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Abstract: Kinetically constrained lattice gases (KCLG) are interacting particle systems
which show some of the key features of the liquid/glass transition and, more generally,
of glassy dynamics. Their distintictive signature is the following: i) reversibility w.r.t.
product i.i.d. Bernoulli measure at any particle density and ii) vanishing of the exchange
rate across any edge unless the particle configuration around the edge satisfies a proper
constraint besides hard core. Because of degeneracy of the exchange rates the models can
show anomalous time decay in the relaxation process w.r.t. the usual high temperature
lattice gas models particularly in the so-called cooperative case, when the vacancies have
to collectively cooperate in order for the particles to move through the systems. Here we
focus on the Kob-Andersen (KA) model, a cooperative example widely analyzed in the
physics literature, both in a finite box with particle reservoirs at the boundary and on the
infinite lattice. In two dimensions (but our techniques extend to any dimension) we prove
a diffusive scaling O(L2) (apart from logarithmic corrections) of the relaxation time in
a finite box of linear size L . We then use the above result to prove a diffusive decay 1/t
(again apart from logarithmic corrections) of the density-density time autocorrelation
function at any particle density, a result that has been sometimes questioned on the basis
of numerical simulations. The techniques that we devise, based on a novel combination
of renormalization and comparison with a long-range Glauber type constrained model,
are robust enough to easily cover other choices of the kinetic constraints.
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1. Introduction

Kinetically constrained lattice gases (KCLG) are interacting particle systems on the inte-
ger lattice Z

d with the usual hard core exclusion. A configuration is therefore defined by
assigning to each vertex x ∈ Z

d its occupation variable, η(x) ∈ {0, 1}, which represents
an empty or occupied site respectively. The evolution is given by a continuous time
Markov process of Kawasaki type, namely with rate cx,y(η) the occupation variables at
the end points of an unoriented bond e = (x, y) of Z

d are exchanged. The exchange rate
is equal to one if the current configuration satisfies an apriori specified local constraint
and zero otherwise. In the former case we say that the exchange is legal. A key feature
of the constraint is that it does not depend on the occupation variables η(x), η(y) so
that any Bernoulli product measure μp on {0, 1}Zd

, where p is the particle density, is
automatically an invariant reversible measure for the process.

However, at variance with the simple symmetric exclusion process (SSEP) which
corresponds to the unconstrained choice ce(η) ≡ 1 for any bond (x, y), KCLG have
several other invariant measures. This is related to the fact that there exist blocked con-
figurations, namely configurations for which all exchange rates are equal to zero.

KCLG have been introduced in the physics literature (see [24] for a review) to model
liquid/glass transition and more generally the glassy dynamics which occurs in different
systems, e.g. granular materials. In particular they were devised to mimic the fact that
the motion of a molecule in a dense liquid can be inhibited by the geometrical constraints
created by the surrounding molecules. The exchange rates are devised to encode this
local caging mechanism and thus they typically require a minimal number of empty sites
in a proper neighborhood of e = (x, y) in order for the exchange at e to be legal, i.e. to
have ce = 1.

KCLG are usually classified into cooperative and non-cooperative models.

Definition 1.1. A model is said to be non-cooperative if its rates are such that it is pos-
sible to construct a proper finite group of vacancies, the so-called mobile cluster, with
the following two properties:

(i) for any configuration it is possible to move the mobile cluster to any other position
in the lattice by a sequence of legal exchanges;

(ii) any exchange is legal if the mobile cluster is in a proper position in its vicinity.

All models which are not non-cooperative are said to be cooperative.

From the point of view of the modelisation of the liquid/glass transition, coopera-
tive models are the most relevant ones. Indeed, very roughly speaking, non-cooperative
models are expected to behave like a re-scaled SSEP with the mobile cluster playing
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the role of a single vacancy. Therefore they are not very suitable to describe the rich
behavior of glassy dynamics.

Let us start by recalling some fundamental problems which require for KCLG new
ideas and techniques from those used to study SSEP or other high temperature lattice
gas models.

A first basic question is whether the infinite volume process is ergodic, namely
whether zero is a simple eigenvalue for the generator of the Markov process in L2(μp).
This would in turn imply relaxation to μp in the L2(μp) sense. The constraints which
are chosen in the physics literature in order to model the caging mechanism render the
dynamics increasingly slow as p is increased. Therefore it is possible that the process
undergoes a transition from an ergodic to a non-ergodic regime when the particle den-
sity p crosses a critical value pc ∈ (0, 1). This has indeed been conjectured for some
cooperative models [15,17,26]. The same issue for non-cooperative models is trivially
solved for any p < 1 because of the μp-almost sure existence of the mobile cluster.
When ergodicity holds, the next natural issue is to establish the large time behaviour of
the infinite volume process started from the reversible equilibrium measure at time zero.
A typical quantity to be considered is the density-density time autocorrelation function.
This problem in turn is related to the scaling with the system size of the relaxation time
(i.e. inverse spectral gap) in a finite box. Recall that for SSEP such a scaling is diffusive,
i.e. O(L2) if L denotes the linear size of the system, and that the induced time decay of
the density-density time autocorrelation function is proportional to t−d/2.

Numerical simulations for the Kob-Andersen model suggest the possibility of an
anomalous slowing down at high density [15,21] which could correspond to an anoma-
lous scaling of the relaxation time in finite volume.

Finally one would like to investigate the large time behaviour of a tagged particle
and the evolution of macroscopic density profiles, namely the hydrodynamic limit of the
process. For some cooperative models it has been conjectured that a diffusive/non-diffu-
sive transition would occur at a finite critical density: both the self-diffusion coefficent
of the tagged particle and the macroscopic diffusion coefficient of the hydrodynamic
equation would be strictly positive below this critical density and zero above [15,17].

To our knowledge, the existing rigorous answers to the above questions are the
following:

Non-cooperative models. In this case much more is known because the existence of
mobile finite clusters greatly simplifies the analysis and allows the application of stan-
dard familiar techniques (e.g. paths arguments) already developed for lattice gases and
exclusion models. In [6] it is proven in certain cases that both the spectral gap and the
log Sobolev constant in finite volume of linear size L with boundary sources scale as
O(L2). Furthermore for the same models it is established that the self-diffusion coef-
ficient of the tagged particle is strictly positive. Moreover the hydrodynamic limit has
been succesfully analyzed for a special class of gradient type in [13].

Cooperative models. In [29,30] for a large class of models it has been proven that pc = 1,
namely ergodicity always holds (see instead [28] for a choice of the constraints which
certainly leads to pc < 1). The self-diffusion coefficient is instead analyzed in [27]
where positivity is proved only modulo a conjecture on the behavior of random walks
on a random environment.

Finally, we recall that the Glauber version of KCLG, the so-called Kinetically Con-
strained Spin Models (KCSM), have also been very much studied in physics liter-
ature [4,10–12,24] and that some features of their long time behaviors have been
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rigorously analyzed in [1,8,9,16]. In particular in [9] an important correction to the
“exact solution” of the East model based on non-rigorous methods was obtained.

In conclusion, apart from the ergodicity problem studied in [30], cooperative KCLG
remain mathematically largely unexplored. The main contribution of this paper is to
introduce for the first time suitable new ideas and techniques to partially cover this gap.

We mainly focus on the cooperative model which has been most studied in the physics
literature, the so-called Kob Andersen (KA) model, which was introduced in [15] and
subsequently studied in several works [3,17,18,21,25,26,29,30].

KA actually denotes a class of models on Z
d characterized by a integer parameter

j ∈ [2, d] and defined by the following nearest neighbour exchange rates: cx,y = 1
iff at least j − 1 neighbours of x different from y are empty and at least j − 1 neigh-
bours of y different from x are empty too. It is immediate to verify that KA is always
a cooperative model. For example if j = d = 2, a fully occupied double stripe which
spans the lattice can never be destroyed. Thus any finite cluster of vacancies cannot be
mobile since it cannot overcome the double stripe. Nevertheless in [29,30] it has been
proven that the infinite volume process is always ergodic at any finite density, namely
pc = 1. This contradicts previous claims [15,17,26] on the existence of a finite critical
density.

Our two main results concern the KA model in two dimensions with j = 2 (which
is the only possible choice when d = 2) but actually both extend to higher dimensions
(with much more effort and more cumbersome reasoning). This choice was made in
order to present the overall strategy stripped from unnecessary complications.

In Theorem 4.1 we consider the model in a box of linear size L with sources,
i.e. Glauber moves, at the boundary sites. We establish upper and lower bounds of order
1/L2 (apart from logarithmic corrections) for the spectral gap at any density. Thus the
scaling is the same as for the unconstrained case, in contrast with previous conjectures
of an anomalous scaling at high density suggested by numerical evidences of a strong
slowing down of the dynamics [15,17]. However, contrary to what happens in high
temperature Ising type lattice gases, there is no uniformity in the particle density.

In Theorem 4.2 instead, we establish a diffusive 1/t decay (apart from logarithmic
corrections) for the infinite volume time auto-correlation of local functions as for SSEP.

A rough sketch of the main new ideas which are needed to overcome the problems
posed by the cooperative constraints is presented in Sect. 4. Although we have devised
our techniques for the KA model, they can be easily extended to analyze other coopera-
tive KCLG (and all non-cooperative models) via a proper modification of the choice of
the constraints for the auxiliary constrained Kawasaki and Glauber dynamics discussed
in Sect. 5.

2. Kinetically Constrained Lattice Gases (KCLG)

In this section we define a general setting for the class of models that will be ana-
lyzed later on and provide the main characterization of their ergodicity threshold (see
Proposition 2.16).

Setting and notation.

Lattices, distances and neighbourhoods. The models considered here are defined on
the integer lattice Z

d with sites x = (x1, . . . , xd) and basis vectors �e1 = (1, . . . , 0),
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Fig. 1. The various neighborhoods of a vertex x in two dimensions

�e2 = (0, 1, . . . , 0), . . ., �ed = (0, . . . , 1). On Z
d we will consider the Euclidean norm

‖x‖, the �1 (or graph theoretic) norm ‖x‖1 and the sup-norm ‖x‖∞. The associated
distances will be denoted by d(·, ·), d1(·, ·) and d∞(·, ·) respectively. A bond is a cou-
ple of sites (x, y) with d1(x, y) = 1 (couples are meant to be non ordered so that
(x, y) ≡ (y, x)). For any set�, E� will denote the set of all bonds with both sites in�,
namely E� = {

(x, y) ∈ �2 : d1(x, y) = 1
}
. For any set A ⊂ Z

d and site x ∈ Z
d , we

denote by A + x the set translated of x , namely A + x := {y : ∃z ∈ A s.t. y = z + x}.
For any vertex x we define its neighborhoods (see Fig. 1)

Nx = {y ∈ Z
d : d1(x, y) = 1},

N ∗
x = {y ∈ Z

d : d∞(x, y) = 1},

Kx = {y ∈ Nx : y = x +
d∑

i=1

αi �ei , αi � 0},

K∗
x = {y ∈ N ∗

x : y = x +
d∑

i=1

αi �ei , αi � 0}.

The exterior neighborhood (∂+�) and *-neighborhood (∂∗
+�), the interior neighbor-

hood (∂−�) and *-neighborhood (∂∗−�) neighborhood are defined as

∂+� := {x /∈ � : d1(x,�) � 1},
∂∗

+� := {x /∈ � : d∞(x,�) � 1},
∂−� := {x ∈ � : d1(x,�

c) � 1},
∂∗−� := {x ∈ � : d∞(x,�c) � 1}.

Furthermore it is useful to introduce the following additional oriented sets:

∂
i
+� := {x /∈ �; x − �ei ∈ �} ,
∂+� := ∪d

i=1∂
i
+�,

∂
∗
+� := {∪x∈�K∗

x

} \�,
∂

i
−� := {x ∈ �; x + �ei /∈ �} ,
∂−� := ∪d

i=1∂
i
−�.

In order to remember the notation we may observe that: * means using the d∞ distance,
∂�means taking only an oriented part of the boundary and +/− means exterior/interior.
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Geometric sets and paths. The following notions of rectangles, cubes, cylinders, geo-
metric paths, double-paths and crossings will be used throughout the work.

Definition 2.1 (Rectangles, cubes and cylinders). A rectangle R is a set of sites of the
form

R := [a1, b1] × · · · × [ad , bd ]

with ai , bi ∈ Z. Given a length � ∈ Z
+, Q� is the cube of side �,

Q� := [0, �− 1] × . . . [0, �− 1].

Finally, for any x ∈ �, N ∈ Z
+ and i ∈ {1, . . . , d}, we define the cylinder of radius N

around x in the i th direction as

T N
x,i =

{
y ∈ Z

d : y j ∈ [x j − N , x j + N ] for all j �= i
}

(2.1)

and for any � ⊂ Z
d , we let T N

x,i (�) := � ∩ T N
x,i .

The following property of cylinders can be immediately verified

Claim 2.2. Choose x ∈ Z
d and �,�′ ⊂ Z

d . If z ∈ T N
x,i (�

′) ∩�, then z ∈ T N
x,i (�); if

� ⊂ �′, then T N
x,i (�) ⊂ T N

x,i (�
′).

Definition 2.3 (Geometric paths, double-paths and crossings). Given x, y ∈ Z
d , a

sequence (x (1), . . . , x (n)) is a geometric path from x to y and we denote it by γxy

if: x (1) = x, x (n) = y, x ( j) �= x ( j ′) for any j �= j ′ and d1(x (k), x (k−1)) = 1 for any
k = 2, . . . , n. For any γxy we also define the corresponding geometric double-path as
γ xy := γx,y ∪ ∂∗

+γx,y . Given � ⊂ Z
d we say that γx,y is inside � and write γx,y ⊂ �

if x (i) ∈ � for all i ∈ {1, . . . , n}. Given z ∈ Z
d (e ∈ EZd ) we say that z is inside γx,y

and write z ∈ γx,y (e belongs to γx,y or e ∈ γx,y) if there exists i ∈ {1, . . . , n} such
that z = x (i) (if there exists i ∈ {1, . . . , n − 1} such that (x (i), x (i+1)) = e). Given a
rectangle R = [a1, b1]×· · ·×[ad , bd ] we say that a path γx,y is crossing R in direction
i if: γ x,y ⊂ R and xi = ai and yi = bi − 1. Finally, if d = 2 and i = 1 (i = 2) we say
that the path is left-right (top-bottom) crossing.

