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1. Introduction

In this paper we provide a new, independent proof of the famous result of Yau [19]
which states that the logarithmic Sobolev constant of a spin exchange dynamics in a box
of side L of Z

d , reversible w.r.t. the canonical Gibbs measure of a finite range lattice gas,
grows like L2, provided that the corresponding grand canonical Gibbs measure satisfies
a suitable “high temperature” condition. We thus complete the program that was begun
in [10] were a similar scaling law was proved for the inverse spectral gap.

The problem of computing the relaxation time of stochastic Monte Carlo algorithms
for models of classical spin systems in Z

d has attracted in the last years considerable
attention and many new rigorous techniques have been developed giving rise to nice
progresses in probability theory and statistical mechanics. If, for simplicity, we confine
ourselves to ±1 (or 0–1 in the lattice gas picture) spins, the two most studied random
dynamics have been non-conservative Glauber type algorithms, in which a spin at
a time flips its value with a rate satisfying the detailed balance condition w.r.t. the
grand canonical Gibbs measure, and conservative Kawasaki dynamics in which nearest
neighbors spins exchange their values with a rate satisfying the detailed balance
condition w.r.t. the canonical Gibbs measure.

For Glauber dynamics the general picture is relatively clear for a wide class of models
both in the one phase and in the phase coexistence region with the notable exception of
the critical point (see e.g. [16] and references therein).

For Kawasaki dynamics, instead, the presence of a conservation law makes the
analysis of the relaxation properties much more difficult than in the non-conservative
case, with interesting analogies with the problem of the Goldstone mode in quantum
mechanics [1], and many interesting questions are still open both in the one phase region
as well as in the presence of phase coexistence (see [7]).

One important class of results for Kawasaki dynamics concerns the relaxation
behaviour under a suitable “high temperature condition”. Such a condition (see
Section 2.4 below for a precise description) requires in particular the exponential decay
of the grand canonical covariances uniformly in the chemical potential, i.e. in the particle
density, and therefore it cannot be true at low temperature where, in general, phase
coexistence takes place for certain values of the density.

Under the validity of such a condition, the most important result is the so called
diffusive scaling L2 for the relaxation time (in what follows identified with the inverse
of the spectral gap of the generator) of the Kawasaki dynamics in a box of side L, first
proved in [14] and then, much later and by different methods, in [10] (see also [11] for an
extension to a spin system with random interactions). Such a result is a key stone in the
study of the hydrodynamical limit of the Ising model [18] and it plays an essential role
in the proof of the power law L2-decay to equilibrium of local observables (see [10]).
Quite interesting its proof poses new, non-trivial problems in the theory of canonical
Gibbs measures, their large deviations properties and their detailed equivalence to grand
canonical ones (see [5,6,9,4] and [?]). Some time after the basic paper [14], the above
result was considerably strengthen in [19] in that the same diffusive scaling was proved
also for the logarithmic Sobolev constant (see also [15,20] for related work).
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The basic strategy of [19] is the martingale approach developed in [14] together
with entropy bounds, large deviations estimate for canonical Gibbs measure and partial
averaging on mesoscopic scales. Unfortunately the paper is particularily intricate to read,
partly because the problem of equivalence of ensembles is entangled with the analysis of
the dynamics, and, as a consequence, the main physical mechanism behind the diffusive
scaling does not appear clearly.

With this motivation in mind and with the desire to understand the result by our own
methods, we decided to reprove it following the “bisection” technique envisaged in [10].

Our method works as follows. Let c(L) be the largest (over the boundary conditions
and number of particles) among the logarithmic Sobolev constants in a cube of side L

with given boundary conditions and fixed number of particles. The real hard part is to
prove an upper bound for c(L) of the right order; the lower bound is readily obtained
by plugging into the logarithmic Sobolev inequality a suitable test function (a slowly
varying function of the local density). In order to prove the correct upper bound we look
for a recursive inequality of the form

c(2L)� 3

2
c(L)+ kL2 (1.1)

which, upon iteration, proves the bound c(L)� k′L2.
For this purpose, let � be the cube of side 2L and let us divide it into two (almost)

halves �1, �2 in such a way that the overlap between �1 and �2 is a thin layer of width
δL, δ � 1. Let us denote by ν the canonical Gibbs measure on � with some given
number of particles and let Entν(f 2)= ν(f 2 log(f 2/ν(f 2))) be the entropy of f 2 w.r.t.
ν. If the two σ -algebras F1 :=F�c

1
and F2 :=F�c

2
, namely the σ -algebras generated by

the lattice gas variables outside �1 and �2, respectively, were weakly dependent in the
sense that for some ε(L)� 1

∥∥ν(g|F2)− ν(g)
∥∥∞ � ε(L)ν(g) (1.2)

for all non-negative functions g measurable w.r.t. F1 (weak dependence on the boundary
conditions), then it would follow (see [8] and Section 3.3 below for more details) that
(almost factorization of the entropy)

Entν
(
f 2)�

(
1+ ε(L)

)
ν
(
Entν

(
f 2|F1

)+ Entν
(
f 2|F2

))
,

where Entν(f 2|F1) is a shorthand notation for the entropy of f 2 w.r.t. ν(·|F1). Notice
that ν(·|F1) is nothing but the canonical measure on the smaller set �1.

If the canonical measure were replaced by the grand canonical one then, under our
mixing condition, (1.2) would follow immediately with ε(L) = O(e−mδL) for some
positive m and few lines more would suffice to prove uniformly boundedness of the
logarithmic Sobolev constant for a “high temperature” Glauber dynamics [8] (see
also [16] for a similar discussion for the spectral gap).

For the canonical measure instead, (1.2) cannot hold precisely because of the
conservation of the number of particles. Even in the absence of any interaction, the
Kawasaki dynamics on two nearby disjoint sets does not factorize into two independent
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dynamics because the particles may migrate from one set to the other one. In particular,
the relaxation time in � (intuitively proportional to c(L)) is related to the relaxation time
of the modified Kawasaki dynamics in which the number of particles in the three sets
�1,�2 and �1 ∩�2 is conserved and to the relaxation time of the process of exchange
of particles between �1,�2 and �1∩�2. This suggests to try to separate the two effects
which are, apriori, strongly interlaced and to analyze them separately. In some sense
this idea is the heart of our approach and technically it can be achieved by elementary
conditioning as follows. Let n0 and n1 be the random variables counting the number of
particles in �1 ∩�2 and in �\�2 respectively and let Entν(f 2|n0, n1) be the entropy
of f 2 w.r.t. canonical measure ν conditioned on n0, n1. Then we can write

Entν
(
f 2)= ν

(
Entν

(
f 2|n0, n1

))+ Entν
(
ν
(
f 2|n0, n1

))
. (1.3)

The second term in (1.3) can in turn be expanded as

Entν
(
ν
(
f 2|n0, n1

))= ν
(
Entν

(
ν
(
f 2|n0, n1

)|n0
))+ Entν

(
ν
(
f 2|n0

))
. (1.4)

Notice that in the first term in the r.h.s. of (1.3) we need to bound the entropy with respect
a multi canonical measure in which the number of particles in each atom of the partition
{� \ �1,�1 ∩ �2,� \ �2} is frozen. As shown in [9] (see also Section 3.2 below)
such a new measure has better chances to satisfy the “weak dependence” condition (1.2)
than the original measure ν precisely because of the extra conservation laws. Thus, by
the previous reasoning, we may hope to bound the first term in the r.h.s. of (1.3) by
the largest among the logarithmic Sobolev constant of each of the three sets times the
Dirichlet form of the Kawasaki dynamics. Notice that for each of the three sets the linear
dimension in one direction has been (at least) almost halved. Thus the first term in the
r.h.s. of (1.3) should be the responsible for the first term in the r.h.s. of (1.1).

Let us now examine the pieces that come from the second term in the r.h.s. of (1.3). As
one can observe in (1.4), in each of them one has to bound an entropy with respect to the
distribution of a one dimensional discrete random variable e.g. the number of particles
n0 in the second one. Although such a distribution is difficult to compute exactly, one
has a sufficiently good control to be able to establish, via Hardy inequality (see [17]
and [2]), a sharp logarithmic Sobolev inequality with respect to the Dirichlet form of a
reversible Metropolis birth and death process. Physically such a process corresponds to
the creation of an extra particle in e.g. �1 ∩�2 and the contemporary annihilation of a
particle in e.g. � \ �1 that is to the exchange of particles among the three sets. Since
each particle moves, essentially, by a sort of perturbed random walk, and on average it
has to travel a distance O(L), it is not surprising that the second term in the r.h.s. of (1.3)
is the responsible for the L2 term in the r.h.s. of (1.2).

Of course and unfortunately, the story is quite involved and we have deliberately
hidden here several technical extra conditions that would have obscured the whole
discussion without adding any relevant information.

We conclude with some technical comments and a short road map of the paper.
In Sections 5 and 6, that represent the real technical core of the paper, we need

to bound from above canonical (and multi canonical) Laplace transform of the form
ν�(exp(t

∑
x∈� gx)), where gx is the translated by x of a local function around the origin.
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In principle that could be a difficult task because, due to the conservation law, canonical
measures do not have good mixing properties. Instead of entering into the analysis of the
large deviations properties of ν�, we use the simple, but quite useful bound (see [10]),

ν�
(
et
∑

x∈� gx
)
�Aµ�

(
et
∑

x∈� gx
)
,

where A is some universal constant and µ� the grand canonical Gibbs measure. Such a
bound, valid under our mixing condition, simplifies enormously the problem (compare
for instance with [19]) because grand canonical Laplace transforms can be easily
bounded using concentration inequalities and logarithmic Sobolev inequalities w.r.t.
Glauber dynamics.

Road map. We have decided not to give a completely sequential proof but rather to
postpone the proof of some key technical estimates in the second part of the paper. In
this way the non-expert reader can read the proof of the main result already in Section 4
provided she accepts some basic bounds that are discussed in Section 3 and proved in
Sections 5, 6 and in the appendix. More precisely:
• In Section 2 we define the setting, the mixing condition we need and we state the

main result.
• In Section 3 we collect several technical results, part of which are based on the key

bounds obtained in Sections 5, 6 and in the appendix, that are necessary to prove
the main theorem. A detailed description of these results is given at the beginning
of the section.

• In Section 4, by using the results of Section 3, we prove recursively the main
theorem on the diffusive scaling of the logarithmic Sobolev constant.

• In Section 5 we study in some detail grand canonical and canonical Laplace
transforms via the so called Herbst’s approach. This section is the key technical
input for the next one.

