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Abstract We analyze the density and size dependence of the relaxation time
for kinetically constrained spin models (KCSM) intensively studied in the phys-
ics literature as simple models sharing some of the features of the glass transi-
tion. KCSM are interacting particle systems on Z

d with Glauber-like dynamics,
reversible w.r.t. a simple product i.i.d Bernoulli(p) measure. The essential fea-
ture of a KCSM is that the creation/destruction of a particle at a given site
can occur only if the current configuration around it satisfies certain constraints
which completely define each specific model. No other interaction is present
in the model. From the mathematical point of view, the basic issues concern-
ing positivity of the spectral gap inside the ergodicity region and its scaling
with the particle density p remained open for most KCSM (with the notably
exception of the East model in d = 1; Aldous and Diaconis in J Stat Phys 107(5–
6):945–975, 2002). Here for the first time we: (i) identify the ergodicity region
by establishing a connection with an associated bootstrap percolation model;
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(ii) develop a novel multi-scale approach which proves positivity of the spectral
gap in the whole ergodic region; (iii) establish, sometimes optimal, bounds on
the behavior of the spectral gap near the boundary of the ergodicity region
and (iv) establish pure exponential decay at equilibrium for the persistence
function, i.e. the probability that the occupation variable at the origin does not
change before time t. Our techniques are flexible enough to allow a variety of
constraints and our findings disprove certain conjectures which appeared in the
physical literature on the basis of numerical simulations.

Keywords Glauber dynamics · Spectral gap ·Constrained models ·Dynamical
phase transition ·Glass transition

Mathematics Subject Classification (2000) 60K35 · 60K40 · 82B20

1 Introduction

Kinetically constrained spin models (KCSM) are interacting particle systems
on the integer lattice Z

d. A configuration is defined by assigning to each site x
its occupation variable ηx ∈ {0, 1}. The evolution is given by a simple Markov-
ian stochastic dynamics of Glauber type with generator L. Each site waits an
independent, mean one, exponential time and then, provided that the current
configuration around it satisfies an a priori specified constraint which does not
involve ηx, it refreshes its state by declaring it to be occupied with probability
p and empty with probability q = 1 − p. Detailed balance w.r.t. Bernoulli(p)
product measure µ is easily verified and µ is therefore an invariant reversible
measure for the process.

These models have been introduced in physical literature [17,18] to model
liquid/glass transition and more generally the slow “glassy” dynamics which
occurs in different systems (see [31,37] for recent review). In particular, they
were devised to mimic the fact that the motion of a molecule in a dense liquid can
be inhibited by the presence of too many surrounding molecules. That explains
why, in all physical models, the constraints specify the maximal number of par-
ticles on certain sites around a given one in order to allow creation/destruction
on the latter. As a consequence, the dynamics of KCSM becomes increasingly
slow as p is increased. Moreover, there usually exist blocked configurations,
namely configurations with all creation/destruction rates identically equal to
zero. This implies the existence of several invariant measures (see [26] for a
somewhat detailed discussion of this issue in the context of the North-East
model), the occurrence of unusually long mixing times compared to standard
high-temperature stochastic Ising models (see Sect. 7.1 below) and may induce
the presence of ergodicity breaking transitions. Finally we observe that a KCSM
model is in general not attractive so that the usual coupling arguments valid for
e.g. ferromagnetic stochastic Ising models cannot be applied.

The above little discussion explains why the basic issues concerning the large
time behavior of the process, even if started from the equilibrium reversible
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measure µ, are non-trivial and justifies why they remained open for most of
the interesting models, with the only exception of the East model [3]. This is a
one-dimensional model for which creation/destruction at a given site can occur
only if the nearest neighbor to its right is empty. In [3] it has been proved
that the spectral gap of the generator L for the East model is positive for all
q > 0 and, for q ↓ 0, shrinks faster than any polynomial in q (see Sect. 6 for
more details). However, the method in [3] uses quite heavily the specifics of the
model and its extension to higher dimensions or to other models introduced
in physical literature seems to be non trivial. Among the latter we just recall
the North-East model (N-E) [25] in Z

2 and the Fredrickson Andersen j ≤ d
spin facilitated (FA-jf) [17] models in Z

d. For the first, destruction/creation at a
given site can occur only if its North and East neighbors are empty, while for the
FA-jf model the constraint requires that at least j among the nearest neighbors
are empty.

The main results of this paper can be described as follows. In Sect. 2.3,
given a generic KCSM with constraints satisfying few rather mild conditions,
we identify the critical value of the density of vacancies defined as qc = inf{q :
0 is a simple eigenvalue of L} with the critical value of a naturally related boot-
strap percolation model (Proposition 2.5). Notice that a general result on Mar-
kov semigroups (see Theorem 2.3 below) implies that for any q > qc the
reversible measure µ is mixing for the process generated by L. Next, in Sect. 3,
we identify a natural general condition on the associated bootstrap percola-
tion model which implies the positivity of the spectral gap of L (Theorem 3.3)
and therefore exponential decay of correlations. In its simplest form the condi-
tion requires that the probability that a large cube is internally spanned (i.e. the
block does not contain blocked configurations, see Definition 3.4 below) is close
to one. For all the models discussed in Sect. 6 our condition is satisfied for all
q strictly larger than qc. Our findings disprove some conjectures in the physics
literature [19,21], based on numerical simulations and approximate analytical
treatments, on the existence of a second critical point q′c > 0 at which the spec-
tral gap of FAjf ( j � 2) vanishes and below which correlation functions would
decay in a stretched exponential form � exp(−t/τ)β with β < 1.

There are two main strategies in our proofs. The first one is the Bisection-Con-
strained or B-C approach (see Sect. 4), which combines the bisection technique
of [28] with the novel idea of considering auxiliary constrained models on large
length scales with scale dependent constraints. This allows to prove positivity
of the spectral gap provided constraints are satisfied with high probability. The
second one is the Renormalization-Constrained or R-C approach (see Sect. 5),
which consists in a renormalization procedure which allows to map all different
models at any density into a basic KCSM, the so called *-general model. Inside
the ergodicity region and with a proper choice of the size of the blocks, the R-C
procedure leads to the *-general model in a regime in which its constraints are
satisfied with high probability and therefore susceptible to be analyzed via the
B-C method.

At the end of the Sect. 3 we also analyze the so called persistence function F(t)
which represents the probability for the equilibrium process that the occupation
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variable at the origin does not change before time t. In Theorem 3.6 we prove
that, whenever the spectral gap is strictly positive, F(t) must decay exponen-
tially, with characteristic time τF < 1/(q gap(L)). Such a universal upper bound
suggests a dynamical way (alternative to the use of test functions) to obtain
upper bounds on the spectral gap, see Remark 3.7 and the proof of Theorem
6.9 (i). The fact that τF is finite whenever the spectral gap is positive disproves
previous conjectures of a stretched exponential decay F(t) � exp(−t/τ)β with
β < 1 for FA1f in d = 1 [5,6] and for FA2f in d = 2 [21]. For the North-East
model at the critical point where gap = 0 we show instead (see corollary 6.18)
that

∫∞
0 dt F(

√
t) = ∞, a signature of a slow polynomial decay.

After establishing the positivity of the spectral gap, in Sect. 6 we analyze its
behavior as q ↓ qc for some of the models discussed in Sect. 2.3. For the East
model (qc = 0) we significantly improve the lower bound on the spectral gap
proved in [3] and claimed to provide the leading behavior in [34]. Our lower
bound, in leading order, coincides with the upper bound of [3], yielding that the
gap shrinks as qlog2(q)/2 for small values of q.

For the FA-1f model (qc = 0) we show that for q ≈ 0, the spectral gap is
O(q3) in d = 1, O(q2) in d = 2 apart from logarithmic corrections and between
O(q1+2/d) and O(q2) in d ≥ 3. Again these findings disprove previous claims in
d = 2, 3 [6] .

For the FA-2f model (qc = 0) in e.g. d = 2 we get instead

exp(−c/q5) ≤ gap(L) ≤ exp
(
− π2

18q

(
1+ o(1)

))
(1.1)

as q ↓ 0. Notice that the r.h.s. of (1.1) represents the inverse of the critical
length for bootstrap percolation [22], i.e. the smallest length scale above which
a region of the lattice becomes mobile or unjammed under the FA-2f dynamics,
and its square has been conjectured [30,38] to provide the leading behavior of
the spectral gap for small values of q.

As explained above, the techniques developed in this paper are flexible
enough to deal with a variety of KCSM, i.e. with different choices of the con-
straints, even with long range. Furthermore, they can be extend to cover models
with some additional weak static interaction between the occupation variables
[11] and to Kinetically Constrained Lattice Gases (KCLG) [10], namely KCSM
models with a spin-exchange (i.e. conservative) Kawasaki dynamics replacing
Glauber dynamics (see [31,37] for review).

2 The models

2.1 Setting and notation

The models considered here are defined on the integer lattice Z
d with sites

x = (x1, . . . , xd) and basis vectors 
e1 = (1, . . . , 0), 
e2 = (0, 1, . . . , 0), . . . , 
ed =
(0, . . . , 1). On Z

d we will consider the Euclidean norm ‖x‖, the �1 (or graph
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Fig. 1 The various neighborhoods of a vertex x in two dimensions

theoretic) norm ‖x‖1 and the sup-norm ‖x‖∞. The associated distances will be
denoted by d(·, ·), d1(·, ·) and d∞(·, ·), respectively. For any vertex x we let

Nx = {y ∈ Z
d : d1(x, y) = 1},

Kx = {y ∈ Nx : y = x+∑d
i=1 αi
ei, αi ≥ 0}

N ∗x = {y ∈ Z
d : y = x+∑d

i=1 αi
ei, αi = ±1, 0 and
∑

i α
2
i = 0}

K∗x = {y ∈ N ∗x : y = x+∑d
i=1 αi
ei, αi = 1, 0}

and write x ∼ y if y ∈ N ∗x (Fig. 1).
The neighborhood, the *-neighborhood, the oriented and *-oriented neighbor-
hoods ∂�, ∂∗�, ∂+�, ∂∗+� of a finite subset � ⊂ Z

d are defined accordingly as
∂� := {∪x∈�Nx} \ �, ∂∗� := {∪x∈�N ∗x } \ �, ∂+� := {∪x∈�Kx} \ �, ∂∗+� :={∪x∈�K∗x

} \�. A rectangle R will be a set of sites of the form

R := [a1, b1] × · · · × [ad, bd]

while the collection of finite subsets of Z
d will be denoted by F.

The pair (S, ν) will denote a finite probability space with ν(s) > 0 for any
s ∈ S. G ⊂ S will denote a distinguished event in S, often referred to as the set
of “good states”, and q ≡ ν(G) its probability.

Given (S, ν) we will consider the configuration space 
 = SZ
d

equipped with
the product measure µ := ∏x∈Zd νx, νx ≡ ν. Similarly we define 
� and µ�

for any subset � ⊂ Z
d. Elements of 
 (
�) will be denoted by Greek letters

ω, η, etc. while the value of the configuration at site x will be denoted by ηx, ωx.
We will use the shorthand notation µ(f ), Var(f ) (µ�(f ), Var�(f )) to denote the
expected value and variance of any f ∈ L2. A function f : 
 �→ R that depends
only on finitely many variables {ωx}x∈Zd will be called local. Finally, if the set S
coincides with the two state-space {0, 1}, we denote by ηx the configuration η

flipped at x namely

ηx
y =

{
ηy if y = x
1− ηx if y = x

2.2 The Markov process

Kinetically constrained spin models (KCSM) are Glauber type Markov pro-
cesses in 
 (
�), reversible w.r.t. the product measure µ (µ�). In the following,
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we give a general definition which covers the KCSM which have been more
extensively studied in the physical literature in the context of liquid/glass tran-
sition (see Sect. 2.3 for specific definitions). It also includes the so called Spiral
Model, which have been introduced more recently [36,39] and which we will
analyze in [12]. We also remark that our definition is formulated in order to
include models with more general occupation variables than the 0–1 variables
which are usually considered in the physics literature. The reason for this more
general setting will be clarified in Sects. 4 and 5. In the sequel ergodicity issues
force us to carefully distinguish between the process defined directly on the
infinite lattice Z

d and the one defined on a finite subset � ⊂ Z
d.

KCSM on the infinite lattice Z
d

Each specific model is characterized by a collection {Cx}x∈Zd of families of sub-
sets of Z

d called influence classes and by the choice of the good event G ⊂ S.
The influence classes will satisfy the following basic hypothesis:

(a) independence of x: for all x ∈ Z
d and all A ∈ Cx x /∈ A ;

(b) translation invariance: Cx = C0 + x for all x;
(c) finite range interaction: there exists r < ∞ such that any element of Cx is

contained in ∪r
j=1{y : d1(x, y) = j}

The pair (Cx, G) defines the local constraint at x via the following definition.

