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Many fascinating questions still remain unsettled for condensed matter
physicists who study the glass and jamming transitions. These phenomena,
which lead to the formation of amorphous solids, occur in several micro-
scopically different systems as supercooled liquids, colloidal suspensions and
vibrated granular materials [9, 27]. Basic glassy properties include a dra-
matic slowing down of dynamics when a proper external parameter is tuned
(e.g. temperature is lowered for liquids) and the occurrence of a complicated
relaxation: non exponential and spatially heterogeneous. When relaxation
times become longer than experimental scales, equilibrium can no more be
achieved: the system undergoes a dynamical arrest and freezes into an amor-
phous phase (the glass). The main issues in understanding these phenomena
remain unsolved. In particular, it is not clear whether the dynamical arrest
is due to the proximity of a phase transition and whether this is a static or
purely dynamical one. The experiments on molecular liquids show that, if
such an ideal glass transition occurs, it should have an unconventional be-
havior with mixed first and second order features. On the one hand, the
divergence of relaxation times and the fact that both entropy and internal
energy seem continuous is indicative of a second order transition. On the
other hand a discontinuous order parameter is detected: the height of the
plateau of the Fourier transform of the density–density correlation has a finite
jump. This corresponds to the fact that the modulation of the microscopic
density profile of the glass does not appear continuously from the flat liquid
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profile. Besides these mixed first/second order properties, another unconven-
tional feature concerns the scaling of relaxation times which increase much
more rapidly than for conventional second order transitions. Indeed most
liquids display a faster than power law divergence around the glass transi-
tion, a signal of a cooperative relaxation on increasingly large scales as the
temperature is decreased towards the transition. A very successful fit is the
Vogel-Fulcher law: log τ ≃ 1/(T − T0). Finally another puzzling features
is the absence of any experimental evidence of a static diverging correlation
length: typical glass configurations are not very different from instantaneous
configurations of the liquid and the dramatic slowing down of dynamics is
apparently not due to an increasing long range order. An enormous amount
of theoretical approaches has been proposed in the last fifty years to describe
these phenomena. Among the theories which assume that a thermodynamic
glass transition takes place at a finite temperature we recall mode coupling
theories [14] and the random first order scenario [20]. Here we deal instead
with Kinetically Constrained Models (KCM) which have been introduced in
the 80’s (see [24] for a review) and are based on the ansatz of a purely dynam-
ical transition. The latter would be the result of the geometrical constraints
on the rearrangements of molecules which become more and more important
as the temperature of the liquid is lowered (the density is increased).

KCM are stochastic lattice gases with hard core exclusion, namely on each
site there is one or zero particle. The configuration on a lattice Λ is thus
defined by assigning to each x ∈ Λ its occupation variable: ηx = 1 or ηx = 0
if the site is occupied or empty, respectively. The dynamics is given by a con-
tinuous time Markov process which consists of a sequence of jumps for models
with conservative (Kawasaki) dynamics and creation/destruction of particles
for models with non conservative (Glauber) dynamics. The former are also
known as Kinetically Constrained Lattice Gases (KCLG) and the latter as
Kinetically Constrained Spin Models (KCSM)1 (the occupation variables can
indeed be interpreted as up and down spins which can be flipped). For all
the models introduced in physics literature dynamics satisfies detailed bal-
ance w.r.t. to Bernoulli product measure (see instead [6] for the extension to
models which are reversible w.r.t. high temperature Gibbs measures). Thus