The following two-dimensional results can be easily verified

Claim 2.4. Given a rectangle R = [a1, b1] × [a2, b2]:
(i) if γx,y is left-right crossing R and γx̃,ỹ is top-bottom crossing R they have (at

least) one common point z ∈ γx,y ∩ γx̃,ỹ .
(ii) given R′ = [a′

1, b′
1]×[a2, b2] (R′ = [a1, b1]×[a′

2, b′
2])with a′

1 � a1 and b′
1 � b1

(a′
2 � a2 and b′

2 � b2), if γx,y is left-right (top-bottom) crossing R, then it is also
left-right (top-bottom) crossing R′.
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The probability space and the good event. Consider a finite probability space (W, ν)
with ν(w) > 0 for any w ∈ W . We will denote by G ⊂ W a distinguished event in W
which will be referred to as the “good event” and by ρ ≡ ν(G) its probability. Given
(W, ν) we will consider the configuration space � = W Z

d
equipped with the product

measure μ := ∏
x∈Zd νx , where νx ≡ ν. If W = {0, 1} then ν is completely determined

by the parameter p := ν(1) and μ is a Bernoulli product measure, μ ≡ μp. Similarly
we define�� and μ� for any subset� ⊂ Z

d . Given ω ∈ � for each x ∈ Z
d we denote

by ω(x) the value of ω at site x and we say that x is good if ω(x) ∈ G.
Elements of � (��) will be denoted by Greek letters ω, η (ω�, η�) etc. and the

variance w.r.t. μ (μ�) by Varμ (Varμ� ). We drop the measure from the variance by
adopting the simpler notation Var (Var�) when confusion does not arise. We will use the
shorthand notationμ( f ) (μ�( f )) to denote the expected value of any f ∈ L1(μ). Given
a configuration ω ∈ � and a set� ⊂ Z

d , we call ω� the restriction of ω to�. Given two
configurations ω, τ ∈ � we call ω� · τ the configuration that equals ω in � and equals
τ in Z

d\�. Furthermore, for any�1,�2,� ⊂ Z
d with�1 ∪�2 = � and�1 ∩�2 = ∅

and any two configurations ω, τ ∈ �� we set ω�1 · τ�2 for the configuration that equals
ω inside �1 and τ inside �2. A function f : � → R that depends on finitely many
variables {ω(x)}x∈Zd will be called local. Given a configuration ω ∈ � for any bond
e = (x, y) ∈ EZd we denote by ωe (or sometimes by ωxy) the configuration ω with the
occupation variables at x and y exchanged,

ωe(z) = ωxy(z) :=
⎧
⎨

⎩

ω(z) if z /∈ {x, y}
ω(x) if z = y
ω(y) if z = x .

We define Te : � → � to be the operator acting as Te(ω) = ωe and we use the symbol
∇e to denote ∇e f (ω) := f (ωe) − f (ω). When W = {0, 1} we also denote by ωx the
configuration flipped at x , namely

ωx (z) :=
{
ω(z) if z �= x
1 − ω(z) if z = x,

and we define as before Tx : � → � as Tx (ω) = ωx and ∇x as ∇x f (ω) := f (ωx ) −
f (ω). Finally, we introduce the notions of G-equivalence, good paths and good crossings
(recall Definition 2.3).

Definition 2.5 (G-equivalence). We say that ω and ω′ are G-equivalent in � and write

ω
G,�⇐⇒ ω′ if for all x ∈ � the following holds: ω(x) ∈ G iff ω′(x) ∈ G.

Definition 2.6 (Good paths and good crossings). Given a configuration ω we say that
a path γx,y is good for ω if ω(z) ∈ G for any z ∈ γ xy\x. Given a configuration ω, a
rectangle R and a path γx,y we say that γx,y is a good crossing in R in direction i if:
γx,y is crossing in R in direction i , γx,y is good and ω(x) ∈ G. In d = 2 if i = 1 (i = 2)
we use the notation good left-right (top-bottom) crossing.

It is immediate to verify that if γx,y ⊂ � is good for ω, then it is also good for any ω′
which is G-equivalent to ω in�\x (where here and in the sequel we let�\x := �\{x}).
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2.1. The Markov process and the spectral gap. The interacting particle models that we
study here are Kawasaki type Markov processes in � which are reversible w.r.t. the
product measure μ. When considered in �� they will instead be a mixture of Glauber
(on a proper inner boundary) and Kawasaki (inside �) dynamics.

Each model is characterized by a collection of influence classes {Ce}e∈E
Zd . For any

bond e, Ce is a collection of subsets of Z
d which satisfies the following basic hypothesis:

(a) independence of e: for all e ∈ EZd and all A ∈ Ce, e /∈ A;
(b) translation invariance: Ce + x = Cx+e for all e;
(c) finite range interaction: there exists r < ∞ such that for any bond e = (u, v), any

element of Ce is contained in ∪r
j=1{y : d1({u, v}, y) = j}.

Definition 2.7 Given a bond e ∈ EZd we will say that the constraint at e is satisfied by
the configuration ω if ce(ω) equals one, where

ce(ω) =
{

1 if there exists a set A ∈ Ce such that ω(y) ∈ G for all y ∈ A
0 otherwise.

On the whole lattice Z
d the process of interest for us can be informally described as

follows. Each bond e = (x, y) waits an independent mean one exponential time and
then, provided that the current configuration ω satisfies the constraint at e, the values
ω(x) and ω(y) are exchanged. Standard methods (see e.g. [19]) show that the Markov
semigroup Pt associated to this process is self-adjoint on L2(μ) for any choice of ν (i.e.
for any product measure μ) and the corresponding infinitesimal generator L (i.e. the
operator such that Pt := etL) is a non-positive self-adjoint operator which acts on local
functions as

L f (ω) =
∑

e∈E
Zd

ce(ω)
(

f
(
ωe)− f (ω)

)
. (2.2)

The corresponding Dirichlet form on L2(μ) is Dμ( f ) := −μ ( f · L f ) which can be
rewritten as

Dμ( f ) =
∑

e∈E
Zd

μ
(

ce (∇e f )2
)

f ∈ L2(μ).

In the whole work, when confusion does not arise, we will omit the index μ from the
Dirichlet form. It is important to notice that due to the fact that the rates are not bounded
away from zero, the reversible measure μ is not in general the only invariant measure
for the process. In particular there exist initial configurations that are blocked forever
(all exchange rates are zero) and any measure concentrated on them is invariant too. An
interesting question is therefore whether μ is ergodic or mixing for the Markov process
generated by L. To this purpose it is useful to recall the following well known result (see
e.g. Theorem 4.13 in [19]). Denote by Lμ the generator of the semigroup Pt extended
by continuity to L2(μ).

Theorem 2.8. The following are equivalent:

(a) limt→∞ Pt f = μ( f ) in L2(μ) for all f ∈ L2(μ).
(b) 0 is a simple eigenvalue for Lμ.
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Clearly (a) above implies that limt→∞ μ ( f Pt g) = μ( f )μ(g) for any f, g ∈ L2(μ),
i.e. μ is mixing.

Up to now we have considered the infinite volume version of the models. If instead
we restrict the generator (2.2) to a finite set� ⊂ Z

d with edge set E�, the corresponding
continuous-time Markov chain is in general not ergodic on �� due to the presence of
the constraints and to the conservative character of the dynamics. A natural possibility
to restore ergodicity and to make μ� an invariant measure for the chain is to freeze the
external configuration to a proper reference configuration τ (the boundary condition)
and to add a collection of sources (i.e. Glauber moves) on a proper set S ⊂ � (the source
set). Let M ⊂ Z

d\� be s.t. τ(x) ∈ G (τ(x) �∈ G) for x ∈ M (for x �∈ M). The finite
volume generator will depend on the boundary condition τ only via M (the boundary
set). More precisely

Definition 2.9. The finite volume generator with source set S, boundary set M, source
constraints {cx,�}x∈S and on-site distribution ν is given by

L� = LK
�,M + LG,ν

S , (2.3)

where, for any f : �� → R,

LK
�,M f (ω) =

∑

e∈E�

cM
e,�(ω)

(
f
(
ωe)− f (ω)

)
, (2.4)

LG,ν
S f =

∑

x∈S

cx,�(ω)(νx ( f )− f ), (2.5)

and the finite volume exchange rates cM
e,� are defined through the infinite volume con-

straints by

cM
e,�(ω) := ce(ω� · τ), (2.6)

where τ is any configuration satisfying τ(z) ∈ G for all z ∈ M and τ(z) �∈ G otherwise.
The source rates cx,�(ω) are either one or zero according to whether the particle con-
figuration ω satisfies or not a proper constraint which does not depend on ω(x).

In the sequel we will always drop the sub/superscripts M, S, ν from the notation
whenever confusion does not arise. Informally, the above definition means that in addi-
tion to the Kawasaki dynamics, each vertex of the source set waits an independent mean
one exponential time and then, provided the corresponding source constraint is satis-
fied, the value ω(x) is refreshed with a new value sampled in W with ν and the whole
procedure starts again.

The generator L� is a non-positive self-adjoint operator on L2(��,μ�), where μ�
is now fixed by the choice of the on-site probability measure ν in the Glauber term (2.5).
The corresponding Dirichlet form D�( f ) is given by

D�( f ) = DK
�,M( f ) + DG

S ( f ) (2.7)

=
∑

e∈E�

μ�

(
cM

e,�(∇e f )2
)

+
∑

x∈S

μ�
(
cx,� Varx ( f )

)
. (2.8)

Here Varx ( f ) ≡ ∫
dν(ω(x)) f 2(ω) − (∫

dν(ω(x)) f (ω)
)2 denotes the local variance

with respect to the variable ω(x) computed while the other variables are held fixed.
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To the generator L� we associate the Markov semigroup P�t := etL� with reversible
invariant measure μ� and the spectral gap

gap(L�) := inf
f �=const

f ∈L2(μ)

D�( f )

Var�( f )
. (2.9)

Remark 2.10. The chain generated by L� is not ergodic for all choices of the boundary
sets M, S. The interesting choices for us will be those for which the resulting chain is
irreducible.

We conclude this paragraph with the notion of domination.

Definition 2.11 (Domination). In the above setting let {C′
e}e∈E

Zd be another choice of
influence classes. Denote by c′

e(ω) and L′ the corresponding rates and generator. If for
all ω ∈ � and all e ∈ EZd it holds c′

e(ω) ≤ ce(ω), then we say that L is dominated by
L′ (or, equivalently, that the rates ce are dominated by c′

e).

The term domination here means that the KCLG associated to L′ is more constrained
than the one associated to L. If L is dominated by L′, for any � and any choice of the
boundary sets M,D′K

�,M( f ) � DK
�,M( f ) holds. In particular (2.9) yields

Lemma 2.12. Fix � ⊂ Z
d . If L is dominated by L′ and we define L′

� and L� with the
same choice for M,S and with cx,� ≡ c′

x,�, then

gap(L′
�) ≤ gap(L�).

2.2. 0-1 KCLG: ergodicity and exchangeability thresholds. In the physics literature, the
on-site configuration space W is always the two-state space W = {0, 1} which represent
the empty and occupied configuration, respectively. We call such models 0-1 KCLG. The
on-site distribution ν is now completely defined by specifying the parameter p := ν(1)
which can be varied in [0, 1]. The probability μ over � = {0, 1}Zd

is thus a product
Bernoulli(p) measure, μ ≡ μp. The good set G is conventionally chosen as the empty
state {0} and we denote by q := 1 − p its probability (thus q corresponds to ρ for
a generic KCLG). Note that the Simple Symmetric Exclusion Process (SSEP) is a 0-1
KCLG with the trivial choice ce ≡ 1. Recall that on a finite volume � ⊂ Z

d the gener-
ator (2.3) explicitly depends on the choice of ν which is here completely defined by the
parameter q. We denote by L�(q) the corresponding generator. From Definition 2.11
and Lemma 2.12 it follows immediately that the spectral gap for a 0-1 KCLG in finite
volume is upper bounded by the spectral gap of SSEP in the same region. For 0-1 KCLG
it is natural to define the critical value

qc = inf{q ∈ [0, 1] : 0 is a simple eigenvalue of Lq},
where, with a slight abuse of notation, we let Lq := Lμ1−q be the infinite volume gener-
ator extended by continuity to L2(μ1−q). We now relate qc (sometimes called ergodicity
threshold) to another threshold of the dynamics. For this purpose we need to define the
notion of allowed paths and exchangeable configurations (with respect to a given choice
of the constraints), which are valid also for generic (i.e. non-0-1) KCLG.
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Definition 2.13 (Allowed paths). Given η, σ ∈ ��, a sequence of configurations

Pη,σ = (η(1), η(2), . . . , η(n))

starting at η(1) = η and ending at η(n) = σ is an allowed configuration path (or simply
allowed path) from η to σ inside� if for any i = 1, . . . , n − 1 there exists either a bond
ei ∈ E� with η(i+1) = (η(i))ei and cM

ei ,�
(η(i)) = 1 or a site xi ∈ S with η(i+1) = (η(i))xi

and such that cxi (η
(i)) = 1. We also say that n is the length of the path and write

|Pη,σ | = n. Furthermore, given η ∈ �� and a geometric path γx,y = (x (1), . . . x (n)), we
say that γ is an allowed geometric path for η if cM

ei ,�
(η(i)) = 1 for any i = 1, . . . n −1,

where we let η(1) = η and η(i+1) = (η(i))e
i

with ei := x (i+1), x (i). Note that the above
definitions depend on the choice of the source and boundary set S,M. When � = Z

d

we will mean S,M = ∅.

Definition 2.14 (�-Connected configurations). Given η, σ ∈ ��, we say that they are
�-connected if there exists (at least) one allowed configuration path Pη,σ inside �.

Definition 2.15 ((e,�)-Exchangeable configurations). A configuration η ∈ �� is
(e,�)-exchangeable if η and ηe are �-connected. We denote by Ee (E�e ) the set of
(e,Zd)-exchangeable ((e,�)-exchangeable) configurations.

With the above notation we can define the exchangeability threshold as

qex := inf
{

q ∈ [0, 1] : μ1−q(∩e∈E
Zd Ee) = 1

}
.

Using the simple fact that the rates ce(ω) are increasing functions w.r.t. the partial order
in � for which ω � ω′ iff ω′(x) ∈ G whenever ω(x) ∈ G, it is easy to check that
μ1−q(∩e∈E

Zd Ee) = 1 if q > qex. We shall now prove that qex coincides with qc by using
a strategy analogous to the one of [6], Prop. 5.1.

Proposition 2.16. qc = qex.

Proof. Assume that q < qex. Let f be the indicator function of the set of all configu-
rations that are (e,Zd)-exchangeable for each e. By construction Var( f ) �= 0. Further-
more, since f is left invariant by the dynamics, Lq f = 0 almost surely w.r.t.μ = μ1−q .
Hence 0 is not a simple eigenvalue of Lq and q � qc.

