A NEW CHARACTERIZATION OF TALAGRAND’S
TRANSPORT-ENTROPY INEQUALITIES AND APPLICATIONS
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AsstracT. We show that Talagrand’s transport inequality is equiviate a re-

stricted logarithmic Sobolev inequality. This result dias the links between
these two important functional inequalities. As an appiarg we give the first
proof of the fact that Talagrand’s inequality is stable unideunded perturba-
tions.

1. INTRODUCTION

Talagrand'’s transport inequality and the logarithmic Sebmequality are known
to share important features: they both hold for the Gaugsigasure in any dimen-
sion, they enjoy the tensorization property and they impiyi§sian concentration
results. We refer to [30, 18, 1, 15] for surveys about thesmng. Otto and Vil-
lani [25] proved that the logarithmic Sobolev inequalityplies, in full generality,
Talagrand’s transport inequality (see also [5]) and undemaature condition, that
the converse also holds (see also [14]). However, since tik by Cattiaux and
Guillin [8], it is known that the two inequalities are not égplent, in general.

In this paper, we prove that Talagrand’s transport inetuai actually equiv-
alent to some restricted form of the logarithmic Sobolewiradity. Our strategy
easily generalizes to other transport inequalities. Aspdmuct we obtain an ele-
mentary and direct proof of the fact that transport inedjaalican be perturbed by
bounded functions.

In order to present our main results, we need some definiindshotation.

1.1. Definitions and notation. In all what follows,c : R — R* is a diferentiable
function such that(0) = Vc(0) = 0. Letu andv be two probability measures on
RX; theoptimal transport cosbetween andu (with respect to the cost functian

is defined by
Tl = i { IESET y)},

where the infimum is taken over all the probability measures R¥ x RK with
marginalsy andu. Optimal transport costs are used in a wide class of prohlems
in statistics, probability and PDE theory, see [30]. Hereshkall focus on the
following transport inequality.
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Definition 1.1 (Transportation-cost inequalifl.(C)). A probability measurg on
R satisfiesT ¢(C), with C > 0, if

(Tc(C) To(v,u) <CH(Mp), Vv e PR,

where

flog%dv ifv<<pu
= I
HOK) { +00 otherwise

is the relative entropy of with respect tq: and P(RK) is the set of all probability
measures ok,

The inequalityT(C) implies concentration results as shown by Marton [20],
see also [6], [18], and [15] for a full introduction to thistium.

The quadratic cost(x) = |x|?/2 (wherg| - | stands for the Euclidean norm) plays
a special role. In this case, we write(C) and say that Talagrand’s transport, or
the quadratic transport, inequality is satisfied. Talagrproved in [29], among
other results, that the standard Gaussian measure safigfiesin all dimensions.
In turn, InequalityT,(C) implies dimension free Gaussian concentration results.
Recently, the first author showed that the converse is al&y tramely that a di-
mension free Gaussian concentration result imglig€) [14].

Now, we introduce the notion of restricted logarithmic Slelvdnequalities. To
that purpose, we need first to defidesemi-convex functions.

Definition 1.2 (K-semi-convex function)A function f: RK — R is K-semi-convex
(K € R) for the cost function c if for allt € [0, 1], and all xy € RK

(2.3) f(Ax+(1-2)y) < ATX)+(1-2) f(y)+AKc((1- ) (y—X))+(1-)Kc(A(y—X)).

As shown in Proposition 5.1 below, forftérentiable functions, (1.3) is equiva-
lent to the condition

fiy) > F)+VI(X) - (y—X) —Kely—x),  VxyeRX

The reader might see the semi-convexity as an answer to tsdion: how far is
the functionf from being convex? The quadratic cag®) = %|x|2 is particularly
enlightening since a functioh is K-semi-convex if and only ik — f(x) + §|x|2
is convex. Note that the semi-convexity can be related totition of convexity-
defect, see.g. [3] and references therein where it is largely discussedused.
Note also that our definition fiers from others, such as [30][Definition 10.10] or
[10][Lemma 3 in Chapter 3, page 130].

Dealing only with semi-convex functions leads to the folilogvdefinition.

Definition 1.4 (Restricted (modified) logarithmic Sobolev inequalityd proba-
bility measureu on RK verifiesthe restricted logarithmic Sobolev inequalitjth
constant C> 0, in shortrLSI (C), if for all 0 < K < é and all K-semi-convex
f:RK SR,

f 2C 2. f
(rLSI (C)) Ent, (ef) < 1-KCR f IVf2e’ du,
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whereEnt,(g) := [gloggdu — [gdulog [gdu. More generally, a probability
measureu on R¥ verifies therestricted modified logarithmic Sobolev inequality
with constant C> 0 for the cost ¢, in shortMLSI (c,C), ifforall K > 0, > 0
with n + K < 1/C and all K-semi-convex fR¥ — R for the cost c,

n LV
(rMLSI (c,C)) Ent, (ef) < m fC (7)6f du,

where ¢(u) := supyx {U- h—c(h)} and u- h is the usual scalar product iR¥.

Note thatrMLSI (c, C) reduces taLSI (C) for ¢(X) = ¢c*(X) = %|x|2, optimizing
overn.

Without the restriction on the set &f-semi-convex functions, the first inequal-
ity corresponds to the usual logarithmic Sobolev inequatitroduced by Gross
[16] (see also [27]). For the second one (without the resirng we recognize the
modified logarithmic Sobolev inequalities introduced frgtBobkov and Ledoux
[7], with c*(t) = 2|t}?/(1—7) for |t| < y andc*(t) = +co otherwiset € R, in order to
recover the celebrated result by Talagrand [28] on the guration phenomenon
for products of exponential measures. Gentil, Guillin anidlM[11] established
modified logarithmic Sobolev inequalities for productstud probability measures
dvp(t) = e/Z,, t € R and p € (1,2), with ¢*(t) that compares to mat€( |t|9)
whereq = p/(p — 1) € (2, ) is the dual exponent gb. In a subsequent paper
[12] they generalized their results to a large class of nreaswith tails between
exponential and Gaussian (see also [4] and [13]). In [11]atlors also prove
that the modified logarithmic Sobolev inequality (witholiétrestriction, and with
c*(t) that compares to maté( [t|%)) implies the corresponding transport inequality
T<(C).