• In Section 6 we bound the square of covariances of the form ν�(f
2,
∑

x∈� gx),
mainly via the entropy inequality and the bounds obtained in Section 5.

• In the appendix we discuss the logarithmic Sobolev inequality for one dimensional
random walks via Hardy’s inequalities with some application to our problem.

2. Notation and results

In this section we first define the setting in which we will work (spin model, Gibbs
measure, dynamics), then we define the basic mixing condition on the Gibbs measure
and subsequently state the main theorem on this work.

2.1. The lattice and the configuration space

The lattice. We consider the d dimensional lattice Z
d with sites x = (x1, . . . , xd)

and norms

|x|p =
( d∑

i=1

|xi |p
)1/p

p � 1 and |x| = |x|∞ = max
i∈{1,...,d} |xi|.
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The associated distance functions are denoted by dp(·, ·) and d(·, ·). By QL we denote
the cube of all x = (x1, . . . , xd) ∈ Z

d such that xi ∈ {0, . . . ,L − 1}. If x ∈ Z
d, QL(x)

stands for QL + x. We also let BL be the ball (w.r.t. d(·, ·)) of radius L centered at the
origin, i.e. BL =Q2L+1((−L, . . . ,−L)). If � is a finite subset of Z

d we write �� Z
d .

The cardinality of � is denoted by |�|. F is the set of all nonempty finite subsets of Z
d .

[x, y] is the closed segment with endpoints x and y. The edges of Z
d are those e= [x, y]

with x, y nearest neighbors in Z
d . We denote by E� the set of all edges such that both

endpoints are in �.
Given � ⊂ Z

d we define its interior and exterior boundaries as respectively, ∂−� =
{x ∈�: d(x,�c)� 1} and ∂+�= {x ∈�c: d(x,�) � 1}, and more generally we define
the boundaries of width n as ∂−n �= {x ∈�: d(x,�c)� n}, ∂+n �= {x ∈�c: d(x,�) �
n}.

Regular sets. A finite subset � of Z
d is said to be l-regular, l ∈ Z+, if � is the

union of a finite number of cubes Ql(x
i) where xi ∈ lZd . We denote the class of all such

sets by Fl . Notice that any set is 1-regular, i.e. Fl=1 = F.

The configuration space. Our configuration space is � = SZ
d

, where S = {0,1},
or �V = SV for some V ⊂ Z

d . The single spin space S is endowed with the discrete
topology and � with the corresponding product topology. Given σ ∈ � and � ⊂ Z

d

we denote by σ� the natural projection over ��. If U,V are disjoint, σUτV is the
configuration on U ∪ V which is equal to σ on U and τ on V . Given V ∈ F we define
the number of particles NV :�→N as

NV (σ )=
∑
x∈V

σ (x) (2.1)

while the density is given by ρV =NV /|V |.
If f is a function on �,&f denotes the smallest subset of Z

d such that f (σ ) depends
only on σ&f

. f is called local if &f is finite. The l-support of a function &
(l)
f , l ∈ Z+,

is the smallest l-regular set V such that &f ⊂ V . F� stands for the σ -algebra generated
by the set of projections {πx}, x ∈ �, from � to {0,1}, where πx :σ �→ σ (x). When
� = Z

d we set F = FZd and F coincides with the Borel σ -algebra on � with respect
to the topology introduced above. By ‖f ‖∞ we mean the supremum norm of f . The
gradient of a function f is defined as

(∇xf )(σ )= f
(
σ x

)− f (σ ),

where σ x ∈ � is the configuration obtained from σ , by flipping the spin at the site x.
Finally Osc(f )= supσ,η |f (σ )− f (η)|.
2.2. The interaction and the Gibbs measures

DEFINITION 2.1. – A finite range, translation-invariant potential {)�}�∈F is a
collection of real, local functions on � with the following properties

(1) )�(σ ) = )�+x(θxσ ) for all σ , all � ∈ F and all x ∈ Z
d , where θx denotes the

shift operator by x ∈ Z
d .
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(2) For each � the support of )� coincides with �.
(3) There exists r > 0 such that )� = 0 if diam� > r . r is called the range of the

interaction.
(4) ‖)‖ :=∑

��0 ‖)�‖∞ <∞.

Given a collection of real numbers λ= {λx}x∈Zd and a potential ), we define )λ as

)
λ

�(σ )=
{
(h+ λx)σ (x) if �= {x},
)�(σ ) otherwise,

where h is the chemical potential (one body part of )).
Given a potential ) ()λ) and V ∈ F, we define the Hamiltonian H)

V :� �→R by

H)
V (σ )=−

∑
�: �∩V �=∅

)�(σ ).

For σ, τ ∈� we also let H),τ
V (σ )=H)

V (σV τV c ) and τ is called the boundary condition.
For each V ∈ F, τ ∈ � the (finite volume) conditional Gibbs measure on (�,F), are
given by

dµ),τ
V (σ )=

{
(Z

),τ
V )−1 exp[−H),τ

V (σ )] if σ (x)= τ(x) for all x ∈ V c,

0 otherwise,
(2.2)

where Z
),τ
V is the proper normalization factor called partition function. Notice that

in (2.2) we have absorbed in the interaction ) the usual inverse temperature factor β
in front of the Hamiltonian. In most notation we will drop the superscript ) if that does
not generate confusion. Moreover, whenever we consider )λ instead of ), we will write
H

τ,λ

V for the finite volume Hamiltonian and µ
τ,λ

V for the corresponding finite volume
Gibbs measure.

Given a measurable bounded function f on �, µV (f ) denotes the function σ �→
µσ
V (f ) where µσ

V (f ) is just the average of f w.r.t. µσ
V . Analogously, for any event

X, µτ
V (X) := µτ

V (1X), where 1X is the characteristic function of X. µτ
V (f, g) stands

for the covariance or truncated correlation (with respect to µτ
V ) of f and g. The set of

measures (2.2) satisfies the DLR compatibility conditions

µτ
�

(
µV (X)

)=µτ
�(X) ∀X ∈F ∀V ⊂�� Z

d. (2.3)

DEFINITION 2.2. – A probability measure µ on (�,F) is called a Gibbs measure
for ) if

µ
(
µV (X)

)= µ(X) ∀X ∈F ∀V ∈ F (2.4)

see e.g. [13].

We introduce the canonical Gibbs measures on (�,F) defined as

ντ�,N = µτ
�(·|N� =N) N ∈ {0,1, . . . , |�|}. (2.5)
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2.3. The dynamics

We consider the so-called Kawasaki dynamics in which particles (spins with σ (x)=
+1) can jump to nearest neighbor empty (σ (x)= 0) locations, keeping the total number
of particles constant. For σ ∈ �, let σ xy be the configuration obtained from σ by
exchanging the spins σ (x) and σ (y). Let txyσ = σ xy and define (Txyf )(σ )= f (txyσ ).
The stochastic dynamics we want to study is determined by the Markov generators
LV , V � Z

d , defined by

(LV f )(σ )=
∑

[x,y]∈EV
cxy(σ )(∇xyf )(σ ) σ ∈�, f :� �→R, (2.6)

where ∇xy = Txy − 1. The nonnegative real quantities cxy(σ ) are the transition rates for
the process.

The general assumptions on the transition rates are
(1) Finite range. cxy(σ ) depends only on the spins σ (z) with d({x, y}, z) < r .
(2) Detailed balance. For all σ ∈� and [x, y] ∈ EZd

exp
[−H{x,y}(σ )]cxy(σ )= exp

[−H{x,y}(σ xy
)]
cxy

(
σ xy

)
. (2.7)

(3) Positivity and boundedness. There exist positive real numbers cm(β)cM(β) such
that

cm � cxy(σ )� cM ∀x, y ∈ Z
d, σ ∈�. (2.8)

We denote by Lτ
V,N the operator LV acting on L2(�, ντV,N) (this amounts to choosing τ

as the boundary condition and N as the number of particles). Assumptions (1), (2) and
(3) guarantee that there exists a unique Markov process whose generator is Lτ

V,N , and
whose semigroup we denote by (T V,N,τ

t )t�0. Lτ
V,N is a bounded operator on L2(�, ντV,N)

and ντV,N is its unique invariant measure. Moreover ντV,N is reversible with respect to the
process, i.e. Lτ

V,N is self-adjoint on L2(�, ντV,N).
A first fundamental quantity associated with the dynamics of a reversible system is

the spectral gap of the generator, i.e.

gap
(
Lτ
V,N

)= inf spec
(−Lτ

V,N � 1⊥
)
,

where 1⊥ is the subspace of L2(�, ντV,N) orthogonal to the constant functions. We let E
to be the Dirichlet form associated with the generator Lτ

V,N ,

Eτ
V ,N(f, f )=

〈
f,−Lτ

V,Nf
〉
L2(�,ντ

V,N
)
= 1

2

∑
[x,y]∈EV

ντV ,N
[
cxy(∇xyf )

2] (2.9)

and VarτV ,N the variance relative to the probability measure ντV,N . Then the gap can also
be characterized as

gap
(
Lτ
V,N

)= inf
f∈L2(�,ντ

V,N
),

Varτ
V,N

(f ) �=0

Eτ
V ,N(f, f )

VarτV ,N(f )
. (2.10)
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A second relevant quantity is the logarithmic Sobolev constant cτV,N defined as the
smallest constant c such that

EntτV ,N
(
f 2)� c

2
Eτ
V ,N(f, f ) (2.11)

for all non-negative functions f with ντV,N(f
2)= 1, where EntτV ,N(f

2)= ντV,N(f
2 lnf 2).

For the connection between spectral gap, logarithmic Sobolev constant and speed of re-
laxation to equilibrium we refer the reader to [12].

2.4. Definition of the mixing condition and main results

In order to formulate our basic mixing condition on the two (or more) body part of the
interaction ) we fix positive numbers C,m, l with l ∈ N. We then say that a collection
of real numbers λ := {λx}x∈Zd is l-regular if, for all i ∈ Z

d , and all x ∈Ql(x
i), xi ∈ lZd ,

λx = λxi .

DEFINITION OF PROPERTY USMT(C,m, l). – For any l-regular set �, any l-regular
λ, any boundary condition τ and any pair of bounded local functions f and g

∣∣µτ,λ

� (f, g)
∣∣� C sup

τ
µ
τ,λ

� (|f |) sup
τ
µ
τ,λ

�\&(l)

f

(|g|) ∑
x∈∂−r &(l)

f

∑
y∈∂−r &(l)

g

e−m|x−y|

provided that d(&(l)
f ,&(l)

g )� l. Here r denotes the range of the interaction.

