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Abstract

We consider a conservative stochastic lattice gas dynamics reversible with respect to the
canonical Gibbs measure of the bond dilute Ising model on Zd at inverse temperature �. When
the bond dilution density p is below the percolation threshold, we prove that, for any �¿ 0,
any particle density and any �, with probability one, the logarithmic Sobolev constant of the
generator of the dynamics in a box of side L centered at the origin cannot grow faster that L2+�.
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1. Introduction

In this paper we study the logarithmic Sobolev constant for a bond dilute Ising
lattice gas with Kawasaki dynamics. The bond dilute Ising lattice gas can be described
as follows. Consider the d-dimensional lattice Zd. At each site x of the lattice we
associate an occupation number of particle 	(x)∈{0; 1}. The equilibrium states are
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described by the Gibbs measure on Zd characterized (informally) by the Hamiltonian

HJ;� =−
∑
[x;y]

Jxy(2	(x)− 1)(2	(y)− 1) + �
∑
x

	(x)j;

where [x; y] denotes a generic bond of the lattice Zd and the couplings {Jxy} are i.i.d.
random variables taking only two values, Jxy = 0 (bond closed) and Jxy = � (bond
open) with probability 1 − p and p, respectively, where �¿ 0 can be interpreted as
the inverse temperature. When a conLguration of the bond r.v. {Jxy} is given we say
that a disorder conLguration is given. We denote by Cx the cluster of the site x, namely
the set of all sites in Zd which are connected to x by a path of open bonds. Let �(p)
be the probability that the cluster of the origin is inLnite. There exists pc(d) such that
�(p) = 0 if p¡pc and �(p)¿ 0 if p¿pc and pc is called percolation threshold
(Grimmett, 1999).
In Kawasaki dynamics each particle performs a random walk such that: (i) jumps to

occupied sites are suppressed so that there is at most one particle at any given site; (ii)
no creation or annihilation of particles is allowed so that the total number of particles
is conserved; (iii) the rate cxy with which a particle at site x jumps to one of its nearest
neighbors y, depends on the particle distribution around x ∪ y and on some external
random Leld (the disorder) in such a way that the whole process is reversible w.r.t.
the canonical Gibbs measure of the bond dilute Ising lattice gas described above.
The main interest is to analyze the relaxation to equilibrium of the dynamics in a

Lnite box QL of side L centered at the origin as a function of L, when the thermo-
dynamic parameters and the disorder distribution are such that one has simultaneously
subsets of Zd in which the jump rates are those of a non-interacting gas, and sub-
sets where instead the jump rates are those of a gas in the phase coexistence region.
In the physics literature this situation is sometimes referred to as the GriNths phase
(see, e.g. Grimmett, 1999 and FrOohlich, 1986, see also the introduction of Cancrini and
Martinelli, 2001, and references therein for a more detailed discussion).
Two key quantities give an estimate of the rate of convergence to equilibrium of the

system: the inverse of the spectral gap of the generator of the dynamics (ISG) and the
logarithmic Sobolev constant (LSC), see the deLnitions in the next section. The Lrst
one gives the relaxation time to equilibrium in the L2-norm, while the second one is
connected to the hypercontractivity of the Markov semi-group of the process and to
the decay of entropy, see Diaconis and SaloP-Coste (1996) and AnAe et al. (2000).
In Cancrini and Martinelli (2001) it has been proved that, when the bond dilution

density p is below the percolation threshold, for any particle density and any �, with
probability one, the inverse of the spectral gap scales like L2. Such an estimate is then
used to prove the L2-decay to equilibrium for local observable. The main result of this
paper is the following. Given p¡pc and 0¡��1, there exists a subset of disorder
conLgurations of probability one such that, for any particle density and any �, the LSC
cannot grow faster than L2+�.

Results for the logarithmic Sobolev constant up to now were available only when the
thermodynamic parameters � and � are such that a high-temperature mixing condition
holds and p = 1 (pure translation invariant case). In this situation it has been proved
that the logarithmic Sobolev constant scales like L2. We refer the reader to the basic
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reference Yau (1996) and more recently to Cancrini et al., 2002a. In the limit of small
� and arbitrary p this result can be easily extended (see Remark 22). An interesting
problem is whether the diPusive scaling of the logarithmic Sobolev constant is aPected
for � large, i.e. when no high-temperature mixing condition holds inside the clusters.
In this case for Kawasaki dynamics the LSC of an isolated (that is with Lxed number
of particles) cubic cluster of side l may scale like ekl

d−1
depending on the number

of particles (see Cancrini et al., 1999 and Theorem 3.14 below). Nevertheless even
if a given cluster has a large LSC when its number of particles is kept Lxed, due
to the conservation of the number of particles and to the fact that it can exchange
particles with its complement, its contribution to the global LSC could be not so large.
Moreover when p¡pc, with large probability the largest cluster in a box QL of side
L has volume smaller than c log L, so that its LSC, with its number of particles Lxed
is smaller than ec

′(log L)(d−1)=d
(see Theorem 3.14 below). Let us imagine that only one

cluster, denoted by C, is present and the number of particles is Lxed in QL. Since it
is clear that in order to reach equilibrium the particles must diPuse through the whole
box, at least in this extreme case we cannot expect a global LSC smaller than L2 (the
LSC of the simple exclusion in the complement of C). Thus, in this non-realistic case,
the worst (w.r.t. the choice of the number of particles) LSC for the cluster is much
smaller than the expected global relaxation time. It is thus interesting to investigate if
the diPusion of the particles is the dominant ePect when more clusters are present. It is
not diNcult to prove that if the number of clusters inside the box QL is independent of
L this is the case (see Remark 22 and the appendix). In the more realistic case in which
clusters on all scales below c log L appear, our result which (see above or Theorem 2)
on the LSC do not exclude the possibility of a cooperative ePect of the clusters that
eventually leads to a relaxation slower than the diPusive one L2. We stress here that
our estimate on the L dependence of the LSC could be not optimal and that in Cancrini
and Martinelli (2001) it has been proved that the ISG scales like L2. Furthermore in
Caputo (2001) it is proven that for unbounded spin systems with convex interaction on
Zd, the diPusive scaling of the ISG and of the LSG of conservative dynamics comes
from geometrical considerations.
In the sketch of the proof below we try to explain from where the L� factor comes

from.

1.1. Sketch of the proof

We here give the main ideas of our proof without rigorous computation and hidden
several technical aspects. Let QL be a box of side L centered at the origin and let
cs(l; L) be the largest among the logarithmic Sobolev constant in subboxes of QL of
side l such that l∈ [L�; L] for a Lxed �¿ 0.
The proof can be divided into three steps:

(i) given p¡pc and 0¡��1, it can be proven that there exists a subset of disor-
der conLgurations, say �0, of probability one, such that in any subbox of QL of side
l∈ [L�; L] the system has certain homogeneity properties that make it quite indistin-
guishable from a usual, translation invariant high-temperature lattice gas;
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(ii) Lxed a disorder conLguration in �0 the recursive method, developed in Cancrini
et al. (2002a) (where the high-temperature mixing condition and translation invariance
are largely used), can be applied to obtain

cs(2l; L)6 3
2cs(l; L) + kl2L� for all l∈ [L�; L]: (1)

This leads by iteration to

cs(QL)6L2+�[k + L−�cs(L�; L)]

for a suitable constant � independent of �.
(iii) one can prove that there exists a numerical positive constant k ′ such that

cs(L�; L)6Lk
′�. And the result follows.

Point (i) has been established in Cancrini and Martinelli (2001) (see Section 4.2).
The inequality of point (iii) can be easily obtained by (Cancrini and Martinelli, 2001,
Corollary 5.2) and the fact that cs(V )6 |V |gap(V ) (see Martinelli, 1999, and Section
4.8 below).
Much more diNcult is the proof of inequality (1) and for this reason we explain

again the recursive argument presented in Cancrini et al. (2002a). Roughly speaking,
in the recursive argument, the idea is to control the LSC of a box of side 2l by that
one of a box of side l (see inequality (1)). Looking at the deLnition of the LSC (see
(12)) it comes out that to obtain an upper bound of the LSC the starting point is the
entropy. Let � be a subbox of QL of side 2l. Divide it into two halves �1 and �2.

Because of the conservation of the number of particles inside �, there is a constraint
on the whole system. Thus, even in the absence of interaction, the Gibbs canonical
measure � does not factorize over �1 and �2. A natural way to eliminate such a global
constraint is to Lx the number of particles inside each subboxes �1 and �2, and, as the
number of particles N� is Lxed inside �, it is enough to Lx the number of particles
inside one subbox, e.g. �1. Technically it can be achieved by conditioning. Let n1 be
the random variables counting the number of particles inside �1, then we can write

Ent�(f2) = �(Ent(f2|n1)) + Ent�[�(f2|n1)]; (2)

where Ent(f2|n1) is a shorthand notation for the entropy of f2 w.r.t. �(·|n1). Equality
(2) can be interpreted as follows in terms of dynamics. The LSC of Kawasaki dynamics
in a box � is related to the LSC of the modiLed Kawasaki dynamics in which the
number of particles in the two sets �1; �2 is conserved (the Lrst term of (2)) and
to the LSC of the process of exchange particles between �1; �2 (the last term in the
r.h.s. of (2)). In some sense, the heart of our approach is to separate the two ePects
which are, a priori, strongly interlaced and to analyze them separately. Then, note that
�n1 ; N�−n1 := �(·|n1) is a multi-canonical measure where the number of particles is Lxed
inside �1 and �2.
Assume now for a moment that there is no interaction (�=0). Then, the 	-algebras

F1 :=F�c1 and F2 :=F�c2 , namely the 	-algebras generated by the dilute Ising model
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variables outside �1 and �2, respectively, are independent and �n1 ; N�−n1 =�n1 ; N�−n1 (·|F1)
⊗ �n1 ; N�−n1 (·|F2)=: �1 ⊗ �2. thus, the tensorization property of the entropy gives

Ent(f2|n1)6 �n1 ; N�−n1 (Ent�1 (f
2) + Ent�2 (f

2)):

Note that �1 and �2, are canonical measures on the smaller sets �1 and �2, respectively.
In particular, the linear dimension of one direction has been halved.
When the interaction is present (� 	=0) and a high-temperature strong mixing con-

dition holds, the exponential decay of correlations can be used to obtain an almost
factorization of the measure if the sets �1 and �2 are far away one from the other.
For this purpose divide � into two (almost) halves �̃1; �̃2 in such a way that the
overlap between �̃1 and �̃2 is a thin layer of width !L, !�1.
Then, by the previous reasoning, one has to Lx the number of particles inside the

three sets �1; �2 and �̃1 ∩ �̃2 using twice the conditioning formula of the entropy

Ent�(f2) = �(Ent(f2|n1; n2)) + �(Ent(�(f2|n1; n2)|n1)) + Ent�[�(f2|n1)]; (3)

where n1 and n2 stand for the random variables counting the number of particles inside
�1 and �2.
Consider the Lrst term in (3). Then it can be shown that F1 :=F�̃c1

= F�2 and
F2 :=F�̃c2

=F�1 are weakly dependent in the sense that there exists 0¡�(L)�1 such
that

‖�n1 ; n2 (g|F2)− �n1 ; n2 (g)‖∞6 �(L)�n1 ; n2 (g);

for all non-negative function g measurable with respect to F1 (weak dependence of
the boundary condition due to the distance between �1 and �2). Here �n1 ; n2 is a
multi-canonical measure in which the number of particles has been Lxed in �1 and
�2 and thus by the global conservation law, in �̃1 ∩ �̃2. Last inequality allows to use
Proposition 2.1 in Cesi (2001) and obtain the almost factorization of the entropy:

�(Ent(f2|n1; n2))6 (1 + �(L))�n1 ; n2 (Ent�1 (f
2) + Ent�2 (f

2));

where �1 := �n1 ; n2 (·|F1) and �2 := �n1 ; n2 (·|F2). As in the case of no interaction, �1 and
�2 are canonical measures on smaller sets where the linear dimension in one direction
has been almost halved. The Lrst term of the r.h.s of (1) and the factor 3

2 comes
from 1+ �(L). The two other terms in (3) are similar so we discuss only the third one
which is notationally simpler. Let # be the distribution of the number of particles inside
�1:#(n1) := �(N�1 = n1), and g2(n1) := �(f2|n1). Then, Ent��(f2|n1) = Ent#(g2). And
we are left with a one-dimensional problem (n1 ∈{0; : : : ; |�1|}). We have a suNciently
good control on the distribution # (see Cancrini and Martinelli, 2000b) in such a way
that we can prove, using Hardy inequalities (see Miclo, 1999), the following logarithmic
Sobolev inequality:

Ent#(g2)6 k(N )
∑
n1

#(n1 − 1) ∨ #(n1)[g(n1)− g(n1 − 1)]2;

where k(N ) = O(N ). Note that the discrete gradient on g measures the ePect on the
function g of the exchange of one particle between the two subboxes. The estimate of
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the discrete gradient on g is the technical part of the present paper and gives the second
term in the r.h.s. of (1). We adapt to our model the techniques developed in Cancrini
et al. (2002a) where the high-temperature mixing property and translation invariance
are largely used. The L� factor comes from the fact that the homogeneity properties
which make our system practically equivalent to a system with a translation invariant
interaction and a high-temperature mixing condition hold only from scale L to scale
L� (in Remark 29 we explain why it is less relevant in the case of the spectral gap).
Road map.

• In Section 2 we deLne the setting and state the main result.
• In Section 3 we recall some very simple large deviation results for independent bond
percolation proved in Cancrini and Martinelli (2001).

• In Section 4 we collect several preliminary results that are essential in the proof.
• In Section 5 we prove recursively the main theorem on the LSC. All the technical
results are obtained in Sections 6 and 7.

2. Notation and results

In this section we Lrst deLne the setting in which we will work (spin model, Gibbs
measure, dynamics), and then state the main theorem of this work.

