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Relaxation times of kinetically constrained spin models with glassy dynamics
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We analyze the density and size dependence of the relaxation time τ for kinetically constrained
spin systems. These have been proposed as models for strong or fragile glasses and for systems
undergoing jamming transitions. For the one (FA1f) or two (FA2f) spin facilitated Fredrickson-
Andersen model at any density ρ < 1 and for the Knight model below the critical density at which
the glass transition occurs, we show that the persistence and the spin-spin time auto-correlation
functions decay exponentially. This excludes the stretched exponential relaxation which was derived
by numerical simulations. For FA2f in d ≥ 2, we also prove a super-Arrhenius scaling of the form
exp(1/(1−ρ)) ≤ τ ≤ exp(1/(1−ρ)2). For FA1f in d=1, 2 we rigorously prove the power law scalings
recently derived in [13] while in d ≥ 3 we obtain upper and lower bounds consistent with findings
therein. Our results are based on a novel multi-scale approach which allows to analyze τ in presence
of kinetic constraints and to connect time-scales and dynamical heterogeneities. The techniques are
flexible enough to allow a variety of constraints and can also be applied to conservative stochastic
lattice gases in presence of kinetic constraints.

Despite a great deal of theoretical and experimental
efforts, the main issues in understanding liquid–glass or
jamming transitions remain unsolved. These phenomena
occur in different systems: supercooled liquids, colloidal
suspensions, vibrated granular materials [1, 2]. Char-
acteristic features of a glassy behavior include dramatic
slowing down of dynamics when a proper external param-
eter is tuned (e.g. temperature for liquids) and the occur-
rence of a complex, non exponential and spatially hetero-
geneous [3] relaxation process. Experiments show that,
if an ideal glass transition occurs, it exhibits mixed first
and second order features. Indeed, even if the divergence
of the relaxation time signals a second order like tran-
sition, no static diverging correlation length is detected.
Furthermore relaxation times for fragile liquids diverge
in a super-Arrhenius way: τ ≃ exp (A(T − Tc)/T ) with
A(x) ↑ ∞ as x ↓ 0, a signal of a cooperative relaxation
on increasingly large scales as T decreases.
A class of microscopic models that have been proposed

in the attempt of understanding these phenomena are the
so-called kinetically constrained models (KCM) ([4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
and references therein). KCM are systems of particles
on a discrete lattice with no static interactions beyond
hard core and evolution is given by a Markovian stochas-
tic dynamics. The elementary move is either a jump
of a particle to a nearby empty site in the conservative
(Kawasaki) case or the creation/destruction of a parti-
cle in the non conservative (Glauber) case. In both sit-
uations the associated rates, if positive, verify detailed
balance with respect to a simple product measure. How-
ever, and this is the most interesting feature, a move
at site x can occur only if the configuration around x
satisfies certain constraints. The latter mimic the local
constraints that may occur in the physical systems and

which may cause the dynamical arrest. Indeed, for a
proper choice of the constraints, KCM show glassy fea-
tures including stretched exponential relaxation, super-
Arrhenius slowing down and dynamical heterogeneities.
Several works and a great deal of numerical simulations
have recently been devoted to understand the mechanism
inducing these glassy properties and to derive the typical
time-scales as well as the asymptotic form of correlation
functions ([4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22]). Numerical simulations are however
very delicate because of the rapid divergence of τ as the
density is increased. Furthermore, finite size effects often
have non trivial scalings. In this work we present a new
general probabilistic technique through which we obtain
rigorous results on the dependence of τ on the size of the
lattice and on the particle density, ρ. As a by-product we
also obtain meaningful bounds on the long-time behavior
of time correlations and persistence function.
We first introduce the models and our results and then