Our results below show that the functional inequalitiei_SI (c, -) andT¢(-)
are equivalent (up to universal factors in the constants).giVe a more com-
plete description of this equivalence, let us consider gettzer type of logarithmic
Sobolev inequalities that we call inf-convolution loghanitic Sobolev inequality.

Definition 1.5 (Inf-convolution logarithmic Sobolev inequalityp probability mea-
sureu onR* verifiesthe inf-convolution logarithmic Sobolev inequalityith con-
stant C> 0, in shortICLSI (c, C), if for all 1 € (0,1/C) and all f : R - R,

1
(ICLSI (c,C)) Ent,(e") < 1_/1Cf(f—Q”f)ef du,

where @ f : RK - R denotes the infimum-convolution of f:
QY (X) = inf {f(y) + Ac(X—Y)}.
yeRK

1.2. Main results. Our first main result is the following.

Theorem 1.6. Lete : R — R* be a convex symmetric function of classstich
that@(0) = @/(0) = 0, @’ is concave oR*. Define ¢x) = Zik:l a(X) and letu be
a probability measure otX. The following propositions are equivalent:

(1) There exists €> 0 such thafu verifies the inequalityl ¢(C,).
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(2) There exists £€> 0 such thafu verifies the inequalityCLSI (c, Cy).
(3) There exists &> 0 such thaj verifies the inequalityMLSI (c, Cz).

The constants ¢ C, and G are related in the following way:
D=>2)=(3) with C,=Cy,=Cj3
3)= (1) with C;=8Cs.

The typical example of function satisfying the setting of Theorem 1.6 is a
smooth version of(X) = min(x?, xP), with p € [1, 2].

The first part (1)= (2) = (3) actually holds in a more general setting (see
Theorem 2.1), it is proven in Section 2. Moreover the ineitpdCLSI (c, C) has
a meaning even iR¥ is replaced by an abstract metric spaceThe proof of the
second part (3 (1) is given in Section 3. It uses the Hamilton-Jacobi apgioa
of [5] based on explicit computations on the sup-convolutsemi-group (Hopf-
Lax formula). An alternative proof of (3 (1), with a worst constant, is given in
the subsequent Section 4 in the particular case of the dimdostc(x) = |x/?/2.
We believe that such an approach may lead to further develofsnin the future
and so that it is worth mentioning it.

In order to keep the arguments as clean as possible and taajghstto the
proofs, we decided to collect most of results on semi-coriuegtions, and most
of the technical lemmas, in an independent section (Sebjion

Finally, we present some extensions and comments in Segtidke first give
an extension of our main Theorem 2.1 to Riemannian manif@dsying a certain
curvature condition (see Theorem 6.11). Then, in Sectignwge show that other
types of logarithmic Sobolev inequalities can be derivediftransport inequalities
(see Theorem 6.13). The last Section 6.3 is a discussion etlirtks between
Poincaré inequality and (restricted) modified logaritbti@obolev inequality.

Let us end this introduction with an important applicatidnTbeorem 1.6. It
is well known that many functional inequalities of Sobolgpé are stable under
bounded perturbations. The first perturbation properthisftyype was established
by Holley and Stroock in [17] for the logarithmic Sobolev iugmlity:

Theorem 1.7(Holley-Stroock) Letu be a probability measure verifying the loga-
rithmic Sobolev inequality with a constant>0 (LSI(C) for short):

Entﬂ(fz)SCfolzd,u, V.

Let ¢ be a bounded function; then the probability measuyiie=d %e‘*’ du verifies
LSI with the constan€ = €°5¢€)C, where the oscillation af is defined by

Oscfp) = supyp — inf ¢.

A longstanding open question was to establish such a psoparttransport
inequalities. We have even learned from C. Villani that thisstion was one of the
initial motivations behind the celebrated work [25]. Thenesentation furnished
by Theorem 1.6 is the key that enables us to give the first bediperturbation
property for transport inequalities. The following coeslf is our second main
result.
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Corollary 1.8. Leta be a convex symmetric function of classsiich thaia(0) =
a’(0) = 0, o is concave orR*. Let dX) = 2!‘:1 a(X) and u be a probability
measure orRK. Assume that: verifiesT¢(C). Lety : RK — R be bounded and
define d@i(x) = 2™ du(x), where Z is the normalization constant. Thienerifies

T¢(8Cese¥)) whereOscf) = supy — inf ¢.

Proof. The proof below is a straightforward adaptation of the ow@djiproof of
Theorem 1.7. Using the following representation of theagr

eri@ =t [ (oon({) -0+ ) o

with g = ef, we see that (sincglog({) - g+t > 0)

upy
Ent; (9) < esz Ent, (9).

From the first part of Theorem 1.6 it follows that for &l > 0, n > 0, with
n + K < 1/C and allK-semi-convex functions for the cost,

e>upy A
(of n * f
Ent; (e) < = l—C(n+K)fC(n)e du

Osclp) \v&i
<[ )ef g
1-Cn+K) n

Letu = €95¢¢) andcy(x) := ug(x/u), x € R¥. Let f be aK-semi-convex function
for the costc,. Sinceu > 1 the convexity ofy yieldscy(X) < ¢(x), x € R¥. Hencef
is aK-semi-convex function for the cost Observing that(x) = uc'(x), x € R,
from the above inequality, it follows that verifies the inequalityMLSI (c,, C).
Then, the second part of Theorem 1.6 implies jhaefifies T, (8C). From Point
(i) of the technical Lemma 5.6, one hag(x/u) > ¢(x)/u for u > 1, x € RK. This
inequality completes the proof. O

Remark 1.9. After the preparation of this work, we have learned from El- Mi
man that he has obtained [23] new perturbation results for various functional
inequalities on a Riemannian manifold equipped with a plolity measureu ab-
solutely continuous with respect to the volume element. rétiglts also cover
transport inequalities but are only true under an additibnarvature assumption.
To be more precise, suppose thaterifies sayl »(C) and consider another proba-
bility measure of the formi(x) = e”V® dx such that