2.1. The lattice and the con8guration space

The lattice. We consider the d-dimensional lattice Zd with sites x=(x1; : : : ; xd) and
norms

|x|p =

(
d∑
i=1

|xi|p
)1=p

p¿ 1 and |x|= |x|∞ = max
i∈{1;:::;d}

|xi|:

The associated distance functions are denoted by dp(·; ·) and d(·; ·). By QL we denote
the cube of all x=(x1; : : : ; xd)∈Zd such that xi ∈{0; : : : ; L−1}. If x∈Zd, QL(x) stands
for QL+ x. We also let BL be the ball (w.r.t d(·; ·)) of radius L centered at the origin,
i.e. BL = Q2L+1((−L; : : : ;−L)). If � is a Lnite subset of Zd we write � ⊂⊂ Zd. The
cardinality of � is denoted by |�|. F is the set of all nonempty Lnite subsets of Zd.
[x; y] is the closed segment with end points x and y. The bonds of Zd are those
e = [x; y] with x; y nearest neighbors in Zd. By an abuse of notation we will still
denote by Zd the associated graph. F̂ is the set of all nonempty Lnite subgraphs of the
graph Zd. Given A∈ F̂ we write Av and Ab for the set of vertices and the set of bonds
of A, respectively. On the other hand, given � in F, we will always identify � with
the unique element �̂ of F̂ with vertices the sites of � and bonds the set of all bonds
of Zd such that both end points are in �.
Given � ⊂ Zd we deLne its interior and exterior boundaries as, respectively, @−�=

{x∈� :d(x; �c)6 1} and @+�= {x∈�c: d(x; �)6 1}, and more generally we deLne
the boundaries of width n as @−n �={x∈� : d(x; �c)6 n}, @+n �={x∈�c : d(x; �)6 n}.
For a Lxed small positive number �∈ (0; 1) we deLne R�

L be the class of parallelepipeds
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inside QL with sides parallel to the coordinate axes, longest side greater than L� and
ratio between the shortest and the longest side greater than �, R�

L(l) be the class of all
those parallelepipeds in R�

L such that the longest side is smaller than l, and UR
�
L(l) the

class of all parallelepipeds in R�
L(l) such that the shortest side is greater than L�.

The con8guration space. Our con8guration space is + = SZ
d
, where S = {0; 1}, or

+V = SV for some V ⊂ Zd. The single spin space S is endowed with the discrete
topology and + with the corresponding product topology. Given 	∈+ and � ⊂ Zd
we denote by 	� the natural projection over +�. If U; V are disjoint, 	U.V is the
conLguration on U ∪V which is equal to 	 on U and . on V . Given V ∈ F we deLne
the number of particles NV : + �→ N as NV (	)=

∑
x∈V 	(x) while the density is given

by /V = NV =|V |.
If f is a function on +, 0f denotes the smallest subset of Zd such that f(	) depends

only on 	0f . f is called local if 0f is Lnite. F� stands for the 	-algebra generated
by the set of projections {1x}, x∈�, from + to {0; 1}, where 1x: 	 �→ 	(x). When
�=Zd we set F=FZd and F coincides with the Borel 	-algebra on + with respect
to the topology introduced above. By ‖f‖∞ we mean the supremum norm of f. The
gradient of a function f is deLned as

(∇xf)(	) = f(	x)− f(	);

where 	x ∈+ is the conLguration obtained from 	, by Vipping the spin at the site x.
Finally Osc(f) = sup	;2 |f(	)− f(2)|.

2.2. The dilute Ising lattice gas

We consider an abstract probability space (�;B;P) and a set of i.i.d. real-valued
random variables indexed by the bonds of Zd, J = {Jxy}[x;y]∈Zd . E(·) stands for the
expectation with respect to P. We assume that the couplings Jxy take only two values,
�¿ 0 and 0, with probability p and 1− p respectively.
Given a disorder conLguration we declare a bond [x; y] open if Jxy = � and closed

otherwise. We denote by Cx the cluster of the site x, namely the set of all sites in Zd
which are connected to x by a path of open bonds, and by Ĉx the connected subgraph
of Zd whose vertices are the sites in Cx and whose bonds are the open bonds with end
points in Cx. Notice that Ĉx = {x} if all the bonds with x as one end point are closed.
Given a disorder conLguration J , for each 	∈+ and �∈ F̂ the Hamiltonian or energy

function of the particle conLguration 	 in the graph � is given by

HJ
�(	) =−

∑
[x;y]∈�b

Jxy(2	(x)− 1)(2	(y)− 1):

Given a collection of real numbers �= {�x}x∈Zd that in the sequel will be referred to
as generalized chemical potential, we deLne HJ;�

� (	) as

HJ;�
� (	) = HJ

�(	)−
∑
x∈�v

�x	(x):
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Finally, given .∈+, we let

H.;J;�
� (	) = HJ;�

� (	)−
∑

[x;y]∈Zd
x∈�v;y �∈�v

Jxy(2	(x)− 1)(2.(y)− 1)

and . is called the boundary condition.
For each �∈ F̂ and .∈+ the (Lnite volume) grand canonical conditional Gibbs

measure on (+;F), is given by

d3.;J;�� (	) =

{
(Z.;J;�� )−1exp[− H.;J;�

� (	)] if 	(x) = .(x) for all x∈�cv;
0 otherwise;

(4)

where Z.;J;�� is the proper normalization factor called partition function.

Remark 1 (Warning). In most notation we will drop the superscript J if that does not
generate confusion and the superscript � if � = 0. Moreover; for any � ⊂ Zd we will
always write 3.;�� instead of the more precise notation 3.;�

�̂
. Finally; if the couplings

Jxy are constant and equal to � for all [x; y]∈�b and zero if either x or y are not in
�v; then we will write 3�;�� for the corresponding Gibbs measure. In other words 3�;��
is the Gibbs measure for the standard Ising model in � with inverse temperature �;
chemical potentials � and free boundary conditions.

We will sometimes refer to this model as the grand canonical dilute Ising model
with parameters �, � and p.
We Lnally introduce the canonical Gibbs measures on (+;F) deLned as

�.�;N = 3.�(·|N� = N ) N ∈{0; 1; : : : ; |�|}; (5)

where N� is the number of particles in �.

2.3. The dynamics

We consider the so-called Kawasaki dynamics in which particles (	(x)=1) can jump
to nearest neighbor empty (	(x)= 0) locations. For 	∈+, let 	xy be the conLguration
obtained from 	 by exchanging the spins 	(x) and 	(y). Let txy	 = 	xy and deLne
(Txyf)(	) = f(txy	). The stochastic dynamics we want to study is determined by the
Markov generators L�, � a connected Lnite subgraph of Zd, deLned by

(L�f)(	) =
∑

[x;y]∈�b
cxy(	) (∇xyf)(	) 	∈+; f: + �→ R; (6)

where ∇xy = Txy − 5. The non-negative real quantities cxy(	) are the transition rates
for the process.
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The general assumptions on the transition rates are:

(1) Finite range. cxy(	) depends only on the spins 	(z) with d({x; y}; z)6 r.
(2) Detailed balance. For all 	∈+ and [x; y]∈EZd

exp[− H{x;y}(	)]cxy(	) = exp [− H{x;y}(	xy)]cxy(	xy): (7)

(3) Positivity and boundedness. There exist positive real numbers cm(�), cM (�)
such that

cm6 cxy(	)6 cM ∀x; y∈Zd; 	∈+: (8)

We denote by L.�;N the operator L� acting on L2(+; �.�;N ) (this amounts to Lx equal
to .�cv the conLguration outside �v and N as the number of particles). Assumptions
(1)–(3) guarantee that there exists a unique Markov process whose generator is L.�;N , and
whose semi-group we denote by (T�;N;.t )t¿0. L.�;N is a bounded operator on L2(+; �.�;N )
and �.�;N is its unique invariant measure. Moreover �.�;N is reversible with respect to
the process, i.e. L.�;N is self–adjoint on L2(+; �.�;N ).
A fundamental quantity associated with the dynamics of a reversible system is the

gap of the generator, i.e.

gap(L.�;N ) = infspec (−L.�;N � 5⊥); (9)

where 5⊥ is the subspace of L2(+; �.�;N ) orthogonal to the constant functions. We let
E be the Dirichlet form associated with the generator L.�;N ,

E.�;N (f;f) = 〈f;−L.�;Nf〉L2(+;�.�;N ) =
1
2

∑
[x;y]∈�b

�.�;N [cxy (∇xyf)2] (10)

and Var.�;N is the variance relative to the probability measure �.�;N . The gap can also
be characterized as

gap(L.�;N ) = inf
f∈L2(+;�.�;N ):
Var.�;N (f)�=0

E.�;N (f;f)

Var.�;N (f)
: (11)

A second relevant quantity is the logarithmic Sobolev constant c.V;N deLned as the
smallest constant c such that

Ent.V;N (f
2)6

c
2
E.V;N (f;f) (12)

for all non-negative functions f with �.V;N (f
2)= 1, where Ent.V;N (f

2)= �.V;N (f
2 lnf2)

is the entropy of f2 with respect to �.V;N . For the connection between spectral gap,
logarithmic Sobolev constant and speed of relaxation to equilibrium we refer the reader
to Diaconis and SaloP-Coste (1996).

2.4. Main results

We are Lnally in a position to formulate the main results of this paper on the
logarithmic Sobolev constant of the generator of Kawasaki dynamics in a Lnite volume.
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Let pc denote the critical percolation for independent bond percolation in Zd (see,
e.g., Grimmett, 1999).

Theorem 2. Assume that p¡pc and 8x �¿ 0. Then there exists a set �0 ⊂ � with
P(�0)=1 and two positive constants c1; c2 such that for any J ∈�0 and any L large
enough

c1L26min
N;.

c.;JQL;N 6max
N;.

c.;JQL;N 6 c2L2+�: (13)

3. Simple large deviations for independent bond percolation

In this section we recall some very simple large deviation results for independent
bond percolation below the percolation threshold that allow to prove some sort of
homogenization property of the dilute Ising model at large scale. The interested reader
can Lnd the proofs in Cancrini and Martinelli (2001). Given an integer n, let f be a
real function on the set of all Lnite connected subgraphs of Zd which is translation
invariant, that is f(A) = f(A+ x) for all x∈Zd and for all Lnite connected subgraph
A, and such that |f(A)|6 |Av|n where Av is the set of vertices of the graph A. Let, for
a Lxed Lnite set � and a given disorder conLguration J ,

〈f〉�;J = 1
|�|

∑
x∈�

f(Ĉx) (14)

and let Uf :=E(f(C0)) provided that E(|C0|n)¡∞.

Proposition 3. Assume p¡pc and let �0 = 1=(2d(n+ 1) + 1) where n is the integer
governing the growth of f. Let � be a parallelepiped with ratio between the shortest
and longest side greater than �. Then for any �∈ (0; �0) there exist constants 0¡!=
!(n; p; �)¡ 1; m1 = m1(p)¿ 0 and m2 = m2(p; n)¿ 0 such that

(a) P
(
sup
x∈�

|Cx|¿ v
)
6 |�|e−m1v ∀v¿ 0;

(b) P(|〈f〉�;J − Uf|¿ |�|−�)6 e−m2|�|! .

Here is a simple consequence of the above large deviation results. Given �∈ (0; �0),
an integer L and N real, translation invariant functions {fi}Ni=1 on the set of all Lnite
connected subgraphs of Zd such that maxi6N |fi(A)|6 |Av|4 for any A, let us consider
the event �(�;M; N; L) =

⋃
R∈R�

L
�R(�;M; N; L) where

�R(�;M; N; L) :=
{
sup
x∈R

|Cx|¿M log L
}
∪
{
sup
n64

∑
x∈R

|Cx|n¿M |R|
}

∪
{
sup
i6N

|〈fi〉R;J − Ufi|¿ |R|−�
}
:



N. Cancrini, C. Roberto / Stochastic Processes and their Applications 102 (2002) 159–205 169

Then,

Corollary 4. Assume p¡pc. There exists M such that for any a¡∞
∞∑
L=1

sup
N6La

P(�(�;M; N; L))¡+∞:

4. Preliminary results

In this section we collect several preliminary results that are essential in order to
prove that, with large probability, the logarithmic Sobolev constant of the Kawasaki
dynamics for the dilute Ising model below pc, on all scales between L� to L can be
bounded from above by exactly the same methods employed when a high-temperature
mixing condition and a translation invariance property hold. More precisely, we will
formulate three conditions on the disorder conLguration in the cube QL which will
ensure that, if satisLed, the corresponding dilute Ising model shares all the relevant
(for our purposes) features of the high-temperature standard Ising model. Moreover,
our conditions will be meaningful in the sense that the probability of not being all
veriLed simultaneously will be summable in L.

4.1. The general setting

Throughout all this section our setting and notation will be as follows. Let � be a
parallelepiped in the class UR

�
L whose longest side is say along the d direction and is

Ld. Take L1; : : : ; Ljmax such that
∑ jmax

j=1 Lj = Ld and Lj¿ �Ld for any j=1; : : : ; jmax. We
then take �j = {x∈�: Lj−16 xd6Lj} with L0 = 0, which are elements of R�

L. Let
also N := {Nj} jmax

j=1 be a set of possible values of N� := {N�j} jmax
j=1 and let /j :=Nj=|�j|.

Given a boundary condition . and a disorder conLguration J , there exists a unique
choice of the chemical potential �, constant on each �j; j = 1; : : : ; jmax, such that
3.;�� (N�j) = Nj; j = 1; : : : ; jmax (see the appendix in Cancrini and Martinelli (2000a)).

We denote by 3 :=3.;�� the grand canonical Gibbs measure and by � := �.�;FN the

multi-canonical Gibbs measure 3.;�� (·|N� = N) and by +. the set of conLgurations .′

that coincide with . in the half-space {x∈Zd: xd ¡Ld}, where Ld is largest among
the d-coordinates of the sites in �.