1In physics literature the equivalent terminology “Facilitated Spin Models” is also used

which, instead of emphasizing the presence of constraints, puts the accent on the comple-

mentary fact that proper events facilitate, i.e. allow, the elementary moves.
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there are no static interactions beyond hard core and an equilibrium transi-
tion cannot take place. The key feature of both KCSM and KCLG is that
an elementary move can occur only if the configuration verifies proper local
constraints besides hard core. The latter mimic the geometric constraints on
the possible rearrangements in physical systems, which could be at the root
of the dynamical arrest [13, 21]. As we shall discuss, numerical simulations
show that for proper choices of the constraints KCM indeed display glassy
features. These include heterogeneous relaxation, faster than power law di-
vergence of relaxation times τ and dynamical transitions. Therefore several
analytical and numerical works have recently attempted to understand the
mechanism which induces these glassy properties and to derive the typical
time/length scales which are involved. Numerical simulations are however
very delicate due to the rapid divergence of τ as the particle density p is
increased as well as the non-trivial scaling of finite size effects. (Note that
in order to compare with the above discussion on liquid/glass transition one
should perform the change p → 1/(1 + exp(−1/T )) to have temperature
rather than density as the control parameter.)

Here we review our recent mathematical results [6–8] on KCM which have
contributed to settle some debated questions arising in numerical simulations.
In particular in [8] we have introduced a new technique trough which we
obtain upper and lower bounds on the spectral gap of the Markov process and
therefore on the relaxation time τ which, as we shall see, is directly related
to the inverse of the spectral gap. We focus for simplicity on KCSM and
discuss only at the end the more recent results [7] for KCLG. The dynamics
of a KCSM on an integer lattice Λ ⊂ Z

d is precisely defined as follows. Each
site waits an independent mean one exponential time and then, provided that
the current configuration satisfies a local constraint which does not involve
ηx, it refreshes its state. This is set to occupied with probability p and empty
with probability q = 1 − p. In other words, if cx(η) is the function which
equals one (zero) when the constraint is (is not) verified, each site changes its
current state with rate cx(η)[(1−p)ηx+p(1−ηx)]. Since cx(η) does not depend
on ηx detailed balance w.r.t. Bernoulli(p) measure µp is easily verified and
µp is an invariant measure. As a direct consequence of the fact that the rates
can degenerate to zero, there exist blocked configurations (s.t. on each site
the constraint is not satisfied) as well as configurations which are not blocked
but nevertheless contain a frozen backbone, i.e. a subset of sites on which for
sure the constraint is not verified at any instant of time. Thus µp is not the
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unique invariant measure, for example any measure concentrated on a blocked
configuration is also invariant. By taking proper superpositions of blocked
configurations it is also possible to construct stationary measures which are
also translational invariant (see [22] for a more detailed discussion). In order
to model the geometric constraints on highly dense liquids, cx usually specifies
the maximal number of occupied sites in a proper neighborhood of x. Thus
the dynamics becomes increasingly slow as p is increased and an ergodicity
breaking transition may occur at a finite critical density, pc < 1. More
precisely, if we denote by L the generator of the Markov process on Z

d, pc

separates the density regime in which the semigroup Pt := etL does (does not)
converge to µp in the large time limit, namely limt→∞ Ptf = µp(f) for all f ∈
L2(µp) iff p < pc. As it is explained in Section 2.3 of [8], the dynamical arrest
at pc corresponds to the fact that an infinite spanning cluster of mutually
blocked particles occurs. One of the main issues studied in physics literature
is the long-time dynamics in the ergodic regime, in particular the scaling
of the typical times when p approaches pc from below. The most studied
dynamical quantities are the spin-spin time auto-correlation C(t) and the
persistence function F (t) defined as follows

C(t) :=

∫

dµp(η(0))η0(0)Eη [η0(t)] − p2

where Eη(0)[f(η(t))] is the expectation over the Markov process at time t
when the initial configuration is η(0) and

F (t) :=

∫

dµp(η(0)) P [η0(s) = η0(0) ∀s < t],

namely F (t) is the probability that up to time t the occupation variable of
the origin has never changed. A first key issue is whether C(t) and F (t)
decay exponentially as for the unconstrained models (i.e. for cx(η) = 1).
Furthermore one would like to determine the scalings with p of the typical
time scale τ which enter in their decay. By analyzing the spectral gap of the
generator L, namely

gap(L) := inf
f∈L2(µp)

f 6=const.