Ric + HessV > —«,

for somex > 0. Then if C> 7 and ifu andji are close in some sense to each other,
then/: verifiesTo(C) for someC depending only on C¢ and on the “distance”
betweeru andfi. Actually, the curvature assumption above makes possild® t
beyond the classical Holley-Stroock property and to worthwieasureg: which
are more serious perturbations of Proofs of these results are based on the re-
markable equivalence between concentration and isopéitrieequalities under
curvature bounded from below, discovered by E. Mimaj2#j.
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2. FROM TRANSPORT INEQUALITIES TO RESTRICTED MODIFIED LOGARITHMIC SOBOLEV
INEQUALITIES

In this section we prove the first part (B (2) = (3) of Theorem 1.6. As
mentioned in the introduction, this implication holds in ana general setting as
we explain now.

Let X denote a Polish space equipped with the Borgllgebra. Then the op-
timal transport cost between two probability measyreand v on X, with cost
C: XxX—Rtis

T = inf [ [ clxy)dncey)
/e
where the infimum is taken over all probability measures X x X with marginals
vandu. Assume cis symmetric so thag(v, u) = Tc(u, v). The transport inequality

T<(C) is defined accordingly as in Definition 1.1. Fbr. X — R andA > 0, the
inf-convolutionQ'f : X — R is given by

Q'f(x) = inf (f(y) + 1c(xy)}.
yeX
The first part of Theorem 1.6 will be a consequence of thevialig general result.

Theorem 2.1. Letc : X x X — R* be a symmetric continuous function. ludbe a
probability measure on X satisfyinf(C) for some C> 0. Then for all functions
f:X—>Randallae (0,1/C), it holds

eng (¢) < 7= [ (T-Qf)e’ ok

Assume moreover tha(x,y) = c(x —y), xy € R, where c: RK - R*is a
differentiable function such tha{@) = Vc(0) = 0. Thenu verifies the inequality
rMLSI (c, C).

Proof of Theorem 2.1Fix f : X —» R, 1 € (0,1/C) and definedv¢ = ﬁd,u.
One has

ef ef
H(Vfw):flog[fefdﬂ)fef dﬂd,u:ffdw—logfefd,u

Sfdef—ffd,u,

where the last inequality comes from Jensen inequality. s€guently, ifr is a
probability measure oX x X with marginalsy¢ andu

H(vtlu) < f (F(%) - () dr(x.y).

It follows from the definition of the inf-convolution functh that f(x) — f(y) <
f(x) — Q' (X) + Ac(x, ), for all x,y € X. Hence,

Hotl) < [[ (109 - Q'f9) dntx ) + 4 [ [ ctxy)dntxy.
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and optimizing over altr with marginalsy; andu
HO = [ (- Q) dvr + 47e0vr.0)

<

Teton dyf(f - Q'f)e" du + ACH(vil).

The first part of Theorem 2.1 follows by noticing tgte’du) H(v¢lu) = Ent, (e').
Then the proof of Theorem 2.1 is completed by applying Lemrdd2low. O
Lemma 2.2. Let c: Rk — R* be a djferentiable function such tha{@) = Vc(0) =
0 and define o(X) = sup{x-y—c(y)} € RU {+oo}, X € RX. Then, for any K-semi-
convex dferentiable function £ R¥ — R for the cost c, it holds

F(x) — Q< 1E(x) < nc” (—Vf(x)

), VXeRk, Vi > 0.

Proof. Fix a K-semi-convex dferentiable functiorf : RK — R. Also fix x € RK
andy > 0. By Proposition 5.1 and the Young inequalky Y < nc* (%) + nc(Y)
we have

f
£ - F() = Koy~ %) < ~V1(9 - (y— %) < nc’ (—V n(x)) £ ey - ).
Hence, for any € R,
f
£ = 1) = (K + m)cly = %) < nc (—VT(X))
This yields the expected result. ]

3. FROM RESTRICTED MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES TO TRANSPORT
INEQUALITIES - |: HAMILTON-JACOBI APPROACH

In this section we prove the second part €)(1) of Theorem 1.6. The proof
is based on the approach of Bobkov, Gentil and Ledoux [Shgu#hie Hamilton-
Jacobi equation. We will use the following notation: givencmvex functiona :
R — R* with a(u) # 0 foru # 0, we define

3 a(ux)
(3.1) we(X) = SUPZ

Proof of (3) = (1) of Theorem 1.6Let f : RX — R be a bounded continuous func-
tion. Forx € R¥ andt € (0, 1), define

P F(X) = sup{f(y) - tc(ﬂ)}.
yeRK t
It is well known that the latter sup-convolution semi-groigpa solution to the
following Hamilton-Jacobi equation (seeg.[10])

{atUt(X) = ' (-Vw(x)

Uo=f

YxeR.
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Hence, definingZ(t) = [ &/®P" du, where¢ is a smooth non-negative function
onR* with £(0) = 0 that will be chosen later, one gets

Z’(t) = f(f’(t)Pl_tf + f(t)%Pl_tf)e[(t)Pltf d’u
= fg/(t)Pl_tfef(t)Pltf d'u _ g(t) fc* (Vpl_tf)e[(t)Pl,lf d/.l
On the other hand,

Ent, (/9P = (1) f P fefOPtf gy — Z(t) log Z(t).

