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AsstracT. We give a characterization of transport-entropy inedjaaliin met-
ric spaces. As an application we deduce that such inecesahitie stable under
bounded perturbation (Holley-Stroock perturbation Lejima

1. INTRODUCTION.

In their celebrated paper [24], Otto and Villani proved thata smooth Rie-
mannian setting, the log-Sobolev inequality implies thageand’s transport-ent-
ropy inequalityT»,. Later, Bobkov, Gentil and Ledoux [3] proposed an altexmati
proof of this result. Both approaches are based on sempgaoguments. More
recently, the first named author gave a new proof, based ga tiviation theory,
valid on metric spaces [11].

In this paper, on the one hand, we give yet another proof af &t Villani's
theorem. This proof does not use any semi-group argumerarga deviation and
requires very few structure on the space. We are thus abkctver and extend
the result of [11] in a general metric space framework.

On the other hand, we recently introduced in [15] a new famiifunctional in-
equalities, called inf-convolution log-Sobolev ineqtiak. In a Euclidean frame-
work, we proved that these inequalities were equivalentaiagrand transport-
entropy inequalitiesT ,, associated to cost functions between linear and qua-
dratic. This leaded to a new characterizationTefand other transport-entropy
inequalities. The present paper establishes that thisaguice is true in a general
metric space framework and for general cost functien8s a byproduct, we prove
that the inequalitie3 , are stable under bounded perturbation (Holley-Stroock per
turbation Lemma).

Our strategy is very general and applies for a very largesctdstransport-
entropy inequalities.

In order to present our results, we need first to fix some rootati
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1.1. Notation and definitions. We first introduce the notion of optimal transport
cost. Then we give the definition of the transport-entropygurality and of the
(1)-log-Sobolev inequality.

General assumption.In all this paper X, d) will always be a complete, separa-
ble metric space such that closed balls are compact.

1.1.1. Optimal transport cost and transport-entropy inequalibeta : R —» R*
be a continuous function. Given two probability measwrasdu on X, theoptimal
transport cosbetweerny andu (with respect to the cost functiap) is defined by

Tulvop) = inf { f f a(d(x.y)) dr(x. y)} :

where the infimum runs over all the probability measures X x X with marginals
v andu. The notion of optimal transport cost is very old (it goeskaxrMonge
[23]). It has been intensively studied and it is used in a wildess of problems
running from geometry, PDE theory, probability and statsstsee [31]. Here we
focus on the following transport-entropy inequality.

In all the paper, the cost functiomswill be assumed to belong to the class of
Young functions.

Definition 1.1. (Young function§ A functione : R — R* is a Young functionif o
is an even convex, increasing function®hsuch thaiz(0) = 0 anda’(0) = 0.

Definition 1.2 (Transport-entropy inequalitf,). Leta be a Young function; a
probability measurg on X is said to satisfy theansport-entropy inequalify,, (C),
for some C> Oif

(To(C)) To(v,u) <CHO), Vv e P(X),

where f .
log¥dv ifv<pu
H(v|u) = A :
V) { +00 otherwise
is the relative entropy of with respect tqu and P(X) is the set of all probability
measures on X.

Remark 1.3. It can be shown that ifr : R — R* is an even convex function
such thatim sup, _, % = +oo then the only probability measures that satisfy the
transport inequalityT , are Dirac masses (see e[d2, Proposition 2] This is the
reason why, in our definition of Young functions, we impoaedah(0) = 0.

Popular Young functions appearing in the literature, as ftoxtions in trans-
port-entropy inequalities, are the functiamg, ,, defined by

(X if x| < 1
(14) a’plvpz(X) = { %l)qu +1— % if IXN>1° P1 = 2, P2 = 1.

INote that, contrary to the definition of some authors, fomuéoung function cannot take infinite
values.
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(the casep; < 2 can be discarded according to the remark above). Whea
p2 = p, we use the notatioa, instead ol .

Transport-entropy inequalities imply concentration fessas shown by Marton
[21], see also [4], [19], and [13] for a full introduction thi$ notion.

The transport-entropy inequality related to the quadratistes(x) = X2 is the
most studied in the literature. In this case, the transpoiitopy inequality is often
referred to as the Talagrand transport-entropy inequality is denoted byl ».
Talagrand [30] proved that, oR{,| - |») (where| - |, stands for the Euclidean
norm), the standard Gaussian measure satisfi@gth the optimal constar® = 2.

1.1.2. Log-Sobolev type inequalitie§'he second inequality of interest for us is
the log-Sobolev inequality and more generally modified &mpolev inequalities.
To define these inequalities properly, we need to introddcktianal notation.
Recall that the Fenchel-Legendre transfarfrof a Young functionx is defined
by
a*(y) = supxy — a(x)} € R* U {0}, Yy € R.
XeR

A function f : X — R is said to bdocally Lipschitzif for all x € X, there exists a
ball B centered at poirt such that

wp MO -1
y,2€B, y#z d(y, 2)

Whenf is locally Lipschitz, we define

i FO-FOe ot o : -
IV £1(x) = limsup,_, 00 if xis n.ot an isolated point
otherwise

and

V() = limsup,_, % if X is not an isolated point
otherwise

where p], = max(@;0) and p]. = max(-a; 0). Note thafV* f|(x) and |V~ f|(x)
are finite for allx € X. When f is a smooth function on a smooth manifo[d; f|
and|V~ f| equal the norm of the gradient of

Finally, if u is a probability measure oK, recall that the entropy functional
Ent,(-) is defined by

Ent,(g) = fglog f;d,u du, v¥g > 0.

Definition 1.5 (Modified log-Sobolev inequalitySI?). Leta be a Young function;
a probability measurg on X is said to satisfy thmodified log-Sobolev inequality
plusLSI}(A) for some A> O if

(LSIZ(A) En(e) < A [ 'V fe' du
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for all locally Lipschitz bounded function :fX — R.
It verifies themodified log-Sobolev inequality minusSI, (A) for some A> O if

(LSI5(A) Eny(e') <A [ a*(7 e di.
for all locally Lipschitz bounded function :fX — R.

Again, the quadratic costa(x) = x? plays a special role since in this case
we recognize the usual log-Sobolev inequality introducg@hboss [16] (see also
[28]). In this case, we will use the notatidusI*.

Bobkov and Ledoux [5] introduced first the modified log-Savolnequality
with the functionas1, in order to recover the celebrated result by Talagrand [29]
on the concentration phenomenon for products of exporilengasures. In par-
ticular these authors proved that, with this special choicunction, the modi-
fied log-Sobolev inequality is actually equivalent to tharearé inequality. Af-
ter them, Gentil, Guillin and Miclo [8] established that theobability measure
dvp(x) = e™°/Z,, x e R andp € (1, 2) verifies the modified log-Sobolev inequal-
ity associated to the functiam, . In a subsequent paper [9] they generalized their
results to a large class of measures with tails between expiah and Gaussian
(see also [2, 10, 7] and [25]).