sketch the technique, referring to [23] for rigorous proofs.
We focus on non conservative models, also known as ki-
netically constrained spin models (KCSM) or facilitated
spin models. Conservative models will be analyzed else-
where [23]. KCSM are defined as follows. Each site x
can be occupied, ηx=1, or empty, ηx=0, and it changes
its current state with rate [(1 − ρ)ηx + ρ(1 − ηx)] fx(η).
Here fx(η) does not depend on ηx and it encodes the ki-
netic constraint. Thus detailed balance is satisfied w.r.t.
the Bernoulli product measure, µρ, at density ρ. KCSM
can be divided into two classes: (i) non-cooperative and
(ii) cooperative. In a non-cooperative model it is possible
to completely empty any configuration containing some-
where a finite seed of vacancies. In a non-cooperative one
that is not the case. The class (ii) can be further divided
into: (iia) models that are ergodic in the thermodynamic
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limit at any ρ < 1; (iib) models that display an ergodicity
breaking transition at a critical density ρc < 1. For the
latter, above ρc, there exists an infinite spanning cluster
of particles mutually blocked by the constraints. Finally
(iib) can be classified as discontinuous or continuous ac-
cording to the character of the percolation transition of
the blocked structure.
Among non cooperative models we consider the one

spin facilitated Fredrickson-Andersen model [5] (FA1f),
which recently received a renewed attention as a model
for strong glasses [11]. A move is allowed only if at
least one of the nearest neighbors is empty: fx(η)=1 if
∑

y n.n.x(1 − ηx) > 0, fx(η)=0 otherwise. In [11] a dy-
namical field theory was derived which gives (q=1−ρ):
τ ∝ 1/qz with z=3 for d=1, z=2 + ǫ(d) with ǫ(2) ≃ 0.3,
ǫ(3) ≃ 0.1 and ǫ(d ≥ 4) = 0. A recent exact mapping into
a diffusion limited aggregation model, its renormalization
and a careful treatment of the symmetries involved [13]
gives instead d=2 as the upper critical dimension and
ǫ(d)=0 in d ≥ 2.
Our results for FA1f are the followings. If τ denotes

the inverse of the spectral gap of the Liouvillian operator
generating the stochastic dynamics, i.e. the worst relax-
ation time on all one time quantities, we get: τ ∝ 1/q3

in d = 1, 1/q2 < τ ≤ 1/(q2 log 1/q) in d = 2 and
1/q1+2/d < τ ≤ 1/q2 in d = 3. These rigorous results
lead to ǫ(2) = 0 and ǫ(3) ≤ 0, disproving the findings in
[11] and confirming those in [13]. Moreover our method
allows us to identify explicitly the slowest modes which
dominate relaxation. Furthermore, it is easily adapted to
any possible choice of non cooperative constraints, e.g. to
models in which more than one spin is needed to empty
the whole lattice. We can also treat models with asym-
metric (e.g. East model [6]) or partially asymmetric con-
straints ([7]) which have been proposed to model fragile
glasses [10] and the strong/fragile crossover. In partic-
ular for East, we obtain log τ ≃ (log(1/q))2 as in [8, 9].
Finally we can deal with the persistence function

F (t) =

∫

dµρ(η(0)) P [η0(s) = η0(0) ∀s < t] .

In great generality [23] we prove that whenever the global
relaxation time τ is finite, F (t) decays exponentially fast.
In particular, for FA1f we obtain τF ≤ q−1τ for small q,
where τF is defined via F (τF ) = e−1. Although these
findings disprove any stretched exponential decay at large
times, for FA1f in d = 1 our bound τF ≤ 1/q4 does not

preclude the stretched form [11, 12] F (t) ≃ exp(−
√

q3t)
when q ↓ 0 and q3t ≃ O(1). This is indeed the regime
where numerical simulations are performed [12].
Among cooperative models without transition (iia) we

consider the two spin facilitated FA model (FA2f) on
square and cubic lattices. Here the constraint requires
that at least two of the surrounding sites are empty in
order for the rate to be non zero. Originally [5] a dynami-
cal transition at a finite density was predicted but later it

was shown that it cannot occur [14, 15, 25]. Still, FA2f is
relevant for fragile glasses since both super-Arrhenius di-
vergence for τ and stretched exponential relaxation have
been detected [5, 14, 15, 16, 17, 18, 19]. Indeed, both the
spin-spin time autocorrelation and the persistence func-
tion are fitted with exp

