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1. Introduction

Facilitated or kinetically constrained spin (particle) models (KCSM) are in-
teracting particle systems which have been introduced in the physics litera-
ture [23,24,37] to model liquid/glass transition and more generally “glassy dy-
namics” (see e.g. [34,45]). A configuration is given by assigning to each vertex x
of a (finite or infinite) connected graph G its occupation variable n(x) € {0,1}
which corresponds to an empty or filled site, respectively. The evolution is given
by a Markovian stochastic dynamics of Glauber type. Each site with rate one
refreshes its occupation variable to a filled or to an empty state with probability
1—q or g respectively provided that the current configuration around it satisfies
an a priori specified constraint. For each site x the corresponding constraint
does not involve n(z), thus detailed balance w.r.t. the Bernoulli(1 — ¢) product
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measure 7 can be easily verified and the latter is an invariant reversible measure
for the process.

One of the most studied KCSM is the East model [37]!. It is a one-
dimensional model (G =7 or G =Z; = {0,1,...}) and particle creation/anni-
hilation at a given site x can occur only if the Fast neighbor of x, namely the
vertex « + 1, is empty. The model is ergodic for any ¢ € (0,1) with a positive
spectral gap [2,13] and it relaxes to the equilibrium reversible measure expo-
nentially fast even when started from e.g. any non-trivial product measure [14].
However, due to the fact that the rates can be zero, the East model has specific
features quite different from those of more common systems. For example the
relaxation time Tyelax(q) diverges very fast as q | 0, Tpelax ~ (1/q)(1/2)1082(1/9)
(see [13]), and several coercive inequalities stronger than the Poincaré inequality
(e.g. the logarithmic Sobolev inequality) fail (see Section 3.3 for more details).

A key issue, both from the mathematical and the physical point of view, is
therefore that of describing accurately the evolution at ¢ < 1 when the initial
distribution is different from the reversible one and for time scales which are
large but still much smaller than Tieax(g) when the exponential relaxation to
the reversible measure takes over. A typical case, often referred to in the physics
literature as a quench from high to low density of vacancies, is to take as starting
distribution i.i.d. occupancy variables with density 1/2. We refer the interested
reader to [10,16, 30,40, 45] for the relevance of this setting in connection with
the study of the liquid/glass transition as well as for details for KCMS different
from East model.

As first suggested in the non-rigorous work [46,47] and recently mathemat-
ically established in [26], the non-equilibrium dynamics of the East model as
q | 0 is dominated by a metastable type of evolution in a energy landscape
with a hierarchical structure. Such metastable dynamics can in turn be very
well described by a hierarchical coarsening process [26] for the excess vacan-
cies whose long time behavior can be analyzed rigorously. Remarkably such
a hierarchical coalescence process (i) has exactly the same general structure of
other coalescence processes introduced in the physics literature for very different
situations (see e.g. [17-19]) and (ii) the form of its universality classes can be
mathematically established and computed [25]. As a consequence one is able to
draw almost exact conclusions on the out-of-equilibrium dynamics of the East
model [26].

In this paper we mostly try to provide an extensive self-contained review
of the existing mathematical theory of the East model in the various regimes.
We also provide the analysis of the logarithmic Sobolev inequality and some
of its recently introduced modifications, as well as some extension of the main
theorems proved in [26] for the low density non-equilibrium dynamics.

LQuite interestingly the East model plays a key role in certain random walks over the upper
triangular matrices with entries in the field Z,, for n prime [44].
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Finally, we stress that some of the results and/or the techniques that we
present are valid for more general KCSM (e.g. spectral gap, persistence, log-
Sobolev); while others are related to the oriented and/or one-dimensional char-
acter of the East Model.

2. The East process: definition and construction

2.1. Notation

Throughout all the paper we will use the notation N := {1,2,...} and Z, :=
{0,1,2,...}. The configuration space for the East model is either  := {0, 1}*
or Qy = {0,1}* for some (finite or infinite) subset A C Z. Given a parameter
q € [0,1], for any = € Z, m, denotes a Bernoulli (1 — ¢) measure, 7 := [] ., T
and 7y =[], cp ™2 for A C Z. Also, we set p:=1—gq.

Elements of 2 will usually be denoted by the Greek letters o, 7, ... and o(x)
will denote the occupancy variable at the site z: when o(z) = 1 we say that
site x is occupied or filled (by a particle), while when o(z) = 0 we say that there
is a vacancy (or no particle) at site z, or also that x is empty. The restriction
of a configuration o to a subset A of Z will be denoted by o,. Given two sets
A,V and two configurations o, o', op0f, denotes the configuration equal to o
on A and to o’ on V. The set of empty sites (or zeros) of a configuration o will
be denoted by Z(o).

The mean with respect to 7 of a function f on € is denoted by 7(f), while
its variance is denoted by Var(f). Similar definitions hold for ma(f), Vara(f)
and f a function on Q4. If f is a function on Q we denote by 7a (f) and Vara (f)
the mean and the variance of f with respect to the conditional probability
7(- | {o(y)}yer) = 7(- | oa). Namely, mo(f) is the mean of f with respect to
ma computed keeping fixed the variables o(y), y ¢ A. Similarly for Vary(f).
For simplicity, we set m,(f) := 7,1 (f) and Var,(f) := Varg, (f).

Finally we introduce the entropy functional Ent(f) := #(flog(f/x(f)) for
any non-negative function f, say in L2(Q, 7), and similarly Enta(f) = 7a(f X

log(f /ma(f))-

Remark 2.1. In the physical literature, the parameter ¢, which represents the
density of vacancies as will become clear later, is written as
e 0

1= 157

where [ is the inverse temperature. In particular, the limit ¢ | 0 corresponds
to the zero temperature limit.
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2.2. Infinitesimal generator of the East process

The East process can be informally described as follows. Each vertex z
waits an independent mean one exponential time and then, provided that the
current configuration o satisfies the constraint o(z + 1) = 0, the value of o(x)
is refreshed according to m,, i.e. it is set equal to 1 with probability p =1 — ¢
and to 0 with probability g. The process can be rigorously constructed in a
standard way, see [38]. Formally, it is univocally specified by the action of
its infinitesimal Markov generator £ on local (i.e. depending on finitely many
variables) functions f: Q — R, given by

Lf(0) = calo)[malf) = f(0)] (2.1)

where ¢;(0) := 1 — o(z + 1) encodes the constraint, and o® is obtained from o
by flipping its value at z, i.e.

o () — 47 ify %,
) {1—0(:10), if y =

The domain of £ is denoted by Dom(L£). When the initial distribution at time
t = 0 is @, the law and expectation of the process on the Skorohod space
D([0,00),€) will be denoted by Pg and Eq respectively. If Q = §, we write
simply P,. The process at time ¢ will be denoted by o.

The East process can also be defined on intervals A = [a,b] C Z or half-lines
A = (—00,b] C Z provided that a suitable zero boundary condition is specified
at the site b + 1. More precisely one defines the generator £, (called finite
volume generator if A is finite), acting on any local function f: Q5 — R as

Laf(o) =Y cal0)[ma(f) — £(0)] + [mo(f) — f(0)]

TEA
=" A o)m(f) - 1))
zEA
st o)< 7T ROy

In particular there is no constraint at site b as a frozen zero lies at site b+ 1.
One can define the East process also on half-lines A = [b, 00), in this case the
generator is given by

Laf@)= Y cl@)mlf) - Flo).

z€[b,00)
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Due to the “East” character of the constraint, taking A as above (i.e. A =
[a,b], (—00,b], [b,00)), for any initial condition n € 25 the evolution on the
interval A coincides with that of the East process on Z (restricted to A) starting
from the configuration

n(x), ifxzeA,
n(z) =<0, ifr=0+4+1, b=maxA, (2.3)
1 otherwise.

We will use the self-explanatory notation Pg (or PA) for the law of the process
starting from the law @Q (from o) and o for the process at time ¢.

Note that, by construction, the East process on Z (respectively on A) is
reversible with respect to 7 (respectively my). Analytically this is equivalent
to saying that £ (respectively £,) is a self-adjoint operator in L?(7) (respec-
tively (w4 )). Moreover, for any f,g € Dom(£L) (in particular, for any local
functions f, g), the Dirichlet form associated to the generator L is given by

D(f,9) =5 3 3 w(0)ealo)[(1— o(a)p + o2}

T€L oEN
x (f(e®) = f(0))(g(c”) — g(o)).
Similarly the Dirichlet form associated to the generator L, is given by

Da(f9) =5 3 3 mal0)ed(@)[(1 — o(a)p + o(w)d]

TEN cEQA
X (f(e®) = f(2))(g(0”) = 9(0)).
It is simple to check that

D(f) :=D(f. f) = w(ca Vara(f)), f € Dom(L), (2.4)
€L
DA(f) :=Dalf, ) = Y ma(ch Vary(f)), fe€Dom(Ly).  (25)
xEA

In what follows, when considering a local function f on Q we denote by D(f)
the Dirichlet form of f with respect to £, and mp computed holding fixed the
variables {o(y) }yga. In particular, (2.5) still holds due to our definition of 74 (+)
and Var,(-) for functions defined on €.

Finally we introduce the associated Markov semigroup P; = exp{t£L} which

satisfies P, f(0) = E,(f(0:)) and similarly P = exp{tL4}.
2.3. Graphical construction

In this section we briefly recall a standard graphical construction which
allows to define on the same probability space the finite volume East process
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for all initial conditions. Using a standard percolation argument, see [22,39],
together with the fact that the constraints ¢, are uniformly bounded and of
finite range, it is not difficult to see that the graphical construction can be
extended to any infinite volume.

Given a finite interval A C Z we associate to each z € A a Poisson process
of parameter one and, independently, a family of independent Bernoulli(1 — ¢)
random variables {s; x : K € N} (coin tosses). The occurrences of the Poisson
process associated to z will be denoted by {t, : k € N}. We assume inde-
pendence as x varies in A. Notice that with probability one all the occurrences
{te.k }ren zea are different. This defines the probability space. The correspond-
ing probability measure will be denoted by P. Given an initial configuration
1 € Q we construct a Markov process (O’é\ "M)¢>0 on the above probability space
satisfying UtAz’"o = 7 according to the following rules. At each time ¢ = ¢, ,, the
site © queries the state of its own constraint c2. If the constraint is satisfied,
ie. if Ufﬂ(m +1) =0, then ¢, , will be called a legal ring and at time ¢ the con-
figuration resets its value at site x to the value of the corresponding Bernoulli
variable s; ,. We stress here that the rings and coin tosses at x for s <t have
no influence whatsoever on the evolution of the configuration at the sites which
enter in its constraint (here x4+ 1) and thus they have no influence of whether a
ring at x for s > t is legal or not. It is classical to see that the above construction
actually gives a continuous time Markov chain with generator (2.2).