Finally, let us introduce the notion of inf-convolution k&pbolev inequality. In
a previous work [15], we proposed the following inequality

(1.6) Enp(ef) <

1
_1_/lcf(f—Qflf)efdy, Vf:X >R, VYae(0,1/C)

where
Qf(x) = inf(f) + dadexy)  VxeX

We called it inf-convolution log-Sobolev inequality and pi@ved that it is equiva-
lent - in a Euclidean setting - to the transport-entropy usdity T,(C’), for Young
functionsa such that’ is concave. Also, we get an explicit comparison between
the constant€ andC’, namelyC < C’ < 8C. Our proof relies in part on the
Hamilton-Jacobi semi-group approach developed by Bob&antil and Ledoux
[3].

Inequality (1.6) is actually a family of inequalities, wighconstant having a spe-
cific form (i.e. 1/(1 - AC)) in the right hand side. In this paper, in order to broaden
this notion, we will call §)-log-Sobolev inequality rather than inf-convolution {og
Sobolev inequality the following inequality.

Definition 1.7 ((r)-log-Sobolev inequality) Leta be a Young function; a probabil-
ity measurg: on X is said to satisfy thig)-log-Sobolev inequalityr) — LSl (1, A)
for somet, A> Qif

() = LSl o(2, A) Ent,(e) < Af(f —- Qe du,
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for all bounded locally Lipschitz function f X — R, where the inf-convolution
operator @ is defined by

(1.8) QL (X) = inf(f) + da(@x ) VxeX

Whena = 1, we use the notation Qnstead of Q

The notationt) — LSI,, refers to the celebrated)¢Property introduced by Mau-
rey [22] (that uses the inf-convolution opera@y and that is also closely related
to the transport-entropy inequality, see [13, Section)8.1]

Of course (1.6) impliest{) — LSI,(1,1/(1 — AC)), for any A € (0,1/C). The
other direction is not cleag priori (it would trivially be true ifA = 1), even if the
two inequalities have the same flavor. Thanks to Theoremtel®v, they appear
to be equivalent, under mild assumptionsaon

1.1.3. Ap-condition. In the next sections, our objective will be to relate the log-
Sobolev inequalities Sl, and ) — LSI,, to the transport-entropy inequalifly,,.
This program works well if we suppose thatverifies the classical doubling con-
dition A,. Recall that a Young functioa is said to satisfy thé,-conditionif there
exists some positive constadt(that must be greater than or equal to 2) such that

(2x) < Ka(X), ¥XxeR.

The classical functionsp, p, introduced in (1.4) enjoy this condition.
The following observation will be very useful in the sequel.

Lemma 1.9. If « is a Young function satisfying the-condition, then

Xl (X) Xl (X)
(1.10) re := Ixrl]:) ) >1 and 1<p,:= igg) ()

wherea’, (resp.a’) denotes the right (resp. left) derivative @f

< +o00,

The proof of this lemma is in the Appendix. To understand éhegponents
r, and p,, observe that for the functioa = ap, p,, defined by (1.4), we have
ro, = min(p1, p2) andp, = max(ps, p2). Moreover, if 1< r < p are given numbers,
anda is a Young function such that, = r andp, = p, then it is not dfficult to
check that

a(Lapr < a < a(1)ayp.

1.2. Main results. Our first result states that the modified log-Sobolev ingtual
(plus or minus) implies the transport-entropy inequali$gaciated to the same
(Otto-Villani theorem).

Theorem 1.11. Letu be a probability measure on X amda Young function satis-
fying theA,-condition.

(i) If u satisfied-SlI}(A) for some A> 0, thenu satisfiesT ,(C*) with
C* = max(((pa = DA ((Pe — DA™ ).
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(i) If u satisfied Sl (A) for some A> 0, thenu satisfiesT ,(C™) with
C™ = (1+ (o~ DA (o — DAY
The numberd <r, < p., P > 1 are defined by1.10)

Let us comment on this theorem. First observe @€aandC™ are of the same
order since

Ct <C™ < 2P TeCH,

For the quadratic casex(X) = X2, the constants reduce @ = C~ = A. This
corresponds (wheKX is a smooth Riemannian manifold) to the usual Otto-Villani
theorem [24] (see also [3]). Let us mention that Lott andavill[20] general-
ized the result from Riemannian manifolds to length spafmesy,(X) = x?, with
an adaptation of the Hamilton-Jacobi semigroup approavkloleed by Bobkov,
Gentil and Ledoux [3]. But their statement requires addalocassumptions, such
as a local Poincaré inequality, which are not needed in fiémed.11.

Also, in [8] the authors prove that the modified log-Soboleequality, in Eu-
clidean setting and witr = ap, with 1 < p < 2, implies the corresponding
transport inequalityl’,, again using the Hamilton-Jacobi approach [3].

More recently, in [11], the first named author proved th@&t* (A) impliesT,(A)
in the quadratic casex(x) = x2 and on an arbitrary complete and separable metric
space. His proof can be easily extended to more generaidasctuch ag(x) =
xP. The scheme of proof is the following. Talagrand’s inegyali, is first shown
to be equivalent to dimension free Gaussian concentrat\aaording to the well
known Herbst argument (seeg. [19]), LSI* implies dimension free Gaussian
concentration, so it also impli&s,.

Finally, as shown by Cattiaux and Guillin [6], we mentionttlize Talagrand
transport-entropy inequalityf, does not imply, in general, the log-Sobolev in-
equality. Hence, there is no hope to get an equivalence ialibee theorem.

However, the £)-log-Sobolev inequality appears to be equivalent to thasy
port-entropy inequality. This is the main result of this pap

Theorem 1.12.Letu be a probability measure on X aada Young function satisfy-
ing theA,-condition and let p > 1 be defined by1.10) The following statements
are equivalent

(1) There exists C such thatsatisfiesT ,(C).
(2) There exisfl, A > 0 such thatu satisfiegr) — LSl (4, A).

Moreover, the constants are related in the following way

()= (2) forany 1€(0,1/C) and A= —c;

. 1
(2)=(@1) with C= 2K, max(A; 1)P~1
pgo(Pa*l)

Wherera = W .
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Such a characterization appeared for the first time in [154, Euclidean setting
and witha between linear and quadratic. Here our result is valid ndt tor a
wider family of Young functionsy but also on very general metric spaces.