4.2. Assumptions on the disorder con8gurations

Let �0 = 1=(10d + 1) and let us Lx a small positive number �∈ (0; �0) and a large
positive number M . For any � ⊂ Zd, any integer N ∈{1; 2; : : : ; |�|}, any boundary con-
dition .∈+ and any disorder conLguration J let also �= �(�;N; .; J ) be the (unique)
constant chemical potential such that 3J;.;�� (N�) = N and let �0 = �0(�;N ) be such
that E(|Ĉ0|−13�;�0C0

(NC0 )) = N=|�|, that is the particle density of the cluster of the ori-
gin averaged on the disorder is equal to N=|�|. The existence and uniqueness of the
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chemical potential � is proved in the appendix of Cancrini and Martinelli (2000a), for
�0 a similar reasoning can be applied. Then our conditions read as follows.

Assumption 1. For any R∈R�
L

max
x∈R

|Cx|6M log L and max
n64

∑
x∈R

|Cx|n6M |R|:

Assumption 2. For any R= R1 ∪ R2 with R1; R2 ∈R�
L ∪ ∅

sup
.

sup
N∈[1;:::;|R|]

|3�0(R;N )R (NRi)− |Ri|E(|C0|−13�;�0(R;N )
Ĉ0

(NC0 ))|6 |Ri|1−�

for i = 1; 2.

Assumption 3. Let hx := e−∇xH	(x). Then for any R∈R�
L;

sup
.

sup
N∈[0;:::;|R|]

∣∣∣∣∣3.;�0R

(
NR;

∑
x∈R

hx

)
− |R|E

(
|C0|−13�;�0

Ĉ0

(
NC0 ;

∑
x∈C0

hx

))∣∣∣∣∣6 |R|1−�:

Similarly for ĥx := e−∇xH (1− 	(x)) and h̃x = 	(x).

De$nition 5. The set of disorder conLgurations J that satisfy Assumptions 1–3 will be
denoted by �good(L;M; �).

Thanks to Corollary 4 we have the following result.

Proposition 6. Assume p¡pc. Then
(i) there exists M such that for any �∈ (0; �0)

∑∞
L=1 P(�good(L;M; �)c)¡∞. In

particular; for any large enough M and any �∈ (0; �0):
(ii) there exists a set �0 ⊂ � such that P(�0) = 1 and for any J ∈�0 there exists

L(J ) such that J ∈�good(L;M; �) for any L¿L(J );
(iii) there exists #= #(M)¿ 0; limM→+∞ #(M) =+∞; such that P(L(J )¿l)6 l−#.

Proof. Once point (i) of the proposition is established point (ii) is nothing but the
standard Borel–Cantelli lemma.
To analyze the convergence of the series

∑
L P(�good(L;M; �)c) we Lrst observe

that, thanks to Proposition 3, the probability that Assumption 1 is violated can be
bounded from above by c |R�

L| (L−mM + e−m2(�L�)d!) (where m is a positive constant
depending on p and n and we used |R|¿ (�L�)d). In order to compute the probability
that Assumption 2 is violated in R = R1 ∪ R2 with Ri ∈R�

L ∪ ∅, i = 1; 2, we deLne
for any A∈ F̂ the function fN;R(A) := |A|−13�0(R;N )A (NA) for N = 1; : : : ; |R|. With this
notation and using the fact that 3.;�0(R;N )R is the product measure over the clusters in R,
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we can write

|3.;�0(R;N )R (NRi)− |Ri|E(|C0|−13�;�0(R;N )
Ĉ0

(NC0 ))|

6

∣∣∣∣∣
∑
x∈Ri

[fN;R(Cx)− Uf]

∣∣∣∣∣+
∣∣∣∣∣∣

∑
x∈Ri :Cx∩Rci �=∅

[
1

|Cx ∩ Ri|3
.;�0(R;N )
R (NCx∩Ri)

− 1
|Cx|3

�0(R;N )
Cx (NCx)

]∣∣∣∣∣∣6 |Ri| |〈fN;R〉Ri;J − Uf|+ C R(d−1)=d
i sup

x∈Ri
|Cx|2

for a suitable constant C = C(d; �). We have used here that any R∈R�
L has surface

smaller than C′′|R|(d−1)=d. We can at this point use Proposition 3, the fact that the
number of sets R that can be constructed is bounded by |R�

L|2, and the probability
that Assumption 1 is violated estimated above to conclude that the probability that
Assumption 2 is violated can be bounded from above by c|R�

L|2|R|e−(m2�L�)d! . The
probability that Assumption 3 is violated can be estimated similarly. Using the fact
that the cardinality of R�

L is bounded from above by L2d, point (i) follows, provided
that M is taken large enough.
We are left with the proof of point (iii). By the deLnition of L(J )

P(L(J )¿l)6P(�good(l;M; �)c)

proceeding as for point (ii) the result follows.

4.3. Bounds on various covariances

Here we report, for completeness, some results which follow immediately from the
factorization property of the grand canonical measure over the clusters, since they enter
at various levels in the analysis of the Kawasaki dynamics for the dilute Ising model.
Given the setting above, for each set V ⊆ � and n∈N we deLne

Vj :=V ∩ �j UV :=
⋃
x∈V

Cx and V (n) :=
∑
x∈V

|Cx ∩ V |n: (15)

The following proposition holds for any disorder conLguration J .

Proposition 7. There exists a constant c depending only on � such that for any
bounded local function f with support 0f ⊂ �

(a) |3.;�� (NCx∩Vi ; NCx∩Vj)|6 cmin{/i; /j}|Cx ∩ Vi‖Cx ∩ Vj|;

(b) 3.;�� ( UN
2
Cx∩Vi)¿ c−1 /i|Cx ∩ Vi|;

(c) 3.;�� ( UN
2
Vi)6 c/iV

(1)
i ;

(d) 3.;�� ( UN
2
Vi)¿ c−1/i|Vi|;
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(e) |3.;�� (f;NVi)|6 c‖f‖∞min{/i| U0f ∩ Vi|; (/i( U0f ∩ Vi)(1))1=2};

(f) 3.;�� ( UN
4
Vi)6 cmax{(/iV (1)

i )2; (/iV
(3)
i )};

(g) |3.;�� (f;NVi ; NVi)|6 c‖f‖∞/i| U0f ∩ Vi|2;

(h) |3.;�� ( UN
3
Vi)|6 c/iV

(2)
i ; (16)

where UNV = NV − 3.;�� (NV ) for each set V ⊆ �.

4.4. On the tilting 8elds

We recall here the following quite general result on the relationship between parti-
cle numbers and the chemical potential (see the appendix in Cancrini and Martinelli
(2000a)). We assume here jmax=1 so that we can set, for notation convenience, N1=n,
/ = n=Ld. In order to be more clear, in the following lemma we will write explicitly
the dependence on the boundary conditions and the chemical potential of the grand
canonical Gibbs state.

Lemma 8. Let �∈ (0; 1). Then there exists a constant k independent on L such that
for any L large enough and any f with ‖f‖∞ = 1; if 0f ⊂ �

(i) ‖ d
dn3

.;�(f)‖∞6 k | U0f|
|�| ;

(ii) ‖ d2

dn2 3
.;�(f)‖∞6 k 1

n
| U0f|
|�| .

Proof. We omit the proof since it is practically the same of an almost identical re-
sult (Proposition 3.1) of Cancrini and Martinelli (2000b) with the diPerence that the
properties coming from the mixing condition are substituted by Proposition 7.

4.5. Equivalence of ensembles

Here we recall some Lne results on the Lnite volume comparison of ensembles that
will be crucial in most of our future arguments. We refer the reader to Sections 6 and
7.2 of Cancrini and Martinelli (2000a).
With the deLnition of UV given above (Section 4.3), we say that a subset V ⊂ � is

good if UV ⊂ �j for some j = 1; : : : ; jmax, otherwise, it is bad.

Proposition 9. In the above setting assume J ∈�good(L;M; �). Then there exists
constants C = C(M; �); C′ = C′(M; �) and L0 = L0(M; �) such that; if L¿L0

(a) for all bounded local functions f with support 0f ⊂ � satisfying |0f| (M log L)4

�|�|

|�(f)− 3(f)|6C‖f‖∞




U0(3)
f

|�| if 0f is good;

|0f| (M log L)4

|�| otherwise
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(b) for all local functions f with support 0 ⊂ �n and n6 jmax, satisfying U0
(3)
6 |�|

if 0 is good or |0| log L�|�| if it is bad, we have

sup
.′∈+.

|�.(f)− �.
′
(f)|6C′‖f‖∞�(0; L);

where U0
(3)

has been de8ned in (15) and

�(0; L)6
U0
(3)

|�| +
(
log L
L

)k−n+1

[min{( U0(1)
)1=2; | U0|}];

if 0 is good,

�(0; L)6
|0|(log L)4

|�| + max
j=n;n±1

[
min{(( U0∩�j)(1))1=2; | U0∩�j|}

(
log L
L

)jmax−j+1
]
;

if 0 is bad.

Proof. See Theorem 6.4 and Proposition 7.4 in Cancrini and Martinelli (2000a).

Remark 10. Actually the Lrst part of Proposition 9 holds in a much more general
context (see Section 6 in Cancrini and Martinelli; 2000a).

Proposition 11. In the same setting assume J ∈�good(L;M; �). Let f be such that
|�j \0f|¿ �|�j| for any j=1; : : : ; jmax. Then there exists a constant A=A(M; �) such
that

�(|f|)6A3(|f|):
In particular

�(f;f)6A3(f;f):

Proof. The proof is identical to that of Proposition 3.3 in Cancrini and
Martinelli (2000b) if we observe that; see Cancrini and Martinelli (2000a); for any
J ∈�good(L;M; �)

‖3.;�� (ei
∑

j (tj =vj)N�j |F0f)‖∞6 e−�
∑

j t
2
j

for a suitable constant � := �(�;M); where v2j :=3
.;�
� (N�j ; N�j).

We conclude this paragraph with a Lnal result that plays a crucial role in our ap-
proach (see Section 4.6). For simplicity we discuss the next estimates in two dimensions
and at the end we explain how to generalize it to higher dimensions.
Assume that the number of layers jmax is greater than 4, Lx j0 such that 36 j06 jmax

and let A=
⋃ j0
j=1 �j, B=

⋃ jmax
j0−1 �j and S =�j0−1 ∪�j0 . DeLne also �X (·) := �(· |FX c)

for X = A; B; S. Notice that �-almost surely NA, NB and NS are constant.

Lemma 12. Assume that J ∈�good(L;M; �) and let g be a positive function measurable
w.r.t. FAc . Then there exist k = k(M; �; �) and L0 = L0(�;M) such that; if L¿L0;

‖�B(g)− �(g)‖∞6 ��(g):
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Proof. Fix a positive function g measurable w.r.t. FAc . Fix also a conLguration 2 and
let hx(2) := e−∇xH (2)=�2B(e

−∇xH ); x∈ @+S ∩ A. Using the deLnition of hx and the DLR
equations (valid because the numbers of particles in A; B; S are constant) we have

|�2xB (g)− �2B(g)| = |�2B(g; hx)|
= |�2B(g; �S(hx))|

6 �2B(g) sup
.;.′∈+.

|�.S(hx)− �.
′
S (hx)|;

where +. is the set of conLgurations .′ which diPers from . only on @+S ∩ B. By
point (b) of Proposition 9 there exists a positive constant k = k(M; �; �) such that for
L large enough

sup
.′∈+.

|�.S(hx)− �.
′
S (hx)|6 k

(log L)3

L2
∀.: (17)

Thus

�2
x

B (g)6
[
1 + k

(log L)3

L2

]
�2B(g):

Now; notice that any boundary conLgurations 2 and 2′ diPer at most in L sites; by
iteration we get

�2B(g)6
[
1 + k

(log L)3

L2

]L
�2

′
B (g)6 (1 + �)�2

′
B (g): (18)

It suNces now to integrate (18) w.r.t. d�(2′) and use the arbitrariness of 2.

Remark 13. The restriction of d=2 comes from point (b) of Proposition 9. In fact; in;
e.g. three dimensions; bound (17) becomes useless. The way out is to have the “safety
belt” S divided into more layers (just three in d= 3). It is interesting at this point to
observe that a similar problem occurs also in the recursive study of the spectral gap
(see Cancrini and Martinelli; 2000b). In that case; however; the safety belt S in d= 2
consisted of just one atom and not of two as in our case. The reason is that; in the
spectral gap analysis; a weaker form of Lemma 12 was necessary.

4.6. A block dynamics bound

In this section, we give a bound on the entropy that play an important role in our
recursive approach. For simplicity we discuss the next estimates in two dimensions and
at the end we explain how to generalize it to higher dimensions.
Assume that the number of layers jmax is greater than 4, Lx j0 such that 36 j06 jmax

and let A=
⋃ j0
j=1 �j, B=

⋃ jmax
j0−1 �j and S =�j0−1 ∪�j0 . DeLne also �X (·) := �(· |FX c)

for X = A; B; S. Notice that �-almost surely NA, NB and NS are constant.

Proposition 14. Assume that J ∈�good(L;M; �). Then; there exist L0 = L0(M; �) such
that; for any L¿L0 and any function f;

Ent�(f2)6 (1 + �)�(Ent�A(f
2) + Ent�B(f

2)): (19)
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Remark 15. Remark that for an arbitrary product measure � = �1 ⊗ �2; we have the
general tensorization result (see AnAe et al.; 2000; for instance):

Ent�(f2)6 �(Ent�1 (f
2) + Ent�2 (f

2)):

In some sense; the extra factor takes into account the diPerence between � and the
product measure �A ⊗ �B due to the presence of the overlapping strip S.

Proof. With the result of Lemma 12 we can apply Proposition 2.1 of Cesi (2001).

Remark 16. It is clear from the proof that the key input for the result is Lemma
12. Therefore; one can easily formulate the proposition in dimension greater than two
simply by assuming that the set S consists of a suNciently large number of layers
(just three in d = 3) as it was explained already in Remark 13 after the proof of
Lemma 12.

