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The purpose of this paper is to analyze the isoperimetric inequality for symmetric 
log-convex probability measures on the line. Using geometric arguments we first re-
prove that extremal sets in the isoperimetric inequality are intervals or complement 
of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form 
of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, 
it could be that a set is very close to be optimal, in the sense that the isoperimetric 
inequality is almost an equality, but at the same time is very far (in the sense of 
the symmetric difference between sets) from any extremal sets! From the results on 
sets we derive quantitative functional inequalities of weak Cheeger type.
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1. Introduction

The isoperimetric problem in metric probability spaces is a very rich and extensive theory, with many 
applications in probability, analysis and geometry, as for example concentration of measure, phenomena in 
high dimension [28], rearrangement, PDEs [30], etc. See e.g. [27,2,36,25] for overview papers and monographs.

The isoperimetric inequality for the Gaussian measure in dimension 1 (the result holds in any dimension 
[11,39]) reads

P (E) ≥ I
(
γ(E)

)
for all Borel sets E ⊂ R,

where P (E) is the perimeter of E (see below for a precise definition), γ(E) = 1√
2π

∫
E
e−x2/2dx is the 

Gaussian measure of the set E and I = ϕ ◦ Φ−1 is the isoperimetric profile (here ϕ stands for the density 
of γ and Φ for its cumulative distribution function). Equality cases are given by half-lines (half-spaces in 
dimension higher than 1 [19,12]). Very recently Cianchi, Fusco, Maggi and Pratelli [16] solved the harder 
question about the almost equality cases (see [32,33,20] for further developments). If Ē is an extremal set 
in the above isoperimetric inequality, defining the deficit as

δ(E) := P (E) − P (Ē),

the authors proved the following quantitative isoperimetric inequality

δ(E) ≥ C
(
γ(E)

)
λ(E)

√
log 1

λ(E) , (1.1)

where λ(E) := inf H half line:
γ(H)=γ(E)

γ(EΔH), Δ stands for the symmetric difference between sets and C is a 

constant that depends on the measure γ(E) of the set. The quantity λ(E) is called the asymmetry of E: it 
encodes, in the sense of the symmetric difference, how far the set is from the extremal sets in the isoperimetric 
inequality. One of the main issues here is to find the sharp dependence in δ. Observe that (1.1) relates two 
different “distances” from a set E to the extremal sets in the isoperimetric inequality.

Using a geometric argument in the spirit of [16] de Castro in [17] is able to identify all extremal sets in 
the isoperimetric inequality that have also a fixed asymmetry. More precisely, he proves that among sets of 
given measure and given asymmetry, intervals or complements of intervals (depending on the range) have 
minimal perimeter. Furthermore, he deals more generally with any log-concave probability measure and not 
only the Gaussian measure.

In the present paper, our aim is to analyze quantitative isoperimetric inequalities for the class of log-
convex probability measures on the line. Assume for simplicity that μ is a symmetric absolutely continuous 
(with respect to the Lebesgue measure) probability measure on the line, with density f . Then μ is said to 
be log-convex if log f is convex on (−∞, 0]. This class of probability measures includes for example distribu-
tions dmα(x) = αdx

2(1+|x|)1+α , α > 0 (such distributions1 are related to the well-known κ-concave probability 
measures [10] whose corresponding isoperimetric problem is studied in [7]). The isoperimetric problem for 

1 Sometimes (mistakenly) referred to as “generalized Cauchy distributions” in the literature [3,13,36].
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log-convex probability measures in dimension 1 is fully solved by Bobkov and Houdré [9] (see also [38]). In 
higher dimension, for product of log-convex probability measures, extremal sets are not known. However, 
some estimates on the isoperimetric profile (dimension dependent as it must be [40]) are given in [13] (see 
also [37,3]) with links with the concentration of measure.

Using a geometric argument of the type of Cianchi et al. [16], we shall first re-prove the result by Bobkov 
and Houdré [9] on the extremal sets in the isoperimetric inequality (see Section 3). Then, we will obtain a 
quantitative isoperimetric inequality (in the form of (1.1), see Section 4) which appears to be surprising, 
due to the presence of different shapes in the extremal sets when the measure of the set is precisely 1/2. 
Indeed, it could be that a set has very small deficit (δ above) but large asymmetry (see Section 4.2). This 
is one of our main results. We emphasize that log-convex probability measures are the first examples of 
measures, to the best of our knowledge, displaying such an anomalous property.

Contrary to the case of the log-concave probability measures, there is not a unique description of extremal 
sets with given measure and given asymmetry. We shall illustrate this with two explicit examples (see 
Section 4.1). However, under few additional assumptions on the density f of the measure, we will give a 
unified description of extremal sets with given measure and given asymmetry. From our estimates on sets we 
finally derive quantitative functional inequalities of weak Cheeger type in some specific cases (see Section 5).

There is an important activity on the questions of quantitative inequalities. To give a complete overview 
of the literature would be out of reach. Let us mention only few very recent works somehow related to the 
present paper. In [22] the authors deal with the isoperimetric problem for radially symmetric log-convex 
probability measures (finding extremal sets in Rn). In [23] the authors deal with quantitative Brunn–
Minkowski inequality (which is related to the isoperimetric problem in Euclidean space), while functional 
counter parts can be found in [15,18] on Sobolev inequalities, and in [26,8] on log-Sobolev inequalities for 
the Gaussian measure.

We observe that, for the clarity of the exposition, we shall postpone some (technical) proofs to Appen-
dices A–C.

2. Log-convex measures: definition and first properties

In this section we introduce the notion of log-convex probability measures on the line, we give some 
examples and prove few basic properties.

Throughout the paper, we assume that μ is an absolutely continuous probability measure (with respect 
to the Lebesgue measure) on R with density f . Set F (x) = μ((−∞, x]), x ∈ R, for its distribution function 
and let

a = inf
{
x ∈ R : F (x) > 0

}
and b = sup

{
x ∈ R : F (x) < 1

}
.

In general −∞ ≤ a < b ≤ +∞. In analogy with the family of log-concave probability measures, we define 
the family of log-convex probability measures.

Definition 2.1 (Log-convex measure). Let μ be an absolutely continuous probability measure on R with 
density f . Then, μ is said to be log-convex (respectively strictly log-convex) if there exists x0 ∈ (a, b) such 
that log f is convex (respectively strictly convex) on (a, x0) and on (x0, b).

The family of log-convex measures includes distributions

dmα(x) = α

2(1 + |x|)1+α
dx (2.1)

where α > 0 is a parameter (notice that such distributions are strictly log-convex). It also includes the 
two-sided exponential measure
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dμ1(x) = e−|x|

2 dx (2.2)

(which is not strictly log-convex) and more generally any probability measures of the form

dμΦ(x) = Z−1
Φ e−Φ(x)dx (2.3)

with Φ e.g. even and concave on (0, +∞). The family of log-convex measures intersects (but is different from) 
the family of κ-concave probability measures introduced by Borell [10] (in particular it does not contain the 
usual Cauchy distribution whose density is f(x) = 1/(π[1 + x2])).

Observe that F is strictly increasing on (a, b) and if one sets

J(t) = f
(
F−1(t)

)
0 < t < 1, (2.4)

then limt→0 J(t) = limt→1 J(t) = 0, and the map t �→ J(t) is increasing on (0, F−1(x0)) and decreasing on 
(F−1(x0), 1). Without any further mention, in the rest of the paper we will extend J up to 0 and 1, setting 
J(0) = J(1) = 0. For example, for the two-sided exponential measure (2.2), one can easily check that J(t) =
min(t, 1 − t), that for mα defined in (2.1), Jα(t) = α2 1

α min(t, 1 − t)1+ 1
α (see e.g. [13]) and that for (2.3), 

under mild assumption on Φ (see [13, Proposition 5.21] for a precise statement), JΦ(t) ∼ tΦ′(Φ−1(log 1
t )), 

as t goes to 0.
The following characterization holds.

Proposition 2.2. Let μ be an absolutely continuous probability measure on R with density f and distribution 
function F . Set a := inf{x ∈ R : F (x) > 0} and b := sup{x ∈ R : F (x) < 1}. Assume that F is strictly 
increasing on (a, b) and denote by F−1: (0, 1) → (a, b) the inverse of F . Then, the following properties are 
equivalent:

(i) μ is log-convex (resp. strictly log-convex);
(ii) f is continuous and positive on (a, b) and J = f ◦F−1 is convex (resp. strictly convex) on (0, F−1(x0))

and on (F−1(x0), 1).

The proof (that we omit) is analogous to the case of log-concave measures (see [6, Proposition A.1]).
For simplicity (mainly to avoid unnecessary technicalities), we will restrict ourself to the study of a 

sub-class of log-convex probability measures.
In what follows, we will only consider log-convex probability measures symmetric with respect to the 

origin2 (i.e. x0 = 0 and J is symmetric with respect to 1
2 ), such that a = inf{x ∈ R : F (x) > 0} = −∞ and 

b = sup{x ∈ R : F (x) < 1} = +∞.

Definition 2.3 (The set F). We set F for the set of all strictly log-convex probability measures μ on R, 
symmetric with respect to the origin, satisfying

inf
{
x ∈ R : F (x) > 0

}
= −∞ and sup

{
x ∈ R : F (x) < 1

}
= +∞.

The following lemma holds.

Lemma 2.4. Let μ ∈ F . Then t �→ J(t)
t is a strictly increasing function on [0, 12 ].

2 Observe that the choice of the origin is not restrictive since the measure μ(· + α), with α ∈ R, shares the same isoperimetric 
properties as the measure μ.
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3. Isoperimetric inequality

In this section we recover known isoperimetric inequalities for log-convex measures on the line [9], using 
geometric arguments (see [16,17]) that will allow us to prove quantitative estimates.

In order to give the definition of perimeter, we first recall that the essential boundary of a measurable 
set E is ∂ME = R\(E0 ∪ E1), where

Ei =
{
x ∈ R : lim

ρ→0

|E ∩Bρ(x)|
|Bρ(x)| = i

}
for i = 0, 1,

Bρ(x) = (x − ρ, x + ρ) and |A| is the Lebesgue measure of the set A.
Given an absolutely continuous probability measure μ on the line with density f , the μ-perimeter of a 

Borel set E is defined as

Pμ(E) =
∫

∂ME

f(x) dH0(x),

where H0(x) denotes the 0-dimensional Hausdorff measure in R (i.e. the counting measure, see [21, Theo-
rem 2, p. 63]) and ∂ME is the essential boundary of E (see e.g. [1]). In most occurrences we will write for 
simplicity P for Pμ.