Therefore provided’(t) # 0,
{(t)

Ent, (¢/0Pr) = Tmz'(t) — Z(t)log Z(t)
2
(3.2) + i(t()t) C* (VP f) fOPtf gy

By Lemma 5.5 (withA = £(t)(1-t) andB = 1-t), the functiong = £(t)P1_; f is K(t)
semi-convex for the cost functiarx) = 2!‘:1 a(x), x € RK, whereK (t) = 4¢(t)(1—
Dwe (ﬁ) Hence we can apply the restricted logarithmic Sobolevuaéty to
get that for any; > 0, anyt € (0, 1) such thak(t) + < 1/Cs,*

(VP f
En eg(t)Pl—tf < n fc*( e[(t)Pl—tf d
W () < Tokp TG " a
)
nwo ()

<7 KO+ 1 f C* (VP f) €OPrtf gy

Combining this bound with (3.2) leads to
£(t)
()

Z'(t) - Z(t) log Z(t) <

wyr (L0 5
[1 —U(K(t)(f n))c3 ) i(t()t) ] f ¢ (VP11 f) €Oy

Our aim is to choose the various parameters so that to havigtitehand side of
the latter inequality non-positive. We will make sure to abel so that/(t)/n < 1;

then by Lemma 5.6 below((t) < £(t)/(1 - t) and w,- (@) < % Settingv =
1-Cszn,onehaskv<li,

(3:3) Ca(K(t) +7) < (1-V) (n(i(t_) 5t 1) :
and

nwq* (%) g(t)Z ) 1 1
G4 1-(K@®)+mCs (1) <t (t)[nv_ 1-va@ - g,(t)]-

INote that this condition is not empty singg0) = 0.



A NEW CHARACTERIZATION OF TALAGRAND’S TRANSPORT-ENTROPYNEQUALITIES 9

We choose/(t) = 7((1-1)*V - (1-1)).t € (0,1), so that(0) = 0 and the right
hand side of (3.4) is equal to zero. Furtherméig) = n(l— (11_;t‘§v) > 0, Vt €
[0,1 - (1- V). As assumed earlief(t) is non-negative ané(t)/n < 1 on (Q 1).
Let us observe that
logZ(t)|" () [t
[ €(t) ] - Z@)eA() [f’(t)
LetT = T(v) := 1 - (1 - v, sincef (t) > 0 on (Q T(v)), the above inequalities
imply that on that interva['ogz(t)]’ < 0 providedCs(K(t) + 1) < 1. By (3.3),

®
this is indeed satisfied fdre [0, T(v)]. This gives that the functioh — 109z g

()
non-increasing on (0']. Hence, we have

f eMPrig, =7r < exp({’(T) lim b;zl—t)zt) = /(M [Pufdu,

In other words, sincér f > f, then for all bounded continuous functiogs=

(Mf,
fegd,u < efﬁgd“,

Z'(t) - Z(t) log Z(t)

with N
Pg(x) = sup{g(y) — {(T)c(x - y)}.
yeRk

According to the Bobkov and Gotze sup-convolution chamdzation of transport
inequalities (which for the reader’s convenience we quetew as Theorem 3.5),
this implies thaj: verifiesT(1/£(T)). One hag(T) = pv(1-v)~1 andCs{(T) =
v(1 - WYV, Henceu verifies T ¢(K) with

_ Cs

~ SURqy V(1 - V)P

The proof of (3)= (1) is complete.

<7,7Cs.

O

Theorem 3.5([6]). Letu be a probability measure oRK, 1 > 0 and c defined as
in Theorem 1.6. Then, the following two statements are atgrit:

(i) u satisfiesT ¢(1/1);

(ii) for any bounded function fR — R it holds

fef du < exp{f sup{ f(y) — Ac(x — y)}} du.
yeRk

Note that Theorem 3.5 holds in much more general setting36¢e

4. FROM THE RESTRICTED LOGARITHMIC SOBOLEV INEQUALITY TO T2 - II: AN
ALTERNATIVE PROOF

In this section we give an alternative proof of the second (@r = (1) of
Theorem 1.6. The final result will lead to a worst constantyweowill present our
approach only in the particular case of the quadratic casttion c(x) = %|x|2.
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More precisely we will prove that.SI (C) = T,(9C) (leading, for the quadratic
cost, to the implication (3} (1) of Theorem 1.6 withC; = 9C3). We believe
that this alternative approach may lead to other resultsaruture and so that it is
worth mentioning it.

The strategy is based on the following recent charactéizaif Gaussian di-
mension free concentration by the first author.

Theorem 4.1([14]). A probability measurg onR* verifies the inequalitff 2(C/2)

if and only if there are some,r> 0 and b> 0 such that for all positive integer n
n .

and all subset A o(fR") with u"(A) > 1/2, the following inequality holds

WA +1By) > 1—be o /C gy >y,
where B is the Euclidean unit ball ofR*)".
So, in order to get thatLSI (C) = T»(9C) it is enough to prove that the di-
mension free Gaussian concentration inequality holds w(th- r,)?/(18C) in the

exponential.
First let us observe that the restricted logarithmic Soblequality tensorizes.

Proposition 4.2. If a probability measurg on R verifiesrLSI (C) for some C> 0,
then for all positive integer n the probabiligy” verifiesrLSI (C).

Proof. If f : (Rk)n — R is K-semi-convex, then for ail € {1,...,n} and all

X1, - Xic1, Xis1, .- Xn € RK the functionf; : RK — R defined byfi(x) =
f(Xq,...,Xi-1, X, Xi+1, ..., Xn) iS K-semi-convex. According to the classical addi-
tive property of the entropy functional (seey.[1, Chapter 1]),

n
Entﬂn(ef)sfz Ent,(e") du".
i=1
Applying to eachf; the restricted logarithmic Sobolev inequality completes t
proof. O
The next proposition uses the classical Herbst argumeatg(se[18]).

Proposition 4.3. If u verifies the restricted logarithmic Sobolev inequallt! (C)
then for all f: R — R which is1-Lipschitz with respect to the Euclidean norm
and K-semi-convex with & O one has
feﬂ(f(x) Jta) gy(x) < exp( 24°C ) VA € (0,1/(CK)).
1-AKC
Proof. Let us denoteH(1) = [ '’ du, for all A > 0. The functionif is AK semi-

convex, so if 0< 2 < 1/(CK), one can apply the inequalitizSI (C) to the function
Af. Doing so yields the inequality

AH'(2) = H() log H(1) = Ent, (e'') < jHVfFe”dy

H(4).