4.7. On the distribution of the particle number

The goal of this section is to recall from Cancrini et al. (2002a) some general result
on the logarithmic Sobolev constant of the distribution # of the number of particles
inside one particular block of �.
Pick j∈ [1; : : : ; jmax] and divide �j into two disjoint subsets V and W that we assume

to be also element of R�
L. Then, we denote by Un = 3(NV ) the average of the number

of particles in V according to 3 and we let #(n)= �(NV = n) be the distribution of the
number of particles inside V . Then, we have the following result.

Theorem 17. Assume that J ∈�good(M; �; L). Then; there exists k = k(M; �; �) such
that for all f :+� �→ R that depend only on the number of particles NV (	); the
following logarithmic Sobolev inequality holds:

Ent#(f)6 k Un
∑
n

(#(n) ∧ #(n− 1)) [f(n)− f(n− 1)]2:

Proof. Thank to the assumption J ∈�good(M; �; L); the proof is almost identical to that
one of Proposition 3.17 of Cancrini et al. (2002a) with the diPerence that the properties
coming from the mixing condition are substituted by Proposition 7.

4.8. A general upper bound on the logarithmic Sobolev constant in a 8nite subgraph

In this section we obtain a rough upper bound for the logarithmic Sobolev constant
of the dynamics in a Lnite subgraph � of Zd which depends on the size of � and on the
size of the largest cluster inside �. As a corollary we get that, if J ∈�good(M; �; L) and
�∈R�

L, the logarithmic Sobolev constant in � is not greater than |�|b for a suitable
b independent of �.



176 N. Cancrini, C. Roberto / Stochastic Processes and their Applications 102 (2002) 159–205

Theorem 18. Let � be a 8nite subgraph of Zd and let CJ (�) :=maxx∈�v |Cx∩�|(d−1)=d.
Then there exist a positive constant c; depending only on J and on d; and a numerical
constant b¿ 9 such that

c.�;N 6 |�v|b exp(cCJ (�)) ∀N; .:

Proof. First; from Cancrini and Martinelli (2001; Theorem 5.1) we learn that for some
constant b¿ 9;

gap(L.�;N )
−16 |�v|b−1 exp(cCJ (�))

for all N and all .. Here gap(L.�;N ) is the spectral gap of the generator L.�;N ; deLned
in (9). On the other hand; we learn in Martinelli (1999; Proposition 3.9) that

c.�;N 6 |�|gap(L.�;N )−1:

The proof is complete.

Corollary 19. Let �∈R�
L and assume J ∈�good(M; �; L). Then there exists a positive

numerical constant b¿ 9; independent of L; such that

c.�;N 6 |�|b ∀ N; .:

Proof. It follows immediately from Theorem 18 and the fact that maxx∈� |Cx|6M log L
for any J ∈�good(M; �; L).

4.9. A special path bound

In this section, we recall a useful result from Yau (1996).
Fix �∈ (0; 1) and l∈ [2L�; L]. We then consider a volume �∈R�

L(l) such that �=⋃ jmax
j=1 �j, where �j ∈R�

L(l) and |�j|=|�|¿ � for j=1; : : : ; jmax. Let N := {Nj} jmax
j=1 be a

set of possible values of N� := {N�j} jmax
j=1 and deLne /j =Nj=|�j|. Recall the deLnition

of 3 :=3.;�� and � := �.�;N.
Finally, let also V;W ⊂ � such that V ∩W = ∅ and V;W ∈R�

L(l).

Lemma 20. There exists a suitable constant k = k(�; d; jmax) such that∑
x; z∈V×W

�((∇xzf)2)6 kld+2E�(f;f):

Proof. See DeLnition 3.9 and inequality (3.15) of Cancrini and Martinelli (2001).

5. The recursive approach

In this section, we prove the main result of the paper, Theorem 2, via a recursive
analysis on the behavior of the logarithmic Sobolev constant, when the linear size of
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the volume under consideration is doubled, developed in Cancrini and Martinelli (2001)
for the high-temperature case.
For simplicity we carry out our analysis in two dimensions but the extension to

higher dimension is straightforward (see Remark 13).
Let

cs(l; L) := cs(J; l; L; �) = max
R∈ UR�

L(l)
max
N;.

c.R;N ;

where c.R;N is the logarithmic Sobolev constant in R, with boundary condition . and N
particles, deLned in (12).
Notice that by deLnition of UR

�
L(l), necessarily, l¿L�.

Let also �′ = �=d(3b+ 2) where d is the dimension and b is the constant appearing
in Corollary 19. With the above notation we will prove the following recursive bound.

Theorem 21. Assume J ∈�good(M; �′; L). Then; there exist L0(�′; M) and k(d; �;M; �′)
such that; for L¿L0;

cs(l; L)6
3
2
cs

(
l
2
; L

)
+ kl2L� for any l∈ [2L�; L]:

In particular

max
N;.

cs(L
.;J
QL;N )6L2+�[L(1−�)log2(3=8)−3�cs(L�; L) + 2k]:

Proof. The fact that

max
N;.

cs(L
.;J
QL;N )6L2+�[L(1−�)log2(3=8)−3�cs(L�; L) + 2k]

is a direct consequence of the recursive bound; by induction.
Fix now l∈ [2L�; L] and consider a rectangle �∈ UR

�
L(l). Without loss of generality,

we can write

�= {(x1; x2): 06 x1¡l1; 06 x2¡l2}
with l16 l2.
If l26 l=2, then maxN;. c.�;N 6 cs(l=2; L) simply because of the deLnition of cs(l; L).

Thus, we can assume that l=2¡l26 l.
Let d := ��l� and pick an integer i∈ [1; �1=10��−1]. We partition � into four disjoint

sub-rectangles {�j}4j=1 as follows:

�1 = {x∈�; 06 x26 l2=2 + (i − 1)d};
�2 = {x∈�; l2=2 + (i − 1)d¡x26 l2=2 + id};
�3 = {x∈�; l2=2 + id¡x26 l2=2 + (i + 1)d};
�4 = {x∈�; l2=2 + (i + 1)d¡x2} (20)

and we set A= �1 ∪ �2 ∪ �3, B= �2 ∪ �3 ∪ �4 and S = �2 ∪ �3.
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Notice that each �i; i=1; : : : ; 4, belongs to UR
�′

L , therefore, since J ∈�good(M; �′; L),
we are allowed to use the results of Section 4.
Fix now a boundary condition . outside �, a number of particles N ∈ [0; : : : ; |�|]

and let � := �.�;N . We then use three times the conditional formula on the entropy: for
any sub 	-algebra F0, any f,

Ent�(f2) = �(Ent�(f2|F0)) + Ent�(�(f2|F0))

to write

Ent�(f2) = �(Ent�(f2|NA)) + Ent�(�[f2|NA])
= �(Ent�(f2|NA; NS)) + �(Ent�(�[f2|NA; NS ]|NA)) + Ent�(�[f2|NA])
= �(Ent�(f2|N�1 ; N�2 ; N�3 )) + �(Ent�(�[f2|N�1 ; N�2 ; N�3 ]|NA; NS))
+ �(Ent�(�[f2|NA; NS ]|NA)) + Ent�(�[f2|NA]): (21)

We recall that NV denotes the number of particles in the region V . The previous
formula is the basic starting point of our recursive approach. We will now examine
separately each term in the r.h.s. of (21).
As usual, in what follows, k will denote a generic constant depending on M; �, the

dimensions of the lattice and on �, whose value may vary from line to line.

5.1. Analysis of the 8rst term in the r.h.s. of (21)

By Proposition 14 we have for L large enough

�(Ent�(f2|N�1 ; N�2 ; N�3 ))6 (1 + �)�(Ent�A(f
2) + Ent�B(f

2)):

As in Cancrini and Martinelli (2001, Section 4.1), let us examine the geometry of
the bottom rectangle A, the reasoning being similar for the top one.
There are two cases to analyze:

(a) l16 3
4 l. In this case one easily veriLes that �1 ∈ UR

�
L(

3
4 l).

(b) l1¿ 3
4L. In this case �1 ∈R�

L but now the longest side is l1 and the shortest one
is smaller than l2=2 + l=106 3

5 l since l26 l.
Therefore, maxN;. c.A;N 6max{cs( 34 l; L); ĉs(l; L)} where

ĉs(l; L) = max
R∈ UR�

L(l)

l1¡
3
5 l;l2¿

3
4 l

max
.;N

c.R;N :

In other words,

�(Ent�A(f
2))6max{cs( 34 l; L); ĉs(l; L)}E�(f;f)

and similarly for B.
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In conclusion, we obtain that

�(Ent�(f2|N�1 ; N�2 ; N�3 ))6 (1 + �)max
{
cs

(
3
4
l; L

)
; ĉs(l; L)

}

×

E�(f;f) + 1

2

∑
[x;y]∈ES

�[cxy(∇xyf)2]


 (22)

uniformly in i∈ [1; �1=10�� − 1]. Notice that the “spurious” term 1
2

∑
[x;y]∈ES

�[cxy(∇xyf)2] comes from the fact that A ∩ B= S.

5.2. Analysis of the remaining terms in the r.h.s. of (21)

Here we bound from above the other three terms in (21). The necessary steps are
almost identical for all of them and therefore, for shortness, we treat only the second
one. Later on we will state without further comments the analogous result for the Lrst
and third one.
For a given value NA of the number of particles in A, let /A :=NA=|A| and as-

sume, without loss of generality, that /A6 1
2 . Let �̂(·) := �(·|NA) be the associated

multi-canonical measure and let 3̂ be the corresponding (multi)-grand canonical mea-
sure. Let also UnS = 3̂(NS), and let #(n) := �̂(NS = n) be the distribution of the number
of particles inside S. Let Lnally cn = n(|A \ S| − NA + n), that is (number of particles
in S) × (number of holes in A \ S), similarly c′n= n(|S|−NA+ n), and let u= �/A|S|�.

Then, using Theorem 17 and Corollary 3.7 of Cancrini et al. (2002a), we can write

Ent�(�[f2|NA; NS ]|NA)
=Ent�̂(�̂[f2|NS ] = Ent#(�̂[f2|NS ])

6 k UnS
∑
n

#(n) ∧ #(n− 1)(
√
�̂(f2|NS = n)−

√
�̂(f2|NS = n− 1))2

6 k UnS
∑
n

#f(n)(A(n)2 + B(n)2); (23)

where

A(n) =




1
cn

#(n− 1)
#(n)

∑
x∈S
z∈A\S

�̂((∇zxf2)5Ezxe−∇xzH� |NS = n− 1) if n6 u;

1
c′NA−n+1

#(n)
#(n− 1)

∑
x∈S
z∈A\S

�̂((∇xzf2)5Exze−∇xzH� |NS = n) otherwise;
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B(n) =




1
cn

#(n− 1)
#(n)

∑
x∈S
z∈A\S

�̂((e−∇xzH� − 1)5Ezx ; f2|NS = n− 1) if n6 u;

1
c′NA−n+1

#(n)
#(n− 1)

∑
x∈S
z∈A\S

�̂((e−∇xzH� − 1)5Exz ; f2|NS = n) otherwise;

Exz = {	∈+: 	(x) = 1; 	(z) = 0};
and

#f(n) :=
#(n) ∧ #(n− 1)

�̂(f2|NS = n) ∨ �̂(f2|NS = n− 1)
:

5.2.1. Bound on UnS
∑

n #f(n)A(n)
2

Exactly as in Proposition 3.8 of Cancrini and Martinelli (2001), we have

UnS
∑
n

#f(n)A(n)26 kl2E�̂(f;f):

5.2.2. Bound on UnS
∑

n #f(n)B(n)
2

This bound is one of the technical part of this work. It is at this point the term L�

appears. Actually, using the same proof as Proposition 3.10 of Cancrini and Martinelli
(2001) and thanks to the assumption J ∈�good(M; �′; L) and Proposition 32, we obtain
that for any F¿ 0, there exist CF independent of /A such that

UnS
∑
n

#f(n)B(n)26CF�̂(f2) + CFl2L�E�̂(f;f) + FEnt�̂(f2): (24)

5.2.3. Bound on �(Ent�(�[f2|NA; NS ]|NA))
If we average w.r.t. the canonical measure � inequality (23) and use the simple

inequality �(Ent�(f2|F0))6Ent�(f2) for any F0, we get

�(Ent�(�[f2|NA; NS ]|NA))6CF�(f2) + CFl2L�E�(f;f) + FEnt�(f2): (25)

Similar bounds hold also for the Lrst and third term in the r.h.s. of (21).

