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Abstract

We prove that a convex phase may be perturbed into a non-convex phase preserving the spectral

gap properties of the unbounded spin system with nearest neighbour interaction associated to this

potential. The proof is based on Helffer's method that reduces the spectral properties of the

unbounded spin system to some uniform spectral gap of the one-dimensional phase. We then make

use of Hardy's criterion for Poincaré inequalities on the real line to construct our examples.

1 Introduction

The purpose of this work is to establish some perturbation results for spectral gaps to produce some

examples of unbounded spin systems with nearest neighbour interaction associated to non-convex

phases satisfying a spectral gap inequality uniformly in �nite subsets of the lattice and boundary

conditions. These examples thus show that the recent results by Yoshida (see [Yos99]), Helffer

[Hel99a], Bodineau-Helffer [BH99a, BH99b] on spectral gaps and logarithmic Sobolev inequalities

can actually hold for families of phases that go beyond the usual convexity at in�nity.

To introduce to the results of this paper, let us �rst describe, following [Hel99a], the spin systems

we will investigate. Consider the measure exp(��

�;!

(X))dX , where �

�;!

is a function associated to

a �nite subset � in Z

d

(for d 2 N

�

) and to some ! 2 R

Z

d

which de�nes the boundary conditions. The

function �

�;!

has the form, for X = X

�

2 R

j�j

(where j�j is the cardinal of �) :

�

�;!

(X) =

X

i2�

 (x

i

) + J

X

fi;jg\� 6=;; i�j

V (z

i

� z

j

)

where

� X = (x

i

)

i2�

, z

i

=

�

x

i

if i 2 �

!

i

if i =2 �

:

�  and V are real-valued functions, respectively called phase and potential of the interactions

between sites. We assume that V satisfy

kV

00

k

1

<1: (1)

� i � j means that j and i are neighbours in Z

d

.

� J is a positive real parameter (the coupling constant).
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Assume that there exists J

0

> 0 such that for any J in [0; J

0

], any �nite subset � of Z

d

and ! in

R

Z

d

, the integral of exp(��

�;!

) on R

�

is �nite. In this case, de�ne the probability measure �

�

�;!

as:

d�

�

�;!

(X) =

1

Z

�

�;!

exp(��

�;!

(X))dX; (2)

where Z

�

�;!

=

R

exp(��

�;!

(X))dX .

This model is described in [BH99a] (see also [Hel99a]). The particular case where  (x) = ax

4

�bx

2

(a; b > 0) and V (x) = x

2

is considered by Yoshida (see [Yos99]).

We will investigate spectral gaps and decays of correlations of the family of probability measures

�

�

�;!

uniformly over � and !. More precisely, we want to �nd two constants C and C

0

such that, for

any � �nite subset of Z

d

, ! 2Z

d

and any smooth functions f and F;G we have:

E

�

�

�;!

�

f

2

�

�E

�

�

�;!

(f)

2

6 C

Z

krfk

2

d�

�

�;!

;

E

�

�

�;!

(F;G)

def.

= E

�

�

�;!

��

F �E

�

�

�;!

(F )

��

G�E

�

�

�;!

(G)

��

6 C

0

exp(�d(S

F

; S

G

))

�

Z

krFk

2

d�

�

�;!

�

1=2

�

Z

krGk

2

d�

�

�;!

�

1=2

;

(3)

where krfk

2

=

P

i2�

(@

i

f)

2

, E

�

�

�;!

(f) =

R

fd�

�

�;!

, S

F

is the support of F inZ

d

and d is the distance

between subsets of the lattice Z

d

.

It has been shown in [Hel99a], [BH99a] and [Yos99] that whenever the phase  is convex at in�nity

and J

o

is small enough, then the measures

�

�

�

�;!

�

�;!

satisfy such a uniform spectral gap and decay

of correlations (inequality (3)).

As announced, the aim of this paper is to present examples of non-convex phases such that the

uniform spectral gap still hold. The main tool of the construction is the method developed byHelffer

which is presented in the next section. It will reduce to the study of some uniform spectral gap property

of the phase  in dimension one that we investigate by means of Hardy's criterion for Poincaré

inequalities in dimension one. This is the subject of Section 3.

In the last section, we prove our main result:

Theorem 1.1 Let ' be a strictly uniformly convex function (i.e. for all x 2 R, '

00

(x) > a > 0), let g be

a bounded function (kgk

1

<1), and let h be a perturbation function satisfying S =

R

R

(e

jhj

� 1) <1.

