
.

Therefore

∫
f dμ � b1

∫ |∇−f |2
f

dμ + b2L.

From the concavity of ψ , 1 = ∫
ψ(f/L)dμ � ψ(

∫
f dμ/L) = ψ(1/L). Consequently L �

1/U(1) < 1 and

L = L

∫
ψ(f/L)dμ �

∫
ψ(f )dμ.

Hence

∫
f dμ � b1

∫ |∇−f |2
f

dμ + b2

∫
ψ(f )dμ.

The latter applied to f = h2/μ(h2) leads to

∫
h2 dμ � 4b1

∫ ∣∣∇−h
∣∣2

dμ + b2

√
μ

(
h2

)∫
|h|F

( |h|√
μ(h2)

)
dμ, (4.11)

where μ(h2) = ∫
h2 dμ and F(y) = ψ(y2)/y, y > 0.

The next step is to bound the function F by affine functions. Since x/s � U(x) + U∗(1/s)

for every s > 0, x � 0, then one has for every real numbers y,

ψ
(
y2) � y2s + sU∗(1/s).

It follows that

F(y) = ψ(y2)√
ψ(y2) log2(e + ψ(y2))

�
√

ψ
(
y2

)
� |y|√s + √

sU∗(1/s).

Fix a bounded Lipschitz function h (not necessarily positive) with
∫ |h|dμ = 1 and set α =√

μ(h2). It follows from (4.11) and the previous computations that for 0 < s � 1/b2
2,

α2(1 − b2
√

s ) − αb2
√

sU∗(1/s) − β � 0,

where β = 4b1
∫ |∇−h|2 dμ. This implies that

α �
b2

√
sU∗(1/s) +

√
b2

2sU
∗(1/s) + 4β(1 − b2

√
s )

√ , ∀s ∈ (
0,1/b2

2

)
,

2(1 − b2 s )
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and therefore

∫
h2 dμ � 8b1

1 − b2
√

s

∫ ∣∣∇−h
∣∣2

dμ + b2
2sU

∗(1/s)

(1 − b2
√

s )2
.

Choosing s = 1/(4b2
2) and using Lemma A.1(iv) leads to the desired inequality (4.6). �

4.2. Weak Poincaré inequality

In this section, we prove Proposition 4.7.

Proof of Proposition 4.7. The weak Poincaré inequality (4.9) is a simple consequence of the
usual HWI inequality (1.12) for U(x) = x log(x) that holds when the ∞-Ricci curvature is
bounded below by 0. Namely, for any bounded Lipschitz function f > 0 with

∫
f dμ = 1,

Entμ(f ) �

√
T2(f μ,μ)

∫ |∇−f |2
f

dμ,

and therefore for all s > 0,

Entμ(f ) � sT2(f μ,μ) + 1

4s

∫ |∇−f |2
f

dμ. (4.12)

The first step is to bound T2(f μ,μ). By the Kantorovich’s dual characterization of T2,

T2(f μ,μ) = sup
g∈Cb

∫ (
Qg −

∫
g dμ

)
f dμ.

Since Qg � g, it holds

∫ (
Qg −

∫
g dμ

)
f dμ =

∫ (
Qg −

∫
g dμ

)
(f − inff )dμ

+ inf(f )

(∫
Qg dμ −

∫
g dμ

)

� Osc(f )

∫ [
Qg −

∫
g dμ

]
+

dμ.

Consequently one has

T2(f μ,μ) � C Osc(f ).
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By homogeneity, applying (4.12) to f = (h − infh)2/
∫
(h − infh)2 dμ, it follows that

Entμ
(
(h − infh)2) � sC Osc

(
(h − infh)2) + 1

s

∫ ∣∣∇−(h − infh)
∣∣2

dμ

= sC Osc2(h) + 1

s

∫ ∣∣∇−h
∣∣2

dμ.

The standard inequality Varμ(f ) � Entμ(f 2) for f � 0 (see e.g. [2, inequality (1.9)]) ends the
proof of (4.9) since

Varμ(h) = Varμ(h − infh) � Entμ
(
(h − infh)2). �

5. Extensions

As mentioned in the introduction, our approach generalizes to other types of concentration
(different from Gaussian and exponential). We present in this section some results in this direc-
tion, without details.

For example, one could consider concentration between exponential and Gaussian of the type:
for all A ⊂ X with μ(A) � 1/2,

μ
(
Ar

)
� 1 − Me−ar2/γ

, ∀r � 0, (5.1)

where γ ∈ [1,2). In this case, one has to apply Proposition 1.11 with the function U(x) =
x logγ (e + x), x � 0, which belongs to the class D C∞ ∩ C 2. This, together with Theorem 2.19
and few rearrangements, lead to a non-tight inequality of the type (for any positive Lipschitz
function f with

∫
f dμ = 1)

∫
U(f )dμ � b1

aγ

∫
log2(γ−1)(e + f )

e + f

∣∣∇−f
∣∣2

dμ + b2

for some positive constants b1, b2 depending only on M .
Now, following the same lines as in the proof of Proposition 4.4 (see Section 4), it is possible

to derive the following non-tight F -Sobolev inequality

∫
f 2 log2−γ

(
e + f 2)dμ � c1

aγ

∫ ∣∣∇−f
∣∣2

dμ + c2, (5.2)

for all bounded Lipschitz functions f with
∫

f 2 dμ = 1 (where c1, c2 are positive constants
depending only on M), and also a non-tight Poincaré inequality.