Remark. – The expert reader may have noticed that our condition is different, and in
principle stronger, than the one used in [14] and [19] because we require the exponential
decay of covariances uniformly in the chemical potential even when the latter varies over
the atoms of a partition of � while in the above mentioned papers the chemical potential
is assumed to be constant over �. In two dimension, one can prove either by cluster
expansion methods (see [4]) or following the ideas of [?], that the two conditions are
equivalent. In higher dimension one can construct examples (see Appendix A2 of [4])
in which a kind of phase transition occurs along the interface between two subsets
with different chemical potential, even if for all l-regular sets � the covariances decay
exponentially fast uniformly w.r.t. to constant chemical potentials.

We are finally in a position to formulate the main result of this paper on the logarithmic
Sobolev constant of Kawasaki dynamics in a finite volume.

THEOREM 2.3. – Assume that there exist positive numbers C,m, l, with l ∈ N, such
that property USMT(C,m, l) holds. Then there exist positive constants c1, c2 such that

c1L
2 � cτQLN

,� c2L
2 (2.12)

for all boundary condition τ and particle number N .
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3. Technical results

Here we collect several preliminary technical results that will be used in the future.
Although the reader may skip this section during a first reading and come back when
these results are needed, we still think it is useful to give a short roadmap of the section.
• In Sections 3.1, 3.2 we recall some useful results on the comparison between finite

volume multicanonical Gibbs measures, namely grand canonical Gibbs measures
conditioned to have a specified number of particles in the atoms of a given partition
of a finite set �, and the corresponding unconditioned measures.

• In Section 3.3, we prove a “baby” version of a nice, new inequality for the entropy
(see [8]), that, very roughly speaking, allows us to bound the multicanonical entropy
in terms of the multicanonical average of the sum of local entropies and of the
multicanonical variance. For the expert reader we just mention that the importance
of such an inequality resides in the fact that one is spared from the cumbersome
computation of quantities like [∇xyν

τ
�(f

2)1/2]2.
• In Sections 3.4, 3.5, 3.6, we first show how to compute and then how to estimate

quantities like ν([ d
dnν(f

2|NV = n)1/2]2), where ν is a multi canonical measure over
the atoms {�i}ki=1 of a partition of a finite set �, V is a subset of a given atom �j

and d
dn is the discrete derivative. As it will appear clearly in Section 6, terms like the

one above naturally appear in the recursive bound of the spectral gap and, roughly
speaking, they measure the influence on the logarithmic Sobolev constant of the
exchange of particles between different atoms of the partition.

• In Section 3.7 we recall some results proved in [10] on the distribution of the
number of particles in an atom of a given partition of a finite set � under a
multicanonical measure. These results will then be used to prove sharp bound on
the logarithmic Sobolev inequality for such a measure via Hardy inequality (see the
appendix).

The general setting

Throughout all this section our setting and notation will be as follows.
Fix δ0 ∈ (0,1) and two integers jmax, l such that δ0jmax < 1. Let L1, . . . ,Lj max be

large multiples of the basic length scale l, let L =∑
j Lj and assume that Lj � δ0L

for any j . We then choose one coordinate direction, e.g. the d direction, and we take
� = QL,�1 equal to the first slice of � orthogonal to d-direction of width L1, i.e.
�1 = {x ∈ �: 0 � xd < L1}, �2 equal to the slice of � on top of �1 of width L2 and
so on. Let also N = {Nj }jmax

j=1 be a set of possible values of N� := {N�j
}jmax
j=1, ρj = Nj

|�j |
the corresponding densities and let us assume, for a given boundary condition τ , that
λ= λ(τ,N) is constant on each set �j and such that µτ,λ

� (N�j
)= Nj, j = 1, . . . , jmax

(see the appendix of [9] for a proof of the existence of λ). Notice that, as far as the
tilting fields λ is concerned, the variables Nj could also be any set of real numbers in
the range [0, |�j |]. In particular we will be allowed to compute the derivative of λ w.r.t.
any of them. We simply write µ for µτ,λ

� and ν for the multi canonical Gibbs measure
µ(·|N�j

=Nj , j = 1, . . . , jmax).
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Finally, in all this section k will denote a generic constant, depending on the
interaction, on the dimensions of the lattice, on δ0 and on jmax, whose value may vary
from line to line.

3.1. On the tilting fields

We begin by recalling the following quite general result on the relationship between
particle numbers, boundary condition and the chemical potential (see the appendix
in [9]). We assume here jmax = 1 so that we can set, for notation convenience, N1 =
n, ρ = n

Ld . In order to be more clear, in the following lemma we will write explicitly
the dependence on the boundary conditions and the chemical potential of the grand
canonical Gibbs state.

LEMMA 3.1. – Assume property USMT(C,m, l) and let α ∈ (0,1). Then there exists
a constant k independent on L such that for any L large enough and any f with
‖f ‖∞ = 1.

(1) If d(&f ,�
c)� Lα

(i) sup
y∈∂+r �

∥∥∇yµ
τ,λ(f )

∥∥∞ � kρ
|&f |
|�| ,

(ii) sup
y∈∂+r �

∥∥∥∥∇y

d

dn
µτ,λ(f )

∥∥∥∥∞ � k
|&f |
|�|2 .

(2) If &f ⊂�

(i)
∥∥∥∥ d

dn
µτ,λ(f )

∥∥∥∥∞ � k
|&f |
|�| ,

(ii)
∥∥∥∥ d2

dn2
µτ,λ(f )

∥∥∥∥∞ � k
1

n

|&f |
|�| .

Proof. – We omit the proof since is practical the same of an almost identical result
(Proposition 3.1) of [10]. ✷
3.2. Equivalence of ensembles

Here we recall some fine results on the finite volume equivalence of ensembles that
will be crucial in most of our future arguments. We refer the reader to Sections 5, 7.2
and 7.3 of [9].

Given M > 0, ε ∈ (0,1) and &⊂�, we say that & is good if there exists j ∈ [1, jmax]
such that either

{x ∈�: d(x,&) �M lnL} ⊂�j and ρj � |�|−ε

or

{x ∈�: d(x,&)�M} ⊂�j and ρj � |�|−ε.
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A set is bad if it is not good. For good sets &⊂�j, j = 1, . . . , jmax, we define

&̄=
{ {x ∈�: d(x,&) �M lnL} if ρj � |�|−ε,
{x ∈�: d(x,&) �M} if ρj � |�|−ε,

which for bad sets

&̄= {x ∈�: d(x,&)�M lnL}.
With these notation the results on the finite volume equivalence of ensembles that will
be essential for the rest of this paper read as follows.

PROPOSITION 3.2. – Assume condition USMT(C,m, l). Then, for any l,M large
enough and ε small enough independent of {ρj}jmax

j=1 , there exists L0 = L0(C,m,‖)‖, l,
M, δ0, ε) such that, for any L � L0 the following holds. Fix two l-regular sets &1,&2

in � such that |&i |� |�|1−ε, i = 1,2, and two functions f,g with ‖f ‖∞ = ‖g‖∞ = 1,
&

(l)
f =&1, &

(l)
g =&2.

(1) Assume jmax = 1. Then

∣∣ν(f, g)∣∣� C(f,g)ρ

[
1

|�| + e−md(&1,&2)

]
,

where C(f,g)= k|&1|2|&2|2. Moreover

∣∣ν(f )−µ(f )
∣∣� k

|&1|
|�| .

(2) Assume jmax � 2. Then

∣∣ν(f, g)∣∣�C(f,g)A(&1,&2)



ν(|f |)∧ ν(|g|) if &1 and &2 are both good

or bad,
ν(|f |) if &1 is bad,
ν(|g|) if &2 is bad,

where

A(&1,&2)=



1
|�| + e−md(&1,&2) if &1 or &2 is good,

1
|�|

( |&̄2|
|&2|

)2( |&̄1|
|&1|

)2 + e−md(&1,&2) otherwise.

(3) Assume jmax � 2 and &1 ⊂�j, j � jmax. Then

sup
τ ′∈�τ

∣∣ντ (f )− ντ
′
(f )

∣∣ � k



|&1|[ 1

|�| + 1
Lk−n+1

]
if &1 is good,

|&1|
|�|

( |&̄1|
|&1|

)2 +maxj=n,n±1

[ |&̄1∩�j |
1
2

Ljmax−j+1

]
if &1 is bad,

where �τ is the set of configurations τ ′ that coincide with τ in the half space
{x ∈ Z

d : xd < L}.
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Remark. – Actually the first part of the proposition holds in a much more general
geometric context (see Section 7.3 of [9]).

For future purposes the next result is stated in a slightly more general form. The proof
is given in [10].

PROPOSITION 3.3. – Assume condition USMT(C,m, l) and let f be such that
|�j \&f |� δ0|�j | for any j = 1, . . . , jmax. Then, for any l large enough, there exists a
constant A depending only on C,m,‖)‖, l, jmax, δ0 such that

ν(|f |)�Aµ(|f |).
In particular

Varν(f, f )�AVarµ(f, f ).

We conclude this paragraph with a final result that plays a crucial role in our approach
(see Section 3.3). For simplicity we consider only the two dimensional case and at the
end we explain how to generalize it to higher dimensions.

Assume that the number of layers jmax is greater than 4, fix 3 � j0 � jmax and
let A = ⋃j0

j=1 �j,B = ⋃jmax
j0−1 �j and S = �j0−1 ∪ �j0 . Let also νX(·) := ν(·|FXc) for

X=A,B,S. Notice that ν-almost surely NA, NB and NS are constant.

LEMMA 3.4. – Assume condition USMT(C,m, l) and let g be a positive function
measurable w.r.t. FAc . Then for any ε > 0 there exists L0 = L0(ε,C,m,‖)‖∞, l, δ)
such that, if L� L0,

‖νB(g)− ν(g)‖∞ � εν(g).

In other words the Radon–Nykodim derivative of the marginal on FAc of νB w.r.t. the
same marginal of ν is close to one in the L∞-norm.