Then, the measure �

�

�;!

de�ned in (2) with  = '+ g + h satis�es, uniformly in � and !, a spectral

gap inequality and a decay of correlations for every J small enough.

The simple criterion on h will easily produce examples for which  is not convex at in�nity, and

not even bounded above and below by two power type functions as will be showm at the end of the

section 4.

2 Helffer's method for spectral gap inequality

Let us �rst recall the de�nition of the spectral gap or Poincaré inequality for a measure on R

n

and

for the set of measures

�

�

�

�;!

�

�;!

.
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De�nition 2.1 (Spectral gap inequality) Let assume that d�

 

= exp(� (X))dX is a probability

measure on R

n

, where  is a real-valued function. The measure �

 

satis�es a spectral gap inequality

if there exists a positive constant C

 

such that for any smooth enough function f : R

n

! R,

Var

�

 

(f) = E

�

 

�

f

2

�

� E

�

 

(f)

2

6 C

 

Z

krfk

2

d�

 

(4)

where krfk

2

=

P

n

i=1

(@

i

f)

2

and E

�

 

(f) =

R

fd�

 

.

The constant C

 

is the spectral gap constant associated to either the measure �

 

or the function  .

We say that the set of measures

�

�

�

�;!

�

�;!

de�ned by (2) satis�es a uniform spectral gap inequality

if each measure �

�

�;!

satis�es a spectral gap inequality with a constant C = C

�

�;!

independent of � in

Z

d

and ! in R

Z

d

.

Helffer proved recently spectral gap inequalities for the preceding spin systems using a criterion

on theWitten Laplacian [Hel99a]. The main feature of the approach is that it reduces to some uniform

spectral gap for the phase  that we investigate in the next section by Hardy's inequalities. For the

sake of completness, we present this criterion that we however reformulate via the Bakry-Emery �

2

operator (see [BE85], [Bak94] and [Led92] with more simple semigroup tools).

Theorem 2.2 Let assume that d�

 

(X) = exp(� (X))dX is a probability measure on R

n

, where  

is a C

2

real-valued function. Let L = � � (r :r) denote the in�nitesimal di�usion generator with

invariant measure �

 

. Then the spectral gap inequality is equivalent to the inequality:

Z

(�f)Lfd�

 

6 C

 

Z

(Lf)

2

d�

 

; (5)

holding for any smooth function f .

We brie�y recall the proof.

Proof

J Assume that the measure �

 

satis�es (5). Denote by (P

t

)

t>0

the semigroup with generator L. For

any smooth function f , we have P

0

f = f and P

1

=

R

fd�

 

, so that

Var

�

 

(f) = �2

ZZ

1

0

P

t

f LP

t

f dtd�

 

= �2

Z

1

0

Z

P

t

f LP

t

f d�

 

dt:

Let F (t) = �

R

P

t

f LP

t

fd�

 

, t > 0. Integration by parts shows that

F

0

(t) = �2

Z

(LP

t

f)

2

d�

 

:

Then, by (5), F

0

(t) 6 �(2=C

 

)F (t) so that F (t) 6 e

�

2

C

 

t

F (0), for every t > 0. Hence,

Var

�

 

(f) 6 C

 

Z

krfk

2

d�

 

:

On the other hand, by invariance and the Cauchy-Schwarz inequality,

Z

�fLfd�

 

=

Z

(f �E

�

 

(f))(�Lf)d�

 

6 Var

�

 

(f)

1=2

�

Z

(Lf)

2

d�

 

�

1=2

:

Therefore inequality (5) follows from the spectral gap inequality with the same constant C

 

. The proof

of the theorem is complete. I
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Applying Theorem 2.2 shows that a spectral gap inequality for the set of measures (�

��;!

) amounts

to establish (5) uniformly in � and !. Now, for a given smooth function f , integration by parts allows

us to write that

Z

(Lf)

2

d�

�

�;!

=

Z

0

@

X

i;j2�

(@

i;j

f)

2

+

X

i;j2�

@

i

f (@

i;j

�

�;!

) @

j

f

1

A

d�

�

�;!

>

Z

X

i2�

0

@

(@

i;i

f)

2

+ (@

i

f)

2

f 

00

(x

i

) +

X

j2N(i)

JV

00

(x

i

� z

j

)g

1

A

d�

�

�;!

+

Z

X

i;j2�;i�j

�JV

00

(x

i

� x

j

)@

i

f @

j

f d�

�

�;!

