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Abstract. We consider one–dimensional hierarchical coalescence processes (in
short HCP’s) where two or three neighbouring domains can merge. An HCP
consists of an infinite sequence of stochastic coalescence processes: each process
occurs in a different “epoch” and evolves for an infinite time, while the evolutions
in subsequent epochs are linked in such a way that the initial distribution of epoch
n+1 coincides with the final distribution of epoch n. Inside each epoch a domain
can incorporate one of its neighbouring domains or both of them if its length
belongs to a certain epoch-dependent finite range.

Assuming that the distribution at the beginning of the first epoch is described
by a renewal simple point process, we prove limit theorems for the domain length
and for the position of the leftmost point (if any). Our analysis extends the results
obtained in [FMRT0] to a larger family of models, including relevant examples
from the physics literature [BDG], [SE]. It reveals the presence of a common
abstract structure behind models which are apparently very different, thus leading
to very similar limit theorems. Finally, we give here a full characterization of
the infinitesimal generator for the dynamics inside each epoch, thus allowing to
describe the time evolution of the expected value of regular observables in terms
of an ordinary differential equation.
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1. Introduction

A one-dimensional hierarchical coalescence process (HCP) consists of an infinite
sequence of one-dimensional coalescence processes: each process occurs in a different
epoch and evolves for an infinite time, while the evolution in subsequent epochs are
linked in such a way that the initial distribution of epoch n + 1 coincides with the
final distribution of epoch n. At a given time inside epoch n the state of the process
is described by a simple point process on R, i.e. by a random locally finite subset of
R, such that the intervals among consecutive points (domains) are not smaller than

d(n), where {d(n)}n≥1 is an a priori fixed sequence of strictly increasing and diverging
positive numbers. The evolution inside epoch n can be informally described as fol-
lows. Only domains whose length belongs to the finite range [d(n), d(n+1)) are active
i.e. they can incorporate their left neighbouring domain, their right neighbouring
domain or both of them. Inactive domains cannot incorporate their neighbours and
can increase their length only if they are incorporated by active neighbours. The
rates of the merging events and the sequence {d(n)}n≥1 are quite general, with the
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important feature that the activity ranges [d(n), d(n+1)) should be such that after
each merging step the newly produced domain always becomes inactive for that
epoch but active for some future epoch.

We have introduced the concept of HCP in [FMRT0], considering only left or
right merging of domains, i.e. a domain cannot incorporate simultaneously both its
neighbours. There we proved that if the initial distribution is a renewal process,
such property is preserved at all times and epochs and the distribution of certain
rescaled variables – the domain length and the position of the leftmost point (if any)
– has a well defined limiting behaviour corresponding to large universality classes
(most of the dynamical details disappear in the scaling limit). Here we extend these
results to the more general HCP’s defined above which also allow triple merging and
we determine the corresponding limiting behavior and universality classes.

Besides the mathematical interest, our study has been motivated by the fact that
several HCP’s have been implicitely introduced in the physics literature to model the
non-equilibrium evolution of one dimensional systems whose dynamics is dominated
by the coalescence of proper domains or droplets characterizing the experiments.
We refer to Section 2.4 for a review of some of these HCP’s and the correspond-
ing physical systems. A key common feature emerges from the experiments on all
these systems: an interesting coarsening phenomena occurs which leads to a scale-
invariant morphology for large times, namely the system is described by a single
(time-dependent) length and the distribution approaches a scaling form. Several
models, even very simple ones, have been proposed by physicists in order to cap-
ture and explain such intriguing behavior and in many cases these models turn out
to be HCP’s (see e.g. [P], [DBG], [DGY1], [DGY2], [SE], [BDG]). Supported by
computer simulations and under the key assumption of a well defined limiting be-
havior under suitable rescaling, physicists have derived for these HCP’s in the mean
field approximation some non trivial limiting distributions for the relevant quan-
tities and noticed that these distributions display a certain degree of universality.
The results we obtained in [FMRT0] prove and generalize the findings of physicists.
However the analysis in [FMRT0] does not cover some cases of interests for physics
which involve triple merging, e.g. the HCP which has introduced in [BDG] to model
Ising at zero temperature (see Section 2.4.3). These models are instead covered by
the present study which explains why the limiting distributions of several models,
although different, have a similar structure.

The analysis in [FMRT0] is based on a robust combinatorial study of the coales-
cence inside a given epoch, which becomes extremely hard in the present setting.
Hence, here we have followed a different route inspired by the approach of [SE]. In
particular, we start with the infinitesimal generator of the one–epoch coalescence,
giving a complete characterization of its form and domain (Theorem 2.9). As well
known, this allows to characterize the time evolution of the expectation of regular
observables in terms of an ordinary differential equation. Applied to the domain
length and the position of the leftmost point (if any), this method leads to recursive
equations between the Laplace transforms of the involved quantities at the begin-
ning and the end of each epoch, and therefore at the beginning of two consecutive
epochs (Theorems 2.6 and 2.8).

The study of the Markov generator for stochastic processes whose state at a given
time is described by a simple point process on R is rather heavy [Pr]. Here, we
have introduced a lattice structure (which is somehow artificial from a geometric
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point of view) that strongly simplifies the analysis of the Markov generator, and in
particular allows us to use the standard methods described in [L]. However, such a
discretization requires some very special care, because of the use the vague topology
on the the space N of locally finite subset of R. Once obtained the above mentioned
system of recursive equations between Laplace transforms, we have generalized the
transformation introduced in [FMRT0, Section 5] which in some sense linearizes the
system and allows to analyze the recursive identities and obtain the limit behavior
(Theorems 2.12 and 2.15). The resulting transformation is now a more abstract
object and can therefore be applied to a larger class of models.

Finally we stress that the heuristic technique developed by physicists (see [BDG])
to derive the limiting distribution (under the assumption of the existence of a lim-

iting behaviour) is restricted to models with d(n) = n and it becomes meaningless

also at heuristic level if the ratio d(n)/d(n+1) does not converge to 1 as n goes to

∞. Under the same hypothesis of [BDG], namely d(n) = n and via the mean field
approximation, in [CP] the authors proposed a time evolution equation which should
describe the domain size distribution when the time variable t is a continuous ap-
proximation of the discrete label n of the epochs and one forgets how much time
elapses between and during the merging events. This equation has been rigorously
analyzed in [CP] and [GM] and in the latter work a limiting self-similar profile for
this equation has been proved. In this special case, a transformation similar to the
one presented in more generality in [FMRT0], and here, has been used.

2. Model and results

In this section we fix some notation and give our main results. We first intro-
duce the simple point processes we are interested in (standard references are [DV],
[FKAS]). Then we define the process called one–epoch coalescence process (in short
OCP) and the hierarchical coalescence process (HCP). Finally we provide some ex-
amples of HCP’s coming from the physics literature.

2.1. Simple point processes (SPP). We denote by N the family of locally finite
subsets ξ ⊂ R. N is a measurable space endowed with the σ–algebra of measurable
subsets generated by

{ξ ∈ N : |ξ ∩A1| = n1 , · · · , |ξ ∩Ak| = nk},
A1, . . . , Ak being bounded Borel sets in R and n1, . . . , nk ∈ N. We recall that any
probability measure on the measurable spaceN defines a simple point process (SPP).

We call domains the intervals [x, x′] between nearest–neighbour points x, x′ in
ξ ∪ {−∞,+∞}. Note that the existence of the domain [−∞, x′] corresponds to the
fact that ξ is bounded from the left and its leftmost point is given by x′. A similar
consideration holds for [x,∞]. Points of ξ are also called domain separation points.
Given a point x ∈ R, we define

dℓx := inf{t > 0 : x− t ∈ ξ} , drx := inf{t > 0 : x+ t ∈ ξ},
with the convention that the infimum of the empty set is ∞. Note that if x ∈ ξ then
dℓx (drx) is simply the length of the domain to the left (right) of x.

In what follows N (N+) will denote the set of non-negative (positive) integers.
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Definition 2.1.

(i) We say that a SPP ξ is left-bounded if it has a leftmost point and has infinite
cardinality.

(ii) We say that a SPP ξ is Z–stationary if ξ ⊂ Z and its law Q is invariant by
Z–translations, i.e. if for any x ∈ Z the random set ξ − x has law Q.

(iii) We say that a SPP ξ is stationary if its law Q is invariant under R-translations,
i.e. if for any x ∈ R the random set ξ − x has law Q.

If ξ is Z–stationary or stationary, then a.s. the following dichotomy holds [FKAS]:
ξ is unbounded from the left and from the right or ξ is empty. In the sequel we will
always assume the first alternative to hold a.s. and we will write ξ = {xk : k ∈ Z}
with the rules: x0 ≤ 0 < x1 and xk < xk+1 for all k ∈ Z. In the case of a left–
bounded SPP, we enumerate the points of ξ as {xk : k ∈ N} in increasing order.

We now describe the main classes of SPP’s we are interested in.

Definition 2.2. Let ν and µ be probability measures on R and (0,∞), respectively.
Let ξ be a SPP with law Q.

• We say that ξ is a renewal SPP containing the origin and with interval law
µ, and write Q = Ren(µ | 0), if
(i) 0 ∈ ξ ,
(ii) ξ is unbounded from the left and from the right and, labelling the points

in increasing order with x0 = 0, the random variables dk = xk − xk−1,
k ∈ Z, are i.i.d. with common law µ.

• We say that ξ is a right renewal SPP with first point law ν and interval law
µ, and write Q = Ren(ν, µ), if
(i) ξ = {xk , k ∈ N} is a left-bounded SPP,
(ii) the first point x0 has law ν,
(iii) dk = xk − xk−1 (k ∈ N+) has law µ,
(iv) the random variables x0, {dk}k∈N+ are independent.

• If µ has finite mean, we say that ξ is a stationary renewal SPP with interval

law µ, and write Q = Ren(µ), if
(i) ξ is a stationary SPP with finite intensity and ξ is non-empty a.s.,
(ii) the random variables dk = xk−xk−1, k ∈ Z, are i.i.d. with common law

µ w.r.t. the Palm distribution associated to Q.
• If µ has support on N+ and has finite mean, we say that ξ is a Z–stationary

renewal SPP with interval law µ, and write Q = RenZ(µ), if
(i) ξ is Z–stationary and a.s. non-empty,
(ii) w.r.t. the conditional probability Q(·|0 ∈ ξ) the random variables dk =

xk − xk−1, k ∈ Z, are i.i.d. with common law µ.

We recall that the intensity λQ of a stationary SPP with law Q is defined as the
expectation λQ := EQ (|ξ ∩ [0, 1]|). A (Z–)stationary renewal SPP with interval law
µ having infinite mean cannot exist (see Proposition 4.2.I in [DV] and Appendix C
in [FMRT0]). As discussed after Theorem 1.3.4 in [FKAS], Q = Ren(µ) if and only
if the following holds: the random variables dk = xk − xk−1, k 6= 1, are i.i.d. with
law µ and are independent from the random vector (x0, x1), which satisfies

Q(−x0 > u, x1 > v) = λQ

∫ ∞

u+v

(

1− F (t)
)

dt , F (t) := µ
(

(0, t]
)

, u, v > 0.
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2.2. The one–epoch coalescence process (OCP). This process depends on two
constants 0 < dmin < dmax and on non-negative bounded continuous functions
λℓ, λr, λa defined on [dmin,∞] which, with λ(d) := λℓ(d) + λr(d) + λa(d), satisfy
the following assumptions:

(A1) λ(d) > 0 if and only if d ∈ [dmin, dmax),
(A2) if d, d′ ≥ dmin, then d+ d′ ≥ dmax.

Trivially, (A2) is equivalent to the bound 2dmin ≥ dmax.

The admissible starting configurations for the OCP belong to the subset N (dmin)
given by the configurations ξ ∈ N having only domains of length not smaller than
dmin, i.e.

N (dmin) = {ξ ∈ N : d ℓ
x ≥ dmin , d

r
x ≥ dmin ∀x ∈ ξ}. (1)

Then, the stochastic evolution of the OCP is given by a jump dynamics with
càdlàg paths {ξ(t)}t≥0 in the Skorohod space D

(

[0,∞),N (dmin)
)

(cf. [B]). Roughly
speaking, the dynamics is the following. Each domain ∆ of length d waits an expo-
nential time with parameter λ(d), afterwards exactly one of the following annihila-
tions takes place: the left extreme of ∆ is erased with probability λℓ(d)/λ(d), the
right extreme of ∆ is erased with probability λr(d)/λ(d), both the extremes of ∆ are
erased with probability λa(d)/λ(d). We say that the domain ∆ incorporates its left
domain, its right domain, both its neighbouring domains, respectively. In Section 8
we present a full construction of all OCPs, varying the initial configuration, on the
same probability space (universal coupling).

Note that the assumptions (A1) and (A2) on the coalescence rates imply that any
domain which has been generated by a coalescence event is not active, i.e. it cannot
incorporate other domains. This assumption comes from several models of physical
interest (see Section 2.4) and plays a fundamental role in our analysis.

Remark 2.3. Note that λℓ and λr correspond to λ∗r and λ∗ℓ in [FMRT0]. The case
λa ≡ 0 has been treated in [FMRT0] without the additional assumption that λℓ, λr
are continuous functions.

Formally, the Markov generator of the OCP is given by

Lf(ξ) =
∑

[x,x+d]
domain in ξ

{

λℓ(d)
[

f(ξ \ {x}) − f(ξ)
]

+ λr(d)
[

f(ξ \ {x+ d}) − f(ξ)
]

+ λa(d)
[

f(ξ \ {x, x+ d})− f(ξ)
]

}

. (2)

A precise description of the Markov generator L is given below while its full rigorous
analysis is postponed to Section 9 for clarity of exposition.

We will write PQ for the law on D
(

[0,∞),N (dmin)
)

of the OCP with initial law
Q on N (dmin) and Qt for its marginal at time t.

Since the OCP is an annihilation process, points can only disappear. Furthermore,
Assumptions (A1) and (A2) guarantee that the process converges to a limiting con-
figuration. One can easily prove the following lemma already stated in [FMRT0] in
a less general setting (details are left to the reader).

Lemma 2.4. For any given initial condition ξ ∈ N (dmin) the following holds:

(i) ξ(t) ⊂ ξ(s) if s ≤ t,
(ii) there exists a unique element ξ(∞) in N (dmax) such that ξ(t)∩ I = ξ(∞)∩ I

for all large enough t (depending on I) and all bounded intervals I.
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The next result is a simple generalization of [FMRT0, Theorem 2.13] (its proof
is based on the universal coupling described in Section 8, we omit details). It
states that if the process starts with some right renewal (respectively stationary,
Z–stationary, etc.) simple point process ξ, then at any later time t, the process ξ(t)
is still of the same type.

Lemma 2.5. Let ν, µ be two probability measures on R and [dmin,∞), respectively.
Then, for all t ∈ [0,∞] there exist probability measures νt, µt on R and [dmin,∞)
respectively such that ν0 = ν, µ0 = µ and

(i) if Q = Ren(ν, µ) then Qt = Ren(νt, µt),
(ii) if Q = Ren(µ) then Qt = Ren(µt),
(iii) if Q = RenZ(µ) then Qt = RenZ(µt),
(iv) if Q = Ren(δ0, µ) then Qt(· | 0 ∈ ξ) = Ren(δ0, µt),
(v) limt→∞ νt = ν∞ and limt→∞ µt = µ∞ weakly.

Thanks to the previous results ξ(∞), µ∞ and ν∞ are well defined. In fact there
exists a recursive identity between the Laplace transform of the interval law, and
of the first point law, at time t = 0 and at time t = ∞. These identities, stated in
Theorem 2.6 and Theorem 2.8 below, will be the keystones of the analysis of the
asymptotic of the hierarchical coalescence process.

Given a probability measures µ on [dmin,∞), let µt be as in Lemma 2.5. Then,
for s ∈ R+, define

Gt(s) =

∫

e−sxµt(dx) , Ht(s) =

∫

[dmin,dmax)
e−sxµt(dx).