A simple but important consequence of the graphical construction is the
following one. Assume that the zeros of the starting configuration o inside A
are labeled in increasing order as xg, 1, ..., T, and define 7 as the first time at
which one the z;’s is killed, i.e. the occupation variable there flips to one. Then,
up to time 7 the East dynamics factorizes over the East process in each interval

[xia $i+1)'
3. Main results

In this section we collect the most relevant rigorous results on the East
model. The main references are [2,9,13, 14,25, 26], while two results are new:
the analysis of the a-log-Sobolev inequalities (see Section 3.3) and an extension
of the results of [26] (see Section 3.5).

3.1. Spectral gap

The finite volume East process is trivially ergodic because of the frozen zero
boundary condition (see (2.2)). The infinite volume process in Z is also ergodic
in the sense that 0 is a simple eigenvalue of the generator £, as proved in [13].
This last property implies that the process converges to equilibrium, in L2 (7).
More precisely (see e.g. [38, Theorem 4.13, Chapter IV]), the following classical
equivalence holds.
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Theorem 3.1. The following properties are equivalent:
(a) limy oo Eo(f(0¢)) = 7(f) in L2(7) for all f € L3(x);
(b) 0 is a simple eigenvalue for L.

The next natural question that arises is how fast the process converges to
equilibrium. The classical tool to answer such a question is a spectral gap
estimate. We recall that the spectral gap (or inverse of the relaxation time) of
the generator £ is defined as

. D(f) . D(f)

f = f
f€]31£1n1(£) Var(f) £ local Var(f)
fF#const fF#const

gap(L) := . (3.1)

Similarly one defines the spectral gap, gap(La ), of the generator L, for A C Z.
It is well-known (see e.g. [1, Chapter 2]) that gap(L) > ~ for some v > 0 is
equivalent to the following exponential decay of the semigroup:

Var(Pf) = / By (f(01)) — 7(f)]* dr(0) < Var(f)e ™" Vit >0, ¥f € Dom(L).

The next result asserts that gap(£) > 0 so that the process indeed converges to
equilibrium exponentially fast, in IL?(7). Moreover one can compute the precise
asymptotic of gap(£) in the limit ¢ | 0.

Theorem 3.2 ([2,13,14]). The following holds:
(i) The generator L has a positive spectral gap, i.e. gap(L) > 0.

(ii) The asymptotic of gap(L) for ¢ | 0 is given by

lqig}log(gap(ﬁ)‘l)/ (log(1/q))” = (2log2)~*.

(iii) For any interval A C Z, the spectral gap of the finite volume generator £
is not smaller than gap(L), i.e. gap(La) > gap(L).

Remark 3.1. Points (i) and (iii) have been proven for the first time by Aldous
and Diaconis in [2]. These authors also showed the correct upper bound in (ii)
together with a lower bound that is off by a factor 1/2. This wrong factor 1/2
also appeared in the conjectured behavior of the relaxation time suggested in
the physics literature [46,47] and based on simple energy barriers considerations.
The discrepancy with the correct asymptotic as given in (ii) is mainly due to
neglecting an important contribution coming from the entropy (i.e. number of
ways to overcome the energy barrier). The matching lower bound was proven
in [13] by a completely novel approach while an alternative (and somehow very
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natural) proof of the upper bound can also be found in [14]. The necessary
techniques will be developed in Section 5 where the reader will find the complete
proof of Theorem 3.2.

The techniques developed in [13] to prove the positivity of the spectral gap
(Item (i)) are actually valid for a wide class of KCSM (not necessarily one-
dimensional).

3.2. Persistence function

We now consider the persistence function F'(t) which represents the prob-
ability for the equilibrium process that the occupation variable at the origin
does not change before time ¢. More precisely (see e.g. [35,46]) the persistence
function is defined by

Plt) = / dr () Py (00(s) = o, Vs < 1). (3.2)

In [13], using a Feynman—Kac formula approach, it is proved for general
KCMS that, if the spectral gap is positive, then F(t) decays exponentially fast
as predicted in the physics literature.

Theorem 3.3 ([13]). It holds

~ gap(£) min(p, q)
4

The proof of the latter is given in Section 6.

F(t) < 2exp{ t} Vit > 0.

3.3. Log-Sobolev constant

The next step in understanding the long-time behavior of the East model is
the study of the log-Sobolev constant. This coercive constant is usually used
to prove exponential decay in the sup-norm (and therefore in a stronger sense
compared to L?(r), see [36,41]), by means of the celebrated hypercontractivity
property. Unfortunately, for the East Model the log-Sobolev constant in infinite
volume does not exist.

In fact, a whole family of Sobolev type inequalities does not hold. This
family is called a-log-Sobolev inequalities, « € [0,2] being a parameter. In a
finite interval A they are defined as follows.

Given « € (0,2]\ {1}, one says that 7 satisfies the a-log-Sobolev inequality
if there exists some constant C,(A) € (0,00) such that, for any f: Qy — R, it
holds 1O (A
Gl g (g, i (33)
where o’ is the dual exponent of «, i.e. such that 1/a + 1/a/ = 1. Observe
that, since @ may belong to (0,1), ¢’ may be negative. However, due to the

Enty (f) <
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multiplicative factor o', the right-hand side is always non-negative. The a-log-
Sobolev inequalities with e = 1 or o = 0 are defined by a limiting procedure.

Such a family has been introduced in [43] as an interpolating family from the
log-Sobolev inequality to the Poincaré inequality. Indeed, for o = 2 inequal-
ity (3.3) reduces to the standard log-Sobolev inequality of Gross [33]. Also,
in [43, Section 4], it is proved that the 0-log-Sobolev inequality, with constant Cy,
is precisely equivalent to the standard Poincaré inequality with constant Cy/2.
Moreover, the limiting case a = 1 is equivalent to the following inequality inde-
pendently studied in the literature:

C1(A)

Enty(f) < 1

Da(f,log f). (3.4)

The latter? has been introduced in [6] to study the concentration phenomenon
of birth and death processes on the integer line. It is known [21] that (3.4)
is actually equivalent to the following exponential decay to equilibrium of the
semi-group, in the entropy sense:

4t

Entp (P f) < exp{ - m

}EntA( f) vi>o.

Hence a control on the constants C,(A) may reveal to be crucial in the study
of the long-time behavior of the dynamics, specially for a = 1, 2.

In the next theorem, we prove that, for any « € (0, 2] the constant C,, (A) =
Q(JA|) compares to |A]. Thus, in order to get exponential decay to equilibrium
either in the sup-norm or in the entropy sense, one has to use alternative strate-
gies. One of them will be developed in the next section. Also, Theorem 3.4
below answers partially to a question asked to us by Krzysztof Oleszkiewicz
(see [43, Section 12]), namely about the existence of an example for which the
Poincaré Inequality holds while none of the a-log-Sobolev inequalities, o € (0, 2],
hold.

Theorem 3.4. Fix o € (0,2] and a finite interval A of Z. Let C,(A) be the
best possible (i.e. the smallest) constant in inequality (3.3). Then, there exists
a constant ¢ (that may depend on q and «) such that

1
“A] < Ca(A) < dlA.
The proof of Theorem 3.4 can be found in Section 7. As a conclusion it is

natural to ask whether one can find the precise asymptotic behavior, as ¢ | 0, of
the log-Sobolev constant, and more generally of any a-log-Sobolev inequality.

2Inequality (3.4) is sometimes called “modified logarithmic Sobolev inequality” [6,8,31,32]
or “entropy inequality” [12,15,20]. Recently a yet new name, 1-log-Sobolev inequality, has
been introduced always for the same object.
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3.4. Out of equilibrium I: long time behavior

In this section we address the following questions: does the law of the process
at time t converge to the reversible measure 7 as t — oo if it starts from some
non-equilibrium measure @ # 77 And if it converges, how fast?

As already explained in the previous section, one usually answers such ques-
tions studying the log-Sobolev constant and using the so-called hypercontractiv-
ity property of the semigroup exp{tL}. Unfortunately, the log-Sobolev constant
of a segment of size L compares to L as stated in Theorem 3.4 (and in particu-
lar is not uniformly bounded in the size of the system) so that the (now) usual
Holley — Stroock strategy does not apply.

Taking advantage of the oriented character of the East process, one can
anyway prove the following result.

Theorem 3.5 ([14]). Fix o € (0,1)\ {p} and assume that the initial distribu-
tion ) is a Bernoulli () measure. Then for any local function f,

/ 4Q(0) [Eo(f(0v)) — 7(f)] < Cre

where O = || f|loo(p A @) 1P /|g — | (with [supp(f)| the cardinality of the
support of f), and

1 (1 log(1/c) ))

m = — gap(L) min | 1,
zep(L) log(a/p A q

2
The above result, proved in Section 8, shows that relaxation to equilibrium
is indeed taking place at an exponential rate on a time scale Tyelax = gap(£)
which, for small values of ¢, is very large and of the order of exp{clog(1/q)?}
with ¢ = (2log2)~.

Remark 3.2. Although the above result is quite natural it should be noted that
it cannot hold for any initial law @ (as one could naively expect). Consider for
example starting the East dynamics from i.i.d. on the negative part of Z and
from identically equal to one on the positive part. Then clearly the positive part
of Z will never relax to equilibrium just because there are no vacancies around!
We refer to [14] for a complete classification of the allowed initial distributions.

In higher dimensional models like the North-East model the non-equilibrium
dynamics should exhibit an even richer structure because of the possible presence
of a critical density above which the spectral gap becomes zero, infinite blocked
configurations appear etc. We refer the interested reader to the introduction
of [14] for a quick review.

Finally we observe that the oriented character of the East Model is essen-
tial in the proof of Theorem 3.5. However the asymptotic convergence to the
reversible measure should hold in the ergodic regime for more general KCSM.
A particular step in this direction can be found in [5].
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3.5. Out of equilibrium II: plateau behavior, aging and scaling limits

In this section, we give a set of results (Theorem 3.6 and 3.7) which details
the non-equilibrium behavior of the East process for small values of ¢ (small
temperature) and, in contrast with the previous section, for time scales much
smaller that Tre1ax = gap(ﬁ)*l. The proofs of both theorems are quite involved.
Hence they will not be given in full detail. We mention that one of the main
ingredient is an approximation of the East model by means of a suitable hierar-
chical coalescence process introduced in the physics literature [47] and rigorously
studied in [25] (see also [27] for extensions). The definition of this coalescence
process and the approximation result will not be given here but can be found
in [26].