Assume now that q > qex. Consider a function f ∈ L2(μ) with Lq f = 0, which
implies Dμ( f ) = 0. We will now show that in turn this implies that f is constant μ-a.s.
For this purpose we will show that Dμ( f ) = 0 implies

∑

e∈Zd

μ
(
|∇e f |2

)
= 0. (2.10)

Then the fact that f is constant μ-a.s. immediately follows by using the well known
fact that the simple symmetric exclusion process which has the unconstrained Dirichlet
form in (2.10) is ergodic at any density (see e.g. [19]). We are thus left with prov-
ing (2.10). Suppose that (2.10) does not hold, then there exists at least one bond e
such that μ

(|∇e f |2) > 0. We will now show that this leads to a contradiction. For
any η ∈ Ee we can fix once and for all an allowed configuration path Pη→ηe and let
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Ae
n = {η ∈ Ee : |Pη→ηe | = n} and Ae

1 = ∅ by convention. Since q > qex, μ(Ee) = 1.
Thus μ

(∪∞
n=2 Ae

n

) = 1 and

μ
(
|∇e f |2

)
=

∞∑

n=2

∫

Ae
n

dμ(η)| f (ηe)− f (η)|2. (2.11)

Writing a telescopic sum, and using Cauchy-Schwartz inequality, for any η ∈ Ae
n we

get by the very definition of the path,

| f (ηe)− f (η)|2 =
(

n−1∑

i=1

f (η(i+1))− f (η(i))

)2

� (n − 1)
n−1∑

i=1

(
f (η(i+1))− f (η(i))

)2

= (n − 1)
n−1∑

i=1

cei (η
(i))
(

f (η(i+1))− f (η(i))
)2
,

where in the last step we could insert the constrained rates because the path is allowed
(see in Definition 2.13). It follows that

∫

Ae
n

dμ(η)| f (ηe)− f (η)|2 � C(n)
∑

b∈E
Zd :d1(e,b) � n+1

μ
(

cb|∇b f |2
)
, (2.12)

where the constant

C(n) = max
ω

max
b∈E

Zd :d1(e,b) � n+1
�{η : Pη→ηe � (ω, ωb)}

takes into account the number of possible choices of configuration η such that the path
Pη→ηe crosses a given couple (ω, ωb). One can choose C(n) � ecnd

for some constant
c = c(q, d). Since by assumption Dμ( f ) = 0, it follows that μ

(
cb|∇b f |2) = 0 for all

b ∈ EZd . Thus (2.11) and (2.12) lead immediately to μ
(|∇e f |2) = 0 and the proof of

(2.10) is complete. ��

3. Kob-Andersen (KA) Model

In this section we define the Kob-Andersen (KA) model [15] and recall some of its
properties. KA is a 0-1 KCLG on Z

d with influence classes

Ce = {A ∪ B : (A, B) ⊂ Nx\{y} × Ny\{x} with |A|, |B| ≥ j − 1},
where j is a parameter satisfying 1 < j � d. Recalling Definition 2.7 for the rates and
the fact that the good event is the empty state for 0-1 KCLG, this means the following:
for any two neighbouring sites x and y at least j −1 neighbors of x belonging to Nx\{y}
and j −1 neighbors of y belonging to Ny\{x} should be empty in order for the exchange
between x and y to be allowed. See Fig. 2 left (right) for an example of an allowed (not
allowed) exchange when d = j = 2. Another way to formulate this rule is to say that
when ω(x) = 1 and ω(y) = 0 (when ω(x) = 0 and ω(y) = 1), the jump of the particle
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Fig. 2. The bond e = (x, y)with Nx \{y} (inside the continuous line) and Ny\{x} (inside the dashed line). In
the left (right) figure the exchange of the value at x and y is (is not) allowed for KA model with d = 2, j = 2

from x to y (from y to x) occurs iff the particle before and after the move has at least j
empty neighbors. The choice j = 1 is not considered among the KA models because it
corresponds to the simple symmetric exclusion process (SSEP). The choices j > d are
instead excluded because at any finite density zero is not a unique eigenvalue of their
generator. In other words the model on infinite volume is uninteresting because it is never
ergodic [29,30], namely qc = 1. This can be readily verified by noticing that for any
j > d it is possible to construct a finite set of particles that can never be moved under
the dynamics. For example for the choice d = 2, j = 3 a two by two fully occupied
square can never be destroyed.

Let us now discuss boundary and source choices for the model on a finite volume,
� ⊂ Z

d . For simplicity we discuss only the case of a rectangular region �. For all
1 < j � d a choice which renders the generator ergodic with invariant measure μ�
corresponds to imposing fully occupied boundary conditions and unconstrained particle
source on ∂−�. This is the choice which is usually considered in the physics literature
and which in our notation corresponds to the choice M = ∅, S = ∂−� and cx,�(ω) = 1.
We will make here the more constrained choice M = ∅, S = ∂−� and cx,�(ω) = 1
which is also ergodic. We will now recall some properties of KA obtained in [30]. We
start by introducing the notion of framed and frameable configurations.

Definition 3.1 (Framed and frameable configurations). Fix a set � ⊂ Z
d and a config-

uration ω ∈ �. We say that ω is �-framed if ω(x) = 0 for any x ∈ ∂−�. Let ω(�)

be the configuration equal to ω� inside � and equal to 1 outside �. We say that ω is
�-frameable if there exist a �-framed configuration σ (�) with at least one allowed
configuration path Pω(�)→σ (�) inside�. (By definition any framed configuration is also
frameable).

The following results, which are valid in any dimension d and for any 1 < j � d,
have been derived in [30] and will play a key role in the proof of Theorem 4.1. For sake
of completeness we present their proof in Appendix 9. Recall Definitions 2.14 and 2.15
of connectedness and exchangeability, then

Lemma 3.2. Consider a rectangle R ⊂ Z
d and a configuration ω which is R-framed.

Then, for any bond e = (x, y) ∈ R, ω is (e, R)-exchangeable, namely ω ∈ E R
e .

Corollary 3.3. Consider a rectangle R ⊂ Z
d and a couple of configurationsω, σ which

are both R-framed and have the same number of particles inside R,
∑

x∈R ω(x) =∑
x∈R σ(x). Then σ and η are R-connected.
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Lemma 3.4. For any �, let F� := {ω ∈ � : ω is Q� − frameable}. Then for any
q ∈ (0, 1], for any j ∈ (1, d], any ε > 0, there exists �0 = �0(ε, q, j) such that if
� ≥ �0, then μ1−q(F�) > 1 − ε.

As a consequence of the equivalence between the ergodicity and exchangeability thresh-
olds (see Proposition 2.16) and of the above lemmas we get that for any 1 < j ≤ d the
ergodicity threshold qc is zero (see [30]). We formalize the result into a theorem whose
proof is also postponed to Appendix 9.

Theorem 3.5. For any d ≥ 1 and any 1 < j ≤ d the ergodicity threshold qc of the KA
model on Z

d with parameter j verifies qc = 0.

4. Main Ideas and Results

Consider the KA model in d = 2 with j = 2. We call LK A the generator on the infinite
volume Z

2 and LK A
QL
(q) the generator on the finite cube QL ⊂ Z

2 with boundary-source

choice (M,S) = (∅, ∂−QL) and parameter q.

Theorem 4.1. For any q > 0 there exists a constant C = C(q) > 0 and a constant
c > 0 independent on q such that for any L,

c
[
1 − (1 − q)3

]−2
L2 � gap(LK A

QL
(q))−1 � C(q)L2(log L)4.

Theorem 4.2. Let Pt be the semigroup associated to LK A(q). For any q > 0 there exists
a constant C = C(q) > 0 such that for any local function f ,

Varμ(Pt f ) � C
(log t)5

t
‖ f ‖2∞ ∀t > 0,

where μ = μ1−q .

Remark 4.3. From the variational characterization of the spectral gap it follows immedi-
ately that the result of Theorem 4.1 holds also for the less constrained choice S = ∂−QL
which is usually considered in the physics literature. Actually, the proof of Theorem 4.1
will lead to the following stronger result. For any f : �QL → R,

VarQL ( f ) � C L2(log L)4DK
QL
( f ) + C L(log L)2DG

∂− QL
( f ),

where DK
QL
( f ) and DG

∂− QL
( f ) are respectively the Kawasaki and Glauber term of the

Dirichlet form of LK A
QL
(q). This implies that the result of Theorem 4.1 holds also if

the sources are slowed down of (log L)2/L , namely if the Glauber term of LK A
� (q) is

multiplied by a factor (log L)2/L .

Remark 4.4. With much more effort, the proof of Theorems 4.1 and 4.2 can be general-
ized in any dimension d ≥ 3 for all j , 1 < j � d. The bounds for the spectral gap remain
of order L2 (but with higher correction in the log terms). For the decay to equilibrium we
get Varμ(Pt f ) � C (log t)α

t ‖ f ‖2∞ for some constant α(d). The latter result is probably
not optimal: we expect the decay to be of order C/td/2.

Remark 4.5. Any 0-1 KCLG which is dominated by KA-2f verifies the same bounds as
in Theorem 4.1. The upper (lower) bound follows from Corollary 2.12 and comparison
with KA-2f (with SSEP).
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Sketch of the main ideas. In order to explain our approach let us quickly review a simple
route to prove Theorem 4.1 in the context of the SSEP. One first establishes a Poincaré
inequality w.r.t. an auxiliary Dirichlet form with pure Glauber moves and reversible
w.r.t. μ� (a trivial fact since μ� is a product measure) and then one transfers the Glau-
ber moves from the bulk to the boundary using the exchange moves of the SSEP along
apriori chosen geometrical paths (the so-called “path argument” see e.g. [20,23]). That
gives almost immediately the diffusive scaling of the spectral gap. More or less the same
technique can be applied to “non-cooperative” models.

A completely different scenario is presented when considering “cooperative models”
like the Kob-Andersen model. Indeed the above Poincaré inequality is now completely
useless because we are not guaranteed that from a site x ∈ � where a Glauber move is
performed we can reach the boundary by a sequence of allowed exchange moves. In other
words nobody guarantees that in the current configuration the holes are “cooperating” in
such a way that the new particle created at x can be moved to the boundary. It is precisely
this loss of uniformity that requires new ideas that, to the best of our knowledge, were
completely absent before our work.

The way out and a major novelty of our approach is to prove a modified Glauber-
type Poincaré inequality in which the creation/annihilation move in the bulk occurs
only if the holes in the current configuration are cooperating in a way to be able to
move to the boundary the extra hole created at x. This forces us to consider an auxiliary
Glauber process with very long range (essentially from the inner bulk to the boundary)
constraints and now the existence of the corresponding Poincaré inequality is highly
non trivial. One could naively think that the long range constraint should be of the form
“there exists a path of holes from x to the boundary along which a particle can move
with legal exchanges”. However, when the density of particles is high (and therefore
the density of holes is small) the probability of such an event is exponentially small in
the distance from the boundary, and most of the times the constraint will not be satis-
fied. That brings up the second set of new ideas, namely to consider a “renormalized
Kob-Andersen model” with a much richer structure than just particle/hole and for which
the “effective holes” have a high density (see model AKG below). For the new model we
carry out the program just illustrated above and then finally we go back to the original
Kob-Andersen model via standard comparison techniques.

5. Renormalization and Long Range Constraints

In this section we define two auxiliary models: one with purely Glauber dynamics and
long range constraints (AGL) and another one with Kawasaki dynamics plus Glauber
sources (AKG). Thus AGL belongs to the class of kinetically constrained spin models
(KCSM) while AKG is a kinetically constrained lattice gas (KCLG). Both models are
defined with an arbitrary on-site probability space (W, ν) and good event G ⊂ W , at
variance with the specific choice W = (0, 1), ν(1) = p and G = 0 of the KA model.

We will establish the positivity of the spectral gap for AGL (Theorem 5.5). This will
be a key ingredient to prove both the lower bound on the spectral gap (Theorem 4.1) and
the polynomial decay to equilibrium (Theorem 4.2) for KA. By combining Theorem 5.5
with proper path arguments we will deduce a 1/L2 lower bound for the spectral gap
of AKG (Theorem 5.6). It is by using the latter result and a suitable renormalization
procedure that we will cast KA into AKG and deduce the desired 1/L2 lower bound for
the spectral gap of the KA model (Theorem 4.1). The peculiar choice of the constraints
for both the auxiliary models is motivated by this final renormalization procedure and
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x y x y x y x y

x y x y x yx y

Fig. 3. The sets A1, . . . , A8 which belong to the influence class Ce for AKG model. We depict the case
e = x, x + e1

should be properly modified when one ultimately wishes to study KCLG which are
different from KA.

Let us start by defining the influence classes which characterize the Kawasaki dynam-
ics of AKG. We set

Ce := {A1, A2, A3, A4, A5, A6, A7, A8}, (5.1)

where Ai are defined as follows (see Fig. 3):

A1 = (x + e2, x + 2e1, x + e1 + e2), A2 = (x − e2, x + 2e1, x + e1 + e2),

A3 = (x + e2, x + 2e1, x + e1 − e2), A4 = (x − e2, x + 2e1, x + e1 − e2),

A5 = (x − e1, x + e2, x + e1 + e2), A6 = (x − e1, x + e2, x + e1 − e2),

A7 = (x − e1, x − e2, x + e1 + e2), A8 = (x − e1, x − e2, x + e1 − e2),

if e = x, x + e1 and

A1 = (x + e1, x + 2e2, x + e1 + e2), A2 = (x − e1, x + 2e2, x + e1 + e2),

A3 = (x + e1, x + 2e2, x + e2 − e1), A4 = (x − e1, x + 2e2, x + e2 − e1),

A5 = (x − e2, x + e1, x + e1 + e2), A6 = (x − e2, x + e1, x + e2 − e1),

A7 = (x − e2, x − e1, x + e1 + e2), A8 = (x − e2, x − e1, x + e2 − e1),

if e = x, x + e2. The following results follow immediately from the above definitions:

Remark 5.1. The influence classes of AKG dominate (see Definition 2.11) those of the
KA model with d = j = 2. Indeed for all i there exists A ⊂ Nx\y and B ⊂ Ny\x
s.t. Ai = A ∪ B and either |A| = 1 and |B| = 2 or |A| = 2 and |B| = 1. Thus Ai
also belongs to the influence class of KA and the inequality among the rates of KA
and AKG required to have domination immediately follows from Definition 2.7. Fix a
configurationω, then a geometric path which is good (see Definition 2.6) is also allowed
for ω with the choice of AKG constraints (see Definition 2.13).
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For any� ⊂ Z
2 the finite volume generator of AKG, Lakg

� , is then defined as in (2.3).
The corresponding Kawasaki term is defined as in (2.4) with exchange rates cM

e,�(ω)

defined by (2.6) with boundary set M = ∂
∗
+� and ce(ω) as in Definition 2.7 with influ-

ence classes (5.1). The Glauber term is defined by (2.5) with source set S = ∂−� and
constraints

cx,�(ω) =
{

1 if (ω� · τ) (z) ∈ G for any z ∈ K∗
x

0 otherwise , (5.2)

where τ ∈ � is any configuration such that τ(z) ∈ G (τ(z) �∈ G) if z ∈ ∂∗
+� (z �∈ ∂∗

+�).
The finite volume generator of AGL is instead of purely Glauber type and is defined

by the following action on local functions:

Lagl
�,N f (ω) =

∑

x∈�
cN

x,�(ω) (νx ( f )− f (ω)) ,

where the constraints cN
x,� are defined as

cN
x,�(ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if |Gx,N ,�(ω)| � 1
0 otherwise

if x /∈ ∂−�,

1 if (ω� · τ) (z) ∈ G for any z ∈ K∗
x

0 otherwise
if x ∈ ∂−�,

(5.3)

where τ ∈ � is any configuration such that τ(z) ∈ G (τ(z) �∈ G) if z ∈ ∂∗
+� (z �∈ ∂∗

+�)
and Gx,N ,� is the set of all geometric paths which are allowed for ω with the AKG con-

straints (see Definition 2.13) and go from x to the East (∂
1
−�) or North (∂

2
−�) interior

boundary of � never leaving a tube of width N centered at x . In formulas

Gx,N ,�(ω) :=
2⋃

i=1

⋃

y∈∂ i
−�

{γx,y ⊂ G : γx,y is allowed for AKG; γx,y ⊂ T N
x,i (�)},

(5.4)

where G is the overall set of geometric paths. Recalling Definition 2.5, the following
property for the set of geometric paths can be immediately verified:

Remark 5.2. Let ω,ω′ ∈ �� be such that ω
G,�\x⇐⇒ ω′. Then the following holds for any

x ∈ � and N > 0:

Gx,�,N (ω) = Gx,�,N (ω
′).

The Dirichlet form associated to Lagl
�,N is given by

D�,N ( f ) =
∑

x∈�
μ�

(
cN

x,� Varx ( f )
)
, f : �� �→ R. (5.5)

Recall from Sect. 2.1 that μ� is the product measure μ� := ∏
x∈� νx . The following

results hold:
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Claim 5.3. For any � ⊂ Z
2 and any choice of W, ν and G, the generator Lagl

�,N is
reversible w.r.t. μ� and it is ergodic.

Proof. Reversibility follows immediately from the fact that cN
x,�(ω) does not depend on

the value of ω(x). Ergodicity follows by noticing that the constraint is verified on all
sites �̃ := {x ∈ � : K∗

x ∩� = ∅} whose existence can be proved by induction because
� is finite. We can thus make the configuration of these sites good. Then we can render
all sites {x ∈ (�\�̃) : K∗

x ∩ (�\�̃) = ∅} good since they have the constraint verified.
��

Claim 5.4. For any � ⊂ Z
2 and any choice of W, ν and G, the generator Lakg

� is
reversible w.r.t. μ� and ergodic on ��.

