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DEVIATION INEQUALITIES FOR CONVEX FUNCTIONS
MOTIVATED BY THE TALAGRAND CONJECTURE

N. Gozlan,∗ M. Madiman,† C. Roberto,‡ and P. M. Samson∗∗ UDC 519.2

Motivated by Talagrand’s conjecture on regularization properties of the natural semigroup on the
Boolean hypercube, and, in particular, by its continuous analogue involving regularization prop-
erties of the Ornstein–Uhlenbeck semigroup acting on integrable functions, we explore deviation
inequalities for log-semiconvex functions under Gaussian measure. Bibliography: 18 titles.

1. Introduction

In the late eighties, Talagrand conjectured that the “convolution by a biased coin” on the
hypercube {−1, 1}n satisfies some refined hypercontractivity property. We refer to Problems 1
and 2 of [17] for precise statements. A continuous version of Talagrand’s conjecture for the
Ornstein–Uhlenbeck operator has recently attracted some attention [1, 6, 11]; in particular,
it was resolved in [6, 11] by first proving a deviation inequality for log-semiconvex functions
above their means under Gaussian measure. In this paper, we discuss a simpler approach to
proving this deviation inequality for the special case of log-convex functions (which is already
of interest).

Let us start by presenting the continuous version of Talagrand’s conjecture and the history
of its resolution. Denote by γn the standard Gaussian (probability) measure in dimension n
with density

x �→ (2π)−n/2 exp

{
−|x|2

2

}

(where |x| denotes the standard Euclidean norm of x ∈ R
n), and, for p ≥ 1, denote by L

p(γn)
the set of measurable functions f : Rn → R such that |f |p is integrable with respect to γn.
Then, given g ∈ L

1(γn), the Ornstein–Ulhenbeck semigroup is defined as

Ptg(x) :=

∫
g
(
e−tx+

√
1− e−2ty

)
dγn(y), x ∈ R

n, t ≥ 0. (1.1)

It is well known that the family (Pt)t≥0 enjoys the so-called hypercontractivity property
[9, 13, 14], which asserts that, for any p > 1, any t > 0, and q ≤ 1 + (p − 1)e2t, Ptg is more
regular than g in the sense that if g ∈ L

p(γn), then Ptg ∈ L
q(γn), and, moreover,

‖Ptg‖q ≤ ‖g‖p.
However, this property is empty when one only assumes that g ∈ L

1(γn). A natural question
is therefore to ask whether the semigroup has anyway some regularization effect in this case
also. Given a nonnegative g : Rn → R with

∫
g dγn = 1, by Markov’s inequality and the fact

that
∫
Psg dγn = 1, we have

γn({Psg ≥ t}) ≤ 1

t
for any t > 0.
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The continuous version of Talagrand’s conjecture (adapted from [17, Problems 1 and 2]) states
that

lim
t→∞ sup

g≥0,∫
g dγn=1

tγn({Psg ≥ t}) = 0

for s > 0. The most recent paper dealing with this conjecture is due to Lehec [11] who proved
that for any s > 0 there exists a constant αs ∈ (0,∞) (depending only on s and not on the
dimension n) such that

γn({Psg ≥ t}) ≤ αs

t
√
log t

for any t > 1 (1.2)

and for any nonnegative function g : Rn → R
+ with

∫
g dγn = 1, and this bound is optimal in

the sense that the factor
√
log t cannot be improved. In the first paper [1] dealing with this

question, Ball, Barthe, Bednorz, Oleszkiewicz, and Wolff already obtained a similar bound but
with a constant αs depending heavily on the dimension n plus some extra log log t factor in
the numerator. Later, Eldan and Lee [6] proved that the above bound holds with a constant
αs independent on n but again with the extra log log t factor in the numerator. Finally, the
conjecture was fully proved by Lehec removing the log log t factor [11] and giving an explicit
bound on αs, namely, that αs := αmax(1, 1

2s) for some numerical constant α.

In both Eldan–Lee and Lehec’s papers, the two key ingredients are the following:
(1) for any s > 0, the Ornstein–Uhlenbeck semigroup satisfies the inequality

Hess (logPsg) ≥ − 1

2s
Id

for all nonnegative functions g ∈ L
1(γn), where Hess denotes the Hessian matrix and Id is the

identity matrix of Rn. This is a somehow standard property easily proved thanks to the kernel
representation (1.1);

(2) for any positive function g with Hess (log g) ≥ −βId, for some β > 0, and
∫
g dγn = 1,

γn({g ≥ t}) ≤ Cβ

t
√
log t

for any t > 1,

with Cβ = αmax(1, β).