5.3. The recursion completed

We are Lnally in a position to complete the proof of Theorem 21. If we put together
(22) and (25) we get that, for any F small enough

r:h:s: of (21)6 (1 + �)max
{
cs

(
3
4
l; L

)
; ĉs(l; L)

}

×

E�(f;f) + 1

2

∑
[x;y]∈ES

�[cxy(∇xyf)2]




+CF�(f2) + CFl2L� E�(f;f) + FEnt�(f2)
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that is

Ent�(f2)6 (1 + �)
(

1
1− F

)
max

{
cs

(
3
4
l; L

)
; ĉs(l; L)

}

×

E�(f;f) + 1

2

∑
[x;y]∈ES

�[cxy(∇xyf)2]




+CF�(f2) + CFl2L� E�(f;f)

for a suitable constant CF.
Finally, following Martinelli (1999), we average the above inequality w.r.t. to the

integer i (see (20)) and use the observation that, as i varies in [1; �1=10�� − 1], the
strips S ≡ Si are disjoint. In particular

1
2

∑
i∈[1;� 1

10� �−1]

∑
[x;y]∈ESi

�[cxy(∇xyf)2]6E�(f;f)

so that

Ent�(f2)6
(

1
1− F

)
(1 + 20�)2 max

{
cs

(
3
4
l; L

)
; ĉs(l; L)

}
E�(f;f)

+CF�(f2) + CFl2L�E�(f;f)

for � small enough. Notice that if we write f = [f − �(f)] + �(f) and we use the
PoincarAe bound Var�(f)6 kl2E�(f;f) we get

Ent�(f2)6 Ent�([f − �(f)]2) + 2Var�(f)

6
(

1
1− F

)
(1 + 20�)2 max

{
cs

(
3
4
l; L

)
; ĉs(l; L)

}
E�(f;f)

+ kl2L�E�(f;f);

where in the Lrst line we have used the Rothaus inequality Ent�(f2)6 2Var�(f) +
Ent�([f − �(f)]2) (see Rothaus, 1985; AnAe et al., 2000). In other words

c.�;N 6
(

1
1− F

)
(1 + 20�)2 max

{
cs

(
3
4
l; L

)
; ĉs(l; L)

}
+ kl2L�: (26)

Notice that if the original rectangle � was chosen in the subclass of UR
�
L(l) entering

in the deLnition of ĉs(l; L), i.e. l16 l2=2 + l=10, then we would have obtained the
inequality (26) with the factor max{cs( 34 l; L); ĉs(l; L)} replaced by cs( 34 l; L) simply
because, for any i∈ [1; � 1

10�� − 1], �1, �2 and �3 would belong to UR
�
L(

3
4 l). Thus,

ĉs(l; L)6
(

1
1− F

)
(1 + 20�)2cs

(
3
4
l; L

)
+ kl2L�: (27)
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If we combine (26) with (27) we Lnally get

c.�;N 6
(

1
1− F

)2

(1 + 20�)4cs

(
3
4
l; L

)
+ kl2L�:

Thus,

cs(l; L)6
(

1
1− F

)4

(1 + 20�)2cs

(
3
4
l; L

)
+ kl2L�

and two more iterations prove the recursive inequality of the theorem provided that the
two parameters �; F were chosen small enough.

5.4. Proof of Theorem 2

The lower bound is a direct consequence of the general comparison

gap(L.;JQL;N )
−16 cs(L

.;J
QL;N );

between the spectral gap and the logarithmic Sobolev constant (see AnAe et al., 2000),
and the result of Cancrini and Martinelli (2001) on the spectral gap of the dilute Ising
model, gap(L.;JQL;N )

−1¿ c1L2.
We turn to the upper bound. Let �0 =1=(10d+1) and let us Lx M large enough and

0¡�¡min{log2 83 =(log2 83 − 3 + db); �0}, where b is the constant deLned in Corollary
19. Let also �′ = �=(d(3b+ 2)).
Then, by Proposition 6 there exists a set �0 ⊂ � with P(�0) = 1 such that for

any J ∈�0, there exists L(J )¡∞ with the property that J ∈�good(L;M; �′) for any
L¿L(J ).
Without loss of generality we can assume that L(J ) is larger that some large constant

L0 = L0(M; �′).
By Theorem 21 we have

max
N;.

cs(L
.;J
QL;N )6L2+�[L(1−�)log2(3=8)−3�cs(L�; L) + 2k]

provided that L¿L(J ). But thanks to Corollary 19,

cs(L�; L)6Ldb�:

So that,

max
N;.

cs(L
.;J
QL;N )6L2+�[1 + 2k]:

The proof is complete.

Remark 22. In the particular case of very high temperature (��1); a proof similar
(but much more simple) to that one given in Section 5.2.2 leads to the following
inequality:

UnS
∑
n

#f(n)B(n)26CF�̂(f2) + FEnt�̂(f2):
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And thus; by the previous recursion procedure; we get that the logarithmic Sobolev
constant; in that particular case; grows like L2.

We obtain the same conclusion when there are a Lnite number (independent of |�|
of cluster inside �, see the appendix).

6. On the grand canonical Laplace transform

In this section we seek Gaussian bounds on quantities of the form 3(etf) where 3 is
the grand canonical Gibbs measure on some Lnite set and f is a mean zero function,
namely bounds of the type

3(etf)6 et
2Kf

Once bounds like the one above are proved, then we can transfer them to the canonical
Laplace transform by means of Proposition 11.
We Lrst recall a technical result established in Cancrini et al. (2002a) and then we

apply it to a practical case.
Let � be a Lnite set, for a given boundary conLguration . and (possible vector)

chemical potential �, let 3 :=3.;�� . Let {V�}�∈I be a collection of subsets of � such that
dist(V�; V�′)¿ r+1 for � 	= �′, r being the range of the interaction, and let V =

⋃
� V�.

Let also f :+� �→ R be such that 3(f) = 0.

Proposition 23. Fix t0¿ 0. Then; for all t ∈ [0; t0]

3(etf)6 et
2Kf ;

where Kf = e2�
∑

x∈� ‖∇xf‖2∞c3 and c3 is the logarithmic Sobolev constant of 3
w.r.t. to the Heat Bath rates.

Proof. See Proposition 5.1 in Cancrini et al. (2002a).

Now, we discuss an application of our bounds to a concrete case that will be impor-
tant in the next section. We Lx �∈ (0; 1) and l∈ [2L�; L]. We then consider a volume
�∈R�

L(l) such that �=
⋃ jmax
j=1 �j, where �j ∈ R�

L(l) and |�j|=|�|¿ � for j=1; : : : ; jmax.

Let N := {Nj} jmax
j=1 be a set of possible values of N� := {N�j} jmax

j=1 and deLne /j=Nj=|�j|.
We denote by � the multi-canonical measure on � as in the standard multi-canonical

setting of Section 4.
We deLne {Q�}�∈I to be a collection of cubes in �j of side l0 = L�

′
, where

0¡�′¡� (�′ will be deLned more precisely in the next section), such that for any
� 	= � dist(Q�; Q�)¿ 3M log L; dist(Q�; @�)¿ 3M log L and |� \ Q|6 |�| log L=l0,
where Q :=

⋃
�∈I Q�. Clearly such collection exists. Let Qint

� := {x∈Q�: d(x; Qc�)¿
3M log L}, Qint =

⋃
� Q

int
� and denote by nc = |I | the number of such cubes.

For any �∈ I , let {Q��}�∈I� be a chessboard-like partition of Q� into cubes of side
l1 = l�

′
0 . It is easy to see that we can partition the indexes I� into 2d subsets {Ii}2di=1 in

such a way that min� �=�′∈Iid(Q��; Q��′)¿ l1. Then, for each �, we arrange in regular
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order the collection of cubes {Q��}� with respect to � in such a way that we can write∑
�

∑
�=

∑
�

∑
�.

Given 2∈+� and s∈ [0; ld0 ], write 3
2;�(2; s)
Q� (·) to denote the grand canonical Gibbs

measure on Q� with boundary condition 2 and constant chemical potential �(2; s) such
that 32;�(2; s)Q� (NQ�)= s. Whenever s is also an integer, say s=n∈ [0; 1; : : : ; �ld0�], we will
use the standard notation �2Q�;s for the corresponding canonical Gibbs measure. In the

same way, we deLne 32;�(2; s)Q�� and �2Q��;s. Then, for any �∈ I and �∈ Ii, n�(2) :=NQ�(2)
and n��(2) :=NQ��(2) stand for the number of particles inside Q� and Q��, respectively,
and we deLne Un� :=3(NQ�), Un�� :=3(NQ��).
For notation convenience, we deLne for any �; �, F�� := n�� − Un�� and for all �,

F� :=
∑
�∈I

∑
�′∈Ii
�′ �=�

1
Un�
((n�� − Un��)(n��′ − Un��′)) =

∑
�∈I

∑
�′∈Ii
�′ �=�

1
Un�
F��F��′ :

Consider a local function g with support �g containing the origin and of diameter
smaller than 2r. Then we deLne gx the translated of g by x and write g!(	) :=
gx(	)− ! 	(x), ! being a constant independent of x. Next we write

J!�(2; s) :=
∑
x∈Qint

�

32;�(2; s)� (g!x); J!�(2) := J
!
�(2; n�(2)); J!�(s) := J

!
�(0; s);

g!�(2; s) :=
∑
x∈Qint

�

�2Q�;s(g
!
x); g!�(2) := g

!
�(2; n�(2)): (28)

We introduce the set of constants (w.r.t. 3 and �) {!�}�∈I where

!� :=
30; �(0; Un�)Q� (

∑
x∈Qint

�
gx; NQ�)

30; �(0; Un�)Q� (NQint
�
; NQ�)

(29)

and substituting the constant ! with !� in each cube Q� we have J!�� (s).
Finally we deLne

G�(2) :=
∑
�∈I

[g!�(2)− 3(g!�)]; Gext(2) :=
∑

x∈�j\Qint

[g!x(2)− 3(g!x)]; (30)

G3(2) :=
∑
�∈I

[J!�(2)− 3(J!�)]; G0
3(2) :=

∑
�∈I

[J!;0� (n�(2))− 3(J!;0� )];

Ĝ
0
3(2) :=

∑
�∈I

[ J!�� (n�(2))− 3(J!�� ) ] :

Let {D�}�∈I be a set of functions constant w.r.t. 3 and �, and deLne D := sup�∈I D�.
Let furthermore CQ be a function whose support is Q =

⋃
�∈I Q� and deLne

C := ‖CQ‖∞, ∇C : =supx∈Q ‖∇xCQ‖∞. We have the following proposition.
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Proposition 24. Assume J ∈�good(L;M; �′) and 8x t0¿ 0. Then there exists a
constant A depending on M; �′; �; r; d; t0; ‖g‖∞; /j, such that

(i) 3(etG
ext
)6 et

2|�j|A log Lc(L)l−1
0 ∀t;

(ii) 3(et(G�−G3))6 et
2|�j|Al−d

0 ∀t ∈ [0; t0];
(iii) 3(et(G3−G

0
3))6 et

2 |�j|A (log L)2 c(L) l−1
0 ∀t;

(iv) 3(et(Ĝ
0
3))6 et

2A|�j|l−d
0 ∀t ∈ [0; t0l−d0 ],

(v) 3
(
exp

{
t
∑

�∈I;�∈Ii D�F��)
})
6 et

2|�j|AD2 ∀t ∈ [0; t0=Dld1 ];

(vi) 3
(
exp

{
t
∑

�∈I;�∈Ii
1
Un�
(F2

�� − 3(F2
��))

})
6 et

2|�j| Ald1 l−d
0 ∀t ∈ [0; t0];

(vii)
∏
�∈Ii 3(e

tF�)6 et
2|�j| Al−d

0 ∀t ∈ [0; t0(ld0 =l
2d
1 )];

(viii) 3
(
exp

{
tCQ

∑
x∈�j\Q [3(	(x))− 	(x)]

})
6 et

2c(L)[a(L)2|�j|∇C2+a(L)C2] ∀t,
where c(L) := eA(log L)

(d−1)=d
, a(L) := |�j \ Q|6A|�j|l−1

0 log L and d is the dimension.
If 3 is replaced by the multi-canonical measure �, the same bounds hold, but with

an extra factor B= B(M; �′; �; r; d; t0; ‖g‖∞; /j) in front of the exponential.

Proof. In what follows k will always denote a generic numerical constant depending
only on �;M; �′; d; t0; r; d; ‖g‖∞, /j and whose value may vary in diPerent estimates.

We will use the following bound on the global logarithmic Sobolev constant (see
Martinelli, 1999)

c36 ce(log L)
(d−1)=d

(31)

where c = c(M; �)¿ 0.
(i) We simply apply Proposition 23 to the function Gext. Indeed, since∑

x∈�j
‖∇xGext‖2∞ =

∑
x∈�j\Qint

‖∇xGext‖2∞6 k|�j| log Ll0 :

Proposition 23 and (31) yield at once the result.
(ii) First observe that for any �∈ I , by point (a) of Proposition 9 together with, as

J ∈�good(L;M; �′), Assumption 1, as J ∈�good(L;M; �′), we have

sup
�

‖g!� − J!�‖∞6 sup
�

∑
x∈Qint

�

‖�Q�(g!x)− 3Q�(g
!
x)‖∞6 sup

�
k

∑
x∈Qint

�

|Cx|3
|Q�| 6 k:

Thus, for any �∈ I
3 UQ�

(g!� − J!�; g
!
� − J!�)6 k: (32)

Next, we recall that the measure 3 factorizes over the collection of sets { UQ�}�∈I , thus
we have, by a simple Taylor expansion,

3
(
et(G�−G3)

)
=

∏
�∈I

3 UQ�
(et(g

!
�−J!�))6

∏
�∈I

(1 + kt23 UQ�
(g!� − J!�; g

!
� − J!�))6 et

2A|�j|=ld0 ;

where we used (32) and |I |6 k|�j|=ld0 in the last inequality.
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(iii) Notice that

‖∇x(J!�(2)− J!;0� (2))‖∞6
{
k|Cx| if x∈ @+r Q�;
kl−1

0 log L if x∈Q�
because of Lemma 8 point (i) of (1) and (2) and Assumption 1. Thus, by point (i) of
Proposition 23, Assumption 1 and (31) the result is obtained.
(iv) By the deLnition of !� (29) we have that dJ!�� (s)=ds|s= Un� = 0 so that

|J!�� (n�)− J!�� ( Un�)|=
∣∣∣∣
∫ n�

Un�
ds

∫ s

Un�
dt
d2

dt2
J!�� (t)

∣∣∣∣6 k
(n� − Un�)2

Un�
;

where we used Lemma 8 in the last inequality. Then, by adding and subtracting J!�� ( Un�),
we have

3 UQ�
(J!�� (n�); J

!�
� (n�))643 UQ�

((J!�� (n�)−J!�� ( Un�))2)6 3 UQ�

(
(n�− Un�)4

Un2�

)
6k; (33)

where we used points (d) and (f) of Proposition 7 and, as J ∈�good(L;M; �′), Assump-
tion 1. The measure 3 factorizes over the collection of sets { UQ�}�∈I , so we have, using
a simple Taylor expansion and that t6 t0l−d0 ,

3(et
∑

�∈I [J!�� (n�)−3(J!�� (n�))]) =
∏
�∈I

3 UQ�
(et[J

!�
� (n�)−3 UQ�

(J!�� (n�))])