Theorem 2.6 (Recursive identities for the interval law). For any s ∈ R+, the
functions [0,∞) ∋ t 7→ Gt(s),Ht(s) are differentiable and satisfy

∂tHt(s) = −
∫

µt(dx)λ(x)e
−sx, (3)

∂t
[

Gt(s)−Ht(s)
]

= Gt(s)

∫

µt(dx)(λℓ + λr)(x)e
−sx +Gt(s)

2

∫

µt(dx)λa(x)e
−sx.

(4)

In particular, it holds

(i) If λa ≡ 0, then ∂tGt(s) = ∂tHt(s)(1 −Gt(s)). Hence,

1−Gt(s) = (1−G0(s))e
H0(s)−Ht(s), t ∈ R+, (5)

1−G∞(s) = (1−G0(s))e
H0(s). (6)

(ii) If λℓ + λr ≡ γλa for some γ ≥ 0, then ∂tGt(s) = ∂tHt(s)
(

1− Gt(s)(γ+Gt(s))
1+γ

)

.

Hence, for s > 0 it holds

e
− γ+2

γ+1
Ht(s)γ + 1 +Gt(s)

1−Gt(s)
= e

− γ+2
γ+1

H0(s) γ + 1 +G0(s)

1−G0(s)
, t ∈ R+, (7)

γ + 1 +G∞(s)

1−G∞(s)
= e

− γ+2
γ+1

H0(s)γ + 1 +G0(s)

1−G0(s)
. (8)

In the above theorem, as in the rest of the paper, differentiability at t = 0 for a
function on [0,∞) means differentiability from the right.
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Remark 2.7. The restriction to the above cases (i) and (ii) is technical and moti-
vated by the following. Set

at(s) :=

∫

µt(dx)(λℓ + λr)(x)e
−sx and bt(s) :=

∫

µt(dx)λa(x)e
−sx.

Thanks to (3), Equation (4) can be rewritten as

∂tGt(s) = −at(s)− bt(s) + at(s)Gt(s) + bt(s)Gt(s)
2. (9)

Fixing functions At(s) and Bt(s) such that ∂tAt(s) = at(s) and ∂tBt(s) = bt(s), (9)
leads to

eAt(s)+2Bt(s)

1−Gt(s)
=
eA0(s)+2B0(s)

1−G0(s)
+

∫ t

0
bu(s)e

Au(s)+2Bu(s)du. (10)

In order to have a recursive identity between (G0,H0) and G∞, one needs to find an
explicit expression of the integral in the right hand side of (10). This can be achieved
in cases (i) and (ii) of Theorem 2.6 by taking Bt(s) = bt(s) = 0 and At(s) = −Ht(s)
in case (i), and by taking At(s) = γBt(s) and At(s) +Bt(s) = −Ht(s) in case (ii).

Finally we point out that, since arctanh(x) = 1
2 ln

1+x
1−x for x ∈ (−1, 1), (7) with

γ = 0 can be rewritten in the more compact form

−Ht + arctanhGt(s) = −H0 + arctanhG0(s).

The next result is concerned with the evolution of the first point law νt when
starting with a SPP having law Ren(ν, µ) (recall Lemma 2.5). First, we observe
that if ξ is a SPP with law Ren(δ0, µ) and V is a random variable with law ν
independent from ξ, then the translated random subset {x + V : x ∈ ξ} ⊂ R is
a SPP with law Ren(ν, µ). This simple observation and the definition of the OCP,
whose dynamics depends only on the sequence of the domain lengths and not on the
specific location of the domains, allow to conclude that νt is the convolution

νt = ν̄t ∗ ν, (11)

where ν̄t denotes the evolution at time t of the first point law when starting from a
SPP having law Ren(δ0, µ). Hence, without loss we can restrict our analysis to this
case.

Theorem 2.8 (Recursive identities for the first point law). Assume that ν = δ0.
Then, for any s ∈ R+ the Laplace transform

[0,∞) ∋ t 7→ Lt(s) :=

∫

e−sxνt(x) ∈ (0, 1]

is differentiable and satisfies

∂tLt(s)

Lt(s)
= −

∫

µt(dy) (λℓ(y) + λa(y))+

∫

µt(dy)λℓ(y)e
−sy+Gt(s)

∫

µt(dy)λa(y)e
−sy.

(12)
In particular, it holds:

(i) If λa ≡ 0 and λr ≡ γλℓ for some constant γ ≥ 0, then it holds ∂tLt(s) =
Lt(s)
1+γ (∂tHt(0) − ∂tHt(s)). Hence,

Lt(s) = L0(s) exp

{−Ht(s) +Ht(0) +H0(s)−H0(0)

1 + γ

}

, t ∈ R+, (13)

L∞(s) = L0(s) exp

{

H0(s)−H0(0)

1 + γ

}

. (14)
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If λa ≡ 0 and λℓ ≡ 0, then trivially Lt(s) = L0(s) for any t ≥ 0.
(ii) If λℓ ≡ 0 and λr ≡ 0, then ∂tLt(s) = Lt(s)(∂tHt(0) − Gt(s)∂tHt(s)). Hence,

for s > 0 it holds

Lt(s) = L0(s)

√

1−G2
t (s)

1−G2
0(s)

eHt(0)−H0(0) , t ∈ R+, (15)

L∞(s) = L0(s)

√

1−G2
∞(s)

1−G2
0(s)

e−H0(0). (16)

We point out that cases (i) and (ii) of Theorem 2.8 are included into (but not
equal to) cases (i) and (ii) of Theorem 2.6.

The previous results are based on our analysis of the Markov generator L of
the OCP. In general, the expected value at time t of a regular observable evolves
according to an ordinary differential equation that we describe below. We first fix
some notation. Given k ∈ Z we set

Ik :=











[kdmin, (k + 1)dmin) if k ≥ 1,

(kdmin, (k + 1)dmin) if k = 0,

(kdmin, (k + 1)dmin] if k ≤ −1.

(17)

Given ξ ∈ N (dmin), we set for k ∈ Z and k < k′ in Z:

ξk := ξ \ Ik ∇kf(ξ) := f(ξk)− f(ξ),

ξk,k
′

:= ξ \ (Ik ∪ Ik′) ∇k,k′f(ξ) := f(ξk,k
′

)− f(ξ).

We define

R := Z ∪ {(k, k′) : k′ ∈ {k + 1, . . . , k + ⌈dmax/dmin⌉}, k, k′ in Z},
⌈a⌉ being the smaller integer n ≥ a. We consider the space N (dmin) endowed of
the vague topology (see Section 3), making it a compact space. We write B for
the Banach space of all continuous functions f : N (dmin) 7→ R endowed with the
uniform norm that we denote by ‖ · ‖. Also, and for later purpose, we let Bloc be the
set of functions f ∈ B that are local, i.e. such that there exists a bounded interval
I ⊂ R with f(ξ) = f(ξ ∩ I) for all ξ ∈ N (dmin). Then, similarly to the analysis of
interacting particle systems [L], we define

∆f (r) := sup
ξ∈N (dmin)

∣

∣∇rf(ξ)
∣

∣ , f ∈ B, r ∈ R

and we introduce the subset D of B as

D :=
{

f ∈ B : |||f ||| :=
∑

r∈R

∆f (r) <∞
}

. (18)

Observe that Bloc ⊂ D. The following result characterizes completely the Markov
generator of the OCP:

Theorem 2.9. The subspaces Bloc and D are a core of the Markov generator L, i.e.
L is the closure of the operator obtained by restriction to Bloc or to D. Moreover, if
f ∈ D, Lf(ξ) equals the absolutely convergent series in the r.h.s. of (2).

The proof is given in Section 9. Although this analysis represents our starting
point, we prefer to postpone it to the end since rather technical. As a consequence of
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the above theorem and standard theory of Markov generators, we get the following
characterization of the time evolution of expected observables:

Corollary 2.10. Given f ∈ D, the map f(t, ξ) := Eξ

[

f(ξt)
]

(the expectation of f
for the OCP at time t starting from ξ) is differentiable in t as function in B and
moreover d

dtf(t, ·) = Lf .
2.3. The hierarchical coalescence process. We can now introduce the hierar-
chical coalescence process (in short HCP). The dynamics depends on a strictly in-

creasing sequence of positive numbers {d(n)}n≥1 and a family of bounded continuous

functions λ
(n)
ℓ , λ

(n)
r , λ

(n)
a : [d(n),∞] → [0, An] , n ≥ 1. Without loss of generality, at

cost of a length rescaling, we may assume

d(1) = 1. (19)

We set λ(n) := λ
(n)
ℓ + λ

(n)
r + λ

(n)
a and we assume

(A1) for any n ∈ N+, λ
(n)(d) > 0 if and only if d ∈ [d(n), d(n+1)),

(A2) for any n ∈ N+, if d, d
′ ≥ d(n), then d+ d′ ≥ d(n+1) (i.e. 2d(n) ≥ d(n+1)),

(A3) limn→∞ d(n) = ∞.

For example one could take d(n) = n or d(n) = an−1 with a ∈ (1, 2].

The HCP is then given by a sequence of one-epoch coalescence processes, suit-
ably linked. More precisely, at the beginning of the first epoch one starts with a
SPP with support on N (d(1)) = N (1). Then the stochastic evolution of the HCP

is described by the sequence of random paths {ξ(n)(·)}n≥1, where each ξ(n) is the

random trajectory of the OCP with rates λ
(n)
ℓ , λ

(n)
r , λ

(n)
a , active domain lengths

d
(n)
min = d(n), d

(n)
max = d(n+1) and initial condition ξ(n)(0) = ξ(n−1)(∞), n ≥ 2. In-

formally we refer to ξ(n) as describing the evolution in the nth-epoch. Note that,
by Lemma 2.4, one can prove recursively that at the end of the nth–epoch the ran-
dom configuration ξ(n)(∞) belongs to N (d(n+1)), hence it is an admissible starting
configuration for the OCP associated to the (n + 1)th–epoch.

Lemma 2.5 gives us information on the evolution and its asymptotics inside each
epoch when the initial condition is a SPP of the renewal type. If e.g. the initial
distribution Q for the first epoch is Ren(ν, µ), where µ has support on [d(1),∞) =

[1,∞), we can use Lemma 2.5 together with the link ξ(n+1)(0) = ξ(n)(∞) between

two consecutive epochs to recursively define the measures µ(n), ν(n) by

µ(n+1) := µ(n)∞ , µ(1) := µ ,

ν(n+1) := ν(n)∞ , ν(1) := ν. (20)

With this position it is then natural to ask if, in some suitable sense, the measures
µ(n), ν(n) have a well defined limiting behaviour as n→ ∞. The affirmative answer is
contained in the following theorem, which is the core of the paper, for some specific
choice of transition rates. Before stating it we recall a useful result on the Laplace
transform of probability measures on [1,∞).

Lemma 2.11 ([FMRT0]). Let µ be a probability measure on [1,∞) and let g(s) be
its Laplace transform, i.e. g(s) =

∫

e−sxµ(dx) , s ∈ R+.

i) If

lim
s↓0

− sg′(s)

1− g(s)
= c0, (21)
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then necessarily 0 ≤ c0 ≤ 1.
ii) The existence of the limit (21) holds if:

a) µ has finite mean and then c0 = 1 or
b) for some α ∈ (0, 1) µ belongs to the domain of attraction of an α–stable
law or, more generally, µ

(

(x,∞)
)

= x−αL(x) where L(x) is a slowly varying1

function at +∞, α ∈ [0, 1], and in this case c0 = α.

The reader may find the proof in [FMRT0, Appendix A] together with an example
for which the limit (21) does not exist.

Theorem 2.12. Let ν, µ be probability measures on R and [1,∞) respectively. Sup-
pose that

• the law Q of ξ(1)(0) is either Q = Ren(ν, µ) or Q = Ren(µ) or Q = RenZ(µ),

• it holds (i) λ
(n)
a ≡ 0 for all n ≥ 1, or (ii) λ

(n)
ℓ + λ

(n)
r ≡ γλ

(n)
a for all n ≥ 1

and for some γ ≥ 0 independent from n,
• the Laplace transform g(s) of µ satisfies (21).

For any n ≥ 1 let X(n) be a random variable with law µ(n) defined in (20) so that

g(s) := E
[

e−sX(1)]

.

Then the following holds:

• If c0 = 0, then the rescaled variable Z(n) = X(n)/d(n) weakly converges to

the random variable Z
(∞)
0 = ∞.

• If c0 ∈ (0, 1], then the rescaled variable Z(n) = X(n)/d(n) weakly converges

to the random variable Z
(∞)
κ with values in [1,∞), whose Laplace transform

is given by

g(∞)
κ (s) = R

(

κ

∫ ∞

1

e−sx

x
dx

)

, s > 0, (22)

where










κ := c0 and R(x) := 1− e−x in case (i),

κ := γ+1
γ+2c0 and R(x) :=

exp
{

γ+2
γ+1

x
}

−1

exp
{

γ+2
γ+1

x
}

+ 1
γ+1

in case (ii).
(23)

The proof of Theorem 2.12 is given in Section 6. Case (i) has already been proved
in [FMRT0] with a more combinatorial method, not suited for extensions.

Remark 2.13. In the above result the only reminiscence of the initial distribution
is through the constant c0 which is “universal” for a large class of initial interval
laws µ (see Lemma 2.11). In particular, starting with a stationary or Z–stationary
renewal SPP (which necessarily corresponds to a law µ with finite mean), the weak

limit of Z(n) always exists and is universal (c0 = 1), depending on the rates only
through the fulfilment of case (i) or case (ii), and not depending on the sequence

{d(n)}n≥1 which defines the active intervals.
We also underline that our results cover a slightly more general class of HCP.

Indeed, following exactly the same lines of our proofs, we can also treat more general
triple merging allowing e.g. an active domain to incorporate either its two neighbours
to the left and/or its two neighbours to the right and/or its left and right neighbours
(this last case is the only one considered in this paper). For this more general class

1A function L is said to be slowly varying at infinity, if for all c > 0, lim
x→∞

L(cx)/L(x) = 1.
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of HCP both the above asymptotic result as well as the one in Theorem 2.15 are
unchanged (instead the single epoch evolution expressed by the differential equation
(28) has to be properly changed by adding to λa the rates of these new triple mergence
events).

Remark 2.14. The asymptotic Laplace distribution g
(∞)
κ can be written also as

g(∞)
κ (s) = R

(

κ

∫ ∞

s

e−x

x
dx

)

= R (κEi(s))

where Ei(·) denotes the exponential integral function2. This is indeed the form ap-
pearing in [DBG] and [SE]. Moreover, in case (ii) with γ = 0 in the above theorem

(as in [DBG]), one simply has κ = c0/2 and g
(∞)
c0/2

= tanh
(

c0
2 Ei(s)

)

.

Next we concentrate on the asymptotic behaviour of the first point law when
starting with a right renewal SPP.

Theorem 2.15. Let ν, µ be probability measures on R and [1,∞) respectively. Sup-
pose that

• the law Q of ξ(1)(0) is Ren(ν, µ),

• it holds (i) λ
(n)
a ≡ 0 and λ

(n)
r ≡ γλ

(n)
ℓ for all n ≥ 1 and for some γ ≥ 0

independent from n, or (ii) λ
(n)
ℓ ≡ 0 and λ

(n)
r ≡ 0 for all n ≥ 1.

• the Laplace transform g(s) of µ satisfies (21).

For any n ≥ 1 let X
(n)
0 be the position of the first point of the HCP at the beginning

of the n–th epoch and let Y (n) be the rescaled random variable Y (n) := X
(n)
0 /d(n).

Then the following holds:

• [FMRT0] In case (i), as n → ∞, Y (n) weakly converges to the positive ran-

dom variable Y
(∞)
c0 with Laplace transform given by

E
(

e−sY
∞)
c0
)

= exp

{

− c0
1 + γ

∫

(0,1)

1− e−sy

y
dy

}

, s ∈ R+. (24)

• In case (ii), supposing that
∫

zµ(dz) <∞ and that

lim
z→∞

1

z

∫

[1,z]
x2µ(dx) = 0, (25)

as n → ∞ the variable Y (n) weakly converges to the random variable Y (∞)

with values in (0,∞) and Laplace transform given by

E
(

e−sY (∞))

=
e−γ̄/2

2

√

1− tanh2(Ei(s)/2)

s
, s ∈ R+, (26)

where we let γ̄ = −
∫∞
0 e−t(log t)dt ≃ 0, 577 be the Euler-Mascheroni con-

stant. Condition (25) is satisfied if
∫

x1+εµ(dx) <∞ for some ε > 0.