It will be more convenient to deal with g = ef in the sequel; thus, now we move to this set-
ting. The last inequality can be reformulated as follows: For any f : Rn → R with

∫
efdγn=1

and Hess (f) ≥ −βId,

γn ({f ≥ t}) ≤ Cβ
e−t

√
t

for any t > 0. (1.3)

We now describe the two main contributions of this note (which were independently obtained
by Ramon van Handel). First, as a warm up, we give in Sec. 2 a short proof of (1.3) in
dimension 1. The main argument of this proof is that due to the semiconvexity of f , the

condition (2π)−1/2
∫
ef−

1
2
|x|2 dγ = 1 implies a pointwise comparison between f and the function

|x|2/2, which then can be turned into a tail comparison.

Then, in dimension n, we give in Sec. 3 a sharp version of the upper bound (1.3) for convex
functions. Our main result is as follows.

Theorem 1.4. Assume that f : Rn → R is a convex function such that
∫
ef dγn = 1; then

γn(f ≥ t) ≤ Φ(
√
2t) for any t ≥ 0, (1.5)

454



where Φ(t) = 1√
2π

+∞∫
t

e−u2/2 du, t ∈ R.

Let us make a few comments on this result. First, using the following classical bound (which
is asymptotically optimal):

Φ(s) =
1√
2π

∞∫
s

e−x2/2 dx ≤ 1√
2π

∞∫
s

x

s
e−x2/2 dx =

e−s2/2

√
2πs

for any s > 0, (1.6)

one immediately recovers (1.3) with the constant C ′
0 = 1/(2

√
π). Furthermore, the bound

(1.9) is sharp. Indeed, for a given value of t ≥ 0, inequality (1.9) becomes an equality for the
function

ft(x) =
√
2tx1 − t, x = (x1, . . . , xn) ∈ R

n.

Finally, since the Ornstein–Uhlenbeck semigroup preserves log-convexity (this follows from the
fact that any positive combination of log-convex functions remains log-convex, see, e.g., [12,
p. 649]), Theorem 1.4 immediately implies the following corollary.

Corollary 1.7. Let g be a log-convex function such that
∫
g dγn = 1; then for any s ≥ 0,

γn(Psg ≥ t) ≤ Φ(
√

2 log(t)) for any t ≥ 1.

In the special case where g is log-convex, Corollary 1.7 is a sharp improvement of Lehec’s
result (1.2). Note that for log-convex g, the constant αs can be taken independent of s unlike
in (1.2), but this already followed from Lehec’s inequality (1.3) combined with the preservation
of log-convexity by the Ornstein–Uhlenbeck semigroup.

Another consequence of Theorem 1.4 is that a deviation inequality for structured functions
also follows for other measures that can be obtained by “nice” pushforwards of Gaussian
measure. Indeed, observe that for any coordinatewise nondecreasing, convex function f on R

n

and any convex functions g1, . . . , gn : RN → R, the composition f(g1(x), . . . , gn(x)) is convex
on R

N . Hence, we immediately have the following corollary.

Corollary 1.8. For a standard Gaussian random vector Z in R
N , let the probability mea-

sure μ on R
n be the joint distribution of (g1(Z), . . . , gn(Z)). Assume that f : Rn → R is a

coordinatewise nondecreasing, convex function such that
∫
Rn

ef dμ = 1. Then

μ(f ≥ t) ≤ Φ(
√
2t) for any t ≥ 0. (1.9)

For example, consider the exponential distribution, whose density is e−x on R+ = (0,∞)

and which can be realized as
Z2
1+Z2

2
2 with Z1 and Z2 i.i.d. standard Gaussian. Clearly, a

product of exponential distributions on the line is an instance covered by Corollary 1.8, since

we can take N = 2n and gi(x) =
x2
i+x2

i+1

2 . More generally, Corollary 1.8 applies to a product

of χ2 distributions with arbitrary degrees of freedom, and also to some cases with correlation

(consider, for example, N = 3, g1(x) =
x2
1+x2

2
2 , and g2(x) =

x2
2+x2

3
2 ). The proof of Theorem 1.4

is given in Sec. 3. It relies on the Ehrhard inequality which we recall now: According to [5,
Theorem 3.2], if A,B ⊂ R

n are two convex sets, then

Φ−1(γn(λA+ (1− λ)B)) ≥ λΦ−1(γn(A)) + (1− λ)Φ−1(γn(B)) for any λ ∈ [0, 1], (1.10)

where λA+ (1− λ)B := {λa+ (1− λ)b : a ∈ A, b ∈ B} denotes the usual Minkowski sum and
Φ−1 is the inverse of the cumulative distribution function Φ of γ1:

Φ(t) =
1√
2π

t∫
−∞

e−u2/2 du, t ∈ R. (1.11)
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After Ehrhard’s pioneer work, inequality (1.10) was shown to be true if only one set is assumed
to be convex by Lata�la [10] and finally was extended to arbitrary measurable sets by Borell [4].
See also [2, 18] and references therein for recent developments on this inequality. Inequality
(1.10) (for arbitrary sets A and B) is a very strong statement in the hierarchy of Gaussian
geometric and functional inequalities. For instance, it gives back the celebrated Gaussian
isoperimetric result of Sudakov–Tsirelson [16] and Borell [3]. Another elegant consequence of
(1.10) due to Kwapień is that if f is a convex function on R

n that is integrable with respect
to γn, then the median of f is always less than or equal to the mean of f under γn. The key
ingredient in Kwapień’s proof is the observation that the function

α(t) = Φ−1(γn(f ≤ t)), t ∈ R,

is concave over R; this observation (already made in Ehrhard’s original paper) also plays a
key role in our proof of Theorem 1.4.

After the completion of this work, we learned that Paouris and Valettas [15] developed in
a recent paper similar ideas to derive from (1.10) deviation inequalities for convex functions
under their mean.

In Sec. 4, we give a second proof of Theorem 1.4 and also discuss (following an observation
by R. van Handel) the difficulty of its extension to the log-semiconvex case.

Acknowledgment. The results of this note were independently obtained by Ramon van
Handel a few months before us, as we learnt after a version of this note was circulated.
Although he chose not to publish them, these observations should be considered as due to
him. We are also grateful to him for numerous comments on earlier drafts of this note.

2. The continuous Talagrand conjecture in dimension 1

In the next lemma, we take advantage of the semiconvexity property Hess (f) ≥ −βId to
derive information on f . More precisely, we may compare f to x �→ |x|2/2. The result holds
in any dimension, and we give two proofs for completeness.

Lemma 2.1. Let f : Rn → R and β ≥ 0 be such that
∫
ef dγn = 1, f is smooth, and Hess (f) ≥

−βId. Then

f(x) ≤ n

2
log(1 + β) +

1

2
|x|2 for any x ∈ R

n.

First proof of Lemma 2.1. Let h(x) = f(x) + β
2 |x|2. By the assumption on f , the function h

is convex on R
n; hence,

h(x) = sup
t∈Rn

{〈x, t〉 − h∗(t)} for any x ∈ R
n,

where

h∗(t) := sup
x∈Rn

{〈t, x〉 − h(x)} , t ∈ R
n,

is the Legendre transform of h. Now,

1 =

∫
ef dγn =

∫
exp

{
h(x) − β

2
|x|2

}
dγn(x)

≥ (2π)−n/2e−h∗(t)
∫

exp

{
〈x, t〉 − 1 + β

2
|x|2

}
dx

= (1 + β)−n/2 exp

{
−h∗(t) +

1

2(1 + β)
|t|2

}
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for all t ∈ R
n. Therefore,

h∗(t) ≥ −n

2
log(1 + β) +

1

2(1 + β)
|t|2

for all t ∈ R
n. In its turn,

h(x) = sup
t

{〈x, t〉 − h∗(t)} ≤ n

2
log(1 + β) + sup

t

{
〈x, t〉 − 1

2(1 + β)
|t|2

}

=
1

2

(
n log(1 + β) + (1 + β)|x|2) ,

which leads to the desired conclusion. �
Second proof of Lemma 2.1. Define h̃(x) = h(x) + β

2 |x|2, x ∈ R
n, and let γn,β be the Gaussian

measure N (0, 1
1+β I); then

1 =

∫
eh(x) dγn(x) = (1 + β)−n/2

∫
eh̃(x) dγn,β(x).

For all a ∈ R
n, the change of variable formula implies that

1 = (1 + β)−n/2e−
(1+β)

2
|a|2

∫
eh̃(y+a)−(1+β)y·a dγn,β(dy).