6
∏
�∈I

(1 + k t23 UQ�
(J!�� (n�); J

!�
� (n�)))6 et

2A|�j|=ld0 ;

where we used (33) and |I |6 k|�j|=ld0 to obtain the last inequality.
(v) Consider the collections of sets { UQ�}�∈I and { UQ��}�∈Ii , as the measure 3

factorizes over the clusters we have

3


exp


t

∑
�∈I;�∈Ii

D�F��




=

∏
�∈I;�∈Ii

3 UQ��
(etD�F��): (34)

By a Taylor expansion up to the Lrst order and using the fact that for t ∈ [0; 1=Dld1 ]
there exists a positive constant k such that ‖tD�F��‖∞6 k and

3 UQ��
(etD�F��)6 1 + kt2D2

�3 UQ��
(n��; n��)6 1 + kt2

∑
x∈Q��

|Cx ∩ Q��|;

where we used point (c) of Proposition 7 in the last inequality; thus the r.h.s. of (34),
as J ∈�good(M; L; �′), is bounded by

exp


t2

∑
�∈I;�∈Ii

D2
�

∑
x∈Q��

|Cx ∩ Q��|

6 et

2AD2|�j|:

(vi) We omit the proof because it is similar to that one of point (v).
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(vii) For simplicity for every �; �′ ∈ Ii we write 3���′(·)=3 UQ�∪ UQ�′
(·). Fix �∈ Ii then,

3(et(F�−3(F�))) =
∏
�∈I

∏
�′∈Ii ;�′ �=�

3���′(et(1= Un�)F��F��′ ): (35)

Now, as ‖1= Un�F��F��′‖∞6 kl2d1 =l
d
0 , a simple Taylor expansion with t6 t0(ld0 =l

2d
1 ) and

the fact that the measure 3 produces over the clusters, gives

3���′(et(1= Un�)F��F��′ )6 1 + kt2
1

Un2�
3 UQ��

(F2
��)3 UQ��′

(F2
��′)

6 1 + kt2
1

Un2�

∑
x∈Q��
x′∈Q��′

|Cx ∩ Q��‖Cx′ ∩ Q��′ |;

where we used point (c) of Proposition 7 in the last inequality. Thus, as J ∈�good(M;
L; �′) we can use Assumption 1 and obtain the result.
(viii) We have

∑
x∈�j

∥∥∥∥∥∥∇x


CQ ∑

y∈�j\Q
[3(	(y))− 	(y)]



∥∥∥∥∥∥
2

∞

6 |�j‖�j \ Q|2∇C2 + |�j \ Q|C2

so that by Proposition 23 and (31) the result follows.
In order to prove the analogous bound for the multi-canonical measure �, we observe

that e.g. the function G3 can be written as G3 =G1
3 +G2

3, where G
1
3 and G2

3 have the
same expression of G3 but with the sum over x restricted to two halves of the set �j.
Then

�(etG3)6 �(e2tG
1
3)1=2�(e2tG

2
3)1=2

and we can apply to each terms the bound (see Proposition 11)

�(e2tG
i
3)6B3(e2tG

i
3); i = 1; 2:

The Lnal result follows at once from the bound on the grand canonical expectation.

7. On the covariance of f 2 with sums of local functions

Fix �∈ (0; 1) and l∈ [2L�; L]. We then consider a volume �∈R�
L(l) such that �=⋃ jmax

j=1 �j, where �j ∈R�
L(l) and |�j|=|�|¿ � for j=1; : : : ; jmax. Let N := {Nj} jmax

j=1 be a

set of possible values of N� := {N�j} jmax
j=1 and deLne /j = Nj=|�j|. We deLne 3 :=3.;��

and � : =�.�;N.
In this section we discuss some important bounds on covariances of the form

�(f2; G)2 where f an arbitrary function with �(f2) = 1 and G =
∑

x∈�j gx for some
16 j6 jmax, where gx = Ugx or gx = g̃x where Ugx and g̃x (deLned later in 61) are local
functions.
In the recursion approach (developed in Section 5), we need to bound �(f2; G)2 in

terms of the only quantities that enter in the logarithmic Sobolev inequality, namely
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the entropy Ent�(f2) and the Dirichlet form E�(f;f). But we want to keep track of
the right dependence on the volume and in particular, Ent�(f2) must appear multiplied
by a very small constant times the volume. More precisely, we expect a bound of the
form

�(f2; G)26 |�j|(CFl2E�(f;f) + FEnt�(f2)); (36)

where F is a small number. In order to appreciate the diNculty of the problem, we
notice that, since f enters as f2, one of the natural tool to bound covariances, namely
Schwarz inequality, becomes useless since no Lp-norm of f, p¿ 2, enters into the
logarithmic Sobolev inequality. This is precisely one of the main technical diPerence
and new challenge between the PoincarAe inequality (where f appears linearly) and the
logarithmic Sobolev inequality for conservative stochastic dynamics.
A natural counterpart to Schwarz inequality in this context is the so-called entropy

inequality that can be stated as follows.

Lemma 25. Let (+;F; 3) be a probability space. Then; for any t ¿ 0 and any real-
valued functions f;G on + with 3(f2) = 1;

3(f2G)6
1
t
ln (3(etG)) +

1
t
Ent3(f2): (37)

Proof. It is an immediate consequence of Jensen inequality.

As �(f2; G) is a covariance, we can assume that G is of zero mean w.r.t. to 3 and at
the light of Section 6, it is natural to expect a Gaussian bound of the Laplace transform
of the form �(etG)6 et

2C|�j| for some constant C. The entropy inequality (37) gives

�(f2G)6 tC|�j|+ 1
t
Ent�(f2):

Optimizing over the free parameter t, namely t2 = 1=C|�j|Ent�(f2), we get

�(f2G)26 4C|�j|Ent�(f2): (38)

Let us explain more precisely how we plan to use the results of Section 6 and the
entropy inequality. First observe that Section 6 gives bounds on the Laplace transform
of G under the assumption that 3(G) = 0. Moreover, the resulting estimates are dis-
torted Gaussian bounds because of the presence of an extra constant B in front of the
exponential. Thus, in reality, (38) is slightly more complicated. We have the following
lemma.

Lemma 26. Let f with �(f2) = 1 and K a constant. Then;

(i) If t2∗ = (1=|�j|)(1 ∨ K Ent�(f2)) and �(et∗G)6Bet
2
∗C|�j| for some constants B

and C;

�(f2G)26 k|�j|
[
C2 + 1 +

(
KC2 +

1
K

)
Ent�(f2)

]
:
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(ii) If t2∗ = (K=|�j|)(Ent�(f2))¿ 1=|�j| and �(et∗G)6Bet
2
∗C|�j| for some constants B

and C;

�(f2G)26 k|�j|
[
(logB)2 +

(
KC2 +

1
K

)
Ent�(f2)

]

for a suitable constant k depending only on B (and in particular independent
of L).

Proof. The proofs of (i) and (ii) are similar. We only deal with point (i). By the
entropy inequality (Lemma 25) applied to t = t∗; we get

�(f2G)26
[
1
t∗

log (�(et∗G)) +
1
t∗
Ent�(f2)

]2

6 3
1
t2∗
(logB)2 + 3t2∗C

2|�j|2 + 3
1
t2∗
Ent23(f

2):

Let us examine the three terms separately.
By deLnition of t∗ we have t2∗¿ 1=|�j|, thus 3 (logB)2=t2∗6 k|�j|.
Next, 3t2∗C

2|�j|26 k|�j|[C2 + KC2 Ent3(f2)].
Finally, if t2∗ = 1=|�j| then K Ent3(f2)6 1, hence, in this case

1
t2∗

Ent23(f
2) = |�j|Ent23(f2)6 |�j|Ent3(f

2)
K

:

The same result holds obviously if t2∗ = (1=|�j|)K Ent�(f2). Putting all together point
(i) is proved.

Let us continue our informal discussion. Suppose that t∗¿K where t∗ and K are
deLned in Lemma 26. We certainly have t2∗ = (K=|�j|)Ent�(f2) for |�j| large enough,
thus |�j|6 (1=K)Ent�(f2). Then, trivially,

�(f2G)26 ‖G‖2∞6 ‖g‖2∞|�j|26 ‖g‖2∞
1
K
|�j|Ent�(f2) (39)

which is like (38) but with a smaller constant in front of |�j|Ent�(f2) if K is large
enough. In other words, if t∗¿K a simple L∞ estimate gives a better result than the
entropy bound.
In order to understand this point we remark that, on the basis of the central limit

theorem and for “normal” values of the particle density in �j, one expects the dis-
tribution dP(G) of the random variable

∑
x∈�j gx to be close to a centered Gaussian

with variance proportional to |�j|. If this is the case, then, for t large enough, the
distorted distribution dPt(G) ˙ etG dP(G) becomes concentrated on the largest value
of G and the Gaussian bound �(etG)6 et

2K|�j| becomes unnatural and certainly worst
than the trivial one �(etG)6 et‖G‖∞ . On the contrary, for “moderate” values of t, the
distortion only moves the center of the Gaussian and in this case the entropy inequality
will perform better.
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Thus, in what follows, our strategy will always be, roughly speaking, the following.
Depending on the ratio between the entropy and the volume, we will either apply the
entropy bound with the optimal t and appeal several times to the results of Section
6 and Lemma 26 or we will apply the trivial L∞ bound. It remains to explain how
we get in both cases a small constant in front of the entropy. For large values of the
entropy it will follow quite easily from the results of Section 6. In the other cases
we will have to appeal to a partial average argument, almost identical to the one used
in Lu and Yau (1993), Cancrini and Martinelli (2000b) and Cancrini et al. (2002a)
under the name of “two–blocks estimates”, in order to reduce the Vuctuations of the
function G. It is at this point that appears the “spurious” � in our estimate L2+� of the
logarithmic Sobolev constant.
Our proof follows essentially the same lines of the one given in Cancrini et al.

(2002a) for the translation invariant interaction under a mixing condition, but with
some important diPerence due to the presence of clusters where the particle variables
are strongly interacting. In particular, the main diNculty and challenging point with
respect to the proof given in Cancrini et al. (2002a) is the lack of translation invariance
property.
We now explain more precisely our results.

7.1. Low-density case

Here we discuss our Lrst result in the low-density regime.

Proposition 27. Assume there exists a constant k = k(�;M; �)¿ 0 such that

3(|gx|)6 k/2j‖g‖∞ ∀x∈�j such that dist(x; �cj)¿ 2r;

3(|gx|)6 k/j‖g‖∞ ∀x∈�j such that dist(x; �cj)6 2r:

‖G‖∞6 kNj

Then; for any F¿ 0; there exists CF and /0 such that for all /j ¡/0; for all function
f with �(f2) = 1;

�(f2; G)26Nj(CF + FEnt�(f2))

for L large enough.

Proof. For every �; there exists /0(�) such that the standard low activity expansion
hold (see Simon; 1993) so that the proof is the same of that one of Proposition 6.2 of
Cancrini et al. (2002a).

7.2. Normal density

Here we treat instead the case of “normal” density /j, namely we assume that
/j¿ /0 for some constant /0 independent of L. Let �′ = �=[d(3b + 2)] where b is
deLned in Corollary 19.
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Proposition 28. Assume that J ∈�good(L;M; �′). Then; for any F¿ 0; there exists a
positive constant CF and L0(M; �′; F) such that for all /06 /j6 1

2 ;

�(f2; G)26 |�j|[CF + CFl2L�E�(f;f) + FEnt�(f2)];

for all L¿L0.

Remark 29. We explain brieVy here why in the estimate of the inverse of the spectral
gap (ISG) in Cancrini and Martinelli (2001) the factor L� does not appear. Studying
the ISG one has to estimate �(f;G)2 in terms of the Dirichlet form and the variance
instead of �(f2; G)2 in terms of the Dirichlet form and the entropy. As explained at
the beginning of this section since f enters as f2; a natural tool to bound covariances;
namely Schwarz inequality; becomes useless since no Lp-norm of f; p¿ 2; enters into
the logarithmic Sobolev inequality and a natural counterpart is the entropy inequality
(37). As a consequence; already in the standard Ising model with a high temperature
mixing condition; a factor L2 appears in front of the Dirichlet form (compare Cancrini
and Martinelli (2000b; Proposition A.1) to Cancrini et al. (2002a; Proposition 6.3)
or see Cancrini et al. (2002b)). Furthermore; roughly speaking; when the dilute Ising
model under the percolation threshold is considered; the fact that the homogeneity
properties hold only from scale L to scale L� produces in any case a factor L� in front
of the Dirichlet form. This does not aPect the diPusive estimate of the ISG.

Proof. Fix f with �(f2) = 1; together with F¿ 0; /0¿ 0 and K large enough (how
large will be speciLed later on).
As usual, in what follows, k will always denote a generic positive numerical con-

stant depending only on M; �′; �; r; d; ‖g‖∞; /0 and whose value may vary in diPerent
estimates.
DeLne

t2∗ :=
1

|�j| (1 ∨ K Ent�(f2)): (40)

If t∗¿K , then, by deLnition of G and t∗, according to the general discussion above,
we can safely apply an L∞ bound to get

�(f2; G)26 2‖G‖2∞6 k|�j|26 k|�j|
(
Ent�(f2)

K
∨ 1

)
:

And the proof is Lnished provided that K was taken large enough.

Let us now examine the much more complicate case of t∗6K .
As in Section 6, let {Q�}�∈I be a collection of cubes of side l0 = L�

′
inside �j,

such that for any � 	= �′, d(Q�; Q�′)¿ 3M log L, for any �∈ I , d(Q�; @�j)¿ 3M log L,
Q :=

⋃
� Q� and |�j\Q|6 (log L=l0)|�|. Clearly such a construction is always possible.

We deLne also Qint
� = {x∈Q� : d(x; Qc�)¿ 3M log L} and Qint =

⋃
� Q

int
� .