µp(f,−Lf)

µp(f − µp(f))2
(1)

and using the Poincaré inequality

Var(Pt(f)) ≤ exp(−2t gap(L))Var(f) (2)
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and the inequality established in Theorem 3.6 of [8] via a Feynman-Kac
bound

F (t) ≤ exp(−qtc/gap) (3)

where c is a constant independent on q, we will obtain rigorous answers to
the above questions. In particular a strictly positive spectral gap together
with (2) and (3) imply an exponential decay for both C(t) and F (t). As we
will detail below, in some cases we prove and in other cases we disprove the
conjectures in physics literature. Note that the above Poincaré inequality
means that the inverse of the spectral gap is the worst relaxation time over
all one time quantities. Thus, when referring to our results, τ will always
stand for 1/gap. Analogously τ(L) will be the inverse of the spectral gap of
the generator of the process restricted to a square lattice ΛL of linear size L
(with properly specified boundary conditions).

Let us recall a standard classification before introducing the specific choices
of the constraints that we analyze. KCSMs can be divided into two classes:
(i) non-cooperative and (ii) cooperative models. For the former it is (for
the latter it is not) possible to construct an allowed path which completely
empties any configuration which contains somewhere a proper finite cluster
of vacancies. Non-cooperative models are ergodic at any density, namely
pc = 1, while pc is finite for some of the cooperative models. Thus we can
further classify cooperative models into: (iia) models that are ergodic in the
thermodynamic limit at any p < 1, i.e. pc = 1; (iib) models that display
an ergodicity breaking transition at pc < 1. Cooperative models are usually
considered more interesting since their relaxation involves the collective rear-
rangements of increasingly large regions as the density increases, analogously
to what experiments suggest near the glass transition.

Among non cooperative models we recall the Fredrickson-Andersen [13]
one spin facilitated (FA1f) for which a move at x is allowed only if at least one
of its nearest neighbors is empty: cx(η) = 1 if

∑

y n.n.x(1−ηx) > 0, cx(η) = 0
otherwise. In this case the presence of a single vacancy allows to empty
the whole lattice. In [3, 4] a dynamical field theory was derived yielding an
exponential decay for C(t) with a typical scale for q → 0 as τ ∝ 1/qz with z=3
for d=1, z=2 + ǫ(d) with ǫ(2) ≃ 0.3, ǫ(3) ≃ 0.1 and ǫ(d ≥ 4) = 0. An exact
mapping into a diffusion limited aggregation model and its renormalization
[18] gives instead d=2 as the upper critical dimension and ǫ(d)=0 in d ≥ 2.
Our results are: gap ∝ q3 in d = 1, q2/| log q| ≤ gap ≤ q2 in d = 2 and
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q2 ≤ gap ≤ q1+2/d in d = 3. Thus we get ǫ(2) = 0 and ǫ(3) ≤ 0, disproving
the findings in [3, 4] and confirming those in [18].

Another popular model is the one-dimensional East model [10] for which
the constraint requires a vacancy on the right nearest neighbor, i.e. cx(η) =
(1 − ηx+1). On a finite volume the presence of a single vacancy on the
rightmost site allows to empty the whole lattice. However the East does
not belong to the non-cooperative class since, due to the directed nature of
constraints, the vacancy should occur in a specific position and the relaxation
involves the cooperative rearrangements of large regions as p → 1. The
scaling log τ ∼ (log(1/q))2 had indeed been conjectured in [10,11] and proved
in [2]. In [8] we prove the exact asymptotics log τ = c(log(1/q))2 where
c = 1/(2 log 2). Our result differs from the c = 1/ log 2 value incorrectly
derived in [11]. As we clarify in [6], this is due to the fact that the relation
between length and time scales extrapolated in [11] from coarsening dynamics
does not lead to the correct equilibrium result unless relaxation on scales
smaller than the typical distance of two vacancies is also taken into account.