Definition 2.1 Given a vertex x ∈ Z
d we will say that the constraint at x is

satisfied by the configuration ω if the indicator

cx(ω) =
{

1 if there exists a set A ∈ Cx such that ωy ∈ G for all y ∈ A
0 otherwise

(2.1)

is equal to one.1

Remark 2.2 The constraints cx(ω) are increasing functions w.r.t the partial order
in 
 for which ω ≤ ω′ iff ω′x ∈ G whenever ωx ∈ G. However, this does not
imply in general that the process described below is attractive in the sense of
Liggett [27].

The process that will be studied in the sequel can be informally described as
follows. Each vertex x waits an independent mean one exponential time and
then, provided that the current configuration ω satisfies the constraint at x, the
value ωx is refreshed with a new value in S sampled from ν and the all procedure
starts again. More formally, we will consider the Markov process associated to

1 In other words the presence of good sites around x facilitates the possibility for ωx to fulfill its
constraint. There exist other interesting models (see e.g. [35]) in which the constraints requires a
more complicate configuration around a given vertex than just “all good” and our techniques and
results do not apply to them.
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the self-adjoint Markov semigroup Pt := etL on L2(µ), where the generator L,
a non-positive self-adjoint operator with domain Dom(L), can be constructed
in a standard way (see e.g. [26,27]) starting from its action on local functions:

Lf (ω) =
∑

x∈Zd

cx(ω)
[
µx(f )− f (ω)

]
(2.2)

where µx(f ) ≡
∫

dν(ωx)f (ω) is a function of all ωy with y ∈ Z
d \ {x} and cor-

responds to the local mean with respect to the variable ωx computed while
the other variables are held fixed. The Dirichlet form corresponding to L,
D(f ) = −µ(f · Lf ), can be rewritten by using (2.2) as

D(f ) =
∑

x∈Zd

µ (cx Varx(f )) , f ∈ Dom(L)

where Varx(f ) ≡
∫

dν(ωx)f 2(ω)−(∫ dν(ωx)f (ω)
)2. Due to the fact that the jump

rates are not bounded away from zero, the reversible measure µ is certainly not
the only invariant measure: there exist initial configurations that are blocked
forever (all creation/destruction rates are zero) and any measure concentrated
on them is invariant. An interesting question is therefore whether µ is ergodic
or mixing for the Markov process and whether there exist other translation
invariant, ergodic stationary measures. To this purpose it is useful to recall the
following well known result (see e.g. Theorem 4.13 in [27]).

Theorem 2.3 The following are equivalent,

(a) limt→∞ Ptf = µ(f ) in L2(µ) for all f ∈ L2(µ).
(b) 0 is a simple eigenvalue for L.

Clearly (a) above implies that limt→∞ µ (fPtg) = µ(f )µ(g) for any f , g ∈ L2(µ),
i.e. µ is mixing. As we show in the following section in a certain generality, using
condition (b) we are able to prove (see Proposition 2.5 below) that whenever
µ is ergodic it is also mixing. However, the following remark should be kept in
mind.

Remark 2.4 Even if µ is mixing there will exist in general infinitely many sta-
tionary measures, i.e. probability measures µ̃ satisfying µ̃Pt = µ̃ for all t ≥ 0. As
an example take an arbitrary probability measure µ̃ such that µ̃

({S\G}Zd) = 1,
namely a measure concentrated on a configuration which is blocked forever.
Note that, by taking proper superposition of blocked configurations, it is possi-
ble to construct stationary measures which are also translational invariant. We
refer the interested reader to [26] for a discussion of this point in the context of
the North-East model.
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KCSM on a finite subset � ⊂ Z
d

In a finite region � ⊂ Z
d the process, a continuous time Markov chain, is

characterized by the action of the generator L� which takes the form

L�f (ω) =
∑

x∈�
cx,�(ω)

[
µx(f )− f (ω)

]
(2.3)

where cx,� describe now the finite volume constraints. As in infinite volume, we
denote by D� the associated Dirichlet form. For a given choice of the infinite
volume influence classes {Cx}x∈Zd and of the good event G, the finite volume
constraints cx,� could again be defined as in (2.1). However, some care has to
be taken for those x ∈ � with an influence class Cx not entirely contained inside
�.

One possibility is to modify in a �-dependent way the definition of the
influence classes by setting

Cx,� := {A ∩� : A ∈ Cx} (2.4)

and consequently define cx,� as in (2.1) with Cx replaced by Cx,�. Although such
an approach is feasible and natural, at least for some of the models discussed
below, an important drawback is a loss of ergodicity of the chain. Consider for
example the East model on Z with influence class Cx = {x + 1} (see Sect. 2.3).
If we consider the model on � = {1, . . . , L}, ergodicity is certainly lost since
cL,�(ω) = 0 ∀ω. One is then forced to consider the chain restricted to an ergodic
component making the whole analysis more cumbersome (see Sect. 7 for this
approach in the case of the FA-1f model in one dimension).

Another alternative is to imagine that the configuration ω is defined also over
the sites outside � where it is frozen and equal to some reference configuration
τ , that will be referred to as the boundary condition. Then we can define the
finite volume constraints with boundary condition τ as

cτ
x,�(ω) := cx(ω · τ) (2.5)

where cx are the infinite volume rates (2.1) and ω · τ ∈ 
 denotes the configura-
tion equal to ω inside � and equal to τ in Z \�. Notice that, for any x ∈ �, the
rate cτ

x,�(ω) (2.5) depends on τ only through the indicators {1Iτz∈G}z∈B, where
B is the boundary set B := (Zd \�

)∩ (∪z∈�Cz). Therefore, instead of fixing τ , it
is enough to choose a subset M ⊂ B, called the good boundary set, and define

cM
x,�(ω) := cτ

x,�(ω) (2.6)

where τ is any configuration satisfying τz ∈ G for all z ∈ M and τz /∈ G for
z ∈ B \M. We will say that a choice of M is minimal if L� with the rates (2.6) is
ergodic and non-ergodic for any other choice M′ ⊂M. The choice M = B will



Kinetically constrained models 467

be called maximal. For convenience we will write Lmax
� (Lmin

� ) for the generators
with maximal (minimal) choice of the boundary conditions.

2.3 0–1 Kinetically constrained spin models

In most models considered in the physical literature the finite probability space
(S, ν) is chosen with S being the two-state configuration space, S = {0, 1} and
the good set G is conventionally chosen as the empty state {0}. Any model
with these features will be called a “0–1 KCSM” (kinetically constrained spin
model).

Given a 0–1 KCSM, the parameter q = µ(η0 = 0) can be varied in [0, 1]
while keeping fixed the basic structure of the model (i.e. the notion of the good
set and the functions cx’s expressing the constraints) and it is natural to define
a critical value qc as

qc = inf{q ∈ [0, 1] : 0 is a simple eigenvalue of L}

As we will prove below, ∀q > qc the value 0 is simple eigenvalue of L and qc
coincides with the bootstrap percolation threshold qbp of the model defined as
follows [33]. For any η ∈ 
 define the bootstrap map T : 
 �→ 
 by2

T(η)x = 0 if either ηx = 0 or cx(η) = 1 (2.7)

Denote by µ(n) the probability measure on 
 obtained by iterating n-times the
above mapping starting from µ. As n→∞µ(n) converges to a limiting measure
µ(∞) [33] and it is natural to define the critical value qbp as

qbp = inf{q ∈ [0, 1] : µ(∞)(η0 = 0) = 1}

i.e. the infimum of the values q such that, with probability one, the lattice can
be entirely emptied. Using the fact that the cx’s are increasing function of η it
is easy to check that µ(∞)(η0 = 0) = 1 for any q > qbp.

Proposition 2.5 0 is a simple eigenvalue for L if and only if µ(∞)(η0 = 0) = 1.
Therefore qc = qbp.

Proof Assume q < qbp and call f the indicator of the event that the origin
cannot be emptied by any finite number of iterations of the bootstrap map T
(2.7). By construction Var(f ) = 0 and Lf = 0 a.s. (µ). Therefore 0 is not a simple
eigenvalue of L and q ≤ qc.

Suppose now that q > qbp and that f ∈ Dom(L) satisfies Lf = 0 or, what
is the same, D(f ) = 0. We want to conclude that f = const. a.e. (µ). For this
purpose we will show that D(f ) = 0 implies that the unconstrained Glauber

2 In most of the bootstrap percolation literature the role of the 0’s and the 1’s is inverted.
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Dirichlet form
∑

x µ (Varx(f )) is zero which makes the sought conclusion obvi-
ous since Var(f ) ≤∑x µ (Varx(f )).

Given x ∈ Z
d, let An ≡ An,x = {η : Tn(η)x = 0}. Since q > qbp, clearly

µ (∪nAn) = 1. Write

µ (Varx(f )) = q
∑

n=1

∫

An\An−1

dµ(η)[f (ηx)− f (η)]2ηx

where we recall from Sect. 2.1 that ηx denotes the flipped configuration at x. For
any η ∈ An it is easy to convince oneself that it is possible to find a collection
of vertexes x(1), . . . , x(k), with k and d(x, x(j)) bounded by a constant depending
only on n, and a collection of configurations η(1), η(2), . . . , η(k) such that η(1) = η,
η(k) = ηx, η(j+1) = (η(j))x(j)

and cx(j) (η(j)) = 1. We can then write [f (ηx)− f (η)] as
a telescopic sum of terms like [f (η(j+1))− f (η(j))] and apply Schwartz inequality
to get

∫

An\An−1

dµ(η)[f (ηx)− f (η)]2 ≤ C(n)
∑

y: d(y,x)≤C′(n)

∫
dµ(σ)cy(σ )[f (σ y)− f (σ )]2

where C(n) takes care of the relative density supη∈An
µ(η)/µ(η(j)) and of the

number of possible choice of the vertexes {x(j)}kj=1.

By assumption D(f ) = 0 i.e.
∫

dµ(σ)cy(σ )[f (σ y) − f (σ )]2 = 0 for any y and
the above inequality implies that the unconstrained Dirichlet form is also zero.
Therefore, f = const. a.e. (µ) and the proof is complete. ��

Having defined the bootstrap percolation it is natural to divide the 0–1 KCSM
into two distinct classes.

Definition 2.6 We will say that a 0–1 KCSM is non-cooperative if there exists a
finite set V ⊂ Z

d such that any configuration η which is empty in all the sites
of V reaches the empty configurations (all 0’s) under iteration of the bootstrap
mapping. Otherwise the model will be called cooperative.

Remark 2.7 Because of the translation invariance of the constraints it is obvi-
ous that any configuration η identically equal to zero in V+x, x ∈ Z

d, will reach
the empty configuration under iterations of T. It is also obvious that qbp and
therefore qc are zero for all non-cooperative models.

In what follows we will now illustrate some of the most studied models.

[1] The East model [16]. The model is one-dimensional, 
 = {0, 1}Z, with
influence class Cx = {x + 1}: a vertex can flip iff its right neighbor is empty.
On a finite volume � ⊂ Z the boundary set is given by the site to the right
of the rightmost x ∈ �, namely B = ∂+�. The minimal boundary condition is
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τ empty on the right boundary, i.e. M = B. The model is clearly cooperative
and qc = 0 since in order to empty the whole lattice it is enough to start from
a configuration for which any site x has a vacancy to its right.
[2] Frederickson–Andersen (FA-jf) models [17,18]. The model is d-dimen-
sional, 
 = {0, 1}Zd

. Take 1 ≤ j ≤ d, the influence class of FA-jf model are

Cx = {A ⊂ Nx : |A| ≥ j}

In words a vertex can be updated iff at least j of its neighbors are 0’s. For
all choices of j, the set of boundary sites is B = ∂�. When j = 1 the mini-
mal boundary conditions is exactly one 0 on ∂�, namely M = {z}, z ∈ ∂�.
If instead 1 < j ≤ d, a boundary condition which guarantees ergodicity is
M = ∂+�. This condition is minimal for rectangles when j = d. If j = 1 the
model is non-cooperative with V = {0} while for j ≥ 2 it is cooperative. In any
case qc = 0 [33].
[3] The Modified Basic (MB) model. The model is d-dimensional, 
 = {0, 1}Zd

,
and the influence classes are

Cx = {A ⊂ Nx : A ∩ {−
ei, 
ei} = ∅, for all i = 1, . . . , d}

i.e. a move at x can occur iff in each direction there is a 0. The boundary set
is B = ∂�, i.e. coincides with the one of FA-jf models for the same value of
d. Once again a minimal boundary condition on a rectangle is M = ∂+�. The
model is cooperative and qc = 0 [33].
[4] The North-East (N-E) model [25]. The model is two-dimensional, 
 =
{0, 1}Z2

, and its influence classes are

Cx = {Kx}

i.e. a move at x can occur iff both in the north and in the east direction there is
a 0. In this case B = ∂+� and the only possible (and therefore minimal) choice
of boundary conditions which guarantee ergodicity is M = ∂+�. The model
is cooperative and the critical point qc coincides with 1 − po

c where po
c is the

critical threshold for oriented percolation in Z
2 [33].