The proof is given in Section 7. Case (i) in the above theorem has been stated
only for completeness. It has already been obtained in [FMRT0] (see Theorem 2.24
there) . Finally, we point out that, due to Lemma 2.11, under condition (25) it must
be c0 = 1 in the limit (21).

2Note that the function that we denote by Ei(s) (following the notation of [SE] and our paper
[FMRT0]) is instead more frequently denoted in mathematics literature by E1(s).
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Remark 2.16. Extensions of the results presented in this section to OCP’s and
HCP’s starting from an exchangeable SPP can be easily achieved following the ar-
guments reported in [FMRT0, Appendix D].

2.4. Examples of HCP’s. We conclude this section by discussing some HCP’s
coming from the physics literature.

2.4.1. The HCP associated to the East model at low temperature [SE, FMRT1]. An
interesting and highly non trivial example of HCP has been devised in the physics
literature [SE] to model the high density (or low temperature) non-equilibrium dy-
namics of the East model when a deep quench from a normal density state is per-
formed. The East model [SE, EJ] is a well known example of kinetically constrained
stochastic particle system with site exclusion which evolves according to a Glauber
dynamics submitted to the following constraint: the 0/1 occupancy variable at a
given site x ∈ Z can change only if the site x + 1 is empty (i.e. the corresponding
occupation variable equals zero). The change of the occupation variable, when al-
lowed by this constraint, occurs at rate q (respectively 1− q) if it corresponds to a
change towards an empty (respectively occupied) site. Note that each configuration
can also be represented by a sequence of domains on Z, where a domain represents
a maximal sequence of consecutive occupied sites delimited by two empty sites. If
the equilibrium vacancy density is very low (i.e. in the limit q → 0) and the initial
distribution has a normal density (e.g. q = 1/2) most of the non-equilibrium evolu-
tion will try to remove the excess of vacancies of the initial state and will thus be
dominated by the coalescence of domains. In this setting, under a proper rescaling
[FMRT1], the East process can be well described by an HCP with the following pa-

rameters: d(1) = 1, d(n) = 2n−2 + 1 for n ≥ 2, λ
(n)
r (d) = λ

(n)
a (d) = 0 for any value of

the domain length d, thus λ(n) = λ
(n)
ℓ where λ

(n)
ℓ is a function expressed via a proper

large deviation probability (see [FMRT1] for the precise form of this function). We
provide here only a very short explanation to justify the above choices of the pa-
rameters and refer the reader to [SE] for an heuristic explanation of the connection
of this HCP with East and to Section 3 of [FMRT1] for a rigorous description. The

choice λ
(n)
a = 0 is due to the fact that the relevant event for East corresponds to

the disappearance of one zero at a time, namely to the coalescence of two domains
(triple domain merging is not allowed). The asymmetry between the right and left
coalescence is due to the oriented character of the East constraints, which implies
that only the left domains can be incorporated. Finally, the apparently weird choice
of the active ranges d(n) is due to the fact that in order to remove the vacancy sitting
at the left border of a domain of size ℓ ∈ [2n−1 + 1, 2n] one needs to create at least
n additional vacancies inside the domain (again, see [SE, FMRT1] for details of the
combinatorial argument leading to this result). Thus energy barrier considerations
imply that this event requires a typical time of order 1/qn which in turn means that
in the regime q → 0 domains of sizes ℓ, ℓ′ with ℓ ∈ [2n−1 +1, 2n] , ℓ′ ∈ [2m−1 +1, 2m]
and n 6= m are active (namely their left border can disappear) on very well separated
time scales.

2.4.2. The paste–all model [DGY2]. Another interesting HCP has been “introduced”
in [DGY2] and named Paste-all-model. The model was intended to describe breath
figures, namely the patterns formed by growing and coalescing droplets when vapour
condenses on a non wetting surface. A common feature of breath figure experiments



1D HIERARCHICAL COALESCENCE PROCESSES 13

is the occurrence of a scale-invariant regime with a stable distribution of the drop
sizes. In [DGY2] several simplified one dimensional models were proposed to under-
stand this phenomenon, including the HCP named Paste-all-model. In this case all
the domains are subintervals of the integer lattice, a single length is active in each
epoch and domains merge with their left/right neighbour with rate one, namely

d(n) = n, λ
(n)
ℓ (n) = λ

(n)
r (n) = 1 and λ

(n)
a (n) = 0 (drops can coalesce either with

their right or left neighbour and the smaller droplets are the first that disappear).

2.4.3. The HCP associated to the 1d Ising model [BDG]. Finally, we recall the HCP
which has been “introduced” in [BDG] to model the zero temperature Glauber
dynamics of the one dimensional Ising model evolved from a random initial condition.
In this case the domains correspond to the ordered spin regions, namely the maximal
sequence of consecutive sites with the same value of the spin, either up or down. At
late stages of the dynamics a scale-invariant morphology develops: the structure at
different times is statistically similar apart from an overall change of scale, i.e. the
system is described by a single, time-dependent length scale. Instead of considering
the stochastic Glauber dynamics the authors of [BDG] start from the well known
simpler deterministic model which is expected to mimics this dynamics, namely
the time-dependent Ginzburg-Landau equation for a scalar field in d = 1, ∂tφ =
∂2xφ − dV/dφ with V (φ) a symmetric double well potential with minima at φ =
±1 corresponding to the up and down phases for the Ising model. If the model
starts with a φ profile corresponding to a random initial condition for the Ising
model, then it evolves rapidly to a phase of subsequent regions were φ is close to ±1
(corresponding to the ordered domains) and the dynamics is dominated by the events
that bring together and annihilate the closest pair of domain walls. This in turn
corresponds to the fact that the smaller domains merge with the two neighbouring
domains. Consequently, the HCP which has been introduced in [BDG] to mimic

this domain dynamics has parameters: d(n) := n (only the smallest length is active

at each epoch), λ
(n)
ℓ (n) = λ

(n)
r (n) = 0 and λ

(n)
a (n) = 1 (only triple merging occurs).

3. Metric structure of N (dmin)

Let us write M for the space of Radon measures on R, i.e. locally finite Borel
non-negative measures. We consider this space endowed of the vague topology, such
that µn → µ in M if and only if µn(f) → µ(f) for all continuous functions f on R

with compact support (shortly, f ∈ C0). Then M can be metrizied by a suitable
metric m making it a Polish space (see [DV, Sec. A2.6] and observe that, since the
Euclidean space R is Polish and locally compact, the vague topology coincides with
the ŵ–topology as discussed before [DV, Cor. A2.6.V]). We recall the definition of
m since useful below:

m(µ, ν) :=

∫ ∞

0
e−r dr

(

µ(r), ν(r)
)

1 + dr
(

µ(r), ν(r)
)dr, µ, ν ∈ M,

where µ(r), ν(r) denote the restriction to (−r, r) of µ, ν, while dr stands for the
Prohorov distance for measures on (−r, r) (see [DV, Sec. A2.5]).

The spaceN introduced in Section 2.1 can be thought of as a subspace ofM, iden-
tifying the set ξ ∈ N with the measure

∑

x∈ξ δx. Then one gets that the σ–algebra
of its Borel subsets coincides with the σ–algebra of measurable subsets introduced
in Section 2.1 (see [DV, Ch. 7], in particular Prop.7.1.III and Cor. 7.1.VI there).
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Therefore, the same property holds for N (dmin) (i.e. Borel subsets and measurable
subsets coincide).

Lemma 3.1. The following holds:

(i) ξn → ξ in N (dmin) if and only if |ξn∩ [a, b]| → |ξ∩ [a, b]| for each interval [a, b]
such that ξ ∩ {a, b} = ∅. The same criterion holds replacing closed intervals
[a, b] by open intervals (a, b).

(ii) Suppose that ξn → ξ in N (dmin). Fix a < b with ξ ∩ {a, b} = ∅. Then
ξn∩ (a, b) → ξ ∩ (a, b) in N (dmin). Moreover, for n large enough ξn∩ (a, b) has

the same cardinality of ξ ∩ (a, b) and limn→∞ x
(n)
i = xi for 1 ≤ i ≤ k, where

ξn ∩ (a, b) = {x(n)1 < x
(n)
2 < · · · < x

(n)
k } and ξ ∩ (a, b) = {x1 < x2 < · · · < xk}.

(iii) The space N (dmin) is a closed subset of M. In particular, it is a Polish space
endowed of the metric m.

(iv) The space N (dmin) is compact.

Proof. Part (i) with closed intervals follows from [DV, Prop. A2.6.II] (see also
[FKAS, Th.1.1.16] with Pn := δξn and P := δξ). The same criterion with open
interval is a simple derivation from the one with closed interval.

Let us consider Part (ii). Applying the criterion in Part (i) it is trivial to check
that ξn ∩ (a, b) → ξ ∩ (a, b). Take now ε > 0 small enough that all the intervals
Ji = [xi− ε, xi + ε], 1 ≤ i ≤ k, are disjoint and intersect ξ only at xi. Then, by item
(i) for n large ξn has exactly one point in each Ji. Similarly, ξn has exactly k points
in (a, b) for n large. By the arbitrariness of ǫ we can conclude.

To prove Part (iii) call N̄ the family of counting measures in R, i.e. ξ ∈ N̄ if and
only if ξ =

∑

i kiδxi
with ki ∈ N+ and {xi} being a locally finite countable subset of

R. By [DV, Prop.7.1.III], N̄ is a closed subset of M. Hence, if ξn ∈ N (dmin) and
ξn → ξ with ξ in M, then ξ ∈ N̄ . We only need to show that ξ ∈ N (dmin). Suppose
by contradiction that ξ({x}) ≥ 2 for some x ∈ R. Take I = [x− ǫ, x+ ǫ] such that
ξ({x− ǫ, x+ ǫ}) = 0 and 2ε < dmin (the existence of ǫ is guaranteed by the fact that
ξ ∈ N̄ ). By Part (i) it must be ξn(I) ≥ 2 for n large enough, in contradiction with
the fact that ξn can have at most one point in I.

Due to Part (iii), Part (iv) is a simple consequence of the compactness criterion
given in [DV, Cor. A2.6.V]. �

Recall that B denotes the Banach space of all continuous functions f : N (dmin) →
R endowed with the uniform norm ‖·‖ and that Bloc denotes the set of local functions
f ∈ B.

Lemma 3.2. The set Bloc is dense in B. In particular, given f ∈ B and defining

fN (ξ) :=
∫ N+1
N f(ξ ∩ (−r, r))dr, it holds fN ∈ Bloc and fN → f in B.

Note that the map R+ ∋ r 7→ f(ξ ∩ (−r, r)) ∈ R is stepwise, with a finite number
of jumps in any finite interval. Hence, the above function fN is well defined.

Proof. Take f ∈ B. Since N (dmin) is compact, f is uniformly continuous. Hence,
given ǫ > 0, there exists δ0 > 0 such that m(ξ, ξ′) < δ0 implies |f(ξ) − f(ξ′)| <
ǫ. Take N0 ∈ N large enough that e−N0 ≤ δ0. By the definition of m we have
m(ξ, ξ ∩ (−N,N)) ≤

∫∞
N e−ada ≤ δ0 for any N ≥ N0. This implies that |f(ξ) −

f(ξ ∩ (−r, r))| ≤ ǫ for all r ≥ N0 and therefore ‖f − fN‖ ≤ ǫ. Trivially fN is a local
function, it remains to prove that fN is continuous. To this aim, fix ξ ∈ N (dmin).
Then the set R = {r ∈ [N,N + 1] : ξ ∩ {−r, r} 6= ∅} is finite. In particular, by
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Lemma 3.1 (ii), if ξn → ξ then ξn ∩ (−r, r) → ξ ∩ (−r, r) for all r ∈ [N,N + 1] \R.
Since f is continuous, we get that

f(ξn ∩ (−r, r)) → f(ξ ∩ (−r, r)) ∀r ∈ [N,N + 1] \R.
We conclude applying now the dominated convergence theorem. �

4. OCP process: proof of Theorem 2.6 and Theorem 2.8

In this section we prove Theorem 2.6 and Theorem 2.8 applying our analysis of
the Markov generator of the OCP (recall Corollary 2.10).

4.1. Differential equation for µt and proof of Theorem 2.6. As application
of Corollary 2.10 we can prove the following result:

Proposition 4.1. Let f : [0,∞) → R be a continuous function such that

∞
∑

k=0

sup
x≥k

|f(x)| <∞. (27)

Let µ be a probability measure on [dmin,∞) and µt be as in Lemma 2.5 with the
choice Q = Ren(µ). Then, the function [0,∞) ∋ t 7→ µt(f) ∈ R is differentiable and

d

dt
µt(f) = −

∫

µt(dx)λ(x)f(x) +

∫

µt(dx)

∫

µt(dy)
(

λr(x) + λℓ(y)
)

f(x+ y)

+

∫

µt(dx)

∫

µt(dy)

∫

µt(dz)λa(y)f(x+ y + z). (28)

Proof. Set Q = Ren(δ0, µ). Note that PQ–a.s. ξ(t) belongs to the set N∗ of config-
urations ξ ∈ N (dmin) such that ξ ⊂ [0,∞), ξ ∩ (0, dmin/2] = ∅ and ξ is given by
an increasing sequence of points diverging to ∞. Points in ξ ∈ N∗ are labeled as
x0(ξ), x1(ξ), x2(ξ), . . . in increasing order. Then, by Lemma 2.5, µt equals the law
of x1(ξ(t)) under PQ(·|0 ∈ ξ(t)). Hence we can write µt(f) = Nt/Dt where

Nt = EQ

[

f
(

x1(ξ(t))
)

; 0 ∈ ξ(t)
]

, Dt = PQ(0 ∈ ξ(t)).

Let ρ : R → [0, 1] be a continuous function such that ρ(x) = 0 for x 6∈ (−dmin
2 , dmin

2 )
and ρ(0) = 1. By definition of vague convergence (see Section 3), the function
Φ : N (dmin) 7→ R defined as Φ(ξ) :=

∑

x∈ξ ρ(x) is a continuous map. Since local it

belongs to Bloc and moreover it satisfies Φ(ξ) = 10∈ξ for all ξ ∈ N∗. In Lemma 4.2
below we exhibit a function Ψ ∈ D that satisfies Ψ(ξ) = f

(

x1(ξ)
)

10∈ξ for all ξ ∈ N∗.
Hence, we can write

Nt = EQ [Ψ(ξ(t))] , Dt = EQ [Φ(ξ(t))] .

By standard properties of Markov generators, we conclude that the maps Nt,Dt are
differentiable and that

N ′
t = EQ [LΨ(ξ(t))] , D′

t = EQ [LΦ(ξ(t))] .
Since Ψ,Φ ∈ D, we can use Equation (2) to compute LΨ and LΦ. We need their
value only on N∗. Suppose that ζ, ξ ∈ N∗ are such that ζ ⊂ ξ and 0 ∈ ξ. Writing xi
and di instead of xi(ζ) and di(ζ) = xi(ζ)− xi−1(ζ), we get

{

LΨ(ζ) = 1(0 ∈ ζ)G(ζ),
LΦ(ζ) = 1(0 ∈ ζ)H(ζ)
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where H(ζ) := −λℓ(d1)− λa(d1) and

G(ζ) := −
[

λℓ(d1) + λa(d1)
]

f(x1) +
[

λr(d1) + λℓ(d2)
][

f(x2)− f(x1)
]

+ λa(d2)
[

f(x3)− f(x1)
]

.

Since Nt and Dt are derivable, we get that Nt/Dt is derivable and that

d

dt
µt(f) =

d

dt

Nt

Dt
=
N ′

t

Dt
− Nt

Dt

D′
t

Dt
.

Writing F (ξ) = f(x1(ξ)), the above identities imply that

d

dt
µt(f) = EQ (G(ξ(t)) | 0 ∈ ξ(t))− EQ (F (ξ(t)) | 0 ∈ ξ(t))EQ (H(ξ(t)) | 0 ∈ ξ(t)) .