Among cooperative models without transition (iia) we consider instead
FAjf on an hyper-cubic lattice of dimension d with 2 ≤ j ≤ d [13]: the
constraint requires at least j empty nearest neighbours. As can be directly
checked, for all these models it is not possible to devise a finite seed of vacan-
cies which allows emptying the whole lattice, thus the models are cooperative.
Consider, e.g., the case d = 2, j = 2 (with periodic boundary conditions)
and focus on a configuration which contains two adjacent rows which are
completely filled. It is easy to verify that these particles can never be erased,
not even if the rest of the lattice is completely empty. The upper restriction
on j comes from the fact if j > d there exist finite sets of forever blocked
particles. Thus a fraction of the system is frozen at all densities (pc = 0)
and the models are not suitable to describe the slow dynamics close to glass-
jamming transitions. The choices which have been most studied in physics
literature are j = 2 both in d = 2 and d = 3 and j = 3 in d = 3. In all
cases stretched exponential relaxation has been numerically detected: C(t)
and F (t) are fitted with exp

(

−(t/τ)β
)

with β decreasing as the density p is
increased [12,15,16]. For the scaling of τ with p, as pointed out in [24], little
is known beyond the general recognition that the behavior is reminiscent to
the one of supercooled liquids. Among the different forms proposed for FA2f
we recall Vogel-Fulcher [15] and exp(c/q) [5]. The latter form is supported
by the conjecture that relaxation occurs via the diffusion of critical droplets
of size 1/q over distances exp(c/q) [23]. Our results are as follows. For all
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j ≤ d and all dimensions we prove that the spectral gap is strictly positive
for p < pc = 1: exponential relaxation occurs both for C(t) and F (t) contra-
dicting the stretched exponential conjecture of [12,15,16] and confirming the
exponential decay derived in [11]. Furthermore for FA2f and FA3f we prove
exp q−1 ≤ τ ≤ exp q−5 and exp exp q−1 ≤ τ ≤ exp exp q−2, respectively.
Thus we establish a super-Arrhenius scaling compatible with [5, 23] and ex-
clude the form proposed in [15]. Also, we believe that the upper bound for
FA2f can be ameliorated to τ ≤ exp q−2.

Among (iib) models, we consider the two dimensional North-East and the
Spiral models. For the former [19] both the up (x + ~e2) and right (x + ~e1)
neighbors should be empty in order for a move at x to be allowed (~ei are
the unit basis vectors). For the Spiral model [25] the constraint is more
complicated. Let the NE, NW, SW and SE neighbours of x be defined re-
spectively as (x + ~e2, x + ~e1 + ~e2), (x − ~e1, x − ~e1 + ~e2), (x − ~e2, x − ~e1 − ~e2)
and (x + ~e1, x + ~e1 − ~e2). Then the constraint at x goes as follows: (a)
the two NE and/or the two SW neighbours of x should be empty and (b)
the two NW and/or the two SE neighbours of x should be empty too. For
both the North-East and Spiral model the cluster of frozen particles arises
at pc = ρdp with ρdp the critical density of directed percolation. In the case
of North-East there is a trivial one to one correspondence between directed
percolation clusters and frozen clusters. As a consequence the transition is
continuous, namely the density of the frozen backbone is zero at pc. Instead
for the Spiral model the mechanism is much more subtle [25]: the presence
of proper directed clusters imply the occurrence of blocked clusters but the
converse is not true. Indeed the proof of pc = ρdp is much more involved [25]
and the transition is here due to the interaction between two independent
directed percolation processes. Furthermore the transition is expected to
display mixed first/second order features [25, 26]: the density of the frozen
backbone is finite at pc and the size of the frozen cluster diverges as p ր pc.
Thus the Spiral model is a KCSM whose ergodicity breaking transition has
the features of an ideal glass transition. For both North-East and Spiral
models we prove that the spectral gap in infinite volume is strictly positive
for any p < pc. Therefore in the whole ergodic region C(t) and F (t) decay
exponentially. At criticality, p = ρdp, we prove that relaxation is instead
polynomial or slower than polynomial in time. Finally, for p > ρdp, we prove
that a strong signature of the infinite volume ergodicity breaking occurs if
one considers the model on a finite volume of linear size L. The relaxation
time is uniform on L for p < pc and diverges as τ(L) ∝ exp(L c(p)) for p > pc.
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We will sketch our technique to derive the positivity of the spectral gap
and its scaling when p ր pc by focusing on FA2f in d = 2 (see [8] for rigorous
proofs). We will comment at the end on the flexibility of the tools which
allow indeed to deal with all the other choices of the constraints discussed
above as well as with more general models, including those with long range
constraints [7] and with static interactions other than hard core [6]. Before
entering in the details we wish to underline that from the mathematical point
of view the main difficulties come from the existence of several invariant mea-
sures and from the fact that KCSM are not attractive, thus the usual coupling
arguments cannot be applied. Both features are a direct consequence of the
constraints, i.e. of the fact that the creation/destruction rates may degen-
erate to zero. This explains why the basic issues concerning the large time
behavior of KCSM are non trivial and why they remained open for most of
the interesting models, with the notable exception of the East for which in [2]
the positivity of the spectral gap had been established. However the method
of [2] uses the specifics of the East model and it cannot be applied neither to
higher dimensions nor to the above discussed cooperative models which are
relevant for physics literature.