(1- KCV
2CA?
T (1-2KC)?
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where the last inequality comes from the fact thas 1-Lipschitz. Consequently,
forall 0 < A < 1/(CK),

i(logH(/i))< 2C

di\ a1 )7 (@1-iKC)y?

Observing that logd(1)/2 — f f du whena — 0 and integrating the flerential
inequality above gives the result. O

Now let us show how to approach a given 1-Lipschitz functigrali-Lipschitz
andK-semi-convex function.

Proposition 4.4. Let f : R — R be al-Lipschitz function. Define

P f(X) = sup{f(y)—i|x—y|2}, VxeRK vt > 0.
yeRkK 2t
Then,
() Forallt >0, P;f is 1-Lipschitz.
(i) Forallt >0, P;f is 1/t-semi-convex.
(iii) Forallt >0and all xe RK, f(x) < Pif(x) < f(X) + %

Proof. (i) Write Pif(x) = supeg {f(x - 2) — %|2?}. For allz € R, the function
X f(x-2 - Zit|z|2 is 1-Lipschitz. SoP;f is 1-Lipschitz as a supremum of
1-Lipschitz functions.

(i) Expanding|x — yI* yields P f(X) = Supz« {f(y) - 2y + - y} - Z[x2.
Since a supremum oftfine functions is convex, one concludes that P;f(X) +

% is convex, which means th& f is 1/t-semi-convex.
(iii ) The inequalityP; f(X) > f(x) is immediate. Sincd is 1-Lipschitz,

PLi() - 109 = sup{ 1)~ 109 - 1x- ¥}

yeRkK

< sup{|y— x| — 3|x— y|2}
B yeRkK 2t

= sup{r f} = E
r>0 2t 2

We are now ready to complete the proof.

Proof ofrLSI (C) = T2(9C). Let n > 1. Consider a 1-Lipschitz functiog on
K\" : 1 2
(RX)" and definePg(x) = SURe ()" {oy) - #1x-y?}, t > 0. Thanks to Propo-
sition 4.4, the functiorP,g is 1-Lipschitz and 1t-semi-convex, so according to
Propositions 4.2 and 4.3, for all© 1 < t/C, one has
2
f (P00~ PO ™) g n() < exp( 24°C ]

1 AC
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Moreover, according to pointii) of Proposition 4.4P:g(x) — fPtg du" > g(x) —
[gdu" - %, forall x e (Rk)n. Plugging this in the inequality above gives

(g A 22°C
fe”(g(x) J99) gun(x) < exp(i o £).
t

For a given > 0, this inequality holds as soontas CA. Definep(t) = % + ffi_% ,

t > 0. It is easy to check that attains its minimum value d,, = 3CA (whié:h
is greater tharC1) and thate(tmin) = 9CA%/2. Consequently, we arrive at the
following upper bound on the Laplace transformgof

f - 94 g niyy < P12 s 0,

From this we deduce that every 1-Lipschitz functgpwerifies the following devi-
ation inequality around its mean

u(g> fg du" + 1) < /A8 vr > 0.

Letr, be any number such that's/1&) < 12, then denoting byn(g) any median
of g, we getfg du" + ro = m(g). Applying this inequality to-g, we conclude
that|m(g) —fgdynl < ro. So the following deviation inequality around the median
holds

1(g > m(g) +r1) < e /AR yp >
TakeA c (R¥)" with u"(A) > 1/2, and definga(X) = da(x, A) whered, is the usual
Euclidean distance. Since 0 is a mediamggfthe preceding inequality applied to

ga reads
LA+ 1By > 1— e (YA&) gy s
According to Theorem 4.1, this Gaussian dimension free exatnation property
impliesT2(9C).
m]

5. SOME TECHNICAL RESULTS

In this section we collect some useful results on semi-cofwections.
In the case of dferentiable functions, it is easy to rephrase the definitibn o
semi-convexity, in the following way.

Proposition 5.1. Let c: RK — R* be a djferentiable function with(©) = Vc(0) =
0. Then, a dfferentiable function f RK — R is K-semi-convex for the cost function
c if and only if

(5.2) fiy) > F)+VI(X) - (y—X) - Kcly—x),  VxyeRK
Proof. Suppose thaf is K-semi-convex; according to the definition, for ally €
RX and. € [0, 1], the following holds

() > 9+ f(/lx+(1l—_/3y)— ) Klil

01 = D(x =) = Ke(aly - X).
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Letting 4 — 1 and usingc(0) = Vc(0) = 0 one obtains (5.2). Let us prove the
converse; according to (5.2),

f(X) = f(AX+(1-2y)— (L -D)VIAxX+ (1= y) - (Y- X + Kc((1 - D)y - X)),
and

f(y) = f(Ax+ (1 - y) + AVI(AX+ (1= 2y) - (Y — X) + Kc(A(y — X)).
This gives immediately (1.3). O

Lemma5.3. If  : R — R* is a convex symmetric function of clas$ €uch that
a(0) = &’(0) = 0 and«’ is concave oR™, then the following inequality holds

(5.4) a(u+V) < a(u) + va’'(u) + da(v/2), Yu,v € R.

In particular, the function-c(x) = —Z!‘Zl (%), X = (X1, ..., %) € RK, is 4-semi-
convex for the cost s ¢(x/2).

Note that (5.4) is an equality far(t) = t2.

Proof. Sincea(v) = a(-V), it is enough to prove the inequality (5.4) for< 0 and
v € R. Let us consider the functioB(w) := a(u + w) — a(u) — wa’(u). Forw > 0,
using the concavity o#’ onR™*, eitheru + w > 0 and one has

G'W) =ad'(u+w)—a’'(u) = a'(u+w) + a'(-u) < 2a'(w/2),
oru+w < 0 and one has
G'(w) = a'(-u) — &' (-u—w) < a’(w) < 2a'(W/2),
sincew > 0 and
a’'(w/2) — a’(0) S a’'(w) — a’(0) S a’' (W) — /' (-u—w)
w/2 - w - 2w+ U

a'(-u) —a(-u—-w)

w .
Similarly, if w < 0, from the convexity o’ onR~, G'(W) > a’(w) > 2o/ (w/2).
The proof is complete integrating the above inequalitigg/ben 0 and either for

v>0orforv<O.
The second part of the lemma is immediate. O

vV

The next lemma gives some conditions @under which the sup-convolution
semi-groupP; transforms functions into semi-convex. Let us recall thgis de-
fined by

a(ux)
we(X) = sup :
¢ w0 a(U)
Lemma5.5. Leta : R — R* be a convex symmetric function of classsDch that
a(0) = o/(0) = 0 and e’ is concave oiR*. Let f: RK —» R, A, B> 0 and define
9(X) = supere f(y) — Ad(y — X)/B)} with o(x) = Zik:l a(x), x € RX. Then g is
4Aw, (7)-semi-convex for the cost function c.