(29)
By Lemma 2.5 (iv), we can write (brackets should help to follow the computations)

EQ (G(ξ(t)) | 0 ∈ ξ(t)) = −{µt(λℓf) + µt(λaf)}

+

{∫

µt(dx)

∫

µt(dy)
[

λr(x) + λℓ(y)
]

f(x+ y)− µt(λrf)− µt(λℓ)µt(f)

}

+

{
∫

µt(dx)

∫

µt(dy)

∫

µt(dz)λa(y)f(x+ y + z)− µt(λa)µt(f)

}

(30)

and

EQ (F (ξ(t)) | 0 ∈ ξ(t))EQ (H(ξ(t)) | 0 ∈ ξ(t)) = −µt(f)µt(λℓ)− µt(f)µt(λa). (31)

Combining the above identities (29), (30) and (31) we get the thesis. �

In the proof of Proposition 4.1 above, we used the following technical lemma.

Lemma 4.2. Let f be a real continuous function on [0,∞) satisfying (27) and
extend it to a continuous function on R constant on (−∞, 0]. Given s ∈ R define

fs(ξ) =

{

0 if
∣

∣ξ ∩ (s,∞)
∣

∣ ≤ 1

f
(

z
(

ξ ∩ (s,∞)
))

otherwise

where z
(

ξ ∩ (s,∞)
)

denotes the second point from the left of ξ ∩ (s,∞). Then the
function

F : N (dmin) ∋ ξ 7→ 1

dmin

∫ 0

−dmin

fs(ξ)ds ∈ R

belongs to B. Moreover, the function Ψ(ξ) = Φ(ξ)F (ξ) belongs to D and Ψ(ξ) =
f
(

x1(ξ)
)

10∈ξ for all ξ ∈ N∗ (for the definition of Φ and N∗ see the the proof of
Proposition 4.1).

The integrand in the definition of F is a stepwise function with a finite number
of jumps, hence it is integrable.

Proof. Let us prove the continuity of F . Take ξn → ξ in N (dmin) and set R := {s ∈
(−dmin, 0) : s 6∈ ξ}. We claim that, fixed s ∈ R, it holds fs(ξn) → f(ξ). Let us first
suppose that |ξ∩ (s,∞)| ≥ 2. Let a < b be the first two points of ξ∩ (s,∞) and take
c larger than b such that ξ has no point in (b, c]. Then by Lemma 3.1 (ii) ξn ∩ (s, c)

has exactly two points a(n) < b(n) eventually in n, moreover a(n) → a and b(n) → b.
By the continuity of f , we have

fs(ξn) = f(b(n)) → f(b) = fs(ξ).
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Let us now suppose that |ξ ∩ (s,∞)| ≤ 1. Suppose first that ξ ∩ (s,∞) has only
one point, denoted by x∗. Given ε > 0 fix L > x∗ such that L 6∈ ξ and |f(x)| ≤ ε
for x ≥ L (L exists due to (27)). By Lemma 3.1 (i) for n large ξn has exactly
one point in (s, L). This assures that |fs(ξn)| ≤ ε for n large and therefore that
limn→∞ fs(ξn) = 0 = fs(ξ). A similar argument can be applied when ξ has no point
in (s,∞). This concludes the proof of our claim.

Combining our claim with the dominated convergence theorem and with the fact
that R is a finite set, we get that F (ξn) → F (ξ), thus proving the continuity of F .

If ξ ∈ N∗ it is simple to check that Ψ(ξ) = f
(

x1(ξ)
)

10∈ξ. It remains to prove
that |||Ψ||| < ∞. Suppose that k ∈ Z and ∇kΨ(ξ) 6= 0. Then k ≥ −1 and ξ
has at least two points in (−dmin,∞), the first or the second one (from the left)
must lie in Ik. In particular, it must be |∇kΨ(ξ)| ≤ 2 supx≥kdmin

|f(x)|. Take now
k < k′ ≤ k + ⌈dmax/dmin⌉ in Z. Suppose that ∇(k,k′)Ψ(ξ) 6= 0. If k < −1 then
∇(k,k′)Ψ(ξ) = ∇k′Ψ(ξ) which can be bounded as above. If k, k′ ≥ −1, then we
conclude that ξ has at least two points in (−dmin,∞), the first or the second one
(from the left) must lie in Ik ∪ Ik′ . Hence, |∇(k,k′)Ψ(ξ)| ≤ 2 supx≥kdmin

|f(x)|. The
above bounds and condition (27) allow to conclude. �

We have now all the tools to prove Theorem 2.6.

Proof of Theorem 2.6. To prove (3) and (4) we can restrict to s > 0. Indeed, writing
these differential equations as integral identities one can take the limit s ↓ 0 and
recover the case s = 0.

We can apply Proposition 4.1 to the function f(x) = e−sx, x ≥ 0, getting that
Gt(s) = µt(f) is t–differentiable, with derivative given by (28).

We can write Ht(s) = µt(f̃) where f̃(x) := e−sx
1(x < dmax). Obviously f̃ is not

suited to Proposition 4.1 since not continuous. If µ had support on a lattice, e.g.
N, trivially f̃ could be replaced by a nice function. In the general case we need
more care. For ε > 0 small enough, we fix a continuous function fε on [0,∞) with

values in [0, 1] such that fε(x) = f̃(x) if x 6∈
(

dmax − ε, dmax

)

. Applying Proposition
4.1 we get that the function [0,∞) ∋ t 7→ µt(fε) is differentiable with derivative
given by (28) (with f replaced by fε). Since µt has support in [dmin,∞) and since
fε(x+ y) = 0, fε(x+ y + z) = 0 if x, y, z ≥ dmin (recall assumption (A2) in Section
2.2), from (28) we conclude that µ′t(fε) = −µt(λfε).

Let αt(ε) := µt
(

(dmax − ε, dmax)
)

. Trivially, limε↓0 αt(ε) = 0 and 0 ≤ αt(ε) ≤ 1.

Since |µt(f̃)− µt(fε)| ≤ αt(ε) and

|µ′t(fε) + µt(λf̃)| = |µt(λfε)− µt(λf̃)| ≤ αt(ε)‖λ‖∞,
applying the Dominated Convergence Theorem we get

Ht(s) = µt(f̃) = lim
ε↓0

µt(fε) = lim
ε↓0

[

µ0(fε)−
∫ t

0
µu(λfε)du

]

= µ0(f̃)−
∫ t

0
µu(λf̃)du.

Since λ is a continuous function (extendable on [0,∞)) and is zero on [dmax,∞), we

can apply Proposition 4.1 to the function λf̃ concluding that the map [0,∞) ∋ t 7→
µt(λf̃) is differentiable and therefore continuous. This observation together with
the above identity allows to conclude that Ht(s) is t–differentiable and its derivative

satisfies (3) (note that λf̃ = λf by assumption (A1) in Section 2.2). Knowing that
∂tGt(s) is given by (28) and using (3) we get (4).
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We observe that in case (i) it holds λℓ + λr = λ, while in case (ii) it holds
λℓ + λr = λγ/(1 + γ) and λa = λ/(1 + γ). These identities allow to derive from
(3) and (4) that ∂tGt(s) = ∂tHt(s)(1 − Gt(s)) in case (i) and that ∂tGt(s) =

∂tHt(s)
(

1− Gt(s)(γ+Gt(s))
1+γ

)

in case (ii). The rest of the proof follows by the com-

putations outlined in Remark 2.7 using (3), (4) and the fact that limt→∞Gt(s) =
G∞(s), limt→∞Ht(s) = H∞(s) = 0 (which is due to Lemma 2.4 (iii) and Lemma
2.5 (v)). We only point out that with the definition of At(s), Bt(s) given in Remark

2.7 one gets bu(s)e
Au(s)+2Bu(s) = 1

γ+2∂ue
−Hu

γ+2
γ+1 in case (ii). �

4.2. Differential equation for νt and proof of Theorem 2.8. As in the case
of the interval law µt, in order to prove Theorem 2.8, we need first to establish a
differential equation for the expectation νt(f) for nice functions f .

Proposition 4.3. Let f : [0,∞) → R be as in Proposition 4.1. Let µ be a probability
measure on [dmin,∞) and νt be as in Lemma 2.5 with the choice Q = Ren(δ0, µ).
Then the map [0,∞) ∋ t 7→ νt(f) ∈ R is differentiable and

d

dt
νt(f) = −

∫

νt(dx)

∫

µt(dy) (λℓ(y) + λa(y)) f(x) +

∫

νt(dx)

∫

µt(dy)λℓ(y)f(x+ y)

+

∫

νt(dx)

∫

µt(dy)

∫

µt(dz)λa(y)f(x+ y + z). (32)

Proof. We extend f as continuous function to all R, constant on (−∞, 0]. Given
s ∈ R define

fs(ξ) =

{

0 if ξ ∩ (s,∞) = 0

f
(

z
(

ξ ∩ (s,∞)
))

otherwise

where z
(

ξ ∩ (s,∞)
)

denotes the first point from the left of ξ ∩ (s,∞). Then the
function

Θ : N (dmin) ∋ ξ 7→ 1

dmin

∫ 0

−dmin

fs(ξ)ds ∈ R

belongs to D and Θ(ξ) = f(x0(ξ)) if ξ ∈ N∗. The proof is similar to the one of
Lemma 4.2 and we omit the details.

Set Q = Ren(δ0, µ). Note that PQ–a.s. ξ(t) belongs to the set N∗ of configu-
rations ξ ∈ N (dmin) such that ξ ⊂ [0,∞), ξ ∩ (0, dmin/2] = ∅ and ξ is given by
an increasing sequence of points diverging to ∞. Points in ξ ∈ N∗ are labeled as
x0(ξ), x1(ξ), x2(ξ), . . . in increasing order. Hence, we can write

νt(f) = EQ

[

f
(

x0(ξ(t))
)]

= EQ

[

Θ(ξ(t))
]

.

Using that Θ ∈ D and therefore (2), one concludes that the map t 7→ νt(f) is
differentiable and that

d

dt
νt(f) = EQ

[

LΘ(ξ(t))
]

= EQ [λℓ(x1 − x0)[f(x1)− f(x0)] + λa(x1 − x0)[f(x2)− f(x0)] ]

=

∫

νt(dx)

∫

µt(dy)λℓ(y)[f(x+ y)− f(x)]

+

∫

νt(dx)

∫

µt(dy)

∫

µt(dz)λa(y)[f(x+ y + z)− f(x)]

where we used, for simplicity of notation, x0 = x0(ξ(t)), x1 = x1(ξ(t)) and x2 =
x2(ξ(t)) and the fact that x0 has law νt, while x1 − x0 and x2 − x1 have law µt. �
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Proof of Theorem 2.8. As in the proof of Theorem 2.6 we can take s > 0. Using
Proposition 4.3 with the function f : x 7→ e−sx, we get that t 7→ Lt(s) is differentiable
and that

d

dt
Lt(s) = −

∫

νt(dx)

∫

µt(dy) (λℓ(y) + λa(y)) e
−sx +

∫

νt(dx)

∫

µt(dy)λℓ(y)e
−sx−sy

+

∫

νt(dx)

∫

µt(dy)

∫

µt(dz)λa(y)e
−sx−sy−sz.

The above equation corresponds to (12).
Consider the case λa ≡ 0. Then if λℓ ≡ 0, trivially Lt = L0 for any t ≥ 0. While

for λr ≡ γλℓ, one has λℓ ≡ 1
1+γλ so that the differential equation (12) satisfied by

Lt reads

∂tLt(s) =
Lt(s)

1 + γ

[

−
∫

µt(dy)λ(y) +

∫

µt(dy)λ(y)e
−sy

]

=
Lt(s)

1 + γ
(∂tH0(s)− ∂tHt(s))

where we used (3). Integrating and using that limt→∞Ht(s) = 0 leads to (13) and
(14).

Now consider the case λℓ ≡ 0, λr ≡ 0. Noticing that λa ≡ λ and using (3), from
(12) we obtain that ∂t lnLt(s) = ∂tHt(0) − Gt(s)∂tHt(s). At this point we apply
Point (ii) in Theorem 2.6 with γ = 0 getting for s > 0

∂t lnLt(s) = ∂tHt(0)−
Gt(s)∂tGt(s)

1−Gt(s)2
= ∂t

{

Ht(0) +
1

2
ln(1−Gt(s)

2)

}

.

This leads to (15), which implies (16) after taking the limit t→ ∞. �

5. Abstract generalization of the transformation introduced in

[FMRT0]

We extend here a transformation developed in [FMRT0, Sec. 5] allowing to re-
phrase the non-linear identities on the Laplace transforms appearing in Theorem 2.6
and Theorem 2.8 into linear identities involving Radon measures. This transforma-
tion will be crucial in our analysis of the limiting behaviour of the HCP process (see
Section 6 and 7).

Consider the OCP starting from a renewal SPP with interval law µ having support
on [dmin,∞) (i.e. ξ(0) has law Ren(ν, µ) or Ren(µ) or RenZ(µ)). We recall that
µ∞ denotes the interval law at the end of the epoch (see Lemma 2.5) and we call
X0,X∞ some generic random variables with law µ, µ∞, respectively. Then we define
the rescaled random variables

Z0 = X0/dmin and Z∞ = X∞/dmax

and we set, for s ≥ 0,

g0(s) = E
(

e−sZ0
)

, g∞(s) = E
(

e−sZ∞
)

, h0(s) = E
(

e−sZ0 ;Z0 < a
)

, a :=
dmax

dmin
.

By definition and because of Assumption (A2) and Lemma 2.4 (iii), we have that
Z0 ≥ 1, Z∞ ≥ 1 and a ∈ [1, 2]. In particular, g0(s), g∞(s) ∈ (0, 1) for s > 0.

We observe that Equations (6) and (8) have the following common structure:

F
(

g∞(as)
)

= F
(

g0(s)
)

− h0(s) , s > 0,
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where

F(x) :=

{

− ln(1− x) for Equation (6),
γ+1
γ+2 ln

1+x/(γ+1)
1−x for Equation (8) .

(33)

With these examples in mind, we introduce the following definition.

Definition 5.1 (Hypothesis (H)). We say that a real function F satisfies Hypothesis
(H) if there exists ε > 0 such that F is defined on (−ε, 1) and

• (H1) F is C1,
• (H2) the derivative F ′ admits an analytic expansion on (0, 1) of the form
F ′(x) =

∑∞
n=0 cnx

n with cn ≥ 0 for all n ≥ 0,
• (H3) F(0) = 0, F is bijective from (−ε, ε) to an open interval U containing
0 such that R := F−1 : U → (−ε, ε) is an analytic function and R′(0) = 1
(i.e. F ′(0) = 1).

By analytic expansion in (H3) we mean that R(x) =
∑∞

k=1 rkx
k for all x ∈ U ,

where the series in the r.h.s. if absolutely convergent.

One can easily verifies that both functions F defined in (33) satisfy Hypothesis (H)
since for |x| < 1 we have the analytic expansions − ln(1−x) = x+x2/2+x3/3+ · · · ,
while

ln
1 + x/(γ + 1)

1− x
=

∞
∑

n=1

xn

n

[

1 + (−1)n+1(γ + 1)−n
]

. (34)

Moreover, for |x| < 1, it holds

R(x) =











1− e−x if F(x) = − ln(1− x),

exp
{

γ+2
γ+1

x
}

−1

exp
{

γ+2
γ+1

x
}

+ 1
γ+1

if F(x) = γ+1
γ+2 ln

1+x/(γ+1)
1−x .

(35)

Finally, we introduce the following notation. Given an increasing function φ :
[0,∞) → [0,∞) and a Radon measure m on [0,∞), we denote by m ◦ φ the new
Radon measure on [0,∞) defined by

m ◦ φ(A) = m(φ(A)), A ⊂ R Borel.

Note that m ◦ φ is indeed a measure, due to the injectivity of φ. Moreover, it holds
∫ ∞

0
f(x)m ◦ φ(dx) =

∫

[φ(0),φ(∞)]
f(φ−1(x))m(dx). (36)

Above, and in what follows, we use the short notation
∫∞
0 for

∫

[0,∞).