Proof. – Fix ε ∈ (0,1) and η and let hx(n) := e−∇xH(η)/ν
η
B(e

−∇xH ). Using the
definition of hx and the DLR equations (valid because the numbers of particles in A,B,S
are constant) we have∣∣νηxB (g)− ν

η
B(g)

∣∣= ∣∣νηB(g,hx)∣∣
= ∣∣νηB(g, νS(hx))∣∣
� ν

η
B(g) sup

τ ′∈�τ

∣∣ντS(hx)− ντ
′

S (hx)
∣∣, (3.1)

where �τ is the set of configurations τ ′ which differs from τ only on ∂+S ∩ B . By
point (3) of Proposition 3.2 there exists a positive constant k such that

sup
τ ′∈�τ

∣∣ντS(hx)− ντ
′

S (hx)
∣∣ � k

(lnL)
1
2

L2
. (3.2)

Thus

ν
ηx

B (g)�
[
1+ k

(lnL)
1
2

L2

]
ν
η
B(g). (3.3)
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As any two boundary configurations η and η′ differ at most in kL sites, by iterating (3.3),
we have

ννB(g)�
[
1+C ′

(lnL)
1
2

L2

]kL
ν
η′
B g � (1+ ε)ν

η′
B (g) (3.4)

for L large enough. It suffices now to integrate (3.4) w.r.t. dν(η′) and use the arbitrariness
of η. ✷

Remark. – The restriction of d = 2 comes from point (3) of Proposition 3.2. In fact,
in e.g. three dimensions, the bound (3.2) becomes useless. The way out is to have the
“safety belt” S divided into more layers (just three in d = 3). It is interesting at this point
to observe that a similar problem occurs also in the recursive study of the spectral gap
(see [10]). In that case however, the safety belt S in d = 2 consisted of just one atom and
not of two as in our case. The reason is that, in the spectral gap analysis, a weaker form
of Lemma 3.4 was necessary in which the r.h.s. of the basic inequality is ε‖g‖∞ and not
εν(g).

3.3. A two-block inequality on the entropy

Here we give a result that is a key step in our recursive bound of the spectral gap of
Kawasaki dynamics. For simplicity we discuss the next estimates in two dimensions and
at the end we explain how to generalize it to higher dimensions.

Assume that the number of layers jmax is greater than 4, fix 3 � j0 � jmax and let
A = ⋃j0

j=1 �j, B = ⋃jmax
j0−1 �j and S = �j0−1 ∪ �j0 . Let also νX(·) := ν(·|FXc) for

X=A,B,S. Notice that ν-almost surely NA,NB and NS are constant.

PROPOSITION 3.5. – Assume USMT(C,m, l). Then, for any ε > 0 there exists L0

depending only on ε,C,m,‖)‖∞, l, δ such that, if L�L0,

Entν
(
f 2)� ν

(
EntνA

(
f 2)+ EntνB

(
f 2))+ εVarν(f ) (3.5)

for any f with ν(f )= 0.

Remark. – The origin of this inequality is the following simple bound valid for an
arbitrary product measure ν = ν1 ⊗ ν2:

Entν
(
f 2)� ν

(
Entν1

(
f 2)+ Entν2

(
f 2)) ∀f � 0

and, in some sense, the term εVarν(f ) in (3.5) takes into account the correction due to
the presence of the overlapping strip S. As we will see the proof of the proposition is
rather simple. Quite a non-trivial task is to remove the restriction ν(f )= 0. If one tries
to use the Rothaus inequality (see e.g. [2])

Entν
(
f 2)� 2 Varν(f )+ Entν

([
f − ν(f )

]2)
together with (3.5), one gets immediately

Entν
(
f 2)� ν

(
EntνA

(
f 2)+ EntνB

(
f 2))+ (2+ ε)Varν(f ) (3.6)
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which is much worse than (3.5) because of the factor 2 + ε. Quite remarkably, in [8]
the restriction ν(f ) = 0 has been removed in great generality and moreover the error
term εVarν(f ) has been replaced by εEntν(f 2). The resulting inequality has been then
applied to provide a very simple and natural proof of the logarithmic Sobolev inequality
for grand canonical Gibbs measures under a mixing condition. For a “variance”
counterpart of (3.5) (that is Entν(f 2) �→ Varν(f )) we refer the reader to Proposition 3.4
in [10] (see also Section 3.7 in [16] and [3] for the Glauber case).

Proof. – The proof is based on Lemma 3.4 above. We write

Entν
(
f 2)= ν

(
f 2 log

f 2

νA(f 2)

)
+ ν

(
f 2 log

νA(f
2)

νB(νA(f 2))

)

+ ν

(
f 2 log

νB(νA(f
2))

ν(f 2)

)
. (3.7)

The first term in (3.7) is equal to ν(EntνA(f
2)). By using the variational definition of the

entropy EntνB (f
2)

EntνB
(
f 2)= sup

g: νB(eg)=1
νB

(
f 2g

)
together with

νB

(
νA(f

2)

νB(νA(f
2))

)
= 1

the second term in (3.7) can be bounded from above by ν(EntνB (f
2)). Finally, the

argument of the logarithm in the third term is smaller than

νB

(
νA(f

2)

ν(f 2)

)
= νB(νA(f

2))

ν(νA(f
2))

� 1+ ε

for any L large enough independent of f because of Lemma 3.4. Thus the third term can
be bounded from above by εν(f 2)= εVar(f ). ✷

Remark. – It is clear from the proof that the key input for the result is Lemma 3.4.
Therefore one can easily formulate the proposition in dimension greater than two simply
by assuming that the set S consists of a sufficiently large number of layers (just three in
d = 3) as it was explained already in the remark after the proof of Lemma 3.4.

3.4. Computing the gradient with respect to the particle number

Let V and W be such that V ∩W = ∅, �j = V ∪W for some j ∈ {1, . . . , jmax} and
0 < δ0 � |V |

|W | � δ−1
0 . Here δ0 is the same as the one entering in the general multicanonical

setting described at the beginning of the section.
Our goal is to compute, for an arbitrary f , the gradient w.r.t. to n of (ν(f 2|NV =

n))1/2. For simplicity we set ν(·|n) := ν(·|NV = n) and γ (n) := ν(NV = n).
For x, z ∈ Z

d , we define the events

Exz = {σ ∈�: σ (x)= 1, σ (z)= 0}. (3.8)
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In Proposition 3.10 of [10] the following result was proved.

PROPOSITION 3.6. – Let V and W be such that V ∩W = ∅ and �j = V ∪W for
some j ∈ {1, . . . , k}. Let also cn = n(|W | −Nj + n), that is (number of particles in V )
× (number of holes in W), and let c′n = n(|V | −Nj + n). Then, for all functions f on �

we have
(1)

ν
(
f 2|n)− ν

(
f 2|n− 1

)= 1

cn

γ (n− 1)

γ (n)

∑
x∈V
z∈W

ν
((∇zxf

2))1Ezx
e−∇xzH� |n− 1

)

+ 1

cn

γ (n− 1)

γ (n)

∑
x∈V
z∈W

ν
((

e−∇xzH� − 1
)
1Ezx

, f 2|n− 1
)
,

(2)

ν
(
f 2|n)− ν

(
f 2|n− 1

)=− 1

c′N−n+1

γ (n)

γ (n− 1)

∑
x∈V
z∈W

ν
((∇xzf

2)1Exz
e−∇xzH� |n)

+ 1

c′N−n+1

γ (n)

γ (n− 1)

∑
x∈V
z∈W

ν
((

e−∇xzH� − 1
)
1Exz

, f 2|n).
Let now nmax, nmin be the maximum and minimum value of the particle number in

V under the constraint that N�j
= Nj . Let u = "ρj |V |#, where ρj = Nj

|�j | , and let, for
n ∈ (nmin, nmax),

A(n)=



1
cn

γ (n−1)
γ (n)

∑
x∈V
z∈W

ν
(
(∇zxf

2)1Ezx
e−∇xzH� |n− 1

)
if n� u,

1
c′
N−n+1

γ (n)

γ (n−1)

∑
x∈V
z∈W

ν
(
(∇xzf

2)1Exz
e−∇xzH� |n) otherwise,

(3.9)

B(n)=



1
cn

γ (n−1)
γ (n)

∑
x∈V
z∈W

ν
(
(e−∇xzH� − 1)1Ezx

, f 2|n− 1
)

if n� u,
1

c′
N−n+1

γ (n)

γ (n−1)

∑
x∈V
z∈W

ν
(
(e−∇xzH� − 1)1Exz

, f 2|n) otherwise.

With this definition, and using

(√
x −√y)2 =

(
x − y√
x +√y

)2

� (x − y)2

x ∨ y
,

we have immediately the following corollary

COROLLARY 3.7. – In the same setting of Proposition 3.6

∑
n

γ (n)∧ γ (n− 1)
(√

ν(f 2|n)−
√
ν(f 2|n− 1)

)2
� 2

∑
n

γf (n)
(
A(n)2 +B(n)2),

where γf (n) := γ (n)∧γ (n−1)
ν(f 2|n)∨ν(f 2|n−1) .
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3.5. Bound on
∑

n γf (n)A(n)2

Here we show how to bound from above the term
∑

n γf (n)A(n)
2 of Corollary 3.7.

PROPOSITION 3.8. –

∑
n

γf (n)A(n)
2 � k

L2

ρj |�j |Eν(f, f ).

Proof. – Let u = "ρj |V |# and assume, without loss of generality, ρj � 1
2 and n � u.

Then we observe that, because of the conservation law,

1

cn

γ (n− 1)

γ (n)

∑
x∈V
z∈W

ν
(
e−∇xzH�1Ezx

|n− 1
)= 1,

so that

e−2‖)‖ 1

c′Nj−n+1
� 1

cn

γ (n− 1)

γ (n)
� e2‖)‖ 1

c′Nj−n+1

.

Now, using twice the Cauchy–Schwarz inequality together with the identity a2 − b2 =
(a − b)(a + b) on Vxzf

2 gives

A(n)2=
[

1

cn

γ (n− 1)

γ (n)

∑
(x,z)∈V×W

ν
(
e−∇xzH∇xzf

2|n− 1,Ezx

)
ν(Ezx |n− 1)

]2

� k
1

c′Nj−n+1

∑
(x,z)∈V×W

ν
(
(∇xzf )

2|n− 1,Ezx

)
ν(Ezx|n− 1)

× 1

cn

γ (n− 1)

γ (n)

∑
(x,z)∈V×W

ν
(
f 2 + (Txzf )

2|n− 1,Ezx

)
ν(Ezx |n− 1). (3.10)

We recall that ν(·|n− 1)-almost surely,
∑

x∈V
z∈W

1Ezx
= c′N−n+1. So, one can see that

1

cn

γ (n− 1)

γ (n)

∑
(x,z)∈V×W

ν
(
f 2|n− 1,Ezx

)
ν(Ezx |n− 1)

� k
1

c′Nj−n+1

∑
(x,z)∈V×W

ν
(
f 21Ezx

|n− 1
)

= kν
(
f 2|n− 1

)
. (3.11)

On the other hand, using the change of variable σ �→ σ xz and the equality ν(fg) =
ν(f, g)+ ν(f )ν(g), we get

1

cn

γ (n− 1)

γ (n)

∑
(x,z)∈V×W

ν
(
(Txzf )

2|n− 1,Ezx

)
ν(Ezx |n− 1)

� 1

cn

γ (n− 1)

γ (n)

∑
(x,z)∈V×W

ν
(
(Txzf )

21Ezx
|n− 1

)
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� 1

cn

∑
(x,z)∈V×W

ν
(
f 21Exz

e−∇zxH |n)
� kν

(
f 2|n), (3.12)

where for the last inequality, we exploited the fact that ν(·|n)-almost surely∑
x∈V
z∈W

1Exz
= cn.