;

(6)

where N(i) = fj 2Z

d

; j � ig. For any i in �, jN(i)j = 2d, so

X

i;j2�;i�j

@

i

f @

j

f 6 2d

X

i2�

(@

i

f)

2

:

The condition (1) on V

00

easily shows that

X

i;j2�;i�j

�JV

00

(x

i

� x

j

)@

i

f@

j

f > �2dkV

00

k

1

J

X

i2�

(@

i

f)

2

: (7)

Therefore, (6) holds as soon as

Z

(Lf)

2

d�

�

�;!

>

X

i2�

Z

0

@

(@

i;i

f)

2

+ (@

i

f)

2

( 

00

(x

i

) +

X

j2N(i)

JV

00

(x

i

� z

j

))

1

A

d�

�

�;!

+

X

i2�

�2dJkV

00

k

1

Z

(@

i

f)

2

d�

�

�;!

:

(8)

For each i in �, denote by �

(i)

�

�;!

the conditional measure on �

�

�;!

given f(x

j

); j 2 �; j 6= ig. Therefore

�

(i)

�

�;!

is a measure on the real line and

�

(i)

�

�;!

(dx

i

) =

exp(� (x

i

)�

P

j2N(i)

JV

00

(x

i

� z

j

))

Z

(i)

�

�;!

dx

i

;

where Z

(i)

�

�;!

=

R

exp(� (x

i

)�

P

j2N(i)

JV

00

(x

i

� z

j

))dx

i

. The measure �

(i)

�

�;!

depends of the variables

(x

j

)

j 6=i

and ! 2Z

d

.

Suppose now that all the measures �

(i)

�

�;!

, i 2 �, satisfy a spectral gap inequality with a constant

C

USG

(USG as uniform spectral gap) independent from the variables (!; (x

j

)

j2�;j 6=i

) and from the

site i.

The equivalence provided by Theorem 2.2 then indicates that for every i 2 �,

Z

0

@

(@

i;i

f)

2

+ (@

i

f)

2

( 

00

(x

i

) +

X

j2N(i)

JV

00

(x

i

� z

j

))

1

A

d�

(i)

�

�;!

>

1

C

USG

Z

(@

i

f)

2

d�

(i)

�

�;!

:
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After integration all the (x

j

)

j 6=i

and summation on i 2 � we �nd:

Z

X

i2�

0

@

(@

i;i

f)

2

+ (@

i

f)

2

( 

00

(x

i

) +

X

j2N(i)

JV

00

(x

i

� z

j

))

1

A

d�

�

�;!

>

1

C

USG

Z

X

i2�

(@

i

f)

2

d�

�

�;!

: (9)

It then follows from (8) and (9) that (6) became

Z

(Lf)

2

d�

�

�;!

>

�

1

C

USG

� 2dJkV

00

k

1

�

Z

krfk

2

d�

�

�;!

:

As a consequence, the measure �

�

�;!

satis�es the spectral gap inequality de�ned by 2.1 with a

constant, independant of � � Z

d

and ! 2 R

Z

d

, equal to C

USG

=(1� C

USG

2dJkV

00

k

1

) as soon as

1� C

USG

2dJkV

00

k

1

> 0.

The main point in this argument is the uniformity of the spectral gap inequalities for the measures

�

(i)

�

�;!

on R. We emphasize this property with the following de�nition.

De�nition 2.3 (Uniform spectral gap inequality (USG)) Let de�ne � = (�

i

)

i2N(0)

and N(0) =

fj 2Z

d

; j � 0g. Denote by �

 

�

the probability measure on R de�ned by

d�

 

�

(x) =

1

Z

 

�

exp

�

� 

�

(x)

�

dx; (10)

where  

�

(x) =  (x) +

P

i2N(0)

JV (x � �

i

) and Z

�

=

R

exp

�

� 

�

(x)

�

dx. We say that the phase  

satis�es a uniform spectral gap inequality (USG) if the measure �

 

�

satis�es a spectral gap inequality

with a constant C

USG

independent of � in R

jN(0)j

.

At the light of this de�nition 2.3 and the preceding argument, we may state Helffer's result in

the following way (see [Led99]).

Theorem 2.4 Let  be a real-valued function on R such that  satis�es the condition (USG) of the

de�nition 2.3. Then there exists J

0

such that for every J 2 [0; J

0

], the set of measures (�

�

�;!

)

�;!

satis�es spectral gap inequality with

C

�

�;!

6

C

USG

1� C

USG

2dJkV

00

k

1

:

The right hand side of the inequality does not depend of � �Z

d

, and ! 2 R

Z

d

.

With the same method, we also get the corresponding decay of correlations as in [Hel99a].