In order to study the spectral gap of FA2f we proceed as follows. First
we introduce an auxiliary KCSM model, the General Model (GM), which
has N-valued occupation variables and we study its relaxation time, τGM .
Then we establish an upper bound on the relaxation time for FA2f, τFA, by
using a renormalization procedure which forces the GM constraints on scales
larger than a proper block size and leaves inside each block the original FA2f
dynamics. Finally we derive a lower bound on τFA by using the knowledge of
the typical regions which have to be rearranged to create/destruct a particle.

Let nx ∈ S be an N -valued occupation variable and choose a probability
measure, ν, on S. We identify a subset G of S which we call the good event
and we say that a site x is good if nx ∈ G. GM dynamics is defined as follows.
Each site x waits a mean one exponential time and then nx is refreshed by
a new value n′

x sampled from ν, provided its North, North-East and East
neighbors (i.e. x + ~e1, x + ~e1 + ~e2, x + ~e2) are good. If this constraint is
not satisfied nx remains unchanged. We consider GM on a square lattice
ΛL of linear size L with good boundary conditions on the top and right
boundaries to ensure ergodicity (i.e. the existence of an allowed path which
connects any two configurations which in finite volume guarantees τGM(L) <
∞). In order to evaluate τGM(L) we follow a bisection-constrained method.

8



Lδ

a)

L

1 2

3 4

O

b)

δLc

Figure 1: a) Block dynamics for GM: percolating path of good sites (•)
required to renew configuration on 3. b) Blocking event for FA2f. • (◦)
stand for particles which do (do not) belong to the backbone. Sites inside
dotted line form one of the sequences of ≥ δLc/2 sites to be emptied before
O.

Partition ΛL into four blocks as in fig.1a) and define the following auxiliary
block accelerated dynamics. Each block waits a mean one exponential time
and then its configuration is replaced by a new one chosen according to the
product equilibrium probability given by ν. On the top right block (block 2
in fig.1a)) this move is always allowed. For the others, a constraint should
be satisfied: on an l-shaped frame of width Lδ, δ < 1, there should be a
percolating cluster of good sites as in fig.1a). In other words the constraint
requires the good GM boundary conditions on block 3 (see fig.1a)) and the
same for blocks 1 and 4 (instead on block 2 they are automatically guaranteed
by the boundary condition on ΛL). Then

τGM(L) ≤ τGM
block(L) τGM(L/2)

with τGM
block(L) the relaxation time for the block dynamics. The above in-

equality (see [8] for a rigorous proof) corresponds intuitively to a two step
relaxation: first on the block scale, then inside each individual block. If the
probability that a site is good, ν(G), is larger than the threshold of site per-
colation ρsp the constraint of the block dynamics is satisfied with probability
∼ 1−exp(−mLδ) and τGM

block(L) ≃
(

1 + exp(−mLδ)
)