Due to its functional form, it is easy to prove a perturbatiemma for the in-
equality ¢) — LSI,. This leads to the following general Holley-Stroock peoaw
tion result for transport-entropy inequalities whose piegiven in Section 5.

Theorem 1.13. Letu be a probability measure on X amda Young function satis-
fying theA,-condition and let p > 1 be defined by1.10) Assume that satisfies
T.(C) for some constant C- 0. Then, for any bounded functian: X — R,
the measure il = %eﬁ" du (where Z is the normalization constant) satisfrels(('f),
with

C = %y, CP~10SCh),

P2

Po

whereOscfp) := supy — inf ¢, andkp, = o)D)

This theorem fully extends the previous perturbation tefdid, Corollary 1.8]
obtained in a Euclidean setting and for a Young functicguch that’ is concave.
Namely, for such am, the functiona(x)/x? is non-increasing [15, Lemma 5.6],
and sop, < 2.

The paper is divided into five sections and one appendix.i@e2tis dedicated
to some preliminaries. In particular we will give a charaizi&ion of transport-
entropy inequalities (close from Bobkov and Gotze onef thight be of indepen-
dent interest and that is one of the main ingredients in ooofgr For the sake of
completeness, we also recall how the transport-entropyusléy T, implies the
(1)-log-Sololev inequality ((1}= (2) of Theorem 1.12), this argument had been
first used in [27] and then in [15]. In Section 4, we prove theeotdirection: the
(1)-log-Sololev inequality implies the transport-entromequality T,,. In section
3, we give the proof of the generalized Otto-Villani resdlieorem 1.11. The
proof of the Holley-Stroock perturbation result is giverSaction 5. Finally, most
of the technical results needed on Young functions are provéhe Appendix.

CONTENTS

1 Introduction. 1
1.1 Notation and definitions. 2
1.2 Main results. 6

2 Preliminaries 9
2.1 From transport entropy te)tlog-Sobolev inequality 9
2.2 Suficient conditions for transport-entropy inequality 10
3 From modified log-Sobolev inequality to transport-enyragequality 12
3.1 Modified log-Sobolev inequality plus 13
3.2 Modified log-Sobolev inequality minus 16
4  From {)-log-Sobolev inequality to transport-entropy inequalit 18
4.1 A first proof 20

4.2 A second proof 20



8 NATHAEL GOZLAN, CYRIL ROBERTO, PAUL-MARIE SAMSON

4.3 Proofs of the technical lemmas 24
5 Holley-Stroock perturbation Lemma: proof of Theorem 1.13 25
A Technical results 26
References 29

2. PRELIMINARIES

In this section, we first recall the proof of the first half oféldiem 1.12, namely
T, = (r) - LSl,. In a second part, we give a useful “dimensional” refinement
of the characterization of transport-entropy inequaitiy Bobkov and Gotze [4].
This characterization providesfiigient conditions for transport-entropy inequality
to hold. These conditions are the one obtained in the prdofksSt = T, and
(r) - LSl, = T,.

2.1. From transport entropy to (r)-log-Sobolev inequality. In [15, Theorem
2.1], we proved the following result which is the first hallY(= (2)) of Theo-
rem 1.12. For the sake of completeness, its short proof @&leecbelow.

Theorem 2.1([15]). Letu be a probability measure on X amda Young function.
If u satisfiesT ,(C) for some constant G 0, then, for alla € (0, 1/C), u satisfies
(r) = LSla(d, ).

Proof. Take f : X — R a locally Lipschitz function such thafe’ du = 1 and
consider the probability; defined byvs = ef u. Jensen inequality implies that
f fdu < 0. So, ifris an optimal coupling between (dx) andu(dy), then it holds

H(Vf|y):fdefsffdw—ffdy:ff(x)—f(y)n(dxd)).

By definition of Q! f,

FO) = F(¥) < F() = Q, F(¥) + da(d(x,Y)).
Sincer is optimal, it holds

HOvil) < f (f = QL) vy + ATo(v1. 0.

Plugging the inequality, (v¢, 1) < CH(v¢|u) in the inequality above withh < 1/C
immediately gives®) — LSl (4, 5z). O

2.2. Sufficient conditions for transport-entropy inequality. In this section, we
show that bounds on the exponential moment of the tensonidembnvolution or
sup-convolution operator allows to recover the transpattopy inequality (see
Proposition 2.3 and Corollary 2.7 below). These resultsaakey argument to
recover transport-entropy inequality either from modifieglSobolev or from+)-
log-Sobolev inequality.

It is known, since the work by Bobkov and Gotze [4] (see alzb, [L3]), that
transport-entropy inequalities have the following duahfalation.
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Proposition 2.2([4]). Letu be a probability measure on a complete and separable
metric spaceX, d). Then the following are equivalent:

(i) The probability measurg satisfiesT ,(1/c);

(i) For any bounded continuous function X — R, it holds

fecqyf du < (),

In the next proposition we show, using the law of large nurepiirat the bound
in Point (i) can be relaxed as soon as it holds in any dimension.

Proposition 2.3. Let u be a probability measure on a complete and separable
metric spacdX, d). Then the following are equivalent:
(i) The probability measure satisfiesT ,(1/¢);
(ii) There exist three constants a, b>c0 such that for any re N*, for any
bounded continuous function: X" — R*, it holds

f Qo g < aeH"(),

where
n

(2.4) Qunf(X¥) = ylg{n{f(y) + Z a(d(xi,yi))}, VX =(Xg,..., %) € X".

i=1
Remark 2.5. Note that the constants a and b do not play any role. On therothe
hand, notice that f is only assumed to be non-negative.

Proof. Observe that the transport-entropy inequality(1/c) naturally tensorises
(seee.qg. [13]). Applying Bobkov and Gotze result above, we see tRaingplies
(i) witha=1andb = c.

Now let us prove thatii() implies (). For that purpose, fix a bounded continuous
function f : X —» R with mean 0 undex and, following [14] (see also [11]), define
gonX"asg(x) = XL, f(%), X = (X1, ..., %) € X". Then,

n
( f eCQﬂfd,u) = f Q9 " < f Qg+ " < aH"(@+)

where, as usuaf), = max(g, 0). It follows that
f Ty < abe"(@)n,

Now, according to the strong law of large numbeﬂfgi"zl f(X) = 0inL', where
the X;'s are i.i.d. random variables with common lawHence,

n
n(9+ 1 _
y (F)SE[EZf(X,))ﬁO
whenn tends to infinity. We conclude that
(2.6) feCQ”f du < 1 =¥,

i=1



10 NATHAEL GOZLAN, CYRIL ROBERTO, PAUL-MARIE SAMSON

Since the latter is invariant by changirfginto f + e for any constang, we can
remove the assumptiqr(f) = 0. This ends the proof. O

The next corollary will be used in the proofs of Theorems hid 1.12. It gives
a suficient condition for the transport-entropy inequality to hold.