Definition 3.1. Given ¢,¢ € (0,1), we set

+ 1ye
to:=1; ty = 0; t :();
0 0 q
— 1 n' — . 4l—e, + _ 414
tn = ; t, =t % ty =1, Vn > 1. (3.5)
q

The time interval [t;,, ] and [t;}, ¢, ;] will be called respectively the nth-active

n»’n

period and the nth-stalling period.

In the next theorem we deal with the persistence, the vacancy density and
the two-time autocorrelations during stalling periods and prove plateau and
aging behavior.

Given a configuration o we denote by {zx} = {zr(0)} the position of the
empty sites of o, with the rules that zp < 0 < z; and zp < zpy; for all
integers k. Then, given a probability measure p on N, we write @ = Ren(u | 0)
if, under @, the first zero z( is located at the origin 0, the random variables
{zr — xKp—1}72, form a sequence of i.i.d. random variables with common law g,
and there is no other empty site on the left of the origin.

Theorem 3.6. (Persistence, vacancy density and two-time autocorre-
lations.) Fix a probability measure p on N, d := inf{a : pu(a) > 0} and let ng
be the smallest integer n such that d € [2"~1 + 1,2"]. Assume that the initial
distribution @ is a renewal measure () = Ren(u | 0) and either one of the
following holds:

a) the measure p has finite mean;

b) the measure u belongs to the domain of attraction of a a-stable law or,
more generally, u((z,+00)) = x~*L(x) where L(x) is a slowly varying
function at +oo, a € [0, 1]3.

3A function L is said to be slowly varying at infinity, if, for all ¢ > 0, lim L(cz)/L(zx) = 1.
xTr— 00
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Then, if o(1) denotes an error term depending only on n and tending to zero as
both tend to infinity, for any n > ng

(i)

1 co(1+0(1))
lim  sup ‘PQ(@(O) —0)— (= ’ =0, (3.6)
ql0 tE[t,f,t:Hrl] (2 —I—I)
1\ eo(ito(1)
lim  sup  |Po(0(0)=0Vs <) - (5 - ) =0, (37)

WO tefit i, ]
where ¢y = 1 in case (a) and cop = « in case (b).
(ii) Let ¢,s:1[0,1/2] — [0,00) with t(q) > s(q) for all ¢ € [0,1/2]. Then

lim P =0)<lmP =0).
lim Po (01(¢) (0) = 0) < Tim P (o) (0) = 0)
The same bound holds with liimqio instead ofmqlo.

(i) For x € Zy let Cy(s,t,z) = Covg(ow(z); os(z)) be the two-time autocor-
relation function. Then, for any n,m > ng

1 )Co(1+0(1))

lim sup | ‘CQ(&t,x) - pz(2n 1

0 _ _
ql ety b ] selth t

1 eo(lto(1)
X<17p“7<2m+1) )’:0

where p, = Q(o(x) = 0).

The picture that emerges from points (i) and (ii) is depicted in Figure 1.

Po(0:(0) = 0)

5 6 logt

[log gl

Figure 1. Plateau behavior in the limit ¢ — 0 (with, for simplicity, d = 1),
where we set ¢, := (1/(2" + 1))°(+e() with ¢q defined in Theorem 3.6 and
o(1) going to zero as n — oo.
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Remark 3.3. Theorem 3.6 is stated in [26] in a less general form. Indeed, in [26],
p must satisfy the following technical condition: for any k € N, u ([k, o0)) > 0.
In order to remove this assumption we will need a new technical fact described
by Lemma 9.1 in Section 9. Having such a lemma, it is simple to adapt the
proof of [26]. On the other hand, Theorem 3.6 holds now only starting from
scale ng simply because, on any smaller scale, nothing interesting happens since
the filled sites are essentially frozen.

Finally, we observe that, for small values of ¢, the two-time autocorrelation
function Cq(s,t, z) depends in a non trivial way on s,¢ and not just on their dif-
ference t — s (see Point (iii)). This explains the word “aging”. Clearly, for times
much larger than the relaxation time gap~!(£), the time auto-correlation will
be very close to that of the equilibrium process which in turn, by reversibility,
depends only on t — s.

The next theorem describes the statistics of the interval (domain) between
two consecutive zeros in a stalling period. In order to state it let, for any

¢ € (0,1], Xéso ) > 1 be a random variable with Laplace transform given by

e—S(lj

E(exp{—s)zc(ooo)}) =1 —exp{ — co/ dac} =1—exp{—coEi(s)}. (3.8)

X

The corresponding probability density is of the form p., (z)L;>1 (see [25]) where
De, 1s the continuous function on [1,00) given by

0 (_1yk+1ok
peal) =3 T ) 1, 5.9)

where p1(z) = 1/x and

k

Pk+1(x) :/d:y1~~~/d:ck H—, k>1. (3.10)
1 1 v

k
. xX,
i=1%i j=1""

Let also YC(OOO) be a non-negative random variable with Laplace transform given
by
1
- (Oo) 1 _ e*SI
E(exp{—sY >}) :=1—expq —co — dz 7. (3.11)
0
Starting from an initial law @ = Ren(u | 0) denote by z(t) = zo(o¢) the
position of the first zero at time ¢, and by x1(t) = x1(0y) the position of the
second zero.
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Theorem 3.7. (Limiting behavior of the domain length and of the first
zero.) Under the same assumptions of Theorem 3.6, let

o H—mo(t), 5 o (1)
XM (t) = gl o YM(g) = .
() 2n71+1 ’ () 2n71+1
Then, for any bounded function f,

lim lim  sup [Eq(f(X"TV(1)) — E(f(X$))| =0, (3.12)
nfoo ql0 te[ti,t,jﬂ]
lim lim  su Eo (f(Y ™tV @) — E(f(Y )| =0, 3.13
nioo ql0 te[t:,gﬂ]‘ Q(/( (1)) (f¥eN)] (3.13)

where again ¢y = 1 if p has finite mean and ¢y = « if p belongs to the domain
of attraction of a a-stable law.

The result (3.12) holds for f satisfying |f(z)| < C(1+ |z|)™, m =1,2,...,
if the (m + 0)th moment of  is finite for some ¢ > 0.

Remark 3.4. The above result holds for a wider class of initial measure Q). More-
over, the moment condition can be relaxed, see [26]. The proof of the above
theorem will not be given here and can be found in [26]. In general, the asymp-
totics of the first k zeros can be deduced from the results of [26].

We refer the reader to Remark 4.1 in Section 4 for an heuristic interpretation
of the scaling t,, = (1/¢)™ and the renormalization length 2.

3.6. Large deviations of the activity

Let us introduce some notation. For simplicity, in this section, we set Ay =
[1,N], o = o and ny := m, (recall the notation introduced two lines
after (2.3)) and we denote by () the mean over the evolution of the process and
over the initial configuration which is distributed with 7. We also define the
total activity as

Alt) = > Au(t)
rEAN
where A, (t) := #{s < t : lim. g0 _(z) # limo}¥(2)} is the random vari-
able that counts the number of configuration changes at site x during the time
interval [0, ¢].

Let us explain why the total activity is a relevant quantity. The East model,
as it is common for kinetically constrained models and more generally for glassy
systems, is characterized by a spatially heterogeneous dynamics, namely by the
mixture of frozen and mobile areas (see for example Section 1.5 in [34]). The
occurrence of these heterogeneities has led to the idea that the dynamics takes
place on a first-order coexistence line between active and inactive dynamical
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phases [28,29,34,42]. In order to exploit this idea the activity has been proposed
as a relevant order parameter to discern active and inactive dynamics and a
dynamical approach has been devised to define a suitable notion of free energy.
In this dynamical approach the role of the free energy is played by the large
deviation function of the activity which, as will be detailed below, undergoes a
first order transition in the thermodynamic limit.
Since A(t) — gci\”(oé\’) ds is a martingale, it can be proved that A(t)
satisfies the following law of large numbers
LA 2
Mm - lim = = 2p(1 = p)”
In the sequel we set A := 2p(1—p)2. Thus one could expect that the probability
P(a) of observing a deviation from the mean value A(t)/Nt ~ a scales as

. . 1
ngnoo tli)rgo N logP(a) = —f(a), (3.14)
with 0 < f(a) < oo for a # A as it occurs in absence of the kinetic constraint.
However, as it has been observed in [28,29], due to the presence of the constraint
it is possible to realize at a low cost a trajectory with zero activity by starting
from a completely filled configuration and imposing that a single site does not
change its state. Analogously one can obtain an activity smaller than the mean
one by blocking for a fraction of time a single site. As a consequence of this
sub-extensive cost for lowering the activity it holds f(a) = 0 for a < A. For the
same reason, the moment generating function controlling the fluctuation of the
total activity

. .1
P(A) = ]\;gnoo tlirgo N log (exp{AA(t)}) (3.15)
is non analytic at A = 0 with a discontinuous first order derivative [28,29].

In [9] the authors study the finite size scaling of this first order transition
by analyzing this generating function with a refined thermodynamic scaling,
namely

p(a) :=limsup lim %1og<(exp {%A(t)})>, a €R,

N—ooo t—o00

which corresponds to a blow up of the region A = «/N ~ 0 and prove the
following result

Theorem 3.8 ([9]). For any p € (0,1), there exist aq < ap < 0 and a constant
> > 0 such that

(i) for a > ayp, it holds (o) = Aw;
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(ii) for ao < vy it holds p(a) = —X.

The results of this theorem are illustrated in Figure 2 below. In particular
it shows that, in a range of A of order 1/N, the transition is shifted from 0. As
a corollary, the authors give the following estimates on the large deviations for
a reduced activity:

Corollary 3.1 ([9]). For any u € [0,1), it holds

I A(t)
50— < iy Hninf finy g (57 < uh — =0t 6]

1 t
<ttt o (7 € s~ et 1))

< OéoA(l — u)

This scaling is anomalous compared to the extensive scaling in N of the
unconstrained model and it is a direct consequence of the sub-extensive cost
for lowering the activity (while the large deviations for increasing the activity
above A remain extensive in N). As detailed in Section 2.2 of [9], by analogy
with equilibrium phase transitions, one can interpret ¥ as a surface tension
between the inactive and the active region (per unit of time) and this quantity
is obtained from a variational problem (see Section 6 of [9]).

P(A) p(a)

Figure 2. The functions ¢ and . The results of Theorem 3.8 are depicted on
the right, in thick line. The dashed lines correspond to a conjectured behavior.