Theorem 5.2. Let F be a function satisfying Hypothesis (H). Then there exist
unique Radon non-negative measures t0(dx) and t∞(dx) on [0,∞) such that for all
s > 0 it holds

F
(

g0(s)
)

=

∫ ∞

0

e−s(1+x)

1 + x
t0(dx), (37)

F
(

g∞(s)
)

=

∫ ∞

0

e−s(1+x)

1 + x
t∞(dx), (38)

h0(s) =

∫

[0,a−1)

e−s(1+x)

1 + x
t0(dx). (39)
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Moreover, the equation

F
(

g∞(as)
)

= F
(

g0(s)
)

− h0(s), s > 0, (40)

is equivalent to the relation
t∞ = (1/a) t0 ◦ φ (41)

where the linear function φ : [0,∞) → [0,∞) is defined as φ(x) = a(1 + x)− 1.

Remark 5.3. Combining (H2) and (H3) in Definition 5.1, it follows that the map
F is strictly increasing on [0, 1). In particular, Equation (40) univocally determines
g∞ knowing g0 and h0 on (0,∞), and similarly Equations (37) and (38) univocally
determine g∞ and g0 knowing t∞ and t0, respectively.

We divide the proof of the above theorem in different steps.

Lemma 5.4. Let Z be a random variable such that Z ≥ 1 and define g(s) = E[e−sZ ],
s ≥ 0. Let w : (0,∞) → R be the unique function such that

F
(

g(s)
)

=

∫ ∞

s
du e−uw(u), s > 0, (42)

i.e.
w(s) := −esF ′(g(s))g′(s), s > 0. (43)

Then the function w is completely monotone3. In particular, there exists a unique
Radon measure t(dx) on [0,∞) (not necessarily of finite total mass) such that

w(s) =

∫ ∞

0
e−sxt(dx), s > 0, (44)

and therefore

F
(

g(s)
)

=

∫ ∞

0

e−s(1+x)

1 + x
t(dx), s > 0. (45)

Moreover, the above identity (45) univocally determines t(dx).

Proof. The last statement follows from the inversion formula of the Laplace trans-
form. For the rest, the proof is similar to the proof of Lemma 5.1 in [FMRT0].
The only slight difference is in the following argument. By condition (H2) and since
g(s) ∈ (0, 1) for s > 0, we can write w = f

∑∞
k=0 ckg

k, f = −esg′(s). Since ck ≥ 0
for all k ≥ 0 and since the product and the sum of completely monotone functions is
again completely monotone (cf. [F]) we get that

∑∞
k=0 ckg

k is completely monotone.
The rest of the proof is as in [FMRT0]. �

Lemma 5.5. Let Z be a random variable such that Z ≥ 1 and let g(s) be its
Laplace transform. Let t be the unique Radon measure on [0,∞) satisfying (45) and
call m(dx) the Radon measure with support in [1,∞) such that

m(A) =

∫ ∞

0

11+x∈A

1 + x
t(dx). (46)

For each k ≥ 1, consider the convolution measure m(k) with support in [k,∞) defined
as

m(k)(A) =

∫ ∞

1
m(dx1)

∫ ∞

1
m(dx2) · · ·

∫ ∞

1
m(dxk)1x1+x2+···+xk∈A. (47)

3Recall that a function f : (0,∞) → R is said to be completely monotone if it is C∞ and if for

any integer k, (−1)kf (k) ≥ 0.
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Then the law of Z is given by the measure m∗ :=
∑∞

k=1 rkm
(k), where the coefficients

rk are determined by the series expansion R(x) =
∑∞

k=1 rkx
k of the function R

around 0 (recall condition (H3) in Definition 5.1). In particular

E
[

e−sZ ;Z < a
]

=

∫

[0,a−1)

e−s(1+x)

1 + x
t(dx), s ≥ 0. (48)

We point out that, given a bounded Borel set A, since m(k) has support in [k,∞),

the series m∗(A) =
∑∞

k=1 rkm
(k)(A) is a finite sum.

Proof. The proof is a generalization of the proof of Lemma 5.2 in [FMRT0]. It reveals
the fundamental structure behind the transformation introduced in [FMRT0].

By definition of m(dx) and by (45) we can write

F
(

g(s)
)

=

∫ ∞

0

e−s(1+x)

1 + x
t(dx) =

∫ ∞

0
e−sxm(dx), s > 0. (49)

Since lims→∞ g(s) = 0, by (H3) we conclude that F(g(s)) goes to zero as s goes to
∞. In particular, by (H3), for s large enough we can invert (49) and use the analytic
expansion of R getting

g(s) = R
(
∫ ∞

0
e−sxm(dx)

)

=
∞
∑

k=1

rk

∫ k

0
e−sxm(k)(dx), s large, (50)

where, in the last equality, we used that
(

∫∞
0 e−sxm(dx)

)k
=
∫∞
0 e−sxm(k)(dx).

From now on s has to be thought large. We can rewrite the right hand side of (50)

as
∑∞

k=1

(

∑∞
j=k ak,j

)

, where ak,j = rk
∫

Ij
e−sxm(k)(dx) and Ij = [j, j+1) for j ≥ 1.

Due to the analytic expansion of R(x) around 0, we have that
∑∞

k=1 |rkxk| <∞ for
|x| small, hence we can write

∞
∑

k=1

∞
∑

j=1

|aj,k| =
∞
∑

k=1

|rk|
∫ ∞

0
e−sxm(k)(dx) =

∞
∑

k=1

|rk|
(

∫ ∞

0
e−sxm(dx)

)k
<∞,

thus implying that in the series
∑∞

k=1

(

∑∞
j=k ak,j

)

we can indeed arrange the terms

as we prefer. In particular, we can invert k and j getting

g(s) =

∞
∑

j=1

(

j
∑

k=1

ak,j

)

=

∞
∑

j=1

∫

Ij

e−sxm∗(dx) =

∫

[0,∞)
e−sxm∗(dx).

Let us write m∗ = m
(+)
∗ −m

(−)
∗ as the sum of non-negative measures with disjoint

supports [H]. Writing pZ for the law of Z, we then have that the Laplace transforms

of pZ +m
(−)
∗ and m

(+)
∗ are identical for s large. By Theorem 1a in Section XIII.1 [F]

we conclude that pZ +m
(−)
∗ = m

(+)
∗ . Since m

(−)
∗ and m

(+)
∗ have disjoint supports,

m
(−)
∗ must be zero and therefore m∗ = m

(+)
∗ is a non-negative measure.

To conclude the proof it remains to check (48). It is enough to prove the thesis
for s > 0, since the case s = 0 follows by monotonicity. To this aim we observe that,
since m(k) has support contained in [k,∞) and since r1 = R′(0) = 1 by (H3) , the
measure m∗ equals m on [1, 2). Since a ≤ 2 and using the definition of the measure
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m given by (46), we obtain that

E
[

e−sZ ;Z < a
]

=

∫

[1,a)
e−sxpZ(dx) =

∫

[1,a)
e−sxm(dx) =

∫

[0,a−1)

e−s(1+x)

1 + x
t(dx).

This concludes the proof of (48). �

We are now in position to prove Theorem 5.2.

Proof of Theorem 5.2. Observe that Equations (37) and (38) follow from Lemma
5.4, and that Equation (39) follows from (48) in Lemma 5.5.

To prove the last statement we write ρ(dx) for the measure in the r.h.s. of (41).
Using that a[φ−1(x) + 1] = 1 + x, we obtain for s ≥ 0 that
∫ ∞

0

e−as(1+x)

1 + x
ρ(dx) = a−1

∫

[φ(0),∞)

e−s(1+x)

a−1(1 + x)
t0(dx) =

∫

[a−1,∞)

e−s(1+x)

1 + x
t0(dx).

Using also (37), (38), (39) we conclude that Equation (40) is equivalent to
∫ ∞

0

e−as(1+x)

1 + x
t∞(dx) =

∫ ∞

0

e−as(1+x)

1 + x
ρ(dx), ∀s > 0. (51)

Thinking the above integrals as Laplace transforms of suitable non-negative mea-
sures in the variables as, by Theorem 1a in Section XIII.1 in [F] we conclude that
(51) is equivalent to the identity t∞ = ρ. �

6. Asymptotic of the interval law for HCP: Proof of Theorem 2.12

The key result of this section is Theorem 6.1 which in turn allows to prove easily
Theorem 2.12. Theorem 6.1 is proved by using the recursive identities for the OCP
process established in Section 4 and our extension of the transformation of [FMRT0]
derived in the previous section.

Let us start by recalling the notation of Theorem 2.12 which will be used through-
out this section and by giving a few more definitions. We let µ be a probability
measure on [d(1),∞) = [1,∞) and consider the HCP such that ξ(1)(0) has law of the

form Ren(ν, µ), Ren(µ) or RenZ(µ) (ν being a probability measure on R). Call µ(n)

the interval law of ξ(n)(0), i.e. at the beginning of epoch n and let X(n) be a generic

random variable with law µ(n) and Z(n) be the rescaled variable Z(n) = X(n)/d(n).
Finally, for any n ≥ 1 and s ≥ 0 set

g(n)(s) := E
(

e−sZ(n))

, h(n)(s) := E
(

e−sZ(n)
11≤Z(n)<an

)

(52)

with

an := d(n+1)/d(n). (53)

Note that µ = µ1 and g(1)(s) = g(s) :=
∫

e−sxµ(dx). The following holds

Theorem 6.1. Let F be a function satisfying Hypothesis (H) (see Definition 5.1)
and assume that for some number κ it holds

lim
s↓0

−sF ′
(

g(s)
)

g′(s) = κ (54)

and that

F(g(n+1)(ans)) = F(g(n)(s))− h(n)(s), n ≥ 1, s > 0. (55)
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Then it must be κ ≥ 0. Moreover, the rescaled variable Z(n) weakly converges to the

random variable Z(∞) ≡ Z
(∞)
κ whose Laplace transform g

(∞)
κ satisfies

F
(

g(∞)
κ (s)

)

= κ

∫ ∞

1

e−sx

x
dx, s > 0. (56)

If κ = 0 then Z
(∞)
κ = ∞, while if κ > 0 then Z

(∞)
κ takes value in [1,∞).

Proof. We first apply Theorem 5.2 getting that, for each n ≥ 1, there exists a unique
measure t(n) on [0,∞) such that

F
(

g(n)(s)
)

=

∫ ∞

0

e−s(1+x)

1 + x
t(n)(dx), s > 0. (57)

Due to (55) and Theorem 5.2 again, for n ≥ 2 it holds t(n) = 1
an−1

t(n−1) ◦ φn−1,

with φn−1(x) = an−1(1 + x) − 1. The recursive identities relying the t(n)’s can be
explicitly solved, leading to

t(n) =
1

d(n)
t(1) ◦ ψn−1 , n ≥ 2 (58)

with ψn−1(x) = d(n)(1 + x)− 1. Defining U (n)(x) = t(n)([0, x])1(x ≥ 0), we get that
dU (n) = t(n) and U (n)(x) = 0 for x < 0. By (58) it holds that

U (n)(x) =
1

d(n)

[

U (1)
(

d(n)(1 + x)− 1
)

− U (1)
(

(d(n) − 1)−
)

]

, n ≥ 1. (59)

Moreover, for each n ≥ 1, integrating by parts and using that U (n)(0−) = 0, we can
rewrite the integral in the r.h.s. of (57) as

∫ ∞

0

e−s(1+x)

1 + x
t(n)(dx) = lim

y↑∞

e−s(1+y)

1 + y
U (n)(y)−

∫ ∞

0

(

d

dx

(

e−s(1+x)

1 + x

))

U (n)(x)dx.

(60)

We now use the key additional hypothesis (54). Since g(1)(s) = g(s) because d(1) = 1,

if w(1) denotes the Laplace transform of t(1) (i.e. w(1)(s) =
∫∞
0 e−sxt(1)(dx)), then

(54) together with (43) implies that lims↓0 sw
(1)(s) = κ. The above limit and the

Tauberian Theorem 2 in Section XIII.5 of [F] allow to conclude that

lim
y↑∞

U (1)(y)

y
= κ. (61)

The above limit together with (59) implies that there exists a suitable constant
C > 0 such that

U (n)(x) ≤ C(1 + x), n ≥ 1, x ≥ 0. (62)

In particular, the limit in the r.h.s. of (60) is zero and

∫ ∞

0

e−s(1+x)

1 + x
t(n)(dx) = −

∫ ∞

0

(

d

dx

(

e−s(1+x)

1 + x

))

U (n)(x)dx, n ≥ 1. (63)

By (59), (61) and the fact that d(n) → ∞, we conclude that limn→∞ U (n)(x) = κx
for all x ≥ 0. This limit together with (62) allows us to apply the Dominated
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Convergence Theorem, getting that

lim
n→∞

∫ ∞

0

e−s(1+x)

1 + x
t(n)(dx) = −κ

∫ ∞

0

(

d

dx

(

e−s(1+x)

1 + x

))

xdx = κ

∫ ∞

0

e−s(1+x)

1 + x
dx

(64)
(in the last identity we have simply integrated by parts).

Let us come back to (57). We know the limit of the r.h.s. as n→ ∞ by (64). Let us

analyze the l.h.s. We claim that, given s > 0, the sequence {g(n)(s)}n≥1 converges

to some number in [0, e−s]. Indeed, since Zn ≥ 1, it holds g(n)(s) ∈ (0, e−s]. If
the sequence was not convergent, by compactness we could find two subsequence
{nk}k≥1 and {nr}r≥1 such that limk→∞ g(nk)(s) < limr→∞ g(nr)(s) and both limits
exist and belong to [0, e−s]. On the other hand, by hypothesis (H1) and Remark
5.3 the function F is continuous and strictly increasing on [0, 1). Hence,

lim
k→∞

F
(

g(nk)(s)
)

= F
(

lim
k→∞

g(nk)(s)
)

< F
(

lim
r→∞

g(nr)(s)
)

= lim
r→∞

F
(

g(nr)(s)
)

in contradiction with the fact that the first member and the last member equal the
r.h.s. of (64), by (57) and (64).

Since we have proved that for all s > 0 the sequence {g(n)(s)}n≥1 converges to

some number g
(∞)
κ (s) ∈ [0, e−s], using the continuity of F on [0, 1), (57) and (64),

we conclude that g
(∞)
κ satisfies (56).

Since by Hypothesis (H) the function F ′ is positive on [0, 1), the limit κ in (54)
must be non-negative. Let us first consider the case κ = 0. Then, by (56), the fact

that F is strictly increasing on [0, 1) and F(0) = 0, we conclude that g(∞)(s) = 0 for
all s > 0. This implies that the law of the random variable Z(n) weakly converges
to δ∞.

We now consider the case κ > 0. As pointwise limit of decreasing functions,

also g
(∞)
κ is decreasing on (0,∞). In particular the limit lims↓0 g

(∞)
κ (s) exists and

belongs to [0, 1]. Let us call z this limit and prove that z = 1. Suppose by absurd
that z ∈ [0, 1). Then, by the continuity of F on [0, 1) and Equation (56), we would
have

F(z) = lim
s↓0

F
(

g(∞)
κ (s)

)

= lim
s↓0

κ

∫ ∞

1

e−sx

1 + x
dx = ∞.

Since F takes finite value on [0, 1) it cannot be F(z) = ∞, thus implying that

z = 1. In conclusion we have proved that lims↓0 g
(∞)
κ (s) = 1. Then, by Theorem

2 in Section XIII.1 of [F], we conclude that g
(∞)
κ is the Laplace transform of some

non-negative (finite) random variable Z
(∞)
κ and that Z(n) weakly converges to Z

(∞)
κ .

The fact that Z
(∞)
κ ≥ 1 a.s. follows from the fact Z(n) ≥ 1 for all n ≥ 1. �

Proof of Theorem 2.12. Thanks to Theorem 2.6 and the discussion before Definition
5.1, the Laplace transforms of the rescaled variables Z(n) satisfy

F(g(n+1)(ans)) = F(g(n)(s))− h(n)(s) ∀n ≥ 1, ∀s > 0,

where

F(x) =

{

− ln(1− x) in case (i),
γ+1
γ+2 ln

1+ x
γ+1

1−x in case (ii),
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respectively. We have already observed, that in both cases F satisfies the Hypothesis
(H). Computing F ′ we get

lim
s↓0

−sF ′(g(s))g′(s) =







− lims↓0
sg′(s)
1−g(s) in case (i),

− lims↓0
γ+1
γ+2

(

sg′(s)
γ+1+g(s) +

sg′(s)
1−g(s)

)

in case (ii).