In what follows we will use the following property.

Lemma 3.1. Let E be a set of finite perimeter. Then there exists a countable set H such that, up a set of 
measure zero, E =

⋃
h∈H(ah, bh), where −∞ ≤ ah < bh ≤ +∞ and dist(E \ (ah, bh), (ah, bh)) > 0 for all 

h ∈ H.

For a proof we refer to e.g. [1, Proposition 3.52].

Warning. We note that in our framework we can indifferently consider open, closed and semi-open intervals, 
since they have all the same measure and perimeter. In particular, in many results below, we shall give 
equality cases only with open intervals (or union of open intervals) but of course the corresponding closed 
intervals and semi-open ones are also equality cases.

Bobkov and Houdré proved the following very general statement.

Theorem 3.2. (See [9], Corollary 13.10.) Let dμΦ(x) = Z−1
Φ e−Φ(x)dx be a probability measure, with Φ: R → R

even, and ZΦ the normalization constant. Then the extremal sets in the isoperimetric inequality can be found 
among half-lines, symmetric segments and their complements.

Our goal is to state a more precise result about extremal sets for symmetric strictly log-convex probability 
measures. As already mentioned, we will make use of a geometric argument that we present now.

3.1. The shifting property

Following [16] (for Gauss measures, see also [17] for log-concave measure on the line), we prove in this 
section a “shifting property” for intervals and complement of intervals.

We start with a definition of shifted intervals.
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Definition 3.3 (Right/left shifted interval). Let (a, b) be an interval of R with −∞ < a < b < +∞. Then,

• any interval (a′, b′) such that a < a′ < b′ ≤ +∞ and μ((a, b)) = μ((a′, b′)) is said to be a right-shifted 
interval of (a, b);

• any interval (a′, b′) such that −∞ ≤ a′ < b′ < b and μ((a, b)) = μ((a′, b′)) is said to be a left-shifted 
interval of (a, b).

The next proposition is one of our key ingredient. It encodes the fact that, depending on the measure of 
the interval and on its position on the line, the μ-perimeter decreases for left/right shifted intervals.

Proposition 3.4 (Shifting property for intervals). Let μ ∈ F (see Definition 2.3).

(1) Let (a, b) be an interval of measure μ((a, b)) < 1
2 .

(1a) If a ≥ 0 (resp. b ≤ 0), then

P
(
(a, b)

)
> P

((
a′, b′

))
for any right-shifted (resp. left-shifted) interval of (a, b).

(1b) If a < 0, b > 0 and a + b ≥ 0 (resp. a + b ≤ 0), then

P
(
(a, b)

)
> P

((
a′, b′

))
for any left-shifted (resp. right-shifted) interval of (a, b) with a′ + b′ ≥ 0 (resp. a′ + b′ ≤ 0).

(2) Let (a, b) be an interval of measure μ((a, b)) ≥ 1
2 . If a + b ≥ 0 (resp. a + b ≤ 0), then

P
(
(a, b)

)
> P

((
a′, b′

))
for any left-shifted (resp. right-shifted) interval of (a, b) with a′ + b′ ≥ 0 (resp. a′ + b′ ≤ 0).

Remark 3.5. Without the strict log-convexity assumption, the results above still hold but no more with 
strict inequalities.

Proof. Let (a, b) be an interval of measure p ∈ (0, 1), with −∞ ≤ a < b ≤ +∞. Its perimeter is

P
(
(a, b)

)
= f(a) + f(b) = J

(
F (a)

)
+ J

(
F (b)

)
.

The value p ∈ (0, 1) being fixed, necessarily b = F−1(p + F (a)). Denoting a = F−1(t), we may study the 
function

P
(
(a, b)

)
= J(t) + J(p + t) := ψp(t)

as a function of t ∈ [0, 1 − p]. The expected results follow at once from Lemma 3.6 below. �
Lemma 3.6. Let μ ∈ F . For p ∈ (0, 1) and t ∈ [0, 1 − p], set ψp(t) = J(t) + J(p + t). Then,

i) ψp is symmetric about 1−p
2 ,

ii) if p ≥ 1/2, ψp is strictly convex on [0, 1 − p], decreasing on (0, 1−p
2 ), increasing on (1−p

2 , 1 − p), 1−p
2 is 

a minimum and 0, 1 − p are maxima.
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Fig. 1. The shape of the function t �→ ψp(t) for p ≥ 1/2 and p < 1/2.

iii) if p < 1/2, ψp is strictly convex on (0, 12 −p), on (1
2 −p, 12 ) and on (1

2 , 1 −p), it is increasing on (0, 12 −p), 
decreasing on (1

2 − p, 1−p
2 ), increasing on (1−p

2 , 12 ) and decreasing on (1
2 , 1 − p). Moreover 1

2 − p, 12 are 
maxima and 1−p

2 , 0, 1 − p are minima. (See Fig. 1.)

Proof. The proof is elementary and left to the reader. �
We end this section with a converse of Proposition 3.4, namely that the shifting property of Proposition 3.4

(to be really precise only a weaker form is needed) implies that μ is log-convex.

Proposition 3.7. Let μ be a probability measure on the line, symmetric with respect to a point (say the origin 
for simplicity) with density f . Assume that f is continuous, positive on (−α, α) for some α ∈ (0, ∞] and 
such that the following shifting properties hold:

1) if (a, b) is an interval with μ((a, b)) < 1
2 , a < 0, b > 0 and a + b ≥ 0 (resp. a + b ≤ 0) then

P
(
(a, b)

)
≥ P

((
a′, b′

))
for any left-shifted (resp. right-shifted) of (a, b) with a′ + b′ ≥ 0 (resp. a′ + b′ ≤ 0);

2) if (a, b) is an interval with μ((a, b)) ≥ 1
2 and a + b ≥ 0 (resp. a + b ≤ 0) then

P
(
(a, b)

)
≥ P

((
a′, b′

))
for any left-shifted (resp. right-shifted) of (a, b) with a′ + b′ ≥ 0 (resp. a′ + b′ ≤ 0).

Then μ is log-convex.

Proof. By Proposition 2.2, continuity and symmetry of J(t) we only have to prove that, for all t ∈ (0, 12 )
and all d so that t ± d ∈ (0, 12 ), it holds

J(t) ≥ 1
2
(
J(t− d) + J(t + d)

)
. (3.1)

Fix t ∈ (0, 12 ) and d such that t ± d ∈ (0, 12 ) and set a = F−1(t), b = F−1(1 − t), a′ = F−1(t + d) and 
b′ = F−1(1 − t + d). With these notations in hand, we observe that, by symmetry of J ,

P
(
(a, b)

)
= J(t) + J(1 − t) = 2J(t)

and

P
((
a′, b′

))
= J(t + d) + J(1 − t + d) = J(t + d) + J(t− d).

Then (3.1) precisely means that P ((a, b)) ≥ P ((a′, b′)) which is guaranteed by the shifting property assump-
tion. This ends the proof. �
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3.2. Isoperimetric problem for intervals and complement of intervals

The geometric tool given in the previous section will allow us to answer the following warm-up isoperi-
metric problem: among all intervals (and then among all complement of intervals) of given measure, which 
one(s) has(have) minimal perimeter? The answer for intervals is stated in the next corollary: depending on 
the measure of the interval, the interval with minimal perimeter has to be found at infinity (half-line), or 
centered around the origin.

We need a preliminary result.

Lemma 3.8. Let μ ∈ F . Then, there exists a unique p0 ∈ (0, 12 ) satisfying J(1 − p0) = 2J((1 − p0)/2) and 
such that J(1 − p) < 2J((1 − p)/2) for p ∈ [0, p0) and J(1 − p) > 2J((1 − p)/2) for p ∈ (p0, 1/2], where J(t)
is defined in (2.4).

Remark 3.9. In general p0 is known only implicitly. However, in the case of the measure mα defined in (2.1), 
one easily sees that p0 = 1

1+21/(1+α) .

Proof. Let us consider the auxiliary function g(p) = J(1 − p) − 2J(1−p
2 ) = J(1 − p) − 2J(1+p

2 ) for p ∈ [0, 12 ]. 
We observe that g is continuous, increasing and g(0) = −2Jμ(1

2 ) < 0. Moreover, Lemma 2.4 guarantees that 
g(1

2 ) = 1
2 (J(1/2)

1/2 − J(1/4)
1/4 ) > 0. Hence the result. �

Introduce the following notation.

αp = −F−1
(

1 − p

2

)
, σp = −F−1(p), p ∈ [0, 1]. (3.2)

We are now in position to state the corollary.

Corollary 3.10 (Extremal sets in the isoperimetric problem for intervals). Let μ ∈ F and p0 defined in 
Lemma 3.8. Let us fix a, b with −∞ ≤ a < b ≤ +∞ and set p = μ((a, b)). Then,

i) if p > p0,

P
(
(a, b)

)
≥ P

(
(−αp, αp)

)
, (3.3)

with equality iff (a, b) = (−αp, αp);
ii) if p < p0,

P
(
(a, b)

)
≥ P

(
(−∞,−σp)

) (
= P

(
(σp,+∞)

))
, (3.4)

with equality iff (a, b) = (−∞, −σp) or (a, b) = (σp, +∞);
iii) if p = p0,

P
(
(a, b)

)
≥ P

(
(−αp, αp)

)
= P

(
(−∞,−σp)

)
= P

(
(σp,+∞)

)
with equality iff (a, b) equals (−αp, αp), (−∞, −σp) or (σp, +∞).

Proof. If p ≥ 1/2, the result of point (i) immediately follows from Proposition 3.4 point (2).
Hence, we need to deal with 0 ≤ p < 1

2 . As in the proof of Proposition 3.4, we have

P
(
(a, b)

)
= J

(
F (a)

)
+ J

(
p + F (a)

)
= ψp

(
F (a)

)
,
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where ψp has been defined in Lemma 3.6. Thanks to Lemma 3.6, we need to compare the two minima of ψp, 
namely ψp(1 − p) = J(1 − p) = P ((−∞, −σp)) = P ((σp, +∞)) and ψp(1−p

2 ) = 2J(1−p
2 ) = P ((−αp, αp)).

By definition of p0 (see Lemma 3.8), we conclude that a �→ ψp(F (a)) has a unique global minimum at 
a = F−1(1−p

2 ) if 0 < p < p0 and has two minima at a = F−1(0) and a = F−1(1 − p) if p0 < p < 1
2 . This 

ends the proof of the inequalities. Equality cases follow at once from the strict monotonicity of ψp. �
Remark 3.11. Corollary 3.10 implies that

P
(
(a, b)

)
≥ min

{
2J

(
1 − p

2

)
, J(p)

}
, p ∈ [0, 1].