2.4 Quantities of interest

We now define the main quantities that will be studied in the sequel.
The first object of mathematical and physical interest is the spectral gap (or

inverse of the relaxation time) of the generator L, defined as

gap(L) := inf
f∈Dom(L)

f =const

D(f )
Var(f )

(2.8)
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and similarly for the finite volume version of the process. A positive spectral
gap implies that the reversible measure µ is mixing for the semigroup Pt with
exponentially decaying correlations,

Var (Ptf ) � exp(−t gap(L)) Var(f ), f ∈ L2(µ).

It is important to observe the following kind of monotonicity that can be ex-
ploited in order to bound the spectral gap of one model with the spectral gap
of another one.

Definition 2.8 Suppose that we are given two influence classes C0 and C′0, denote
by cx(ω) and c′x(ω) the corresponding rates and by L and L′ the associated gen-
erators on L2(µ). If, for all ω ∈ 
 and all x ∈ Z

d, c′x(ω) ≤ cx(ω), we say that L
is dominated by L′.
Remark 2.9 The term domination here has the same meaning it has in the con-
text of bootstrap percolation. It means that the KCSM associated to L′ is more
constrained than the one associated to L.

Clearly, if L is dominated by L′, D′(f ) � D(f ) and therefore gap(L′) ≤ gap(L).
As an example we can consider the FA-1f model in Z

d, where C0 is the col-
lection of non-empty subsets A of N0 (see above). If instead we consider C′0
with the extra constraint that A must contain at least one vertex between ±
e1,
we get that the spectral gap of the FA-1f model in Z

d is bounded from below by
the spectral gap of the FA-1f model in Z. This in turn is bounded from below by
the spectral gap of the East model which is known to be positive [3]. Similarly
we could lower bound the spectral gap of the FA-2f model in Z

d, d ≥ 2, with
that in Z

2, by restricting the sets A ∈ C0 to e.g. the (
e1, 
e2)-plane.
In finite volume the comparison argument is a bit more delicate since it heav-

ily depends on the boundary conditions. For example, if we consider the FA-1f
model in a rectangle with minimal boundary conditions, i.e. a single 0 in a site
belonging to ∂�, the argument discussed above would lead to a comparison
with a non-ergodic Markov chain whose spectral gap is zero.

Remark 2.10 The comparison technique can be quite effective in proving pos-
itivity of the spectral gap but the resulting bounds are in general quite poor,
particularly in the limiting case q ≈ qc.

A second, quite effective, observation concerns the monotonicity of the spec-
tral gap for a given model when considered on different finite volumes.

Lemma 2.11 For any finite � ⊂ Z
d and V ⊂ �,

0 < gap(Lmax
� ) ≤ gap(Lmax

V )

Proof For any f ∈ L2(
V , µV) we have VarV(f ) = Var�(f ) because of the prod-
uct structure of the measure µ� and D�(f ) ≤ DV(f ) because, for any x ∈ V and
any ω ∈ 
�, cx,�(ω) ≤ cx,V(ω) since BV ⊂ B� ∪ �. The proof follows at once
from the variational characterization of the spectral gap. ��
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Remark 2.12 The above monotonicity is in general not true if we replace the
maximal choice of the boundary conditions with the minimal one.

The third observation we make consists in relating gap(L) to its finite volume
analogue with maximal boundary conditions.

Proposition 2.13 Assume that inf�∈F gap(Lmax
� ) > 0. Then gap(L) > 0.

Proof Following Liggett Chap. 4 [27], for any f ∈ Dom(L) with Var(f ) > 0 pick
a sequence of local functions fn ∈ L2(
, µ) so that fn → f and Lfn → Lf in L2.
Then Var(fn)→ Var(f ) and D(fn)→ D(f ). But since fn is local

Var(fn) = Var�(fn) and D(fn) = Dmax
� (fn)

provided that � is a large enough square (depending on fn) centered at the
origin. Therefore

D(f )
Var(f )

≥ inf
�∈F

gap(Lmax
� ) > 0.

and gap(L) ≥ inf�∈F gap(L�) > 0. ��
The second quantity of interest is the so called persistence function (see e.g.

[21,34]) defined by

F(t) :=
∫

dµ(η) P(σ
η

0 (s) = η0, ∀s ≤ t) (2.9)

where {ση(s)}s≥0 denotes the process at time s started from the configuration
η at time 0. In some sense the persistence function provides a measure of the
“mobility” of the system.

3 Main results for 0–1 KCSM

In this section, we state our main results for a general 0–1 KCSM with generator
L.

Fix an integer length scale � larger than the range r and let Z
d(�) ≡ � Z

d.
Consider a partition of Z

d into disjoint rectangles �z := �0 + z, z ∈ Z
d(�),

where �0 = {x ∈ Z
d : 0 ≤ xi ≤ �− 1, i = 1, . . . , d}.

Definition 3.1 Given ε ∈ (0, 1) we say that G� ⊂ {0, 1}�0 is a ε-good set of
configurations on scale � if the following two conditions are satisfied:

(a) µ(G�) ≥ 1− ε.
(b) For any collection {ξ (x)}x∈K∗0 of spin configurations such that ξ (x) ∈ G�

for all x ∈ K∗0 , the following holds. For any ξ ∈ 
 which coincides with
ξ (x) in ∪x∈K∗0��x, there exists a sequence of legal moves inside ∪x∈K∗0��x

(i.e. single spin moves compatible with the constraints) which transforms
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ξ into a new configuration τ ∈ 
 such that the Markov chain in �0 with
boundary conditions τ is ergodic.

Remark 3.2 In general the transformed configuration τ will be identically equal
to zero on ∂∗+�0. As will be clear fom Corollary 3.5 below assumption (b) has
been made having in mind models like the East, FA-jf, M-B or N-E which,
modulo rotations, are dominated by a model with influence class C̃x entirely
contained in the sector {y : y = x+∑d

i=1 αi
ei, αi ≥ 0}. Here we deal only with
these models and we refer to [12] for the analysis of models which do not have
the above property, such as the Spiral Model introduced in [36,39]. In this case
a non rectangular geometry for the tiles in the partition of Z

d adapted to the
choice of the influence classes {Cx}x∈Zd should be used.

With the above notation our first main result, whose proof can be found in
Sect. 5, can be formulated as follows.

Theorem 3.3 There exists a universal constant ε0 ∈ (0, 1) such that if there exists
� and a ε0-good set G� on scale � then inf�∈F(gap(Lmax

� ) > 0. In particular
gap(L) > 0.

In several examples, e.g. the FA-jf and Modified Basic models, the natural can-
didate for the event G� is the event that the tile �0 is “internally spanned”, a
notion borrowed from bootstrap percolation [2,13,14,22,33]:

Definition 3.4 We say that a finite set � ⊂ Z
d is internally spanned by a config-

uration η ∈ 
 if, starting from the configuration η� equal to one outside � and
equal to η inside �, there exists a sequence of legal moves inside � which con-
nects η� to the configuration identically equal to zero inside � and identically
equal to one outside �.

Of course whether or not the set �0 is internally spanned for η depends only
on the restriction of η to �0. One of the major results in bootstrap percolation
problems has been the exact evaluation of the µ-probability that the box �0
is internally spanned as a function of the length scale � and the parameter q
[2,13,14,22,33]. For non-cooperative models it is obvious that for any q > 0
such probability tends very rapidly (exponentially fast) to one as �→∞, since
the existence of at least one completely empty finite set V + x, x ∈ �0, allows
to empty all �0 (see Definition 2.6). For some cooperative systems like e.g. the
FA-2f and Modified Basic model in Z

2, it has been shown that for any q > 0
such probability tends very rapidly (exponentially fast) to one as � → ∞ and
that it abruptly jumps from being very small to being close to one as � crosses a
critical scale �c(q). In most cases the critical length �c(q) diverges very rapidly
as q ↓ 0. Therefore, for such models and � > �c(q), one could safely take G� as
the collection of configurations η such that �0 is internally spanned for η. We
now formalize what we just said.

Corollary 3.5 Assume that lim�→∞ µ(�0 is internally spanned ) = 1 and that
the Markov chain in �0 with zero boundary conditions on ∪x∈K∗0��x is ergodic.
Then gap(L) > 0.
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The second main result concerns the long time behavior of the persistence
function F(t) defined in (2.9).

Theorem 3.6 Assume that gap(L) ≥ 1/γ > 0. Then there exists a constant c > 0
such that F(t) ≤ e−ct. For small values of q the constant c can be taken propor-
tional to q/γ .

Proof Clearly F(t) = F1(t)+ F0(t) where

F1(t) =
∫

dµ(η) P(σ
η

0 (s) = 1 for all s ≤ t)

and similarly for F0(t). We will prove the exponential decay of F1(t); the case of
F0(t) can be treated in a similar way.

For any λ > 0 the exponential Chebychev inequality gives

F1(t) =
∫

dµ(η) P

( t∫

0

ds σ
η

0 (s) = t
)
≤ e−λt

Eµ

(
eλ
∫ t

0 ds σ
η
0 (s))

where Eµ denotes the expectation over the process started from the equilib-
rium distribution µ. On L2(µ) consider the self-adjoint operator Hλ := L+λV,
where V is the multiplication operator by σ0. By the very definition of the scalar
product < f , g > in L2(µ) and the Feynman–Kac formula, we can rewrite
Eµ(eλ

∫ t
0 σ0(s)) as < 1, etHλ1 > . Thus, if βλ denotes the supremum of the spec-

trum of Hλ,

Eµ(eλ
∫ t

0 σ0(s)) � etβλ .

In order to complete the proof we need to show that for suitable positive λ the
constant βλ/λ is strictly smaller than one.

For any norm one function f in the domain of Hλ (which coincides with
Dom(L)) write f = α1+ g with < 1, g >= 0. Thus

< f , Hλf >=< g, Lg > +α2λ < 1, V1 > +λ < g, Vg > +2λα < 1, Vg >

≤ (λ− 1/γ ) < g, g > +α2λp+ 2λ|α|(< g, g > pq
)1/2 (3.1)

Since α2+ < g, g >= 1

βλ/λ ≤ sup
0≤α≤1

{
(1− 1/(γ λ))(1− α2)+ pα2 + 2α

(
(1− α2)pq

)1/2
}

(3.2)
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If we choose λ = 1/(2γ ) the r.h.s. of (3.2) becomes

sup
0≤α≤1

(1+ p)α2 − 1+ 2α
(
(1− α2)pq

)1/2

≤ sup
0≤α≤1

(1+ p)α2 − 1+ 2
(
(1− α2)pq

)1/2 = pq
1+ p

+ p < 1

since p = 1. Thus F1(t) satisfies

F1(t) ≤ e−t 1
2γ

q
1+p .

A similar computation shows that F0(t) ≤ e−t/γ c with c independent of q. ��
Remark 3.7 The above result indicates that one can obtain upper bounds on the
spectral gap by proving lower bounds on the persistence function. Concretely
a lower bound on the persistence function can be obtained by restricting the
µ-average to those initial configurations η for which the origin is blocked with
high probability for all times s ≤ t. In Sect. 6, we will see few examples of this
strategy.

4 Analysis of a general auxiliary model

Consider the model characterized by the influence classes Cx = {K∗x}, x ∈ Z
d,

an arbitrary finite probability space (S, ν) and a choice of the good event G ⊂ S
with q := ν(G). For concreteness we will call it the *-general model and denote
its generator by L. In a finite region � ∈ F and with the above choice for the
influence classes, it is immediate to verify that the boundary set is B = ∂∗+�.
Moreover, due to the oriented character of the influence classes, the maximal
choice for the good boundary set, M = B, is the only possible choice which
guarantees ergodicity3 in finite volume and therefore it is also the minimal one.
The generator of the *-general model in �, denoted by L�, is given by (2.3)
with rates (2.6) and M = B.

The Proof of Theorem 3.3 is based on the positivity of the spectral gap of L
for q large enough, a result which we will prove in Theorem 4.1 below.

In turn, the main ingredient in the Proof of Theorem 4.1 is the bisection
technique of [28], combined with the novel idea of considering an accelerated
block dynamics which is itself constrained. We will refer to this strategy with
the name Bisection-Constrained or B-C approach.

We now state our main theorem concerning the *-general model.

3 The fact that with this choice of M the chain is ergodic follows once we observe that, starting
from the sites in � whose *-oriented neighborhood is entirely contained in �c and whose existence
is proved by induction, we can reach any good configuration ω′ ∈ G� and from there any other
configuration ω̃.
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Theorem 4.1 There exists q0 < 1 independent of S, ν such that for any q > q0

inf
�∈F

gap(L�) > 1/2

and in particular gap(L) > 0.