Theorem 2.5 Let  be a real-valued function on R such that  satis�es the condition (USG) of the

de�nition 2.3. Then there exists J

0

and a constant C

0

such that for every J 2 [0; J

0

], the set of measures

(�

�

�;!

)

�;!

satis�es:

E

�

�

�;!

(F;G) 6 C

0

exp(�d(S

F

; S

G

))

�

Z

krFk

2

d�

�

�;!

�

1=2

�

Z

krGk

2

d�

�

�;!

�

1=2

;

for any smooth functions F;G, � and !. The constant C

0

only depends on C

USG

; J; d and kV

00

k

1

.

5



Remark 2.6 In the particular case where V (x) = x

2

, (10) can be reparametrized in terms of a single

one-dimensional parameter �, and (USG) amounts to a uniform spectral gap for the set of measures

(�

 

�

) de�ned by

d�

 

�

(x) =

1

Z

 

�

exp(� 

�

(x))dx: (11)

where  

�

(x) =  (x) + �x.

A natural question is thus to ask when the condition (USG) is satis�ed? Simple arguments show

that (USG) holds when  is strictly convex at in�nity, that is  = '

a

+ g with '

00

a

(x) > a for some

a > 0 and kgk

1

< 1 (see [Yos99] and [Aa99]). This is the classical phase behaviour investigated

in the recent contributions on spectral gap and logarithmic Sobolev inequalities for unbounded spin

systems by Zegarlinski [Zeg96], Yoshida [Yos99], Helffer [Hel99a] and Bodineau-Helffer

[BH99a, BH99b].

That (USG) for a given phase  may be quite restrictive is shown by the example of  (x) = jxj

s

with some s in [1; 2[ that is known to satisfy a spectral gap inequality (see [Aa99]) but that does not

satisfy a uniform spectral gap in the sense of the preceding de�nition as shown by the next proposition.

Proposition 2.7 Let  be a real-valued function on R such that

 

0

(R) = R and lim

jxj!1

 

00

(x) = 0:

Then the phase  

�

(x) =  (x)+�x, de�ne on (11), could satisfy for any � in R a spectral gap inequality

but the phase  does not satisfy the condition (USG).

Remark 2.8 The function  (x) = jxj

s

satis�es the hypotheses of Proposition 2.7 and for any � there

is a spectral gap inequality. However by the last proposition, it does not satisfy the condition (USG).

This case is treated by Helffer in the Exercise 6.3.4 in [Hel99b].

Proof

J We assume that the measure �

 

�

satis�es the condition (USG). By Theorem 2.2, there exists a

constant C

USG

> 0 such that, for any � 2 R and any smooth function f with compact support, we

have:

Z

f

0

2

d�

 

�

6 C

USG

Z

�

f

00

2

+ f

0

2

 

00

�

d�

 

�

:

The hypotheses on  insure the existence of �

�

such that  

0

(�

�

)+� = 0, and lim

j�j!1

j�

�

j =1. Then

for any y by Taylor's formula on R, there exists u

y;�

2]0; 1[ such that

 (y + �

�

) + �y =  (�

�

) +

y

2

2

 

00

(�

�

+ u

y;�

y):

By a change of variables,

Z

f

0

(y)

2

e

�

y

2

2

 

00

(�

�

+u

y;�

y)

dy 6 C

USG

Z

�

f

00

(y)

2

+ f

0

(y)

2

 

00

(y + �

�

)

�

e

�

y

2

2

 

00

(�

�

+u

y;�

y)

dy:

By the dominated convergence theorem as � !1,

Z

f

0

2

dx 6 C

USG

Z

f

00

2

dx:

6



However, there is no spectral gap inequality for the Lebesgue measure on R. Therefore the phase

 does not satisfy the condition (USG). I

Proposition 2.7 deals in particular with the case jxj

s

for 1 < s < 2. On the other hand, one can

easily see that  

�

(x) = jxj

2

+�x satis�es a spectral gap inequality with constant independant of � (and

so a uniform spectral gap). To complete this setting, our next result deals with the behaviour of the

spectal gap constant of  

�

(de�ne in 11) with  (x) = jxj

s

and s > 2. More precisly, we have (we omit

the proof):

Proposition 2.9 Let  be a real-valued function on R such that

lim

jxj!1

 

00

(x) =1:

Then the measure �

 

�

de�ne in (11) satisfy for any � a spactral gap inequality and the constant C

 

�

satisfy:

lim

j�j!1

C

 

�

= 0:

Theorem 2.4 reduces the question of spectral gap for families (�

�;!