Corollary 2.7. Letu be a probability measure on a complete and separable metric
space(X, d). Define, for all f: X" —» R,

(28)  Panf(¥) = SUD{f(y) -, a(d(Xa,yi))}, VX = (Xp. .00 %) € X

yEXn i=1

Assume that there exist some constans, b > 0 and ce [0, 1) such that, for all
integer ne N* and all bounded continuous functions K" — R*, it holds

f Punfdlyn < adh"Ponferelfll

Theny satisfiesT , (T(l—l_c))

Proof. Let n e N* and take a bounded continuous functgppnX" — R*. In order
to apply Proposition 2.3, we need to remove the spurious fdtin. Observe on
the one hand that for am/e (0, (1 — ¢)), one has

+00
feeQa,ng du" = 1+,3f0 & 1" (Qung = r)dr

= 1+,8f+00 & " (Min(Qung. 1) > r)dr.
0

On the other hand, sét= min(Q, ng,r). It is bounded, non-negative and satisfies
Ifllo <r. Moreover, we hav®, n(Q..ng) < g. Indeed,

n n
Pan(Qung)(¥) = supin. {f(z) + ) a(dyi,2) - ) a(d(x, yi))} ,
yexn i—1 i=1
and the inequality follows by taking= x. Henceu"(P,nf) = u"(Pen(Qan0)) <
1"(g). Therefore, sinc®,,f > f, by Tchebychev’s inequality and the assumption,
we have

©"(MiNQung.r) = 1) < u"(Penf >r1) <™ fefpﬂ’”f du" < ad¥"(Penf)gr(d-0r
< aéaﬂn(g)e_‘r(l_c)r‘

Consequently, we get

+00
f I gy < 1+ Bae"©@ f eC9A g — 14 P20
0 7(1-¢) -8

T(l - C) +ﬁ(a - 1)é3/‘n(g)

1-¢) -5 '
Finally, Proposition 2.3 provides thatsatisfiesT ,(1/8). Optimizing overs leads
to the expected result. O
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3. FroM MODIFIED LOG-SOBOLEV INEQUALITY TO TRANSPORT-ENTROPY INEQUALITY

In this section we prove Theorem 1.11. We have to distingoéttveen the mod-
ified log-Sobolev inequalities plus and minus. As in [11E firoofs of Theorems
1.11 and 1.12 use as a main ingredient the stability of ldgefw type inequalities
under tensor products.

Let us recall this tensorisation property. The entropy fiemal enjoys the fol-
lowing well known sub-additivity property (seeg.[1, Chapter 1]): ifh : X" —
R*,

(3.1) Enfn(h) < )’ f Ent,(hi.,) du"(X),
i=1

where, for allx € X", the applicatiorh; x is thei-th partial application defined by
hix(u) = (X1, ..., Xi—1, U, Xis1s - - -5 Xn)s Yu e X

Let us say thah : X" — R" is separately locally Lipschitzif all the partial
applicationsh; x 1 <i < n, x € X" are locally Lipschitz orX. Now, suppose that a
probability  on X verifiesLSI ¥ (A) for someA > 0. Then, using (3.1), we easily
conclude that" enjoys the following inequality:

(3.2) Enga(eh) < A f Za*(wrﬂ)ef du”,
i=1

for all function f : X" — R separately locally Lipschitz, whef€;" f|(x) is defined
by

. [f(le'"’Xi—lsysxi+1""’xn)_ f(X)]+
V() = [V*fixl(x) = limsu .

The same property holds faSI .

3.1. Modified log-Sobolev inequality plus. The first part of Theorem 1.11, that
we restate below, says that the modified log-Sobolev inggua$!?} implies the
transport-entropy inequality,,. In fact we shall prove the following slightly stron-
ger result. To any Young functiam, we associate a functiaf, defined by

(3.3) £a(%) = sup 2+ ()

_— x> 0.
u>0 Xa/(u)

whered’, is the right derivative of. Note that, is non-decreasing and may take
infinite values.

Theorem 3.4. Let u be a probability measure on X angda Young function sat-
isfying theA,-condition. Ifu satisfiesLSI 7 (A) for some constant A 0, thenu
satisfiesT ,(1/ta) with ta = supt € R*; &,(t) < 1/A}.

The following lemma gives an estimation &f.
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Lemma 3.5. Let @ be a Young function satisfying the-condition, and letl <
re < Pa,r Po > 1 be the numbers defined (1.10) Then, it holds

(3.6) Ea(X) < (pe — 1) max(xpa%l; le—l), Vx> 0,
with the convention®k = 0 if x < 1 andco otherwise.

The proof of this result is in the Appendix.

Using Lemma 3.5, we easily derive point (i) of Theorem 1.1ithwhe explicit
constanC* = max(((p, — DA ; ((po - AP ).

Before turning to the proof of Theorem 3.4, let us say thatetémation (3.6)
is satisfactory at least for the small valuesxafcorresponding to the large values
of A), as shows the following exact calculationggfwhena is the functionay, p,
defined by (1.4).

Lemma3.7. Let p > 2and p > 1and leta = ap, p,; then p, = max(p, p2) and
it holds L
£a(X) = (Po — 1)XPe-T, Vx< 1l
Moreover, for x> 1, it holds
1
pl(ixv_l"‘ -2 l) if p1 > p2
&0)=1 \¥ (“; o) P
maX((pl = D)xpt; (p2 — 1)X*’2-1) if p1 < p2,
where @ = p1/(py - 1)and ¢ = pz/(p2 — 1).
The proof of this lemma is in the appendix too.

Proof of Theorem 3.40ur aim is to use Herbst's argument (s=g. [19, 17, 1])
together with Proposition 2.3. Let € N*; according to Lemma 3.8 below, for
any bounded functiori : X" — R, the functionQ, f is separately locally Lips-
chitz (recall that the inf-convolution operatQ, , is defined by (2.4)). Fix a non-
negative bounded continuous functién: X" — R*. Applying (3.2) totQ.nf,

t > 0, and using Lemma 3.9 below together with the fact that0, one gets

Entn (€97) < A f Z @ (tV; Qunfl) %" du”
i=1

< A, () f QqnfeQunt gy,

Now, we proceed with the Herbst argument. Béf) = [ €2du", t > 0. Since
Entn (€)= tH'(t) — H(t) log H(t), the latter can be rewritten as

(t— At ()H'(t) < H(t) log H(t), t>0.
SetW(t) = % log(H(t)), t > 0, so that the previousfiierential inequality reduces to

W (DL — A (1)) < AL (W(D).