Proof Since we are choosing maximal good boundary conditions, thanks to
Lemma 2.11 on the monotonicity of the spectral gap in nested volumes, we
need to prove the result only for rectangles. Our approach is based on the
“bisection method” introduced in [28,29] and which, in its essence, consists in
proving a suitable recursion relation between the spectral gap on scale 2L with
that on scale L. At the beginning the method requires a simple geometric result
(see [8]) which we now describe.

Let lk := (3/2)k/2, and let Fk be the set of all rectangles � ⊂ Z
d which,

modulo translations and permutations of the coordinates, are contained in

[0, lk+1] × · · · × [0, lk+d]

The main property of Fk is that each rectangle in Fk\Fk−1 can be obtained as a
“slightly overlapping union” of two rectangles in Fk−1. More precisely we have:

Lemma 4.2 For all k ∈ Z+, for all � ∈ Fk\Fk−1 there exists a finite sequence
{�(i)

1 , �(i)
2 }sk

i=1 in Fk−1, where sk := �l1/3
k �, such that, letting δk := 1

8

√
lk − 2,

(i) � = �
(i)
1 ∪�

(i)
2 ,

(ii) d(�\�(i)
1 , �\�(i)

2 ) ≥ δk,

(iii)
(
�

(i)
1 ∩�

(i)
2

)
∩
(
�

(j)
1 ∩�

(j)
2

)
= ∅, if i = j

Proof Proof is given in [8], Proposition 3.2. ��
The bisection method then establishes a simple recursive inequality between
the quantity γk := sup�∈Fk

gap(L�)−1 on scale k and the same quantity on scale
k− 1 as follows.

Fix � ∈ Fk\Fk−1 and write it as � = �1 ∪�2 with �1, �2 ∈ Fk−1 satisfying
the properties described in Lemma 4.2 above. Without loss of generality we can
assume that all the faces of �1 and of �2 lay on the faces of � except for one
face orthogonal to the first direction 
e1 and that, along that direction, �1 comes
before �2. Set I ≡ �1∩�2 and write, for concreteness, I = [a1, b1]×· · ·×[ad, bd].
Lemma 4.2 implies that the width of I in the first direction, b1−a1, is at least δk.
Let also ∂rI = {b1}× · · ·× [ad, bd] be the right face of I along the first direction.

In what follows, for simplicity, we suppress the index i and we set B1 := �\�2
and B2 := �2 (see Fig. 2).

Next, for any x, y ∈ �1 and any ω ∈ 
, we write x
ω→ y if there exists

a sequence (x(1), . . . , x(n)) in �1, starting at x and ending at y, such that, for
any j = 1, . . . , n − 1, x(j) ∼ x(j+1) and ωx(j) /∈ G, where ∼ has been defined
in Sect. 2.1. With this notation we finally define the bad cluster of x as the
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Fig. 2 The two blocks and the strip I

set Ax(ω) = {y ∈ �1; x
ω→ y}. Notice that, by construction, ωz ∈ G for any

z ∈ ∂∗Ax(ω).

Definition 4.3 We will say that ω is I-good iff, for all x ∈ ∂rI, the set Ax(ω) ∪
∂∗Ax(ω) is contained in B2.

With the help of the above decomposition we now run the following con-
strained “block dynamics” on 
�. The block B2 waits a mean one exponential
random time and then the current configuration inside it is refreshed with a new
one sampled from µ�2 . The block B1 does the same but now the configuration
is refreshed only if the current configuration ω is I-good.

The Dirichlet form of this auxiliary chain is simply

Dblock(f ) = µ�

(
c1 VarB1(f )+VarB2(f )

)

where c1(ω) is just the indicator of the event that ω is I-good and VarB1(f ),
VarB2(f ) depend on ωBc

1
and ωBc

2
respectively.

Denote by γblock(�) the inverse spectral gap of this auxiliary chain. The fol-
lowing bound, whose proof is postponed for clarity of the exposition, is not
difficult to prove.

Proposition 4.4 Let εk ≡ max
I

P(ω is not I-good) where the maxI is taken over

the sk possible choices of the pair (�1, �2). Then

γblock(�) ≤ 1
1−√εk
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Fig. 3 An example of an
I-good configuration ω: empty
sites are good and filled ones
are not good. The grey region
is the set �ω ∪ ∂∗�ω ∪ ∂Ir ∩ I.
The dotted lines mark the
connected components of
B1 ∪ I \ (�ω ∪ ∂∗�ω ∪ ∂Ir).
The connected component
containing B1 is the shaded
one

4

1 2
3

In conclusion, by writing down the standard Poincaré inequality for the block
auxiliary chain, we get that for any f

Var�(f ) ≤ ( 1
1−√εk

)
µ�

(
c1 VarB1(f )+VarB2(f )

)
(4.1)

The second term, using the definition of γk and the fact that B2 ∈ Fk−1 is
bounded from above by

µ�

(
VarB2(f )

)
≤ γk−1

∑

x∈B2

µ�

(
cx,B2 Varx(f )

)
(4.2)

Notice that, by construction, for all x ∈ B2 and all ω, cx,B2(ω) = cx,�(ω). There-
fore the term

∑
x∈B2

µ�

(
cx,B2 Varx(f )

)
is nothing but the contribution carried

by the set B2 to the full Dirichlet form D�(f ).

Next we examine the more complicate term µ�

(
c1 VarB1(f )

)
with the goal

in mind to bound it with the missing term of the full Dirichlet form D�(f ).
For any I-good ω, let �ω = ∪x∈∂rIAx(ω) and let Bω be the connected (w.r.t.

the graph structure induced by the ∼ relationship) component of B1 ∪ I \
(�ω ∪ ∂∗�ω ∪ ∂rI) which contains B1 (see Fig. 3).

A first key observation is now the following.

Claim 4.5 For any z ∈ ∂∗+Bω it holds true that ωz ∈ G .
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Proof of the claim To prove the claim suppose the opposite and let z ∈ ∂∗+Bω

be such that ωz /∈ G and let x ∈ Bω be such that K∗x � z. Necessarily z ∈ �ω

because of the good boundary conditions in ∂∗+� and the fact that ωy ∈ G for all
y ∈ ∂∗�ω ∪ (∂rI \�ω). However z ∈ �ω is impossible because in that case z ∈
Ay(ω) for some y ∈ ∂rI and therefore x ∈ Ay(ω) ∪ ∂∗Ay(ω) i.e. x ∈ �ω ∪ ∂∗�ω,
a contradiction. ��
The second observation is the following.

Claim 4.6 For any � ∈ 
� := {�ω,ωI − good}, the event {ω : �ω = �} does not
depend on the values of ω in B� , the connected component (w.r.t. ∼) of
B1 ∪ I \ � ∪ ∂∗� ∪ ∂rI which contains B1.

Proof of the claim Fix � ∈ 
�. The event �ω = � is equivalent to:

(i) ωz ∈ G for any z ∈ ∂rI \ �;
(ii) ωz ∈ G for any z ∈ ∂∗� ∩ I;

(iii) ωz /∈ G for all z ∈ �.

In fact trivially �ω = � implies (i),(ii) and (iii). To prove the other direction
we first observe that (i) and (iii) imply that �ω ⊃ �. If �ω = � there exists
z ∈ �ω \ � which is in ∂∗� ∩ I and such that ωz /∈ G. That is clearly impossible
because of (ii). ��
If we observe that VarB1(f ) depends only on ωB2 , we can write (we omit the
subscript � for simplicity)

µ
(

c1 VarB1(f )
)
=
∑

�∈
�

µ
(
1I{�ω=�}VarB1(f )

)

=
∑

�∈
�

∑

ωB2\I
µ(ωB2\I)

∑

ωI

µ(ωI)1I{�ω=�}VarB1(f )

=
∑

�∈
�

∑

ωB2\I
µ(ωB2\I)

∑

ωI\I�

µ(ωI\I� )1I{�ω=�}
∑

ωI�

µ(ωI� ) VarB1(f ) (4.3)

where I� = B� ∩ I and we used the independence of 1I{�ω=�} from ωI� .
The convexity of the variance implies that

∑

ωI�

µ(ωI� ) VarB1(f ) ≤ VarB�
(f ) (4.4)

The Poincaré inequality together with Lemma 2.11 finally gives

VarB�
(f ) ≤ gap(LB�

)−1
∑

x∈B�

µB�

(
cx,B�

Varx(f )
)

≤ gap(LB1∪I)
−1
∑

x∈B�

µB�

(
cx,B�

Varx(f )
)

(4.5)



Kinetically constrained models 479

The role of the event {�ω = �} should at this point be clear: it guarantees (see
Claim 4.5) that for any ω ∈ 
� such that �ω = �, ωz is in the good event G for
all sites z in the boundary set of the restricted volume B� , which implies

cx,�(ω) = cx,B�
(ωB�

) ∀x ∈ B� (4.6)

if 1I{�ω=�} = 1, where ωB�
is the restriction of ω to the set B� . Indeed if

Cx ⊂ B� ⊂ �, then cx,� and cx,B�
depend only on the configuration in Cx ⊂ B� ,

where ω and ωB�
coincide. Otherwise, if Cx ⊂ B� and z ∈ Cx with z ∈ B� , then

cx,B�
is defined by fixing good configuration on z, which is also true for cx,�(ω)

even if z ∈ ∂∗+� thanks to the result of Claim 4.5 and to the constraint forced
by 1I{�ω=�} = 1.

If we finally plug (4.4), (4.5) and (4.6) in the r.h.s. of (4.3) and recall that
B1 ∪ I = �1 ∈ Fk−1, we obtain

µ�

(
c1 VarB1(f )

)
≤ gap(L�1)

−1µ�

(
c1

∑

x∈B�ω

cx,� Varx(f )
)

≤ γk−1 µ�

(∑

x∈�1

cx,� Varx(f )
)

(4.7)

This, together with (4.1) and (4.2), yields

Var�(f ) ≤ ( 1
1−√εk

)
γk−1

(
D�(f )+

∑

x∈�1∩�2

µ�

(
cx,� Varx(f )

))
(4.8)

Averaging over the sk = �l1/3
k � possible choices of the sets �1, �2 gives

Var�(f ) ≤ ( 1
1−√εk

)
γk−1(1+ 1

sk
)D�(f ) (4.9)

which implies that

γk ≤
( 1

1−√εk

)
(1+ 1

sk
)γk−1 (4.10)

≤ γk0

k∏

j=k0

( 1
1−√εj

)
(1+ 1

sj
) (4.11)

where k0 is the smallest integer such that δk0 > 1 and we recall (see Proposition
4.4) that εj is the probability that a configuration is not I-good, maximized over
all the sj possible choices for the stripe I.

It is at this stage (and only here) that we need a restriction on the probability
q of the good set G. If q is taken large enough (but uniformly in the cardinality
of S), elementary percolation arguments imply that the quantity εj becomes
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exponentially small in δj = 1
8

√
lj − 2 (the minimum width of the intersection

between the rectangles �1, �2 on scale lj) with a large constant rate and the
convergence to 1 of the infinite product

∏∞
j=k0

( 1
1−√εj

)
(1+ 1

sj
) follows. Further-

more, since an elementary coupling argument gives γk0 � (l/q)
αk0 for a suitable

constant αk0 , we conclude that there exists a universal constant q0 < 1 (i.e.
independent on the choice of S, ν which characterize each *-general model)
such that for q > q0 the product γk0

∏k
j=k0

( 1
1−√εj

)
(1+ 1

sj
) is smaller than 2. ��

Proof of Proposition 4.4 For any mean zero function f ∈ L2(
�, µ�) let

π1f := µB2(f ), π2f := µB1(f )

be the natural projections onto L2(
Bi , µBi), i = 1, 2. Obviously π1π2f =
π2π1f = 0. The generator of the block dynamics can then be written as:

Lblockf = c1
(
π2f − f

)+ π1f − f

and the associated eigenvalue equation as

c1
(
π2f − f

)+ π1f − f = λf . (4.12)

By taking f (σ�) = g(σB2) we see that λ = −1 is an eigenvalue. Moreover, since
c1 ≤ 1, λ ≥ −2. Assume now 0 > λ > −1 and apply π2 to both sides of (4.12)
to obtain (recall that c1 = c1(σB2))

−π2f = λπ2f ⇒ π2f = 0 (4.13)

For any f with π2f = 0 the eigenvalue equation becomes

f = π1f
1+ λ+ c1

(4.14)

and that is possible only if

µB2(
1

1+ λ+ c1
) = 1.

We can solve the equation to get

λ = −1+
√

1− µB2(c1) ≤ −1+√εk.