Proof. Reversibility follows, as for any other KCLG, from the independence of cx on
ωx and from the independence of cx,y on ωx and ωy . In order to prove ergodicity it is
sufficient to show that for any η ∈ �� there exists an allowed path which connects η
to σ , where σ is a completely good configuration, σ(x) ∈ G for all x ∈ �. In order
to construct the path we start by using the source terms to make good all sites in ∂

∗
−�.

Then, since �̃ := �\∂∗
−� is finite, there should exist at least one site x ∈ �̃ such that:

K∗
x ∩ �̃ = ∅, thus K∗

x ⊂ (∂
∗
+� ∪ ∂∗

−�). Thus we can exchange the occupation variable
in x with the (good) occupation variable of a site in ∂

∗
−�. The latter site can then be

restored to good by using the sources. The procedure may then be iterated until making
the whole configuration good. ��

Recall from Sect. 2.1 that ρ is the probability of the good event G ⊂ W, ρ := ν(G).
Our main results concerning the auxiliary models are the following:

Theorem 5.5. There exist ρ1 ∈ (0, 1) and A > 0 independent of W and ν such that if
ρ > ρ1, then for any rectangle � = [0, L1] × [0, L2],

gap(Lagl
�,N ) ≥ 1

2
,

provided that N ≥ A(log(max(L1, L2))
2.

Theorem 5.6. There exists ρ0 ∈ (0, 1) independent of W and ν and a constant C =
C(|W |, ν) such that if ρ ≥ ρ0, then for any cube QL,

gap(Lakg
QL
)−1 � C L2(log L)4.

In [9] we have devised a technique which allows to prove the positivity of the spectral
gap for a large class of KCSM. However AGL does not belong to this class because its
constraints are not local (while the proof in [9] relies on the hypothesis that the influence
classes of the KCSM have finite range). Some additional efforts and a proper extension
of the technique in [9] is thus required to establish Theorem 5.5. We postpone this rather
technical proof to Sect. 7 and proceed with the proof of the result for AKG.

Proof of Theorem 5.6. We prove the theorem for ρ0 = ρ1, with ρ1 defined by
Theorem 5.5. Recalling the definition of spectral gap (2.9), the expression (5.5) for
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the Dirichlet form of AGL and using Theorem 5.5, for any ρ > ρ1 and f : �QL → R,
the following holds:

VarQL ( f ) � 2
∑

x∈QL

μQL

(
cN

x,QL
Varx ( f )

)
, (5.6)

where cN
x,QL

have been defined in (5.3), N := A(log L)2 and A and ρ1 are those defined
in Theorem 5.5. Our aim is to bound the r.h.s. with the Dirichlet form of AKG model.
This will be achieved via proper path arguments. We start by rewriting Varx ( f ) as

Varx ( f )(ω) = 1

2

∑

w,w′∈W

μ(w)μ(w′)( f (ωQL\x · w′
x )− f (ωQL\x · wx ))

2. (5.7)

Then for all x and ω such that cN
x,QL

(ω) = 1 we choose once and for all a path in
Gx,QL ,N (5.4) which we will call γ (x, ω). We make the latter choice in order that

γ (x, ω) = γ (x, ω′) for all ω,ω′ such that ω
G,L\x⇐⇒ ω′, which is possible thanks to

Remark 5.2. If we set γ (x, ω) = (x (1), . . . , x (n)) from the above definition it follows
immediately that x (1) = x , x (n) ∈ ∂−QL ∩T N

x (QL) := ∂−QL ∩(T N
x,1(QL)∪T N

x,2(QL))

and n(x, ω) < L(2A(log L)2 + 1). For any ω ∈ �QL and w,w′ ∈ W , we are now ready
to define a configuration path P

w
x→w′(ω) from ωQL\x · wx to ωQL\x · w′

x as follows:

P
w

x→w′ := (ω(1), . . . , ω(2n)) (5.8)

with ω(1) = ωQL\x · wx ; ω(i+1) = Teiω
(i), with ei := (x̃ (i), x̃ (i+1)) := (x (i), x (i+1))

for all i ∈ {1, . . . , n − 1}; ω(n) = ω
(n−1)
QL\x (n)

· w′
x (n)

; ω(i+1) = Teiω
(i), with ei :=

(x̃ (i), x̃ (i+1)) := (x (2n+1−i), x (2n+2−i)) for all i ∈ {n, . . . , 2n − 1}. It is immediate to
verify that ω(2n) = ωQL\x · w′

x . Note that, even if we do not write it for simplicity of
notation, ω(i) depends on w,w′, x, ω. Recall Definition 2.13. The following properties
can be immediately verified by using the definition (5.3) for cN

x,QL
(ω).

Claim 5.7. For any x, ω such that cN
x,QL

(ω) = 1 and g ∈ G:

(i) the path P
w

x→w′ (5.8) is allowed for AKG;

(ii) for i ∈ {1, . . . , 2n}\n + 1, ω(i)QL\{x̃i ,x̃i+1} · gx̃ (i) · gx̃ (i+1)
G,QL\x⇐⇒ ω;

(iii) ω
(n+1)
QL\x (n)

· gx (n)
G,QL\x⇐⇒ ω.

Thus, recalling Definition 2.13 for the meaning of (σ, σ e) ∈ P
w

x→w′(ω), via a tele-
scopic sum and Cauchy-Schwartz inequality we get for any ω,

cN
x,QL

(ω)
[

f (ωQL\x · w′
x )− f (ωQL\x · wx )

]2

� 2L(2A(log L)2 + 1)
2n∑

i=1
i �=n

cei ,QL (ω
(i))
[
∇ei f (ω(i))

]2

+ 2cx (n),QL
(ω(n))( f (ω(n)QL\y · w′

y)− f (ω(n)))2, (5.9)
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where ce,QL and cx,QL are the Kawasaki and source Glauber rates for the AKG model.
Then, by plugging (5.7) and (5.9) into (5.6) we upper bound VarQL ( f ) by

|W |2 max
w,w′∈W

∑

x∈QL

∑

ω

μQL (ω)

⎡

⎢
⎢
⎣2cx (n),QL

(ω(n))( f (ω(n)QL\y · w′
y)− f (ω(n)))2

+
2n∑

i=1
i �=n

2L(2A(log L)2 + 1)cei ,QL (ω
(i))
[
∇ei f (ω(i))

]2

⎤

⎥
⎥
⎦ . (5.10)

By construction of the path P
w

x→w′ any ω(i) satisfies

μQL (ω)

μQL (ω
(i))

� C := max
w,w′∈W

μ(w)

μ(w′)
.

Hence, inverting the summations, (5.10) is bounded above by

|W |2C L2(2A(log L)2 + 1)2 max
w,w′,x,σ,e

�
{
ω : (σ, σ e) ∈ P

w
x→w′
}

DK
QL
( f )

+ 2|W |2 L(2A(log L)2 + 1) max
w,w′,x,σ,z

�
{
ω : ω(n) = σ ; x (1) = x; x (n) = z

}
DG
∂− QL

( f )

� 8C |W |3 A2L2(log L)4DQL ( f ), (5.11)

where DQL ( f ) is the Dirichlet form for AKG and DK
QL
( f ), DG

∂− QL
( f ) are its Kawasaki

and Glauber parts. In order to derive the last inequality we have bounded the number
of configurations ω such that a chosen σ, σ e belongs to P

w
x→w′ . To perform this bound

we used as a key ingredient the fact that from the knowledge of (σ, σ e) we can recon-
struct ω modulo the configuration in x (or completely if (σ, σ e) = (ω(i), ω(i+1)) with
i � n − 1) and from the knowledge of ω(n) and x (n) we can reconstruct ω. This in
turn is true thanks to properties (ii) and (iii) of Claim 5.7. The proof is then completed
by combining the variational characterization of the spectral gap with the upper bound
(5.11) for VarQL ( f ). ��

6. Spectral Gap of KA Model: Proof of Theorem 4.1

Since KA dominates the Symmetric Simple Exclusion Process (SSEP), a lower bound
on the inverse of the spectral gap as L2 uniform on q follows from Claim 2.12 and from
the standard results for SSEP, see e.g. [6]. In order to obtain the stronger lower bound
of Theorem 4.1 which guarantees that, at variance with SSEP, the spectral gap on scale
L−2 is not bounded away from zero at all density and instead it vanishes as q → 0 we
consider the test function

∑
x∈QL

cos( πx
L−1 ) cos( πx

L−1 )ηx . The term (1−(1−q)3)2 comes
from the presence of the kinetic constraints: in order for the exchange of the occupation
variables at x and y to be allowed there should be at least one empty site among the
three nearest neighbours of x different from y and at least one empty site among the
three neighbors of y different from x .

We will now prove the upper bound by using the 1/L2 bound for the spectral gap of
AKG (Theorem 5.6) combined with a renormalization technique similar to the one we
used in [9].
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Proof of Theorem 4.1. Let ρ0 be the threshold density defined in Theorem 5.6. Thanks
to Lemma 3.4 we can choose an integer length scale � such that μ(F�) > ρ0, where F�
is the set of configurations which are Q�-frameable. For any z ∈ Z

2 we define Qz ⊂ Z
2

as Qz := Q� + z. Then we define the renormalized lattice Z
2(�) := �Z

2. Given L̃ s.t.
L := L̃/� is integer we also define the renormalized cube associated to QL̃ ⊂ Z

2 as
Q̃L := Z

2(�) ∩ QL̃ . Note that Q̃L contains L × L sites and that ∪x∈Q̃L
Qx = QL̃ .

Consider the probability space W = {0, 1}Q� equipped with ν = μQ�
. The two prob-

ability spaces ({0, 1}Z2
, μ) and (W Z

2(�),
∏

x∈Z2(�) νx ) coincide. Furthermore we have

μQL̃
= νQ̃L

, where νA = ∏
x∈A∩Z2(�) νx . Thus if we consider AKG on Q̃L with

W = {0, 1}Q� , ν = μQ�
and good event F�, by Theorem 5.6 there exists a constant

C = C(�, q) such that

VarQL̃
( f ) � C L2(log L)4

∑

e∈EQL

μQL̃

(
c̃e( f ◦ Te − f )2

)
(6.1)

+ C L2(log L)4
∑

x∈∂− QL

μQL̃

(
c̃x VarQx ( f )

)
, (6.2)

where for any bond e = (x, y) ∈ EQL , we let Te = T(x,y) : � → � be the operator that
exchanges the configuration inside Qx and Qy , namely

Teω(z) = ωQx Qy
(z) :=

⎧
⎪⎨

⎪⎩

ω(z) if z /∈ Qx ∪ Qy

ω(z + y − x) if z ∈ Qx

ω(z + x − y) if z ∈ Qy

and c̃e(ω) and c̃x (ω) are defined as follows. c̃e is the indicator function of the event that
there exists A ∈ Ce with Ce defined in (5.1) s.t. Qz ∈ F� for any z ∈ A ∩ QL . Instead c̃x
is the indicator function of the event that Qz ∈ F� for any z ∈ K∗

x ∩ QL . The proof of
Theorem 4.1 is then completed by the following key Lemma 6.1 and explicit counting
(left to the reader). ��

For any x ∈ ∂−QL let E(x) := EQL̃
∩ (EQx ∪z∈K∗

x
EQz

)
and for any bond e =

(x, y), E(e) := EQL̃
∩ (EQx ∪ EQy ∪z∈∂+(x,y) EQz

)
. In order to avoid confusion we

call here cK A
e,� the rates of KA.

Lemma 6.1. There exists a constant C ′ = C ′(�, q) > 0 such that:

(i) for any bond e = (x, y) ∈ EQL ,

μQL̃

(
c̃e( f ◦ Te − f )2

)
� C ′ ∑

e′∈E(e)

μQL̃

(
cK A

e′,QL̃
(∇e′ f )2

)

+ C ′ ∑

z∈(Qx ∪Qy)∩∂− QL̃

μQL̃
(Varz( f ))

(with possibly (Qx ∪ Qy) ∩ ∂−QL̃ = ∅);
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(ii) for any x ∈ ∂−QL,

μQL̃

(
c̃x VarQx ( f )

)
� C ′ ∑

e′∈E(x)

μQL̃

(
cK A

e′,QL̃
(∇e′ f )2

)

+ C ′ ∑

z∈Qx ∩∂− QL̃

μQL̃
(Varz( f )) .

Proof. The proof is based on path techniques. In all the proof C will denote a positive
constant that depends on �, q but never on L , and that might change from line to line.
Finally, unless explicitly stated, an allowed path means allowed w.r.t. KA rates.

(i) Fix a bond e = (x, y) ∈ EQL and a configuration ω such that c̃e(ω) = 1
(otherwise the result trivially holds). Since c̃e(ω) = 1 there exists A ⊂ Ce s.t. for any
z ∈ A ∩ QL , ωQz ∈ F� holds. We analyze separately the case A ⊂ QL (a) and A �⊂ QL
(b). (a) We let y = x + �e1 and A = A1 = x + �e2, x + �e1 + �e2, x +2�e1 (the other cases can be
treated analogously). By subsequently applying Claim 9.2 we can construct an allowed
path ω, . . . ω(M) inside Qx ∪ Qy ∪z∈A Qz such that ω(M) = Te(ω) and M(ω) � C(�)
uniformly in ω. Using a telescopic sum and the Cauchy-Schwartz inequality , we get

μQL̃

(
c̃e( f ◦ Te − f )2

)
=
∑

ω

μQL̃
(ω)̃ce(ω)

(
M−1∑

m=1

f (ω(m+1))− f (ω(m))

)2

� C
∑

ω

μQL̃
(ω)

M−1∑

m=1

cem ,QL̃
(ω(m))

(
f (ω(m+1))− f (ω(m))

)2

� C
∑

ω

μQL̃
(ω)

∑

σ,e′
ce′,QL̃

(σ ) (∇e′ f )2 (σ )1{(σ,e′):(σ,σ e′ )∈Pω,Te(ω)}

� C
∑

e′∈E(e)

μQL̃

(
ce′,QL̃

(∇e′ f )2
)
,

where as usual, (σ, σ e′
) ∈ Pω,Te(ω) means that there exists m such that σ = ω(m)

and σ e′ = ω(m+1). In the last line we inverted the summations, used the fact that any
σ ∈ Pω,Te(ω) satisfies μQL̃

(σ ) = μQL̃
(ω) and differs from ω on at most 9�2 sites. (b)

Assume that y = x +�e2, A = A1 = x +�e1, x +�e1 +�e2, x +2�e2 and that x +�e1, y +�e1 �∈ QL
(i.e. Qx+�e1 , Qy+�e1 �∈ QL̃ ) and x + 2�e2 ∈ QL (i.e. Qx+�e2 ∈ QL̃ ) as in Fig. 4 (the
other cases can be treated analogously). Thanks to the presence of sources on ∂−QL̃

we can create zeros on ∂
1
−(Qx ∪ Qy). Indeed, if z(1), . . . , z(m1) denote the sites inside

∂
1
−(Qx ∪Qy) for whichω(z(i)) = 1, i = 1, . . . ,m1, enumerated from top to bottom, the

path (ω(1), . . . , ω(m1)) with ω(1) = ω and ω(mi+1) = (
ω(mi )

)z(i)
is allowed. Furthermore

ω(m1)(u) = 0 for all u ∈ ∂1
−(Qx∪Qy) andω(m1)(u) = ω(u) for u �∈ ∂1

−(Qx∪Qy). Since

ωQx+2�e2 ∈ F� (and thus ω(m1)

Qx+2�e2
∈ F�), there exists an allowed path (ω(m1), . . . , ω(m2))

inside Qx+2�e2 such thatω(m2) is Qx+2�e2 -framed (see Fig. 4). Claim b guarantees the exis-
tence of a sequence of allowed exchanges (ω(m2), . . . , ω(m3)) inside Qx+2�e2 which bring
the empty upper line of this frame adjacent to the bottom empty line. Then it is easy to
verify that we can rigidly shift the double empty line downwards thanks to the presence of

the empty sites on ∂
1
−(Qx∪Qy). Therefore, for any chosen bond e′ = x, x+�e1 ∈ Qx∪Qy
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QyQy

Qx Qx

Fig. 4. Proof of Lemma 6.1(i), case (b). The configurations ω(m1) on the left and ω(m2) on the right. The
dashed line corresponds to the rectangle R

we can shift the double empty line till the position x ·�e2+1 and then perform the exchange.
The case e′ = x, x + �e2 can be dealt by first creating a second empty column adjacent to

the one on ∂
1
−(Qx ∪ Qy) (via exchanges plus source terms) and then shifting horizon-

tally this double empty column till the position x · �e1 + 1. In conclusion, since we can
perform any internal exchange in Qx ∪ Qy , we can construct a path (ω(m3), . . . , ω(m4))

with ω(m4) = Te(ω
(m3)). As before, we can now reconstruct the initial configuration ω

outside Qx ∪ Qy and then also on ∂
1
−(Qx ∪ Qy) by using the sources again. Thus we

have constructed an allowed path Pω,Teω = (ω(1), . . . , ω(M)) inside Qx ∪ Qy ∪ Qx+2�e2

with M(ω) � C(�) uniformly in ω. Using that μQL (ω) � CμQL (ω
(m)) for any m,

the same kind of computation as before (telescopic sum, Cauchy-Schwartz inequality,
inverting the summations, explicit counting...) leads to

μQL̃

(
c̃e( f ◦ Te − f )2

)
=
∑

ω

μQL̃
(ω)̃ce(ω)

(
M−1∑

m=1

f (ω(m+1))− f (ω(m))

)2

� C
∑

e′∈E(e)

μQL̃

(
ce′,QL̃

(∇e′ f )2
)

+ C
∑

z∈∂1
−(Qx ∪Qy)∩∂− QL

μQL̃
(Varz( f )) .