) to the (USG) property of a

real-valued phase  . We now investigate this condition by means of Hardy type inequalities.

3 Hardy type inequalities and applications

This section introduces the notion of Hardy type inequalities which will be our basic tool to prove

our main result (Theorem 4.1 below).

Let � and � be two probability measures on R

+

. We assume � to be absolutely continuous with

respect to Lebesgue's measure on R

+

, and its density d�=dx to be strictly positive. In 1972,Muck-

enhoupt generalized results of Hardy and Tomaselli (see [Tom69]), Talenti (see [Tal69]) and

Artola on some speci�c functional inequalities, now called Hardy type inequalities. They were

namely interested in controlling the best constant A such that

Z

1

0

�

Z

1

x

f(t) dt

�

2

d�(x) 6 A

Z

1

0

f

2

(x) d�(x) (12)

for all continuous functions for which the preceding integrals are well-de�ned. Hardy gave a result for

this inequality with d�(x) = x

2b

dx and d�(x) = x

2b+2

dx. Tomaselli, Talenti and Artola proved

the inequality for general measure d�(x) = U

2

(x)dx and d�(x) = V

2

(x)dx. One of Muckenhoupt's

main results [Muc72] is summarized in the next statement.

Theorem 3.1 The constant A de�ned by (12) is �nite if and only if

B

def.

= sup

x>0

Z

1

x

d�(x)

Z

x

0

�

d�

dx

�

�1

dx <1 ;

and in this case,

B 6 A 6 4B :
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In [Mic99], Miclo establishes a link between the Hardy type inequalities and the spectral gap

inequalities. While he was concerned with the case of probability measures on Z, we brie�y present

here the corresponding results on the real line.

Let us �rst remark that if F (x) =

R

x

0

f(t) dt and � = � (that we will suppose from now), then the

previous inequality (12) becomes

Z

1

0

(F (x)� F (0))

2

d�(x) 6 A

Z

1

0

F

0

2

(x) d�(x) :

This latter inequality is rather close to a spectral gap inequality for the probability measure �. More

precisely, it is well known that for every m 2 R,

Var

�

(F ) 6

Z

R

(F (x)� F (m))

2

d�(x) :

In order to apply Theorem 3.1, we need to cut the real line into two parts (to reduce R to R

+

). We

denote by A

+

m

and A

�

m

the best constants satisfying respectively

Z

1

m

(F (x)� F (m))

2

d�(x) 6 A

+

m

Z

1

m

F

0

2

(x) d�(x)

and

Z

m

�1

(F (x)� F (m))

2

d�(x) 6 A

�

m

Z

m

�1

F

0

2

(x) d�(x) ;

for all C

1

functions F . By a simple change of variables, they are controlled by

B

+

m

6 A

+

m

6 4B

+

m

and B

�

m

6 A

�

m

6 4B

�

m

;

where

B

+

m

def.

= sup

x>m

Z

1

x

d�(x)

Z

x

m

�

d�

dx

�

�1

dx and B

�

m

def.

= sup

x6m

Z

x

�1

d�(x)

Z

m

x

�

d�

dx

�

�1

dx : (13)

We may summarize these observations in the following proposition.

Proposition 3.2 For every m 2 R, the best constant C in the spectral gap inequality for � is such

that

C 6 4(B

+

m

_ B

�

m

) :

While the latter bound holds for everym 2 R, we get a more precise control if m is a median for �.

Proposition 3.3 Let m be a median of �. Then � satis�es a spectral gap inequality if and only if

B

+

m

_B

�

m

is �nite, and in this case, the best constant C in the spectral gap inequality for � is such that

1

2

(B

+

m

_B

�

m

) 6 C 6 4(B

+

m

_B

�

m

) :

Proof

J We need only prove the lower bound. Assume that B

+

m

_ B

�

m

is �nite and that B

+

m

_ B

�

m

= B

+

m

.

For any � > 0, we can �nd f such that

Z

1

m

�

Z

x

m

f(t) dt

�

2

d�(x) > (A

+

m

� �)

Z

1

m

f

2

(x) d�(x) :

8



Without loss of generality, we can assume that f is non negative. Now, de�ne

F (x) =

�

0 if x > m ;

R

x

m

f(t) dt if x 6 m :

As m is a median of �, �(F = 0) > �(x 6 m) >

1

2

. From the Cauchy-Schwarz inequality, we get

therefore that

�(F )

2

6 �(F

2

)�(F > 0) 6

1

2

�(F

2

) :

Hence

Var

�

(F ) = �(F

2

)� �(F )

2

>

1

2

�(F

2

)

>

1

2

(A

+

m

� �)

Z

1

m

F

0

2

(x) d�(x)

>

1

2

(B

+

m

� �)

Z

1

�1

F

0

2

(x) d�(x)

>

1

2

(B

+

m

� �)

1

C

Var

�

(F ) ;

from which the result follows since � > 0 is arbitrary.