(

−(t/τ)β
)

with β decreasing as
the density ρ is increased [16, 17, 18]. As pointed out
in [4], beyond the general recognition that FA2f behaves
like fragile glasses, little is known about the scaling of
τ . Different fits have been proposed: Adam-Gibbs form
[15], Vogel-Fulcher form [16] and exp(c/q) [19]. The lat-
ter, which corresponds to a super-Arrhenius form when q
is rewritten in terms of the temperature, is supported by
the conjecture that relaxation occurs via the diffusion of
critical droplets of size 1/q over distances exp(c/q) [14].

Our results for FA2f in d = 2 and d = 3 are the follow-
ings. We prove that exp(1/q) ≤ τ ≤ exp(1/q2) which
establishes a super-Arrhenius scaling and excludes the
Vogel Fulcher form [16]. Furthermore, since our results
hold uniformly on the system size, we obtain that relax-
ation in infinite volume is purely exponential at any fixed
q. Furthermore, as for FA1f, we get a strict bound on the
crossover regime where a stretched form may occur if we
let simultaneously q ↓ 0 and t ↑ ∞. These findings con-
tradict the asymptotic stretched exponential relaxation
in [16, 17, 18]. The fit with a stretching exponent β < 1
should be due to the rapid divergence of τ , which was
also a fitting parameter.

Among (iib) models with continuous transition, we
consider the two dimensional North East model (NE).
For NE both the up and right neighbors should be empty
in order for a move to be allowed and a continuous transi-
tion occurs at the critical density of directed percolation,
ρdp [20]. Finally, for (iib) with a discontinuous transition,
we consider the recently proposed Knight model [22]. We
refer to [22] for the precise definition of the constraints;
we only recall that the transition occurs again at ρdp and
has the remarkable features of an ideal glass transition.
Indeed a finite fraction of the system is frozen at ρdp and
the size ξ of blocked structures diverges faster than any
power law as ρ ↑ ρdp. This leads to a super-Arrhenius
divergence if τ ≃ ξz is assumed.

Our main results for NE and Knights are the follow-
ings. For ρ < ρdp we identify a constant which bounds τ
uniformly on the system size, L. Therefore, even if an er-
godicity breaking transition occurs, relaxation is purely
exponential in the ergodic region. Moreover, we get that
τ diverges when ρ ր ρdp and τ ∝ exp(L c(ρ)) for ρ > ρdp.
This result provides a possible test on the validity of
Knights for systems undergoing jamming transitions.

Let us now sketch the main ideas beyond our approach,
rigorous proofs will be reported elsewhere [23]. Here we
focus on d = 2. Results in d = 1 can be derived analo-
gously; we will comment at the end on d = 3. We first
introduce a new model referred to as the General Model
(GM) and derive results for its relaxation time, τGM .
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FIG. 1: a) Block dynamics for GM: percolating path of good
sites (•) required to renew configuration on 3. b) Blocking
event for FA2f. • (◦) stand for particles which do (do not)
belong to the backbone. Sites inside dotted line form one of
the sequences of ≥ δLc/2 sites to be emptied before O.