Next we observe that, without loss of generality, we can replace gx by gx−!	(x), !
being an arbitrary constant independent of x, because

∑
x∈�j 	(x)=Nj �-almost surely.

Our choice of ! will be made later.
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Finally we set g!x(	) := gx(	)− !	(x) and

Gext =
∑

x∈�j\Qint

[g!x − 3(g!x)];

Gint = G − Gext =
∑
x∈Qint

[g!x − 3(g!x)]:

Then we write

�(f2; Gext)26 2�(f2Gext)2 + 2�(Gext)26 k|�j|
[(

c(L) log L
l0

)2

+
(log L)2

l0
+ 1

+

[
K

(
c(L) log L

l0

)2

+
1
K

]
Ent�(f2)

]

6 |�j|(CF + FEnt�(f2)):

Here we have applied Lemma 26 together with point (i) of Proposition 24 to bound
the Lrst term and point (a) of Proposition 9, Assumption 1 and |�j \Q|6 (log L=l0)|�|
to bound the second one. The last inequality holds if we choose Lrst K and then L
suNciently large.
We now turn to the relevant term �(f2; Gint)2.
Let F0 be the 	-algebra generated by the random variables {	(x)}x∈�\⋃� Q�

; {N�}�∈I ,
where N�(	) :=

∑
x∈Q� 	(x). Then, by the formula for the conditional covariance, we

get

�(f2; Gint
! )26 2�(�(f2; Gint|F0))2 + 2�(f2; �(Gint|F0))2: (41)

For simplicity let �0(·) := �(·|F0), f2
0 :=f

2=�0(f2). Notice that �0 is the product of the
standard canonical measures on each cube Q� with a certain number of particles and
boundary conditions. To bound the Lrst term in the r.h.s. of (41) we use the entropy
inequality (37)

�0(f2
0 ; G

int)6
1
t
ln (�0(et(G

int−�0(Gint)))) +
1
t
Ent�0 (f

2
0): (42)

To estimate the argument of the logarithm we need some result. Using the classical
tensorization property of the entropy for a product measure (see for instance, AnAe
et al., 2000, Chapter 1) we have

Ent�0 (e
t(Gint−�0(Gint)))6

∑
�∈I

�0(e
t
∑

� �=� (G
int
� −��(Gint

� )) Ent��(e
t(Gint

� −��(Gint
� ))));

where for any �∈ I , Gint
� :=

∑
x∈Qint

�
[g!x − 3(g!x)].
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Now, for each cube, �� satisLes a logarithmic Sobolev inequality. More precisely by
Corollary 19 we have

Ent��(e
t(Gint

� −��(Gint
� )))6 kldb0 E��(e

t=2(Gint
� − ��(Gint

� )); et=2(Gint
� − ��(Gint

� )))

= k ldb0
∑

[x;y]∈Qa
��([∇xyet=2(Gint

� − ��(Gint
� ))]2)

6 kld(b+2)
0 t2��(et(G

int
� −��(Gint

� )))

so that

Ent�0 (e
t(Gint−�0(Gint)))6 kld(b+2)

0
|�j|
ld0
t2 �0(et(G

int−�0(Gint))): (43)

We can now use the following lemma.

Lemma 30. Let (+;F; 3) be a 8nite probability space and f a function on +. Assume
that there exists K ¿ 0 such that for all t ∈ [0; t0];

Ent3(etf)6Kt23(etf):

Then; for all t ∈ [0; t0];

3(etf)6 et3(f)+Kt
2
:

This property is known as the Herbst argument. See Cancrini et al. (2002a, Lemma
5.2) for the proof (see also AnAe et al., 2000, Chapter 7).
By this result applied to (43), we have that the argument of the logarithm in (42)

can be bounded by

�0(et(G
int−�0(Gint)))6 et

2kld(b+1)
0 |�j|:

We now choose t = s∗ where s2∗ :=K=|�j|Ent�0 (f2
0) and obtain

�0(f2
0 ; G

int)26 k|�j|l2d(b+1)
0

(
K +

1
K

)
Ent�0 (f

2
0):

Using once more Corollary 19, we get that for any �; �� satisLes the logarithmic
Sobolev inequality Ent��(f

2
0)6 kldb0 E��(f0; f0). As �0 is a product measure, we get

Ent�0 (f
2
0)6 kldb0 E�0 (f0; f0) (see AnAe et al., 2000, Chapter 3), and we can conclude

that

�(�(f2; Gint|F0))26 kld(3b+2)
0 |�j|E�(f;f):

Finally, by our choice of �′, we certainly have ld(3b+2)
0 6L�. This complete the proof

for the term �(�(f2; Gint|F0))2.
The second term in the r.h.s. of (41) needs some more reductions. We recall Lrst

some deLnitions introduced in Section 4.
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Given 2∈+�j and s∈ [0; : : : ; ld0 ], write 3
2;�(2; s)
Q� (·) to denote the grand canonical Gibbs

measure on Q� with boundary condition 2 and constant chemical potential �(2; s) such
that 32;�(2; s)Q� (NQ�) = s. We will use the standard notation �2Q�;s for the corresponding
canonical Gibbs measure. With this notation we deLne (see (28)),

J!�(2; n) =
∑
x∈Qint

�

3�(2;n)Q� (gx − !	(x)); J!�(2) := J
!
�(2; NQ�(2));

g!�(2; n) =
∑
x∈Qint

�

�2Q�;n(gx − !	(x)); g!�(2) := g
!
�(2; NQ�(2)):

Next we deLne

G�(2) :=
∑
�

[g!�(2)− 3(g!�)];

G3(2) :=
∑
�

[J!�(2)− 3(J!�)]:

Then we write

�(f2; �(Gint|F0))2 = �(f2; G�)2

6 4�(f2(G� − G3))2 + 4(�(G� − G3))2 + 2�(f2; G3)2: (44)

Let us examine the three terms separately. Using Lemma 26 combined with point (ii)
of Proposition 24, we can bound the Lrst term by

4�(f2(G� − G3))26 k|�j|
[
A2

l2d0
+ 1 +

(
K
A2

l2d0
+

1
K

)
Ent�(f2)

]
; (45)

where A is the constant appearing in Proposition 24.
Because of point (a) of Proposition 9, as J ∈�good(L;M; �′) Assumption 1 and the

above deLnitions we have

|�(G� − G3)|6
∑
�∈I

|�(g!�)− 3(g!�)|+ |�(J!�)− 3(J!�)|

6 k
∑
�∈I

ld0

∑
x∈ UQ�

|Cx ∩ UQ�|3
|�j| 6 kld0 : (46)

Therefore, (�(G�−G3))26 k|�j|. In conclusion, by a suitable choice of K and L large
enough we get

4�(f2(G� − G3))2 + 4(�(G� − G3))26 |�j|(CF + FEnt�f2) (47)

for a suitable constant CF.
So, it remains to bound the last term in the r.h.s. of (44). We deLne

J!�(s) := J
!
�(0; s) and G0

3(2) :=
∑
�∈I

J!�(NQ�(2))− 3(J!�):
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We can thus write

�(f2; G3)26 2�(f2; G3 − G0
3)

2 + 2�(f2; G0
3)

2: (48)

By point (i) of Lemma 26 and point (iii) of Proposition 24 together with |�(G3 −
G0
3)|6 kld0 (see (46)), for the Lrst term in the r.h.s. of (48) we have

�(f2; G3 − G0
3)

26 2�(f2(G3 − G0
3))

2 + 2�(G3 − G0
3)

2

6 k|�j|
[
(log L)4 c(L)

l20
+ 1 +

(
K
(log L)4 c(L)

l20
+

1
K

)
Ent�(f2)

]

6 |�j|(CF + FEnt� f2)

taking Lrst K and then L large enough.
We are now left with the bound of the second term in the r.h.s. of (48). It is at this

point that the subtraction with the free parameter ! made at the beginning becomes
important. We deLne

! :=
E[|C0|−13�0C0

(
∑

x∈C0
gx; NC0 )]

E[C0|−13�0C0
(NC0 ; NC0 )]

and !� :=
30; �(0; Un�)Q� (

∑
x∈Qint

�
gx; NQ�)

30; �(0; Un�)Q� (NQint
�
; NQ�)

; (49)

where �0 = �0(�j; Nj) is the chemical potential such that E(|C0|−132;�0C0
(NC0 ))=Nj=|�j|

and C0 is a Lxed cluster of �j, and Un� :=3(NQ�). By deLnition and the fact that
E(|C0|n)6 k for p¡pc (see e.g. Grimmett, 1999), we have !6 k (uniformly in L).
We deLne J!�� by replacing ! with !�, then by the above deLnitions we have

J!�(n�)− J!�( Un�) = (!− !�)(n� − Un�) + J!�� (n�)− J!�� ( Un�)

so that the second term in the r.h.s of (48) can be bounded by

2 �

(
f2;

∑
x∈I

(!− !�)(n� − Un�)

)2

+ 2�

(
f2;

∑
�∈I

[J!�� (n�)− J!�� ( Un�)]

)2

6 4�

(
f2

∑
�∈I

(!− !�)(n� − Un�)

)2

+ 4�

(∑
�∈I

(!− !�)(n� − Un�)

)2

+ 2�

(
f2;

∑
�∈I

[J!�� (n�)− J!�� ( Un�)]

)2

: (50)

Using the fact that J ∈�good(M; L; �′) it is easy to prove that

|!− !�|6 k
ld�′0

: (51)

For any �∈ I , let {Q��}�∈I� be a chessboard-like partition of Q� into cubes of side
l1=l�

′
0 . It is easy to see that we can partition the indexes I� into 2d subsets {I�; i}2di=1 in
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such a way that min� �=�′∈I�; i d(Q��; Q��′)¿ l1. Then, for each �, we arrange in regular
order the collection of cubes {Q��}� with respect to � in such a way that we can
write

∑
�

∑
�=

∑
�

∑
�. We deLne n�� :=NQ�� and Un�� :=3(NQ��), D� := ! − !a and

F�� := n�� − Un��. The Lrst term in the r.h.s. of (50) can be written as

2d∑
i=1

�


f2

∑
�∈I
�∈Ii

D�F��


6 k|�j|

[
A2

l4d1
+ 1 +

(
KA2

l4d1
+

1
K

)
Ent�(f2)

]

6 |�j|(CF + FEnt� f2); (52)

where we used point (v) of Proposition 24 and the fact that by (51) and the above
deLnition of l1 we have D := sup�∈I D�6 kl−d1 to apply Lemma 26 and obtain the Lrst
inequality and we took Lrst K and then L large enough to obtain the second one.
Using point (a) of Proposition 9 the second term in (50) is bounded by

kD2

(∑
�∈I

∑
x∈Q� |Cx|
|�j|

)
6

k
l2d1
:

To bound the third term in (50) we are (unfortunately) forced to distinguish between
two sub-cases.

(a) t∗6K=ld0 .
We have

�

(
f2;

∑
�∈I

[J!�� (n�)− J!�� ( Un�)]

)2

6 2�

(
f2

∑
�∈I

[J!�� (n�)− 3(J!�� (n�))]

)2

+ 2

[∑
�∈I

(
�(J!�� (n�))− 3(J!�� (n�))

)]2

6 2�

(
f2

∑
�∈I

[J!�� (n�)− 3(J!�� (n�))]

)2

+ kl2d0 ; (53)

where we used point (a) of Proposition 9 to obtain the second inequality. By point
(iv) of Proposition 24 we can apply Lemma 26 and obtain that (53) can be bounded
by

k|�j|
[
A2

l2d0
+ 1 +

(
KA2

l2d0
+

1
K

)
Ent�(f2)

]
+ kl2d0 6 |�j|(CF + FEnt�(f2))

taking K and then L large enough.
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(b) K=ld06 t∗6K .
In this case we can assume, without loss of generality, that |�j| is large enough so

that t2∗=(1=|�j|)K Ent�(f2). By the deLnition of !� (49) we have that dJ!�;0� =ds(s)|s= Un�=
0, then

|J!�� (n�)− J!�� ( Un�)|=
∣∣∣∣
∫ n�

Un�
ds

∫ s

Un�
dt

d2

dt2
J!�� (t)

∣∣∣∣6 k
(n� − Un�)2

Un�
;

where we used Proposition 8 to obtain the last inequality. Here n�(2) :=NQ�(2) is the
number of particles inside Q�. We thus have

�

(
f2;

∑
�∈I

[J!�� (n�)− J!�� ( Un�)]

)2

6 2�

(
f2

∑
�∈I

(
(n� − Un�)2

Un�

)2
)2

+ 2

[∑
�∈I

�
(
(n� − Un�)2

Un�

)]2

6 2�

(
f2

∑
�∈I

(n� − Un�)2

Un�

)2

+ k
( |�j|
ld0

)2

; (54)

where we used point (a) of Proposition 9 and point (c) of Proposition 7 to obtain the
last inequality. Then, as t2∗¿K=ld0 , it follows that |�j|=l2d0 6Ent� f2=K . We are thus
left with the Lrst term in r.h.s. of (54).

Lemma 31. Assume that J ∈�good(L;M; �′). Then; for any F¿ 0; there exists a
positive constant CF and L0(M; �′; F) such that for all /06 /j6 1

2 ;

�

(
f2

∑
�∈I

(n� − Un�)2

Un�

)2

6 |�j|[CF + CFl2L�E�(f;f) + FEnt�(f2)]:

Proof. The main diNculties here with respect to the proof given in Cancrini et al.
(2002a) are the lack of invariance by translation and the presence of clusters of volume
log L; that is; dependent of L. Indeed; we cannot reduce the problem until cubes of
side l0 independent of L simply because our Assumptions 1–3 (see Section 4.2) should
not hold in this case. Hence; for technical reasons; we must take care very carefully
to all the resulting terms that appear in our reduction. We are forced once more to
distinguish between two cases.
(c) K=ld06 t∗6K=ld1 .
For any �∈ I we introduce a chessboard-like partition of Q� into cubes of side l1=l�

′
0

as we did to obtain (52).