Remark 3.12 (Isoperimetric problem for complements of an interval). Observing that intervals and com-
plement of intervals have the same perimeter, i.e. that P ((−∞, a) ∪ (b, +∞)) = P ((a, b)) one can easily 
solve, using Corollary 3.10, the isoperimetric problem among sets of prescribed measure, that are comple-
ments of an interval. More precisely, one obtains the following (details are left to the reader): Fix a, b with 
−∞ ≤ a < b ≤ +∞ and set p = μ((−∞, a) ∪ (b, +∞)). Then (using notations of Corollary 3.10),

i) if p > 1 − p0,

P
(
(−∞, a) ∪ (b,+∞)

)
≥ P

(
(−∞, σ1−p)

) (
= P

(
(−σ1−p,+∞)

))
(3.5)

with equality iff (−∞, a) ∪ (b, +∞) = (−∞, σ1−p) or (−∞, a) ∪ (b, +∞) = (−σ1−p, ∞);
ii) if p < 1 − p0,

P
(
(−∞, a) ∪ (b,+∞)

)
≥ P

(
(−∞,−α1−p) ∪ (α1−p,+∞)

)
(3.6)

with equality iff (−∞, a) ∪ (b, +∞) = (−∞, −α1−p) ∪ (α1−p, +∞);
iii) if p = 1 − p0,

P
(
(−∞, a) ∪ (b,+∞)

)
≥ P

(
(−∞,−α1−p) ∪ (α1−p,+∞)

)
= P

(
(−∞, σ1−p)

)
= P

(
(−σ1−p,+∞)

)
with equality iff (−∞, a) ∪(b, +∞) equals (−∞, σ1−p), (−∞, σ1−p) or the set (−∞, −α1−p) ∪(α1−p, +∞).

3.3. Isoperimetric inequality for strictly log-convex probability measures

From the results of the previous sections, we can now solve the isoperimetric problem for strictly log-
convex probability measures.

In what follows we need to recall the definition of αp and σp given in (3.2). For simplicity, we set also 
βp = α1−p, for p ∈ [0, 1].

Theorem 3.13 (Isoperimetry for strictly log-convex probability measures). Let μ ∈ F and E be a Borel set 
of R with measure μ(E) = p. Then

i) if p < 1/2,

P (E) ≥ P
(
(−∞,−βp) ∪ (βp,+∞)

)
, (3.7)

with equality iff E = (−∞, −βp) ∪ (βp, +∞);
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ii) if p > 1/2,

P (E) ≥ P
(
(−αp, αp)

)
(3.8)

with equality iff E = (−αp, αp);
iii) if p = 1

2

P (E) ≥ P
(
(−∞,−βp) ∪ (βp,+∞)

)
= P

(
(−αp, αp)

)
(3.9)

with equality iff E equals (−∞, −βp) ∪ (βp, +∞) or (−αp, αp).

Remark 3.14. The measure 1/2 can be seen as an isoperimetric threshold, in the sense that extremal sets 
move from complement of symmetric intervals (when p < 1/2) to symmetric intervals (when p > 1/2).

Proof. Let E be a Borel set with measure p = μ(E). Without loss of generality we can assume that E has 
finite perimeter.

Step 1. Assume that E = (a1, b1) ∪ (a2, b2) with a1 < b1 < a2 < b2 and a1 > 0. Then, consider the right 
shifted interval (a′1, b′1) of (a1, b1), with b′1 = a2 so that, thanks to Proposition 3.4,

P (E) ≥ P
((
a′1, b

′
1
)
∪ (a2, b2)

)
≥ P

((
a′1, b2

))
.

In conclusion, we get that, given two disconnected intervals contained in (0, ∞), the perimeter decreases by 
moving (and gluing) the left most interval toward the right most one. Clearly, the same property holds for 
a1 < b1 < a2 < b2 < 0 by symmetry.

Step 2. Let E be any set of finite μ-perimeter. From Lemma 3.1 there exists a countable set H such that, up 
to a set of measure zero, E =

⋃
h∈H(ah, bh), where −∞ ≤ ah < bh ≤ +∞ and dist(E \ (ah, bh), (ah, bh)) > 0

for all h ∈ H. Without loss of generality we can assume that the set of measure zero is the empty set. Then, 
iterating the arguments used in step 1 (for two intervals), we obtain that, either

P (E) ≥ P
(
(−∞,−a) ∪ (b,+∞)

)
if 0 /∈ E, or, if 0 ∈ (aho

, bho
) for some ho ∈ H,

P (E) ≥ P
(
(−∞,−a) ∪ (aho

, bho
) ∪ (b,+∞)

)
,

where a, ̄a, b, ̄b ∈ (0, ∞] and (−∞, −a) ∪ (b, +∞) and (−∞, −a) ∪ (aho
, bho

) ∪ (b, +∞) are sets with measure 
p = μ(E). Here and below we use the convention that (∞, ∞) = (−∞, −∞) = ∅. In the second case (i.e.
when 0 ∈ E), we continue the reduction by considering the complementary set[

(−∞,−a) ∪ (aho
, bho

) ∪ (b,+∞)
]c = [−a, aho

] ∪ [bho
, b̄],

which has the same measure and same perimeter as Ê := (−a, aho
) ∪ (bho

, ̄b) that we will deal with. By 
construction and since μ is symmetric, necessarily μ((−a, aho

)) < 1/2 and μ((bho
, ̄b)) < 1/2. Hence, thanks 

to the shifting property of Proposition 3.4 (point (1)), P ((−a, aho
)) ≥ P ((−∞, −α)) and P ((bho

, ̄b)) ≥
P ((β, ∞)), where α, β ∈ (0, ∞] are such that μ((−∞, −α)) = μ((−a, aho

)) and μ((β, ∞)) = μ((bho
, ̄b)). 

Going back to the complementary set, we end up with the following bound

P (E) ≥ P (Ê) ≥ P
(
(−∞,−α) ∪ (β,∞)

)
= P

(
(−α, β)

)
with μ((−α, β)) = p.
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As a summary, after few reductions, we obtained the following two cases: either

(I) P (E) ≥ P
(
(−∞,−a) ∪ (b,+∞)

)
if 0 /∈ E

or

(II ) P (E) ≥ P
(
(−α, β)

)
if 0 ∈ E,

where μ((−∞, −a) ∪ (b, +∞)) = μ((−α, β)) = μ(E) = p and a, α, b, β ∈ (0, ∞].
Now assume that p ∈ (0, 1/2]. We distinguish between cases (I) and (II ).
Case (I). Applying Remark 3.12 point ii) (observe that, since p ≤ 1/2, necessarily p < 1 −p0, where p0 is 

defined in Lemma 3.8), the perimeter decreases if we consider the symmetric set (−∞, −α1−p) ∪(α1−p, +∞), 
unless E = (−∞, −α1−p) ∪ (α1−p, +∞), where we recall that α1−p = −F−1(p/2) = βp.

As a conclusion, in case (I), P (E) ≥ P ((−∞, −βp) ∪ (βp, +∞)).
Case (II). Corollary 3.10 (point ii)) guarantees that

P (E) ≥ P
(
(−α, β)

)
≥ P

(
(−∞,−σp)

)
= J(p)

(where σp = −F−1(p)). Lemma 2.4 implies that, for p ∈ [0, 12 ], J(p) ≥ 2J(p2 ) = P ((−∞, −βp) ∪ (βp, +∞)). 
The inequality of point i) follows. Keeping track of the equality cases in the various steps above leads to 
the desired result of points i) and iii).

Finally, point ii) is an easy consequence of point i) considering the complementary set. �
Remark 3.15. Notice that in Theorem 3.13, if μ is not strictly log-convex then the uniqueness in the equality 
cases no longer holds (see next Section 3.4).

Also, observe that Theorem 3.13 gives the following explicit expression of the isoperimetric profile, re-
covering [9] for strictly log-convex probability measures,

I(p) = 2J
(

1
2 min(p, 1 − p)

)
, p ∈ [0, 1].

3.4. Example of the two-sided exponential measure

In this subsection, we briefly deal with an example of non-strictly log-convex probability measure, the 
two-side exponential measure defined in (2.2). It is a symmetric probability measure, log-convex and log-
concave, with J(t) = min(t, 1 − t).

The perimeter Pμ1((a, b)) of an interval (a, b) of fixed measure p can be explicitly computed. If p ≥ 1
2

then Pμ1((a, b)) = 1 − p. In particular, we stress that all intervals of measure bigger than 1/2 have the same 
perimeter. If p < 1

2 we have

Pμ1

(
(a, b)

)
= Pp(a) =

⎧⎪⎨⎪⎩
2F (a) + p if −∞ ≤ a ≤ F−1(1

2 − p),
1 − p if F−1(1

2 − p) ≤ a ≤ 0,
2 − 2F (a) − p if 0 ≤ a ≤ F−1(1 − p).

Therefore among the intervals (a, b) of measure p < 1
2 the half-lines have minimal perimeter. Moreover the 

shifting property for interval is the following:
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Proposition 3.16. If (a, b) is an interval of measure such that μ1((a, b)) < 1
2 with b ≤ 0 (resp. a ≥ 0), then

Pμ1

(
(a, b)

)
> Pμ1

((
a′, b′

))
for any left-shifted (resp. right-shifted) interval of (a, b).

Otherwise

Pμ1

(
(a, b)

)
= Pμ1

((
a′, b′

))
for any right-shifted or left-shifted interval of (a, b).

Arguing as in Theorem 3.13 we obtain that for a fixed measure p < 1
2 any complement of an interval and 

the half-lines are sets with minimal perimeter. For p ≥ 1
2 any interval and half-lines have minimal perimeter.

4. Quantitative isoperimetric inequality

In this section, following [16], we introduce and study a notion of asymmetry, which quantify the “dis-
tance” between any measurable set E and the family of extremal sets in the isoperimetric problem. Then 
we state a preliminary result on the sets that have minimal perimeter and given measure and asymmetry.

We define the asymmetry λ(E) of a set E of measure p = μ(E) as

λ(E) =

⎧⎪⎨⎪⎩
μ(E � (−∞,−βp) ∪ (βp,+∞)) if p < 1

2

μ(E � (−αp, αp)) if p > 1
2

min{μ(E � (−∞,−βp) ∪ (βp,+∞)), μ(E � (−αp, αp))} if p = 1
2 ,

(4.1)

where βp = α1−p = −F−1(p/2), p ∈ [0, 1] are defined in the previous section and � stands for the symmetric 
difference between sets.