The results in [9] do not provide the entire phase diagram for the generating
function p(a) (only for o & |1, ap]). A first open problem is to prove the
conjecture of [9] that there is a unique critical value . and that the two regimes
remain valid up to «. (as depicted in the dashed line of Figure 2), namely
p ==X for a < a, and ¢ = aA for a > a., which would imply by continuity
a. = —X/A. This conjecture is supported by numerical simulations [7]. If
this conjecture is verified, then Corollary 3.1 can be improved and the large
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deviations for reducing the activity would be given by

) 1 A(t)
Vue 0,1, Jim lim - log <W ~ uA> = (1 —w).
Another interesting open problem is to describe the interface between the active
and inactive regions in the inactive regime a < «., in particular to prove that
this interface is localized close to the boundary. Indeed in [7] the interface has
been conjectured to fluctuate within a region of the order of N'/3, a result which
is supported by numerical results and by the study of an effective model where
the boundary between active and inactive regions is described by a Brownian
interface. Finally, a very interesting issue from the physicists point of view is to
understand if and how the dynamical phase transition can lead to quantitative
predictions on the model at A = 0.

4. Combinatorics

In this section we collect, and partially prove, some useful combinatorial re-
sults, which are intimately related to the oriented character of the East process.

Let us fix some notation. Consider the East process on A = (—o0, —1] start-
ing from the completely filled configuration (i.e. the configuration oq satisfying
o1(z) =1 for any z € (—oo, —1]) with a frozen vacancy at the origin 0. Denote
by V(n) the set of all configurations that the process can reach using at most n
zeros. Define the absolute value of the position of the leftmost zero in all the
configurations of V(n), namely

{(n):=sup{ —y:y € (—o0,—1], In € V(n) s.t. n(y) =0}
with the convention that sup () = 0.
Proposition 4.1 ([11,47]). The following holds for n > 0:
() fn) = 2" — 1;
(i) [V(n)| < 2G)nlem with ¢ < 0,7.

Remark 4.1. The result of Point (i) holds true if one replaces A by any finite
interval [—L, —1] with L > 2™ — 1.

More precise statements on the cardinality |V (n)| of V(n) (and in particular
a lower bound of the same order with a different constant ¢) can be found in [11].

Consider the East process on [—¢, —1] with a frozen zero at the origin 0.
Let n € N be such that £ € 2"71 +1,2"] and n > 1, or £ = 1 and n = 0.
Suppose the East process starts from the configuration having a single vacancy
located at —¢ (i.e. starts from 01111...1). Then, due to the above proposition,
the system must pass through a configuration with n extra zeros before killing
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the vacancy at —¢. This occurs with probability of order ¢™ and thus with an
activation time t,, = (1/¢)™. This explains the scale t,, introduce in Section 3.5,
and the renormalization length 2™.

Point (i), stated in [11, Fact 1(i)], had already been noticed in [46], [47,
Section BJ. In order to be self-contained and to clarify a mechanism which will
be at the heart of the behavior of the East process when ¢ | 0, we provide its
proof. With respect to [11], we present a slightly different approach based on
the arguments of [47] .

The proof of Proposition 4.1 is based on the following lemma:

Lemma 4.1. Let V(n,k), 0 < k < n, be the subset of V(n) of those configu-
rations which contain exactly k zeros. Let

{(n, k) := sup {lyl : y € (=00, —1],3n € V(n, k) s.t. n(y) =0}

be the position of the leftmost zero considering all the configurations of V(n, k).
Then the following holds:

(i) £(n, k) is increasing in k for n >k > 0,

(i

i)
(iit) (n,1) =l(n—1,n—1)+1 forn > 1,
(iv)

Proof. To prove Item (i) we only need to exhibit, for k < n, a configuration in
V(n, k+1) with a zero at —[0(n, k) +1], i.e. a configuration with k41 zeros, one
of which at —[¢(n, k) + 1], that the system can reach from oy without exceeding
quota n zeros. Such a configuration can be obtained as follows: starting from oq
the system reaches the configuration which realizes Z(n, k) without exceeding
quota n zeros. This configuration has k < n zeros, therefore the system is
allowed to create an additional zero at —[¢(n, k) + 1. )

From the fact that £(n, k) is increasing in k, we get the identity £(n,n) = £(n)
stated in Item (ii).

To prove Item (iii) we observe that, just before creating the zero at fg(n, 1),
the system should have a zero at —Z(n, 1) 4+ 1. Moreover, after creating the zero
at —f(n, 1), the system should remove all zeros on the right of —¢(n, 1) without
exceeding quota n zeros and therefore without exceeding quota n — 1 zeros on
[—¢(n,1)4+1, —1]. Reversing this last part of the evolution and disregarding what
happens outside [ff(n, 1) + 1, —1], we get a trajectory starting from the fully
filled configuration oy and realizing the zero at —é(m 1) + 1 without exceeding
quota n — 1 zeros. The conclusion then follows by applying Item (i).

It remains to prove Item (iv). In order to realize the path which leads to
a configuration with k zeros, one of which at —¢(n, k) and without exceeding

L(n) = ( n) for n > 0,

{(n, k)>2j A —54+1,1) forn >k > 1.



426 A. Faggionato, F. Martinelli, C. Roberto and C. Toninelli

quota n zeros, the system can first create a single zero at —g(n, 1) without
exceeding quota n zeros, then it can use this zero as an anchor to create a further
zero at —f(n, 1) — £(n — 1,1) by means of a path with at most n simultaneous
zeros including the one at —¢(n,1). By continuing this procedure we get the
inequality of Ttem (iv). m|

We can now come back to Proposition 4.1:

Proof of Proposition 4.1. Combining Items (iii) and (iv) of the above lemma,

we get
n—1

Z n—jn—j)+n=> 0jj)+

<.
Il
o

Then, using the fact that Z(O 0) = 0, we get by induction that
l(n,n)>2" —1.

Using Item (ii) of the above lemma, we conclude that £(n) > 2" — 1

The proof of the reverse inequality £(n) = £(n,n) < 2" —1 goes by induction.
It is trivially fulfilled for n = 0. Suppose the inequality holds up to n — 1, where
n > 1. Then, Item (iii) in the above Lemma implies that ¢(k,1) < 2¥~1 for
all k: 1 < k < n. Then consider a configuration 1 which realizes £(n,n). By
definition 7 should contain n zeros and by using reversibility we know there
should exist a path which kills all these zeros with at each step at most n
zeros. Thus at least one of the n zeros of 1 should be such that it can be killed
without creating further zeros, namely it should have the next zero to the right
at distance £ (1,1) = 1. Let for simplicity n contain only one such zero (otherwise
the strategy can be easily adapted) and consider the configuration n’ obtained
by killing this zero. Then 1’ should contain at least a zero which has the next
zero at distance at most £(2,1) (it should be killed by adding at most one extra
zero) and the configuration obtained by killing this zero should contain at least a
zero which has the next zero at distance at most £ (3,1) and so on. By using this
observation and the iterative assumption which guarantees that £(k,1) < 2¢~1
for all £ < n we get

Inyn) <142 4.2 t=9n 1

which, together with the above lower bound leads to the desired result £(n) =
L(n,n) =2" —1.
The proof of Point (ii) can be found in [11, Theorem 2, 4 and 5]. O

5. Spectral gap: proof of Theorem 3.2

In this section we prove Theorem 3.2. We start with the proof of Point (iii)
which is the easiest. Actually we will prove the following stronger useful result
(from which Point (iii) immediately follows, details are left to the reader).
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Proposition 5.1 (Monotonicity of the spectral gap [13]). Let V C A be
two intervals of Z (possibly infinite). Then

gap(£a) < gap(Ly).
Proof. For any local function f : Qy — R we have Vary (f) = Vara(f) because
of the product structure of the measure my and Da(f) < Dy (f) because, for

any z € V and any o € Qn, (o) < ¢¥ (o). The result follows at once from the
variational characterization of the spectral gap. O

Point (i) and the upper bound in Point (ii) of Theorem 3.2 follow from the
next result. We use the following standard notation: log, a =loga/log2, a > 0.

Theorem 5.1 ([13]). For any 6 € (0,1) there exists Cs > 0 such that
gap(L) > qC glos=(1/9)/(2=9) (5.1)
In particular

limsup log(1/ gap(£))/(log(1/q))* < (2log2)~". (5.2)
q—0
The lower bound in Point (ii) of Theorem 3.2 is proven in [2] by a subtle but
somehow intricate argument based on path techniques. In [14, Theorem 5.1]
the authors give an alternative (softer) proof. Below we reproduce such proof
in order to clarify the role played by energy barriers.

Theorem 5.2 ([14]). For any ¢ € (0,1), there exists Cs > 0 such that
gap(L) < C5q'082(1/0(1=8)/2,
In particular

lim inflog(1/ gap(£)) /(log(1/4))* = (2log2) "

Proof of Theorem 5.1. The limiting result (5.2) follows at once from (5.1).

In order to get the lower bound (5.1) we will apply the bisection-constrained
method introduced in [13], which extends the classical bisection method [41].
Observe first that, due to Proposition 5.1, gap(L£) > inf, gap(L£x) where the
infimum runs over all possible finite intervals A = [a,b] C Z. Hence, our aim is
to prove a lower bound on gap(£4), uniformly in A.

Fix § € (0,1/6) and define [, = 2%, §;, = Lli_%J and sy := |12], || denoting
the integer part. Let also F, be the set of intervals which, modulo translations,
have the form [0, ¢] with £ € [0,1 +157°]. Asin [4], given A = [a,b] € Fy \Fy_1,
fori=1,...,s; we define

b+a
2

b+a  2i—1
—+

A(lj') = [a,
2 8

+ %Jk] and AL = [ 50,0,

so that the sequence {Agi)7 Ag)}fi , satisfies the following properties:
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(1) A=APuA,
(i) d(M\AY, A\AL) > 6 /8,
(i) (AP N A N (A N AY) =0, if i # 4,
(iv) A A e Py
Above, d(-,-) denotes the Euclidean distance.

Remark 5.1. In other words, any set of Fy \ Fx_; can be obtained as a “slightly
overlapping union” of two intervals in Fy_1.

Define
Y& = sup gap(La) "
AEFy

Due to Proposition 5.1 the above supremum is attained on the intervals A, =
[a,a+ 1k + l}c_é]. Applying the bisection—constrained method introduced in [14],
we want to establish a recursive inequality between ~x and v;_1. To this aim
we fix A € Fp\Fr_1 and write it as A = A; U Ay with Ay, Ay € F_1 as above
(we drop the superscript (i), recall that A; is on the left of Ay). Moreover, we
set I = A1 NAs. We now run the following constrained “block dynamics” on Q4
with blocks By := A\ As and By := Ay (see Figure 3 below). The block Bs
waits a mean one exponential random time and then the current configuration
inside it is refreshed with a new one sampled from m,,. The block By does the
same but now the configuration is refreshed only if the current configuration o
contains at least one zero inside the strip I.