The function y �→ h̃(y + a) − (1 + β)y · a is convex and the function x �→ ex is convex and

increasing; thus, the function y �→ exp
(
h̃(y + a)− (1 + β)y · a

)
is also convex. Applying the

Jensen inequality, we see that

1 ≥ (1 + β)−n/2e−
(1+β)

2
|a|2 exp

(
h̃

(
a+

∫
y dγn,β(y)

)
− (1 + β)

∫
y · a dγn,β(y)

)

= e−
(1+β)

2
|a|2+h̃(a);

hence, h(a) ≤ |a|2/2 + n
2 log(1 + β). �

Remark 2.2. The case of β = 0 in Lemma 2.1 (i.e., of convex functions f , which is the
essential case) is contained in Graczyk et al. [7, Lemma 3.7] (curiously, it does not appear in
the published version [8] of the paper), and, in fact, was proved in the more general setting of
subharmonic functions. The second proof given above is theirs and works for the more general
setting. Also note that neither proof requires the smoothness of f , which however is sufficient
for our purposes.

In principle, one would hope to already get some deviation bound from the above lemma.
More precisely, given f as in Lemma 2.1, we have the inequality

γn ({f ≥ t}) ≤ γn
({|x|2 ≥ 2t− n log(1 + β)

})
thanks to Lemma 2.1, and we are left with a tail estimate for a χ2 distribution with n degrees
of freedom. In dimension n = 1, the tail of the χ2 distribution behaves like e−t/

√
t. Therefore,

the above simple argument already gives back estimate (1.3) and thus, provides a quick proof
of the continuous Talagrand’s conjecture for n = 1, moreover, with a clean dependence on β,
as detailed below.

Theorem 2.3. If a smooth function f : R → R and β ≥ 0 are such that
∫
ef dγ1 = 1 and

f ′′ ≥ −β pointwise, then

γ1 ({f ≥ t}) ≤ 1 + β√
2

e−t

√
t

for any t ≥ 1.
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Proof. Assume first that t ≥ (1 + β) log(1 + β)/(2β). Using inequality (1.6), we deduce from
Lemma 2.1 that

γ1 ({f ≥ t}) ≤ γ1

({
|x| ≥

√
2t− log(1 + β)

})
≤ 2(2π)−1/2 exp

{−t+ 1
2 log(1 + β)

}
√
2t− log(1 + β)

=

√
1 + β

π

e−t

√
t

1√
1− (log(1 + β)/(2t))

≤
√

1 + β

π

e−t

√
t

1√
1− (β/(1 + β))

=
1 + β√

π

e−t

√
t
.

Now assume that t ≤ (1 + β) log(1 + β)/(2β). By Markov’s inequality,

γ1 ({f > t}) ≤ e−t ≤
√

(1 + β) log(1 + β)/(2β)
e−t

√
t
≤

√
1 + β√
2

e−t

√
t
≤ 1 + β√

2

e−t

√
t
,

where, in the third inequality, we have used that log(1 + β) ≤ β. The result follows. �

Unfortunately, this naive approach of using the pointwise bound from Lemma 2.1 is specific
to dimension 1 since in higher dimension, the tail of the χ2 distribution does not have the
correct behavior. It should be noticed that Ball et al. [1] also have a quick direct proof of
the Talagrand conjecture for n = 1 which also uses a similar tail comparison with the χ2

distribution, and it is also noticed that such a tail is not of the correct order for n ≥ 2.

3. The deviation inequality for log-convex functions

Throughout this section, f : Rn → R is a convex function satisfying
∫
ef dγn = 1, where γn

is the standard Gaussian measure on R
n. Given s ∈ R, let

As := {f ≤ s}
and

ϕ(s) := Φ−1 (γn(As)) ,

where Φ−1 is the inverse of the Gaussian cumulative distribution function Φ defined by (1.11).
The key ingredient in the proof of Theorem 1.4 is the concavity of the function ϕ, which, as

we see in the proof of the next lemma, is a direct consequence of Ehrhard’s inequality (1.10).

Lemma 3.1. Let f and ϕ be defined as above. Then ϕ is concave, nondecreasing, lim
s→∞ϕ(s) =

+∞, and lim
s→−∞ϕ(s) = −∞.

The concavity of ϕ was first observed by Ehrhard in [5]. Below we recall the proof for the
reader’s convenience.

Proof. The fact that ϕ is nondecreasing and satisfies lim
s→∞ϕ(s) = +∞ and lim

s→−∞ϕ(s) = −∞
is a direct and obvious consequence of the definition. Now we prove that ϕ is concave using
Ehrhard’s inequality. Given λ ∈ [0, 1] and s1, s2 ∈ R, we have, by the convexity of f , the
inclusion

Aλs1+(1−λ)s2 ⊃ λAs1 + (1− λ)As2 .