��
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5 Proof of Theorem 3.3

If we consider the *-general model analyzed in the previous section with S =
{0, 1} and G = {0}, we immediately realized that all the 0–1 KCSM defined in
Sect. 2.3 are dominated by it. Therefore Theorem 4.1 together with the com-
parison technique explained in Sect. 2.4 imply positivity of the spectral gap for
all the models in Sect. 2.3 provided that the corresponding parameter q satisfies
q > q0. However in Theorem 3.3 a much stronger result is claimed, namely pos-
itivity of the spectral gap in the whole ergodic region q > qc. It is therefore not
surprising that we need some renormalization or block analysis to go beyond
the perturbative regime. Such an approach is what we call the Renormaliza-
tion-Constrained or R-C approach and it basically allows us to map all models
at q > qc into a *-general model with triple (S, ν, G) depending on the original
model but with ν(G) ≥ q0.

Let us now provide the technical details. For the relevant notation we refer
the reader to Sect. 3.

Define ε0 = 1 − q0 where q0 is the threshold appearing in Theorem 4.1
and assume that � is such that there exists a ε0-good event G� on scale �.
Consider the *-general model on Z

d(�) with S = {0, 1}�0 , ν = µ�0 and good
event G�. Obviously the two probability spaces 
 = ({0, 1}Zd

, µ
)

and 
(�) =
(
SZ

d(�),
∏

x∈Zd(�) νx
)

coincide. Thanks to condition (a) on G� we can use theorem
4.1 to get that for any f ∈ Dom(L)

Var(f ) ≤ 2
∑

x∈Zd(�)

µ
(
c̃x Var�x(f )

)
(5.1)

where the (renormalized) rate c̃x(σ ) is simply the indicator function of the event
that for any y ∈ K∗{x/�} the restriction of σ to the rectangle ��y belongs to the
good set G� on scale �.

In the sequel we will often refer to (5.1) as the renormalized-Poincaré inequal-
ity with parameters (�, G�).

Let us examine a generic term µ
(
c̃x(ξ) Var�x(f )

)
which we write as

1
2

∫
dµ(ξ)c̃x(ξ)

∫ ∫
dµ�x(σ )dµ�x(η)

[
f (σ · ξ)− f (η · ξ)

]2 (5.2)

By assumption, if c̃x(ξ) = 1 necessarily there exists τ and a sequence of config-
urations (ξ (0), ξ (1), . . . , ξ (n)), n ≤ 3�d, with the following properties:

(i) ξ (0) = ξ and ξ (n) = τ ;
(ii) the chain in �x with boundary conditions τ is ergodic;

(iii) ξ (i+1) is obtained from ξ (i) by changing exactly only one spin at a suitable
site x(i) ∈ ∪y∈K∗{x/�}��y;

(iv) the move at x(i) leading from ξ (i) to ξ (i+1) is permitted i.e. cx(i) (ξ (i)) = 1
for every i = 0, . . . , n.
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Remark 5.1 Notice that for any i = 0, . . . , n, the intermediate configuration ξ (i)

coincides with ξ outside ∪y∈K∗{x/�}��y. Therefore, given ξ (i) = η, the number of

starting configurations ξ = ξ (0) compatible with η is bounded from above by

2(2d−1)�d
and the relative probability µ(ξ)/µ(η) by max

(p
q , q

p

)(2d−1)�d
.

By adding and subtracting the terms f (σ · τ), f (η · τ) inside
[
f (σ · ξ)− f (η · ξ)

]2

and by writing f (σ · τ)− f (σ · ξ) as a telescopic sum
∑n−1

i=1

[
f (σ · ξi+1)− f (σ · ξi)

]

we get

[
f (σ · ξ)− f (η · ξ)

]2 ≤ 3
[
f (σ · τ)− f (η · τ)

]2

+3n
n−1∑

i=1

[
f (σ · ξ (i+1))− f (σ · ξ (i))

]2 + 3n
n−1∑

i=1

[
f (η · ξ (i+1))− f (η · ξ (i))

]2 (5.3)

If we plug (5.3) inside the r.h.s. of (5.2) and use properties (i),…,(iv) of the inter-
mediate configurations {ξ (i)}ni=1 together with the Remark 5.1 and the fact that
the inverse spectral gap in �x with ergodic boundary conditions τ is bounded
from above by a constant depending only on (q, �), we get that there exists a
finite constant c := c(q, �) such that

µ
(
c̃x(ξ) Var�x(f )

) ≤ c
∑

y∈�x∪y∈K∗{x/�}��y

µ
(
cy Vary(f )

)

and therefore, thanks to (5.1), the proof of the positivity of the spectral gap is
complete.

6 Specific models

In this section, we analyze the specific models that have been introduced in
Sect. 2 and for each of them we prove positivity of the spectral gap for q > qc
together with upper and lower bounds as q ↓ qc.

6.1 The East model

As a first application of the Bisection-Constrained method explained in Sect. 5
in the context of the *-general model, we reprove the result contained in [3] on
the positivity of the spectral gap, but we sharpen (by a power of 2) their lower
bound.

Theorem 6.1 For any q ∈ (0, 1) the spectral gap of the East model is positive.
Moreover, for any δ ∈ (0, 1) there exists Cδ > 0 such that

gap(L) ≥ Cδqlog2(1/q)/(2−δ) (6.1)
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In particular
lim
q→0

log(1/ gap)/(log(1/q))2 = (2 log 2)−1 (6.2)

Remark 6.2 Notice that (6.2) disproves the asymptotic behavior of the spectral
gap suggested in [34].

Proof The limiting result (6.2) follows at once from the lower bound together
with the analogous upper bound proved in [3].

In order to get the lower bound (6.1) we want to apply directly the bisection
method used in the proof of Theorem 4.1 but we need to choose the length
scales lk a little bit more carefully.

Fix δ ∈ (0, 1) and define lk = 2k, δk = �l1−δ/2
k �, sk := �lδ/6

k �. Let also Fk
be the set of intervals which, modulo translations, have the form [0, �] with
� ∈ [lk, lk + l1−δ/6

k ] and define γk as the worst case over the elements � ∈ Fk
of the inverse spectral gap in � with empty boundary condition at the right
boundary of �. Thanks to Lemma 2.11 the worst case is attained for the inter-
val �k = [0, lk + l1−δ/6

k ]. With these notation there exists kδ independent of q
such that the same result of Lemma 4.2 holds true as long as k ≥ kδ . We can
then repeat exactly the same analysis done in the proof of Theorem 4.1 to get
that

γk ≤ γkδ

∞∏

j=kδ

(
1

1−√εj

) ∞∏

j=kδ

(

1+ 1
sj

)

(6.3)

Here the quantity εk is just the probability that an interval of width δk is fully
occupied (see Proposition 4.4) i.e. εk = pδk . The convergence of the product in
(6.3) is thus guaranteed and the positivity of the spectral gap follows.

Let us now discuss the asymptotic behavior of the gap as q ↓ 0.
We first observe that γkδ

< (1/q)αδ for some finite αδ . That follows e.g. from
a coupling argument. In a time lag one and with probability larger than qαδ for
suitable αδ , any configuration in �kδ

can reach the empty configuration by just
flipping one after another the spins starting from the right boundary. In other
words, under the maximal coupling, two arbitrary configurations will couple in
a time lag one with probability larger than qαδ i.e. γkδ

< (1/q)αδ . We now ana-
lyze the two infinite products in (6.3). The second one, due to the exponential
growth of the scales, is bounded by a constant independent of q.

To bound the first factor, we define

j∗ = min{j : εj ≤ e−1} ≈ log2(1/q)/(1− δ/2)

and we obtain

∞∏

j=kδ

(
1

1−√εj

)

≤
j∗∏

j=1

(
1+√εj

1− εj

) ∞∏

j>j∗

(
1

1−√εj

)

≤ eC 2j∗
j∗∏

j=1

(
1

1− εj

)

(6.4)
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where we used the bound 1/(1−√εi) ≤ 1+ (e/(e− 1))
√

εj valid for any j ≥ j∗
together with

∞∑

j>j∗
log

(

1+ e
e − 1

√
εj

)

≤ e
e − 1

∞∑

j>j∗

√
εj

≤ e
e − 1

∞∫

j∗−1

dx exp(−q(2x(1−δ/2))/2) = Aδ

∞∫

2(j∗−1)(1−δ/2)

dz exp(−qz/2)/z

≤ 2Aδ2−(j∗−1)(1−δ/2)q−1 exp(−q2(j∗−1)(1−δ/2)/2) ≤ C

for some constant C independent of q.
Observe now that 1− εj ≥ 1− e−qδj ≥ Aqδj for any j ≤ j∗ and some constant

A ≈ e−1. Thus the r.h.s. of (6.4) is bounded from above by

eC (
2

Aq
)j∗

j∗∏

j=1

δ−1
j ≤ 1

qa (1/q)j∗ 2−(1−δ/2)j2∗/2 ≈ 1
qa (1/q)log2(1/q)/(2−δ)

as q ↓ 0 for some constant a.

6.2 FA-1f model

In this section, we deal with the FA-1f model. Our main result are the followings

Theorem 6.3 For any q ∈ (0, 1) the spectral gap of the FA-1f model is positive.

Theorem 6.4 For any d ≥ 1, there exists a constant C = C(d) such that for any
q ∈ (0, 1), the spectral gap gap(L) satisfies the following bounds.

C−1q3 � gap(L) � Cq3 for d = 1,
C−1q2/ log(1/q) � gap(L) � Cq2 for d = 2,

C−1q2 � gap(L) � Cq1+ 2
d for d � 3.

Proof of Theorem 6.3 The proof follows at once from Corollary 3.5 because
the probability that the rectangle �0 of side � is internally spanned is equal to
the probability that �0 is not fully occupied which is equal to 1− (1− q)�

d ↑ 1
as �→∞. ��

In the next result we discuss the asymptotic of the spectral gap for q ↓ 0. Such
a problem has been discussed at length in the physical literature with varying
results based on numerical simulations and/or analytical work [6,7,24]. As a
preparation for our bounds we observe that on average the vacancies are at
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distance O(q−1/d) and each one of them roughly performs a random walk with
jump rate proportional to q. Therefore a possible guess is that

gap(L) = O(q× gap of a simple RW in a box of side O(q−1/d) ) = O(q1+2/d)

However, a recent work in the physics community [24], which uses the mapping
of FA-1f into a diffusion limited aggregation model and its treatment by ren-
ormalization theory, leads to the conjecture gap ≈ q2 for any d ≥ 2. For d = 2
the two above conjectures coincide and we prove that indeed gap(L) = O(q2)

up to log corrections. On the other hand, for d ≥ 3 we are not able to prove
or disprove any of the two conjectures: our bounds are consistent with both of
them.

Proof of Theorem 6.4 We begin by proving the upper bounds via a careful
choice of a test function to plug into the variational characterization for the
spectral gap. Before doing that, we notice that we could alternatively use the
strategy outlined in Remark 3.7, which uses the result in Theorem 3.6 relating
the persistence function to the spectral gap. However this strategy, which will
be used in the next sections to obtain the upper bounds for MB, FA-jf and for
N-E models, provides a very poor upper bound for FA-1f. Indeed, the use of
the persistence result together with the fact that a region has probability � 1/2
to be internally spanned if l � 1/q1/d (see proof of Theorem 6.3), would imply
gap(L) � q1/d−1. Let us now describe our choice for the test functions.

Fix d ≥ 1 and assume, without loss of generality, q  1. Let also �q =
( log(1−q0)

log(1−q)

)1/d ≈ λ0q−1/d with λ0 = | log(1 − q0)|1/d, where q0 is as in Theorem
4.1. Let g be a smooth function on [0, 1] with support in [1/4, 3/4] and such that

1∫

0

αd−1e−αd
g(α)dα = 0 and

1∫

0

αd−1e−αd
g2(α)dα = 1. (6.5)

Set (see Fig. 4)

ξ(σ ) := sup {� : σ(x) = 1 for all x such that ‖x‖∞ < �}

and notice that for any k = 0, . . . , �q,

µ(ξ = k) = pkd − p(k+1)d ≈ qdkd−1e−qkd
(6.6)

Having defined the r.v. ξ the test function we will use is f = g(ξ/�q). Using (6.6)
together with (6.5) one can check that

Var(f ) ≈ 1
�q
≈ q1/d. (6.7)
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On the other hand, by writing Tx for the spin-flip operator in x, i.e. Tx(σ ) = σ x

using reversibility we have

D(f ) =
∑

x∈Zd

µ

[

cx

[

g(
ξ ◦ Tx

�q
)− g(

ξ

�q
)

]2
]

=
∑

x∈Zd

�q∑

k=0

µ

[

cx

[

g(
ξ ◦ Tx

�q
)− g(

ξ

�q
)

]2

1Iξ=k

]

(6.8)

= 2
� 3

4 �q�∑

k=� 1
4 �q−1�

(
g
(k+ 1

�q

)− g
( k
�q

))2 ∑

x‖x‖∞=k+1

µ
(
cx1Iξ◦Tx=k+11Iξ=k

)
.