. Then, by dividing ΛL/2

into four blocks and so on up to constant size, we get

τGM(L) ≤ c
∏

n

τGM
block(2

−nL),

where c is a finite constant and the product contains O(log L) terms. There-
fore we get a bound for τGM(L) which does not dependent on L provided
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the product over the τGM
block’s converges. From the above observation, this

certainly occurs for ν(G) > ρsp.
Let us now consider FA2f in d = 2 on ΛL with empty boundary condi-

tions on the top and right borders. We partition ΛL into disjoint blocks of
size k Lc, where k ≫ 1 and Lc = exp(π2/(18q)). We can now define the
following auxiliary dynamics: each block waits a mean one exponential time
and then its configuration is replaced by a new one chosen according to µp

provided the three neighbouring blocks in the North, East and North-East
direction are internally spanned. By internally spanned we mean that each of
these blocks can be completely emptied by a proper sequence allowed moves
when we consider occupied boundary conditions on it. The probability that
a block of linear size ℓ is internally spanned has been evaluated in the context
of bootstrap percolation: it goes to one exponentially fast when ℓ exceeds
the crossover length Lc defined above [1, 17]. Applying as before a two step
relaxation argument, we get τFA(L) ≤ τFA

block(L) τFA(kLc) where τFA
block(L) is

the relaxation time of the above defined block dynamics, which a priori de-
pends on the number of blocks and therefore on L. We will now show that
τFA
block(L) ≃ 1. Take a square lattice with (L/kLc)

2 sites and define on each

site a 2(kLc)2-valued occupation variable, nx, belonging to S = (0, 1)(kLc)2 .
It is immediate to verify that S and S(L/kLc)2 are the configuration space of
FA2f on a block of size kLc and on ΛL, respectively. Furthermore, in terms
of the nx variables, the above defined block dynamics coincides with GM
with the choices: nx is good when the corresponding block in ΛL is inter-
nally spanned and ν equals µp restricted to the block. Therefore, thanks to
this mapping and our result for τGM , we get τFA

block(L) = τGM(L/kLc) ≃ 1
since the probability of the good event “a block of size kLc with k >> 1 is
internally spanned” is ν(G) ≃ 1 [17]. A few remarks are in order. In our
renormalization procedure we have forced on the block scale the directed GM
constraint which is more restrictive than the one of FA2f. This choice, which
is due to the necessity of boundary conditions which ensure ergodicity for
FA2f dynamics inside each block [8], is allowed because we are deriving an
upper bound on τFA and the effect of a stronger constraint is to slow down the
dynamics. Furthermore, as explained above, for our choice of the block scale
τGM ≃ 1. This means that using GM instead of FA2f constraints on large
blocks does not change the leading behavior of the upper bound. Putting
above results together we conclude that τFA(L) ≤ τFA(kLc) and, since Lc de-
pends on p but not on L and Lc(p) < ∞ for p < pc = 1, the relaxation time of
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FA2f is uniformly bounded in L. This leads for any p < 1 to an exponential
relaxation in the infinite volume limit for all one time functions as well as for
the persistence function [8]. At the same time the density dependence of τFA

is completely encoded in the size Lc(p). To evaluate the latter we reduce the
scale from Lc to 1/q2 via a strategy similar to the previous one. However,
since on scales smaller than Lc the event “the block is internally spanned”
becomes very unlikely, we are forced to make a different choice for the good
event of the renormalized dynamics in order to keep τGM ≃ 1. The new
choice is suggested by the following two observations: (i) any straight empty
segment of length ℓ can be displaced by one step in a given direction if there
is at least one vacancy on the adjacent segment in that direction; (ii) the
probability that there exists at least one vacancy on each segment of length
ℓ inside a square of size Lc is very near to one as soon as ℓ ≫ 1/q2. Thus, we
choose good events which force on ΛkLc

at least one straight empty segment
of length 1/q2 and at least one vacancy on all other segments of this length.
By applying again a bisection procedure together with the construction of
suitable paths which allow the creation/destruction of a particle starting from
straight empty segment, we get τFA(Lc) ≤ cLcτFA(1/q2) where the term Lc

comes from the length of the path. Finally we bound τFA(1/q2) with the
highest entropy cost and get τFA(L) < cLc exp(1/q2) = O(exp(1/q2)).