Then we show how to map a given KCSM into GM by
a renormalization technique. GM can be described as
follows. Instead of two-valued occupation variables con-
sider N-valued variables, nx ∈ S = (0, . . .N − 1), and
a probability measure ν on S. We identify a subset G
of S which we call the good event and we declare good
a site x if nx ∈ G. The dynamics is defined as follows.
Each site x waits a mean one exponential time and then
nx is refreshed by a new value n′

x sampled from ν, pro-
vided its three North, North-East and East neighbors
(i.e. x + ~e1, x + ~e1 + ~e2, x + ~e2, ~ei being the unit basis
vectors) are good. If this constraint is not satisfied, nx

remains unchanged. We consider GM on a square lat-
tice ΛL of linear size L with good boundary conditions
on the top and right boundaries to ensure ergodicity. In
order to evaluate τGM (L) we follow the bisection method
[24]. Partition ΛL into four blocks as in fig.1a) and de-
fine the following auxiliary accelerated dynamics. Each
block waits a mean one exponential time and then its
configuration is replaced by a new one chosen according
to the product equilibrium probability given by ν. On
the top right block (block 2 in fig.1a)) this move is al-
ways allowed because of the boundary conditions. For the
others, a constraint should be satisfied: on an l-shaped
frame of width Lδ, δ < 1, there should be a percolat-
ing cluster of good sites in the current configuration as
in fig.1a). In other words, the constraint requires the
good GM boundary conditions on the blocks 1, 3, 4 (on 2
they are automatically guaranteed). The relaxation time
τGM (L) is then bounded by the product

τGM (L) ≤ τblock(L) τGM (L/2)

with τblock(L) the relaxation time for the block dynam-
ics [28]. The above inequality corresponds intuitively to
a two steps relaxation: first on the block scale, then in-
side each individual block. Notice that, trivially, τGM (L)
is smaller than the worst case over the boundary condi-
tions of the relaxation time on scale L/2. However, such
inequality is useless because without the good b.c. GM
dynamics is not ergodic (i.e. τ is infinite). In other words,
working with a constrained block dynamics is essential.
Then, by dividing ΛL/2 into four blocks and so on up to

constant size, we get

τGM (L) ≤ c
∏

n

τblock(2
−nL),

where c is a finite constant and the product contains
O(logL) terms. Therefore we get a bound for τGM (L)
which does not dependent on L provided that the prod-
uct over the τblock’s converges. In turn this occurs if the
probability that a site is good, p, is larger than a finite
threshold, pc < 1. Indeed one can easily show that, for
p ≃ 1, τblock(L) ≃

(

1 + exp(−mLδ)
)

where exp(−mLδ)
comes from the probability that the constraint for the
block dynamics on scale L is violated.
Let us now explain how to apply such a result to the

KCSM models described above. We consider for definite-
ness FA2f in d = 2 with empty boundary conditions on
the top and right borders. We say that a region V is inter-
nally spanned for the configuration η if, when consider-
ing all the sites outside V occupied, η can be completely
emptied using (internal) allowed moves. The probabil-
ity for ΛL to be internally spanned has been evaluated
in the context of bootstrap percolation: it goes to one
exponentially fast when L exceeds the crossover length
Lc ≃ exp(c/q) with c = π2/18 [26]. Divide now the
square lattice into disjoint blocks of size k Lc, k ≫ 1,
and identify each block by the coordinates of its cen-
ter. On each of these renormalized sites we define a
configuration space S = {0, 1}Nb, with Nb the number
of sites in a block. In S we identify the good event G
as the set of configurations such that the block is inter-
nally spanned. Because of our choice of k the probability
that a renormalized site is good is ≃ 1. We can thus
run the GM dynamics on the renormalized lattice and
get supL τGM(L) ≃ 1. Since in GM dynamics blocks
are updated only if “enough” surrounding are internally
spanned, by the two steps relaxation argument we get

τ(L) ≤ τGM(L) τ(kLc) ≃ τ(kLc).