Since we have assumed the limit (21) and since 1− g(s) = o(1) for s small, it must
be lims↓0 sg

′(s) = 0. This last observation allows to conclude that

lim
s↓0

−sF ′(g(s))g′(s) =

{

c0 in case (i)
γ+1
γ+2c0 in case (ii).

(65)

At this point Theorem 2.12 is an immediate consequence of Theorem 6.1 and the
computation of R = F−1 given in (35). �

7. Asymptotic of the first point law: proof of Theorem 2.15

In this section we prove Theorem 2.15. While in the derivation of Theorem 2.12
we have tried to keep the discussion at a general and abstract level in order to
catch the fundamental structure of the transformation introduced in [FMRT0] and
therefore explain the similar asymptotics of very different HCP’s, we restrict here
to the special cases mentioned in Theorem 2.15. Indeed, as the reader will see, the
proof goes through estimates which are very model–dependent.

Proof of Theorem 2.15. Case (i) has been solved in [FMRT0, Theorem 2.24]. Hence
we focus on case (ii). Without loss of generality we can restrict to the case ν = δ0,

i.e. when the HCP starts with ξ(1)(0) having law Ren(δ0, µ), µ being a probability

measure on [d(1),∞) = [1,∞). Indeed, in the general case X
(n)
0 can be expresses as

V +X̄
(n)
0 , where X̄

(n)
0 is the first point in ξ

(n)
0 for the above HCP starting with distri-

bution Ren(δ0, µ), while V is a random variable with law ν independent from X̄
(n)
0 .

Since d(n) → ∞, when taking the rescaled random variable Y (n) = X
(n)
0 /d(n) the

effect of the random translation V disappears as n→ ∞. From Lemma 2.5 we know
that the configuration ξ(n)(0) at the beginning of epoch n has law Ren

(

ν(n), µ(n)
)

.

As in the previous section X(n) will be a random variable with law µ(n) and Z(n) the

rescaled random variable Z(n) = X(n)/d(n). Moreover, we write X
(n)
0 for a generic

random variable with law ν(n) and set

ℓ(n)(s) = E

(

e−sY (n)
)

, s ∈ R+, Y (n) = X
(n)
0 /d(n).

Recalling the definitions of g(n)(s), h(n)(s) and an in equations (52) and (53), we
use formula (11) and Theorem 2.8 (ii) to obtain the recursive equations

ℓ(n+1)(ans) = ℓ(n)(s)

√

1− g(n+1)(ans)2

1− g(n)(s)2
e−h(n)(0), n ≥ 1.
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By iteration, we get

ℓ(n)(s) = ℓ(1)(s/d(n))

√

1− g(n)(s)2

1− g(1)(s/d(n))2
exp

{

−
n−1
∑

j=1

h(j)(0)
}

= ℓ(1)(s/d(n))

√

1− g(n)(s)2

s

√

s/d(n)

1− g(1)(s/d(n))2
exp

{1

2
log d(n) −

n−1
∑

j=1

h(j)(0)
}

(66)

Since d(n) → ∞, we have limn→∞ ℓ(1)(s/d(n)) = 1. By assumption µ has finite mean

µ̄ = −g′(0). Hence, s/d(n)

1−g(1)(s/d(n))2
converges to 1/2µ̄ as n → ∞. Finally, invoking

Theorem 2.12, from (66) we get

lim
n→∞

ℓ(n)(s) =
1√
2µ̄

√

1− tanh2
(

Ei(s)/2
)

s
lim
n→∞

exp
{1

2
log d(n) −

n−1
∑

j=1

h(j)(0)
}

. (67)

In remains to study the last limit in (67). To this aim we come back to the measures

t(n). As already observed in the proof of Theorem 6.1 and Theorem 2.12, applying
Theorem 5.2 one gets that for each n ≥ 1 there exists a unique measure t(n) on
[0,∞) satisfying (57) with F(x) = 1

2 ln
1+x
1−x for x ∈ [0, 1). Moreover, by Equation

(39) it holds

h(n)(s) =

∫

[0,an−1)

e−s(1+x)

1 + x
t(n)(dx)

and by formula (58) it holds t(n) =
(

1/d(n)
)

t(1)◦ψn−1 with ψn−1(x) = d(n)(1+x)−1,
for all n ≥ 2. Combining the last identities, from (36) one gets

h(n)(s) =

∫

[d(n)−1, d(n+1)−1)

e−s(1+x)/d(n)

1 + x
t(1)(dx), n ≥ 1.

The above integral representation implies

n−1
∑

j=1

h(j)(0) =

∫

[0,d(n)−1)

1

1 + x
t(1)(dx).

Equation (26) then follows from Claim 7.1. From this formula one can check that

lims→0 E(e
−sY (∞)

) = 1 and lims→∞ E(e−sY (∞)
) = 0, thus implying Y (∞) ∈ (0,∞).

Indeed, it is known that Ei(x) = −γ̄ − log(x) −∑∞
n=1

(−x)n

n·n! for x > 0, which, after
few computation leads to the limit when s → 0, while for s → ∞, it is enough to
observe that Ei(s) → 0 and thus tanh(Ei(s)/2) → 0.

Finally, we remark that condition (25) is satisfied if µ has finite (1 + ε)–moment.
Indeed, under this hypothesis it holds

∫

[1,z] x
2µ(dx) ≤ z1−ε

∫

x1+εµ(dx) ≤ Cz1−ε for

ε ∈ (0, 1) and
∫

[1,∞) x
2µ(dx) <∞ if ε ≥ 1. �

Claim 7.1.

lim
z→∞

(

∫

[0,z−1)

1

1 + x
t(1)(dx)− 1

2
ln z

)

=
1

2
log 2 +

γ̄

2
− 1

2
ln(µ̄) (68)

where γ̄ ≃ 0, 577 is the Euler-Mascheroni constant.
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Proof of Claim 7.1. First of all we give an explicit formula for the measure m(dx)
with support in [1,∞) such that

∫

A
m(dx) =

∫

A−1

1

1 + x
t(1)(dx), A ⊂ [1,∞) Borel. (69)

Lemma 7.2. Let m(dx) be the measure defined by (69). Let ⊗kµ be the convolution
of k copies of the interval law µ. Then

m(A) =
∞
∑

k=1

αk[⊗kµ](A), A ⊂ [1,∞) Borel

where αk :=
(

1 + (−1)k+1
)

/(2k).

Note that, since µ has support in [1,∞), the probability measure ⊗kµ has support
in [k,∞).

Proof. We know that t(1) satisfies (57) with F(x) = arctanh(x). Since g(1)(s) =
g(s) :=

∫

e−sxµ(dx), by (69) the identity (57) can be rewritten as F(g(s)) =
∫∞
1 e−sxm(dx). For s large g(s) goes to zero, hence we can use the analytic ex-

pansion of F(x) around zero (recall that arctanh(x) = 1/2 ln 1+x
1−x and use (34) with

γ = 0) getting
∞
∑

k=1

αkg(s)
k =

∫ ∞

1
e−sxm(dx), s large .

Since g(s)k =
∫

e−sx[⊗kµ](dx), the above equation can be written as

∞
∑

k=1

αk

∫

e−sx[⊗kµ](dx) =

∫ ∞

1
e−sxm(dx), s large .

The thesis then follows from Theorem 1a in [F, Section XIII.1]. �

Let W1,W2, . . . ,Wk be i.i.d. random variables with common law µ. Then, ⊗kµ is
the law of W1 +W2 + · · ·+Wk. Due to the above lemma and since Wi ≥ 1 a.s., we
can write

∫

[0,z−1)

t(1)(dx)

1 + x
=

∫

[1,z)
m(dx) =

⌊z⌋
∑

k=1

αkP(W1 + · · ·+Wk ≤ z) (70)

where ⌊z⌋ denotes the integer part of z.
Recall that µ̄ :=

∫

xµ(dx) = E(Wi) ≥ 1. If µ̄ = 1 then µ = δ1 and, as the reader
can check, the arguments below become trivial. Hence, we assume that µ̄ > 1.

Given z > 1 we define W̃i := Wi1(Wi ≤ z) and µ̄(z) := E(W̃i) = E(Wi;Wi ≤ z).

We can estimate the variance of W̃i as

Var(W̃i) ≤ E(W̃ 2
i ) = E(W 2

i ;Wi ≤ z). (71)

Fix ε > 0. We deal separately with the case (i) k ≤ z
µ̄(1− ε) and (ii) k ≥ z

µ̄(1 + ε).

• Case (i). Since limz→∞ µ̄(z) = µ̄, this implies that there exists z(ε) large enough
and independent from k such that for z ≥ z(ε) it holds

kµ̄(z) < z and

(

z − kµ̄

z − kµ̄(z)

)2

≤ 4. (72)
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Therefore for z ≥ z(ε) thanks to (72) we can use the Markov inequality to obtain

P(W1 + · · · +Wk > z) ≤ P(∃i ≤ k : Wi 6= W̃i) + P(W̃1 + · · · + W̃k > z)

≤ kP(W1 > z) + P

(W̃1 + · · ·+ W̃k

k
− µ̄(z) >

z − kµ̄(z)

k

)

≤ kP(W1 > z) +
kVar(W̃1)

(z − kµ̄(z))2
.

(73)

Then, combining (71), (72) and (73) we get for z ≥ z(ε)

αkP(W1 + · · ·+Wk > z) ≤ P(W1 > z) +
E(W 2

1 ;W1 ≤ z)

(z − kµ̄(z))2

≤ P(W1 > z) + 4
E(W 2

1 ;W1 ≤ z)

(z − kµ̄)2
. (74)

• Case (ii). By similar arguments one can prove that there exists z̄(ε) such that for
z ≥ z̄(ε) it holds

αkP(W1 + · · ·+Wk ≤ z) ≤ P(W1 > z) + 4
E(W 2

1 ;W1 ≤ z)

(z − kµ̄)2
. (75)

At this point we get

⌊ z
µ̄
(1−ε)⌋
∑

k=1

αk + E1 ≤
⌊z⌋
∑

k=1

αkP(W1 + · · · +Wk ≤ z) ≤
⌊ z
µ̄
(1+ε)⌋
∑

k=1

αk + E2 (76)

where the error E1 can be bounded via (74) as

|E1| ≤
⌊ z
µ̄
(1−ε)⌋
∑

k=1

(

P(W1 > z) + 4
E(W 2

1 ;W1 ≤ z)

(z − kµ̄)2

)

≤ zP(W1 > z) +CE(W 2
1 ;W1 ≤ z)

∫ z

εz

1

x2
dx ≤ zP(W1 > z) +

C ′

εz
E(W 2

1 ;W1 ≤ z),

and similarly the error E2 can be bounded via (75) as

|E2| ≤ zP(W1 > z) +
C ′

εz
E(W 2

1 ;W1 ≤ z).

The bound µ̄ = E(W1) < ∞ trivially implies that limz→∞ zP(W1 > z) = 0. This
observation, together with the hypothesis (25), assures that for any fixed ε > 0 it
holds

lim
z→∞

E1 = lim
z→∞

E2 = 0. (77)

We point out that the above estimates follow closely the arguments used to prove the
weak LLN. If µ has finite variance, exactly as in the proof of the LLN, the truncation
W̃i would be unnecessary and a direct application of the Markov inequality would
allow to estimate E1, E2.

It remains to study the behavior of the series
∑n

k=1 αk for n integer. It is known

that
∑n

k=1
1
k = log n+ γ̄+ o(1), where γ̄ is Euler-Mascheroni constant. Assume that
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n is even and n = 2p. Then,

φ(n) =
n
∑

k=1
k odd

1

k
=

n
∑

k=1

1

k
− 1

2

p
∑

k=1

1

k
=

1

2
log 2 +

1

2
log n+

γ̄

2
+ o(1).

For n odd, one obtains a similar expression. Hence,we conclude that

lim
z→∞





⌊z⌋
∑

k=1

αk −
1

2
ln z



 =
1

2
log 2 +

γ̄

2
. (78)

Collecting (70), (76), (77) and (78) we get that

C∗ +
1

2
ln

(

z(1− ε)

µ̄

)

− o(1) ≤
∫

[0,z−1)

t(1)(dx)

1 + x
≤ C∗ +

1

2
ln

(

z(1 + ε)

µ̄

)

+ o(1)

where o(1) goes to zero as z → ∞ (for any fixed ε > 0) and C∗ =
1
2 log 2+

γ̄
2 . Hence

∣

∣

∣

∣

∣

∫

[0,z−1)

t(1)(dx)

1 + x
− 1

2
ln(z/µ̄)− C∗

∣

∣

∣

∣

∣

≤ C(ε+ o(1)).

At this point take first the limit z → ∞ and then the limit ε ↓ 0, thus concluding
the proof of our claim.

�

8. Universal coupling: graphical construction of the dynamics

In this section we describe the universal coupling for the OCP’s. The construction
is standard and very similar to the one presented in Section 3.1 of [FMRT0]. On
the other hand, it will be used in Section 9.1 and is fundamental in order to recover
results as Lemma 8.1 and the first part of Proposition 9.4.

Given ξ ∈ N (dmin), we enumerate its points in increasing order with the rule that
the smallest positive one (if it exists) gets the label 1, while the largest non-positive
one (if it exists) gets the label 0. We write N(x, ξ) for the integer number labelling
the point x ∈ ξ. This allows to enumerate the domains of ξ as follows: a domain
[x, x′] is said to be the kth-domain if (i) x is finite and N(x, ξ) = k, or (ii) x = −∞
and N(x′, ξ) = k+1. Recall that if x = −∞, then ξ is unbounded from the left and
x′ is the smallest number in ξ.

We set ‖λ‖∞ = supd∈[dmin,dmax) λ(d) where we recall that λ = λr + λℓ + λa. We

consider a probability space
(

Ω,F , P
)

on which the following random objects are

defined and are all independent: the Poisson processes T (k) = {T (k)
m : m ∈ N},

T̄ (k) = {T̄ (k)
m : m ∈ N} and T̃ (k) = {T̃ (k)

m : m ∈ N} of parameter ‖λ‖∞, indexed by

k ∈ Z, and the random variables U
(k)
m , Ū

(k)
m and Ũ

(k)
m , uniformly distributed in [0, 1],

indexed by k ∈ Z and m ∈ N. Above, the Poisson processes are described in terms

of the jump times T
(k)
m , T̄

(k)
m , T̃

(k)
m . By discarding a set of P -probability 0, we may

assume that

As k1, k2, k3 vary in Z, the sets T (k1),T̄ (k2) and T̃ (k3) are locally finite and disjoint.
(79)

Next, given ζ ∈ N (dmin) and ω ∈ Ω, to each domain ∆ that belongs to ζ we

associate the Poisson process T (k) if ∆ is the k–th domain in ζ. In this case, we

write T (∆) instead of T (k). Similarly we define T̄ (∆), T̃ (∆), U
(∆)
m , Ū

(∆)
m and Ũ

(∆)
m .
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The idea behind the construction of the universal coupling is the following: if for

example s = T
(∆)
m for some m ∈ N and if the domain ∆ is present at time s−, then

the left extreme of ∆ has to be erased at time s if and only if U
(∆)
m ≤ λℓ(d)/‖λ‖∞,

d being the length of the domain ∆. Similarly, the right extreme (or both the

extremes) of ∆ can be erased at time s = T̄
(∆)
m (resp. T̃

(∆)
m ). Working with infinite

domains, to formalize the above construction one needs some percolation argument
as presented below.