YxeR.
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Proof. By Lemma 5.3, the functior-c is 4-semi-convex with the cost function
X - ¢(x/2). Consequently, for ail € R¥, the functionx — f(y) — Ad((y — X)/B) is
4-semi-convex with the cost function— Adx/(2B)). From the definition (1.3),
we observe that a supremumkfsemi-convex functions remait&semi-convex.
Consequently, by definition @b, we finally get

a(y) = g(X) + Vg(X) - (y — X) — 4Ac(%()

> 009 + V909 (/-9 - 48w, 55 oty .
O

Lemma 5.6. Let a be a convex symmetric function of class<tich thata(0) =
a’(0) = 0, & is concave oR*. Denote byr* the conjugate ofr. Then,

(i) for any ue (0, 1), x € R, ar(x/u) < a(X)/u2.

(ii) for any ue (0,1), w, (1/u) < 1/12.

(iii) for any ue (0, 1), wq+(U) < U2

Proof. Point (). Let x > 0, by concavity ofe’ onR*, a’(X) > ua’(x/u) + (1 —
wa’(0) = ua’(x/u). The result follows forx > 0 by integrating between 0 and
and then forx < 0 by symmetry. Pointii) is a direct consequence of point (i).
Point (ii). Observing thatd*)’ = ()7}, it follows that @*)’ is convex orR*
and @*)'(0) = «*(0) = 0. Then the proof is similar to the proof of point (ii). O

6. HNAL REMARKS

In this final section we state some remarks and extensionbeotopic of this
paper.

6.1. Extension to Riemannian manifolds. Otto-Villani theorem holds true on
general Riemannian manifolds [25]. Furthermot&is have been made recently
to extend the Otto-Villani theorem to spaces with poorancitire such as length
spaces [19, 2] or general metric spaces [14]. This sectiam &ttempt to extend
our main result to spaces other than Euclidean spaces. \Mogtik our attention
on the inequalityT , on a Riemannian manifold.

In all what follows, X will be a complete and connected Riemannian manifold
equipped with its geodesic distande

1
6.1) d(x,y)=inf{ f |'yt|dt;yecl([o,1],xmo=x,n:y}, Yxyex
0

A minimizing pathy in (6.1) is called a minimal geodesic frorto y; in gen-
eral it is not unique. It is always possible to consider thatimal geodesics are
parametrized in such a way that

diys,y) =Is-td(xy),  Vste[0,1],
and this convention will be in force in all the sequel.
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A function f : X — R will be saidK-semi-convexK > 0 if for all x,y € X and
all minimal geodesig betweenx andy, the following inequality holds

fy) <@ -0)Ff(x) +tf(y) +t(1 - t)%dz(x, y), vt € [0, 1].
Whenf is of classC? this is equivalent to the following condition:
: K
(6.2) f(y) > F(x) +(VF(X), 70) - Edz(x, YL  ¥xyeX

for all minimal geodesicy from x to y (see e.g. [30, Proposition 16.2]). ffis
semi-convex, then it is locally Lipschitz [30]. According Rademacher’s theorem
(see e.g [30, Theorem 10.8]),is thus almost everywhereftikrentiable. So the
inequality (6.2) holds for almost all € X and for ally € X. A function f will be
saidK-semi-concave iff is K-semi-convex.

Lemma 6.3. If f is K-semi-convex, then for almost allexX, the inequality

K
f(y) > £(x) - [VFI()d(x,y) - Edz(x, ¥):
holds for all ye X.

Proof. Since the geodesic is constant sped, = d(x,y). Applying Cauchy
Schwarz inequality in (6.2) yields the desired inequality. O

With this inequality at hand, the proofs of Lemma 2.2 geneeal at once, and
we get the following half part of our main result.

Proposition 6.4. Suppose that an absolutely continuous probability measune
X verifies the inequalityf »(C), then it verifies the following restricted logarithmic
Sobolev inequality: for ald < K < % and all K-semi-convex f X — R,

2C
Ent, (ef s—fozefd.
(€) (1-KC)? vire

The generalization of the second half part of our main résuftore delicate. We
have seen two proofs of the fact that the restricted logai@tSobolev inequality
implies T,: one based on the Hamilton-Jacobi equation and the othedbars
dimension free concentration. The common point of theseappmoaches is that
we have used in both cases the property that the sup-coimrolyperatorf +— Py f
transforms functions into semi-convex functions (see Bsijn 4.4 and Lemma
5.5). Let us see how this property can be extended to Riermamnanifolds.

Proposition 6.5. Suppose that there is some constant $, such that the inequal-
ity

6.6) d’(r.y) = 1-d(xy) +td’(zy) -1 -)S*d*(x ),  Vte[0,1],

holds for all Xy, z € X, wherey is a minimal geodesic joining x to z. This amounts

to say that for all ye X, the function - d?(x, y) is 2S%-semi-concave.
Then for all f: X — R, the function

_ 1
) i P19 = up{ 10) - gz x|
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is 1/t-semi-convex.

Proof. Under the assumption made df, for all y € X, the functionx — f(y) —
ﬁdz(x, y) is 1/t-semi-convex. Since a supremum ¢f §emi-convex functions is
1/t-semi-convex, this ends the proof. m]

Let us make some remarks on condition (6.6). This conditi@s first intro-
duced by Ohta in [24] and Savare in [26] in their studies oflgmat flows in the
Wasserstein space over hon-smooth metric spaces. Theioand.6) is related
to the Alexandrov curvature of geodesic spaces which génesahe notion of
sectional curvature in Riemannian geometry.