Now, assume that B

+

m

=1. Following step by step the previous argument with f

n

such that

Z

1

m

�

Z

x

m

f

n

(t) dt

�

2

d�(x) > n

Z

1

m

f

2

n

(x) d�(x)

for n large enough, we conclude similarly that C =1. The proof of the proposition is complete. I

In the following, we describe with the preceding results some perturbation properties. Consider a

function h : R! R. Given a phase ', we modify the probability measure d�

'

(x) = Z

�1

'

exp (�'(x))dx

as

d�

'+h

(x) = Z

�1

'+h

exp (�'(x)� h(x))dx : (14)

We assume that Z

'+h

is �nite. h can be considered as a perturbation function.

The following result gives conditions on ' and h so that �

'+h

satis�es a spectral gap inequality. It

also gives an upper bound on the spectral gap constant.

Theorem 3.4 Assume that there exist m 2 R and a constant K independent of x such that for all

x > m,

Z

1

x

e

�'(t)

dt 6 Ke

�'(x)

and

Z

x

m

e

'(t)

dt 6 Ke

'(x)

; (15)

and the corresponding inequalities for x 6 m. Assume furthermore that ' is increasing on [m;1) and

decreasing on (�1; m]. Assume also that

S

def.

=

Z

R

(e

jhj

� 1) <1 : (16)

Then, the probability measure �

'+h

de�ned by (14) satis�es the spectral gap inequality. Furthermore,

the best constant C

'+h

appearing in the spectral gap inequality is controled by

C

'+h

6 4(K

2

+ 2KS + S

2

) :

9



Proof

J From Proposition 3.2, we see that C

'+h

6 4(B

+

m

('+h)_B

�

m

('+h)). By symmetry, we may reduce

to the control of

B

+

m

('+ h)

def.

= sup

x>m

Z

x

m

e

'(t)+h(t)

dt

Z

1

x

e

�'(t)�h(t)

dt :

Now, given that x > m, we may write

Z

x

m

e

'(t)+h(t)

dt

Z

1

x

e

�'(t)�h(t)

dt 6

�

Z

x

m

e

'

+

Z

x

m

e

'

�

�

�

e

h

� 1

�

�

�

��

Z

1

x

e

�'

+

Z

1

x

e

�'

�

�

�

e

�h

� 1

�

�

�

�

:

We develop the right hand side using (15) and monotonicity of ' to get

Z

x

m

e

'(t)+h(t)

dt

Z

1

x

e

�'(t)�h(t)

dt 6

�

Ke

'(x)

��

Ke

�'(x)

�

+

�

Ke

'(x)

�

�

e

�'(x)

Z

1

x

�

�

�

e

�h(t)

� 1

�

�

�

dt

�

+

�

e

'(x)

Z

x

m

�

�

�

e

h(t)

� 1

�

�

�

dt

�

�

Ke

�'(x)

�

+

�

e

'(x)

Z

x

m

�

�

�

e

h(t)

� 1

�

�

�

dt

��

e

�'(x)

Z

1

x

�

�

�

e

�h(t)

� 1

�

�

�

dt

�

:

Now, note that je

h

� 1j 6 e

jhj

� 1. It follows that for all x > m

Z

x

m

e

'(t)+h(t)

dt

Z

1

x

e

�'(t)�h(t)

dt 6 K

2

+ 2KS + S

2

:

Together with the corresponding result for B

�

m

('+ h), this completes the proof. I

Remark 3.5 Turning back the proof above, we can replace K

2

in the upper bound of C

'+h

by

B

+

m

(') _ B

�

m

(') (this quantity is �nite by (15)). Moreover, if m is a median of �

'

, keeping all the

hypotheses of Theorem 3.4 and applying Proposition 3.3, we get that B

+

m

(') _ B

�

m

(') 6 2C

'

6

8B

+

m

(') _B

�

m

(') so that

C

'+h

6 8C

'

+ 4(2KS + S

2

) :

This inequality clearly describes the contribution of the perturbation in the spectral gap constant.