The Dirichlet form of this auxiliary chain is simply

Ditock(f) = ma (1 Varg, (f) + Varg, (f))

where ¢1(0) is just the indicator of the event that o contains at least one zero
inside the strip I (as an illustration, ¢;(o) = 1 for the configuration given in
Figure 3). Recall that Varp, (f), Varp,(f) depends only on opge, opg respec-
tively.

Denote by Yblock(A) the inverse spectral gap of the auxiliary Markov chain
on 2 with block dynamics. The following bound, whose proof can be found
in [13] and at the end of this section for completeness, is not difficult to prove.

Proposition 5.2 ([13]). Let ¢, = max;{r(Vz € I,o(z) = 1)} = pmirt |
where the max; and the min; are taken over the sy possible choices of the
pairs (A1, Ag) and I = Ay N Ay. Then

1
ocC A' Si‘
Volock (A) =/
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As a consequence of the above result, by writing down the standard Poincaré
inequality for the block auxiliary chain, we get for any f : Q4 — R that

1
1-— \/E€k
The second term, using the definition of v;_1 and the fact that By € Fy_1, is
bounded from above by

7TA(Va1rB2 <7;c 1 Z 7TA QVarw f)) (5.4)
zE€Bay

Vary (f) < ma (c1 Varg, (f) + Varg, (f)). (5.3)

Notice that, by construction, c22 (o) = ¢2 (o) for all 2 € By and all o. Therefore
the term erBQ ma (B2 Varm(f)) is nothmg but the contribution carried by the
set By to the full Dirichlet form Dy (f).

Next we examine the more complicated term 7z (cl Varpg, (f )) with the goal
in mind to bound it with the missing term of the full Dirichlet form Da(f).
Assume that I = [a,b—1]. For any configuration o, define the random variable £
as the distance between the rightmost empty site in the strip I and the right
boundary of I, namely

&(o) == IIllIl {b —x}
z€l:o(x)
with the convention that min(()) = +oo (see Figure 3). The indicator function ¢;
guarantees that, for any configuration o with ¢1(0) =1, {(0) € [1,b — a].

1
Ble\Ag By = Ag
| : uu? |
By, 3

Figure 3. The set A divided into the blocks B; and Bs and the random vari-
able £. The configuration is such that ¢;(¢) = 1. Empty circles correspond to
empty sites.

Set for simplicity £ := b — a and decompose c¢;(c) according to & so that
(observe that Varpg, (f) depends only on op,, such a dependence is understood
below)

ma(er Varg, (f)) =)  wa(Ligiy Varp, (f)) (5.5)

™
~ | ~
=

Z 032\1)ZWA(UI)]l{gzk}(UI)VarBl(f)
2\1

k=1 or
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¢
Z Z TA(0B,\T) Z ma(onn ) Le=ry(onz,)

k=1 TBo\I OI\Iy,

X Z?TA(UIk)VarB1(f)

where I, := [a,b — k — 1]. In the last identity we used the independence of
Li¢—py from oy, (this comes from the fact that £ is the rightmost empty site
inside I, hence, in order to decide that £(o) = k, one has to know o(z) only for
rel \ Ik)

Set B, = B1UI}, (see Figure 3). Then, the convexity of the variance implies,
for any k, that

Z TA (UIk) VarB1 (f) < Vaer (f) (56)

O'Ik

Then, the Poincaré inequality together with Proposition 5.1 finally gives

Varg, (f) < gap(Lp,) " > 7p, (cB* Var.(f))

rE By,

< gap(La,) " Y m, (B Var,(f). (5.7)
TEDBy

Recall that By = A\ A2, Ba = Aa, I = A; N Az. The role of the event {£ = k}
should at this point be clear. Indeed, thanks to the empty site given by &, we
have

Cf’“(a)]l{fzk}(o) < C;\(U)]l{g:k}(O') Vr € B, 0 € Qx. (5.8)

Let us come back to (5.5). Using (5.6), (5.7), (5.8) we conclude that the last
member of (5.5) is bounded from above by

4
SN malosan) D malons ) ie—ry(ons,) gap(La,) ™"

k=10p,\1 OI\I
x Y, (e Vary(f))
r€ By,
0
= gap(La,) 7 Y ma (Lgemy D e Van(f)
k=1 rEBy,

Since By, = By UI, C By UI = Ay € Fi_1, from the above bound and (5.5) we
conclude that

ma (1 Varg, (f)) < ve-1 7TA( Z A Vara:(f)). (5.9)

rEN
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In conclusion (cf. (5.3), (5.4) and (5.9)) we have shown that

Da(f) + Z /LA(c;\Varz(f)))

xEATNA2

1
Var < — (
A(f) < 1— \/a% 1
Averaging over the s possible choices of the sets A, Ao gives (recall prop-
erty (iii) at the beginning of the proof)

Val“A(f) < l%kﬁ/kfl (1 + i)DA(f)

VEE

which implies that

1 1
Yr <

—(14+ —)v_
_17\/5( +Sk)% 1
k o]
1 1 1 1
<t [ ==+ =) < [ —=(1+-)
° jl:AIC[o 1— \VEj Sj © jl__‘k[O 1-— VEj Sj

where kg is the smallest integer such that oy, > 1.

By definition of the quantity € given in Proposition 5.2 and by construction
of the AY’)Q’S, |I| > 01/8, so that e < p?*/%. The convergence of the product
in (5.10) is thus guaranteed and the positivity of the spectral gap follows.

Let us now discuss the asymptotic behavior of the gap as ¢ | 0. We first
observe that yg,—1 < Yk, < (1/q)*® for some finite as. That follows e.g. from a
coupling argument: in a time lag one and with probability larger than ¢*¢ for
suitable o, any configuration in Ay, € Fj, can reach the empty configuration
by just flipping one after another the spins starting from the right boundary.
In other words, under the maximal coupling, two arbitrary configurations will
couple in a time lag one with probability larger than ¢®, i.e. v5, < (1/¢)*. We
now analyze the infinite product (5.10) which we rewrite as

M=) IO+

(5.10)

J

The second factor, due to the exponential growth of the scales, is bounded by
a constant independent of q.

To bound the first factor define j, = min{j : g; < e’l} and observe that,
for ¢ small enough

log,(1/q) log,(1/q)
Then write
O 1 N T~ 1 L )
< < € 95
jl__}!o(l_\/?)_j=1<1—€J )j[j[(l—\/?)_e 31;[1<1_€J)
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where we used the bound 1/(1 —/&;) <1+ (e/(e+1)),/g; valid for any j > j.
together with

oo

Z log (1 + ecﬁ\/?j)

J>J«

e et e by q(2r(1—35))
< <[4 —7)
—e+1z\/5—e+1/ “Xp( 16

Uk i1
7 16
_ 4 5, P(=4z/16)
V4

2(ix—1)(1-35)
q2(]* _1)(1_36) )

< 161452_(34*_1)(1_3‘5)q_1 exp ( — 16

<C

for some constant C' independent of q.

Observe now that 1 —e; > 1 —exp(—qd;/8) > Agd; for any j < j. and some
constant A independent of ¢. Thus the right-hand side of (5.11) is bounded
from above by

G )
eC(i)J* [I65" < i(l)]*fufaé)jf/z < i(l
A/ 5 q* \q 9" \q

for some constants a, @’ (independent of ¢). This ends the proof of Theorem 5.1.
O

>1og2<1/q)/<2—66>

Proof of Theorem 5.2. Since it is always true that gap(£) < 1 (take f = ogg
in (3.1)), we can assume without loss of generality that ¢ is small. Then, thanks
to Proposition 5.1, gap(£) < gap(Lx) with A = [0,¢) and £ = 1/q that we
assume, for simplicity, to be an integer. In order to bound from above gap(Ly),
we will make use of the following general result.

Lemma 5.1. For any A C Qu, the hitting time 74 = inf{t > 0 : o} € A}
satisfies
P2 (14 >t) < exp (—tgap(La)ma(A)).

Proof. 1t is well known (see e.g. [3]) that P2 (74 > t) < exp(—tA4), where
A i=1inf {Da(f) :7a(f*) =1 and f=0 on A}.
If f=0on A we can bound
1
Vara(f) = 5 > > malo)ma(o’)(f(o) = f(o"))

oEQA 0’/ EQA

2 (5.12)

>3 S m(o)ma (@) (f(0) = £(0)* = ma(A)mal(f?).

oc€EA ' €EQp



East model 433

Hence, for such a function f it holds

Da(f) = gap(La) Vara(f) = gap(La)ma(A)ma(f?).
It then follows that Ag > gap(La)ma(A). O

Denote by 7 the first time there are n := |log, ¢] empty sites in [0, ), and
by 7o the first time there is an empty site at the origin. Thanks to Point (i) of
Proposition 4.1 and since 2" < ¢ < 2"+ 1, starting from the filled configuration
in order to end up at time 79 with an empty site located at the origin, the system
must have created before n + 1 > n empty sites in [0,¢). Hence 7 < 79 when
starting from 1. In turn, Lemma 5.1 applied to the set A = {5 : 79 = 0} implies
that

exp (—tgap(La)q) = exp (— tgap(La)ma(A)) (5.13)
> P2 (19 >1) > A (L)PL (1 > t).
Recall the definition of V' (n) introduced in Section 4 and denote by Q,, C V(n)

those configurations with exactly n zeros. Thanks to Point (ii) of Proposi-
tion 4.1, for a suitable constant ¢ < 0.7 it holds

TA(L)PY (T <t) <P2 (1 <t)<PA (3s<tin, €Qy) < E7TA(Qn) (5.14)
q

< Lgran < LraGnter < 1gtm/» 0400,
q

Here o(1) tends to zero as n goes to infinity and therefore when ¢ | 0. To prove
the third inequality in (5.14), observe that we can write 7; as time change of
a discrete time Markov chain. More precisely, it holds n; = n%’ where n®*
is the discrete time Markov chain on 24 whose transition matrix P satisfies
[—P = |A|7'La, and where (N;);>0 represents a Poisson process with mean
E(N(t)) = |Alt. Trivially, ma is reversible for n%*. We write P for the law
of n®* having ma as initial distribution. Then

IP’QA (Elsgt:ns EQn)
=P} (3s<t:n, €Qy)