(ii) Let x ∈ ∂−QL and ω be such that c̃x (ω) = 1. Assume that x + �e1 /∈ QL and
z = x + �e2 ∈ QL as in Fig. 5 (the other cases are similar). Using the Poincaré inequality
for the unconstrained Glauber dynamics inside Qx (or the tensorisation property, see
e.g. [2]) leads to

VarQx ( f ) � pq
∑

y∈Qx

μQx

(
(∇y f )2

)
.

Thus we have to estimate terms of the form f (ωy) − f (ω). This will be done by con-
structing a proper allowed path which is depicted in Fig. 5. Assume that ω(y) = 1
(the case ω(y) = 0 can be treated analogously). Since c̃x (ω) = 1, Qz is frameable.
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Fig. 5. From left to right, the configurations ω(m1), ω(m2), ω(m3), ω(m3+1) and ω(m3+2). The dotted line
corresponds to the rectangle R

Hence, there exists an allowed path (ω(1), . . . , ω(m1)) inside Qz s.t. ω(1) = ω and ω(m1)

is Qz-framed. Thanks to the sources on ∂
1
−Qx , we can create zeros on ∂

1
−Qx . Indeed,

if z(m1+1), . . . , z(m2) denote the sites inside ∂
1
−Qx for which ω(z(m)) = 1, enumerated

from top to bottom, the path (ω(m1), . . . , ω(m2)) with ω(m1+i) = (
ω(m1)

)z(i)
is allowed.

Furthermoreω(m2)(z) = 0 for all z ∈ ∂1
−Qx andω(m2)(z) = ω(z) for z �∈ ∂1

−(Qx ∪ Qy).

Set R := Qx ∪ ∂2
+ Qx and let t be the unique site such that K∗

t ⊂ ∂− R and t1 = t + e1.
Suppose ω(t) = 0 (the case ω(t) = 1 can be treated analogously). Then we can shift the
top empty line of the frame of Qz near the bottom one and, by using this double empty

line plus the empty column on ∂
1
−Qx we can perform any exchange inside Qx analo-

gously to what we did in point (i). In particular we can construct a path ω(m2), . . . ω(m3)

which moves the particle from y to t and then perform the exchange on t, t1 and use the
source to force on t1 an empty site. In other words the path (ω(m3), ω(m3+1), ω(m3+2))

with ω(m3+1) = (
ω(m3)

)t,t1 and ω(m3+2) = ω
(m3+1)
QL̃\t1

· 0t1 is allowed (see Fig. 5). Thus we

have reached a configuration which corresponds to ωy on all site in Qx\∂1
−Qx . Then

we can reconstruct the configuration ωy following the inverse of the path (ω, ω(m2)).
Thus we have shown the existence of an allowed path Pω,ωy = (ω(1), . . . , ω(M)) with
M(ω) � C(�) uniformly in ω. Using the same routine arguments (Cauchy-Schwartz
inequality, telescopic sum,…) as in point (i) leads to the expected result. ��

7. Spectral Gap of AGL: Proof of Theorem 5.5

In this section we prove Theorem 5.5 which establishes the positivity of the spectral gap
for the auxiliary model AGL. This result has in turn been used as a key ingredient for
the proof of the 1/L2 lower bound for the spectral gap of KA and will be also used in
Sect. 8 to prove the polynomial decay to equilibrium. The main tool here is an extension
of the bisection-constrained method we introduced in [9] which we have here properly
modified to account for the long range constraints of AGL. As a result the proof is
quite technical and lengthy due to easy but cumbersome geometric results. These are
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necessary to establish the existence of the paths which guarantee that the long range
constraints of AGL are satisfied.

We start by a monotonicity remark

Remark 7.1. Fix �, �̃ ⊂ Z
2 and N , N ′ > 0 with N � N ′ and � ⊂ �̃. For any x ∈ �

and for all ω:

(i) cN
x,�(ω) � cN ′

x,�(ω);

(ii) if ∂−� ⊂ ∂−�̃, then cN
x,�(ω) � cN

x,�̃
(ω).

Proof of Theorem 5.5. In what follows we will drop the superscript agl from the gen-
erator. Thanks to the monotonicity of the spectral gap established by Lemma 2.12 and
to the property of the rates in Remark 7.1 (i), it is enough to prove the result when
N = A(log(max(L1, L2))

2. We start by recalling a simple geometric result of [5] which
we will use. Let lk := (3/2)k/2, and let Fk be the set of all rectangles� ⊂ Z

2 which, mod-
ulo translations and permutations of the coordinates, are contained in [0, lk+1]×[0, lk+2].
The main property of Fk is that each rectangle in Fk\Fk−1 can be obtained as a “slightly
overlapping union” of two rectangles in Fk−1. More precisely we have:

Lemma 7.2 ([5], Prop. 3.2). For all k ∈ Z+, for all � ∈ Fk\Fk−1 there exists a finite
sequence {�(i)1 ,�

(i)
2 }sk

i=1 in Fk−1, where sk := �l1/3
k �, such that, letting δk := 1

8

√
lk − 2,

(i) � = �
(i)
1 ∪�(i)2 ,

(ii) d(�\�(i)1 ,�\�(i)2 ) ≥ δk ,

(iii)
(
�
(i)
1 ∩�(i)2

)
∩
(
�
( j)
1 ∩�( j)

2

)
= ∅, if i �= j .

Let k̄ be such that � ∈ Fk̄\Fk̄−1. Then max(L1, L2) � lk̄−1+1 = lk̄ , thus N =
A(log(max(L1, L2)))

2 � Nk̄ , where Nk := A(log lk)2. By using again the monotonic-
ity properties of Lemma 2.12 and Remark 7.1 (i) we immediately get

gap(L�,N )−1 � gap(L�,Nk̄
)−1 � γk̄ � sup

k
γk,

where we define

γk := sup
k′=1,...,k

(

sup
�∈Fk′ \Fk′−1

gap(L�,Nk′ )
−1

)

. (7.1)

Therefore, to prove the theorem, it is enough to show that there exist ρ1 ∈ (0, 1) and
A > 0 independent of W and ν such that for any ρ > ρ1,

sup
k
γk � 2. (7.2)

The strategy to prove (7.2) will be to establish a proper iterative inequality between
γk and γk−1. Let us fix k, � ∈ Fk\Fk−1, and let � = �1 ∪ �2 with �1,�2 ∈ Fk−1
satisfying the properties described in Lemma 7.2 above. Without loss of generality we
can assume that the faces of �1 and of �2 parallel to �e1 lay on the faces of � and that,
along that direction, �1 comes before �2 (see Fig. 6). Set Ĩ ≡ �1 ∩�2 and write, for
concreteness, Ĩ = [ã1, b̃1] × [ã2, b̃2]. Lemma 7.2 implies that the width of Ĩ in the first
direction, b̃1 − ã1, is at least δk . Set B1 = �\�2, B2 = �2 and I = [a1, b1] × [a2, b2]
with a1 = ã1, b1 = ã1 + A

2 log(3/2) log(lk), a2 = ã2 and b2 = b̃2. Notice that our
choice implies b1 − a1 ≤ Nk − Nk−1. We also assume that k is sufficiently large so that
δk � b1 − a1. Then the following geometric properties can be immediately verified.
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Fig. 6. We depict the regions �1, �2 = B2, � = �1 ∪�2, Ĩ = �1 ∩�2, I ⊂ Ĩ , and the cylinder T
Nk

x,1 (�)

(inside the dotted-dashed line). The set�2 is divided into rectangles of width c j ,�2 = ∪m
i=1 R j (here m = 4).

The dashed lines inside the R j ’s stand for the paths which are good left-right crossings and thus guarantee
that ω ∈ ∩m

i=1Ri . The bold dashed line inside I is a good top-bottom crossing which guarantees ω ∈ I

Claim 7.3. (i) I ⊂ Ĩ ;
(ii) If x ∈ I , then I ⊂ T Nk

x,2 ;

(iii) If x is such that I ∩ T Nk−1
x,2 �= ∅, then I ∪ T Nk−1

x,2 ⊂ T Nk
x,2 .

We will now define a constrained block dynamics on�with blocks B1 and B2 and prove
that it has a positive spectral gap. Then from its Dirichlet form we will reconstruct the
Dirichlet form of AGL (5.5) and establish the desired recursive inequality between γk
and γk−1. To this purpose, in analogy with the strategy adopted in [9], we have to define
a proper good event on the block B2 which should occur in order to allow refreshing of
the configuration on B1. Recall Definition 2.6 and define the event

I := {ω : ω has a good top-bottom crossing in I }.
In analogy with what is done in [14, see Proof of Lemma (11.73)], we define the fol-
lowing natural partial order on the set of top-bottom crossing paths in I . We say that γ
is to the right of γ ′ if it lies inside the connected (with respect to d1 distance) region of
I which stays to the right of γ ′. For any ω ∈ I we can then define the geometric set
�ω which is its right-most good top-bottom crossing and let �ω be the corresponding
double-path (see Fig. 8). Finally we set

C� := {� ⊂ B2 : ∃ ω s.t. �ω = �}.
By geometrical considerations we have the following.

Claim 7.4. For all ω ∈ I,

(i) there exists a unique right-most good top-bottom crossing �ω of ω in I ;
(ii) for any � ∈ C� the event {ω : �ω = �} does not depend on the values of ω to

the left of �.
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Fig. 7. Left: An example of top bottom crossing with k-bounded oscillation inside the stripe I. Right: The
bold dashed line is a good top-bottom crossing γ which does not have k-bounded oscillations: at h there is
an oscillation which goes beyond h − A/2 log(3/2) log lk . The dotted-dashed line is a good left-right bottom
crossing of the rectangle I j . Note that γ cannot be the rightmost good top-bottom crossing, γ �= �ω . Indeed
a good top-bottom crossing to the right of γ can be constructed by using γ and the part of the good left-right
crossing from site A to B

Next we need to introduce the notion of paths which “do not oscillate too much” in the
vertical direction, namely

Definition 7.5 (Path with k-bounded oscillation). Consider a geometric path γxy =
(x (1) = x, . . . , x (n) = y). Let

x1 = min{x (1)1 , . . . , x (n)1 }, x1 = max{x (1)1 , . . . , x (n)1 },
x2 = min{x (1)2 , . . . , x (n)2 }, x2 = max{x (1)2 , . . . , x (n)2 }.

We say that γxy has k-bounded oscillations if for all h ∈ [x2, x2] the following h-con-
dition holds. Let 1 ≤ i1 < i2 < · · · < im ≤ n be the indexes of the points of γx,y with
height h, namely {x (i1), x (i2), . . . , x (im )} := γxy ∩ ([x1, x1]×{h}). Then the h-condition
(depicted in Fig. 7) requires that for all i = i1, i1 + 1, i1 + 2, . . . , im,

x (i) ∈ [x1, x1] × [h − A/2 log(3/2) log lk, h + A/2 log(3/2) log lk].
With this notation we can define the event

J := {ω ∈ I : �ω has k-bounded oscillations}
and the geometric set C̃� ⊂ C� as

C̃� := {� ⊂ B2 : ∃ ω s.t. �ω = � and �ω has k-bounded oscillations}.
Lemma 7.2 guarantees that B2 = �2 ∈ Fk−1. Thus there exist integers a, b which
are bounded from above by lk+1 such that �2 is a translated copy of [0, a] × [0, b]. If
b � Nk−1/2 we decompose�2 into m disjoint rectangles�2 = ∪m

j=1 R j (see Fig. 6) with
each R j being a translation of [0, a]×[0, c j ], where c j satisfies Nk−1 � 2c j � 2Nk−1−1
for any j = 1, . . . ,m and m verifies m � (2lk+1/Nk−1) (the bounds Nk−1/2 < b � lk+1
guarantee that we can perform such a procedure). Thanks to the bounds on c j the fol-
lowing property can then be immediately verified:
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Claim 7.6. For any x ∈ � there exists j ∈ 1, . . . ,m such that R j ⊂ T Nk−1
x,1 (�2).

We are now ready to define the good event on the block B2 which will enter in the
definition of the block dynamics.

Definition 7.7 (B2-good configurations). Call b the size of B2 in direction 2.
If b < Nk−1/2 we say that ω is B2-good iff ω ∈ I.
If b � Nk−1/2 we say that ω is B2-good iff ω ∈ ∩m

j=1R j ∩ J , where
R j := {ω : ω has a good left-right crossing in R j } (see Fig. 6).

The block dynamics, which is again defined on � = W Z
2

and reversible w.r.t.
μ = ∏

x∈Z2 νx , is then defined as follows. The block B2 waits a mean one exponential
random time and then its current configuration is refreshed with a new one sampled
from μB2 . The block B1 does the same but now the configuration is refreshed only if
the current configuration ω is B2-good. Thus the generator of this auxiliary chain acts
on local functions as

Lblock f (ω) = c1(ω)
(
μB1( f )− f (ω)

)
+ μB2( f )− f (ω), (7.3)

where c1 is the characteristic function of the event that ω is B2-good, namely

c1(ω) :=
{

1IJ (ω)
∏m

j=1 1IR j (ω) if b � Nk−1/2
1II if b < Nk−1/2

, (7.4)

where we recall that b is the vertical size of�2 (and of�). The Dirichlet form associated
to (7.3) is

Dblock( f ) = μ�
(
c1 VarB1( f ) + VarB2( f )

)
. (7.5)

Denote by γblock(�) the inverse spectral gap of Lblock . The following bound,
whose proof relies on the fact that c1(ω) depends only on ωB2 , can be proven as in
[9, Prop. 4.4].