4 A new class of measures which satis�es a spectral gap inequality

As already mentioned in Section 1 and 2, the keystone of Helffer's method is the (USG) condition

(see De�nition 2.3). It allows us to reduce the initial problem on unbounded spin systems to a simple

problem on the real line. We will then be able to apply Theorem 3.4.

In this section, we �rst present and establish the main result of this paper. We then discuss why

the new class of phases  = '+g+h is strictly bigger than the usual class of phases convex at in�nity.

Theorem 4.1 Let ' be a strictly uniformly convex function (i.e. for all x 2 R, '

00

(x) > a > 0), let g be

a bounded function (kgk

1

<1), and let h be a perturbation function satisfying S =

R

R

(e

jhj

� 1) <1.

Then, there exists J

0

such that for all J 2 [0; J

0

], the set of measures (�

�

�;!

) de�ned in (2) with

 = '+ g + h satis�es a spectral gap inequality uniformly in � and !, with

C

�

�;!

6

C

USG

e

4kgk

1

1� C

USG

2dJkV

00

k

1

;

10



where C

USG

6 4(K

2

+ 2KS + S

2

) and K 6 1 + 4=a.

This set of measures satis�es also a decay of correlations, uniformly in � and !, with constant C

0

depending only on C

USG

, J, d, kV

00

k

1

and kgk

1

, that is, for any smooth functions F , G,

E

�

�

�;!

(F;G) 6 C

0

exp(�d(S

F

; S

G

))

�

Z

krFk

2

d�

�

�;!

�

1=2

�

Z

krGk

2

d�

�

�;!

�

1=2

:

The proof of this theorem requires two technical lemmata. Note that from the hypothesis on ', it

is obvious that ' has a unique minimum m 2 R and that ' is increasing on [m;1) and decreasing on

(�1; m].

Lemma 4.2 Let ' be as de�ned in Theorem 4.1. Then there exists a constant K 6 1 + 2=a such that

for all x > m,

Z

x

m

e

'(t)

dt 6 Ke

'(x)

:

Proof

J By convexity, for all x > m+ 1,

'

0

(x) = '

0

(x)� '

0

(m) > a(x�m) > a : (17)

For x > m+ 1, integration by parts yields that

Z

x

m+1

e

'(t)

dt =

e

'(x)

'

0

(x)

�

e

'(m+1)

'

0

(m+ 1)

+

Z

x

m+1

'

00

(t)

'

0

2

e

'(t)

dt

6

e

'(x)

'

0

(x)

+ e

'(x)

Z

x

m+1

'

00

(t)

'

0

2

dt ;

6

e

'(x)

'

0

(x)

+

1

'

0

(m+ 1)

e

'(x)

:

So, by (17),

Z

x

m+1

e

'(t)

dt 6

2

a

e

'(x)

:

Finally, for all x > m+ 1, we have

Z

x

m

e

'(t)

dt =

Z

m+1

m

e

'(t)

dt +

Z

x

m+1

e

'(t)

dt

6 e

'(x)

+

2

a

e

'(x)

6

�

1 +

2

a

�

e

'(x)

;

namely, the expected result in this case with K = 1 + 2=a. Now, for m 6 x 6 m+ 1, write

Z

x

m

e

'(t)

dt 6 e

'(x)

6 Ke

'(x)

;

from which the proof follows. I

In a similar way, we can prove the following lemma (we omit the proof).

11



Lemma 4.3 Let ' be as de�ned in Theorem 4.1. Then there exists a constant K 6 1 + 1=a such that

for all x > m,

Z

1

x

e

�'(t)

dt 6 Ke

�'(x)

:

Note that it exists two corresponding lemmata for x 6 m.

We now prove Theorem 4.1.

Proof

J As announced, we use the reduction to the (USG) property provided by Theorem 2.4. With the

notation of the �rst two sections and in particular De�nition 2.3, let us de�ne

'

�

(x) = '(x) +

X

i2N(0)

JV (x� �

i

) :

For all x 2 R and J small enough, '

00

�

(x) > a� 2dJkV

00

k

1

> a=2. It follows from lemmata 4.2 and 4.3

that the hypothesis (15) holds for '

�

, with K 6 1 + 4=a. We can thus apply Theorem 3.4 to '

�

and h

to get

C

USG

6 4(K

2

+ 2KS + S

2

) :

The preceding constant is independent of � = (�

i

)

i2N(0)

, so that (USG) is satis�ed. In this way

we may apply Theorem 2.4. The set of measures (�

�

�;!

) will satisfy a spectral gap inequality with a

constant equal to

C

USG

1� C

USG

2dJkV

00

k

1

:

Finally, it is well known that adding a bounded function g gives no more than e

4kgk

1

in the control

of the constant (see [Aa99]).