=Y P(N(t) =k)Pr, (3j: 0<j < k and 0" € Q,,)
k=0

< STB(N(t) = k)kra(Q) = E(N(£)7ma(Q) = ém(gn).
k=0

The above inequality (5.14) together with (5.13) implies that
exp (—tgap(La)g) > ma(l) — tq(n/2) (o)), (5.15)
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Since 77, (1) = (1 — q)*/? ~ 1, we choose t = ¢~ (*/2)(179/2) 55 that the above
right-hand side is at least 1/2 for ¢ small enough. Finally, we conclude from
(5.15) that for ¢ small, t gap(L£a)g < log2. The expected result follows. 0

We end this section with the proof of Proposition 5.2.
Proof of Proposition 5.2. For any mean zero function f € L?(Qy,74) let
ﬂ-lf ‘= TB, (f)v ﬂ-Qf =TB (f)

be the natural projections onto L?(Q2p,,75,), i = 1,2. Obviously mimaf =
mom f = 0. The generator of the block dynamics can then be written as:

Lo f = ci(mof — f) +mf — f
and the associated eigenvalue equation as
ci(maf — f)+mf—f=Af (5.16)

By taking f(oa) = g(op,) with g non zero and with 719 = 0, we see that A = —1
is an eigenvalue. Moreover, since ¢; < 1, A > —1. Assume now 0 > A > —1 and
apply 2 to both sides of (5.16) to obtain (recall that ¢; = ¢1(0p,))

771’2]0 = )\7T2f — 7T2f =0. (517)

For any f with mof = 0 the eigenvalue equation becomes

f= % (5.18)
and that is possible only if
1 :7“(1+A1+c1) - 1_|1_)\7r32(01 =0)+ QiAﬂB2(cl —1).
We can solve the equation to get
A=—1++/1-7p,(c1) < —1+ /.
O

6. Persistence function: proof of Theorem 3.3

We follow [13]. Observe first that F(t) = F1(t) + Fo(t) where

Fi(t) = /dﬂ(n) P, (00(s) =1 for all s < t)
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and similarly for Fy(t). We will prove the exponential decay of F(t), the case
of Fy(t) being similar.
For any A > 0 the exponential Chebyshev inequality gives

)= [ artrey( [ et =) <esplan 2. (exn (3 [ aseuto))
0 0

where we recall that £, denotes the expectation over the process started from
the equilibrium distribution . Consider the self-adjoint operator Hy := L+ AV,
on L?(r), where V is the multiplication operator by og. By the very definition of
the scalar product (f, g) in L?(7) and the Feynman — Kac formula, we can rewrite
Ex(exp (A f(f dsoo(s))) as (1,exp(tHx)1). Thus, if 35 denotes the supremum
of the spectrum of Hy, IE,T(exp ()\ fg ds og (s))) < exp(tBy). In turn,

Fi(t) <exp ( - )\t(l - %))

Hence, in order to complete the proof we need to show that for suitable positive A
the constant 8y /A is strictly smaller than one.

For any function f, with || f||lL2(x) = 1, in the domain of H (which coincides
with Dom(L)), write f = al + g with (1,g) = 0. Thus, by Cauchy —Schwarz
inequality and the fact that £1 = 0 and that |og| < 1, we have

(f.Hrf) = (g, Lg) + *N(1,V1) + Mg, Vg) + 2Xa(1,Vg)
< (A—gap(£))(g, 9) + a*Ap + 2)\|a (<g,g>pq)1/2-
Since || fllLz(r) = 1, @® +(g,9) = 1 and

% < 0;1(121 {(1 — %(ﬁ))(l —a®) +pa® +2a((1 - az)pq)l/Q}. (6.1)

If we choose A = gap(L)/2, the right-hand side of (6.1) becomes

sup {(1 +p)a® —1+ 2a((1 — aQ)pq)1/2}

0<a<l
yz4
< sup {(1+p)a?—1+2((1—a?)pg)*}=-LL 1 p<1
S (1) (1 =a®)pg) 7} = 7+ p
since p # 1. Thus Fj(t) satisfies
gap(L) ¢
Fi(t) < (—t 7)
1(t) < exp 5 11p
A very similar computation (details are left to the reader) shows that
gap(£) p
Rty < oxp (1B P )
o(t) <exp 2 1+p

This ends the proof of Theorem 3.3.
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7. Log-Sobolev constant: proof of Theorem 3.4

The aim of this section is to prove Theorem 3.4.

Fix a finite interval A and assume for simplicity that A = [1, L — 1].

We start with the easy part, namely the upper bound on C,(A). We observe
first that, thanks to [43, Theorem 1.8], the a-log-Sobolev inequality with con-
stant C, (A) implies any §-log-Sobolev inequality with the same constant C,,(A)
as soon as 8 < a. Hence, we have Cy(A) < Co(A) for any a € [0, 2] so that we
only have to prove that C3(A) < ¢L. This in turn is implied by the following
well-known property of Diaconis and Saloff-Coste [21, Corollary A.4]:

1 log(l/m}) —1
Cy(A) <
#8) < gap(La) 1 —2m}

where 7% := min,cq, ma(0) = min(p, ¢)L~!. The expected upper bound follows
at once from Theorem 3.2.

Now we turn to the lower bound on C,(A). The result will be achieved
by a test function. Define the random variable £ € {1,...,L} as the distance
from the leftmost empty site in A to the left boundary of A, namely (recall that
A=[1,1—1)),

£(o) == xeiﬂl(r;):o{d(x’ 0)}
with the convention that min() = L. In other words, ¢ is the position, in
{1,...,L}, of the leftmost empty site (including the boundary condition at
site L). Then, for g: {1,...,L} = R, let f : Oy — R defined as f(c) = g(&(0)).
Define also the distribution m on the set {1,..., L} by m(k) = mp({{ = k}) so
that

k=1
qp~*, ifk=1,2...,L—1,
m(k) =<7 e

p~—+, ifk=L.

Hence, the a-log-Sobolev inequality (3.3), applied to f, reads

ad’Cy ()

T Da(9© V9@V ()

m(glog (%)) =Enta(f) <

Let us analyze the right-hand side of the latter. By definition of the Dirichlet
form, we have
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=m(L — p(g(L)"* — g(L — 1)) (g(L)/*" — g(L — 1))

L—2
+ > m(k)pa(g(k + 1)V = g(k)"/) (g(k + 1)/ = g(k) /)
k=1
L
3 mk)a(glk — DY — g(k)"*) (gl — 1) — g(k)),
k=2

where we used that, given that & = k, the only possible flips are at site z = k—1
(for k > 2), and at site © = k, in which case the flip is admissible only if site
x+1 is empty (hence the extra factor q), except for §¢ = L—1 where by definition
the constraint is always satisfied, due to the boundary condition at site z = L.
By a change of variable, and using that m(k)pqg = m(k + 1)q, we arrive at

Da (9(6)Y, g(&)V)
L—2

=2 " mk)pa(g(k + )Y — g(k)*) (g(k + )V — g(k)V/*")
k=1

+m(L = p(L+q)(9(L)"* = g(L = 1)) (g(L)"*" = g(L — 1)V/).

Observe that the latter corresponds to the Dirichlet form associated to the
birth and death process on {1,..., L} with reversible measure m and transition
rates p(k,k +1) = 2pg for k =1,...,L — 2, and p(L — 1,L) = p(1 + q) (and
p(k + 1, k) computed so that the detailed balanced condition m(k)p(k,k+1) =
m(k+1)p(k+1, k) holds). In turn, inequality (7.1) is nothing but the a-Sobolev
inequality corresponding to this birth and death process?.

Consider now the special choice g(k) = A\*~!, defined on {1,...,L}, with
A € (0,1/p) a parameter that will be chosen later. The above Dirichlet form
reduces, after simple algebra, to

Da (9(6)/*, ()Y

L—2
= (= O 1) (a1 + )N 22 S0
k=1

= O O = (1= (L A + 2]

Denote by e =1 — pA € (0,1). By a Taylor expansion, as € goes to 0, we thus
have

Da (96", 9(6)/) = [

7T 1} [pl% - 1}pq(2qL +1+q+o0(1)). (72)

4In fact it is possible to prove that the a-Sobolev constant associated to this birth and
death process compares to L for any a € (0, 2] and that the Poincaré inequality (i.e. the case
a = 0) holds with a constant C¢ independent of L.
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On the other hand,

L L—1
m(g) =Y m(k)g(k) = (pA)*" "+ ¢ _(pA)*
k=1 k=1
L—1,(1 _
_ Y 1p_(1pA NEG gy g1 1)+ (1),
Hence,
4 g = pgA + (pA) " [p(1 = N) (1 = pA)(L — 1) — pg)\]
dlogx )~ (1—pA)? '
Since dm(g)/dlog A = 25:1 m(k)kg(k), we deduce that
L
m(glog g) =log A Y m(k)kg(k)
k=1
— og AP @) (1 = N = pA)(L 1) — pg)]
(1 —pA)?
— 5T~ DlaL+ 2p)log (1) +o1),

In turn, there exists a constant ¢, that may depend on g but that is independent
of L and «, such that

m(g1og (%)) = m(glog g) — m(g)logm(g) > cL* + o(1).

The expected result finally follows, using (7.2), from (7.1), in the limit € — 0.
This achieves the proof of the lower bound on the constants C,, (A) and therefore
of Theorem 3.4.

8. Out of equilibrium I, long time behavior: proof of Theorem 3.5

The aim of this section is to prove Theorem 3.5. To that purpose, we will
deeply use the oriented character of the East process. We need some preparation.

In [2], Aldous and Diaconis introduced the following notion of distinguished
zero:

Definition 8.1 (Distinguished zero [2]). Fix an initial configuration o € €,
suppose that o(z) = 0 and call the site = distinguished. Then, setting &y(0) = =z,
the position & = &s(0) € Z of the distinguished zero at time s > 0 obeys the
following iterative rule. £, = x for all times s strictly smaller than the first legal
ring (recall the graphical construction of Section 2.3) of the mean one Poisson
clock associated to site x when it jumps to site x + 1. Then it waits the next
legal ring at 4+ 1 and when this occurs it jumps to « + 2, and so on.
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Thus, with probability one, the path {;}sc0,¢ is right-continuous, piecewise
constant, non decreasing, with at most a finite number of discontinuities at
which it increases by (exactly) one. See Figure 4 where t1,...,t4 are legal rings.
Also note that, by definition of the legal rings, necessarily o4(€s) = 0 for all s
(hence the name distinguished zero).

Remark 8.1. One important feature of the distinguished zero is the following
property that we will often use in the sequel. Fix a starting configuration o
with o(b) = 0. Make b distinguished. Then, given the path {;}sc0,, the law
of G¢[q,¢,) (i-e. the restriction of o; to [a,&;)) depends only on o[, and not
Ol OJq b)e-

In the following we use the standard notation f(u—) = lim.|o f(u — ¢€).