Remark 4.1. To help the reader in many computations throughout all this section, we observe that the set 
E = (−βa, −βb), with 0 ≤ a ≤ b, has perimeter P (E) = J(b/2) + J(a/2) and measure μ(E) = (b − a)/2.

The next lemma summarizes some basic properties on the asymmetry λ(E).

Lemma 4.2. Let μ ∈ F and E, F be two sets with finite μ-perimeter. Then,

i) E � F = Ec � F c,
ii) λ(E) = λ(Ec),
iii) 0 ≤ λ(E) ≤ 2 min(μ(E), 1 − μ(E)),

where Ec denotes the complement of E.

Proof. The assertions are easy and left to the reader. �
4.1. A preliminary reduction and application

The next result is a first reduction to find the sets with minimal perimeter and given measure and 
asymmetry. We first consider the case 0 < μ(E) ≤ 1

2 . The other case 1
2 ≤ μ(E) < 1 can be obtained using 

complementary sets and Lemma 4.2. We may use the following notation: given a set E, −E = {−x, x ∈ E}
denotes its symmetric with respect to the origin.



F. Feo et al. / J. Math. Anal. Appl. 420 (2014) 879–907 891
Fig. 2. The sets E1, . . . , E4 (bold lines). Hachured parts (of measure λ) correspond to the symmetric difference between the set Ei

and the optimal set (−∞, −βp) ∪ (βp, ∞). Observe that there is no universal order between the extremal points of the intervals 
defining E1, . . . , E4, except that βλ−p ≥ βλ/2, and βp−λ ≥ βp− λ

2
. Also, depending on the value of p and λ, it could be that 0 ∈ E3.

We will show, in Proposition 4.3 below, that the minimal sets among all sets of given measure p and 
given asymmetry λ have to be found among the following sets and their symmetric (see Fig. 2):

E1 = (−βλ
2
,−βp+λ

2
) ∪ (βp+λ

2
, βλ

2
), if 0 ≤ λ ≤ 2p, (4.2)

E2 = (−∞,−βp+λ) ∪ (βp−λ,+∞) and − E2, if 0 ≤ λ ≤ p, (4.3)

E3 = (−βλ−p,−βλ+p) and −E3, if p ≤ λ ≤ 2p, (4.4)

and, if 0 ≤ λ ≤ 2p,

E4 = (−∞,−βp−λ
2
) ∪ (−β1−λ

2
, β1−λ

2
) ∪ (βp−λ

2
,+∞). (4.5)

Observe that E2 and −E2 are not defined when λ > p and that E3 and −E3 are not defined when λ < p.

Proposition 4.3. Let μ ∈ F and E be a Borel set with measure μ(E) = p ∈ (0, 12 ] and asymmetry λ(E) =
λ ∈ [0, 2p]. Then,

P (E) ≥
{

mini=1,2,4 P (Ei) if 0 ≤ λ ≤ p

mini=1,3,4 P (Ei) if p ≤ λ ≤ 2p.
(4.6)

Moreover equality holds if and only if E ∈ {E1, E2, E3, E4, −E2, −E3}.
If 0 /∈ E, then

P (E) ≥

⎧⎪⎨⎪⎩
mini=1,2 P (Ei) if 0 ≤ λ ≤ p

mini=1,3 P (Ei) if p ≤ λ ≤ min(1 − p, 2p)
P (E1) if 1 − p < λ ≤ 2p

with equality if and only if E ∈ {E1, E2, E3, −E2, −E3}.

Remark 4.4. The second part of the above proposition (together with Proposition 4.5 below) will be used 
in Section 5 where we will only consider sets that do not contain the origin.

The proof of Proposition 4.3 can be found in Appendix A.
At this point it is not possible to conclude which one of the sets Ei, i = 1, ..., 4, has minimal perimeter 

on the range p ∈ [0, 1/2], λ ∈ [0, 2p] for the whole class of probability measures F . Indeed, depending on 
the choice of μ ∈ F , one can exhibit very different behaviors.
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Fig. 3. The region p ∈ [0, 12 ], 0 ≤ λ ≤ 2p with the different areas where the set Ei has minimal perimeter among E1, E2, E3 and E4. 
The picture on the left corresponds to the distribution mα with α = 1. Here, the E4-domain is delimited by two curves of equation 
λ = −1 − p +

√
3 + 2p + p2 (bottom, that intersect the line λ = 2p at p1 =

√
5−1
4 ) and −1 +2p +λ(1 − p) − λ2

2 = 0 (top). The two 
curves intersect on the line of equation λ = 1 − p at p2 =

√
2 − 1. The picture on the right corresponds to α = 1

2 . The E2-domain 
and E1-domain are delimited by a straight line of equation λ = 4

√
3p

3
√

3+
√

19 . The two curves delimiting the E3, E4 region are degree 3 
polynomials in p, λ.

To illustrate this phenomenon, let us deal with two specific distributions (2.1), with parameter α = 1
and α = 1/2:

dm1(x) = 1
2(1 + |x|)2 dx and dm1/2(x) = 1

4(1 + |x|)3/2 dx.

Recall that Jα(t) = α2 1
α min(t, 1 − t)1+ 1

α so that

J1(t) = 2 min(t, 1 − t)2 and J1/2(t) = 2 min(t, 1 − t)3.

Since functions J are explicit, one can compute the various perimeter P (E1), P (E2), P (E3), P (E4) and 
compare them. It is simple (but very tedious, details are left to the reader) to obtain Fig. 3 that depicts, for 
p ∈ [0, 1/2], the different regions with minimal perimeter (note that the region p ∈ [1/2, 1] can be obtained 
by symmetry about p = 1/2, using Lemma 4.2).

If m1 and m1/2 have very different behaviors, under additional assumptions, one can however prove that 
a large sub-class of F behaves like m1 (i.e. have the same type of picture than the left one in Fig. 3). This 
is stated in the next proposition.

Proposition 4.5. Let μ ∈ F and assume in addition that J ∈ C1(0, 12 ), J ′ is concave on (0, 12) and J ′(0+) = 0. 
Let us fix p ∈ [0, 12 ] and λ ∈ [0, 1], and let us define E2, E3 and E4 as in (4.3), (4.4) and (4.5) respectively.

Then, there exist p1 ∈ (0, 13 ), p2 ∈ (1
3 , 12), a function λ0 : [p1, p2] → [0, 1] satisfying λ0(p1) = 2p1 and 

λ0(p2) = 1 −p2, and a C1-increasing function p0 : [1 −p2, 1] → [0, 12 ] satisfying p0(1 −p2) = p2 and p′0(1) = 1
2 , 

such that for any Borel set E with measure p and asymmetry λ it holds

P (E) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (E2) if 0 ≤ λ ≤ p

P (E4) if p ∈ [p1, p2] and λ ∈ [λ0(p),min(2p, 1 − p)]
P (E4) if λ ∈ [1 − p2, 1] and p ∈ [λ2 , p0(λ)]

P (E3) otherwise.
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Moreover, if 0 /∈ E, then

P (E) ≥

⎧⎪⎨⎪⎩
P (E2) if 0 ≤ λ ≤ p

P (E3) if p ≤ λ ≤ min(1 − p, 2p)
P (E1) if 1 − p < λ ≤ 2p.

(4.7)

Remark 4.6. Observe that m1 satisfies the assumption of the proposition and more generally any distribution 
mα with α ≥ 1. Also, Fig. 3 is an illustration of the result of the proposition (with p1 = (

√
5 − 1)/4, 

p2 =
√

2 − 1, λ0(p) = −1 − p +
√

3 + 2p + p2 and p0(λ) = (1 − λ + λ2

2 )/(2 − λ)).
The property p′0(1) = 1/2 means that the curve has λ = 2p as tangent in (1/2, 1).
On the other hand, the assumptions on J guarantee that J ′ is sub-linear, i.e. J ′(a + b) ≤ J ′(a) + J ′(b)

for all a, b ∈ [0, 1/2], and that t �→ J(t)
t2 is decreasing on (0, 1/2). We will make use of these properties 

repeatedly.

For the clarity of the exposition, the proof of Proposition 4.5 is postponed to Appendix B.

4.2. Estimates on the deficit

In this section we prove a quantitative estimate on the deficit.
The deficit of a set E is defined as

δ(E) =
{

P (E) − P ((−∞,−βp) ∪ (βp,+∞)) if μ(E) ≤ 1
2

P (E) − P ((−αp, αp)) if μ(E) ≥ 1
2 .

(4.8)

In words, the deficit measures (in the sense of the perimeter) how far the set is from the optimal set in the 
isoperimetric inequality.

Recall that the convex function J : (0, 1/2) → [0, ∞) is said to satisfy the ∇2-condition if there exists 
ε > 0 such that, for all x ∈ (0, 1/2), it holds J(x) ≥ (2 + ε)J(x/2) (see [35]).

What follows is one of our main theorems.

Theorem 4.7. Let μ ∈ F and assume that J ∈ C2(0, 12 ). Assume furthermore that M(p) :=
inft∈[p/2,1/2] J

′′(t) > 0 for all p ∈ (0, 1/2]. Fix p ∈ [0, 1/2] and λ ∈ [0, 2p]. Then, there exist c = c(p) > 0
and c′ > 0 such that the following hold:
(i) for any Borel set E of measure p and asymmetry λ, it holds

δ(E) ≥ c
[
(1 − λ)2 + (1 − 2p)

]
λ2; (4.9)

(ii) if in addition J satisfies the ∇2-condition with ε ∈ (0, 1), J ′ is concave on (0, 1/2) and J ′(0+) = 0, then 
for any Borel set E /� 0 of measure p and asymmetry λ, it holds

δ(E) ≥ c′λ2. (4.10)

Moreover, one can choose c′ = εJ ′′(1/2−)/32 and

c = 1
32 min

(
8J ′

(
p

2

)
,M(p), 16J ′

(
1
6

)
, 8
[
J

(
1
2

)
− 2J

(
1
4

)]
, 4M

(
J(1

2 ) − 2J(1
4 )

J ′(1/2−)

))
. (4.11)
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The proof of Theorem 4.7 is technical and can be found in Appendix C. Let us comment on the result.
(a) We stress that the constant c′ in the right hand side of (4.10) does not depend on p. This part of the 

theorem will be useful in the next section. Moreover, the quantity J(1
2 ) − 2J(1

4 ) in (4.11) is positive thanks 
to Lemma 2.4.