On the other hand, applying Theorem 2.5 instead of Theorem 2.4 gives the result on the decay of

correlations. Theorem 4.1 is established. I

We now present examples of functions  = ' + g + h de�ned in Theorem 4.1 that are not convex

at in�nity. To do so, we give an example where we add a special perturbation function h to ' (where

' is as in Theorem 4.1). Indeed, let h(x)

def.

=

P

1

�1

h

i

(x) where h

i

: R! R (i 2Z) is a piecewise linear

continuous function de�ned from its derivative by

h

0

i

(x) =

8

<

:

0 if x =2 [u

i

; u

i

+ �

i

] ;

��

i

if x = u

i

+

�

i

4

;

�

i

if x = u

i

+

3�

i

4

;

where (�

i

) is a sequence of non negative numbers and (u

i

) and (�

i

) are two sequences of real numbers

such that u

i

< u

i

+ �

i

< u

i+1

. Moreover we assume that [u

i

; u

i

+�

i

] is the support of h

i

. One can see

h

i

as a well of depth �

i

�

i

=4 and of width �

i

.

To be outside the classical class of convex at in�nity functions, it is enough to show that the depth

of the well increases faster than '. Write L

i

= kh

i

k

1

� ('(u

i

+ �

i

=2)� '(u

i

)). We have the following

obvious su�cient condition (we omit the proof).

Proposition 4.4 Let ' be as in Theorem 4.1 and h as above. Then, if

lim

i!1

L

i

=1 ;

then '+ h is not convex at in�nity.

12



It is now easy to choose the sequences (�

i

)

i2Z

and (�

i

)

i2Z

such that

lim

i!1

L

i

=1

and at the same time,

Z

R

e

jhj

� 1 6

X

i2Z

�

i

e

kh

i

k

1

<1 ;

since we are free to choose �

i

as we want. For example, one can chose '(x) = x

2

=2 and h as above,

even, with u

i

= i, �

i

= 4i

3

e

i

and �

i

= e

�i

=i

2

for all i 2 N

�

. It's well known that d�

'

(x) = Z

�1

e

�x

2

=2

dx

satis�es a spectral gap inequality with constant C

'

= 2. On the other hand, it follows from an obvious

calculus that L

i

= i� o(1=i) and S 6 2

P

i2N

�

1=i

2

. Proposition 4.4 holds and so '+ h is not convex

at in�nity. Moreover the hypotheses of Theorem 4.1 are satis�ed.

We may note that Theorem 4.1 is quite general since the condition on the perturbation h (

R

R

(e

jhj

�

1) <1) is rather weak. Until now, the results were based on convexity conditions (following semi-group

methods) whereas we just need integrability conditions here.

In this note, we proved a perturbation theorem (Theorem 3.4) for Poincaré inequalities using

Hardy's criterion. One may try to obtain the same kind of result for logarithmic Sobolev inequalities

using the corresponding criterion by Bobkov and Götze (see [BG99]). In an other direction, one

can try to prove logarithmic Sobolev inequalities for unbounded spin systems with nearest neighbor

interaction associated to non convex phases introduced in this note. But here, Helffer's method is

no more avaible because there is no result like Theorem 2.2 (see for example [Led99, Aa99]). It is an

open problem to �nd its analogue for logarithmic Sobolev inequalities. One may also try to use a

more classical approache via the decay of correlations (see [Zeg96, Yos99, BH99a]). In this direction,

Helffer (see [Hel99b] Remark 8.5.2) remarks that under the decay of correlations (see Theorem 2.5)

and an hypothesis relative to the existence for each n of a uniform logarithmic Sobolev constant C

n

(uniform on the boundary conditions, in J and in the functions f with support �nearly� includes in a box

of size n), one can prove the logarithmic Sobolev inequality for unbounded spin systems. Actually,

taking back the proof given by Helffer, we can see that we only need the existence of the uniform

logarithmic Sobolev constant in dimension one. Thus, by this note, as the logarithmic Sobolev

inequality implies the spectral gap inequality and the decay of correlations, we have the following

interesting result: under a uniform logarithmic Sobolev inequality on the line, the unbounded spin

systems satisfy a logarithmic Sobolev inequality uniformly on the boundary conditions, on the box

�, for J small enough. By this way, we reduce the problem from R

n

to a more simple problem on the

line. However, at this point, we have not been able to prove a uniform logarithmic Sobolev inequality

in this context.
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