Notice that for any k, any x such that ‖x‖∞ = k+ 1,

µ
(
cx1Iξ◦Tx=k+11Iξ=k

)

= µ (cx | ξ ◦ Tx = k+ 1, ξ = k) µ (ξ ◦ Tx = k+ 1 | ξ = k) µ (ξ = k)

� c
q

kd−1
µ (ξ = k)

for some constant c depending only on d. The factor q above comes from the
fact that, given that ξ = k and ξ ◦ Tx = k + 1, x is necessarily the only empty
site in the (k + 1)th-layer. Therefore, the flip at x can occur only if the nearest
neighbor of x in the next layer is empty (see Fig. 4). Moreover, given ξ = k, the
conditional probability of having zero at x and the rest of the layer completely
filled is of order 1/kd−1. It follows that

∑

x:‖x‖∞=k+1

µ
(
cx1Iξ◦Tx=k+11Iξ=k

)
� c′qµ (ξ = k) .

Fig. 4 In dimension 2, a
configuration σ where
ξ(σ ) = k and ξ(σ x) = k+ 1
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In conclusion, using (6.6) and writing α := k/�q,

D(f ) � c′′q
� 3

4 �q�∑

k=� 1
4 �q−1�

µ (ξ = k)
(

g
(k+ 1

�q

)− g
( k
�q

))2

≈ q
�3

q

3
4∫

1
4

αd−1e−(λ0α)d
g′ (α)2 dα ≈ q1+ 2

d

�q
. (6.9)

as q↓0. The upper bound on the spectral gap follows from (6.7), (6.9) and (2.8).
We now discuss the lower bound. We will not use the B-C approach used

for the East model, since this would lead to very poor bounds. For example in
d = 1 we would obtain the same bound (6.1) as for East, which is far from the
claimed gap � cq3. We will instead start by relating the spectral gap in infinite
volume to the spectral gap in a q-dependent finite region via a variant Renor-
malization-Constrained approach discussed in Sect. 5. More precisely, we will
start again by the renormalized-Poincaré inequality (5.1) for a proper *-gen-
eral model. However, instead of writing inequalities corresponding to (5.2) and
(5.3) to treat the variances inside the blocks, we use a different method which
is feasible thanks to the non-cooperative character of the model.4

Denote by L{z}� the generator of the FA-1f model in � with good (and min-
imal) boundary set M = {z} ⊂ ∂�. With a slight abuse of notation we denote
by c{z}x,� the corresponding rates.

Lemma 6.5 Let �r :={x∈Z
d : ‖x‖∞�r−1} and define gap(q) := infz,r gap(L{z}�r

)

where the infimum is over z ∈ ∂�r and r ∈ [�q, 2�q]. Then there exists a constant
C = C(d) such that

gap(L) ≥ C gap(q)

Notice that, since we are dealing with minimal good boundary conditions and
not with the maximal ones (M = B = ∂�), the monotonicity of the spectral
gap in nested volumes does not necessarily hold (see the remark below Lemma
2.11).

Proof of the Lemma The starting point is the bound (5.1) for � = �q:

Var(f ) ≤ 2
∑

x∈Zd(�q)

µ
(
c̃x Var�x(f )

)
(6.10)

4 Alternatively we could follow exactly the R-C approach, as will be done in next section for FA-2f
and MB. However, since we are interested in the asymptotic for q ↓ 0, properly weighted paths (in
the same spirit as the proof of Proposition 6.6) should be used when rewriting the second and third
term of (5.3) in terms of the Dirichlet form of FA-1f.
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Recall that c̃x(σ ) is simply the indicator function of the event that for any
y ∈ K∗{x/�} the block ��y is internally spanned for σ , i.e. it is not completely filled.
Let us examine a generic term µ

(
c̃x Var�x(f )

)
. Given σ such that c̃x(σ ) = 1,

let r = r(σ ) be the largest 0 ≤ r ≤ �q such that there exists an empty site on
∂�r,x, where �r,x = {y : d∞(y, �x) ≤ r}. Let also ξ(σ ) be the first (w.r.t a chosen
order) empty site in ∂�r,x of σ . Exactly as in the proof of Theorem 4.1 the
convexity of the variance implies that

µ
(
c̃x Var�x(f )

) ≤ µ
(
1Ir≤�q

∑

z∈∂�r,x

1Iξ=z Var�r,x(f )
)

(6.11)

Thanks to the constraint 1Iξ=z, the variance Var�r,x(f ) is computed with at least
an empty site in z and we can use the Poincaré inequality for the FA-1f model
in �r,x with good boundary set M = {z} (i.e. corresponding to the generator
L{z}�r,x

) to get

µ
(
c̃x Var�x(f )

) ≤ µ
(

gap(q)−1
∑

z∈∂�r,x

1Iξ=z

∑

y∈�r,x

µ�r,x

(
c{z}y,�r,x

Vary(f )
) )

(6.12)

Thanks again to the constraint 1Iξ=z, for all y ∈ �x,r, c{z}y,�r,x
� cy, where cy are

the infinite volume rates for FA-1f. If we insert this inequality in (6.12) and then
we use (6.10) we finally get

Var(f ) ≤ gap(q)−1C(d)
∑

y∈Zd

µ
(
cy Vary(f )

)

and the lemma follows. ��
The proof of the lower bound will then be complete once we prove the following
result.

Proposition 6.6 There exists a constant C = C(d) such that for any q ∈ (0, 1),

gap(q) ≥ C

⎧
⎪⎨

⎪⎩

q3 if d = 1
q2/ log(1/q) if d = 2
q2 if d = 3

(6.13)

Proof of the Proposition Fix a box � of side �q ≤ � ≤ 2�q and consider the gen-
erator in � with minimal choice of the good boundary conditions at x∗ ∈ ∂�.
We will show that the corresponding spectral gap satisfies the inequalities of
the lemma uniformly in � and in the choice of the site x∗.

We begin with the d = 2 case. The starting point is the standard Poincaré
inequality for the Bernoulli product measure on � (see e.g. [4, Chap. 1]). For
every function f

Var�(f ) �
∑

x∈�
µ (Varx(f )) . (6.14)
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Fig. 5 An example of
geodesic for the path γx

Our aim is to bound from above the r.h.s. of (6.14) with the Dirichlet form of the
FA-1f model in � and minimal boundary conditions at x∗. The idea of the proof
is the following. Computing the local variance Varx(f ) at x involves a spin–flip
at site x (η → ηx) which might or might not be allowed by the constraints,
depending on the structure of the configuration around x. The idea is then to
(see Figs. 5 and 6 for a graphical illustration):

(i) define a geometric path γx inside � connecting x to the (unique) empty
site x∗ at the boundary of �;

(ii) look for the empty site on γx closest to x;
(iii) move it, step by step using allowed flips, to one of the neighbors of x but

keeping the configuration as close as possible to the original one;
(iv) do the spin–flip at x in the modified configuration.

In order to get an optimal result the choice of the path γx is not irrelevant and
we will follow the strategy of [32] to analyze the simple random walk on the
graph consisting of two squares grids sharing exactly one corner.

Let a pair e = (η, ηy) ≡ (e−, e+) be an edge iff c{x
∗}

y,� (η) = 1 (i.e. the spin-flip
at y in the configuration η is a legal one), we can rewrite the Dirichlet form as

D(f ) =
∑

e

µ(e−)
(
f (e+)− f (e−)

)2 .

where the sum is over the edges. To any edge e = (η, ηy) we associated a weight
w(e) defined by w(e) = i+ 1 if d1(y, x∗) = i.

Let now, for any x ∈ �, γx = (x∗, x(1), x(2), . . . , x(n−1), x) be one of the geode-
sic paths from x∗ to x such that, for any y ∈ γx, the Euclidean distance between
y and the straight line segment [x, x∗] is at most

√
2/2 (see Fig. 5).

Given a configuration σ we will construct a path �σ→σ x = {η(0), η(1), . . . , η(j)},
j ≤ 2n, with the properties that:

(i) η(0) = σ and η(j) = σ x;
(ii) the path is self-avoiding;

(iii) for any i the pair (η(i−1), η(i)) forms an edge and the associated spin–flip
occurs on γx;

(iv) for any i the configuration η(i) differs from σ in at most two sites.
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We will denote by |�σ→σ x |w :=∑e∈�σ→σx
1

w(e) the weighted length of the path
�σ→σ x . By the Cauchy–Schwartz inequality, we have

∑

x∈�
µ (Varx(f )) = pq

∑

x∈�
µ
([

f (σ x)− f (σ )
]2)

= pq
∑

x∈�

∑

σ

µ(σ)

⎛

⎝
∑

e∈�σ→σx

√
w(e)(f (e+)− f (e−))√

w(e)

⎞

⎠

2

� pq
∑

x∈�

∑

σ

µ(σ)|�σ→σ x |w
∑

e∈�σ→σx

w(e)
(
f (e+)− f (e−)

)2

= pq
∑

e

(
f (e+)− f (e−)

)2 w(e)
∑

x∈�,σ :
�σ→σx�e

µ(σ)|�σ→σ x |w

� D(f ) max
e

{pq w(e)
µ(e−)

∑

x∈�,σ :
�σ→σx�e

µ(σ)|�σ→σ x |w
}

.

Fix an edge e = (η, ηy) with w(e) = i + 1. Let C denotes a constant that does
not depend on q and that may change from line to line. By construction, on one
hand we have for any σ and x such that �σ→σ x � e, µ(σ)

µ(e−)
� C 1

q2 because of

property (iii) of �σ→σ x . On the other hand, for any σ and x,

|�σ→σ x |w � C
2�q∑

i=1

1
i

� C log(�q).

And finally, by construction, one has (see [32, Sect. 3.2])

# {(x, σ) : �σ→σ x � e} � C# {y : γx � y} � C
|�|

i+ 1
.

Collecting these computations leads to

∑

x∈�
µ (Varx(f )) � C

q2 log(1/q)D(f ).

i.e. the claimed bound on gap(q).
In d � 3, the above strategy applies in the same way but one needs a differ-

ent choice of the edge-weight w(e) namely w(e) = (i + 1)d−2 (see again [32,
Sect. 3.2]). In d = 1 instead one can convince oneself that the weight function
w ≡ 1 in the previous proof leads to the upper bound 1/q3, up to some constant.

It remains to discuss the construction of the path �σ→σ x with the desired
properties. Given σ , x and γx =

(
x0 = x∗, x(1), x(2), . . . , x(n−1), x(n) = x

)
define
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i0 = max{0 � i � n− 1 : σ(x(i)) = 0}. In this way for any i � i0 + 1, σ(x(i)) = 1.
We will denote by ηx,y = (ηx)y the configuration η flipped in x and y.

If i0 = n − 1 then trivially �σ→σ x = {σ , σ x}. Hence assume that i0 � n − 2.
We set

�σ→σ x =
{
η(0) = σ , η(1), . . . , η(2(n−i0)−1) = σ x

}

with η(1) = σ x(i0+1)
and for k = 1, . . . , n − i0 − 1, η(2k) = σ x(i0+k),x(i0+k+1)

,
η(2k+1) = σ x(i0+k+1)

(see Fig. 6). One can easily convince oneself that �σ→σ x

satisfies the prescribed property (i)− (iv) set above. ��

Fig. 6 The path �σ→σx

The proof of the lower bound is complete. ��

6.3 FA-jf and Modified Basic model in Z
d

Next we examine the FA-jf and Modified Basic (MB) model in Z
d with d ≥ 2

and j ≤ d.

Theorem 6.7 For any q ∈ (0, 1) any d ≥ 2 and j ≤ d the spectral gap of the FA-jf
and MB models are positive.

Proof Under the hypothesis of the theorem both models have a trivial boot-
strap percolation threshold qbp = 0 and moreover they satisfy the assumption
of Corollary 3.5 (see [33]) for any q > 0. Therefore gap > 0 by Corollary 3.5.

��
We now study the asymptotic of the spectral gap as q ↓ 0 and we restrict

ourselves to the most constrained case, namely either the MB model or the
FA-df model. For this purpose we need to introduce some extra notation and
recall some results from bootstrap percolation theory (see [23]).

Let δ ∈ {1, . . . , d}. We define the δ-dimensional cube Qδ(L) := {0, . . . , L −
1}δ × {1}d−δ ⊂ Z

d. By a copy of Qδ(L) we mean an image of Qδ(L) under any
isometry of Z

d.

Definition 6.8 Given a configuration η, we will say that Qδ(L) is “δ internally
spanned” if {1, . . . , L − 1}δ is internally spanned for the bootstrap map associ-
ated to the corresponding model restricted to Z

δ (i.e. with the rules either of
the FA-δf or of the MB model in Z

δ). Similarly for any copy of Qδ(L).
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Define now

Id(L, q) := µ
(
Qd(L) is internally spanned

)

and let expn denote the n-th iterate of the exponential function. Then the fol-
lowing results is known to hold for both models [13,14,22,23].