(b) Using Lemma 4.2, the above result extends at once to the whole region p ∈ [0, 1]: given p ∈ [0, 1] and 
λ ∈ [0, 2 min(p, 1 − p)], there exists positive constant c′′ = c′′(p) such that for any Borel set E of measure p
and asymmetry λ, it holds

δ(E) ≥ c′′
[
(1 − λ)2 +

(
1 − 2 min(p, 1 − p)

)]
λ2.

(c) The assumptions J ∈ C2(0, 12 ) and M(p) := inft∈[p/2,1/2] J
′′(t) > 0 for all p ∈ (0, 1/2] are technical. 

The result would certainly hold under weaker assumptions. Also, the constant c is clearly not optimal.
(d) It is possible to construct an example for which λ is close to 1 and δ is small. More precisely, given ε, η ∈

(0, 1/2), consider the set defined in (4.4) with p = 1
2 − η and λ = 1 − ε: E = E(ε) = (−β 1

2+η−ε, −β 1
2+η+ε). 

Assuming that J is twice differentiable, an expansion for ε, η small (recall that J is symmetric about 1/2) 
leads to

δ(E) = P (E) − P
(
(−∞,−βp) ∪ (βp,+∞)

)
= J

(
1
4 + 1

2(η + ε)
)

+ J

(
1
4 + 1

2(η − ε)
)
− 2J

(
1
4 − 1

2η
)

= 2J ′
(

1
4

)
η + 1

4J
′′
(

1
4

)
ε2 + o

(
η2) + o

(
ε2) ≈ (1 − λ)2 + (1 − 2p)

where a ≈ b means that a
c ≤ b ≤ ca for some constant c. Hence, for ε and η small, the deficit δ(E) is 

small while the asymmetry λ(E) is close to 1. This anomalous phenomenon is coming from the fact that, 
at p = 1/2, extremal sets have two different shapes. Indeed, in the above example, E is closer to the set 
(−αp, αp) than to the isoperimetric set (−∞, −βp) ∪ (βp, +∞)!

(e) Observe that, according to the above example, the pre-factor (1 −λ)2 +(1 −2p), in (4.9), is necessary. 
Finally, we stress that the behavior λ2 in (4.9) and in (4.10) is optimal.

5. Functional forms

As it is well known, isoperimetric inequalities have often equivalent functional forms, see e.g. [31,14]. In 
this section, using the results of the preceding sections, we shall derive some weak embedding properties, 
and also some weak Cheeger inequalities, in quantitative forms.

We need first to introduce some notations, and in particular the notion of rearrangement of a function 
with respect to a probability measure. We refer to [5] for more on this topic.

Let Ω be a measurable set and u : Ω ⊂ R → R+ be a measurable function. The level sets of u are the 
sets

Eu
h :=

{
x ∈ Ω:u(x) > h

}
, h ∈ R+.

Then, we define the distribution function of u as μu(h) = μ(Eu
h) for every h ≥ 0. The mapping h �→ μu(h)

is non-negative, decreasing and right continuous on [0, +∞[. Moreover μu has a jump at h if and only if 
μu({x ∈ Ω : u(x) = h}) �= 0. The decreasing rearrangement u∗ of u is the generalized inverse of μu(h), 
namely

u∗(s) = sup
{
h ≥ 0 : μu(h) > s

}
for s ∈

(
0, μ(Ω)

)
.
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Now, let E be a measurable subset of R. We denote by E# the complement of the (unique) symmetric interval 
such that μ(E#) = μ(E), that is E# = (−∞, F−1(μ(E)

2 )) ∪ (−F−1(μ(E)
2 ), +∞). Finally, the rearrangement

of the function u with respect to μ is the function

u#(x) = u#(−x) = u∗(2F (x)
)

for −∞ < x < F−1
(
μ(Ω)

2

)
defined on Ω# (symmetric with respect to the origin). The rearrangement is non-increasing on (−∞, 0) ∩Ω#

and non-decreasing on (0, ∞) ∩Ω# and for every h ≥ 0

Eu#

h =
(
Eu

h

)# =
(
−∞, F−1

(
μ(Eu#

h )
2

))
∪
(
−F−1

(
μ(Eu#

h )
2

)
,+∞

)
.

The idea behind such a construction is that the level sets of u# are precisely the extremal sets in the 
isoperimetric inequality related to μ. Hence, in view of Theorem 3.13, when μ ∈ F , the definition of the 
rearrangement above will be useful only for functions u satisfying μ(suppu) ≤ 1

2 . Indeed, for function with 
μ(suppu) > 1

2 , one would have to consider on one hand sets E# that are complement of symmetric intervals 
(for sets of measure less than 1/2), and on the other hand symmetric intervals for sets of measure greater 
than 1/2, which is impossible: there is no construction of rearrangement compatible with those two shapes. 
Observe that by construction one can easily check that the rearrangement is a homogeneous mapping. More 
precisely, if v = λu, with λ > 0, then, v# = λu#.

Finally, recall that m is a μ-median of u if μ({u ≥ m}) ≥ 1/2 and μ({u ≤ m}) ≥ 1/2.
We are now in position to state our embedding results.

5.1. Embedding inequality

The following result is a consequence of isoperimetric inequality and can be obtained in a classical way 
(see e.g. [7, Corollary 8.2], [29]).

Proposition 5.1. Let μ be a probability measure, on the line, satisfying P (E) ≥ I(μ(E)) for all Borel set 
E ⊂ R, for some isoperimetric profile I. Then, for any non-negative smooth function u on R with μ-median 
zero, it holds

sup
h≥0

{
hI

(
μ(u > h)

)}
= sup

0<t<1/2

{
u∗(t)I(t)

}
≤

∫
R

∣∣u′∣∣dμ. (5.1)

We shall use Theorem 3.13 to give some explicit examples of application in the setting of log-convex 
probability measures.

Recall that, for any measurable function u (on R) and any p ≥ 1, the weighted Lorentz pseudo-norm is 
defined by

‖u‖Lp,∞(μ) := sup
t>0

{
tμ
(
|u| > t

)1/p}
.

Now, since the two-sided exponential measure μ1 satisfies the isoperimetric inequality with isoperimetric 
profile I(t) = min(t, 1 − t) (see Remark 3.15), Inequality (5.1) implies

‖u‖L1,∞(μ1) ≤
∫
R

∣∣u′∣∣dμ1

for any smooth positive function u with μ1-median zero.
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For the distribution (2.1) with parameter α > 0, whose isoperimetric profile is I(t) = αmin(t, 1 − t)1+ 1
α

(see Remark 3.15), we have (see also [7])

‖u‖
L

α
α+1 ,∞(mα)

≤ 1
α

∫
R

∣∣u′∣∣dmα

for any smooth positive function u with mα-median zero.
Finally the probability measure μΦ defined in (2.3) with Φ(x) = |x|α and 0 < α < 1 has an isoperimetric 

profile comparable to min(t, 1 − t)(log 1
min(t,1−t) )

α−1
α (see [13, Proposition 3.22]). Hence, Inequality (5.1)

implies

‖u‖
L1,∞(log L)1−

1
α (μΦ)

≤ c

∫
R

∣∣u′∣∣dμΦ

for some constant c > 0 and any smooth positive function u on R with μΦ-median zero (we refer to [34] for 
a definition of the Orlicz–Lorentz spaces Lp,∞(logL)β(μ) for p > 1 and β ∈ R).

5.2. Weak inequality of Cheeger type

Isoperimetric inequalities imply some weak Cheeger inequalities and for some measure (see [7]) they are 
equivalent. In this subsection we investigate on the consequences of the isoperimetric inequality and the 
quantitative isoperimetric inequality in terms of Cheeger type inequalities.

A probability measure μ, on the line, is said to satisfy a weak Cheeger inequality if there exists some 
non-increasing function β : (0, ∞) → [0, ∞) such that for every smooth u: R → R with μ-median zero, it 
holds ∫

R

|u|dμ ≤ β(s)
∫
R

∣∣u′∣∣dμ + sOsc(u) ∀s > 0,

where Osc(u) := sup(u) − inf(u) is the oscillation of u. Since 
∫
R
|u|dμ ≤ 1

2 Osc(u), observe that only the 
values s ∈ (0, 1/2] are relevant in the above definition. Moreover, without loss of generality we can assume 
that β(s) > 0 for all s ∈ (0, 1/2). Such inequalities were introduced by Bobkov [7], inspired by a notion of 
weak Poincaré inequality (an L2 analogue) due to Röckner and Wang [37], and further analysis have been 
done in [13,24].

The relationship between β(s) and the isoperimetric profile is explained in the following proposition (that 
holds in more general situations).

Proposition 5.2. (See Bobkov [7].) Let μ ∈ F . Then, the following two statements are equivalent:

(1) there exists a non-increasing function β: (0, ∞) → [0, ∞) such that such that for all s > 0 and all 
bounded and smooth u with μ-median equal to 0,∫

|u|dμ ≤ β(s)
∫ ∣∣u′∣∣dμ + sOsc(u),

(2) there exists a function Ĩ: (0, 1) → [0, ∞) symmetric around 1/2 such that for all Borel set E with 
0 < μ(E) < 1,

P (E) ≥ Ĩ
(
μ(E)

)
,
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where β and Ĩ are related by the duality relation

β(s) = sup
s≤t≤ 1

2

t− s

Ĩ(t)
, Ĩ(t) = sup

0<s≤t

t− s

β(s) for t ≤ 1
2 . (5.2)

We notice that it is an open problem to find the extremal functions, if any, in the weak Cheeger inequality 
above, when μ is a log-convex probability measure, even in simple examples such as the distribution mα

defined in (2.1).
In the next proposition, we extend the latter to quantitative isoperimetric and quantitative weak Cheeger 

inequalities. Then we may apply this result to log-convex probability measures.