Hence, by the monotonicity of Φ−1,

ϕ(λs1 + (1− λ)s2) ≥ Φ−1 (γn(λAs1 + (1− λ)As2)) .

Then, Ehrhard’s inequality (1.10) implies that

Φ−1 (γn(λAs1 + (1− λ)As2)) ≥ λΦ−1 (γn(As1)) + (1− λ)Φ−1 (γn(As2))

= λϕ(s1) + (1− λ)ϕ(s2),

from which the concavity of ϕ follows. �
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Proof of Theorem 1.4. Let f and ϕ be defined as above. Then it is enough to show that

ϕ(u) ≥
√
2u for any u ≥ 0.

Since −ϕ : R → R ∪ {+∞} is convex by Lemma 3.1 and lower-semicontinuous, the Fenchel–
Moreau theorem applies and guarantees that

−ϕ(u) = sup
t∈R

{ut− ψ(t)} for any u ∈ R,

where
ψ(t) = (−ϕ)∗(t) := sup

u∈R
{ut+ ϕ(u)}

is the Fenchel–Legendre transform of −ϕ. We also observe that, since lim
u→∞ϕ(u) = +∞,

necessarily ψ(t) = +∞ for all t > 0, so that

ϕ(u) = − sup
t≤0

{ut− ψ(t)} = inf
t≤0

{−ut+ ψ(t)} .

Now observe that

1 =

∫
ef dγn =

∞∫
−∞

euγn(f ≥ u) du =

∞∫
−∞

eu(1− Φ(ϕ(u)) du =

∞∫
−∞

euΦ(ϕ(u)) du,

where we recall that Φ = 1−Φ. Using integration by parts and the fact that Φ is decreasing,
we conclude that

1 =

∞∫
−∞

euΦ(ϕ(u)) du ≥
∞∫

−∞
euΦ(−ut+ ψ(t)) du = (−t)e

ψ(t)
t

+∞∫
−∞

e
−v
t Φ(v) dv

= e
ψ(t)
t

1√
2π

+∞∫
−∞

e
−v
t e−v2/2 dv = exp

{
ψ(t)

t
+

1

2t2

}

for all t ≤ 0. Therefore,

ψ(t) ≥ − 1

2t
for all t ≤ 0. In its turn,

ϕ(u) = inf
t≤0

{−ut+ ψ(t)} ≥ inf
t≤0

{
−ut− 1

2t

}
=

√
2u ,

as expected. �

4. Revisiting the deviation inequality, with a discussion

of the semi-convex case

Assume that f : Rn → R is a function such that
∫
ef dγn = 1. Define μf as the distribution

of f under γn, i.e.,

μf (A) := γn({x ∈ R
n : f(x) ∈ A}) for any Borel A ⊂ R.

Consider the monotone rearrangement transport map Tf sending γ1 to μf . It is defined by

Tf (u) = F−1
f ◦ Φ(u) for any u ∈ R,

where Ff (t) = μf ((−∞, t]), t ∈ R, denotes the cumulative distribution function of μf and

F−1
f (s) = inf{t : Ff (t) ≥ s}, s ∈ (0, 1),

is its generalized inverse.
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The following proposition yields a slightly different proof of Theorem 1.4.

Proposition 4.1. With the notation above, if Tf is κ-semiconvex for some κ ≥ 0, i.e.,

Tf ((1− t)x+ ty) ≤ (1− t)Tf (x) + tTf (y) +
κ

2
t(1− t)|x− y|2

for any x, y ∈ R and t ∈ [0, 1],

then

γn({f > u}) ≤ Φ
(√

2u− log(1 + κ)
)

for any u ≥ 1

2
log(1 + κ).

Proof. The κ-semiconvexity condition is equivalent to the convexity of the function x �→
Tf (x) + κx2

2 . Now we observe that

1 =

∫
ef dγn =

∫
ey dμf (y) =

∫
eTf (x) dγ1(x).

Applying Lemma 2.1 to the function Tf in dimension 1, one concludes that

Tf (x) ≤ 1

2
x2 +

1

2
log(1 + κ) for any x ∈ R.