Since lim_o W(t) = u"(Qq.nf), we get

H(t) < exp(tC(t)u"(Qun')), vt € (0,ta)
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where we seC(t) = expfot W(u%u)) du (thanks to Lemma 3.5 above we are guar-

anteed thata > 0 and thatC(t) < c on (Qt,)). SinceQ,n,f < f, we finally
get

feth,nfdﬂn S etc(t),un(f)’ vt S (0’ tA)

which leads to the expected result, thanks to Propositi®edd after optimization
overt € (0,ta)). O

Lemma 3.8. Let a be a Young function. For any integeren N*, any bounded
function f: X" — R, the function Qf is separately locally Lipschitz on"X

Proof. Leth = Q,nf; then, for allx e X" and 1< i < n, it holds

hi x(u) = inf { inf { f(y) + Z a(d(x;, Yj))} +a(d(u, Yi))}

VieX | Y1s-Yi-1,Yi+15-¥n T

= Qag(u)a

whereg : X — R is defined by the second infimum. Let us show that Q,g(u)
is locally Lipschitz onX. Observe that is bounded and defing = a2(2/|gll).
For allu € X, and ally € X such thad(y, u) > r,, we have

g(y) + a(d(u,y)) > —lldlle + (o) = lIdlle-

SinceQ,g < [ldll, We conclude thaQ.g(u) = infqy,u<r, (9(Y) + a(d(u, y))} . Let
Uo € X, and letB, be the closed ball of centey, and radius B,. If u € B,, then
Q.9(U) = infyeg, {a(y) + a(d(u,y))} . Now, if y € By, we see that for all, v € B,

la(d(u, y)) — a(d(v, ) < [d(v,y) — d(u,y)| max o, (td(u,y) + (1 - t)d(v. y))

< Lod(u, v),
with Lo = @, (4r,). The mapB, — R : u— Q,g(u) is an infimum ofL,-Lipschitz
functions onBy, so it isLy-Lipschitz onB,. This ends the proof. O

Lemma 3.9. Let a be a Young function. For any integer n, anyt0 and any
bounded continuous function: X" — R,
n
D@ (19 Qunfl) < ta(®(Qunf () — F(¥)).
i=1
where ¥ € X" is any point such that @, f(x) = f(y*) + Z’j‘:l CL’(d(Xj,y}()).

Proof. Fix n, t > 0 and a bounded functioh : X" — R*. Forx = (X1,...,X%n) €
X"ie{l,...,n}andz € X, we shall use the following notation

)_('rZ: (le---vxi—lazoxi+1a~~~7xn)~
Let x € X" sincef is bounded continuous and closed ballXiare assumed to be
compact, it is not dficult to show that there exist& € X" such that

n

Qunf(¥) = f(y) + ) a(d(X;,y{))-

=1
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Forallze Xand all 1< i < n, we have als®@un f(X2) < f(y*)+ X a(d(x;, ) +
a(d(z ¥))). Since the maps ~ [u], anda are non-decreasing, it holds
[Qunf(X2) = Quaf(X]+ < [a(d(z ¥)) — a(d(%. Y]+
< [a(d(z %) + d(x, ¥i)) = a(d(x, )]+
Therefore,

IV QunfI() < limsup [o(dz ) + dOx. y1) - adtx. ),
A d(z x)
= @, (d(%, ¥)))-
Hence, by the very definition &f,,

n

D@ (UV Qunfl) < > @ (ta(d(%, )
i=1

i=1
<&, () Z a (d(x. ¥0)
i=1
= t£2(0) (Qun () — F().

O

3.2. Modified log-Sobolev inequality minus. In this section we prove the second
part of Theorem 1.11, that we restate (in a slightly strorigem) below, hamely
that the modified log-Sobolev inequality minuSI;, implies the transport-entropy
inequality T,. Let us define (recall the defintion &f given in (3.3))

t, = sup{t € R, &,(t) < +oo}.
Note that, by Lemma 3.5, if satisfies the\,-condition, thert, > 1.

Theorem 3.10. Let u be a probability measure on X arda Young function sat-
isfying theAp-condition. Ifu satisfiesLSI,(A) for some constant A 0, thenu

. N { A
satisfiesT ,(B™) with B~ = lim_,y, %exp{ b ﬁ% du}.

For more comprehension and to complete the proof of paxf(iheorem 1.11,
let us prove thaB~ < C~. If r, > 1 then by Lemma 3.5, = +c0. Moreover,

using that? = exp{- tldu}, t > 1, one has

S (O B [ S
g8 = fou(1+A§a(U))d fl o+ e

1 _ a—1 +00
< f AP, ~ U7 - du—f = — du
0 u(l+ A(py — Lure-1) 1 ud+A(py — Luie-1)

logC~,

with
C™ = (1+A(py — )™ (AP — 1))
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Whenr, = 1, sincet, > 1 and using the fact that the function

1 t AL
ool [ @ aem )

is non-increasing, we get

_ ! Aé:a(u) -1 _ ~—
B sexp{j; mdu}f(l"'A(pa—l))p =C".

Proof of Theorem 3.10The proof of Theorem 3.10 follows essentially the lines
of the proof of Theorem 3.4. Let € N*; thanks to the tensorisation property of
LSI;(A), it holds

(3.11) Enta(e9) < A f 3 0" (V7 g du”
i=1

for anyg : X" — R separately locally Lipschitz and bounded. Take a non-
negative bounded continuous functidn: X" — R*. Recall thatP,,f(X) =
SURexn { F(Y) — 21y a(d(%. Y1)} . SincePqnf = —Qun(~f), it follows from Lem-

ma 3.8 that?, n f is separately locally Lipschitz. Applying (3.11) tp= tP,nf,

t > 0, one gets

n
Enga(ePenl) < A f Za* (t1V; Paun 1) €Pen” du”
i=1

Observe thaP, nf = —Q,.n(—f) and thatV—(-h)| = [V*h|, forallh : X - R. So
applying Lemma 3.9, we see that for ale X", there is somg* € X" such that

n n

@ (197 Panfl) (9 = > @ (1Y} Qun(-1)I) ()

i—1 i=1
< o (1) (Qun(=1)(X) + F(¥))
< (V) (Iflleo = Panf(X).
So we get the following inequality

Enn(ePen’) < Atg, (1) f (Ifllco = P F)ePant dun.

As in the proof of Theorem 3.4, we proceed with the Herbst Argnt. SeH (t) =
[Pantdun, t € (0,1,). Since En(ePen") = tH'(t) — H(t) log H(t), the latter can
be rewritten as

(t+ At (O)H' (1) < H(t) log H(Y) + At @)l flloH(t),  Vte (0.ta).