Now, since c′n is increasing in n, we obtain from (3.10), (3.11) and (3.12) that

A(n)2 � k
1

c′Nj−u+1

{
ν
(
f 2|n)∨ ν

(
f 2|n− 1

)} ∑
(x,z)∈V×W

ν
(
(∇xzf )

2|n− 1
)
, (3.13)

and similarily for n > u. Notice that c′Nj−u+1 � cu = kρj |�j |2. Thus, it follows from
(3.13) that

∑
n

γf (n)A(n)
2 � k

1

ρj |�j |2
∑

(x,z)∈V×W
ν
(
(∇xzf )

2)� k
L2

ρj |�j |Eν(f, f ) (3.14)

because ∑
(x,z)∈V×W

ν
(
(∇xzf )

2)� kLd+2Eν(f, f ). (3.15)

In order to prove (3.15) we need the following definition.

DEFINITION 3.9. – Given a finite connected subset � of Z
d a path choice in � is a

collection λ = {λxz: (x, z) ∈ �× �} such that λxz is a self-avoiding path from x to z

inside �.

Given a path choice λ in �j and V,W as above, we let

GV (λ)=max
e∈E�

#
{
(x, z) ∈ V ×W : λxz ❂ e

}
,

DV (λ)= max
(x,z)∈V×W

|λxz|.
Let now λ be any path choice. Thanks to Lemma 4.3 in [19] we get that

ν
(
(∇xzf )

2)� k|λxz|
∑
e❁λxz

ν
(
(∇ef )

2)

which, together with the definition of GV (λ) and DV (λ), implies

∑
(x,z)∈V×W

ν
(
(∇xzf )

2)� kGV (λ)DV (λ)Eν(f, f ).

A sensible path choice is the following. Given x ∈ V and z ∈ W , start increasing (or
decreasing) the first coordinate of x until it is equal to the first coordinate of z. Repeat
for the remaining coordinates until you get to z. With this particular path choice it is
easy to see that GV (λ)DV (λ) � kLd+2 (see Section 5.2 in [10]) and the proof of (3.15)
follows at once. ✷
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3.6. Bound on
∑

n γf (n)B(n)2

Here we show how to bound from above the term
∑

n γf (n)B(n)
2 of Corollary 3.7.

PROPOSITION 3.10. – Assume property USMT(C,m, l). Then for any ε > 0 and
ρ0 � 1

2 there exists Cε such that, for any f with ν(f 2)= 1,
(i) if ρj � ρ0 ∑

n

γf (n)B(n)
2 � 1

ρj |�j |
[
Cε + εEntν

(
f 2)],

(ii) if ρ0 � ρj � 1
2

∑
n

γf (n)B(n)
2 � 1

ρ2
j |�j |

[
Cε +CεL

2Eν(f, f )+ εEntν
(
f 2)].

Proof. –
(i) Let u = "ρj |V |# and assume, without loss of generality, n � u. Then, by

proceeding as in the proof of Proposition 3.8,

B(n)2 � kν

(
f 2,

1

c′Nj−u+1

∑
x∈V
z∈W

(
e−∇xzH� − 1

)
1Ezx

|n− 1
)2

, (3.16)

where c′Nj−u+1 = (Nj − u+ 1)(|V | − u+ 1)� kρj |V ||W |.
Let now hx(σ ) := (e−∇xH�(σ)−1)(1−σ (x)) and gx(σ ) := (e−∇xH�(σ)−1)σ (x). Then

B(n)2 � kν

(
f 2,

1

ρj |V ||W |
∑
x∈V
z∈W

(
e−∇xzH� − 1

)
1Ezx

|n− 1
)2

� kν

(
f 2,

1

ρj |V ||W |
∑
x∈V
z∈W

[(
e−∇xzH� − 1

)
1Ezx

− hxgz
]|n− 1

)2

+ kν

(
f 2,

1

ρj |V ||W |
∑
x∈V
z∈W

hxgz|n− 1
)2

. (3.17)

Notice that

(
e−∇xzH� − 1

)
1Ezx

− gzhx = gz(1− σx)+ hxσz if d(x, z) > r.

Thus the first term in the r.h.s. of (3.17) can be bounded from above by

kν

(
f 2,

1

ρj |V ||W |
∑

(x,z)∈V×W
d(x,z)�r

[
(e−∇xzH� − 1)1Ezx

− hxgz
]|n− 1

)2

+ kν

(
f 2,

|V | − n+ 1

ρj |W ||V |
∑
z∈W

gz|n− 1
)2
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+ kν

(
f 2,

Nj − n+ 1

ρj |W ||V |
∑
x∈V

hx|n− 1
)2

. (3.18)

In order to bound the second and third term in (3.18) we can apply Proposition 6.2 to the
functions

∑
z∈W gz and

∑
x∈V ρjhx . The result is that the sum of second and third term

in the r.h.s. of (3.18) is smaller than

k
1

ρj |�j |ν
(
f 2|n− 1

)[
Cεν

(
f 2|n− 1

)+ εEntν(·|n−1)
(
f 2)]. (3.19)

Notice that, if we average (3.19) over γf (n) we get, after a Jensen inequality, the sought
bound. Finally we consider the first term in the r.h.s. of (3.18). A simple L∞ bound gives
that this term is smaller than

k
1

L2

1

ρ2
j |�j |2 ν

(
f 2|n− 1

)2

and thus, by recalling the definition of γf (n), the result is obtained. To bound the second
term in (3.17) one has to use point (i) of Proposition 6.5.

(ii) We can proceed as in the previous case using Proposition 6.3 instead of
Proposition 6.2 and point (ii) of Proposition 6.5 instead of point (i). ✷
3.7. On the distribution of the number of particles inside one block

The aim of this paragraph is first to recall some general result on the distribution of
the number of particles inside one block �j and secondly to derive an (optimal) upper
bound on its logarithmic Sobolev constant (see Proposition 3.17 below).

The setting is that of Section 3.4 above. We assume without loss of generality ρj � 1
2

and we denote by n̄= µ(NV ).
We also set nmin =max{0,Nj − |W |} and nmax =min{|V |,Nj } to be the smallest and

the largest value of NV (σ ) under the constraint that N�j
(σ ) = Nj . It is easy to check

that 1
k
n̄� nmax − n̄� kn̄ and similarly for n̄− nmin.

In what follows we will consider the distribution of the number of particles in V under
the measure ν. More precisely we define γ = {γ (n)} to be the probability measure on
I = {n ∈ [nmin, nmax]: n is an integer}, given by

γ (n) := ν(NV = n).

In order to obtain sharp bounds on γ (n), we modify the chemical potential λ appearing
in µ := µ

τ,λ

� in an n-dependent way in such a way that the value n becomes the new
average value of NV under µ

τ,λ

� . More precisely, given n ∈ [nmin, nmax], let λ(n) =
{λ1, . . . , λj−1, λV , λW,λj+1, . . . , λjmax} be a new chemical potential constant on the
atoms of the new partition and such that

µ
τ,λ(n)

� (N�i
)=Ni, i = 1, . . . , jmax,

µ
τ,λ(n)

� (NV )= n, (3.20)

µ
τ,λ(n)

� (NW)=Nj − n.
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It is then easy to check that γ can be written in the Gibbsian form, γ (n)= e−H(n)ϕ(n),
where

H(n) :=∑
i �=j

(
λi(n)− λi

)
Ni + λV n+ λW(Nj − n)− λjNj − log

(
Z
τ,λ(n)

�

Z
τ,λ

�

)
,

ϕ(n) := µ
τ,λ(n)

� (N� =N;NV = n)

µ
τ,λ

� (N� =N)
.

(3.21)

Finally, given ε ∈ (0,1), we consider for technical reasons the “ε-regularization” (ε here
must be thougth to be close to one) of γ defined by

γε(n) :=
{

1
Z

e−H(n) if n ∈ Iε,
γ (n) otherwise,

(3.22)

where

Z :=
∑

n∈Iε e−H(n)∑
n∈Iε γ (n)

,

nεmax = n̄+ ε(nmax − n̄),

nεmin = n̄+ ε(nmin− n̄),

Iε := [
nεmin, n

ε
max

]∩ I.
We now recall, without any proof, some results on γε established in Section 3.4 and 4
of [10] under the mixing hypothesis USMT(C,m, l) that will turn out to be useful.
Then, we complete these properties by some others in order to prove that γε satisfies
a convex condition. Once convexity is established, we can appeal to Proposition A.5 in
the appendix to give a sharp bound on its logarithmic Sobolev constant.

The first result concerns the behaviour of the “potential” H(n). As usual k will denote
an arbitrary constant depending only on C,m, l, δ, ε,‖)‖∞ and whose value varies from
time to time.

LEMMA 3.11. – For all n ∈ Iε ,
1

k

n− n̄

n̄
�H(n+ 1)−H(n)� k

n− n̄

n̄
for all n� n̄,

1

k

n̄− n

n̄
�H(n− 1)−H(n)� k

n̄− n

n̄
for all n� n̄.

The next two results show that the relative density between γ and its regularization
is bounded uniformly in the size of I and that the tails of γ (n) are at least exponential.
More precisely

LEMMA 3.12. –
1

k
� inf

n∈I
γ (n)

γε(n)
� sup

n∈I
γ (n)

γε(n)
� k.

LEMMA 3.13. – There exists a positive constant ε0 = ε(δ,‖)‖∞) such that ∀ε ∈
(ε0,1)
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γ (n+ 1)

γ (n)
� 1

2
if n ∈ [

nεmax, nmax
]
,

γ (n− 1)

γ (n)
� 1

2
if n ∈ [

nmin, n
ε
min

]
.

COROLLARY 3.14. –

γε(n+ 1)

γε(n)
� ke−k

n−n̄
n̄ ∀n� n̄ (3.23)

and similarity for γε(n−1)
γε(n)

, n� n̄.

The next result shows that the normalization factor Z appearing in the definition of γε
is close to n̄1/2.

LEMMA 3.15. –

1

k

√
n̄� Z � k

√
n̄.