where τ(L) is the relaxation time for FA2f. In the infinite
volume limit and for any ρ < 1 this leads to an exponen-
tial relaxation for all one time functions as well as for
the persistence function using a Feyman-Kac bound [23].
At the same time the density dependence of τ is com-
pletely encoded in the relaxation time on a lattice of size
Lc(ρ). To evaluate the latter we reduce the scale from
Lc to 1/q2 via a strategy similar to the previous one.
However, on scales smaller than Lc the event “the block
is internally spanned” becomes very unlikely and we are
forced to make a different choice for the constraints of the
renormalized dynamics in order to keep τGM ≃ 1. Our
choice for the good event G is suggested by the follow-
ing two observations: (i) any empty segment of length ℓ
can be displaced by one step in a given direction if there
is at least one vacancy on the adjacent segment in that
direction; (ii) the probability that there exists a fully oc-
cupied segment of length ℓ inside a critical square of size



Lc is very small as soon as ℓ ≫ 1/q2. Thus, we choose
good events which force the not fully occupied condition
on segments of length 1/q2. By applying a bisection pro-
cedure analogous to the one used for GM together with
elementary paths arguments, we get

τ(Lc) ≤ cLcτ(1/q
2)

Finally we bound τ(1/q2) with the highest entropy cost
to get τFA(L) < cLc exp(1/q

2) = O(exp(1/q2)).
The results for the other 2-dimensional models (FA1f,

NE and Knight) are obtained analogously. Furthermore,
for a generic choice of the constraints, we find that τ is
dominated by τ(Lc) where Lc is the crossover length for
a region to be internally spanned (with the chosen con-
straints). Therefore Lc, which can be determined by a de-
terministic bootstrap-like procedure, is the relevant size
over which numerical simulations should be performed.
By analyzing the constraints one can also further reduce
the problem to a much smaller scale, as we do for FA2f.
Lower bounds for τ , directly in the thermodynamic

limit, can be established either via a suitable choice of
test functions in the variational characterization of τ
or using our general result for the persistence function:
F (t) ≤ exp(−tq/τ) [23]. Consider an event B, called the
blocking event, and let PB(t) be the probability that the
origin is occupied for all times s ≤ t, worst case among
all the starting configuration in B. The inequality for
F (t) implies µρ(B)PB(t) ≤ exp(−tq/τ). We define the
blocking event B as the set of configurations for which,
after standard bootstrap percolation (i.e. all possible
FA2f moves in sequence) inside ΛδLc

, a backbone of par-
ticles containing the origin survives. By choosing δ ≪ 1
we have µρ(B) ≃ 1. In infinite volume this backbone will
eventually get unblocked thanks to the vacancies outside
ΛδLc

. However, this requires an ordered sequence of at
least δLc/2 moves (fig.1b). Thus, PB(t = ǫδLc) ≃ 1 for
sufficiently small ǫ. Therefore O(1) ≤ exp(−tq/τ) for
t ≃ ǫδLc, i.e. τ ≥ O(Lc). In d = 3 lower bounds can
also be obtained as before: using the results in [27] for
Lc we get τ ≥ exp(c/q) for FA2f and τ ≥ exp exp(c/q)
for FA3f. The latter is in agreement with the conjecture
in [14] and disproves the possibility of an Adam Gibbs
form [18] which corresponds to τ ≃ exp(c/q). Finally
the sharp lower bounds mentioned before for FA1f are
obtained by a careful choice of a test function.
In summary, we have developed a technique which
allows to obtain rigorous results on τ for KCSM via
the knowledge of the typical regions which have to be
rearranged to perform a movement. In other words, we
have been able to connect rigorously time-scales and
dynamical heterogeneities, a subject which have recently
received great attention in the glass community [3].
The main new results established via this technique are
super-Arrhenius behavior and exponential relaxation

for cooperative models. Moreover our method suggests
the typical length scale on which numerical simulations
should be carried on. As for future developments, we
believe that our technique can be applied to finite
dimensional models other than KCM, e.g. models with
static interactions beyond hard core and to conservative
KCM models.

We thank G.Biroli for a careful reading of the
manuscript and the IHES for its kind hospitality.
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