�

(
f2

∑
�

(n� − Un�)2

Un�

)2

= �


f2

∑
�∈I

1
Un�


 2d∑
i=1

∑
�∈Ii

F��



2



2

6 2d
2d∑
i=1


�


f2

∑
�∈I

1
Un�


∑
�∈Ii

F��



2

− 3




∑
�∈Ii

F��



2





2
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+


∑
�∈I

1
Un�
3




∑
�∈Ii

F��



2




2


6 2d
2d∑
i=1

�


f2

∑
�∈I

1
Un�


∑
�∈Ii

F��



2

− 3




∑
�∈Ii

F��



2





2

+ k
( |�j|
ld0

)2

; (55)

where we used point (a) of Proposition 7, as J ∈�good(L;M�′) Assumption 1 to obtain
the last inequality. Again as t2∗¿K=ld0 , it follows that |�j|=l2d0 6Ent�f2=K . We are
thus left with the Lrst term in r.h.s. of (55). We have, for a Lxed i,

�


f2

∑
�∈I

1
Un�


∑
�∈Ii

F��



2

− 3




∑
�∈Ii

F��



2





2

6 2�


f2

∑
�∈I

1
Un�

∑
�∈Ii

(F2
�� − 3(F2

��))




2

+ 2�


f2

∑
�∈I

1
Un�

∑
�;�′∈Ii
� �=�′

(F��F��′ − 3(F��F��′))




2

: (56)

By point (v) and (vi) of Proposition 24 and we can apply Lemma 26 and the Lrst
term on the r.h.s of (56) can be bounded by

k|�j|
[
(logB)2 +

(
KA2l2d1
l2d0

+
1
K

)
Ent�(f2)

]
6 |�j|[CF + FEnt�(f2)];

where we took K and then L large enough in the last inequality.
Now, we recall that for each � we arranged in regular order the collection {Q��}�

with respect to � in such a way that we can write

�


f2

∑
�∈I

1
Un�

∑
�;�′∈Ii
� �=�′

(F��F��′ − 3(F��F��′))




2

=



∑
�∈Ii

�


f2

∑
�

1
Un�

∑
�′∈Ii
�′ �=�

(F��F��′ − 3(F��F��′))





2
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6
1
s2



∑
�∈Ii

Ent�(f2)+log
∏
�∈Ii

�


exp



s
∑
�∈I

∑
�′∈Ii
�′ �=�

(F��F��′ − 3(F��F��′))








2

6
[
1
t∗
(logB+ Ent�(f2)) + t∗

A|�j|
ld1

]2
6 |�j|

[
CF + FEnt�(f2)

]
;

where we used the entropy inequality (37) to obtain the Lrst inequality, we chose
s= t∗ld0 =l

d
16Kld0 =l

2d
1 and used point (vii) of Proposition 24 to obtain the second one,

and we used that t2∗ = (K=|�j|)Ent�(f2) together with t∗¿K=ld0 and took K and then
L large enough to obtain the last one.
(d) K=ld16 t∗6K .
By point (c) of Proposition 7 together with Assumption 1 and t2∗=(K=|�j|)Ent�(f2)

¿K=ld0 we have

∑
�∈I

3
(
(n� − Un�)2

Un�

)
6 k

( |�j|
ld0

)2

6
|�j|
K

Ent�(f2)

and

�

(
f2

∑
�∈I

(n� − Un�)2

Un�

)2

6 2 �

(
f2

∑
�∈I

[
(n� − Un�)2

Un�
− 3

(
(n� − Un�)2

Un�

)])2

+ k
|�j|
K

Ent�(f2): (57)

To bound the Lrst term in the r.h.s. of (57) we need some reductions. Let 〈·〉 denote
the average (normalized sum) over the cubes {Q�}�∈I so that 〈n�′〉 := (1=|I |)∑�′∈I n�′
where |I | is the number of cubes in �j.

(n� − Un�)2

Un�
=
n�
Un�

(n� − 〈n�′〉+ 〈n�′〉 − 〈 Un�′〉+ 〈 Un�′〉 − Un�) + n� − Un�:

Thus, the Lrst term in the r.h.s. of (57) can be bounded by

4
|I |2

[ ∑
�;�′∈I

�
(
f2 n�

Un�
(n� − n�′)− 3

(
n�
Un�
(n� − n�′)

))]2

+ 4�

(
f2

∑
�′∈I

〈
n�
Un�

〉
(n�′ − Un�′)− 3

(〈
n�
Un�

〉
(n�′ − Un�′)

))2

:

+4�

(
f2

∑
�∈I

〈 Un�′〉 − Un�
Un�

(n� − Un�)

)2

+ 4�

(
f2

∑
�∈I

(n� − Un�)

)2

: (58)



200 N. Cancrini, C. Roberto / Stochastic Processes and their Applications 102 (2002) 159–205

To apply Lemma 26 to the second and fourth term in (58) we need to bound

�(et[CQ
∑

�∈I (n�− Un�)−3(CQ
∑

�∈I (n�− Un�)));

where CQ=〈n�= Un�〉 or CQ=1; as �-a.s.
∑

x∈�j 	(x)=Nj=
∑

x∈�j 3(	(x)) we certainly
have

∑
�∈I (n� − Un�) =

∑
x∈�j\Q(3(	(x))− 	(x)). Thus, in both cases,

�(et(CQ
∑

�∈I (n�− Un�)−3(CQ
∑

�∈I (n�− Un�)))6B et
2A|�j|c(L) log L=l0 ;

where we used point (viii) of Proposition 24 to obtain the last inequality. Thus, by
Lemma 26 the second and fourth term can be bounded by

k|�j|
[
(logB)2+

(
K
(
Ac(L) log L

l0

)2

+
1
K

)
Ent�(f2)

]
6 |�j|

[
CF + FEnt�(f2)

]
;

where we used that c(L) = eA(log L)
(d−1)=d

and we took K and then L large enough.
For the third term in (58) we can proceed as for the Lrst term in (50) (see (52))

with D� := (〈 Un�′〉 − Un�)= Un�.
Therefore, we can focus our attention on the Lrst term of the r.h.s. of (58). First we

observe that by point (a) of Proposition 9 and Assumption 1, we can safely write

1
|I |2

[ ∑
�;�′∈I

�
(
f2 n�

Un�
(n� − n�′)− 3

(
n�
Un�
(n� − n�′)

))]2

6
1
|I |2

[ ∑
�;�′∈I

�
(
f2;

n�
Un�
(n� − n�′)

)]2

+ kl2d0 :

At this stage we cannot appeal to the same old argument based on the entropy
inequality and we must proceed diPerently. Following Yau (1996) we introduce F�;�′ ,
the 	-algebra generated by the random variables {	(x)}x∈�\(Q�∪Q�′ ), and we write∣∣∣∣�

(
f2;

n�
Un�
(n� − n�′)

)∣∣∣∣6
∣∣∣∣�

(
�
(
f2;

n�
Un�
(n� − n�′)|F�;�′

))∣∣∣∣
+

∣∣∣∣�
(
f2; �

(
n�
Un�
(n� − n�′)|F�;�′

))∣∣∣∣ : (59)

DeLne ���′(·) := �(·|F��′). We have∣∣∣∣���′
(
n�
Un�
(n� − n�′)

)∣∣∣∣6 1
Un�
���′(n2�)

1=2���′((n� − n�′)2)1=26 kld(1−�
′)

0 ;

where as J ∈�good(M; L; �′) we used Assumption 2 to obtain the last inequality. Thus,
the second term in the r.h.s. of (59) can be bounded by

k
( |�j|
ld1

)2

6 |�j| kK Ent�(f2);

where we used t2∗ = K=|�j|Ent�(f2)¿ (K=ld1)
2 in the last inequality.
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We now consider the Lrst term in the r.h.s. of (59). DeLne

E��′(f;f) :=
∑

x;y∈Q�∪Q�′
�((∇xyf)2|F��′):

By Corollary 19,

�(f;f|F��′)6 klb0E��′(f;f) ∀f:

Thus, ∣∣∣∣�
(
f2;

n�
Un�
(n�−n�′)|F��′

)∣∣∣∣62
∥∥∥∥n�Un� (n�−n�′)

∥∥∥∥
∞
(�(f;f|F��′))1=2(�(f2|F��′))1=2

6 kl
d+ b2
0 (E��′(f;f))1=2(�(f2|F��′))1=2:

Schwarz inequality yields

�
(∣∣∣∣�

(
f2;

n�
Un�
(n� − n�′)|F��′

)∣∣∣∣
)
6 kld+b=20 �(E��′(f;f))1=2: (60)

Finally, from (60), we get that the Lrst term in the r.h.s. of (58) is bounded from
above by

1
|I |2

[ ∑
�;�′∈I

�
(
f2;

n�
Un�
(n� − n�′)

)]2

6 kl2d+b0

∑
�;�′∈I

� (E��′(f;f)) + k
( |�j|
ld�0

)2

6 kl2d+b0

∑
�;�′∈I

�


 ∑

x;y∈Q�
���′([∇x;yf]2) +

∑
x;y∈Q�′

���′([∇x;yf]2)

+
∑
x∈Q�
y∈Q�′

���′([∇x;yf]2)


+

k
K

|�j|Ent�(f2)

6 kl2d+b0 |�j| (l20 + l2)E(f;f) +
k
K
|�j|Ent�(f2)

since t∗¿K=ld1=K=l
d�′
0 . Above we have used twice the “path” bound

∑
x;y∈�j �(∇xyf)2

6 kld+2E�(f;f) given in Section 4.9. Then, by our choice of �′, l2d+b0 6L�, by choos-
ing K large enough we get the sought result also in this case.
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7.3. Applications

Here we discuss the applications of the above results which are relevant for the
proof of the main theorem (see Section 5.2.2).
Fix i; j∈{1; : : : ; jmax} with i 	= j and let /=(Nj+Nj)=(|�j|+|�j|). Clearly (!0=2)(/i+

/j)6 /6 /i + /j where /i and /j are the densities in �i and �j and !0 is deLned
in the general setting of Section 4. Without loss of generality we assume that /i6 /
which implies /j¿ /i. Let also

g̃x(	) = [e−∇xH.(	) − 1]	(x); G̃ :=
∑
x∈�i

g̃x; (61)

Ugx(	) = [e−∇xH.(	) − 1](1− 	(x)); UG :=
∑
z∈�j

Ugz:

Notice that g̃x satisLes the hypotheses of Proposition 27 simply because g̃x=0 if there
are less than two particles (spins equal to 1) inside its support. Similarly Ugz=0 if there
is less than one particle inside its support. In particular ‖ UG‖∞6 kNj.

We recall that �′ = �=d(3b+ 2) where b is deLned in Corollary 19.

Proposition 32. Assume that J ∈�good(L;M; �′). Then, for any F¿ 0, there exists a
positive constant CF and L0(M; �′; F) such that for any f with �(f2) = 1

(i) if /6 /0

�


f2;

∑
x∈�i
z∈�j

g̃x Ugz




2

6 /|�|3 [CF + FEnt�(f2)]:

(ii) if /¿/0

�


f2;

∑
x∈�i
z∈�j

g̃x Ugz




2

6 |�|3[CF + CFl2L�E�(f;f) + FEnt�(f2)]

provided that |�| is large enough.

Proof. The proof is identical of that one of Cancrini et al. (2002a, Proposition 6.5)
using Propositions 27 and 28 instead of Propositions 6.2 and 6.3 of Cancrini et al.
(2002a).
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Appendix

In this appendix we give a direct and simple bound of the l.h.s. of (24) in the
particular case where there are a Lnite number of clusters of size greater than one
inside �. We refer the reader to Section 5.2 for notations. We assume that /A¿/0
for a Lxed /0.

As mentioned in Section 5.2, to obtain inequality (24), we must bound

1
|�|4 �̂n−1


f2;

∑
x∈S
z∈A\S

(e−∇xzH� − 1)5Ezx




2

:

Let IS (resp. IA\S , IA) be the set of clusters of size greater than one that intersect S
(resp. A \ S; A). In particular, for all i∈ IA; |Ci|¿ 2 and IA = IA\S ∪ IS .

Then, by deLnition of H�; e−∇xzH� −1=0 unless there exists i∈ IA such that {x; z}∩
Ci 	= ∅. Thus,∑

x∈S
z∈A\S

(e−∇xzH� − 1) =
∑
x∈S

∑
i∈IA\S

∑
z∈Ci

(e−∇xzH� − 1) +
∑
z∈A\S

∑
i∈IS

∑
x∈Ci

(e−∇xzH� − 1):

Now, a simple L∞ bound gives

�̂n−1


f2;

∑
x∈S
z∈A\S

(e−∇xzH� − 1)5Ezx




6 k

[
|S‖IA\S | sup

i∈IA\S
|Ci|+ |A \ S‖IS |sup

i∈IS
|Ci|

]
�̂n−1(f2):

Hence, by Assumption 1,

B(n)26
k

|�|4 [|�|
2(log L)2|IA|2�̂n−1(f2)2]:

Then, it comes that

UnS
∑
n

#f(n)B(n)26 k
(log L)2

|�| |IA|2�̂(f2): (A.1)

Finally, if |IA| is independent of L, using inequality (A.1) instead of inequality (24)
the diPusive scaling of the LSC follows.



204 N. Cancrini, C. Roberto / Stochastic Processes and their Applications 102 (2002) 159–205

Remark 33. In general; inequality (A.1) is not sharp enough. Indeed we learn in
Grimmett (1999) that |IA|=O(|�|). Thus inequality (A.1) gives

UnS
∑
n

#f(n)B(n)26 k|�|(log L)2�̂(f2):

The constant k|�|(log L)2 is not sharp enough in order to use it in the recursive proof
(we need not more than constant!).
On the other hand, if one takes care of the size of the clusters, using the results of

Grimmett (1999), one can prove that there are |�|e−km clusters of size m (where k is
a suitable constant), and thus,

UnS
∑
n

#f(n)B(n)26 k|�|�̂(f2):

The improving bound is no more useful.
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