SetW(t) = % logH(),t € (0,t,), so that the previous fierential inequality reduces
to

WL + Ado(1)) < AL (W) + AL (Ol fllo.
Setc(t) = exp{- ' AL du} (which belongs to (01) thanks to Lemma 3.5).

. . 0 u(l+As(u) . - . .
Since lim_o W(t) = u"(P,.nf), solving the latter dferential inequality, we easily
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get that for allt € (O,t,)
H(t) < lCOK" (Pan®) gl Flleo (1-c(t))

Applying Corollary 2.7 yields that ,(1/(tc(t)) holds for allt € (0,t,). Observing
that the functiont — tc(t) is non-decreasing on (f)), the proof is completed by
optimizing int. O

4. FroM (T)-LOG-SOBOLEV INEQUALITY TO TRANSPORT-ENTROPY INEQUALITY

In this section, we prove the second part (£2)(1)) of Theorem 1.12. Observe
thatT,(C/A) is equivalent tarl ,,(C). Hence, changing into Aa, we can restate
the first part of Theorem 1.12 as follows.

Theorem 4.1. Letu be a probability measure on X amda Young function satisfy-
ing theA,-condition. Let p > 1 be defined by1.10). If u satisfieqr) — LSI,(1, A)
for some A> 0, thenu satisfiesT ,(C) with

C = kp, Max@, )P,
ppn(Pa—l)

Wherera = (p(yil)w .

Two proofs are given below. The first one exactly follows tine$ of the proof
of LSI; = T,, whereas the second one uses the equivalence betweerottansp
entropy inequalities and dimension free concentratioaldished in [11] together
with a change of metric argument.

In each proof, the first step is to tensorise thel¢g-Sobolev inequality. Let
n € N* ; using the sub-additivity property (3.1) of the entropydtional, we see
that r) — LSl (1, A) implies that

(4.2) Entn(e) < A f Z(h - QY du",  vh: X" SR,
i=1

wherng) is the inf-convolution operator with respect to thih coordinate, nam-
ely
Q09 = Qu(hix)(%) = inf {R(XY) + a(d0x, V)]

(using the notation introduced in Section 3).
As in the proof of Theorem 3.10, applying (4.2)ho= tP, g, t > O whereg
belongs to some class of functions, we get

n
(4.3) Entn(een%) < A f D (tPang - QY (tPong)) €79 du”
i=1

As a main dfference, the class of functiogdiffers in each proof. In the first one,
gis any non-negative bounded separately locally Lipschitzfion, whereas in the
second proofg is globally Lipschitz in some sense.

For both proofs, the next step is to bourfiaently the right-hand side of (4.3),
in order to use some Herbst argument. This bound will be dgethe following
lemma.
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Lemma 4.4. Leta be a Young function satisfying the-condition and let p > 1
be defined by1.10) For any bounded continuous function: X" — R, for any
xe X"and te [0, 1),

D (tPan0(x) - QP (tPaa0)(x) < te(t) [Z a(d(x, y?))] :

i=1 i=1
where ¥ € X" is any point such that £,g(X) = g(y*) - XiL; (d(x;, ¥), and where

s)=—2 _1 vte[01).

1 p(Y_l
]

We postpone the proof of Lemma 4.4 to the end of the section.

4.1. Afirst proof. The first proof of Theorem 4.1 mimics the one of the implica-
tionLSI; = T

Proof of Theorem 4.1Using (4.3), Lemma 4.4 ensures that for every hon-negative
locally Lipschitz bounded functiog, for everyt € [0, 1)
(t+ Ats(t)H’(t) < H(t) log H(t) + Ate(t)lIgllee H (1),

whereH(t) = [ €Panddy".
Solving this diferential inequality, exactly as in the proof of Theorem J\:@
omit details), leads to

f ePurdgln < " (Pund) Al (1)

)
C=ex pf T+ AD)

The inequalityT ,(C) then follows from Corollary 2.7.
Now, let us estimate the constabt By convexity, one has for everye [0, 1],
L-v)-(1-vP < (py — V.
This inequality easily implies that for all € [0, 1), @ < (pe — 1)¢/(t). Conse-
quently, we obtain for alli € [0, 1),
" AL LAY
o — 1 ——dt —_—
P =D | T A M fu 11+ As()
(pe — 1) log(1+ Ag(u)) — logu
Optimizing inu, we get
Po—1 Po—1
C< inf EHAWPT o @+ et
ue(0,1) u ue(0,2) u
= kp, Max(@, 1)P=~1

with c = 1/C,

logC dt

IA

IA

max(A, 1)P=~1

pga(pn—l)

with kp, = TR
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4.2. A second proof. The idea of this second proof is to prove the theorem in the
particular case of the functionsg,(X) = xP and then to treats the general case by a
change of metric argument.

4.2.1. T, inequalities. Let us introduce some notation and definitions. When
a(X) = ap(X) = [xP, we will use the notatiorT ,(C) and ¢) — LSI, instead of
Te(C) and ) - LSl,,. Letn e N*; a functionf : X" — R will said to be
(L, p)-LipschitzL > 0,p > 1, if

n 1/p
1109 - F)I < L[Z dpm,yi)] . Wxyex
i=1

We recall the following result from [11].

Theorem 4.5. The probabilityu verifies the transport-entropy inequalifiy,(C),
for some C> 0if and only if it enjoys the following dimension free concatibn
property: for all ne N* and all f: X" — R such that

n 1/p
1109 = F(y)l < L[Z dp(Xa,yi)] . xyeX,
i=1

for some L> 0, it holds
u(f > u"(f) +u) < expuP/(LPC)), Yu > 0.

So to show that &, inequality holds it is enough to prove the right concentrrati
inequality.
We will use the following result to estimate the right-hamdesof (4.3).

Lemma 4.6. Let p> 1, there exists a constani, > 1 such that for all ne N* and
all (L, p)-Lipschitz function f. X" — R, and all xe X", the function

n
X" Ry e f(y)- > dP(,v)
i—1
attains its maximum on the closed ball

n L q p
yexn S dPx.y) < (—) . withg= P
{ .; 77 \wp p-1

When(X, d) is geodesic (see below), then one can take= p.

Recall that K, d) is geodesic, if for allx,y € X, there is a pathZ)o,1; join-
ing x to y and such thatl(zs, z) = |s — t|ld(x,y), for all s,t € [0, 1]. This notion
encompasses the case of Riemannian manifolds.

The proof of the lemma is at the end of the section.