Proof. – We must consider two terms,
∑

n∈Iε e−H(n) and
∑

n∈Iε γ (n).
By using Lemma 3.11 one can easily get for all n ∈ Iε

1

k
e−

k
n̄
(n̄−n)2 � e−H(n) � k e−

1
kn̄
(n̄−n)2 . (3.24)

Thus, using a comparison with integrals and a change of variable, it easily follows that

1

k

√
n̄�

∑
n∈Iε

e−H(n) � k
√
n̄. (3.25)

On the other hand, it follows from Lemma 3.12 that

nεmin∑
n=nmin

γ (n)= γ
(
nεmin

) nεmin∑
n=nmin

γ (n)

γ (nεmin)

= γ
(
nεmin

) nεmin∑
n=nmin

nεmin∏
j=n+1

γ (j − 1)

γ (j)

� γ
(
nεmin

) nεmin∑
n=nmin

(
1

2

)nεmin−n

� 2γ
(
nεmin

)
.

A similar statement for
∑nmax

n=nεmax
γ (n) yields

∑
n∈Iε

γ (n)� 1− 2
(
γ
(
nεmin

)+ γ
(
nεmax

))
.
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We are left with the problem of bounding from above γ (nεmin) and γ (nεmax). Because of
Lemma 3.13 it’s enough to control γε(nεmin) and γε(nεmax). By using Lemma 3.11 together
with Corollary 3.14, we get

γε
(
nεmin

)= γε(n̄)

n̄∏
j=nεmin+1

γε(j − 1)

γε(j)

� k e−
k

2n̄ (n̄−nεmin)
2

� k e−
k
n̄
(nmin−n̄)2

� k e−k(n̄−nmin).

In conclusion, we get that γ (nεmin) � 1
8 provided that n̄ is large enough. A similar

statement for γ (nεmax) gives finally that

1 �
∑
n∈Iε

γ (n)� 1

2
.

This result together with (3.25) completes the proof. ✷
From Lemmas 3.11 and 3.15, one can easily see that γε is bell shaped around n̄ at least

if we restrict it to the interval Iε. Our last result shows that, in some sense, this property
holds also outside Iε.

LEMMA 3.16. –

1

k
√
n̄

e−
k
n̄
(n̄−n)2 � γε(n)� k√

n̄
e−

1
kn̄
(n̄−n)2 . (3.26)

Proof. – Thanks to Lemmas 3.11, 3.15 and the fact that nmax − n̄ is proportional to n̄

one can see that (3.26) holds for all n ∈ Iε. Moreover, by using Corollary 3.14 the upper
bound of (3.26) holds for all n ∈ I . It is therefore enough to prove the lower bound of
(3.26) for n ∈ I \ Iε.

For this purpose, we let n ∈ [nεmax, nmax] (the case n ∈ [nmin, n
ε
min] being similary) and

we recall that, thanks to Proposition 3.6 of [10]),

k
(|V | − n)(Nj − n)

(n+ 1)(|W | −Nj + n+ 1)
� γ (n+ 1)

γ (n)
.

Therefore

γ (n)�
(
nεmax

)
e−k(n−n

ε
max)

n−1∏
nεmax

(|V | − i)(Nj − i)

(i + 1)(|W | −Nj + i + 1)

� k√
n̄

e−
1
kn̄
(n̄−n)2 ,

where we have used (3.26) to get the exponential bound for γ (ηεmax), Stierling formula
and a some straightforward calculation to bound from below the product. The proof is
complete. ✷
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We are finally in a position to state the main result of this paragraph.

PROPOSITION 3.17. – Assume property USMT(C,m, l). Then, for all f :�� �→ R

that depend only on NV (σ ), the following logarithmic Sobolev inequality holds

Entγ (f )� kn̄
∑
n∈I

(
γ (n)∧ γ (n− 1)

)[
f (n)− f (n− 1)

]2
.

Proof. – Because of Lemma 3.12 it is sufficient to prove the logarithmic Sobolev
inequality for the regularized measure γε.

Pick ε sufficiently close to one in such a way that Lemma 3.13 holds. Then, thanks
to Corollary 3.14 and Lemma 3.16, the regularized measure γε satisfies the convex
hypothesis CONV(c, n̄) described in the appendix, for some c independent of n̄ and I .
Therefore we can apply Proposition A.5 in the appendix and get the result. ✷

4. Recursive estimate of the logarithmic Sobolev constant

In this section we prove the main result of the paper, Theorem 2.3, via a recursive
analysis on the behaviour of the logarithmic Sobolev constant when the linear size of
the volume under consideration is doubled. For simplicity we carry out our analysis in
two dimensions but the extension to higher dimension is straightforward (see remark at
the end of Section 3.3). We confine ourselves with the proof of the upper bound since
the lower bound is easily proved by plugging a suitable test function (a slowly varying
function of the local density) inside the logarithmic Sobolev inequality (2.11).

DEFINITION. – RL will denote the class of rectangles in Z
2, which, modulo transla-

tions and permutations of the coordinates, can be written as R(l1, l2) = [0, l1 − 1] ×
[0, l2 − 1] with 0.1l2 � l1 � l2 �L. We also set

cs(L)= max
R∈RL

max
N,τ

cτR,N ,

where cτR,N , the logarithmic Sobolev constant in R with boundary condition τ and N

particles, has been defined in (2.11).

With the above notation we will prove the following recursive bound.

THEOREM 4.1. – Assume USMT(C,m, l). Then there exists a positive constant
k = k(d, r,‖)‖) such that

cs(2L)� 3

2
cs(L)+ kL2

for all L large enough. In particular supL�l L
−2cs(L) <+∞.

Proof. – Let us consider a rectangle � := R(l1, l2) ∈ R2L \ RL with l1 � l2 and
let us fix a small number δ0 ∈ (0,10−2) and we set d = "δ0L#. Given an integer
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i ∈ [1, " 1
10δ0
# − 1], we partition � into four disjoint sub-rectangles {�j }4j=1 as follows

�1 = {x ∈�; 0 � x2 � l2/2+ (i − 1)d},
�2 = {x ∈�; (i − 1)d < x2 � id},
�3 = {x ∈�; id < x2 � (i + 1)d},
�4 = {x ∈�; (i + 1)d < x2},

(4.1)

and we set A=�1 ∪�2 ∪�3, B =�2 ∪�3 ∪�4, S =�2 ∪�3.

Fix now a boundary condition τ outside �, a number of particles N ∈ [0, . . . , |�|] and
let ν := ντ�,N . We will then use three times the formula relating the entropy of f 2 w.r.t.
the measure ν, Entν(f 2), to the entropy of f 2 w.r.t. the measure ν(·|F0) conditioned to
a sub σ -algebra F0, Entν(f 2|F0):

Entν
(
f 2)= ν

(
Entν

(
f 2|F0

))+ Entν
(
ν
[
f 2|F0

])
(4.2)

to write

Entν
(
f 2)= ν

(
Entν

(
f 2|NA

))+ Entν
(
ν
[
f 2|NA

])
= ν

(
Entν

(
f 2|NA,NS

))+ ν
(
Entν

(
ν
[
f 2|NA,NS

]|NA

))+ Entν
(
ν
[
f 2|NA

])
= ν

(
Entν

(
f 2|N�1 ,N�2,N�3

))+ ν
(
Entν

(
ν
[
f 2|N�1 ,N�2,N�3

]|NA,NS

))
+ ν

(
Entν

(
ν
[
f 2|NA,NS

]|NA

))+ Entν
(
ν
[
f 2|NA

])
, (4.3)

where, we recall, NV denotes the number of particles in the region V . Formula (4.3) will
represent our basic starting point. We will now examine separately each term in the r.h.s.
of (4.3).

As usual, in what follows, k will denote a generic constant depending on the
interaction, on the dimensions of the lattice and on δ0, whose value may vary from line
to line.

4.1. Analysis of the first term in the r.h.s. of (4.3)

For any small ε and large enough L, we can use Proposition 3.5 to bound from above
the first term in the r.h.s. of (4.3) by

ν
(
Entν

(
f 2|N�1 ,N�2,N�3

))
� ν

(
EntνA

(
f 2)+ EntνB

(
f 2))+ (2+ ε)Varν(f )

� ν
(
EntνA

(
f 2)+ EntνB

(
f 2))+ kL2Eν(f, f ), (4.4)

where the average is over the number of particles in A(B) and over the boundary condi-
tions outside A, (B). Above we have used the trivial bound ν(Varν(f |NA,N�2 ,N�3))�
Varν(f ) together with (3.6) and the spectral gap estimate (see [14] and [10])

Varν(f )� kL2Eν(f, f ).

Let us now examine the geometry of the bottom rectangle A, the reasoning being similar
for the top one. There are two cases to analyze:

(a) l1 � 3
2L. In this case one easily verifies that A ∈R 3

2L
.
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(b) l1 >
3
2L. In this case A ∈R2L but now the longest side is l1 and the shortest one

is smaller than l2/2+ (i+ 1)d which in turn is smaller than 1.2L by construction.
Therefore maxτ,N cτA,N � max{cs( 3

2L), ĉs(2L)} where

ĉs (2L)= max
R∈R2L
l1�1.2L,
l2� 3

2L

max
τ,N

cτR,N .

In other words

ν
(
EntνA

(
f 2))� max

{
cs

(
3

2
L

)
, ĉs(2L)

}
Eν(f, f )

and similarily for B .
In conclusion, we obtain that the r.h.s. of (4.4) is smaller than

max
{
cs

(
3

2
L

)
, ĉs(2L)

}[
Eν(f, f )+ 1

2

∑
[x,y]∈ES

ν
[
cxy(∇xyf )

2]]+ kL2Eν(f, f ) (4.5)

uniformly in i ∈ [1, 1
10δ ]. Notice that the “spurious” term 1

2

∑
[x,y]∈ES ν[cxy(∇xyf )

2]
comes from the fact that A∩B = S.

4.2. Analysis of the remaining terms in the r.h.s. of (4.3)

Here we bound from above the other three terms in (4.3). The necessary steps are
almost identical for all of them and therefore, for shortness, we treat only the second one
(the last one enjoys some minor simplifications not shared by the other two). Later on
we will state without further comments the analogous result for the first and third one.