The first point is a classical consequence of Toponogov'srém [9]. The
second point in the following proposition is due to Ohta [Rdmma 3.3].

Proposition 6.8. Let X be a complete and connected Riemannian manifold.

(1) The condition(6.6) holds with S= 1 if and only if the sectional curvature
of X is greater than or equal t@ everywhere.

(2) Suppose that the sectional curvature is greater thanquaéto «, where
k < 0, then for all xy,ze X and every geodesigcjoining x to z, one has

(6.9) d*(n.y) = (1-)d*(xy) +td*(z y)
- (1 + k% sup d’(ys, y)] (1 - O)td?(x, 2).
s€[0,1]
In particular, if (X, d) is bounded, the(6.6) holds with
S = (1 + k*diam(X)?)/2.

In particular, the case of the Euclidean space, studiedeptbceding sections,
corresponds to the case where the sectional curvaturenesnéverywhere.

Now, let us have a look to Hamilton-Jacobi equation. Theofelhg theorem
comes from [30, Proposition 22.16 and Theorem 22.46].

Theorem 6.10. Let f be a bounded and continuous function on X, the function
(t, X) — P f(X) defined by6.7) verifies the following: for all t- 0 and xe X,

im Penfe) =P _ SAV-(PP(¥)
im = ,
h—0* h 2
where the metric sub-gradietNg| of a function g is defined by
_ : [9(y) — g(x)]-
IV7gl(X) = limsup——~—F——"—"—
y—X d(y, X)
Under the condition (6.6)x — P:f(X) is semi-convex, and so ftierentiable
almost everywhere, so for dland almost alk € X,
- Punf(x) - Pf(X) _ SAVPLA(X)
lim = .
h—0* h 2

, VX e X
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Theorem 6.11. Suppose that the Riemannian manifold X verifies cond{&o8)
for some S> 1; if an absolutely continuous probability measureon X verifies
the following restricted logarithmic Sobolev inequalifgr all 0 < K < é and all
K-semi-convex f X — R,

2,
Ent (e') < (1- KC)2f| fl7e"
then it verifiesT »(8CS?).

Proof. To adapt the proof of Theorem 1.6 €3)(1), a first technical problem is to
deal with right derivatives. We refer to the proof of [30, Dhem 22.17], where
this difficulty has been circumvented. In the sequel, we will consﬂu@rapt X) =

s S|P f[2(X) for all t > 0, and almost alk € X.

Take a bounded continuous functién X — R and definez(t) = [ &/®OP=f gy,
where( is a smooth non-negative function & with £(0) = 0 that will be chosen
later. Reasoning as in the proof of Theorem 2.1, one getsidao¢’(t) # 0,

£(t)

(6.12) Eng (e/OPf) = 0

2L 7/(t) - Z(t) log Z(t)

S2¢(t)? )
VP, f[2efOPf gy
+ 0 f VPt T I

According to Proposition 6.5, we see tiie)Py ¢ is 7 f(t) semi-convex. Applying the
restricted logarithmic Sobolev inequality we get that fay g > 0, anyt € (0,1)
such tha(—_t{ +n<1/C

Ent}l( f(t)Pl_tf) < fz(t) |VP f|2 f(t)Pl_tf
C2(1- (84 m
Combining this bound with the one above Ieads to
£(t)
Z'(t) — Z(t) log Z(t
72 ©-20109Z@

2 2 2
21— (B +pc) 200

For a giveny € (0, 1/(S?C)), consider the function
2(1 -
=" (1 - nC)
1-nS2C
This function is the unique solution on,[D) of the ditferential equation

£(t) = n52(1— (f(—_t)t + n) c), £(0) =

It is easy to check that(t) > O, for allt € [0,1] and¢’(t) > O, forallt < T =
-1
— (CyS?)e=*1. Moreover, ift < T, then the conditiors + 5 < £ is also

(-9 -@-1v), vte[0.1).
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fulfilled. We conclude that the function— 'c’;’—tz‘ is hon-increasing on (0] and
reasoning exactly as in the proof of Theorem 1.6, we getyetsik

fegd,u < efﬁgd“,

with
S o A1)
Pg(X) = igxp{g(y) 252 d=(x, y)} :

According to Theorem 3.5, this implies thaverifies the inequalityl »(S?/(£(T)).
After some computations, we get

S? s2C

1
[ C SZ Cns2-1
im - 1o, S

So, lettingv = 1 - nCS? € (1 - S2 1), and optimizing ovew we obtain thaj
verifiesT, with the constan€C
CS?
SUR(1-s2.1)(1 — (1 - Vv)/SH(L - )V
< cs*
~ SURe@y V(L - W)Y

C=

<7,7CS%

O

To conclude this section let us say that the proof preseme8ection 4 can
also be adapted to the Riemannian framework. Essentiflliyeahave to do is to
adapt the first point of Proposition 4.4: the fact tRaf is 1-Lipschitz whenf is
1-Lipschitz. A proof of this can be found in the proof of [2,8drem 2.5 (iv)].

6.2. From transport inequalities to other logarithmic Sobolev type inequali-
ties. Following the ideas of Theorem 2.1, we may simply recoveeotiipes of
logarithmic Sobolev inequalities. These new forms of iredifjes should be of
interest for further developments. L¥tdenote a Polish space equipped with the
Borel o-algebra. Given Borel functions X x X — R, andf : X — R, define for
A>0,xeX,
P(X) = sup{f(y) - Ac(x.Y)} .

yeX
By definition, one says that a functidn: X — R is K-semi-concave for the cost ¢
if —f is K-semi-convex for the cost c.

Theorem 6.13.Letc : X x X — R* be a symmetric Borel function. Lgtbe
a probability measure on X satisfying(C) for some C> 0. Then for allA €
(0,1/C), and all function f: X —» R,

1—1/1Cf(Pﬂf_f) dyfef du.