Theorem 4.7. Let p> 2; if u verifies the(t) — LSI(1, A), then it verifiesT ,(C),

with C = (ap max(LA))" ", with ap = infeo1) {tqil (1+ gt e du)}.
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Remark 4.8. Let us compare the constants appearing in Theorems 4.1 ahd 4.
for p = 2. When p= 2, Theorem 4.1 gives{C= 4 max(1;A), and Theorem 4.7
gives G = axmax(1;A). A simple calculation shows that when=p 2, a, =
infse0.1) {%j'”(l‘s) If wp = 1, then & =~ 7,5 and G is smaller than G. But
if wp, = 2 (which is the case, whelX, d) is geodesic), thensa~ 3,14, and G is
smaller than G.

Proof of Theorem 4.7Take a [, p) - Lipschitz functiong : X" — R. To bound the
right-hand side of (4.3), we use Lemmas 4.4 and 4.6:

n

> (tPapnd(¥) — QU (tPa,n0)(¥) < te(®) (L/wp) .

i=1
So, lettingH(t) = [ €P»n9 du", (4.3) provides

tH’(t) — H(t) log H(t) < Ate()H(t)(L/wp)?, Yt € [0, 1).
Equivalently, the functiorK(t) = %Iog H(t) verifiesK’(t) < A(L/wp)q#. Since
K(t) — u"(Pq,.ng) whent — 0F, we conclude that

@9) [ &PrIds < exp(t'(Payo) + AL/ WD), VEE[O.D)

wherek(t) = fot Mgy te [0,1). Sincegis (L, p) - Lipschitz, it holds

u

n 1/p n

0 < Py,ng(¥) — 9(¥) < SUP{L [Z dp(Xi,Yi)) - dp(Xi,Yi)}
yexrn i=1 i=1
=sugLr —rP} = (p-1)(L/p)7.

r>0

Plugging the inequalitieg < P, ng andu" (Pap,ng) <u"(@) +(p-1)(L/p)Yinto
(4.9), we get

f €9du" < exp(tu"(g) + t(p- 1) (L/p)% + tA(L/wp)q k).  vte[0,1).
Applying this inequality tag = f/t with f a (L, p) - Lipschitz function, we get

fef_yn(f) d’un < exp((té_pl)q (p 14 A(p/wp)QK(t))) , Yt e (0, 1)-

So, optimizing ovet € (0, 1) yields

@10) [0 < exp((L/p(p- 1 max(iaay).

with 0
ap = inf {i (l + (p/eop) f £ du)}.
te(0,1) | ta-1 p-1 Jo u

Using Chebychev’s argument we derive from (4.10) that
u(f > u"(f) +u) < expEuP/(LPC)), Yu >0,
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with C = (a, max(; 1))p_1. Applying Theorem 4.5, we conclude thatverifies
Tp(C). O

4.2.2. Extension via a change of metrié change of metric technique, which is
explained in the lemma below, enables us to reduce the stiittyedransport-
entropy inequalitieF , to the study of the inequaliti€Bp, p > 1.

Lemma4.11. Leta be a Young function satisfying the-condition and let p > 1
be defined by1.10) The function - a(x)YP~ is subadditive oiR* :

aPe(x+y) < aV/Pe(x) +aPe(y),  VxyeR'.
As a consequence, (k, y) = a¥/P=(d(x,y)), x, y € X is a distance on X.

The proof of Lemma 4.11 is at the end of the section.

Proof of Theorem 4.1Let o be a Young function ang a probability onX. Ac-

cording to Lemma 4.11, the functiafy(x, y) = a¥/P=(d(x,y)), X,y € X is a metric
onX. Furthermore, itis clear thatverifies ¢) — LSI,(1, A) (resp.T,(C)) on (X, d)

if and only if u verifies ¢) — LSI,, (1, A) (resp. Ty, (C)) on (X, d,). We immedi-
ately deduce from Theorem 4.7 thauifverifies ¢) — LSI,(1, A), then it verifies
T«(C), with C = (ap, max(1;A))P~1, where

. 1 ()
Ap, = tel(%,fl){tqn—l (1+ 0 — 1](; u du)

(sincewp, > 1) ande defined in Lemma 4.4. Note that the const@nbbtained
using this approach is in general bigger than the constdatrmal in the first proof
of Theorem 4.1. O

4.3. Proofs of the technical lemmas.

Proof of Lemma 4.4Fixt > 0, x € X", andi € {1,...,n}. Then,

tPond(X) — Q¥ (tPen@)(X) = SUP|(tPe.nG(X) — tP4.ng(X2)) — a(d(x. D)} .

zeX

Lety* be such thaP, ng(X) = g(y*) — c(x, y*), wherec(x, y) = Y.L, a(d(x;, ¥i)). By
choosingw = y* in the expression below, it holds

Pa.nd(X) — Pon0(X2) = 9(y*) - c(x,¥*) - Vfgﬁ{g(w) —c(Xz w)}

< Xz y*) - c(x YY)

a(d(z y})) — a(d(x, ¥)))

b (z ) — d&* (%, ¥7)

< (Ao (%0, YY) + Ao (%, 2)P = db (%, ¥)),
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where, in the last line, we used the triangular inequalitytiie distancel, defined
in Lemma 4.11. Hence, optimizing yields

tPe,n0(%) — Q¥ (tPen0)()
< supft [ (dl 06, 1) + d %, 2) = o (6] - 0 (%, 2)]

= sup(t|(d, (6.7 + 1) - o (5. )| = 1™}

= te(t)d3" (%, ¥}) = te(a(d(x, ¥})).
Taking the sum, we get the result. O

Proof of Lemma 4.6Lety* be a point where the function— f(y)— X, d°(x.y)
reaches its maximum. Then, for ale X", it holds

Z dP(x,y") < f(y) - f(2 + Z d®(x;, z)
i-1 =1

n 1/p n
< L[Z dp(zi,yix)] + de(Xa,Zi)-
i=1 i=1

Choosingz = x, we get);)l; dP(x;, z) < LA.

Now, assume that{(d) is geodesic. Then the product spae€,d™) with
dMW(x,y) = (Z{‘zldp(xi,yi))l/p is geodesic too. In the calculation above, take for
z at-midpoint of x andy* i.e choosez € X" such thad™(x,2) = td™(x, y*) and
d™(z y¥) = (1 - )d(x, y¥), with t € [0,1]. Then, letting¢ = d™(x, y¥), it holds
P <L(L-t)¢+tPeP, and soll‘—_ttp{’p‘1 < L. Lettingt — 1 gives the result. O

Proof of Lemma 4.11Let ¢(x) = a¥/P=(x)/x, x > 0. Then, by definition op,

o (9 (5225 ~ 9

X2
Sog is non-increasing on (@-co). Thus, ifx >y,

aPe(x+y) = (X+Y)e(X(L+Yy/X) < (X+Y)e(¥)

0 (X) =

1/pa
= aV/Pr(x) +y— v 0 < o Pa(x) + o/ Pe(y).