We define Wt[ω, ζ] as the set of domains ∆ in ζ such that
{

s ∈ [0, t] : s ∈ T (∆) ∪ T̄ (∆) ∪ T̃ (∆), or s ∈ T (∆′) ∪ T̄ (∆′) ∪ T̃ (∆′)

for some domain ∆′neighbouring ∆
}

6= ∅. (80)

On Wt[ω, ζ] we define a graph structure putting an edge between domains ∆ and
∆′ if and only if they are neighbouring in ζ. Since the function λ is bounded from
above, we deduce that the set

B(ζ) :=
{

ω : Wt[ω, ζ] has all connected components of finite cardinality ∀t ≥ 0
}

has P–probability equal to 1. Note that the event B(ζ) depends on ζ only through
the infimum and the supremum of the set {N(x, ζ) ∈ Z : x ∈ ζ}. By a simple
argument based on countability, we conclude that P (B) = 1, where B is defined as
the family of elements ω ∈ Ω satisfying (79) and belonging to ∩ζ∈N (dmin)B(ζ):

B =
⋂

ζ∈N (dmin)

B(ζ) ∩ {ω ∈ Ω : ω satisfies (79)} . (81)

In order to define the path {ξ(s)}s≥0 := {ξζ(s, ω)}s≥0 associated to ζ ∈ N (dmin)
and ω ∈ Ω, we first fix a time t > 0 and define the path up to time t. If ω 6∈ B, then
we set

ξ(s) = ζ, ∀s ∈ [0, t].

If ω ∈ B, recall the definition of the graph Wt[ω, ζ]. Given a set of domains V we
write V̄ for the set of the associated extremes, i.e. x ∈ V̄ if and only if there exists
a domain in V having x as left or right extreme. Moreover, we write Vt[ω, ζ] for the
set of all domains in ζ that do not belong to Wt[ω, ζ]. We require that

ξ(s) ∩ Vt[ω, ζ] := Vt[ω, ζ], ∀s ∈ [0, t], (82)

i.e. up to time t all points in Vt[ω, ζ] survive. Let us now fix a cluster C in the graph
Wt[ω, ζ]. The path

(

ξ(s) ∩ C̄ : s ∈ [0, t]
)

is implicitly defined by the following rules

(the definition is well posed since ω ∈ B). If s ∈ [0, t] equals T
(∆)
m with ∆ = [x, x′] ∈ C

and x, x′ ∈ ξ(s−), then the ring at time T
(∆)
m is called legal if

U (∆)
m ≤ λℓ(x

′ − x)

‖λ‖∞
(83)

and in this case we set ξ(s) ∩ C̄ := (ξ(s−) ∩ C̄) \ {x}, otherwise we set ξ(s) ∩ C̄ =
ξ(s−) ∩ C̄. In the first case we say that x is erased and that the domain [x, x′]

has incorporated the domain on its left. Similarly, if s ∈ [0, t] equals T̄
(∆)
m with
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∆ = [x, x′] ∈ C and x, x′ ∈ ξ(s−), then the ring at time T̄
(∆)
m is called legal if

Ū (∆)
m ≤ λr(x

′ − x)

‖λ‖∞
(84)

and in this case we set ξ(s) ∩ C̄ := (ξ(s−) ∩ C̄) \ {x′}, otherwise we set ξ(s) ∩ C̄ =
ξ(s−) ∩ C̄. Again, in the first case we say that x′ is erased and that the domain

[x, x′] has incorporated the domain on its right. Finally, if s ∈ [0, t] equals T̃
(∆)
m with

∆ = [x, x′] ∈ C and x, x′ ∈ ξ(s−), then the ring at time T̃
(∆)
m is called legal if

Ũ (∆)
m ≤ λa(x

′ − x)

‖λ‖∞
(85)

and in this case we set ξ(s) ∩ C̄ := (ξ(s−) ∩ C̄) \ {x, x′}, otherwise we set ξ(s) ∩ C̄ =
ξ(s−) ∩ C̄. Again, in the first case we say that x and x′ are erased and that the
domain [x, x′] has incorporated both the domain on its right on its left.

We point out that C̄ ∩ C̄′ = ∅ if C and C′ are distinct clusters in Wt[ω, ζ]. On the

other hand, it could be C̄ ∩Vt[ω, ζ] 6= ∅. Let x a point in the intersection and suppose
for example that [a, x] ∈ C while [x, b] ∈ Vt[ω, ζ]. Then, by definition of Wt[ω, ζ],
one easily derives that the Poisson processes associated to the domains [a, x] and
[x, b] do not intersect [0, t], while at least one of the Poisson processes associated to
the domain on the left of [a, x] intersects [0, t]. In particular, x ∈ ξ(s) ∩ C̄ for all
s ∈ [0, t], in agreement with (82). The same conclusion is reached if [a, x] ∈ Vt[ω, ζ]
and [x, b] ∈ C. This allows to conclude that the definition of the path {ξ(s)}s≥0 up
to time t is well posed. We point out that this definition is t–dependent. The reader
can easily check that, increasing t, the resulting paths coincide on the intersection
of their time domains. Joining these paths together we get {ξ(s)}s≥0.

Given a configuration ζ ∈ N (dmin), the law of the corresponding random path
{ξ(s)}s≥0 is that of the OCP with initial condition ζ. The advantage of the above
construction is that all OCP’s, obtained by varying the initial configuration, can be
realized on the same probability space. Given a probability measure Q on N (dmin),
the OCP with initial distribution Q can be realized by the random path {ξ·(s, ·)}s≥0

defined on the product space Ω × N (dmin) endowed with the probability measure
P ×Q.

The next result (similar to [S, Lemma 2.2]) is an immediate consequence of the
above construction and of the metric defined on N (dmin). We omit the proof.

Lemma 8.1. For any (ζ, ω) ∈ N (dmin) × B, the function [0,∞) ∋ s 7→ ξζ(s, ω) ∈
N (dmin) is càdlàg. In other words, {ξζ(s, ω)}s≥0 belongs to the Skohorod space
D
(

[0,∞),N (dmin)
)

.

9. Proof of Theorem 2.9

This section is dedicated to the construction and the analysis of the Markov
generator L of the OCP. We first introduce the Markov semigroup associated to the
graphical construction of Section 8 and then introduce the pregenerator L.

If points (domain extremes) belong always to a given countable subset of R (for
example points belong to Z), then one can directly apply the methods developed
for interacting particle systems on countable space [L], identifying each domain
extreme with a particle. In the general case, we have introduced a lattice structure
(see Section 2.2) which strongly simplifies the problem of the Markov generator
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from an analytic viewpoint, and allows us to use again the methods described in [L].
Endowing the space N of locally finite subset of R of the vague topology, the map
N ∋ ξ 7→ ξ ∩ [a, b] ∈ N is not continuous, hence the above discretization requires
some special care.

9.1. Markov semigroup and pregenerator. Given an initial configuration ξ ∈
N (dmin), define the path {ξ(s)}s≥0 = {ξξ(s)}s≥0 as in Section 8, with ζ = ξ. Note
that the dependence on the element ω ∈ Ω is understood. In what follows we will
alternatively use the notation {ξξ(s, ω)}s≥0, or {ξξ(s)}s≥0 or {ξ(s)}s≥0, depending
on the context.

Let Pξ be the law of the OCP starting from ξ ∈ N (dmin):

Pξ(A) = P
({

ω ∈ Ω : {ξ(s)}s≥0 ∈ A
})

∀A ⊂ D([0,∞),N (dmin)) Borel.

We write Eξ for the corresponding expectation. Then, for any f ∈ B, we set

Ptf(ξ) = Eξ (f (ξ(t))) ∀t ≥ 0.

Below we shall prove that (Pt)t≥0 is a Markov semigroup on B in the sense of the
following definition [L]:

Definition 9.1 (Markov semigroup). A family of linear operator (St)t≥0 on B is
called a Markov semigroup if it is Feller, i.e. Stf ∈ B for all f ∈ B, and satisfies the
following properties:
(i) S0 = 1B, the identity operator on B;
(ii) for any f ∈ B, limt→0 ‖Stf − f‖ = 0;
(iii) for any s, t ≥ 0, any f ∈ B, St+sf = St(Ssf);
(iv) for any t ≥ 0, St1 = 1;
(v) for any f ∈ B, f ≥ 0 ⇒ Ptf ≥ 0.

Before moving to the proof of the fact that (Pt)t≥0 is a Markov semigroup, we
need to introduce some operators and to fix some notation.

Given s > 0 we consider the operator Ls on B defined as

Lsf(ξ) =
∑

[x,x+d] domain
in ξ∩(−s,s)

{

λℓ(d)
[

f(ξ \ {x})− f(ξ)
]

+ λr(d)
[

f(ξ \ {x+ d})− f(ξ)
]

+ λa(d)
[

f(ξ \ {x, x+ d})− f(ξ)
]

}

. (86)

Since ξ is locally finite, the r.h.s. is given by a finite sum and therefore is well defined.
Given an integer n ∈ N+, we define the operator Ln on B as

Lnf(ξ) := d−1
min

∫ (n+1)dmin

ndmin

Lsf(ξ)ds. (87)

Note that, given ξ ∈ N (dmin), the integrand is a bounded stepwise function with a
finite family of jumps. Hence, it is integrable.

Recall the notation at the beginning of Section 4. Given k ∈ Z and ξ ∈ N (dmin),
let

ck(ξ) := 1
(

|ξ ∩ Ik| = 1
)[

λr(d
ℓ
zk
) + λℓ(d

r
zk
)
]

,

ck,k′(ξ) := 1
(

|ξ ∩ Ik| = 1 , |ξ ∩ Ik′ | = 1 , |ξ ∩ Ir| = 0 ∀r : k < r < k′
)

λa
(

zk′ − zk
)

,

where for any ξ such that |ξ ∩ Ik| = 1 we set zk := ξ ∩ Ik (due to the definition of
N (dmin) each interval Ik contains at most one point of ξ).
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Finally, for any f ∈ D (recall (18)), set

Lf(ξ) :=
∑

r∈R

cr(ξ)∇rf(ξ), ξ ∈ N (dmin). (88)

Since the rates λℓ, λr, λa are bounded, for all f ∈ D the series in the r.h.s. of (88) is
absolutely convergent, hence Lf(ξ) is well defined.

Lemma 9.2. The following holds:

(i) For each n ∈ N+, Ln is a bounded operator from B to B.
(ii) For each f ∈ D, Lf ∈ B and Lf = limn→∞ Lnf . In particular, L is an operator

with domain D(L) := D into B.
(iii) Bloc ⊂ D (Bloc being the set of local functions f ∈ B).

Remark 9.3. Observe that, for any f ∈ Bloc and any ξ ∈ N (dmin), Lf(ξ) equals the
r.h.s. of (2). On the other hand, we point out that the operator L : B ⊃ D → B is a
Markov pregenerator as defined in [L, Ch. 1, Def. 2.1]. Indeed, it holds (i) 1 ∈ D,
(ii) D is dense in B since it contains the subset Bloc which we know by Lemma 3.2
to be dense and finally (iii) if f ∈ D and f(ξ) = min

{

f(ξ′) : ξ′ ∈ N (dmin)
}

then
Lf(ξ) ≥ 0. Due to [L, Ch. 1, Prop. 2.2], these conditions ensure that L is a Markov
pregenerator.

Proof. Without loss of generality, for simplicity of notation we take dmin = 1.
We consider Part (i). Let ξk → ξ in N (dmin). We set R := {s ∈ [n, n + 1] :

ξ ∩ {−s, s} = ∅}. We claim that Lsf(ξk) → Lsf(ξ) for s ∈ R. To this aim we apply
Lemma 3.1 (ii). For k large, it holds that ξ ∩ (−s, s) and ξk ∩ (−s, s) have the same

finite cardinality N . Writing xj and x
(k)
j for their j–th point (from the left), we can

write

Lsf(ξ) =

N−1
∑

j=1

{

λℓ(xj+1 − xj)
[

f(ξ \ {xj})− f(ξ)
]

+ λr(xj+1 − xj)
[

f(ξ \ {xj+1})− f(ξ)
]

+ λa(xj+1 − xj)
[

f(ξ \ {xj , xj+1})− f(ξ)
]

}

and a similar expression for Lsf(ξk). The thesis then follows from (a) the conver-

gence xj → x
(k)
j as k → ∞ due to Lemma 3.1 (ii), (b) the continuity of the jump

rates, (c) the convergence ξk \ {x(k)j } → ξ \ {xj}, ξk \ {x(k)j+1} → ξ \ {xj+1} and

ξk \ {x(k)j , x
(k)
j+1} → ξ \ {xj , xj+1} as k → ∞ for j : 1 ≤ j < N , (d) the continuity of

f .
We can now prove that Lnf belongs to B. To this aim it is enough to apply the

dominated convergence theorem together with the above claim and the following
observations: (a) R \ [n, n + 1] is finite, (b) due to the definition of N (dmin) the
function Lsf has uniform norm bounded by Cs‖f‖, C being independent from s.

Let us now prove Part (ii). Since we already now that Lnf ∈ B, it is enough
to show that supξ∈N (dmin) |Lf(ξ) − Lnf(ξ)| converges to zero as n → ∞. By the
boundedness of the rates it holds

|Lf(ξ)− Lnf(ξ)| ≤ C
∑

r∈R
supp(r) 6⊂[−n,n]

∆f (r)
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where the support of r is defined as supp(r) = k if r = k and supp(r) = {k, k′} if
r = (k, k′). The above estimate and the fact that f ∈ D allow to conclude.

Part (iii) is obvious. �

Proposition 9.4. The family of linear operators (Pt)t≥0 is a Markov semigroup on
B given by contraction maps (i.e. ‖Ptf‖ ≤ ‖f‖ for all f ∈ B). Moreover, for any
f ∈ Bloc, it holds

lim
t↓0

∥

∥

∥

∥

Ptf − f

t
− Lf

∥

∥

∥

∥

= 0. (89)

Proof. We focus on the only point that is not standard, namely the Feller property.
The rest is either a direct consequence of the graphical construction, or can be easily
derived using the arguments presented in [S, Ch. 2]. Details are left to the reader.

Let us prove the Feller property. Fix f ∈ B and ε > 0. Thanks to Lemma

3.2, setting fN (ξ) =
∫ N+1
N f(ξ ∩ (−r, r)dr, we are guaranteed that fN ∈ Bloc and

limN→∞ ‖f −fN‖ = 0. Since ‖Ptf −PtfN‖∞ ≤ ‖f −fN‖∞ as functions on N (dmin),
approximating f by fN we conclude that it is enough to show that PtfN ∈ B, or
equivalently that Ptf ∈ B for any f ∈ Bloc.

Let us fix f ∈ Bloc and suppose that f has support inside (−N,N) for some
N ≥ 1. For simplicity of notation we take dmin ≥ 1 (the general case is completely
similar). Since N (dmin) is compact, f is uniformly continuous. Hence, there exists
δ0 > 0 such that

m(ζ, η) < δ0 =⇒ |f(ζ)− f(η)| ≤ ε. (90)

Recall the universal coupling discussed in Section 8 and the notation introduced
therein. Depending on ε, we can fix γ > 10 large enough such that P (C) ≥ 1 − ε
where C is the event given by the elements ω ∈ Ω for which there exist integers k, k′

with 10N ≤ k, k′ ≤ γN and

[0, t] ∩
(

T (j) ∪ T̄ (j) ∪ T̃ (j)
)

= ∅ ∀j = k, k − 1,−k′,−(k′ − 1).

Given a generic configuration ζ ∈ N (dmin), all the points x of ζ ∩ (−N,N) have
index N(x, ζ) belonging to [−N,N ] due to our assumption dmin ≥ 1.

We claim that, if ω ∈ C, then the configuration ξζ(t)[ω] inside (−N,N) is uni-

vocally determined knowing T (j), T̄ (j), T̃ (j), (U
(j)
m )m≥0, (Ū

(j)
m )m≥0, (Ũ

(j)
m )m≥0 for

j ∈ [−γN, γN ]. In order to explain this, suppose for example that ζ is unbounded
from the left and from the right. Then, the Poisson processes associated to the
domains [x, y] and [y, z] do not have any time inside [0, t], where N(x, ζ) = k − 1,
N(y, ζ) = k. In particular, both these domains can be incorporated but cannot in-
corporate other domains. This implies that the point y survives for all times in [0, t].
Hence, whatever has happened on the right of y up to time t has not influenced the
dynamics on the left of y. The same argument holds observing the domains [x′, y′]
and [y′, z′] with N(x′, ζ) = −k′, N(y′, ζ) = −(k′ − 1). If ζ is bounded from the left
of from the right, the proof of our claim is even simpler.