Proposition 5.3. Let μ ∈ F and Ψ, Ψ ′: R → R be two convex functions, non-decreasing on (0, ∞). Then, the 
following two statements are equivalent:

(1) there exists a non-increasing function β: (0, ∞) → [0, ∞) such that for all s > 0 and all bounded and 
smooth u with μ-median equal to 0 and such that 0 /∈ suppu,

β(s)Ψ
(∫

R

∣∣|u| − u#∣∣dμ(x)
)

+
∫

|u|dμ ≤ β(s)
∫ ∣∣u′∣∣dμ + 2sOsc(u), (5.3)

(2) there exists a function Ĩ: (0, 1) → [0, ∞) symmetric around 1/2 such that for all Borel set E /� 0 with 
0 < μ(E) < 1,

P (E) ≥ Ĩ
(
μ(E)

)
+ Ψ ′(λ(E)

)
. (5.4)

Moreover, (1) ⇒ (2) with Ĩ symmetric around 1/2 and Ĩ(t) := sup0≤s≤ t
2

t−2s
β(s) for t ∈ (0, 1/2) and Ψ ′ = Ψ ; 

and (2) ⇒ (1) with β(s) := sups≤t≤ 1
2

t−s

Ĩ(t)
and Ψ(·) := 2Ψ ′( ·

2).

Remark 5.4. Observe that there is not a pure equivalence between the two statements, as in Proposition 5.2. 
Indeed, there is a loss of a factor 2, which is technical (there would be no loss if Ψ(x) = |x| for all x). The 
restriction 0 /∈ suppu is also technical and is necessary in order to apply Theorem 4.7.

Before proving Proposition 5.3 let us apply the result to our setting. Assume that μ ∈ F and that J(t) ∈
C2(0, 12 ), J ′ is concave on (0, 12) with J ′(0+) = 0 and J satisfies the ∇2-condition with ε ∈ (0, 1) so that the 
assumptions of point (ii) of Theorem 4.7 are satisfied. Therefore, thanks to the aforementioned theorem, 
Eq. (5.4) holds with Ĩ(x) = 2J(x/2) (see Remark 3.15) and Ψ ′(x) = c′x2 (with c′ a universal constant). 
Hence by Proposition 5.3, the quantitative weak Cheeger inequality (5.3) holds with the corresponding β
and Ψ(x) = c′x2/2 (note that in some explicit examples, such as the Cauchy distribution, β can be computed 
explicitly [13]).

In order to prove Proposition 5.3 we need the following technical lemmas whose proofs can be found at 
the end of the section. The first lemma relates the symmetric difference of the level sets of |u| and to the 
level sets of the positive and negative part of u.

Lemma 5.5. Let μ ∈ F and u: R → R be a smooth function with μ-median zero. Define u+ := max(u, 0) and 
u− := max(−u, 0). Then

λ
(
Eu+

h

)
+ λ

(
Eu−

h

)
≥ λ

(
E

|u|
h

)
for all h > 0.



898 F. Feo et al. / J. Math. Anal. Appl. 420 (2014) 879–907
The second lemma [15] bounds from above the L1 distance between two functions in terms of the measure 
of the symmetric difference of their level sets. Since the proof is short and elementary, we shall give it for 
completeness.

Lemma 5.6. (See [15].) Let μ ∈ F and Ψ : R → R be a convex function. Then, for any non-negative functions 
u, v: R → R, bounded by 1, it holds

Ψ

(∫
R

|u− v|dμ
)

≤
1∫

0

Ψ
(
μ
(
Eu

h�Ev
h

))
dh.

We are now in position to prove Proposition 5.3

Proof of Proposition 5.3. We start with the proof of (1) ⇒ (2). Fix a Borel set E /� 0. By standard 
approximation of the indicator function 1E (see [9]), we get from (5.3) that

β(s)Ψ
(∫

R

∣∣1E − (1E)#
∣∣dμ) + μ(E) ≤ β(s)P (E) + 2s.

Since (1E)# = 1E# , we have 
∫
R
|1E − (1E)#|dμ = μ(EΔE#) = λ(E). Thus, for all s > 0,

Ψ
(
λ(E)

)
+ μ(E) − 2s

β(s) ≤ P (E)

which leads to (5.4) thanks to the definition of Ĩ.
Now we prove that (2) implies (1). Let u be a smooth function whose support does not contain 0 and such 

that its median is 0. By approximation, we may assume that u is bounded, and without loss of generality 
that Osc(u) = 1 (by homogeneity). Now set u+ = max(u, 0) and u− = max(−u, 0). By the coarea formula 
and (5.4) we have

∫ ∣∣u±′∣∣dμ =
1∫

0

P
(
Eu±

h

)
dh ≥

1∫
0

Ĩ
(
μ
(
Eu±

h

))
dh +

1∫
0

Ψ ′(λ(Eu±

h

))
dh.

Hence, adding the two inequalities, using the convexity of Ψ ′ and Lemmas 5.5 and 5.6 together with the 
definition of beta, we have∫ ∣∣u′∣∣dμ =

∫ ∣∣u+′∣∣dμ +
∫ ∣∣u−′∣∣dμ

≥
1∫

0

Ĩ
(
μ
(
Eu+

h

))
+ Ĩ

(
μ
(
Eu−

h

))
dh +

1∫
0

Ψ ′(λ(Eu+

h

))
+ Ψ ′(λ(Eu−

h

))
dh

≥
1∫

0

μ(Eu+

h ) + μ(Eu−

h )
β(s) dh− 2s

β(s) + 2
1∫

0

Ψ ′
(
λ(Eu+

h ) + λ(Eu−

h )
2

)
dh

≥
∫
|u|dμ
β(s) + 2

1∫
0

Ψ ′
(
λ(E|u|

h )
2

)
dh− 2s

β(s)

≥
∫
|u|dμ− 2s

+ 2Ψ ′
(∫

||u| − u#|dμ)− 2s
.

β(s) 2 β(s)
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Note that, in the first line of the above computation, we used that, since u is smooth, the set {x ∈ R :
u′(x) �= 0 and u(x) = 0} is μ-negligible (see [4]). Multiplying by β(s) leads to the expected result since 
Osc(u) = 1. This achieves the proof of the proposition. �

It remains to prove Lemma 5.5 and Lemma 5.6.

Proof of Lemma 5.5. Fix u: R → R with μ-median zero. By the very definition of the asymmetry (and since 

0 is median of u), we have λ(Eu±
h )
2 = μ(Eu±

h ) − μ(Eu±

h ∩ (Eu±

h )#) for all h > 0. Then, we observe that Eu+

h

and Eu−

h are disjoint, Eu+

h ∪ Eu−

h = E
|u|
h and (Eu±

h )# ⊆ (E|u|
h )#. Hence,

λ(Eu+

h )
2 + λ(Eu−

h )
2 ≥ μ

(
Eu+

h

)
+ μ

(
Eu−

h

)
−

[
μ
(
Eu+

h ∩
(
E

|u|
h

)#)
+ μ

(
Eu−

h ∩
(
E

|u|
h

)#)]
= μ

(
E

|u|
h

)
− μ

(
E

|u|
h ∩

(
E

|u|
h

)#)
=

λ(E|u|
h )

2

which is the expected result. �
Proof of Lemma 5.6. By Jensen’s inequality we have

1∫
0

Ψ
(
μ
(
Eu

h�Ev
h

))
dh =

1∫
0

Ψ

(∫
R

∣∣χEu
h
(x) − χEv

h
(x)

∣∣dμ(x)
)
dh

≥ Ψ

( 1∫
0

∫
R

∣∣χEu
h
(x) − χEv

h
(x)

∣∣dμ(x)dh
)

= Ψ

(∫
R

∣∣∣∣∣
1∫

0

[
χEu

h
(x) − χEv

h
(x)

]
dh

∣∣∣∣∣dμ(x)
)

which leads to the expected result. �
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Appendix A. Proof of Proposition 4.3

Proof of Proposition 4.3. Let E be a set of measure p ∈ (0, 12 ) and asymmetry λ. By Lemma 3.1 there exists 
a countable set H such that E =

⋃
h∈H(ah, bh) up to a set of measure zero that we assume, without loss of 

generality, to be the empty set.
Step 1. Arguing as in the proof of Theorem 3.13 and using the shifting property (of Proposition 3.4), 

preserving not only the measure of the set but also its asymmetry (see Fig. 4 for an illustration), we obtain 
(details are left to the reader) that

P (E) ≥ P (Ẽ), (A.1)

where
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Fig. 4. The reduction from E, when 0 /∈ E, to the set Ẽ. The top line represents the set E =
⋃

h∈H(ah, bh), the second line is 
the symmetric difference E � (−∞, −βp) ∪ (βp, ∞). The arrows show how to use the shifting property, preserving the asymmetry. 
The bottom line is the set Ẽ = (−∞, a3) ∪ (a2, a1) ∪ (a0, b0) ∪ (b1, b2) ∪ (b3, +∞) in the particular case where a2 = −βp and 
a0 = b0 = 0.

Ẽ = (−∞, a3) ∪ (a2, a1) ∪ (a0, b0) ∪ (b1, b2) ∪ (b3,+∞)

and

−∞ ≤ a3 ≤ a2 ≤ −βp ≤ a1 ≤ a0 ≤ 0 ≤ b0 ≤ b1 ≤ βp ≤ b2 ≤ b3 ≤ +∞. (A.2)

Depending on the initial set E every inequalities in (A.2) might be either an equality or a strictly 
inequality. In case of equality, we convey that (α, α) = ∅ for any α ∈ [−∞, +∞].

Step 2. Examining all3 the possibilities in (A.2) (equality versus strict inequality) and using again the 
shifting property, it is possible to further reduce the family of sets with minimal perimeter. Indeed, after 
reduction (which is an easy (but tedious) exercise left to the reader) one concludes that the minimal 
perimeter has to be found among only the following 7 sets (see below for an example of such a reduction): 
E1, E2 and −E2, E3 and −E3, E4, defined in (4.2)–(4.5), and

E5 = (−∞,−β2p−λ) ∪ (−β1−λ
2
, β1−λ

2
) and −E5 if p ≤ λ ≤ 2p,

if either 0 ≤ λ ≤ p and any given t ∈ [0, p] or p ≤ λ ≤ 2p and any given t ∈ [λ − p, 2p − λ],

E6 = (−βp−t,−βp+λ
2
) ∪ (βp+λ

2
, β−p+λ+t) and −E6,

and, if either 0 ≤ λ ≤ p and any given t ∈ [0, λ] or p ≤ λ ≤ 2p and any given t ∈ [λ − p, p],

E7 = (−βλ−t,−βp+λ) ∪ (βp−t,+∞) and −E7.

As an example of the above reduction, let us consider the set Ẽ with −∞ < a3 < a2 < a1 < a0 = b0 <

b1 < b2 < b3 < +∞ in (A.2). Consider the complementary set R \ Ẽ = (a3, a2) ∪ (a1, b1) ∪ (b2, b3). Using the 
shifting property, the perimeter decreases if one moves the interval (a3, a2) towards −∞ and the interval 
(b2, b3) towards +∞. Furthermore, the shifting property also guarantees that the perimeter decreases if one 
symmetrizes the interval (a1, b1). All such reductions did not affect neither the measure nor the asymmetry. 
Finally, considering again the complementary set, we end up with the set E1 defined in (4.2).