5. HOLLEY-STROOCK PERTURBATION LEMMA: PROOF OF THEOREM 1.13
In this section we prove Theorem 1.13.

Proof of Theorem 1.13The proof follows the line of the original proof [18] (see
also [26]). Using the following representation of the eptro

ent (@ = int{ [ (ato(2) - 0+ 1) o}
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with g = ef, we see that (sincglog(%) -g+1t>0)

Sinceu verifiesTa(C) Theorem 2.1 |mpI|es that, for alle (0, 1/C),

Osc(o)
Em;;(ef)_ > ﬂcf(f— f)edy_l ﬂcf(f—Qﬁf)e di.

In other words’satisfies £) — LSl (1, 5=2), for any 1 € (0, 1/C). Now, apply-

ing Theorem 1.12, we conclude thatvérifiesT,, (6) with

~ 1 1
C= inf - - e(pg—l)OSC(p)
Kp, 1€(0,1/C) {/1 (1-20) p[,—l}
Pa
=K Lce{pa—l)Osc(o) =% CePa—1)0scl)
Po (P, — 1)Pe-1 (o

APPENDIX A. TECHNICAL RESULTS

In this appendix we prove the technical Lemmas on Young fanstwe used
during the paper. First, let us prove Lemma 1.9, that we testelow

Lemma A.1. If @ is a Young function satisfying the-condition, then

xa (4 >1 and 1< p,:=sup X (%) < +00

A2 re=inf =0y ) ’

whereca’, (resp.a’) denotes the right (resp. left) derivative af

Proof. Using the convexity ofr, we see thatr(X)/x < o’ (X). This shows that

r. > 1. On the other hand, the functianis convex, sax(2x) > a(X) + X, (X),

for all x > 0. Sincea verifies theA,-condition, there is some constadt > 2
such thai(2x) < Ka(x). So we getxa’, (x) < (K — 1)a(x), for all x > 0. This
proves thap, < +oo. Let us show thap, > 1. Otherwise we would hawe, = p,
(sincea’. < o) and soxa’ (X)/a(X) = xa/.(X)/a(X) = 1 for all x > 0. This would
imply thata is linear on [Qoo). This cannot happen, since by assumption Young
functions are increasing and such th&0) = 0. Sop, > 1. O

Now let us prove Lemmas 3.5 and 3.7 whose statements is suneahdrelow.
Recall that the functiod,, is defined by

a” (xa (u))
+(X) == sup—————, x> 0.
b9 = P e
Lemma A.3.
e Let @ be a Young function satisfying the-condition, and letl < r, < p,,

p. > 1 be the numbers defined t4.2). Then, it holds
(A.4) X)) < (pe - 1) max(xpc%—l; le—l), ¥x > 0,
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with the convention®t = 0ift < 1 and « otherwise.
eletp >2and p > 1and leta = ap, p,; then p, = max(py, p2) and it holds

£ = (P — DXFT,  ¥x<L
Moreover, for x> 1, it holds
L -
(g + (3 - 3)3) it p1 > 2

ga(x) = 1 _1_ .
max((pl — 1)xPL; (p2 - 1)Xp2’1), if p1 < p2

where g = p1/(p1— 1) and @ = p2/(p2 - 1).

a*(uUx)
aF (LI) ’

Proof. Definingw(X) = sup,. for all x > 0, we get

w(¥) _ (@ (u)
su
26 W)
From the convexity inequality(x) > a(u) + (X — u)/, (u), x,u > O, we deduce
immediately thatr* (¢, (u)) = ua, (u) — e(u), for allu > 0. Thus

@)

&u(X) < , Vx> 0.

sup
wo  a(U)
So, all we have to show is thai(X) < max(xpz_cfl; X1 ), for all x > 0.

Defineyp(u) = a(u)/uPr andy(u) = a(u)/u’e, for all u > 0. As in the proof of
Lemma 4.11, a simple calculation shows thais non-increasing ang is non-
decreasing. As a result,

a(tu) < tPra(u), Yux>0, Vt>1,
a(tu) < tva(u), Yu>0, Vt €[0,1].

Taking the Fenchel-Legendre transform yields

a*(v/t) = tPra*(v/tP), Yv>0, Yt > 1,
@ (V1) = teat(V/te), Vv 0, Vte[0,1].

Equivalently,
o' (U¥) < XPrTa*(U),  Yu0, ¥xe[0,1],

a*(ux) < x%a*(u), Yu>0, Vx> 1

. Pa_ Ta
And sincer,, < p,, we conclude thab(x) < max(x1; x@ 1|, x > 0.

Now, let us calculaté,,, , , for p1 > 2, p» > 1. First observe thag,, = &,
for all 2 > 0. It will be more convenient to do the calculation with the ftion
%apl,pz. Let us denote by = % o = % the conjugate
exponents ofp; and p,. Then the following identity holdso* = aq, q,. Let us

show that

a = app, =

£a(¥) = (po — DX/,
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for x < 1. The casex > 1 is similar and left to the reader. Define
a*(Xu)
o(u) =

_ u>0.
a o a’~1(u)
We have to distinguish three cases:

1
&a(X) = < maX(suw(u); sup ¢(u); sup so(U)).
X u<i 1<u<l/x u>1/x
Case 1.0 < u < 1L.Theng(u) = (pp — 1)x%.
Case2.1<u<1/x Then

xdt ydt
p(u) = m L L 1
P2 P1 P2

If p1 > p2, then the functiorp is non-increasing on [1/x], and so

sup ¢(u) = ¢(1) = (pr — 1)x*

1<u<1/x

If p1 < po, then the functiorp is non-decreasing on [1/x] and so

sup ¢(U) = ¢(1/%)

1<u<l/x

Case 3.u> 1/x. Then
2 11
q Q_q
O
P2 pr P2
If p1 > p2, the functiony is non-increasing on [k, o) and so
sup p(u) = ¢(1/X).

u>1/x

If p1 < po, the functiony is non-decreasing on [%, «) and so
sup (u) = lim ¢(u) = (p2 — 1)x*%.
u>1/x U—eo

Observe, in particular, that never reaches its supremumuat 1/x. We conclude
that

supe(u) = max((Py — 1)x*; (p2 — 1)x%),

u>0
and so
£, = max{(ps - 1D, 5y — 1x202)
= (max(py; pp) — 1)xY/(MaxPrip2)-1),
Sincep, = max(py; p2), the proof is complete. g
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