For a given value NA of the number of particles in A, let ρA := NA

|A| and assume, with-

out loss of generality, that ρA � 1
2 . Let ν̂(·) := ν(·|NA) be the associated multicanoni-

cal measure and let µ̂ be the corresponding (multi)-grand canonical measure. Let also
N∗

S = µ̂(NS), and let γ (n) := ν̂(NS = n). Notice that N∗
S � kρAL

d (see Proposition 3.1
of [9]). Then, using Corollary 3.7, we can write

Entν
(
ν
[
f 2|NA,NS

]|NA

)= Entν̂
(
ν̂
[
f 2|NS

])= Entγ
(
ν̂
[
f 2|NS

])
� kρAL

d
∑
n

γ (n)∧ γ (n− 1)
(√

ν̂
(
f 2|NS = n

)−√
ν̂
(
f 2|NS = n− 1

))2

� kρAL
d
∑
n

γf (n)
(
A(n)2 +B(n)2), (4.6)

where A(n) and B(n) have been defined in (3.9).
Thanks to Proposition 3.8 and 3.10, for any ε > 0 there exists a constant Cε

independent of ρA such that the r.h.s. of (4.6) is smaller than

Cεν̂
(
f 2)+CεL

2Eν̂ (f, f )+ εEntν̂
(
f 2). (4.7)

Thus, if we average w.r.t. the canonical measure ν the l.h.s. of (4.6) and use the simple
inequality ν(Entν(f 2|F0))� Entν(f 2) for any F0, we get
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ν
(
Entν

(
ν
[
f 2|NA,NS

]|NA

))= ν
(
Entν̂

(
ν
[
f 2|NA,NS

]))
�Cεν

(
f 2)+CεL

2Eν(f, f )+ εEntν
(
f 2). (4.8)

Similar bounds hold also for the first and third term in the r.h.s. of (4.3).

4.3. The recursion completed

We are finally in a position to complete the proof of Theorem 4.1. If we put together
(4.8) and (4.5) we get that, for any ε small enough

r.h.s. of (4.3) � max
{
cs

(
3

2
L

)
, ĉs(2L)

}[
Eν(f, f )+ 1

2

∑
[x,y]∈Es

ν
[
cxy(∇xyf )

2]]

+Cεν
(
f 2)+CεL

2Eν(f, f )+ εEntν
(
f 2), (4.9)

that is

Entν
(
f 2)�

(
1

1− ε

)
max

{
cs

(
3

2
L

)−1

, ĉs(2L)
−1
}

×
[
Eν(f, f )+ 1

2

∑
[x,y]∈ES

ν
[
cxy(∇xyf )

2]]

+Cεν
(
f 2)+CεL

2Eν(f, f ) (4.10)

for a suitable constant Cε.
Finally, following [16], we average the above inequality w.r.t. to the integer i

(see (4.1)) and use the observation that, as i varies in [1, 1
10δ0
], the strips S ≡ Si are

disjoint. In particular

1

2

∑
j∈[1, 1

10δ0
]

∑
[x,y]∈ESi

ν
[
cxy(∇xyf )

2] � Eν(f, f )

so that

Entν
(
f 2)�

(
1

1− 2ε

)
(1+ "10δ0#)max

{
cs

(
3

2
L

)
, ĉs(2L)

}
Eν(f, f )

+Cεν
(
f 2)+CεL

2Eν(f, f ). (4.11)

Notice that if we write f = [f − ν(f )] + ν(f ) and we use the Poincaré bound
Varν(f )� kL2Eν(f, f ) we get

Entν
(
f 2)� Entν

([f − ν(f )]2)+ 2 Varν(f )

�
(

1

1− 2ε

)
(1+ "10δ0#)max

{
cs

(
3

2
L

)
, ĉs(2L)

}
Eν(f, f )

+ kCεL
2Eν(f, f ), (4.12)

where in the first line we have used once more the Rothaus inequality (see [2]).
In other words

cτ�,N �
(

1

1− 2ε

)
(1+ "10δ0#)max

{
cs

(
3

2
L

)
, ĉs(2L)

}
+ kCεL

2. (4.13)
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Notice that if the original rectangle � was such that l1 � 1.2L while l2 � 3
2L, i.e. � was

chosen in the sub-class of R2L entering in the definition of ĉs (2L), then we would have
obtained the inequality (4.13) with the factor max{cs( 3

2L), ĉs(2L)} replaced by cs(
3
2L)

−1

simply because case b) right after (4.4) would have been impossible. Thus

ĉs (2L)�
(

1

1− 2ε

)
(1+ "10δ0#)cs

(
3

2
L

)−1

+ kCεL
2. (4.14)

If we combine (4.13) with (4.14) we finally get

cτ�,N �
(

1

1− 2ε

)2

(1+ "10δ0#)2cs

(
3

2
L

)
+C ′εL

2 (4.15)

for another constant C ′ε. Thus

cs(2L)�
(

1

1− 2ε

)2

(1+ "10δ0#)2cs

(
3

2
L

)
+C ′εL

2

and two more iterations prove the recursive inequality of the theorem provided that the
two parameters ε, δ0 were chosen small enough.

Finally the fact that maxL(cs(L)L−2) > 0 is a trivial consequence of the recursive
bound. ✷

5. On the grand canonical Laplace transform

In this section we seek Gaussian bounds on quantities of the form µ(etf ) where µ is
the grand canonical Gibbs measure on some finite set and f is a mean zero function,
namely bounds of the type

µ
(
etf

)
� et

2Kf .

Once bounds like the one above are proved, then we can transfer them to the canonical
Laplace transform by means of Proposition 3.3.

We first explain in some general terms our approach based on a combination of the
so-called Herbst’s approach and the DLR equation and then we consider some concrete
cases that will play a key role in the recursive analysis of the logarithmic Sobolev
constant for the canonical measure.

Our setting is as follows. Let � ∈ Fl be a finite set and, for a given boundary
configuration τ and (possible vector) chemical potential λ, let µ := µ

τ,λ

� . Let {Vα}α∈I
be a collection of subsets of � such that dist(Vα,Vβ) � r + 1 for α �= β, r being the
range of the interaction, and let V =⋃

α Vα . Let also f :�� �→R be such that µ(f )= 0
and define Oscα(f ) := ‖f −µVα(f )‖∞ and Varα(f ) := ‖µτ

Vα
(f, f )‖∞.

PROPOSITION 5.1. – Fix t0 > 0. Then, for all t ∈ [0, t0]
(i)

µ
(
etf

)
� et

2Kf ,
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where Kf = e2‖)‖∑
x∈� ‖∇xf ‖2∞cµ and cµ is the logarithmic Sobolev constant of µ

w.r.t. to the Heat Bath rates.
(ii) Let fV (τ) := µτ

V (f ). Then

µ
(
etf

)
� et

2K ′
f ,

where

K ′
f (t0)= e2‖)‖ ∑

x∈�\V
‖∇xfV ‖2

∞cµ +
∑
α

Varα(f ) et0 Oscα(f ).

Remark. – Notice that if we make the trivial choice Vα = �, then (ii) becomes
µ(etf )� et

2K ′
f with K ′

f = µ(f,f ) et0 Osc(f ). Such a choice makes sense when Osc(f ) is
independent of |�|. However, in most of the subsequent application, Osc(f )= O(|�|)
and a more refined choice of the sets Vα will be necessary.

Proof. – In order to prove part (i) we appeal to the following lemma known as the
Herbst’s argument (see for instance Section 6 in [2]).

LEMMA 5.2. – Let (�,F,µ) be a finite probability space and f a function on �.
Assume that there exists K > 0 such that for all t ∈ [0, t0],

Entµ
(
etf

)
�Kt2µ

(
etf

)
.

Then, for all t ∈ [0, t0],
µ
(
etf

)
� etµ(f )+Kt2.

Proof. – Let H(t) = µ(etf ) be the Laplace transform of f . A simple computation
gives

tH ′(t)−H(t) lnH(t)= Ent
(
etf

)
�Kt2H(t).

Dividing by t2H(t) and writing K(t)= lnH(t)

t
, we get

K ′(t)�K.

Notice now that K(t)→ µ(f ) as t → 0. Consequently, a simple integration achieves
the proof. ✷

Back to the proof of the proposition, if we apply the definition of the logarithmic
Sobolev constant cµ we get

Entµ
(
etf

)
� cµ

∑
x∈�

µ
(
cx
(∇xe

t
2f
)2)�

(
e2‖)‖cµ

∑
x∈�
‖∇xf ‖2

∞
)
t2µ

(
etf

)
, (5.1)

where cx(σ )= µσ{x}(σ x) are the flip rates for the Heat Bath dynamics. Thus, thanks to
Lemma 5.2, part (i) follows at once.

In order to prove part (ii) we proceed as follows. Denote by µτ
V the Gibbs measure on

V with particle configuration τ in � \ V . By construction µτ
V is a product measure over
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the sets {Vα}α∈I that, for simplicity and omitting the superscript τ , we write as
∏

α µα .
Then we have

µ
(
etf

)=µ

((∏
α

µα

)(
etf

))
.

Let us examine a generic term µα(etf ). A simple Taylor expansion up to the second
order gives

µα

(
etf

)
� exp

(
tµα(f )+ t2 Varα(f ) et0 Oscα(f )

)
. (5.2)

In order to iterate (over the index α) the above bound, we simply observe that
Varβ(µα(f ))� Varβ(f ) and Oscβ(µα(f ))� Oscβ(f ). Thus

µ

((∏
α

µα

)(
etf

))
� et

2
∑

α
Varα(f ) et0 Oscα(f )

µ
(
erµ

τ
V
(f )

)
. (5.3)

It suffices now to apply part (i) to the new term µ(etµ
τ
V
(f )). ✷

Remark. – It is important to understand the difference between the two results given
in Proposition 5.1. Assume that condition UMST(C,m, l) holds so that the logarithmic
Sobolev constant cµ is bounded from above uniformly in � (see e.g. [16] and references
therein) and let f =∑

x∈� fx , where fx is a mean zero local function with small support
around x. For small values of the parameter t one expects, on the basis of a second order
Taylor expansion, a bound of the form

µ
(
etf

)
� et

2Kf

with Kf ≈ µ(f,f ) ≈ ∑
x µ(fx, fx) because of the mixing assumption. Part (i) of

the proposition proves the above Gaussian bound for all t , but with a new constant
Kf ≈ cµ

∑
x ‖∇xfx‖2∞. In “normal” situations that is quite satisfactory because Kf

becomes of the same order of the heuristic guess. The problem arises when, anomalous,
very large values (maybe depending on the size of �) of the chemical potential λ are
considered. In that case the Gibbs measure µ becomes very close to the product of highly
unfair Bernoulli measures and its logarithmic Sobolev constant cµ gets very large (see
e.g. [12]) so that the Herbst’s bound deteriorates. Part (ii) of the proposition partially
takes care of these extreme situation, at least for not too large values of t , as we now
explain (see also Proposition 5.3 below for more technical details). Assume that each set
Vα is a cube of side l0 multiple of the basic length scale l and suppose that f =∑

α fα
where

fα =
∑
x∈Vα

d(x,V c
α)� 1

2 l0

fx.