(6.14) Eng (ef) <
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Assume moreover tha(x,y) = c(x — ), xy € R, where c: RK - R* is a
differentiable symmetric function witt§@) = Vc(0) = 0. Then for all K> 0,7 > 0
with 7 + K < 1/C and all K-semi-concave figrentiable function f RX — R,

n LV
(6.15) Ent, (ef)S mfc (7) dufef du.

Proof of Theorem 6.13Following the proof of Theorem 2.1, one has for every
probability measure with marginalsys andg,

H(vtlu) < f (F(3) - 1) dr(x.y).

From the definition of the sup-convolution functi®i f, one has

Hot) < [[ (P16) - 10)) drxy) + 4 [[ cte dntx ),

Optimizing over all probability measureand sinceu satisfiesT ¢(C), this yields
HO) < [ (PO) - F0) di + ACHO )

This is exactly the inequality (6.14). Now, ifxy) = c(x —y), x,y € R¥, and
f : RK > R is aK-semi-concave dierentiable function, then by Lemma 2.2 one
has: for allp > 0,

PR+ — f < pe* (V—f)
n
The restricted modified logarithmic Sobolev inequaliti®< ) then follows. o

6.3. On Poincaré inequalities. Let ¢ : R — R be a diferentiable function such
thatc(0) = Vc(0) = 0, with invertible Hessian at point 0 and such that yess 0
(as symmetric matrices). As for the logarithmic Sobolewimaities, it is known
that a linearized version of the transport inequaliy{C) is Poincaré inequality
(see [21, 25, 5)).

Naturally, rMLSI (c, C) or ICLSI (c, C) also provide Poincaré inequality by us-
ing basic ideas given in [21] (see also [5]). Namely, stgrtirom ICLSI (c, C),
we apply it withef, wheref : RK — R is a smooth function with compact
support. The infimum infg« {ef(y) + Ac(x - y)} is attained at somg. such that
eVE(y,) = AVe(x — V,). Since forh € R¥, ve*(Vc)(h) = h, one has

X— V. = V' (@) - %Hesa)c*(Vf(x)) + o(s).
Therefore, since Heggnc'(Hesshc(u)) = u and after some computations, we get
the following Taylor expansion

Qe (¥ = ef(¥e) + Ac (X~ ye)

=ef(X) - %Vf(x).HeS@c*(Vf(x)) +0(&?)
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It is a classical fact that
2
Ent, (¢7) = ‘% Var,(f) +o(e?).
Finally, ase — 0, ICLSI (c, C) implies: for everyi € (0,1/C),
1
Var,(f) < —————— | Vf.Hessc*(Vf)du.
A0 < g | VFHeswe (V) da

Optimizing over alla yields the following Poincaré inequality for the metric in
duced by Hessc*

Varﬂ(f)§4Cfo.Hes$0c*(Vf)dy.

Denoting by - || the usual operator norm, one also has a Poincaré inequatfty
respect to the usual Euclidean metric

Varﬂ(f)s4C||Hes§)c*||f|Vf|2d,u.

From the infimum-convolution characterization of trangpoequality T.(C) (see
Theorem 3.5), a similar proof gives the same Poincaré mégwvith the constant
Cinstead of € (see [21]).

Conversely, Bobkov and Ledoux [7, Theorem 3.1] obtained BEwncaré in-
equality implies a modified logarithmic Sobolev inequalitgte,; : R — R* and
(I RX — R* be the cost function defined by

(1, 1
az1(h) = mln(Eh ,|hl - 5)’ YheR,
andca1(X) = YK a21(x), x € R¥. One hasr; , (h) = h?/2if || < 1 andaj ,(h) =
+00 otherwise. Bobkov-Ledoux’s result is the following.
Theorem 6.16([7]). Letu be a probability measure dR¥ satisfying the Poincaré
inequality:

(P(C)) Var,(f) <C f IV % du,

for every smooth function f dr¥. Then the following modified logarithmic Sobo-
lev inequality holds (in shoBLI (C)): for all x < 2/ V/C and every smooth function
f,

(BLI (C)) Ent, (") < Ck®K(x.C) f a;,l(VTf)ef du,

2-k+\C

Applying BLI (C) to ef, ase — 0, BLI (C) yields P(CK(x, C)) but alsoP(C)
sinceK(x,C) —» 1 ask — 0. Theorem 6.16 therefore indicates tf{C) and
BLI (C) are exactly equivalent. Thanks to the Hamilton-Jacobreggh, Bobkov

2
where Kk, C) = (M) e« VEC,
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Gentil and Ledoux [5] obtained tha&Ll (C) implies Tz (C) for all x < 2/VC
where |

kCK(k, C)
By linearization and optimization ovey, Tc« ,(C) implies P(C), and therefore

BLI (C) is also equivalent td & (C) for all x < 2/ VC.
Let c5, denote the cost functlon defined smﬂarlyc@s_ Teplacingaz1(| . 1) by
Cz1iN (6 17) One hasy, < c5, (this is a consequence of the subadditivity of the

concave functiorh — (1/21(\/_)) ThereforeTCK .©) |mpI|esT(~;K ,(C). Consider
now the case of dimension &= 1, so that} , = c’< . Theorem 1 6 indicates that
T, is equivalent, up to constant, tyILSI (c'< l) Actually rMLSI (cf l) can be
mterpreted aBLI restricted to a class of semi-convex function for the agst
However, from the discussions abovMLSI (c5,) andBLI are equivalent up to
constant. It would be interesting to directly recoBEI:n from rMLSI (cf l) or from
T, The known results can be summarized by the following diadfiar k = 1:

(6.17) & 1(X) = K°C*K(k,C) @21 (L) Vx e RX.

BLI é P where:
. o B.L.: Bobkov, Ledoux [7];
oﬂ 2 ﬂ B.G.L.: Bobkov, Gentil, Ledoux [5];
@ TheoremL6 M.: Maurey [21];
Te, =Te, =5 rMLSI(cS,) O.V.: Otto, Villani [25].
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