Proposition 7.8. Let εk ≡ maxI P(ω is not B2-good), where the maxI is taken over the
sk possible choices of the pair (�1,�2). Then

γblock(�) ≤ 1

1 − √
εk
.

Thus, by using the standard Poincaré inequality for the block auxiliary chain and Prop-
osition 7.8 as well as (7.5), we get that for any f : �� �→ R,

Var�( f ) ≤
(

1

1 − √
εk

)
μ�

(
c1 VarB1( f ) + VarB2( f )

)
. (7.6)

We will now reconstruct the Dirichlet form of AGL (5.5) from the two terms on the
right hand side of (7.6). Let us start with the second term. By construction, there exists
k′ ∈ {1, . . . , k − 1} such that B2 ∈ Fk′ \Fk′−1. Thus, using the definition (7.1) for γk−1,
we have

μ�
(
VarB2( f )

) ≤ γk−1

∑

x∈B2

μ�

(
c

Nk′
x,B2

Varx ( f )
)
.

By using both monotonicity properties stated in Remark 7.1, it is immediate to verify
the following property
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Fig. 8. The volume B1, the stripe I and the rightmost good top bottom crossing �ω (empty sites within the
dashed line). The whole set of empty sites is instead�ω . The set Bω is the region which lies inside the shaded
region

Claim 7.9. For all x ∈ B2, all ω and all k′ � k − 1, c
Nk′
x,B2

(ω) � cNk
x,�(ω).

Therefore we have

μ�
(
VarB2( f )

) ≤ γk−1

∑

x∈B2

μ�

(
cNk

x,� Varx ( f )
)
. (7.7)

The r.h.s. of the latter is nothing but the contribution carried by the set B2 to the full
Dirichlet form (5.5) when N = Nk .

Let us now examine the more complicated term μ�
(
c1 VarB1( f )

)
.

For any B2-good configuration ω recall that �ω is the right-most good top-bottom
crossing of ω in I . Then divide B1 ∪ I into two connected components (with respect to
the distance d1): the sites on the right of �ω, and those on the left. We shall call Bω the
sites of B1 ∪ I\�ω on the left of�ω (see Fig. 8). Notice that ifω andω′ are B2-good and
�ω = �ω′ , then Bω = B′

ω. In other words Bω is unequivocally defined by �ω. Thus,
with a slight abuse of notation, for any � ∈ C� we let B� be the Bω which corresponds
to all ω with �ω = �.

If we observe that VarB1( f ) and c1(ω) depend only onωB2 , we use the independence
of 1I{�ω=�} from ωI� (Claim 7.4 (ii)) and let I� := B� ∩ I we can write

μ
(
c1 VarB1( f )

) =
∑

�∈C̃�
μ
(

1I{�ω=�}1I∩m
j=1R j VarB1( f )

)

=
∑

�∈C̃�

∑

ωB2\I

μ(ωB2\I )
∑

ωI

μ(ωI )1I{�ω=�}1I∩m
j=1R j VarB1( f ) (7.8)

=
∑

�∈C̃�

∑

ωB2\I

μ(ωB2\I )
∑

ωI\I�

μ(ωI\I� )1I{�ω=�}1I∩m
j=1R j

∑

ωI�

μ(ωI� )VarB1( f )
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when b � Nk−1/2 and

μ
(
c1 VarB1( f )

) =
∑

�∈C�
μ
(

1I{�ω=�} VarB1( f )
)

=
∑

�∈C�

∑

ωB2\I

μ(ωB2\I )
∑

ωI

μ(ωI )1I{�ω=�} VarB1( f ) (7.9)

=
∑

�∈C�

∑

ωB2\I

μ(ωB2\I )
∑

ωI\I�

μ(ωI\I� )1I{�ω=�}
∑

ωI�

μ(ωI� )VarB1( f )

when b < Nk−1/2. Then we can in both cases upper bound the last term by using the
convexity of the variance which implies

∑

ωI�

ν(ωI� )VarB1( f ) ≤ VarB� ( f ). (7.10)

Now for any x ∈ B� and any ωB� ∈ �B� , let cx (ωB� ) be the indicator function of the

event that there exists a direction i ∈ {1, 2} and a geometric path γx,y inside T Nk−1
x,i (B�)

from x to some y ∈ ∂−B�∪(∂+�∩B�)which is allowed for the AKG model if τ(t) ∈ G
for any t ∈ ∂∗

+B� (see Fig. 9). It is then possible to define the generator LB� obtained

from L�,Nk by substituting the rates cNk
x,� with cx . The generator LB� with Dirichlet form

DB� is ergodic and reversible with respect to μB� . Denote by gap(LB� ) the associated
spectral gap. Applying the Poincaré inequality leads to

VarB� ( f ) ≤ gap(LB� )
−1
∑

x∈B�
μB� (cx Varx ( f )) . (7.11)

Claim 7.10. For any ω and any x ∈ B� ,

cNk−1
x,B1∪I (ω) � cx (ω).

Proof. The result follows immediately from the definition of c̄ (see Fig. 9). ��

Claim 7.11.

gap(LB� )
−1 ≤ gap(LB1∪I,Nk−1)

−1 ≤ γk−1.

Proof. For any f ∈ L2(�B� , μB� ) we have DN
B1∪I ( f ) ≤ DN

B� ( f ) and VarB� ( f ) =
VarB1∪I ( f ). The first property follows by using Claim 7.10. The second property fol-
lows from the product structure of the measure μB1∪I . The first inequality of the claim
then follows at once from the variational characterization of the spectral gap. Further-
more, since B1 ∪ I ∈ Fk−1 there should exist k′ ∈ {1, . . . , k − 1} such that B1 ∪
I ∈ Fk′ \Fk′−1. Thus since Nk′ � Nk−1 from the monotonicity Remark 7.1(i) we get
gap(LB1∪I,Nk−1)

−1 � gap(LB1∪I,Nk′ )−1. We can now use the definition (7.1) of γk−1
to get the second inequality. ��
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Fig. 9. Inside the dotted-dashed line we depict the cylinder T
Nk−1

x,B1∪I . The bold dashed line represents �. The
light dashed line is instead a path belonging to Gx,Nk−1,B1∪I . It is immediate to verify that this implies the
existence of an AKG allowed path inside B� from x to a site y ∈ ∂+�∩B� , thus c̄x = 1. From the drawings it
is also clear that it does not necessarily imply a path which ends at y ∈ ∂∗−B� , hence the necessity to introduce

the additional rates c̄x in B� instead of using c
Nk−1
x,B�

By Putting together (7.11) with Claim 7.11 yields

VarB� ( f ) ≤ γk−1

∑

x∈B�
μB� (cx Varx ( f ))

which, together with (7.8), (7.9) and (7.10) gives

μ�
(
c1 VarB1( f )

)
� γk−1

∑

�∈C̃�
μ�

⎛

⎝
∑

x∈B�

(
1I∩m

j=1R j 1I{�ω=�}cx Varx ( f )
)
⎞

⎠ (7.12)

when b � Nk−1/2 and

μ�
(
c1 VarB1( f )

)
� γk−1

∑

�∈C�
μ�

⎛

⎝
∑

x∈B�

(
1I{�ω=�}cx Varx ( f )

)
⎞

⎠ (7.13)

when b < Nk−1/2. We now wish to upper-bound the terms which appear in front of
Varx in the right-hand sides of (7.12) and (7.13) with the long range rates cNk

x,�, in order
to upper-bound the right-hand side of (7.6) with the full Dirichlet form (5.5) by using
(7.7) and (7.12) or (7.7) and (7.13) according to the value of the height b of the rectangle
�. Once this is achieved we will divide the left and right side by Var�( f ) and take the
sup on f in order to gain an inequality between γk and γk−1 which, properly iterated,
will lead to the desired bound (7.2).

Claim 7.12. For any ω, � ∈ C̃� and x ∈ B� ,

1I∩m
j=1R j 1I{�ω=�}cx (ω) � 1I{�ω=�}c

Nk
x,�(ω). (7.14)

For any ω, � ∈ C� and x ∈ B� ,

1I{�ω=�}cx (ω) � 1I{�ω=�}c
Nk
x,�(ω). (7.15)
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Proof. It is sufficient to show that when c̄x (ω) = 1 the right hand side also equals one.
We recall that c̄x (ω) = 1 guarantees that there exists (at least) one direction i and a
geometric path γx,y inside T Nk−1

x,i (B�) from x to some y ∈ ∂−B� ∪ (∂+�∩B�)which is

AKG allowed. Let γx,y be one of such paths and distinguish three cases: (a) y ∈ ∂−�;
(b) y �∈ ∂−� and i = 1; (c) y �∈ ∂−� and i = 2.

(a) From the definition of the rates in formula (5.3) it follows immediately that cNk
x,� = 1

since T Nk
x,i (�) ⊃ T Nk−1

x,i (B�), thus γx,y ∈ Gx,Nk ,�.

(b) In this case y ∈ ∂+�∩B� , thus there exists y′ with d1(y, y′) = 1 and y′ ∈ � = �ω.
This implies that ω(y′) is good and either y′ ∈ �ω or there exists y′′ ∈ �ω with
d1(y′, y′′) ∈ (1, 2). By using this together with the existence of the AKG allowed
path γx,y allows to conclude that there always exists a path γy,y′′ AKG allowed.
We should now distinguish the case (i) b < Nk−1/2 and (ii) b � Nk−1/2. Case (i)
can be handled very simply by noticing that in this case ∀x ∈ B�, I ⊂ T Nk

x,1(�)

holds. Therefore cNk
x,� = 1 thanks to the path γx,z := γx,y · γy,y′′ · γy′′,z ⊂ T Nk

x,1(�),
where z ∈ ∂2−� and γy′′,z is a subset of the good top-bottom crossing�(ω). Case (ii)
requires a bit more work and the use of the left-rightmost crossings in the R j rectan-
gles. Claim 7.6 and the fact that 1I∩m

i=1R j (ω) = 1 guarantee that there exists a good

path γw,z inside T Nk−1
x,1 (�) with w ∈ �ω ∩ T Nk−1

x,1 (�) and z ∈ ∂∗−� ∩ T Nk−1
x,1 (�).

Since � ∈ C̃, �(ω) has k-bounded oscillations. Thus by recalling Definition 7.5
and noticing that Nk−1 + A/2 log(3/2) log(lk) ≤ Nk , there exists a good path
γy′′,w ⊂ �ω inside T Nk

x,1 .
(c) Define as in the previous case y′′ and γy,y′′ . By construction (since y′′ ∈ �ω)

there exists a good path γy′′,z ⊂ I (which is a subset of the top bottom crossing
of I ) for some z ∈ ∂2−�. Furthermore Claim 7.3(iii) guarantees that in this case

I ⊂ T Nk
x,2(�). Thus cNk

x,�(ω) = 1 is guaranteed if we consider the overall path
γx,z := γx,y · γy,y′′ · γy′′,z . ��

If we finally plug (7.14) in the r.h.s. of (7.12) or (7.15) in the r.h.s. of (7.13) we obtain
in both cases

μ�
(
c1 VarB1( f )

) ≤ γk−1μ�

⎛

⎝
∑

x∈B�
cNk

x,� Varx ( f )

⎞

⎠

≤ γk−1μ�

⎛

⎝
∑

x∈B1∪I

cNk
x,� Varx ( f )

⎞

⎠ . (7.16)

Thus, by using (7.6), (7.7), (7.16) and (5.5) we get

Var�( f ) ≤
(

1

1 − √
εk

)
γk−1

(

D�,Nk ( f ) +
∑

x∈I

μ�

(
cNk

x,� Varx ( f )
)
)

. (7.17)

Recalling Lemma 7.2 we can now averaging over the sk = �l1/3
k � possible choices of

the sets�(k)1 ,�
(k)
2 which verify I ⊂ �k

1 ∩�k
2 and

(
�
(k)
1 ∩�(k)2

)
∩
(
�
(k′)
1 ∩�(k′)

2

)
= ∅
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for k �= k′. Thus we get

Var�( f ) ≤
(

1

1 − √
εk

)
γk−1

(
1 +

1

sk

)
D�,Nk ( f ) (7.18)

which in turn, dividing by Var� and taking the sup over f , implies

γk ≤
(

1

1 − √
εk

)(
1 +

1

sk

)
γk−1 ≤ γk0

k∏

j=k0

(
1

1 − √
ε j

)(
1 +

1

s j

)
, (7.19)

where k0 is the smallest integer such that δk0 > 1 and εk has been defined in Proposi-
tion 7.8. By plugging the results of Claim 7.13 and 7.14 below into (7.19) the proof of
Theorem 5.5 is completed with the choice ρ1 = max(ρ̃1, ρ̄1). ��
Claim 7.13. There exists ρ̃1 ∈ (0, 1) and A0 > 0 such that for ρ > ρ̃1 and A > A0,

εk � 2

lk
. (7.20)

Claim 7.14. For all ε ∈ (0, 1) there exists ρ̄1 ∈ (0, 1) such that for ρ > ρ̄1,

γk0 � 2 − ε. (7.21)

Proof of Claim 7.13. Recalling the definition of εk given in Proposition 7.8 and Defi-
nition 7.7 for B2-good configurations we should distinguish two cases: (i) b � Nk−1/2
and (ii) b < Nk−1/2, where b is the length of �2 in direction 2.

(i) By using the FKG inequality we get

ν({ω is B2-good}) = μ
(
∩m

j=1R j ∩ J
)

� μ(J )
m∏

j=1

μ(R j ). (7.22)

Next we can decompose I into m′ smaller disjoint rectangles, I = ∪m′
j=1 I j , with

each I j being a translation of [0, a] × [0, h j ], where a = A/2 log(3/2) log(lk),
m′ < 2lk+1/(A/2 log(3/2) log lk) and h j verifies A log(3/2)/4 log lk < 2h j <

A/2 log(3/2) log lk (this procedure is possible thanks to the bounds on b,
Nk−1/2 � b � lk+1). Define the events

I j := {ω : ω has a left-right good crossing in I j }.
It is then easy to prove by recalling Definition 7.5 and by an inspection of the right
Fig. 7 that

J ⊂ ∩m′
j=1I j ∩ I, (7.23)

namely the occurrence of a good top bottom crossing in I plus good left right cross-
ing in each I j guarantee that the rightmost top bottom crossing of I has k-bounded
oscillations.
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By using standard percolation results, there exists ρ1 < 1 and α > 0 such that if
ρ > ρ1 and k is sufficiently large, then

μ(R j ) � 1 − lk+1 exp(−αc j ) ∀ j = 1, . . . ,m, (7.24)

μ(I j ) � 1 − (b1 − a1) exp(−αh j ) ∀ j = 1, . . . ,m′, (7.25)

μ(I) � 1 − lk+1 exp(−α[b1 − a1]), (7.26)

where we recall that c j is the height of the rectangle R j which verifies
c j � Nk/2, b1 − a1 = A/2 log(3/2) log lk is the width of the strip I , m veri-
fies m � (2lk+1/Nk−1), and Nk = A(log(lk))2. Provided that A is large enough
the desired inequality (7.20) immediately follows from (7.22), (7.23), (7.24), (7.25)
and (7.26).