In order to establish lower bounds for τ one can devise as usual a suit-
able choice of test functions and use the variational characterization of the
spectral gap (1). In some cases it is however simpler to follow a strategy
which uses the knowledge of the typical blocked configurations together with
our bound for the persistence (3). Consider a set of configurations B, called
the blocking event, and let PB(t) be the infimum over the initial configura-
tions η(0) ∈ B of the probability that the origin is occupied up to time t.
The inequality (3) implies µp(B)PB(t) ≤ exp(−tq/τ). For FA2f we define
the blocking event B as the set of configurations for which, after standard
bootstrap percolation inside ΛδLc

(i.e. after removing all particles which can
be removed until exhausting the set of possible movements), a backbone of
particles containing the origin survives. By choosing δ ≪ 1 and recalling
the bootstrap percolation results of [1, 17] we have µp(B) ≃ 1. In infinite
volume this backbone will eventually get unblocked thanks to the vacancies
outside ΛδLc

. However, this requires an ordered sequence of at least δLc/2
moves (fig.1b). Thus, PB(t = ǫδLc) ≃ 1 for sufficiently small ǫ. Therefore
O(1) ≤ exp(−tq/τ) for t ≃ ǫδLc, i.e. τ ≥ O(Lc).

In conclusion we have developed a technique which allows to obtain rig-
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orous results on τFA via the knowledge of the typical region which has to
be emptied around a given site in order to perform a move on it. This size
can in turn be determined via a deterministic procedure which corresponds
to subsequently erase all particles which are unconstrained. The latter, due
to the peculiar form of FA constraints, coincides with the very much studied
bootstrap algorithm. Our main new results are exponential relaxation in the
whole ergodic regime as well as faster than power law divergence of τ in p−pc

when p ր pc = 1.
In higher dimensions and for the other KCSM one can proceed anal-

ogously [8]. The only delicate point is to choose an “internally spanned
event” adapted to the constraints at hand, see e.g. [8] and [6] for the natural
choices in the case of the North-East and the Spiral model, respectively. In
some cases, e.g. for the Spiral model [6], even the form of the blocks for the
partition of ΛL before the renormalization procedure has to be adapted to
the constraints leading to a non rectangular geometry. The scaling of τ on
p depends on the specific choice of the constraints but in all cases the upper
bound τ < τ(Lc) holds, where Lc is the typical size over which the proper
“internally spanned event” is likely to occur. The latter can be always de-
termined via a properly modified bootstrap-like deterministic procedure [8]
and it is finite for p < pc. Thus we establish that the inverse of the spectral
gap is finite which implies exponential relaxation for all one times quantities
(e.g. C(t)) as well as for F (t).

Furthermore proper modifications of the bisection-constrained technique
also allow to deal with models which are reversible w.r.t. a high temperature
Gibbs measure instead of µp [6] as well as models with long range constraints
[7]. In both cases we establish positivity of the spectral gap in the whole
ergodic region. The result for the long range models is particularly relevant
since it allows, via proper renormalization and path techniques [7], to study
the models with Kawasaki dynamics, namely the KCLG. In particular, by
using the positivity of the spectral gap for a proper long range KCSM, we
recently established [7] polynomial decay to equilibrium in infinite volume
as well as 1/L2 decay for the spectral gap on finite volume with boundary
sources for the most popular KCLG, the so called Kob-Andersen model [21].
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