There exists two positive constants 0 < λ1 ≤ λ2 such that for any ε > 0

lim
q→0

Id
(

expd−1(
λ1 − ε

q
), q
)
= 0 (6.15)

lim
q→0

Id
(

expd−1(
λ2 + ε

q
), q
)
= 1 (6.16)

Moreover there exists c = c(d) < 1 and C = C(d) < ∞ such that if � is such
that Id(�, q) ≥ c then, for any L ≥ �,

Id(L, q) ≥ 1− Ce−L/� (6.17)

For the FA-2f model and for the MB model for all d ≥ 2 the threshold is sharp
in the sense that λ1 = λ2 = λ with λ = π2/18 for the FA-2f model and λ = π2/6
for the MB model [22,23]. We are now ready to state our main result.

Theorem 6.9 Fix d ≥ 2 and ε > 0. Then for both models there exists c = c(d)

such that

[
expd−1(c/q2)

]−1 ≤ gap(L) ≤
[
expd−1(λ1−ε

q

)]−1
d ≥ 3 (6.18)

exp(−c/q5) ≤ gap(L) ≤ exp
(− (λ1−ε)

q

)
d = 2 (6.19)

as q ↓ 0.

Proof In the course of the proof we will use the following well known obser-
vation. If a configuration η is identically equal to 0 in a d-dimensional cube Q
and each face F of ∂Q is “(d − 1) internally spanned” (by η), then Q ∪ ∂Q is
internally spanned.
(i) We begin by proving the upper bound following the strategy outlined in
Remark 3.7. Fix ε > 0, let �1 be the cube centered at the origin of side
L1 := expd−1(λ1−ε/2

q

)
and let m = expd−2( K

q2 ) where K is a large constant
to be chosen later on. Define the two events:

A = {η : �1 is not internally spanned}
B = {η : any (d− 1)-dimensional cube of side m inside �1 is

“(d− 1) internally spanned”}. (6.20)

Thanks to (6.16) and (6.17), µ(A) > 1/2 and µ(B) ≥ 3
4 if K and q are chosen

large enough and small enough respectively. Therefore µ(A ∩ B) ≥ 1/4 for
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small q. Pick now η ∈ A ∩ B and consider η̃ which is identically equal to one
outside �1 and equal to η inside. We begin by observing that, starting from
η̃, the little square Q of side m centered at the origin cannot be completely
emptied by the bootstrap map T (2.7). Assume in fact the opposite. Then, after
Q has been emptied and using the fact that η ∈ B, we could empty ∂Q and
continue layer by layer until we have emptied the whole �1, a contradiction
with the assumption η ∈ A. The above simple observation implies in particular
that, if we start the Glauber dynamics from η̃, there exists a point x ∈ Q such
that σ

η̃
x (s) = ηx for all s > 0. However, and this is the second main observation,

if t = 1
4 L1, by standard results on “finite speed of propagation of information”

(see e.g. [28]) and the basic coupling between the process started from η and
the process started from η̃,

P

(
∃ x ∈ Q : σ

η̃
x (s) = σ

η
x (s) for some s ≤ t

)
 1

Therefore

P(∃ x ∈ Q : σ
η
x (s) = ηx ∀s ≤ 1

4
L1) ≥ 1

2

for all sufficiently small q.
We are finally in a position to prove the r.h.s. of (6.18). Using theorem 3.6

combined with the above discussion we can write

e−t q gap
2(1+p) ≥ F(t)

≥ 1
|Q|

∫

A∩B

dµ(η)P(∃ x ∈ Q : σ
η
x (s) = ηx ∀s ≤ t) ≥ 1

8|Q|

that is gap ≤ c log
(|Q|)/qt for some constant c, i.e. the sought upper bound for

q small, given our choice of t.
(ii) We now turn to the proof of the lower bound in (6.18).

It is enough to consider only the MB model since, as explained in Sect. 2.4,
MB is dominated by the FA-df model and therefore has a smaller spectral gap.

Fix ε ∈ (0, 1), let � = expd−1((λ+5ε)/q
)
, λ = π2/6, and let m = expd−2(1/q2)

if d ≥ 3 and m = K/q2 if d = 2, where K is a large constant to be fixed later on.
Let E1 be the event that Qd(�) contains some copy of Qd(m) which is internally
spanned and let E2 be the event that for each δ ∈ [1, . . . , d − 1], every copy of
Qδ(m) in Qd(�) is “δ internally spanned”. Then it is possible to show (see Sect. 2
of [23] for the case d ≥ 3 and Sect. 4 of [22] for the case d = 2) that both µ(E1)

and µ(E2) tend to one as q→ 0 if K is chosen large enough.
The first step is to relate the infinite volume spectral gap to the spectral gap

in the cube �0 ≡ Qd(�) with good boundary set M = ∂∗+�0 and we denote by
cx,�0 the corresponding rates. To this purpose we will proceed via the Renor-
malization-Constrained strategy introduced to prove Theorem 3.3 in Sect. 5.
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Proposition 6.10 There exists a constant c = c(d) such that, for any q small
enough,

gap(L) ≥ e−cmd
gap(L�0)

Proof As in the case of the FA-1f model, our starting point is the renormalized
Poincaré inequality (5.1) on scale � and ε0-good event G� := E1 ∩ E2. Thanks
to (5.1) we can write

Var(f ) ≤ 2
∑

x∈Z(�)

µ
(
c̃x Var�x(f )

)

where the c̃x’s are as in (5.1). Without loss of generality we now examine the
term µ

(
c̃0 Var�0(f )

)
.

Lemma 6.11 There exists a constant c = c(d) such that, for any q small enough,

µ
(
c̃0 Var�0(f )

) ≤ ecmd
gap(L�0)

−1
∑

x∈∪y∈K∗0∪{0}��y

µ (cx Varx(f ))

where the cx’s are the constraints for the MB model.

Clearly the lemma completes the proof of the proposition ��
Proof of the Lemma By definition

Var�0(f ) ≤ gap(L�0)
−1
∑

x∈�0

µ�0

(
cx,�0 Varx(f )

)

Notice that, if K∗x ⊂ �0, then cx,�0 � cx . If we plug the above bound into
µ
(
c̃0 Var�0(f )

)
and use the trivial bound c̃0 ≤ 1, we see that it would be enough

to prove

µ
(
c̃0 cx,�0 Varx(f )

) ≤ ecmd
µ
(
cx Varx(f )

)+
∑

y∈K∗0

∑

z∈��y

µ(cz Varz(f )) (6.21)

for all x ∈ �0 such that K∗x � �0 to conclude. For simplicity we assume that
K∗x ∩ �c

0 consists of a unique point z ∈ ��y and we proceed as in the proof
of Theorem 3.3. Assign some arbitrary order to all cubes of side m inside ��y.
Because of the constraint c̃0 on the configuration ξ in∪y∈K∗0��y, for each y ∈ K∗0
there exists a sequence of configurations (ξ (0), ξ (1), . . . , ξ (n)), n ≤ 2md, with the
following properties:

(i) ξ (0) = ξ and ξ (n) = ξ ′, where ξ ′ is completely empty in the first cube
Q ⊂ ��y of side m which was internally spanned for ξ and otherwise
coincides with ξ ;
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(ii) ξ (i+1) is obtained from ξ (i) by changing exactly only one spin at a suitable
site x(i) ∈ Q;

(iii) the move at x(i) leading from ξ (i) to ξ (i+1) is permitted i.e. cx(i) (ξ (i)) = 1
for every i = 0, . . . , n.

Remark 6.12 Notice that, given ξ (i) = η, the number of starting configurations
ξ = ξ (0) compatible with η is bounded from above by 2cmd

, c = c(d), and the

relative probability µ(ξ)/µ(η) by
(
p/q
)cmd

.

We can proceed as in (5.3) and conclude that

µ
(
c̃0 cx,�0 Varx(f )

) ≤ ec′md
µ(ĉ0 c̃0 cx,�0 Varx(f ))

+
∑

y∈K∗0

∑

z∈��y

µ(c̃0 cx,�0 cz Varz(f )) (6.22)

where now ĉ0 is the indicator of the event that for each y ∈ K∗0 there exists
a cube Q ⊂ ��y of side m which is completely empty. The second term in
the above inequality arises from the above described path inside the blocks
∪y∈K∗0��y which leads from ξ to ξ ′ (namely it is the analogous of the second
and third term of (5.3)). The above inequality together with (6.21) reduces the
proof of the lemma to the proof of inequality

ec′md
µ(ĉ0 c̃0 cx,�0 Varx(f )) � ec′′md

µ
(
cx Varx(f )

)
(6.23)

Next we observe that for any sequence of adjacent (in e.g. the first direction)
cubes Q1, Q2, . . . , Qj of side m inside ��y, ordered from left to right, and for
any configuration η ∈ E2 which is identically equal to 0 in Q1, one can construct
a sequence of configurations (η(0), η(1), . . . , η(n)), n ≤ jmd, such that:

(i) η(0) = η and η(n) is completely empty in Qj and otherwise coincides with
η;

(ii) η(i+1) is obtained from η(i) by changing exactly only one spin at a suitable
site x(i) ∈ ∪j

i=1Qi;
(iii) the move at x(i) leading from η(i) to η(i+1) is permitted i.e. cx(i) (η(i)) = 1

for every i = 0, . . . , n.

In other words one can move the empty square Q1 to the position occupied by
Qj in no more than jmd steps. The construction is very simple and it is based
on the basic observation described at the beginning of the proof. Starting from
Q1 and using the fact that any copy of Qd−1(m) inside ��y is “(d − 1) inter-
nally spanned”, by a sequence of legal moves one can first empty Q2. Next one
repeats the same scheme for Q3. Once that also Q3 has been emptied one back-
tracks and readjust all the spins inside Q2 to their original value in the starting
configuration η. The whole procedure is then iterated until the last square Qj is

emptied and the configuration η fully reconstructed in ∪j−1
i=1Qi.
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The key observation at this point is that, given an intermediate step η(i) in
the sequence, the number of starting configurations η compatible with η(i) is
bounded from above by 2j · 4md

and the relative probability µ(η(i))/µ(η) by
(
p/q
)2md

. By using the path argument above and by proceeding again as in
(5.3), we can finally obtain

ec′md
µ(ĉ0 c̃0 cx,�0 Varx(f )) � 2� ec′′md

µ
(
c̃0 ĉ0,x cx,�0 Varx(f )

)
(6.24)

where ĉ0,x is the indicator of the event that there exists a cube Q of side m,
laying outside �0 and such that K∗x ∩�c

0 ⊂ Q , which is completely empty. This
implies c̃0 ĉ0,x cx,�0 ≤ cx, since the sites in K∗x ∩�c

0 which are considered empty
for cx,�0 due to the good boundary are also empty for the infinite volume rates
cx thanks to ĉ0,x. Furthermore, since � � ecmd

for a proper c when q → 0, the
proof of (6.23) and therefore of the lemma is complete. ��

As a second step we lower bound gap(L�0) by the spectral gap in the reduced
volume �1 := Qd

�/2 (we assume here for simplicity that both � and m are pow-

ers of 2). To this end we partition �0 into disjoint copies of �1, {�(i)
1 }2

d

i=1 and,
mimicking the argument of Sect. 4, we run the constrained dynamics of the
∗-general model on �0 with blocks {�(i)

1 }2
d

i=1 and good event the event that
for each δ ∈ [1, . . . , d − 1], every copy of Qδ(m) in Qd(�/2) is “δ internally
spanned”. By choosing the constant K appearing in the definition of m large
enough the probability of G is very close to one as q → 0 and therefore the
Poincaré inequality

Var�0(f ) ≤ 2
2d
∑

i=1

µ
(
ci Var

�
(i)
1

(f )
)

(6.25)

holds, where ci are the constraints of the ∗-general model. At this point we can
proceed exactly as in the proof of Lemma 6.11 and get that the r.h.s. of (6.25) is
bounded from above by

ecmd
gap(L�1)

−1D�0(f )

for some constant c = c(d). We have thus proved that

gap(L�0)
−1 ≤ ecmd

gap(L�1)
−1

If we iterate N times, where N is such that 2−N� = m we finally get

gap(L�0)
−1 ≤ ecN md

gap(L�N )−1

where �N = Qd
m. This together with Proposition 6.10 and gap

(L�N

)−1 � ecmd

achieves the proof. ��
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6.4 The N-E model

The N-E model is the natural two-dimensional analogue of the one-dimensional
East model. Before giving our results we need to recall some definitions of ori-
ented percolation [15,33]. A NE oriented path is a sequence {x(0), x(1), . . . , x(n)}
of distinct points in Z

2 such that x(i+1) = x(i)+α1
e1+α2
e2, αj = 0, 1 and α1+α2 =
1 for all i. Given a configuration η ∈ 
 and x, y ∈ Z

2, we say that x→ y if there
is a NE oriented path of occupied sites starting in x and ending in y. For each
site x ∈ Z

2 its NE occupied cluster x is the random set

Cx(η) := {y ∈ Z
2 : x→ y}

The range of Cx(η) is the random variable

Ax(η) =
{

0 if Cx(η) = ∅
sup{1+ ‖y− x‖1 : y ∈ Cx(η)} otherwise

Remark 6.13 If Ax(η) > 0 then at least Ax(η) legal (i.e. fulfilling the NE con-
straint) spin flip moves are needed to empty the site x.