This is equivalent to

Φ(x) ≤ Ff

(
1

2
x2 +

1

2
log(1 + κ)

)
;

thus,

Ff (u) ≥ Φ
(√

2u− log(1 + κ)
)

for any u ≥ 1

2
log(1 + κ),

or, in other words,

γn({f > u}) ≤ Φ
(√

2u− log(1 + κ)
)

for any u ≥ 1

2
log(1 + κ). �

Second proof of Theorem 1.4. Assume that f : Rn → R is convex and such that
∫
ef dγn = 1.

Then, according to Lemma 3.1, the function Φ−1 ◦ Ff = T−1
f is concave. Being also non-

decreasing, its inverse Tf is convex. Applying Proposition 4.1 with κ = 0 completes the
proof. �

In view of Proposition 4.1, a natural conjecture would be the following.

Conjecture. There exists a function κ : [0,∞) → [0,∞) such that if f : Rn → R is a smooth
function with Hess f ≥ −βId, β ≥ 0, then the map Tf is κ(β)-semiconvex on R.

If this conjecture were true, then one would recover completely the Eldan–Lee–Lehec re-
sult (1.3). In addition to the convex case, let us observe that the conjecture is obviously true
in dimension 1 for nondecreasing functions f . Indeed, f is clearly a transport map between γ1
and μf . Being nondecreasing, f is necessarily a monotone rearrangement map, i.e., f = Tf .
Since f is κ-semiconvex, then so is Tf .

Unfortunately, this probably too naive conjecture turns out to be false in general. As
explained to us by R. van Handel, the presence of local minimizers for f breaks down the
semi-convexity of Tf . Let us illustrate this in dimension 1. Consider a function f : R → R of
class C1 such that f ′(x) vanishes only at a finite number of points and such that there is some
point xo ∈ R and an η > 0 such that f ′(xo) = 0, f ′(x) < 0 on [xo − η, xo[, and f ′(xo) > 0
on ]xo, xo + η]. Denoting to = f(xo), we assume that infR f < to, i.e., f only presents a local
minimizer at xo. Let us further assume that there are some αo, βo > 0 and some positive
integer N such that, for all to − αo ≤ t < to,

Card{x ∈ R : f(x) = t} ≤ N
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and |f ′(x)| ≥ βo for all x such that to − αo ≤ f(x) < to.

Claim. There is no λ ≥ 0 for which the map T := Tf is λ-semiconvex.

It is not difficult to exhibit semiconvex functions f enjoying the assumptions above, which
disclaims the conjecture.

Proof of the claim. First let us remark that if T were λ-semiconvex for some λ ≥ 0, then the
map x �→ T (x) + λ

2x
2 would be convex, and so it would admit finite left and right derivatives

everywhere. Moreover, for a convex function, the left derivative at some point is always less
than or equal to the right derivative at this same point. Thus, the λ-semiconvexity of T would,
in particular, imply that

T ′
−(x) ≤ T ′

+(x) for any x ∈ R.

We are going to show that T ′−(uo) > T ′
+(uo) for some uo ∈ R, which will prove the claim.

Since, denoting F := Ff ,

T ′
±(u) =

ϕ(u)

F ′± ◦ T (u)
at every point u ∈ R where the derivative exists, one concludes that it is enough to show that

F ′
−(to) < F ′

+(to)

to have the desired inequality at uo = T−1(to). Note that |T−1(to)| < ∞ because

μf ((to,+∞)) = γ1((T
−1(to),+∞)) > 0

and
μf ((∞, to)) = γ1((−∞, T−1(to))) > 0,

as easily follows from our assumptions.
According to the one-dimensional general change of variable formula, the probability mea-

sure μf admits the following density:

h(t) =
∑

x∈{f=t}

ϕ(x)

|f ′(x)| , t ∈ R,

where ϕ(x) = 1√
2π
e−x2/2, x ∈ R. Define εo = max[xo−η,xo+η] f − to > 0 ; then, for h < εo,

F (to + h)− F (to) =

to+h∫
to

h(t) dt ≥ h
m

M(h)
,

where
m = inf

[xo−η,xo+η]
ϕ

and
M(h) = sup

{|f ′(x)| : x ∈ [xo − η, xo + η], f(x) ∈ [to, to + h]
}
.

It is easily seen that M(h) → 0 as h tends to 0+, which implies that F ′
+(to) = +∞. Now let

us consider the left derivative. Let us note that one can assume without loss of generality that
the left derivative exists at to, since otherwise, the function T is clearly not semiconvex. For
any h > 0,

F (to)− F (to − h) =

to∫
to−h

h(t) dt ≤ h
N√
2πβo

;

thus, F ′−(to) < +∞, which completes the proof of the claim. �
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