If (X , d,μ) has ∞-Ricci curvature bounded below by 0, Proposition 4.7 applies and leads
to a weak Poincaré inequality. This inequality together with the non-tight Poincaré inequality
previously obtained imply a Poincaré inequality, as explained in Proposition A.2.

Finally, one applies the analogue of Rothaus’ lemma for F -Sobolev inequalities (see [6,39,7])
in order to tighten inequality (5.2) and end up with

∫
f 2(log2−γ

(
e + f 2) − log2−γ (e + 1)

)
dμ � D

γ

∫ ∣∣∇−f
∣∣2

dμ,

a
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for all bounded Lipschitz functions f with
∫

f 2 dμ = 1, where D is a positive constant
that depends only on M . Such an inequality does not enjoy the tensorization property as the
Poincaré inequality or the logarithmic Sobolev inequality. However, it is known [50] to be
equivalent to Beckner–Latała–Oleszkiewicz inequalities (i.e. inequality (5.5) below) that do ten-
sorize [8,25].

Adjusting all the previous computations would lead to the following theorem.

Theorem 5.3. Suppose that (X , d,μ) has ∞-Ricci curvature bounded below by 0 and fix
γ ∈ [1,2). If μ verifies the concentration property (5.1) for some M,a > 0, then there exists
a constant C that depends only on M such that for any bounded Lipschitz function f : X → R

with
∫

f 2 dμ = 1, it holds

∫
f 2(log2−γ

(
e + f 2) − log2−γ (e + 1)

)
dμ � C

aγ

∫ ∣∣∇−f
∣∣2

dμ, (5.4)

and

sup
p∈(1,2)

∫
f 2 dμ − (

∫ |f |p dμ)2/p

(2 − p)2−γ
� C

aγ

∫ ∣∣∇−f
∣∣2

dμ. (5.5)

As the reader might have noticed, inequality (5.4) has the flavour of the logarithmic Sobolev
inequality and the Poincaré inequality, respectively, when γ = 1 and γ → 2, respectively.
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Appendix A. Technical results

In this appendix we collect some technical facts about the function U(x) = x log2(e + x).
Also, we recall the known result that a non-tight Poincaré inequality together with any weak
Poincaré inequality imply a (tight) Poincaré inequality.

Lemma A.1. Let U(x) = x log2(e + x) for x � 0. Then,

(i) log2(e + x) � U ′(x), x � 0.
(ii) U ′′(x) � 4 log(e+x)

e+x
, x � 0.

(iii) U∗′(x) � −e + exp{√x }, x � 1.
(iv) U∗(x) � 2

√
xe

√
x , x � 0.

Proof. Point (i) follows from

U ′(x) = log(e + x)2 + 2x

e + x
log(e + x).

Point (ii) is a consequence of the fact that
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U ′′(x) = 2 log(e + x)

e + x

(
2e + x

e + x
+ x

(e + x) log(e + x)

)

and that 0 � 2e+x
e+x

+ x
(e+x) log(e+x)

� 2. We omit details. Point (iii) follows from point (i) and

U∗ ′ = U ′−1. Using point (iii), U∗(0) = − infy{U(y)} = 0 and an integration by parts, we get
point (iv):

U∗(x) =
x∫

0

U∗′
(y) dy � −ex +

x∫
0

e
√

y dy = −ex + 2
(√

xe
√

x − e
√

x + 1
)

� 2
√

xe
√

x. �
The next proposition shows that the Poincaré inequality is a consequence of both non-tight

Poincaré inequality and weak Poincaré inequality. This result is well known, see e.g. [47,49,7,51].
We write here the version by Wang [49, Corollary 4.1.2].

Proposition A.2 (Wang). Assume that there exist two constants d1, d2 > 0 and a non-increasing
positive function β , on (0,1/2) such that for any bounded Lipschitz function f : X → R, it holds

∫
f 2 dμ � d1

∫ ∣∣∇−f
∣∣2

dμ + d2

(∫
|f |dμ

)2

(Non-tight Poincaré)

and

Varμ(f ) � β(s)

∫ ∣∣∇−f
∣∣2

dμ + s Osc(f )2 (Weak Poincaré).

Then, every bounded Lipschitz functions f : X → R verifies

Varμ(f ) � sup
s∈(0,d−1

2 )

d1 + β(s)

1 − √
d2s

∫ ∣∣∇−f
∣∣2

dμ (Poincaré).
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