By exploiting the oriented character of the East process, and more precisely
the fact that the motion of the distinguished zero for s > ¢ cannot be influenced
by the clock rings and coin tosses in (—o0,&;), Aldous and Diaconis proved the
following important fact: if one starts with the equilibrium measure 7, say on
(—o0, ), with x distinguished, then the process is still at equilibrium, at any
time, on (—o00,&;). More precisely:

Lemma 8.1 ([2]). Consider the East process on Z. Fix an interval A = [a, b)
with possibly a = —oo (in which case A = (—o0,b)). Assume that, at time
zero, o(b) = 0 while o, is distributed according to the equilibrium measure .
Make b distinguished and call &5 its position at time s. Then, the conditional
distribution of o¢[4¢,) (i.e. 0y restricted to [a,&;)) given the path {£s}.<; is the
equilibrium measure Tq¢c,)-

We prove Lemma 8.1 for completeness.

Proof of Lemma 8.1. Let 0 < t; < t2 < ... be the (random) times when the dis-
tinguished zero jumps, i.e. increases by one. Setting tg = 0, at time s € [t;,t;41)
the position of the distinguished zero is precisely & = b+ i (see Figure 4). The
proof goes by induction on the interval [t;,t;11) containing ¢. The case i = 0
follows from the stationarity of w5 for the East process on A with a frozen zero
on the right. Assume that for all ¢ € [t;—1,t;) the law of Otlag,, )» given the
path {&}s<¢, is the equilibrium measure Tat,, ) Given the legal ring at site
b+ i —1 at time ¢;, we conclude that the law of oy, [a.6r,) is the equilibrium
MeAsUre Mg ¢, ) indeed, the new configuration oy, [a.ér,) consists of the exist-
ing configuration Otilae,, ) (distributed according to Mok, ) = Ta,b4i—1))
together with the new configuration at site b + i — 1 created by the legal ring,
which is also Bernoulli(1 — ¢), thus making the whole configuration distributed
according to ¢, ) = Tap+i)- Then, at any subsequent time t € [tistiv1),
knowing that there is no legal ring at site b 4+ ¢ and by stationarity, the law
of otjae,) = 0t [aée,) remains i.i.d. Bernoulli(1 — ¢). This carries the induction
forward and ends the proof of the lemma. O
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t I
Ta,&)
tyt
tst
tol
L
t=0 |
a Z
! ’]I'A

Figure 4. The path {{}s>0 of the distinguished zero b. Illustration of
Lemma 8.1 on the interval A = [a, ).

We are now in position to prove Theorem 3.5.

Proof of Theorem 3.5. Let f be a local function, and assume that its support is
included in [a, a’]. Assume for simplicity that w(f) = 0. Given a configuration o,
let b =b(o) = inf{z > o’+1 s.t. o(z) = 0} be the position of the first empty site
in o on the right of o’ (it exists @ a.s.). Make b distinguished and denote by &
its position at time s. Given the path {&s}s<i, let 0 <t1 <ta <--- <t,_1 <t
be the times when the distinguished zero jumps, and set tg = 0, ¢, = ¢t. By
construction, & = b+ ¢ for any s € [t;, t;41), see Figure 4.

Since the support of f is included in [a,a’] C [a, &), thanks to Lemma 8.1 it
holds that

Tla,b) (E (f(at) | {gs}sgt)) = /d'ﬁ[a,b) (J) E, (f(o't[a,&)) | {fs}sgt)
= Ta,e,)(f) = 0. (8.1)

Note that the notation used in the above first member is justified by Remark 8.1.
The same remark will be frequently used below in our notational choice.
For any o, thanks to (8.1) and the Cauchy —Schwarz inequality,

Bo (£(01))| < Bo (|Eo(f(or)mid{&}e<t)|) (8.2)

< ¥Eg(/dw[a7b) () |Eqy (f (me) | {fs}sit)D

~ (pAg)be

< WI@U(WW[W (E(70n) | {€:3s0)"”):

A
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Now our aim is to control the right-hand side of the latter, using the Poincaré
Inequality. Define V; := [a,b+1i) for i = 0,1...,n—1 (that corresponds to [a, &s)
when s € [t;,t;41)) and denote by {Ps(l)}se[ti,tiﬂ) the Markov semigroup associ-
ated to the East process in the interval V; with a fixed zero boundary condition
at site b+ i. Given the path {{,}s<, thanks to Remark 8.1, o[ ¢,) coincides
with the process obtained from the initial configuration oy, evolving according
to {P§O)}se[t0,tl), up to time t;, then evolving according to {P§1)}se[t1,t2), up
to time t5, and so on. Hence, if one writes for simplicity ¢ ® ¢’ = Jvoof{b} for
the configuration in {0,1}"* equal to o on V; and to ¢’ on {b}, then, for any 7,

En (f(nt) | {gs}sgt)
= Eqy, (f(me) [ {€s}s<t)

= Z Pt(lo) (nVov U)ﬂ-b(o'/)EU@JU’ (f((a ® U/)t_tl) I {£S}S€[t1,t])'
o’'e{0,1}
o€{0,1}"0

Therefore,

Varzy, (E.(f () [ {&s}s<t))
<exp (—2gap(Ly,)t)

X Varey, (D0 m(0)Esser (£((0© 0)imts) | {E: scirn) )
o’e{0,1}
< exp ( - anp(ﬁ)ﬁ) \/varﬂ'v1 (E (f(nt—tl) | {gS}SE[tlyt]))

where we used Proposition 5.1 to bound from below gap(Ly,) by gap(£), and
the convexity of the variance. The same procedure leads to

Varry, (B.(f(e—t,) | {€}sern )
S exp ( — 2gap(£)(t2 — tl)) VaI'ﬂ—V2 (E (f((n)t—h—tz) | {§S}S€[t2’t]))

so that, by a simple induction, we get

VarﬂVg (E (f(nt) | {gs}sgt)) < e*anP(ﬁ)t Varﬂ'[%&t](f)'
Plugging this bound into (8.2) leads to

e— gap(L)t

[Eo(f(o0)| < WEU(V&WM]UWZ)

e~ gap(L)t

< annoo-
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Fix 6 > 0. From the latter, we finally get
[ Q) [Ea(£02)) = (1)
= /dQ(U) |Ea(f(0't))’]lb§a’+6t + /dQ(U) ’]Ea(f(at))‘]lb>a’+6t

d
< (e s / Wq)Q((f;)M +Q(b>a' + )| flo

ot

. l1-a a \Fk
= (e S (2 ) 0 |

k=0

Now we distinguish between two cases. (i) If @ < p A ¢, then one lets ¢ tend
to +o0 so that the expected result immediately follows. (ii) If & > p A g,
then one chooses 6 = gap(L)/2log(a/q). The expected result follows after some
simple algebra and few simplifications left to the reader. This ends the proof.

O

9. Out of equilibrium II, aging and plateau behavior: proof of Theo-
rem 3.6

The aim of this section is to prove Theorem 3.6. We will not give the
complete proof (that is quite long and involved). The interested reader may
however found it in [26] under the additional condition on pu that u([k, 00)) > 0
for any k € N. Here, we shall only explain briefly the extra ingredient that we
use in order to remove this condition. To this aim, we will use different technical
lemmas from [26] that we recall, for completeness, at the end of this section.

Proof. The technical condition on g is used in Section 4.2 of [26], namely on
the finite volume approximation. More precisely, it is used to guarantee the
existence of infinitely many empty sites that remain empty up to a final fixed
time ¢y with N fixed (recall Definition 3.1). Such empty sites then allow to
compare the East process on [0, 00) with the East process on a finite box [0, L].

The strategy, in order to remove the technical condition on u, that we adopt
here is the following. We may prove that the process itself creates infinitely
many empty sites that remain empty up to the final fixed time ¢p. Given this,
the proof remains unchanged with respect to [26]. In turn, this is a consequence
of Lemma 9.1 below. Hence one only needs to prove Lemma 9.1.

Recall that d € N\ {0} is the smallest length such that p({d}) > 0, and that
nq is the smallest integer n such that d € [2"~1 + 1,2"] (we can assume d > 1
otherwise the setting is the same as in [26]). In the sequel, we fix n = ng, for
simplicity of notations.

Observe first that, since @ is renewal, for any j > 1, almost surely there exist
infinitely many sites {z("™},,cn such that, o(2(™ +id) = 0 fori = 0,...,j, and
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o(y) =1forally € [z, (™ 4 jd]\ {z(™) 4id,i = 0,...j}, i.e. infinitely many
collections of j + 1 consecutive empty sites at distance d one from the next one.
Denote for simplicity by x; the first positive site satisfying the above property
and set ©; = 21+ (i —1)d, i = 2,...,5 4+ 1. Define A; = [z; + 1,241 — 1],
i=1,...,7 (see Figure 5).

. d ,

1 T2 T3 Lj—1 Lj Tj+1
R N e S NN RS S
- - - -
Al A2 Aj—l Aj
Figure 5. Points x1,..., ;41 and intervals Aq,..., A;.

Finally, introduce the following hitting times:

7; = inf {t >0:04(x;) = 1},
7; = inf {t >0:04(y)=1for any y € A; U {wl}}

Namely, 7; is the first time that the vacancy at x; is removed, while 7; is the first
time that the box [z;, ;41 — 1] appears totally filled. Note that, by construction,
it must be 7; < 7; (trivially 7; < 7; and observe that when the zero is removed
from x; for the first time there must be a zero on z; + 1).

Lemma 9.1. For any positive integer j > 3, there exists a positive constant c(j)
such that, almost surely

lirnl%nf}P’g(%z <Ty < T3 <T3< - < T <71 <min(f, 7)) > c(j).

q

Proof of Lemma 9.1. Recall that, for any interval A, P2 denotes the law of the
process on the interval A, with empty boundary condition, starting from o. Fix

a parameter § € (0,1) (that will be chosen later) and, for i,k = 1,...,5 — 1,
let E¥ be the event that, during the time interval

6(k—1)t ok ; }

I ::|: ny . n
i j—2 Mj-2

there have never been simultaneously n empty sites in the interval A;:

Ef:{Z{l—os(y)}gn—1VSEIk}.

yEA;
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Also, set A, B for the events that, in the time interval [0, §t,], there have never
been simultaneously n empty sites in the boxes Aq, A; respectively:

A:{ d {l-ody}<n-1Vse [0,5tn]},

yEA

B:{ Y 1oy} <n-1Vse [07&"]}.

yeEN;

Finally, let G be the event of the lemma, FF = {r; € I};} and

Gi=( ) E)OFa k=12 rzk+2
k+2<£<r

By words, the event G¥ can be described as follows: during the time interval I,
the box [Tg+1, Trt+2) = {@g+1} U Aks1 appears totally filled for the first time,
while in the same time interval I} there are always less than n simultaneous
empty sites in all other boxes Ay = (x4, 2¢41) with k+2 < 2 <r.