Due to the above claim, for each ζ it holds

ξζ(t)[ω] ∩ (−N,N) = ξζ̄(t)[ω] ∩ (−N,N)
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if ω ∈ C and if ζ̄ is the configuration obtained from ζ by removing all the points
x ∈ ζ with |N(x, ζ)| > γN . Recalling that f has support in (−N,N), we have

|Ptf(ζ)− Ptf(ζ̄)| =
∣

∣

∣

∫

P (dω)f
(

ξζ(t)[ω] ∩ (−N,N)
)

−
∫

P (dω)f
(

ξζ̄(t)[ω] ∩ (−N,N)
)∣

∣

∣
≤ 2P (Cc)‖f‖ ≤ 2‖f‖ε.

(91)

Fixed now ζ. Let us suppose for simplicity that ζ is unbounded from the left and
from the right (the other cases can be treated similarly). Then ζ̄ contains all the
points x ∈ ζ with index N(x, ζ) ∈ [−γN, γN ]. We have ζ̄ = ζ ∩ (−a, b) for suitable
a, b > 0. Due to Lemma 3.1, one can prove that there exists δ > 0 (smaller than δ0,
defined in (90)) such that if η ∈ N (dmin) and m(ζ, η) ≤ δ then η ∩ (−a, b) has the
same cardinality of ζ ∩ (−a, b). In particular, η ∩ (−a, b) is given by all the points
x of η with index N(x, η) ∈ [−γN, γN ]. This implies that for all η ∈ N (dmin) such
that m(ζ, η) ≤ δ it holds η̄ = η ∩ (−a, b). Fix δ1 > 0. Taking δ smaller if necessary,
we can assume that if m(ζ, η) ≤ δ then any two points x ∈ ζ and x′ ∈ η with
N(x, ζ) = N(x′, η) satisfy |x− x′| ≤ δ1.

Since (91) has been obtained for any configuration in N (dmin), we conclude that

|Ptf(ζ)−Ptf(η)| ≤ 2‖f‖ε+ |Ptf(ζ ∩ (−a, b))−Ptf(η∩ (−a, b)| ∀η : m(ζ, η) ≤ δ.
(92)

Hence, in order to prove that ζ 7→ Ptf(ζ) is continuous, it remains to prove that
|Ptf(ζ∩(−a, b))−Ptf(η∩(−a, b)| is small with ε. Fix an integer L that will be chosen
later and η so that m(ζ, η) < δ. Then we decompose the expectation according to
the event that the total (random) number X of clock rings inside (−a, b), up to time
t, is smaller or larger than L. Namely

|Ptf(ζ ∩ (−a, b)) − Ptf(η ∩ (−a, b)|
≤ |E(f(ξζ∩(−a,b)(t))1X≤L)− E(f(ξη∩(−a,b)(t))1X≤L)|+ 2‖f‖P (X ≥ L) (93)

where X is the cardinality of the set

{

s ∈ [0, t] : s ∈ T (k) ∪ T̄ (k) ∪ T̃ (k) for some k ∈ Z ∩ [−γN, γN ]
}

Let t1 < · · · < tX be clock rings in the above set. Consider the first ring t1.
Either this ring is legal/not legal (see (83), (84), (85)) for both processes (i.e. the
dynamics starting from ζ ∩ (−a, b) and the dynamics starting from η ∩ (−a, b)), or
it is legal for one process and not legal for the other one. In the first case one
easily sees that m(ξζ∩(−a,b)(t1) ∩ (−N,N)), ξη∩(−a,b)(t1) ∩ (−N,N)) < δ (and thus

m(ξζ∩(−a,b)(s) ∩ (−N,N)), ξη∩(−a,b)(s) ∩ (−N,N)) < δ for any s ∈ [0, t2)). The
second case takes place with probability bounded by

c(δ1) := sup
i=a,ℓ,r

sup
d,d′≥0:|d−d′|≤2δ1

|λi(d) − λi(d
′)|

‖λ‖

By assumption, the jump rates λa, λℓ, λr are continuous functions with support in
[0, dmax], hence they are uniformly continuous and thus limδ1↓0 c(δ1) = 0. Iterating
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the above argument, we end up with

|E(f(ξζ∩(−a,b)(t))1X≤L)− E(f(ξη∩(−a,b)(t))1X≤L)| ≤ Lc(δ1)

+ E

(

|f(ξζ∩(−a,b)(t))− fN(ξη∩(−a,b)(t))|1m(ξζ∩(−a,b)(t)∩(−N,N)),ξη∩(−a,b)(t)∩(−N,N))<δ

)

≤ Lc(δ1) + ε (94)

where in the last line we used (90) (together with the fact that δ < δ0).
In remains to estimate the deviation P (X ≥ L) with X a Poisson variable of mean

3tM , whereM is the cardinality of [−γN, γN ]∩Z. Since E(eX) = exp
{

(e−1)3tM
}

,
setting L = κtM by Chebyshev inequality we get

P (X ≥ κtM) ≤ exp
{

3tM(e− 1)− κtM
}

≤ e−κtM/2 (95)

for κ ≥ κ0. Summing up the above estimates (see (92), (93), (94), (95)) we finally get
the following. Fixed δ1 > 0 and κ > κ0, for δ small enough the bound m(ζ, η) < δ
implies

|Ptf(ζ)− Ptf(η)| ≤ 2‖f‖ε+ κtMc(δ1) + ε+ ‖f‖e−κtM/2.

Choosing κ large enough, and then δ1 small enough amounts to the desired result.
�

9.2. Proof of Theorem 2.9. By definition, the Markov generator L : B ⊃ D(L) →
B, associated to the Markov semigroup {Pt : t ≥ 0} acting on the space B, has
domain D(L) given by

D(L) :=
{

f ∈ B : lim
t↓0

Ptf − f

t
exists in B

}

.

Moreover, given f ∈ D(L), one sets Lf := limt↓0
Ptf−f

t . We stress that the above
limits are thought w.r.t. the uniform norm. In addition, we recall that the space
B depends on the parameter dmin, although omitted. Note that, when speaking
of Markov generators, we do not follow the definition given in [L, Ch. 1] (even if,
invoking the Hille–Yosida Theorem, the two definitions coincide).

Our aim is to prove the following theorem, which corresponds to Theorem 9.5:

Theorem 9.5. The subspaces Bloc and D are a core of the Markov generator L,
i.e. L is the closure of the operator L : D ∋ f 7→ Lf ∈ B, and of its restriction to
Bloc. Moreover, if f ∈ D, Lf(ξ) equals the absolutely convergent series in the r.h.s.
of (2).

We need some preparation. Our first target is to prove that the image of 1− λL
(where 1 is the identity operator) is dense in B for λ sufficiently small. To this aim,
we follow a strategy similar to the one adopted for particle systems in [L, Ch. 1].
Set ‖c‖∞ := supr∈R ‖cr‖∞ and note that, by boundedness of the rates, ‖c‖∞ <∞.

Lemma 9.6. Suppose that f ∈ D and f − λLf = g for some λ ≥ 0. Then for any
r ∈ R it holds

∆f (r) ≤ ∆g(r) + λ
∑

r′∈R, r′ 6=r

γ(r, r′)∆f (r
′) (96)

where γ(r, r′) := supξ∈N (dmin)

∣

∣cr′(ξ
r)− cr′(ξ)

∣

∣.
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Proof. Fix ε > 0 and a finite subset R̂ ⊂ R. Take ξ ∈ N (dmin) such that ∆f (r) ≤
ε + |∇rf(ξ)|. Since the map ξ 7→ f(ξr) can be discontinuous we cannot avoid the
error ε (the setting in [L] is different due to continuity). We first consider the case
that |∇rf(ξ)| = ∇rf(ξ). Then, it holds

∆f (r) ≤ ε+∇rf(ξ) = ε+∇rg(ξ)+λLf(ξ
r)−λLf(ξ) ≤ ε+∆g(r)+λLf(ξ

r)−λLf(ξ).
(97)

Since ξr = ξ \ Ir (Ir := Ik ∪ Ik′ if r = (k, k′)), cr(ξ
r) = 0 and ∇rf(ξ) ≥ 0, we have

Lf(ξr)− Lf(ξ) =
∑

r′∈R

{

cr′(ξ
r)∇r′f

(

ξr
)

− cr′(ξ)∇r′f(ξ)
}

≤
∑

r′∈R, r′ 6=r

{

cr′(ξ
r)∇r′f

(

ξr
)

− cr′(ξ)∇r′f(ξ)
}

.
(98)

By our choice of ξ we can write

f
(

(ξr
′

)r
)

− f
(

ξr
′) ≤ ∆f (r) ≤ ε+ f(ξr)− f(ξ),

thus implying that ∇r′f
(

ξr
)

≤ ε+∇r′f(ξ). In particular, it holds

cr′(ξ
r)∇r′f

(

ξr
)

− cr′(ξ)∇r′f(ξ) ≤
[

cr′(ξ
r)− cr′(ξ)

]

∇r′f(ξ) + ε‖c‖∞
≤ γ(r, r′)∆f (r

′) + ε‖c‖∞. (99)

On the other hand, we have the trivial bound

cr′(ξ
r)∇r′f

(

ξr
)

− cr′(ξ)∇r′f(ξ) ≤ 2‖c‖∞∆f (r
′). (100)

Combining (97), (98) and using (99) for r′ ∈ R̂ and (100) for r′ ∈ R \ R̂, we get

∆f (r) ≤ ε+∆g(r) + λ
∑

r′∈R̂:r′ 6=r

γ(r, r′)∆f (r
′) + λε‖c‖∞|R̂|+ 2λ‖c‖∞

∑

r′∈R\R̂

∆f (r
′).

(101)
It is simple to check, by similar arguments, that the above bound (101) holds also
in the case |∇rf(ξ)| = −∇rf(ξ). Note moreover that, since f ∈ D, the last series in

(101) is finite and converges to zero as R̂ ր R. Taking first the limit ε ↓ 0 and then

the limit R̂ ր R we get the thesis. �

We can finally prove our first target:

Lemma 9.7. The image {f − λLf : f ∈ D} is dense in B for λ ≥ 0 small enough.

Proof. Part of the proof is similar to the proof of [L, Ch. 1, Thm. 3.9]. We give it for
completeness. Without loss of generality, for simplicity of notation we take dmin = 1.
Consider the operator Ln defined in (87). As already observed in Lemma 9.2, Ln is a
bounded operator Ln : B → B. It is simple to check that Ln is a Markov pregenerator
(see the criterion in Remark 9.3). Being Ln a bounded Markov pregenerator, the
image of 1 − λLn is the entire space B for each λ ≥ 0 (see [L, Ch. 1,Prop. 2.8]).
Hence, fixed g ∈ D we can find fn ∈ B such that

fn − λLnfn = g.

Take s ∈ (n, n+ 1). Fix r ∈ R. If ∇rfn(ξ) ≥ 0 we can bound

Lsfn(ξ
r)− Lsfn(ξ) ≤

∑

r′∈R:r′ 6=r,

supp(r′)⊂[−n−1,n+1)

U
(

cr′(ξ
r)∇r′fn

(

ξr
)

− cr′(ξ)∇r′fn(ξ)
)
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where U(x) = x1{x≥0}. Hence, averaging over s, the same estimate holds for Ln

instead of Ls. Using this observation and the same arguments used in the proof of
Lemma 9.6, we get

∆fn(r) ≤ ∆g(r) + λ
∑

r′∈R:r′ 6=r,
supp(r′)⊂[−n−1,n+1)

γ(r, r′)∆fn(r
′). (102)

Introduce now the bounded operator Γ : ℓ1(R) → ℓ1(R) as

(Γx)(r) =
∑

r′∈R:r′ 6=r

γ(r, r′)x(r′), x ∈ ℓ1(R).

The operator is bounded since γ(r, r′) is bounded by ‖c‖∞ and is zero if the supports
of r and r′ are at distance larger than a suitable constant depending on dmin and
dmax only (recall that that rates λℓ, λr, λa are zero when evaluated at d ≥ dmax).
Then, the bound (102) implies that [1 − λΓ]∆fn ≤ ∆g. If λ is small enough, the
operator 1− λΓ can be inverted and therefore we get

∆fn ≤ [1− λΓ]−1∆g. (103)

Let us define gn := fn − λLfn. Then

‖g − gn‖ = λ‖(L− Ln)fn‖ ≤
∑

r∈R :
supp(r)6⊂(−n,n)

‖cr‖∞∆fn(r)

≤ ‖c‖∞
∑

r∈R :
supp(r)6⊂(−n,n)

[1− λΓ]−1∆g(r).

Since [1 − λΓ]−1∆g ∈ ℓ1(R), the above bound implies that limn→∞ ‖g − gn‖ = 0.
Recalling that g ∈ D and that gn belongs to the image of 1− λL, we conclude that
the image of this last operator is dense in D and therefore in B. �

As a consequence of the above result and Remark 9.3, we get that the closure L̄

of L is a Markov generator in the sense of [L, Ch. 1, Def. 2.7] (briefly, we will say
that L is a L–Markov generator).

Lemma 9.8. If f ∈ D, then there exists a sequence fn ∈ Bloc such that fn → f and
Lfn → Lf in B.

Proof. Given n set fn(ξ) :=
∫ n+1
n f(ξ∩ (−s, s))ds. Due to Lemma 3.2, we know that

‖f −fn‖ → 0 and fn ∈ Bloc. Let us prove that ‖Lfn−Lf‖ → 0. To this aim, setting
ξs := ξ ∩ (−s, s) and observing that (ξs)

r = (ξr)s for all r ∈ R, for any integer N we
can write

∣

∣

∣Lf(ξ)− Lfn(ξ)
∣

∣

∣ =
∣

∣

∣

∫ n+1

n

∑

r∈R

cr(ξ)
(

∇rf(ξ)−∇rf(ξs))ds
∣

∣

∣

≤
∣

∣

∣

∫ n+1

n

∑

r∈R:
supp(r) 6⊂[−N,N]

cr(ξ)
(

∇rf(ξ)−∇rf(ξs)
)

ds
∣

∣

∣

+
∣

∣

∣

∫ n+1

n

∑

r∈R:
supp(r)⊂[−N,N]

cr(ξ)
(

∇rf(ξ)−∇rf(ξs)
)

ds
∣

∣

∣

≤ 2‖c‖∞
∑

r∈R:
supp(r) 6⊂[−N,N]

∆f (r) (104)

+ 2‖c‖∞|{r ∈ R : supp(r) ⊂ [−N,N ]}| · ‖f − fn‖ . (105)
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Given ε > 0 we choose N large enough that (104) is smaller than ε (this is possible
since f ∈ D). Afterwards, for n large enough (105) is smaller than ε (recall that
fn → f in B). Then we conclude that ‖Lf − Lfn‖ ≤ 2ε for n large enough. �

We can finally prove Theorem 9.5.

Proof of Theorem 9.5. In Proposition 9.4 we have already showed that Lf = Lf if
f ∈ Bloc. As observed after Lemma 9.2, in this case Lf must equal (2). By Lemma
9.8, L̄ is the closure of the restriction of L to Bloc. Hence, Bloc is a core of L̄. By
Lemma 9.2 (i), given f ∈ D the value Lf(ξ) equals the r.h.s. of (2) which is an
absolutely convergent series.

It remains to prove that L̄ = L. Since Lf = Lf for all f ∈ Bloc, Lemma 9.8
and the closure of L implies that f ∈ D(L) and Lf = Lf for all f ∈ D (the fact
that L is close is a standard fact: combine Def. 2.1 in [L, Ch. 1] with the Hille–
Yosida Theorem as stated in Thm. 2.9 in [L, Ch. 1] leading to the fact that L is
an L–Markov generator, and therefore close). This observation implies that L is an
extension of L̄. It is a general fact that this implies that L = L̄ (cf. [S, Prop. 3.13]
together with the Hille–Yosida Theorem as stated in Thm. 2.9 in [L, Ch. 1]).
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