Finally, we define the monotonic non decreasing function θ(p) := µ(A0 = ∞)

and let

po
c = inf{p ∈ [0, 1] : θ(p) > 0}

It is known (see [15]) that 0 < po
c < 1. In [33] it is proved that the percolation

threshold and bootstrap percolation threshold of N-E model (see Sect. 2.3) are
related by po

c = 1 − qbp and therefore, thanks to Proposition 2.5, qc = 1 − po
c .

The presence of a positive threshold qc reflects a drastic change in the behavior
of the NE process when q < qc due to the presence of blocked configurations
(NE occupied infinite paths) with probability one. In [26] it is proved that the
measure µ on the configuration space is mixing iff q ≥ qc, a result that also
follows at once from the arguments given in the proof of our Proposition 2.5
since θ(po

c ) = 0 [9].
We now analyze the spectral gap of the N-E process above, below and at the

critical point qc.
Case q > qc. This region is characterized by the following result of [15].

Proposition 6.14 If p < po
c there exists a positive constant ς = ς(p) > 0 such

that

lim
n→∞−

1
n

log µ(A0 ≥ n) = ς (6.26)

We can now state our main theorem.

Theorem 6.15 For any q > qc the spectral gap of the N-E model is positive.
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Fig. 7 An example of configuration η with the sets C0(η) (on the left) , C(L)
0 (η) and ξ

(L)
0 (η) (on

the right)

Proof Recall the notation of Sect. 3. Using Theorem 3.3 we need to find a
set of configurations G� satisfying properties (a) and (b) of Definition 3.1. Fix
δ ∈ (0, 1) and � > 2 and define

G� := {η ∈ {0, 1}�0 : � occupied oriented path in �0 longer than �δ}

Since q > qc we can use (6.26) to obtain that for any ε ∈ (0, 1) there exists
�c(q, ε, δ) such that, for any � ≥ �c(q, ε, δ), µ(G�) ≥ 1 − ε and property (a)
follows. Property (b) also follows directly from the definition of G�. Indeed,
if the restriction of a configuration η to each one of the squares �0 + �x,
x ∈ K∗0, belongs to G�, then necessarily there is no occupied oriented path in
∪x∈K∗0 {�0 + �x} of length greater than 3�δ . Therefore, by a sequence of legal
moves, all the ∂∗+�0 can be emptied for η and the proof is complete. ��
Case q < qc. Following [15] we need some extra notation. For every L ∈ N and
η ∈ 
 let C(L)

0 (η) = {x ∈ C0(η) : ‖x‖1 = L} and let

ξ
(L)
0 (η) := ∪x∈C(L)

0 (η)
{x1}

be the projection onto the first coordinate axis of C(L)
0 (η). Denote by rL, lL the

right and left edge of ξ
(L)
0 (η) respectively (Fig. 7). If p > po

c it is possible to show
[15] that there exists positive constants a, ζ such that

µ
(
{ξ (L)

0 = ∅} ∩ {rL ≤ aL}
)
= µ

(
{ξ (L)

0 = ∅} ∩ {lL ≥ aL}
)
≤ e−ζL (6.27)

for any L large enough. We can now state our result for the spectral gap.

Theorem 6.16 Let � ⊂ Z
2 be a square of side L ∈ N. For any q < qc there exists

two positive constants c1, c2 such that

exp{−c1L} ≤ gap(L�) ≤ exp{−c2L} (6.28)
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Proof We first discuss the upper bound by exhibiting a suitable test function f
to be plugged into the variational characterization of the spectral gap. For this
purpose let BL := {η : ξ

(L)
0 = ∅} and define f = 1IBL . Since q < qc, there exists

two positive constants 0 < k1(q) ≤ k2(q) < 1 such that k1 ≤ µ(BL) ≤ k2 , see
[15]. Thus the variance of f is bounded from below uniformly in L. On the other
hand, by construction,

D(f ) =
∑

x∈�
µ (cx Varx(f )) ≤ |�|µ(B̄L)

where B̄L := {η : |ξ (L)
0 | = 1} = {η : rL = lL}.

Thanks to (6.27)

µ(B̄L) ≤ µ({rL = lL} ∩ {rL > aL})+ µ({rL = lL} ∩ {rL ≤ aL})
≤ 2µ(ξ

(L)
0 = ∅} ∩ {rL ≤ aL}) ≤ 2 exp{−ζL}

and the r.h.s. of (6.28) follows.
The bound from below comes from the bisection method of Theorem 4.1

where in Proposition 4.4 εk is defined as the probability that there is at least one
left-right NE occupied oriented path. Trivially εk ≤ 1− e−cδk for some constant
c. If we plug such a bound bound into (4.10) and we remember that the number
of steps of the iterations grows as c log L, we obtain the desired result. ��
The case q = qc.

Theorem 6.17 The spectral gap is continuous at qc where, necessarily, it is zero.

Proof Assume q = qc and suppose that the spectral gap is positive. Then, by
Theorem 3.6, the persistence function decays exponentially fast as t →∞. We
will show that such a decay necessarily implies that the all moments of the size
of the oriented cluster C0 are finite i.e. q > qc, a contradiction.

Let H(t) := {η : A0(η) ≥ 2t} and observe that, again by the “finite speed
of propagation” (see Sect. 6.3), P(σ

η

0 (s) = η0 for all s ≤ t) ≥ 1
2 for all η ∈ H(t).

Using H(t) we can lower bound F(t) as follows.

F(t) =
∫

dµ(η) P(σ
η

0 (s) = η0 for all s ≤ t)

≥
∫

H(t)

dµ(η) P(σ
η

0 (s) = η0 for all s ≤ t)

≥ 1
2
µ(A0 ≥ 2t)

which implies,
µ(A0 ≥ 2t) ≤ 2F(t) ≤ 2 e−ct (6.29)
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for a suitable constant c > 0. But (6.29) together with the fact that |C0| ≤ A2
0+1

implies that µ (|C0|n) <∞ for all n ∈ N, i.e. p < po
c [1].

The same argument proves continuity at qc.
Suppose in fact that lim supq↓qc

gap > 0. That would imply (6.29) for any
q > qc with c independent of q, i.e. supq>qc

µ (|C0|) <∞, again a contradiction
since µ (|C0|) is an increasing function of q which is infinite at qc [15,20]. ��

Corollary 6.18 At q = qc the persistence function F satisfies

∞∫

0

dt F(
√

t) = ∞

Proof By (6.29)

∞∫

0

dt F(
√

t) ≥ 1
2

∞∫

0

dt µ(A0 ≥ 2
√

t)

≥ 1
2

∞∫

0

dt µ
(|C0| ≥ c′t

) = +∞

because µ (|C0|) = +∞ at qc. ��

7 Some further observations

We collect here some further comments and aside results that so far have been
omitted for clarity of the exposition.

7.1 Logarithmic and modified-logarithmic Sobolev constants

A first natural question is whether it would be possible to go beyond the Poin-
caré inequality and prove a stronger coercive inequality for the generator L like
the logarithmic or modified-logarithmic Sobolev inequalities [4]. As it is well
known, the latter is weaker than the first one and it implies in particular that,
for any non-negative mean one function f depending on finitely many variables,
the entropy Ent(Ptf ) := µ (Ptf log(Ptf )) satisfies:

Ent(Ptf ) ≤ Ent(f )e−αt (7.1)

for some positive α. As we briefly discuss below such a behavior is in general
impossible and both the (infinite volume) logarithmic and modified logarithmic
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Sobolev constants are zero.5 For simplicity consider any of the 0–1 KCSM
analyzed in Sect. 6 and choose f as the indicator function of the event that the
box of side n centered at the origin is fully occupied, normalized in such a way
that µ(f ) = 1. Denote by µf the probability measure whose relative density
w.r.t. µ is f . If we assume (7.1) the relative entropy Ent(µf Pt/µ) satisfies

Ent(µf Pt/µ) = Ent(Ptf ) ≤ Cnde−αt. (7.2)

which implies, thanks to Pinsker inequality, that

‖µf Pt − µPt‖2
TV = ‖µf Pt − µ‖2

TV ≤ 2Ent(µf Pt/µ) ≤ 2Cnde−αt (7.3)

i.e. ‖µf Pt − µPt‖TV ≤ e−1 for any t ≥ O(α−1 log(n)). However, the above con-
clusion clashes with a standard property of interacting particles systems with
bounded rates known as “finite speed of propagation” (see e.g. [28]) which can
be formulated as follows. Let τ(η) be the first time the origin is updated starting
from the configuration η. Then

∫
dµf (η)P(τ (η) < t) ≤ Cnd−1

P(Z ≥ n/r) where
Z is a Poisson variable of mean t and r is the range defined in Sect. 2.2. The
above bound implies in particular that

∫
dµf (η)E(σ

η

0 (t)) ≈ 1 for any t  n i.e. a
contradiction with the previous reasoning.

7.2 More on the ergodicity/non ergodicity issue in finite volume

In Sect. 2.1, we mentioned that one could try to analyze a 0–1 KCSM in a finite
region without inserting good boundary conditions and instead modifying the
influence classes with the choice (2.4), namely by looking only to sites inside �

to satisfy the constraints. In this case the Markov chain is in general non ergodic
and a natural question is to evaluate the spectral gap of the process restricted to
the different ergodic components. Although such an approach appears rather
complicate for e.g. cooperative models, it is within reach for non-cooperative
models.

For simplicity consider the FA-1f model in a finite interval � = [1, . . . , L].
We consider the generator L� (2.3) with rates (2.1) and influence classes (2.4)
with Cx = {x − 1, x + 1}. In this case the configuration space 
L has a very
simple decomposition in only two ergodic components: one contains only the
completely filled configuration, the other one is given by 
+� := {η ∈ 
� :∑

x∈� ηx < L}, i.e. contains all configurations with at least one empty site. We
underline that for all other choices of the constraints different from FA-1f, more
complicated decompositions with several components containing more than a
single configuration will occur. Let us now consider the Markov process on 
+�,
which is ergodic and reversible w.r.t the conditional measure µ+� := µ�(· |
+�).

5 In finite volume with minimal boundary conditions it is not difficult to show that for some of
the models discussed before the logarithmic Sobolev constant shrinks to zero as the inverse of the
volume.
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We now show how to derive that also the spectral gap of this new process
stays uniformly positive as L → ∞. To keep the notation simple we drop the
subscript � from now on.

For any η ∈ 
+, let ξ(η) = min{x ∈ � : ηx = 0} and write, for an arbitrary f ,

Var+(f ) = µ+
(
Var+(f | ξ)

)+Var+
(
µ+(f | ξ)

)
(7.4)

with self explanatory notation. Since Var+(f | ξ) is computed with “good”,
i.e. zero, boundary condition at ξ , we get that

Var+ (f | ξ) = Var (f | ξ)

≤ const.
∑

x>ξ

µ (cx Varx(f ) | ξ)

= const.
∑

x>ξ

µ+ (cx Varx(f ) | ξ) . (7.5)

Therefore, the first term in the r.h.s of (7.4) is bounded from above by a constant
times the Dirichlet form. In order to bound the second term in the r.h.s of (7.4)
we observe that ξ is a geometric random variable condition to be less or equal
than L. By the classical Poincaré inequality for the geometric distribution, we
can then write

Var+
(
µ+(f | ξ)

)

≤ const.
L−1∑

x=1

µ+
(

b(x)
[
µ+(f | ξ = x+ 1)− µ+(f | ξ = x)

]2) (7.6)

where b(x) = µ+(ξ = x+ 1)/µ+(ξ = x). A little bit of algebra now shows that

µ+(f | ξ = x)− µ+(f | ξ = x+ 1)

= µ+
(
ηx+1(f (η)− f (ηx+1) | ξ = x

)
+ µ+

(
f (ηx)− f (η) | ξ = x+ 1

)

= µ+
(
ηx+1cx+1(f (η)− f (ηx+1) | ξ = x

)

+µ+
(
cx(f (ηx)− f (η)) | ξ = x+ 1

)
(7.7)

In the last equality we have inserted the constraints cx+1 and cx because they
are identically equal to one. If we now insert (7.7) into the r.h.s. of (7.6) and
use Schwartz inequality, we get that also the second term in the r.h.s of (7.4)
is bounded from above by a constant times the Dirichlet form and the spectral
gap stays bounded away from zero uniformly in L.
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