Figure 6 illustrates the event G of the lemma (a special realization of it) and
the evolution of the configuration (with positive probability) from time 0 till
time 6t,,. This may help the reader to follow the proof.

We now consider the event ﬂfg;zl Gé?_l. Due to Remark 4.1, for 1 < k < j—2
the empty site xx41 remains empty during the time intervals Iy U o U--- Ul
and is filled together with the whole box Agy; during the time interval Ij. In
particular, the event ﬂfcleffl implies that

7:2<T2<7~'3<7'3<'~-<7~'j,1<Tj,1.

Always by Remark 4.1 the events A, B imply that the empty sites 1, x; remain
empty up to time dt,,. As a consequence we conclude that
j—2
(ﬂ Gf,l) NANBCG,
k=1
so that
Jj—2 j—2
P,(G) > P, (A' ( N G;?_l) N B> Pg< G5
k=1 k=1

By Lemma 9.2 below, it holds that

B) P, (B). (9.1)

Jj—2
P, (A‘ ( N Gfl) N B) >1—ds, P,(B)>1—do. (9.2)
k=1
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time ¢
S0 e e e e e 060000000l G0 OeO
Oty
Il 6(i—=3)tn
%—Q—H—o—o—o—o—o—o—o—o—o—o—o—o—o—wf%—o—o—o—eit - j—2
I
|
I
30ty
—oeeeeeseessesseec OGO OO T
—C0 9009000000000 00 - 000 20ty
Jj—2
5ty
SCeeeeeeeO 00O 0GOS O eeo | -
j—2
X X9 T3 XTq ZIs Tj—1 Zj Tj+1
—0-9 00000000000 --——Ooeeeoceeec— ()
- B B
A1 A2 A3 A4 Aj—l Aj

Figure 6. The event G is implied by the evolution illustrated on the pic-
ture. Site x; remains empty (up to time 6t,) and acts as a boundary con-
dition of [z1,2; — 1] during this time interval. & is the configuration at time

t=0tn(j—3)/(j —2).

On the other hand, as already explained above, the event B guarantees that
os(z;) = 0 for all s € [0,4t,], so that, up to time ¢, the process in infinite
volume restricted to [x1,x; — 1] coincides with the process in the finite volume
[1,z; — 1] (with empty boundary condition at site x;). Hence,

Jj—2 Jj—2
]P’U( (G B) = plevi—ll ( N G?l). (9.3)
k=1 k=1

Our aim is to bound the latter inductively. To that purpose set

oty
X - (s )
i.e. the probability that, starting from gy, within time 6t,, /(j —2) the box [1, d]
appears completely filled.

Let also ¢ be the configuration obtained from o by removing the empty sites
To, T3,...,T5_2 (le. d(x) = o(x) for all x # xo,23,...,2;_9 and 7(x;) = 1
for i = 2,3,...,7 — 2, see Figure 6). Set for simplicity ¢ = §(j — 3)t,/(j — 2).
Conditioning on the o-algebra F; generated by the Poisson processes and coin
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tosses up to time ¢, and using the Markov Property, we conclude that

j—2
]pgvhwj—l] ( ﬂ G’? )

> Xpre- ((

=)
) _ plovai1] ((ﬁG§1> (o: # g}ﬂ :

We deal with the two terms of the latter separately. Set B for the event that
up to time ¢, there have never been simultaneously n empty sites in the inter-

val Aj_lt
B:{vse[o,ﬂ, 3 {1—as(y)}§n—1}.

YyeEN; 1
= ﬂf?l'G’tl N B. Hence, again using Lem-

Ne:
ne

ZX|: Ll,xj—l (

Then, we observe that ﬂijG;{l
ma 9.2 below and the fact that the event B guarantees that og(zj_1) = 0 for

all s € [0,7], we have

plov.e; 1<ﬂG )Z plev.a 1]<nGk
> plzvei-1i-l (ﬂG ) (1 —dé). (9.5)

), from Claim 9.1 and Claim 9.2 below, we conclude that

>[p>[wlywj 1](3)

Due to (9.4) and (9.5
for § and ¢ small enough,

3
ml,mj—1]< m Gk > > Pm1,m7 1— 1](]ﬂ G ) e

k=1

for some constants ¢;,c2 > 0 independent on g. A simple iteration (adapting

Claim 9.2) allows us to end up with

=

Byt ( A G?-J > PN (B)) — g = X —coq, (9.6)
k=1

for some constant ¢’ depending on j but independent of q. The result of Lemma

9.1 follows then from (9.1), (9.2), (9.3) and (9.6).
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Claim 9.1. There exists 6, > 0 and a constant ¢ = ¢(d, j) > 0 (independent of
q) such that, for ant § € (0,dp) and any q small enough

X —P[ld](TS%) > ¢

o1 -

Claim 9.2. There exists a constant ¢ = ¢(j) (independent of q) such that

plr1es—1] << ﬂ Gh_ ) ﬁ{at#c‘r}) < cq.

Proof of Claim 9.1. Set M = 6t,,/[(j — 2)T,] where T, := (1/q)"~D0+39) g
defined in [26, Section 3.2] with some fixed (small) parameter ¢ > 0. Hence, one
has to study Vs := P (r > 6t,/(j — 2)) = P9 (r > MT,). To bound Yi;
we use an induction procedure. Namely, by the Strong Markov Property, we
have

1,d
Yar =PLA(r > (M - 1T, + T;,)
= E[O'Olld]( T>(M*1)TnP<[71(7zgf] 1)Th (T > Tn))

=El d]( T>(M—1)Tn]P)[ /4] (r>T, ))

oo1 go1
J’_Et[fof]( T>(M—-1)Tn L(zi]—nn,, (T > T")]IU(IW—l)Tn?éUOﬂ)
< YM 1Y1 +P1d ({T > (M* 1)Tn}m{0(M_1)Tn #00]1}).

go1

We observe that the event {7 > (M — 1)T,,} together with {o(/—1)7, # co1}
guarantees that the configuration o(5;_1y7, has an empty site in [2, d], which was
not present in ogy. Indeed, if that was false then it should be o(p/_1)7,, = oo1
or o(p—1)T, = 01, thus leading to a contradiction. Hence, by Lemma 9.2 we
get

IP[alOf] ({7 > M = 1T} N {oar-1yr, # o01}) < g

In turn, Yy, < Yy 1Y1 +¢q. Set X, =Y, — q/(l — Yl) so that Xy < Xy-1Y1
which, after iteration, and using that —¢/(1 — Y1) < 0, leads to Yy < Y{M +
q/(1-Y1).

To end the proof we need to examine the term Y; = ]P’([,l(;f ] (t > Ty). To that
aim, using 7 defined above, we have the following decomposition

vy =Pd(7 > 1) + PLA (- > T, > 7).

o1

As above, the event {7 > T}, > 7} implies that, at time T,, there is an empty
site in [2,d], which was not present in opy. Hence, by Lemma 9.2, PL{;{” (r >
T, > 7) < g. Applying Lemma 9.3 to the first term in the right-hand side of the

latter, it follows that Y7 < exp{—cT,,/t,} + ¢ for some constant ¢ that does not
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depend on g. Therefore, as soon as § is small enough, expanding in the limit
q — 0, we get

Vi< (e { = T2} +0) ;
M= OXP q 1 —exp{—cT,/tn} — q

where o(1) goes to zero as g goes to zero.
All the previous computations lead to

X:17YM21fexp{f,6752}+0(1).
j—

This ends the proof of the claim. O

Proof of Claim 9.2. First we observe that o7 # & implies either that (a) there
exists an empty site, at time ¢ that was not present at time 0 (i.e. there exists
an empty site in [x1 + 1,2; — 1]\ {x2,23,...,2;-1}), or (b) at least one of the
sites zx, k € {2,3,...,j — 2}, is empty. Thanks to Lemma 9.2 below, case (a)
has probability less than or equal to ¢ and we can focus on case (b). Assume
for simplicity that xs is an empty site at time # (the other cases can be treated
analogously). We follow the lines of [26, Lemma 4.2], appealing to the graphical
construction of Section 2.3. Given m > 0, we write A,,, for the event that the
last legal ring at xs before time ¢ (which is well defined because xs has been
filled during the time interval [0, 0t,,/(j — 2)]) occurs at time ¢, . Recall that
() at the time t,, ,,, the current configuration resets its value at x5 to the value
of an independent Bernoulli(1 — ¢) random variable s, ,, and (i7) that A,
depends only on the Poisson processes associated to sites z > x5 and on the
Bernoulli variables associated to sites > x5. Hence we conclude that (we drop
the superscript [z1,2; — 1])

P, ((ﬁG§_1> N {op(z2) = 0})
pg< ) (AP (50 = 0 ) (ﬁ G§_1>)

m=1

o0

IN

Py (Szy,m = 0)Py(Ap) < g.
1

m=

The claim follows. O

The proof of Lemma 9.1 is complete. O
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The proof of Theorem 3.6 is complete. a

Below we recall some useful technical facts borrowed from [26].
Given a configuration o, let Z(0) = {x € Z : o(x) = 0} be the set of all
empty sites of o.

Lemma 9.2 (Lemma 4.2 of [26]). Fixo € Q,¢t > 0and k € N. Let V =
[0,a] C Z and let {y1,...,yr} C V \ Z(o). Let finally F be the c-algebra
generated by the Poisson processes and coin tosses in Z \ V. Then

P2({y1,....yx} C Z(0s) | F) < ¢*, Vs> 0. (9.7)

Moreover
Po(3s<t:{y,...,yu} C Z(0s) | F) < atq". (9.8)

Lemma 9.3. Let T, = (1/¢)»~D0+39) for some fixed parameter ¢ € (0,1).
Let ooy be the configuration, on [1,d], with only one empty site at 1, and
T:=inf{s:04(1) = 1}. Then,

T,
plL.dl (7r>T,) < exp{ - ct "}

go1
n
for some constant ¢ = ¢(d,e) that does not depend on q.

Proof of Lemma 9.3. The result of Lemma 9.3 follows from [26, Lemma 3.4]
together with the definition of A, (d) given in [26, equation (3.4)]. ad

Remark 9.1. Note that, in [26, Lemma 4.2], the result holds for configurations
living in €2z, . However, the proof can easily be adapted to {2 = 2z as stated in
Lemma 9.2.
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