Step 3. At this step, the shifting property becomes useless. To end the proof, one needs to show that 
E5, E6 and E7 have bigger perimeter than E1, E2, E3, E4 which will be achieved by using simple analytical 
computations.

First, we observe that

P (E5) = P
(
(−∞,−β2p−λ)

)
+ P

(
(−β1−λ

2
, β1−λ

2
)
)
> P (E4)

3 There are 212 of them (but a lot of symmetries!).
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since, by the isoperimetric inequality (Theorem 3.13), we are guaranteed that P ((−∞, −β2p−λ)) >

P ((−∞, −βp−λ
2
) ∪ (βp−λ

2
, ∞)).

We notice that |λ4 − −p+λ+t
2 | = |p−t

2 − λ
4 | so that, by convexity of J (comparing the slopes),

J

(
p− t

2

)
+ J

(
−p + λ + t

2

)
− 2J

(
λ

4

)

=
{

(J(p−t
2 ) − J(λ4 )) − (J(λ4 ) − J(−p+λ+t

2 )) if t ≤ p− λ
2

(J(−p+λ+t
2 ) − J(λ4 )) − (J(λ4 ) − J(p−t

2 )) if t ≥ p− λ
2

≥ 0

which, in turn, immediately implies that P (E6) ≥ P (E1).
Finally, we observe that the map t �→ P (E7) = J(λ−t

2 ) + J(p+λ
2 ) + J(p−t

2 ) is decreasing, so that (take 
t = 0 and t = λ − p respectively, which gives the same result)

P (E7) ≥ J

(
λ

2

)
+ J

(
p + λ

2

)
+ J

(
p

2

)

≥
{
J(p+λ

2 ) + J(p−λ
2 ) = P (E2) if 0 ≤ λ ≤ p

J(p+λ
2 ) + J(λ−p

2 ) = P (E3) if p ≤ λ ≤ 2p.

This completes the proof of the first part of the proposition (equality cases follows easily by keeping track 
of equality cases in the various steps in the reduction above).

The second part follows the same lines. One only needs to observe that E4 need not be considered, since 
0 ∈ E4, and that 0 /∈ E3 implies λ ≤ 1 − p (hence the range p ≤ λ ≤ 1 − p). Also, observe that using 
the shifting lemma never affects the fact that 0 /∈ E during the various step of the reduction above. This 
achieves the proof. �
Appendix B. Proof of Proposition 4.5

Proof of Proposition 4.5. The proof consists in studying various functions of two variables. Such studies are 
easy exercises but use various small tricks. For the seek of completeness and in order to help the interesting 
reader, we give most of the details. We shall use Proposition 4.3 and deal with different cases.

Case 0 ≤ λ ≤ p. We need to compare the perimeters of E1, E2 and E4. To this aim, consider the function 
L12(p, λ) := P (E1) − P (E2) = 2J(λ/4) + 2J((2p + λ)/4) − J((p + λ)/2) − J((p − λ)/2). Considering the 
partial derivative with respect to λ, and using the sub-linearity of J ′, one concludes that λ �→ L12(p, λ) is 
increasing. Since L12(p, 0) = 0, it finally follows that P (E2) ≤ P (E1).

Consider now the function L42(p, λ) := P (E4) −P (E2) = 2J((2p −λ)/4) +2J((2 −λ)/4) −J((p +λ)/2) −
J((p − λ)/2). One has 2∂λL24(p, λ) = −J ′((2p − λ)/4) − J ′((2 − λ)/4) − J ′((p + λ)/2) + J ′((p − λ)/2) ≤ 0
since J ′ is non-decreasing and p − λ ≤ p + λ (here and below we use the shorthand notation ∂λ, ∂p for the 
partial derivatives with respect to λ, p). Therefore, L24(p, λ) ≥ L24(p, p) = 2J(p/4) + 2J((2 − p)/4) − J(p). 
Taking the derivative with respect to p, one immediately sees that p �→ L24(p) is non-increasing so that 
L24(p, p) ≥ L24(1/4, 1/4) = 2J(1/8) + 2J(3/8) − J(1/2). Observing that t �→ J(t)/t2 is non-increasing, we 
have J(3/8)/(3/8)2 ≥ J(1/2)/(1/2)2, which leads to

2J(3/8) ≥ 9
8J(1/2) ≥ J(1/2). (B.1)

Finally we conclude that L24(p, λ) ≥ 0, which guarantees that P (E2) ≤ P (E4). This completes the picture 
for 0 ≤ λ ≤ p.
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Case p ≤ λ ≤ 2p. We need to compare the perimeters of E1, E3 and E4. We shall first prove that 
P (E1) ≥ P (E3) when p ≤ λ ≤ 1 − p and that P (E1) ≥ P (E4) when 1 − p ≤ λ ≤ 2p. This will reduce the 
study to the comparison of the perimeters of E3 and E4 only.

Consider first the function L13(p, λ) := P (E1) − P (E3) = 2J(λ/4) + 2J((2p + λ)/4) − J((p + λ)/2) −
J((λ − p)/2) with p ≤ λ ≤ 1 − p. Since λ ≤ 2p, it holds (λ − p)/2 ≤ λ/4. Hence, L13(p, λ) ≥ J(λ/4) +
2J((2p + λ)/4) − J((p + λ)/2). Using twice the fact that t �→ J(t)/t2 is non-increasing, we have

2J
(

2p + λ

4

)
≥ 1

2

[
2p + λ

p + λ

]2

J

(
p + λ

2

)
and J

(
λ

4

)
≥

[
λ

2(p + λ)

]2

J

(
p + λ

2

)
,

so that, after few rearrangements

J

(
λ

4

)
+ 2J

(
2p + λ

4

)
− J

(
p + λ

2

)
≥

p2 − λ2

4
(p + λ)2 J

(
p + λ

2

)
≥ 0,

since λ ≤ 2p. This implies that P (E1) ≥ P (E3) (when p ≤ λ ≤ 1 − p).
Consider now the function L14(p, λ) =:= P (E1) −P (E4) = 2J(λ/4) +2J((2p +λ)/4) − 2J((2p −λ)/4) −

2J((2 −λ)/4) with 1 −p ≤ λ ≤ 2p. Since λ �→ L14(p, λ) is non-decreasing, we have L14(p, λ) ≥ L14(p, 1 −p) =
2J((1 −p)/4) −2J((3p −1)/4). Last function is non-increasing (in p). Hence, L14(p, 1 −p) ≥ L14(1/2, 1/2) = 0. 
This guarantees that, as announced P (E1) ≥ P (E4) when 1 − p ≤ λ ≤ 2p.

At this point is remains to compare P (E3) and P (E4) when p ≤ λ ≤ 2p, considering the function 
L43(p, λ) := P (E4) − P (E3). We will distinguish between two sub-cases.

We start by dealing with p ≤ λ ≤ min(2p, 1 −p). In that case, L43(p, λ) = 2J((2p −λ)/4) +2J((2 −λ)/4) −
J((p + λ)/2) − J((λ − p)/2) is obviously non-increasing in λ. In order to deduce the sign of L43 we need to 
study the extreme points H(p) := L43(p, p) and G(p) := L43(p, min(2p, 1 − p)):

λ p min(2p, 1 − p)

λ �→ L43(p, λ)

H(p)
�
�

��
G(p)

First, we observe that H(p) := L43(p, p) = 2J(p/4) + 2J((2 − p)/4) − J(p) is non-increasing (take the 
derivative) so that H(p) ≥ H(1/2) = 2J(1/8) + 2J(3/8) − J(1/2) > 0 thanks to (B.1). Then, we notice 
that p �→ G(p) := L43(p, min(2p, 1 − p)) is obviously non-increasing on [0, 1/3] and non-decreasing on 
[1/3, 1/2]. Since G(0) = L43(0, 0) = 2J(1/2) > 0, G(1/2) = L43(1/2, 1/2) = 2J(1/8) +2J(3/8) −J(1/2) > 0
thanks to (B.1), and G(1/3) = L43(1/3, 2/3) = 2J(1/3) − J(1/6) − J(1/2) < 0 (since the slope [J(1/2) −
J(1/3)]/(1/6) is larger, by convexity of J , than the slope [J(1/3) − J(1/6)]/(1/6)), we end up with the 
following diagram:

p 0 p1 1/3 p2 1/2

G

G(0) > 0���� 0 ����
G(1/3) < 0

����

0
����
G(1/2) > 0

for some p1 ∈ (0, 1/3) and some p2 ∈ (1/3, 1/2). From this we conclude that P (E4) ≥ P (E3) when 
p ∈ [0, p1] ∪ [p2, 1/2], and that P (E4) − P (E3) changes sign (at a unique point λ0(p)) when λ varies 
and p ∈ (p1, p2) is fixed. This leads to the existence of the function λ0. This completes the picture for 
p ≤ λ ≤ min{2p, 1 − p}.
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Consider finally the range 1 − p ≤ λ ≤ 2p (which exists only if p ∈ [1/3, 1/2]). In that case, the function 
L43(p, λ) reads

L43(p, λ) = 2J
(
(2p− λ)/4

)
+ 2J

(
(2 − λ)/4

)
− J

(
1 − (p + λ)/2

)
− J

(
(λ− p)/2

)
.

Here we used one again the symmetry of J about 1/2 in order to deal only with variables belonging to 
[0, 1/2] (observe in particular that (p + λ)/2 ≥ 1/2). The map p �→ L43(p, λ) is clearly increasing. Hence, 
we need to study the extremal points H(λ) := L43(max(λ/2, 1 − λ), λ) and G(λ) := L43(1/2, λ):

p max(λ/2, 1 − λ) 1/2

p �→ L43(p, λ)

H(λ)

�	
�

�

G(λ)

Computing G′, and using the sub-linearity of J ′, we conclude that G is decreasing. Since G(1) = 0 we are 
guaranteed that G(λ) > 0 for any λ ∈ [1/2, 1). On the other hand, note that

H(λ) =
{

2J(2−3λ
4 ) + 2J(2−λ

4 ) − J(1
2 ) − J(2λ−1

2 ) if 1
2 ≤ λ ≤ 2

3

2J(2−λ
4 ) − J(4−3λ

4 ) − J(λ4 ) if 2
3 ≤ λ ≤ 1.