(ii) In this case

ν({ω is B2-good}) = μ(I) (7.27)

and again, provided that A is large enough, the desired inequality (7.20) immedi-
ately follows from (7.26). ��

Proof of Claim 7.14. Choose k � k0 and a rectangle R ∈ Fk\Fk−1. Let �1 (�2) be the
length of R in the �e1 (�e2) direction. We label the �1�2 sites of R from the bottom left
one from left to right and bottom to top as x1, . . . , x�1�2 . We also let B0 = R, B1 = x1
and B2 = R\x1 and we consider the following block dynamics. The block B2 waits
a mean one exponential random time and then the current configuration inside it is
refreshed with a new one sampled from μB2 . The block B1 does the same but now the
configuration is refreshed only if the current configuration ω in B2 is such that the path
γx1,x�1

= x1, . . . , x�1 which goes straight towards the right of x1 up to the border of R is
good. By using Poincaré inequality together with the same strategy as in [9, Prop. 4.4]
to evaluate the spectral gap of this auxiliary dynamics we get

VarR( f ) � 1

1 −√
1 − q2�1

μR

(
1I{γx1,x�1

is good} VarB1( f ) + VarB2( f )

)

� 1

1 −√
1 − q2�1

DR,Nk ( f )
(

gap(LB2,Nk )
−1
)
, (7.28)

where to get the last inequality we use the fact that ∂− B2 ⊂∂− R and 1I{γx1,x�1
is good} �

cNk
x,R . The variational characterization of the spectral gap together with (7.28) leads to

(
gap(LR,Nk )

)−1 � 1

1 −√
1 − q2�1

(
gap(LR\x1,Nk )

)−1
. (7.29)

We can then let B̃0 := R\x1 and divide it into B̃1 := x2 and B̃2 := R\(x1 ∪ x2)

and proceed analogously to get inequality (7.29) with R\x1 in the left-hand side and
R\(x1 ∪ x2) on the right-hand. By proceeding iteratively we finally get

γk0 � 1

(1 −√
1 − q2k0)k0

, (7.30)

which concludes the proof of the claim. ��



Kinetically Constrained Lattice Gases 333

8. Polynomial Decay to Equilibrium: Proof of Theorem 4.2

In order to establish polynomial decay to equilibrium in infinite volume we start by
reducing as usual the dynamics to a finite volume thanks to the finite speed of propaga-
tion. Then we follow a soft spectral theoretic argument introduced in [7] which requires
a bound of the variance with the Dirichlet form of the process. Establishing this bound
is the difficult step here due to the presence of the kinetic constraints. In order to obtain
this result we use the positivity of the spectral gap of AGL (Theorem 5.5) combined
with path and renormalization arguments.

Proof of Theorem 4.2. Let f be a local function of zero mean value and fix a large time
t . Consider L̃ = at with the constant a defined by Lemma 8.1 below. By translation
invariance of the system we can assume that f has support� f at the center of the cube
QL̃ . Then, we have

Varμ(Pt f ) � 2‖Pt f − P
QL̃

t f ‖2∞ + 2 VarμQ
L̃
(P

QL̃
t f ), (8.1)

where P
QL̃

t = e
tLQ

L̃ and LQL̃
is defined with boundary-source choice (M, S) =

(∅, ∂−QL̃). A standard property known as finite speed of propagation (see [22]) asserts
that for a proper C , if a is chosen large enough for all t ,

‖Pt f − P
QL̃

t f ‖2∞ � Ce−t/C‖ f ‖2∞ (8.2)

holds. Putting together (8.1) and (8.2) with Lemma 8.1 concludes the proof. ��
Lemma 8.1. There exists a > 0 such that for all t > 0 if we let L̃ := at,

VarμQ
L̃
(P

QL̃
t f ) � C

(log t)5

t
‖ f ‖2∞

holds.

Proof of Lemma 8.1. Let g = P
QL̃

2t f . By reversibility VarμQ
L̃
(P

QL̃
t f ) = μQL̃

( f, g).
Thus if

[
μQL̃

( f, g)
]2

� ‖ f ‖2∞
(log t)5

t
VarμQ

L̃
(P

QL̃
t f ), (8.3)

the desired result follows immediately. We are therefore left with proving (8.3). Note

that by definition ∂
∂t VarμQ

L̃
(P

QL̃
t f ) = −2DQL̃

(P
QL̃

t f ) � 0. Hence, VarμQ
L̃
(P

QL̃
t f )

is a decreasing function in t and

VarνQ̃L
(g) = VarμQ

L̃
(P

QL̃
2t f ) � VarμQ

L̃
(P

QL̃
t f ). (8.4)

Fix t and a and choose � > 0 s.t.: L := L̃/� = at/� is integer, f has support � f ⊂
Qx := Q� + x for a proper x and μ(F�) > max(ρ0, ρ̃0), where ρ0 and ρ̃0 are the
thresholds defined in Theorem 5.6 and Claim 8.2 respectively (this is possible thanks
to Lemma 3.4). Then define the renormalized lattice and the renormalized cube as in
Sect. 6, namely Z

2(�) := �Z2 and Q̃L := Z
2(�)∩QL̃ . As already noticed in Sect. 6, if we
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consider the probability space W = {0, 1}Q� equipped with ν = μQ�
the two probabil-

ity spaces ({0, 1}Z2
, μ) and (W Z

2(�),
∏

x∈Z2(�) νx ) coincide. Furthermore μQL̃
= νQ̃L

,
where νA = ∏

x∈A∩Z2(�) νx . Choose B > 0 such that M := B log L divides L and L/M

is odd and consider the following rectangles on Z
2(�):

Hk := [0, L − 1] × [(k − 1)M, k M − 1], k = 1, . . . ,
L

M
,

Vk := [(k − 1)M, k M − 1] × [0, L − 1], k = 1, . . . ,
L

M
.

It is immediate to verify that the renormalized cube Q̃L can be written as the dis-
joint union of both sets of rectangles, Q̃L = ∪k Vk = ∪k Hk (see Fig. 10). Define on
W = {0, 1}Q� the good event G = F�. With this choice and recalling Definition 2.6 we
let

Vk := {ω : ω has a good top-bottom crossing in Vk},
Hk := {ω : ω has a good left-right crossing in Hk},

�L ,B := {ω : ω ∈ ∩L/M
k=1 (Vk ∩ Hk)}.

Then, by using the Cauchy-Schwartz inequality and the fact that νQL̃
( f ) = 0 we get

[
μQL̃

( f, g)
]2 =

[
νQ̃L

( f, g)
]2

�2νQ̃L
(1� f g)2 + 2νQ̃L

(
(1 − 1�) f ( g − νQ̃L

(g))
)2
,

(8.5)

where from now on we drop the indexes L and B from �. Let us deal first with the
second term. By using again the Cauchy-Schwartz inequality we get

νQ̃L

(
(1 − 1�) f (g − νQ̃L

(g))
)2

� νQ̃L
(1 − 1�)VarνQ̃L

(g)‖ f ‖2∞,

� C

L
VarνQ̃L

(g)‖ f ‖2∞ � C

at
VarμQ

L̃
(P

QL̃
t f )‖ f ‖2∞, (8.6)

where the second inequality relies on Claim 8.2 below and we used (8.4) in order to
derive the third inequality.

Let us now consider the first term of (8.5). Without loss of generality we can assume
that f has support� f ⊂ (∪x∈Hk0

Qx )∩ (∪x∈Vk0
Qx )with k0 = L/2M (see Fig. 10). As

explained in Sect. 7 (see before Claim 7.4), there is a natural partial order on the set of
top-bottom crossing paths in Vk that allows to the define the right-most one. Thus, for
any ω ∈ Vk , we define�V,k

ω to be its right-most good top-bottom crossing. Analogously
for each ω ∈ Hk we define �H,k

ω to be its up-most good left-right crossing. As usual,

we let �
V,k
ω and �

H,k
ω be the corresponding double paths. For any ω ∈ � we can then

let �ω := {�H,k
ω ,�V,k

ω }L/M
k=1 and define the geometric set

C� := {� : ∃ ω ∈ � s.t. �ω = �}.
By geometrical considerations one can verify that points (i) and (ii) of Claim 7.4 are
valid for all ω ∈ Vk , and analogous statements are valid for all ω ∈ Hk . Let Rk0 :=
(Hk0 ∪ Hk0+1) ∩ (Vk0 ∪ Vk0+1). For any chosen ω ∈ � we divide the region Rk0 into
two connected (with respect to the distance d1) components : the sites on the right of
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Fig. 10. The box Q̃L ⊂ Z
2(�) divided into the rectangles Hk and Vk with k = 1, . . . L/M (here L/M = 6).

The shaded region represents the support of f , � f ⊂ Hk0 ∩ Vk0 . We depict a configuration ω ∈ �. The
continuous non straight lines which form a grid represent the rightmost good top-bottom crossing of each
Vk and the up-most good left-right crossing of each Hk . The region delimited by the bold black line is Bω .
We choose a site x ∈ Bω , assume that c̄x (ω) = 1 and we associate to x the corresponding site u ∈ Q̂L/M .

Then we fix v ∈ ∂− Q̂L/M and we choose a geodesic path γu,v (dashed line). The green path is the geometric
path γx,x∗ which is allowed for the AKG model and is composed of two parts. The first path is from x to
∂−B� ∪ (∂+� ∩ B�) and is guaranteed by c̄x = 1. The second path is guaranteed by ω ∈ � and uses the grid
� of good crossing following the sites which belong to the geodesic path γu,v

�
V,k0+1
ω and those on the left. We call BV

ω the latter set. Analogously we consider the two

connected components which correspond to the sites above �
H,k0+1
ω and those below.

We call BH
ω the latter set. Then we define Bω := BV

ω ∩ BH
ω and, with a slight abuse of

notation, for any � ∈ C� we let B� be the Bω which corresponds to all ω with�ω = �.
With this notation we have

νQ̃L
(1� f g)2 ≤ ‖ f ‖2∞

∑

�∈C�
νQ̃L

(
VarB� (g)χ�

)
,

where we used the fact that χ�(σ) does not depend on the value of σ inside B� and the
hypothesis νB� ( f ) = 0. Then, by using Lemma 8.3 below and Lemma 6.1 and some
explicit counting we get

[
νQ̃L

(1� f g)
]2 ≤ C(log L)5‖ f ‖2∞

(
DK

QL̃
(g) + DG

∂− QL̃
(g)
)
. (8.7)

By the spectral decomposition of −LQL̃
in L2(μQL̃

) and the bound 2tλe−2tλ � 1/e,
we have

DK
QL̃
(g) + DG

∂− QL̃
(g) = μQL̃

(
g(−LQL̃

)g
)

=
∫ ∞

0
λe−2tλd Eλ(g)

� 1

2et

∫ ∞

0
d Eλ(g) = 1

2et
VarμQ

L̃
(g) � 1

2et
VarμQ

L̃
(P

QL̃
t f ), (8.8)
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where the last inequality comes from (8.4). Therefore the desired inequality (8.3) follows
from (8.5), (8.6), (8.7), (8.8) and L̃ = at and the proof is concluded. ��
Claim 8.2. There exists ρ̃0 < 1 s.t. for μ(F�) � ρ̃0 we have

νQ̃L
(1 − 1�) ≤ C

L
.

Proof of the claim. By translation invariance, the probability that there is a good left-
right crossing in Hk or that there is a good top bottom crossing in Vk do not depend on
k. Hence, let α(L) = νQ̃L

(Vk) = νQ̃L
(Hk). Using the FKG inequality, we get that

νQ̃L
(1 − 1�) ≤ 1 − α2L/M .

Standard percolation results [14] guarantee the existence of a constant c > 0 such that,
provided the probability for a site to be good is above a certain percolation threshold ρ̃0,
then

α ≥ 1 − Le−cM = 1 − Le−cB log L .

Hence, provided B is large enough,

νQ̃L
(1 − 1�) ≤ 1 − exp

{
2L

M
log(1 − Le−cB log L)

}
≤ C

L
.

This achieves the proof of the claim. ��
Let Te, c̃e and c̃x be defined as in Sect. 6, then

Lemma 8.3. For any f there exists a positive constant C such that
∑

�∈C�
νQ̃L

(
VarB� ( f )χ�

)
� C(log L)5

∑

e∈EQ̃L

νQ̃L

(
c̃e(Te f − f )2

)

+ C(log L)5
∑

x∈∂− Q̃L

νQ̃L
(̃cx Varx ( f )) .

Proof of the lemma. The proof of this result makes use of the positivity of the spec-
tral gap of the AGL model (Theorem 5.5) and involves a renormalization technique in
the same spirit as the one used to prove the lower bound for the spectral gap of KA
(Theorem 4.1). Fix � ∈ C�. Let N := A(log(2M))2 with A defined as in Theorem 5.5.
For any x ∈ B� and any ω ∈ �B� , we let cx (ω) be the indicator function of the
event that there exists a geometric path γx,y inside T N

x,1(B�) or inside T N
x,2(B�) with

y ∈ ∂−B� ∪ (∂+� ∩ B�) and such that this path is allowed with the choice of the AKG
constraints for the configuration (ωB� · τ)(z) with τ(t) ∈ G for any t ∈ ∂∗

+B� . It is then
possible to define the correspondent Glauber generator in the volume B� as

LB� f =
∑

x∈B�
cx (νx ( f )− f ).

Applying the Poincaré inequality leads to

VarB� (g) ≤ gap(LB� )
−1
∑

x∈B�
νB� (cx Varx (g)) . (8.9)

Analogously to Claim 7.10 and 7.11, one can prove the following bounds with respect
to the rates and the spectral gap of the AGL model
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Claim 8.4. For any ω and x ∈ B� ,

cN
x,Rk0

(ω) � c̄x (ω)

and

gap(LB� )
−1 � gap(Lagl

Rk0 ,N
)−1.

If we choose B (the constant which enters in the definition of M , the short size of the
renormalized rectangles) in order that there exists k ∈ N s.t. 2M = 2B log L = lk
with lk = (3/2)k/2, then N = A(log lk)2 = Nk , where Nk is the one used in Sect. 7.
Furthermore since Rk0 is a cube of linear size 2M = lk it belongs to Fk−1\Fk−2, where
Fk are the set of rectangles defined in Sect. 7. Therefore by recalling the definition of
γk (Eq. 7.1) and the result of Theorem 5.5 we get

gap(Lagl
Rk0 ,N

)−1 � 2. (8.10)

This, together with (8.9) yields

νQ̃L

(
VarB� (g)χ�

)
� 2

∑

x∈B�
νQL (cxχ� Varx (g)) . (8.11)

As usual we can rewrite the variance as

Varx (g)(ω) = 1

2

∑

w,w′∈W

ν(w)ν(w′)
(

g(ωQ̃L\x · w′)− g(ωQ̃L\x · w)
)2
. (8.12)

Our aim is now to reconstruct the move from ωQ̃L\x · w′ to ωQ̃L\x · w via proper paths
by using the properties which are guaranteed if cxχ� = 1. We start by noticing that the
renormalized cube Q̃L can also be seen as the union of squares whose side has length
M , i.e. as a subset Q̂L/M of Z

2(M). Then, for any (u, v) ∈ Q̂L/M × ∂− Q̂L/M we
choose once and for all a path γu,v with γuv = (u = t (1), t (2), . . . , t (m−1), v = t (m))
among the geodesic paths inside Q̂L/M from u to v such that, for any t ∈ γuv , the
Euclidean distance between t and the straight line segment [u, v] is at most

√
2/2 (see

Fig. 10). Fix x ∈ B� and suppose c̄x = 1. Then there exists at least one geomet-
ric path (x1 = x, . . . , xm) which is allowed for ω with AKG constraints and with
xm ∈ ∂−B� ∪ (∂+� ∩ B�). Then let u ∈ Q̂L/M be the square which contains xm , i.e.
xm ∈ Qu (see Fig. 10). If χ� = 1, by using the grid � of vertical and horizontal good
crossings, we can now construct in a unique way a geometric path xm, . . . , xn = x∗
inside Q̃L which is allowed for AKG constraints and such that xm, . . . , xm1 ∈ Qt (1) ,
x (m1+1), . . . , x (m2) ∈ Qt (2) and so on (see Fig. 10). In conclusion we have constructed an
AKG allowed path γxx∗ = (x1, . . . , xn = x∗)with x∗ ∈ ∂− Q̃L ∩ Qv (overall green path
in the figure). We construct such path for any couple ω, x with c̄x (ω) = 1 and ω ∈ �
and we perform this choice in order that the path is the same for any two configurations
which are G-equivalent inside Q̃L\x . For i = 1, . . . , n−1, let ei = (x (i), x (i+1)) ∈ EQ̃L

.
Then, for any w,w′ ∈ W , we can define the path

P
w

x→w′ = P
w

x→w′(ω, v, �) = (ω(1), . . . , ω(2n))
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from ω(1) = ωQ̃L\x ·w to ω(2n) = ωQ̃L\x ·w′ by ω(i+1) = Teiω
(i) for i = 1, . . . , n − 1,

ω(n) = ω
(n−1)
Q̃L\x∗ · w′ and ω(i+1) = Te2n−iω

(i) for i = n + 1, . . . , 2n − 1. It is then easy

to verify that P
w

x→w′ is an allowed path for the AKG model on Q̃L , more precisely for

any i �= n, c̃ei (ω
(i)) = 1, and c̃x∗(ω(n)) = 1.