Now, in the range 1
2 ≤ λ ≤ 2

3 , H this obviously decreasing. While in the range 2
3 ≤ λ ≤ 1, computing 

the derivative, and using that λ
4 ≤ 2−λ

4 ≤ 4−3λ
4 , we conclude that H is increasing. Then, observe that 

H(1/2) = 2J(1/8) + 2J(3/8) − J(1/2) > 0, by (B.1). Also, H(2/3) = 2J(1/3) − J(1/2) − J(1/6) =
−[J(1/2) − J(1/3)] + [J(1/3) − J(1/6)] < 0 since the slope [J(1/2) − J(1/3)]/(1/6) is greater, by convexity 
of J , than the slope [J(1/3) − J(1/6)]/(1/6) and H(1) = 0. We end up with the following diagram

λ 1/2 λ1 2/3 1

H

H(1/2) > 0���� 0 ����H(2/3) < 0

�	
�

�

0

It follows that P (E4) ≥ P (E3) when λ ∈ [1/2, λ1], and that P (E4) −P (E3) changes sign (at a unique point 
p1(λ)) when p varies and λ ∈ (λ1, 1) is fixed. This leads to the existence of the function p0 and completes 
the picture in the range 1 − p ≤ λ ≤ 2p.

It remains to show that p0 is C1, increasing, p0(1 − p2) = p2 and that p′0(1) = 1/2. That p0(1 − p2) = p2
follows from the fact that the perimeter is a continuous function of the variables p and λ. The remaining 
properties follow from the implicit equation L43(p0(λ), λ) = 0 and the implicit function theorem. This ends 
the proof. �
Appendix C. Proof of Theorem 4.7

Proof of Theorem 4.7. Fix p ∈ [0, 1/2] and λ ∈ [0, 2p] and a Borel set E of measure p and asymmetry λ. 
We start by proving point (i).

By Proposition 4.3, we actually only need to prove that

δ(Ei) ≥ c
[
(1 − λ)2 + (1 − 2p)

]
λ2

for Ei, i = 1, 2, 3, 4, defined in (4.2)–(4.5).
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We shall deal with each one of these sets and with the different ranges separately. Also we shall use 
repeatedly, without any further mention, that λ ∈ [0, 1] so that 1 ≥ λ ≥ λ2 and that 1 ≥ 1

2 [(1 −2p) +(1 −λ)2].
• We start by dealing with the set E1 and 0 ≤ λ ≤ 2p. Since J ′ is non-decreasing, we have

δ(E1) = P (E1) − P
(
(−∞,−βp) ∪ (βp,+∞)

)
= 2

(
J

(
p

2 + λ

4

)
+ J

(
λ

4

)
− J

(
p

2

))

≥ 2

p
2 +λ

4∫
p
2

J ′(t)dt ≥
J ′(p2 )

2 λ ≥
J ′(p2 )

4
[
(1 − 2p) + (1 − λ)2

]
λ2. (C.1)

• Consider now the set E2 with 0 ≤ λ ≤ p. One has

δ(E2) = P (E2) − P
(
(−∞,−βp) ∪ (βp,+∞)

)
= J

(
p

2 + λ

2

)
+ J

(
p

2 − λ

2

)
− 2J

(
p

2

)

=

p
2 +λ

2∫
p
2

t∫
t−λ

2

J ′′(u)dudt ≥

p
2 +λ

2∫
p
2 +λ

4

t∫
t−λ

4

J ′′(u)dudt ≥ M(p)
(
λ

4

)2

≥ M(p)
32

[
(1 − 2p) + (1 − λ)2

]
λ2. (C.2)

• We turn to the set E3 with p ≤ λ ≤ 2p. We need to distinguish between two different cases, namely 
p ≤ λ ≤ min(1 −p, 2p) and min(1 −p, 2p) ≤ λ ≤ 2p (which holds only if p ≥ 1/3). For p ≤ λ ≤ min(1 −p, 2p), 
by monotonicity (take λ = p), we have

δ(E3) = P (E3) − P
(
(−∞,−βp) ∪ (βp,+∞)

)
= J

(
p

2 + λ

2

)
+ J

(
λ

2 − p

2

)
− 2J

(
p

2

)
≥ J(p) − 2J

(
p

2

)
(C.3)

≥
[
J(p) − 2J

(
p

2

)][
(1 − 2p) + (1 − λ)2

]
λ2. (C.4)

When min(1 −p, 2p) ≤ λ ≤ 2p (which implies p ≥ 1/3), it holds (λ +p)/2 ≥ 1/2. Hence, by symmetry of J
about 1/2 (and in order to deal only with increments belonging to [0, 1/2]), we have δ(E3) = J(1 − p

2 −
λ
2 ) +

J(λ2 − p
2 ) − 2J(p2 ). Using that J ′ is non-decreasing, we have,

δ(E3) =
1−λ+p

2∫
p
2

J ′(t)dt−

p
2∫

λ−p
2

J ′(t)dt

≥ J ′
(
p

2

)(
1 − p− λ

2

)
− J ′

(
p

2

)(
p− λ

2

)
= J ′

(
p

2

)
(1 − 2p) ≥ J ′

(
1
6

)
(1 − 2p). (C.5)

On the other hand, since p �→ δ(E3) = J(1 − p
2 − λ

2 ) + J(λ2 − p
2 ) − 2J(p2 ) is non-increasing, we get (take 

p = 1/2) by convexity of J on [0, 1/2], and using that J(λ2 − 1
4 ) ≥ 0,

δ(E3) ≥ J

(
3 − λ

)
+ J

(
λ − 1

)
− 2J

(
1
)

≥ J

(
1
)
− 2λ− 1

J ′
((

1
)−)

− 2J
(

1
)

4 2 2 4 4 2 4 2 4
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Now by Lemma 2.4, c := J(1/2) − 2J(1/4) > 0 so that, for λ ≤ 1
2 + c

J ′(1/2−)
4 we get δ(E3) ≥ c

2 , while for 
λ ≥ 1

2 + c
J ′(1/2−) (condition that might be empty), we have

δ(E3) ≥ J

(
3
4 − λ

2

)
+ J

(
λ

2 − 1
4

)
− 2J

(
1
4

)
=

3
4−λ

2∫
1
4

t∫
t+λ−1

2

J ′′(u)dudt

≥ M

(
λ− 1

2

)(
1 − λ

2

)2

≥ 1
4M

(
c

J ′(1/2−)

)
(1 − λ)2.

Combining these results, we finally get, in the regime min(1 − p, 2p) ≤ λ ≤ 2p,

δ(E3) ≥
1
8 min

(
4J ′(1/6), 2c,M

(
c

J ′(1/2)

))[
(1 − 2p) + (1 − λ)2

]
λ2. (C.6)

• Finally we deal with E4. Using that J ′ is non-decreasing, we have,

δ(E4) = P (E4) − P
(
(−∞,−βp) ∪ (βp,+∞)

)
= 2J

(
p

2 − λ

4

)
+ 2J

(
1
2 − λ

4

)
− 2J

(
p

2

)
≥ 2

(
J

(
1
2 − λ

4

)
− J

(
p

2

))

= 2

1
2−λ

4∫
p
2

J ′(t)dt ≥ 2J ′
(
p

2

)(
1
2 − λ

4 − p

2

)
=

J ′(p2 )
2

[
(1 − λ) + (1 − 2p)

]

≥
J ′(p2 )

2
[
(1 − λ)2 + (1 − 2p)

]
λ2. (C.7)

The expected result of point (i) follows collecting (C.1), (C.2), (C.6) and (C.7).
Now we turn to the proof of point (ii). By Proposition 4.5, we only need to prove that δ(Ei) ≥ c′λ(E)2

for Ei, i = 1, 2, 3. As for point (i), we shall deal with each one of these sets in the appropriate ranges given 
in (4.7) (observe that such ranges may differ from point (i)).

By monotonicity of J ′, we observe that, for 1 − p ≤ λ ≤ 2p (which guarantees that p ≥ 1/3), (C.1)
implies δ(E1) ≥ J ′(1/6)λ2/2. On the other hand, back to the computation leading to Eq. (C.2), we have, 
by monotonicity of J ′′,

δ(E2) =

p
2 +λ

2∫
p
2

t∫
t−λ

2

J ′′(u)dudt ≥ J ′′
(
p

2 + λ

2

)
×
(
λ

2

)2

≥ J ′′(1/2−)
4 λ2,

where in the last inequality we used that p + λ ≤ 1. Finally, thanks to (C.3), the ∇2-condition and the fact 
that t �→ J(t)/t2 is non-increasing (a consequence of the assumption J ′ concave), we have

δ(E3) ≥ J(p) − 2J(p/2) ≥ εJ(p/2) ≥ εJ(1/2)p2

≥ εJ(1/2)
{

λ2

4 if p ≤ 1/3 and p ≤ λ ≤ 2p
λ2

9 if p ≥ 1/3 and p ≤ λ ≤ 1 − p
≥ εJ(1/2)

4 λ2,

4 Observe that, by convexity, c ≤ J(1/2) − J(1/4) ≤ J ′(1/2−)/4 so that 1
2 + c

J ′(1/2−) ∈ [1/2, 3/4].
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where in the last line we used that λ ≤ 2/3 (in the range p ≤ λ ≤ 1 −p). Collecting the previous computations 
leads to

min
i=1,2,3

δ(Ei) ≥ εmin
(
J ′(1/6)

2 ,
J ′′(1/2−)

4 ,
J(1/2)

4

)
λ2.

Using that xJ ′(x) ≥ J(x) (a consequence of the fact that J(0) = 0 and that J is convex), and that t �→ J ′(t)/t
is non-increasing (since J ′ is concave and J ′(0+) = 0), we have 1

2J
′(1/6) ≥ 1

6J
′(1/2) ≥ 1

3J(1/2). Hence, 
min(J

′(1/6)
2 , J

′′(1/2−)
4 , J(1/2)

4 ) = min(J
′′(1/2−)

4 , J(1/2)
4 ). Then, since J ′ is concave and J ′(0+) = 0, xJ ′′(x) ≤

J ′(x), x ∈ (0, 1/2). Also, since t �→ J(t)/t2 is non-increasing, we have xJ ′(x) ≤ 2J(x), x ∈ (0, 1/2). In turn, 
J ′′(x) ≤ 2J(x)/x2 so that J(1/2) ≥ J ′′(1/2−)/8. As a conclusion, min(J

′′(1/2−)
4 , J(1/2)

3 ) ≥ J ′′(1/2−)/32.
This ends the proof of the theorem. �
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