For any e = (z, z′) ∈ EQ̃L
, define t (e) := (t : z ∈ Qt ) and the weight function ψ

by ψ(e) := j + 1, where j := d1(t (e), u). We will denote by

|P
w

x→w′ |ψ := 2
n−1∑

i=1

1

ψ(ei )

the weighted length of the path P
w

x→w′ . Using a telescopic sum, and the Cauchy-
Schwartz inequality with weight ψ , we get that for any w,w′ ∈ W ,

c̄x (ω)χ�(ω)( f (ωQL\x · w′)− f (ωQL\x · w))2

= c̄x (ω)χ�(ω)

(
2n−1∑

i=1

f (ω(i+1))− f (ω(i))

)2

� χ�(ω)2|P
w

x→w′ |ψ
∑

σ,e

ψ(e)̃ce(σ )(∇e f )2(σ )1{(σ,σ e)∈P
w

x→w′ }

+χ�(ω)2̃cx∗(ω(n))( f (ω(n)
Q̃L\x∗ · w′)− f (ω(n)

Q̃L\x∗ · w))2. (8.13)

By construction, uniformly in x , ω and w,w′ ∈ W , we have

|P
w

x→w′ |ψ � C M2
2L/M∑

j=1

1

j
� C M2 log(L/M) � C(log L)3. (8.14)

We get from (8.11), (8.12), (8.13) and (8.14) that

νQ̃L

(
VarB� ( f )χ�

) ≤ C(log L)3
∑

x∈B�

∑

ω

νQ̃L
(ω)cx (ω)χ�(ω)

×
∑

w,w′∈W

ν(w)ν(w′)
∑

σ,e

ψ(e)̃ce(σ )(∇e f )2(σ )1{(σ,σ e)∈P
w

x→w′ }

+ 2
∑

x∈B�

∑

ω

νQ̃L
(ω)χ�(ω)̃cx∗(ω(n))Varx∗( f )(ω(n)).

Note that by construction, any σ ∈ P
w

x→w′ satisfies
νQ̃L

(ω)

νQ̃L
(σ )

� C . Hence, using the trivial

bound cx ≤ 1, taking the average with respect to the 2L/M possible v ∈ ∂− Q̂L/M , and
inverting the summations, we get
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∑

�∈C�
νQ̃L

(
VarB� ( f )χ�

)

≤ C M

L
(log L)3

∑

σ,e

νQ̃L
(σ )̃ce(σ )(∇e f )2(σ )

× max
w,w′∈W

⎧
⎪⎨

⎪⎩
ψ(e)

∑

v∈∂− Q̂L/M

∑

�∈C�

∑

x∈B�

∑

ω

χ�(ω)1{(σ,σ e)∈P
w

x→w′ }

⎫
⎪⎬

⎪⎭

+
C M

L
(log L)3

∑

σ

∑

x∗∈∂∗
− QL

μQL (σ )̃cx∗(σ )Varx∗( f )(σ )

×

⎧
⎪⎨

⎪⎩

∑

v∈∂− Q̂L/M

∑

�∈C�

∑

x∈B�

∑

ω

χ�(ω)1{O(ω,x)=(σ,x∗)}

⎫
⎪⎬

⎪⎭
. (8.15)

Note that ω can be reconstructed from x , σ and e, at the exception of one site where the
value of the configuration might be unknown. This, analogously to what occurred in the
proof of 5.6, is true thanks to the fact that we have chosen the geometric path from x
to the border in such a way that paths are equal for any two configurations which are
G-equivalent inside Q̃L\x . Hence for any σ, e,

max
w,w′∈W

∑

v∈∂− Q̂L/M

∑

�∈C�

∑

x∈B�

∑

ω

χ�(ω)1{(σ,σ e)∈P
w

x→w′ }

� |W |M2 max
w,w′∈W

max
�,ω,x

�
{
v : t (e) ∈ γu,v

}
, (8.16)

where v is running over ∂− Q̂L/M , x ∈ Qk0 , � ∈ C� and t (e) ∈ Q̂L/M is such that if
e = (z, z′) then z ∈ Qt (e). Recalling that γuv is a geodesic path, by the Theorem of
Thales (see Fig. 11) given �, u and e, one has

� {v : t (e) ∈ γuv} ≤ C
L

Mψ(e)
. (8.17)

Fig. 11. The set of admissible v such that t (e) ∈ γuv
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It follows that

max
σ,e

max
w,w′∈W

⎧
⎪⎨

⎪⎩
ψ(e)

∑

v∈∂− Q̂L/M

∑

�∈��

∑

x∈B�

∑

ω

χ�(ω)1{(σ,σ e)∈P
w

x→w′ }

⎫
⎪⎬

⎪⎭
� C L M. (8.18)

Then, a similar reasoning gives

max
σ,x∗

∑

v∈∂− Q̂L/M

∑

�∈C�

∑

x∈B�

∑

ω

χ�(ω)1{O(ω,x)=(σ,x∗)} � C M2. (8.19)

Plugging (8.16), (8.17), (8.18) and (8.19) into (8.15) the proof of the lemma is concluded.
��

9. Appendix: Properties of KA Model

In this section we prove Lemma 3.2 and 3.4 in the case d = j = 2, since they have been
used in the proof of Theorem 4.1. We also prove that pc = 1 for the two-dimensional
KA model, Theorem 3.5. The proofs follow the arguments sketched in [30].

We start with the trivial observation that if a region is framed then its empty borders
can be rigidly shifted in the interior of the region by proper allowed paths. More precisely
we have

Claim 9.1. Consider a rectangle R = [0, n] × [0,m] and fix a configuration ω which is
R-framed. Then

(a) Let σ be such that σ(z) = ω(z − �e2) if z = i �e1 + m�e2 with i ∈ {1, . . . , n − 1},
σ(z) = ω(z) otherwise. There exists an allowed path Pω,σ inside R.

(b) Let σ be such that σ(z) = ω(z − �e1) if z = n�e1 + i �e2 with i ∈ {0 . . . ,m − 1},
σ(z) = ω(z) otherwise. There exists an allowed path Pω,σ inside R.

Proof. (a) Consider the geometric path x1, . . . , xn−2 with x1 = (n − 1)�e1 + (m − 1)�e2,
xi+1 = xi − �e1. It is immediate to verify that ω(1), . . . , ω(n+1) with ω(1) = ω, ω(i+1) =
(ω(i))xi ,xi −�e2 is an allowed path from ω to σ . (b) The proof follows along the same lines
as (a). ��
Proof of Lemma 3.2. Let R = [0, n] × [0,m]. In order to prove the result it is clearly
sufficient to show that for any framedω and any e = (x, y) ∈ ER such thatω(x) �= ω(y)
there exists an allowed path Pω,ωe . Suppose that y = x +�e1 (the other cases can be treated
analogously) and let x = x1�e1 + x2�e2. By repeatedly using the path constructed in the
proof of Claim b (a) we can construct an allowed path from ω to ω̃ with ω̃(z) = 0 if
z · �e2 = x2 + 1, ω̃(z) = ω(z) if z · �e2 � x2 and ω̃(z) = ω(z − �e2) if z · �e2 > x2 + 1.
Then ce(ω̃) = 1 and we can perform the exchange on x, y. Finally, using the reverse of
the path to go from ω to ω̃, we reconstruct the initial configuration on all sites z �= x, y.

��

Claim 9.2. Choose e = (x, y) ∈ EZ2 and � ∈ N and let Qx := Q� + x, Qy := Q� + y.
If there exists A ∈ Ce with Ce defined in (5.1) s.t. ωQz ∈ F� for all z ∈ A, then there
exists an allowed path inside Qx ∪ Qy ∪z∈A Qz from ω to ωe′

for all e′ ∈ EQx ∪Qy .
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Fig. 12. The path to frame a 6 × 6 configuration which has at least two empty sites on each of the four
independent sides of the central framed 4 × 4 square

Proof. The result can be proved analogously to Lemma 3.2. We give a rough sketch
of the procedure since some additional efforts are required in the construction of the
allowed path. Let e = x, x + �e1, e′ ∈ Qx and A = x − �e1, x + �e2, x + �e1 − �e2. We first
construct the frames inside the Qz with z ∈ A. Then we construct a double empty line
adjacent to Qx ∪ Qy by properly shifting the part of the frames in Qz which are far
away (thanks to Claim b). Finally we can rigidly shift the double empty line of Qx+�e1

inside Qx ∪ Qy and bring it as before near the desired bound to perform the exchange.
The reason why we construct and shift the double empty lines is a technical trick which
is necessary since, at variance with the situation of Lemma 3.2, we do not have here
complete frames but frames which cover only two adjacent sides of Qx . ��

Consider a rectangle R = [a1, b1] × [a2, b2] and let ∂̃ i
+ R := {x �∈ � : x + �ei ∈ �}.

Divide ∂∗
+ R into four non-intersecting sets R1 := ∂

1
+ R ∪ ((b1 + 1)�e1 + (a2 − 1)�e2),

R2 := ∂
2
+ R ∪ ((b1 + 1)�e1 + (b2 + 1)�e2), R3 := ∂̃1

+ R ∪ ((a1 − 1)�e1 + (b2 + 1)�e2), and
R4 := ∂̃2

+ R ∪ ((a1 − 1)�e1 + (a2 − 1)�e2). We call the Ri ’s the independent sides of R.
The following property can be easily verified:

Claim 9.3. If η is R-framed and there exists at least two empty sites inside each of the
four independent sides of R, then η is R ∪ ∂∗

+ R frameable (see for example Fig. 12).
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Fig. 13. The bottom left site is x − 2(�e1 + �e2) and the whole region is Q(3, x − 2(�e1 + �e2)). The sites touched
by the dashed lines correspond (from inside to outside) to Q(1, x), ∂∗

+ Q(1, x) and ∂∗
+ Q(2, x − (�e1 + �e2)). The

continuous lines delimit the four independent sides of ∂∗
+ Q(1, x) and ∂∗

+ Q(2, x − (�e1 + �e2)). The depicted
configuration belongs to F0(x, 2)

Proof of Lemma 3.4. For any integer n, any x ∈ Z
2, let Q(n, x) = Q2n + x . Note that

Q(n + 1, x − �e1 − �e2) = Q(n, x)∪ ∂∗
+ Q(n, x). Let F0(x, n) be the set of configurations

such that Q(1, x) is empty and for each i ∈ (1, n − 1) there are at least two empty sites
on each independent side of Q(i, x − (i −1)(�e1 + �e2)) (see Fig. 13). A direct calculation
gives

μ(F0(n, x)) = q4
n∏

k=2

(
1 − (1 − q)2k−1 − (2k − 1)q(1 − q)2k−2

)4
.

Thus for any q > 0, μ(F0(n, x)) converges to a non-zero limit (independent from x)
when n tends to infinity. Moreover, the limit n → ∞ and q → 0 is computed in [30]:

lim
q→0

lim
n→∞ q logμ(F0(n, x)) = 4α := 2

∫ 1

0

log(1 − y + y log y)

y
dy.

Fix q ∈ (0, 1). From the limit above, there exists n0 = n0(q) such that for any n ≥ n0,

μ(F0(n, x)) � e−α/q . (9.1)

Now for any n, any x ∈ Z
2, we define F1(n, x) as the set of all configurations ω ∈ �

such that every horizontal and vertical row (of length n) inside Q(n, x) has at least two
empty sites. All the sets F1(n, x) with x ∈ Z

2 have the same probability. By FKG
inequality one gets

μ(F1(n, x)) ≥
(

1 − (1 − q)n − nq(1 − q)n−1
)2n

. (9.2)

Finally, we divide the box Q� into a collection of smaller boxes of size
√
�. Assum-

ing that
√
� ∈ N we let Z

2(
√
�) := √

�Z2 and Q̃√
� := Z(

√
�) ∩ Q�. Then Q� =

∪x∈Q̃√
�
Q(

√
�, x) (see Fig. 14). Then we set Q√

� := (x ∈ Q̃√
� : x = 2i �e1 + 2 j �e2 with

i, j ∈ N) and define

A� := {ω : ∃x ∈ Q√
� s.t. ω ∈ F0(

√
�, x

√
�)}
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Fig. 14. The large box is Q� divided into small boxes of size
√
�. The bottom left site of each small box is a

point in Q̃√
�
. The bottom left sites of the white boxes are the points in Q√

�
. On the right is an example of

configuration ω ∈ F1(
√
�, y

√
�) for some y ∈ Q√

�
\Q̃√

�

and

B� := {ω : ω ∈ F1(
√
�, x) ∀x s.t. x = z

√
� with z ∈ Q̃√

�\Q√
�}.

By using Claim 9.3, it follows by construction that A� ∩ B� ⊂ F�.
Furthermore, thanks to (9.1) and (9.2) and using the fact that the events which define

A� and B� are independent, we get

μ(F�) ≥ μ(A�)μ(B�) ≥
(

1 −
[
1 − μ(F0(

√
�, 0))

]�/2)(
μ(F1(

√
�, 0))

)�/2

≥
(

1 − e−c�e−α/q)
e−c�2(1−q)

√
�

for a proper constant c = c(q). Thus for any ε there exists �0(ε, q) such that for � > �0
we get μ(F�) > 1 − ε. ��
Proof of Theorem 3.5. Let �� be a cube of size a�. Then lim�→∞ μ(∩e∈E��

Ee) =
μ(∩e∈E

Z2 Ee). For a given bond e = (x, y) we let Fe
� be the set of configura-

tion inside F� which remain Q�-frameable even if we fill both x and y, namely
Fe
� := {ω ∈ � : ωQ�\(x,y) · 1x · 1y is Q� − frameable }. By proceeding along the same

lines as the proof of the above Lemma 3.4, it is easy to verify that there exists c1, c2 > 0
s.t. μ(Fe

� ) > 1 − c1 exp(−c2�). Furthermore Fe
� ⊂ E Q�

e ⊂ Ee. Indeed if η ∈ Fe
� then

both η and ηe are frameable, thus there exists an allowed path from η to ηe which goes
through the corresponding framed configurations which in turn are connected thanks to
Corollary 3.3. Thereforeμ(∩e∈E�Ee) � 1−|E�|(1−μ(Fe

� )) � 1−2�2a2c1 exp(−�c2),
which goes to one when � → ∞ and the proof is concluded. ��
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