Then the constant K ′
f appearing in part (ii) of the proposition becomes

K ′
f = e2‖)‖cµ

∑
α

∑
x /∈Vα

‖∇xµVα (fα)‖2
∞ +

∑
α

Varα(fα)e
t0 Oscα(f ).
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The second term in the above expression is, apart from the constant et0 Oscα(f ), exactly
the contribution given by a naive Taylor expansion. The first term is instead similar
to the constant Kf discussed above but with the following important difference. The
logarithmic Sobolev constant cµ is now multiplied a term,

∑
x ‖∇xµVα (fα)‖2∞, which,

apart from trivial constants, is different from zero only if x /∈ Vα and in that case is
proportional to |V | e−ml0 because of the mixing assumptions. Moreover, for extreme
values of the chemical potential, the “mass” m can be taken proportional to the chemical
potential itself so that the “effective” logarithmic Sobolev constant e−ml0cµ becomes
very small and the Gaussian bound becomes more precise.

5.1. An application at low density

Here we discuss an application of our bound to a concrete case that will be important
in the next section.

The setting is the standard multicanonical setting described at the beginning of
Section 3.

Given now a local function g with support �g containing the origin and of diameter
smaller than 2r, r being the range of interaction, and an integer j � jmax, we define
G =∑

x∈�j
[gx − µ(gx)], where gx is the translate of g by x. Let also ρj := Nj

|�j | and
assume without loss of generality that ρj < 1/2.

PROPOSITION 5.3. – Assume USMT(C,m, l) and that there exists a constant k =
k(‖)‖∞,C,m, l) > 0 such that

µ(|gx |)� kρ2
j ‖g‖∞ ∀x ∈�j such that dist(x,�c

j )� 2r,

µ(|gx |)� kρj‖g‖∞ ∀x ∈�j such that dist(x,�c
j )� 2r.

Then, for any t0 > 0 there exist positive constants A=A(‖)‖∞,C,m, l, t0, r,‖g‖∞, δ0)

and B =B(‖)‖∞,C,m, l, r, δ0) such that

µ
(
etG

)
� et

2ALdρj [ρj+ lnL
L
] ∀t ∈ [0, t0],

ν
(
etG

)
�B et

2ALdρj [ρj+ lnL
L
] ∀t ∈ [0, t0].

Remark. – Although the proposition is stated for any value of the density ρj � 1
2 , the

most interesting application is when ρj is very small (possibly depending on L).

Proof. – In what follows k will always denote a generic numerical constant depending
only on ‖)‖,C,m, l, t0, r, d, δ0,‖g‖∞ and whose value may vary in different estimates.

Let {Cα}α∈I be a chessboard-like partition of �j into cubes of side l0 = 6l, l being the
basic length scale. A moment of thought suffices to convince oneself that we can partition
the index set I into 2d subsets {Ii}2di=1 in such a way that min{α �=α′∈Ii} dist(Cα,Cα′) � l0

and minα∈Ii dist(Cα,�
c
j )� l0. Accordingly we write G=∑2d

i=1 G
(i) +Gext, where

Gext = ∑
x∈�j

dist(x,�c
j
)�l0

[
gx −µ(gx)

]
and G(i) = ∑

α∈Iigα
with gα =

∑
x∈Cα

[
gx −µ(gx)

]
.
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Thus, using Hölder inequality, we arrive at

µ
(
etG

)
�µ

(
e(2d+1)tGext) 1

2d+1

2d∏
i=1

µ
(
e(2d+1)tG(i)) 1

2d+1 .

It is thus enough to bound from above a generic term µ(e(2d+1)tG(i)

) and the boundary
term µ(etG

ext
). Let us thus set f :=G(i) and, for any α ∈ Ii , let Vα be a cube of side 2l0

and having the same center of Cα . Thanks to our assumptions on the function g and the
strong mixing, the constants appearing in the second part of Proposition 5.1 satisfy the
bounds

Varα(f )� kld0ρ
2
j ,

Oscα(f )� kld0 , (5.4)

sup
x /∈Vα

‖∇xµα(f )‖2
∞ � kρ3l

j ,

where the latter inequality follows from any standard low activity expansion if ρj is
small and from the mixing assumption if ρj is “moderate”.

Let now µj := µτ
�j

and write µ(etf ) = µ(µj (etf )). It is not difficult to check that

the logarithmic Sobolev constant of the measure µj, cµj
, is not larger than k ln( 1

ρj
)

uniformly in the boundary condition τ , because of the mixing assumption and the fact
that − ln(p) is the order of magnitude of the logarithmic Sobolev constant of a Bernoulli
measure of parameter p as p→ 0 (see e.g. [12]). If we now apply the bound (ii) of
Proposition 5.1 to µj (etf ) we get

µ
(
µj

(
etf

))
�µ

(
etµj (f )

)
et

2kρ2
j
|�j | ∀t ∈ [0, t0].

It remains to bound the correction term µ(etµj (f )). It suffices to apply part (i) of
Proposition 5.1 together with the observation that cµ < k lnL because of the previous
remarks and that ∑

x∈�c
j

∥∥∇xµj (f )
∥∥2
∞ � kLd−1ρ6l

j

because of the mixing assumption and the hypothesis minα∈Ii dist(Cα,�
c
j ) � l0 (see

also (5.4)). In conclusion

µ
(
etµj (f )

)
� et

2kρ6l
j
Ld−1 lnL � et

2kρ2
j
|�j |,

so that

µ
(
e(2d+1)tG(i))� et

2kρ2
j
|�j |. (5.5)

Let us finally analyze the boundary term µ(etG
ext
). We could repeat word by word the

argument that was used to bound the term µ(etµj (f )) to get

µ
(
etG

ext)� et
2kLd−1 lnL
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which is certainly smaller than the r.h.s. of (5.5) for ρ2
j � ln(L)

L
. If instead ρ2

j � ln(L)
L

then
we proceed as follows. We decompose Gext into the sum of a finite (only depending
on r) number of terms Gext,i , each of the form Gext,i =∑

x∈Ei
[gx − µ(gx)] where Ei is

a subset of the “layer” {x ∈ �j such that dist(x,�c
j ) � l0} and it has the property that

minx,y∈Ei
dist(x, y) � 2r . The choice of the sets Ei is somewhat arbitrary but it causes

no problem (just write Z
d =⋃

x∈2rZd Q2r (x)).
Given x ∈ Ei , we let Vx =�g + x and we bound from above the quantity µ(etG

ext,i
)

using part (ii) of Proposition 5.1 with the sets {Vx}x∈Ei
playing the role of the sets

{Vα}α∈I . With the obvious notation and thanks to our hypotheses on the function g we
get

Varx(gx)� k‖g‖2
∞ρj ,

Oscx(gx)� 2‖g‖∞,
sup
y /∈Vx

∥∥∇yµVx (gx)
∥∥2
∞ � k‖g‖2

∞ρj .

Thus

µ
(
etG

ext,i )� et
2cµρjL

d−1 � et
2kρj L

d−1 lnL ∀t ∈ [0, t0]. (5.6)

In the last inequality we have used the bound cµ � k lnL. In conclusion, by putting
together (5.5) and (5.6) we get

µ
(
etG

)
� et

2ALdρj [ρj+ lnL
L
] ∀t ∈ [0, t0]

for a suitable positive constant A=A(‖)‖∞,C,m, l, t0, r, d,‖g‖∞, δ0).
In order to prove the analogous bound for the multicanonical measure ν, we observe

that the function G can be written as G = G1 +G2, where G1 and G2 have the same
expression of G but with the sum over x restricted to two halves of the set �j . Then

ν
(
etG

)
� ν

(
e2tG1

) 1
2 ν
(
e2tG2

) 1
2

and we can apply to each of the factors the bound (see Proposition 3.3)

ν
(
e2tGi

)
� Bµ

(
e2tGi

)
, i = 1,2.

The final result follows at once from the bound on the grand canonical expectation. ✷
5.2. An application to “normal” densities

Here we discuss another situation, similar to the one just analyzed, that will play an
important role in the forthcoming sections. Contrary to Proposition 5.3, the interest of
the results stated below is when the density ρj is not too small. That should explains why,
in most of the estimates given below, we allow certain numerical constant to depend in
some unspecified way on ρj , without worrying about the case when ρj → 0 as L→∞.

The setting is that already described in the previous paragraph but the function G

is different. In order to define it, let {Cα}α∈I be a collection of cubes in �j of sides
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l0 + r multiple of l, such that for any α �= β, d(Cα,Cβ) � l
1/2
0 and d(Cα, ∂�) � l

1/2
0 .

Let C int
α := {x ∈ Cα: d(x,Cc

α) � l
1/4
0 }, let C int = ⋃

α C
int
α and denote by nc = |I | be the

number of such cubes.
Given η ∈�� and s ∈ [0, ld0 ], write µη,s

α (·)= µ
η,λ(η,s)
Cα

(·) to denote the grand canonical
Gibbs measure on Cα with boundary condition η and constant chemical potential λ(η, s)
such that µη,λ(η,s)

Cα
(NCα

)= s. Whenever s is also an integer, say s = n ∈ [0,1, . . . , "ld0 #],
we will use the standard notation ν

η
Cα,n

for the corresponding canonical Gibbs measure.
Consider now a local function g with support �g containing the origin and of diameter

smaller than 2r such that g(0)= 0 where 0 is the configuration identically equal to zero.
Then we define gδ(σ )= gx(σ )− δσ (x) and

ξ δα(η, s)=
∑
x∈C int

α

µη,s
α

(
gδx
)
, ξ δα(η) := ξ δα

(
η,NCα

(η)
)
, ξ δ,0α (η) := ξ δα

(
0,NCα

(η)
)
,

gδα(η, n)=
∑
x∈C int

α

ν
η
Cα,n

(
gδx
); gδα(η) := gδα

(
η,NCα

(η)
)
, (5.7)

where δ is such that for one (and therefore all) cube Cα
d
ds ξ

δ,0
α (s)|s=n̄ = 0, n̄ = ρj l

d
0 . By

definition

δ = µ
0,λ(0,n̄)
Cα

(
∑

x∈C int
α
gx,NCα

)

µ
0,λ(0,n̄)
Cα

(NC int
α
,NCα

)

so that, if condition USMT(C,m, l) holds, δ � δ(C,m, l,‖g‖∞) uniformly in L.
Finally we define

Gν(η) :=
∑
α

[
gδα(η)−µ

(
gδα
)]
,

Gµ(η) :=
∑
α

[
ξ δα(η)−µ

(
ξ δα
)]
,

G0
µ(η) :=

∑
α

[
ξ δ,0α (η)−µ

(
ξ δ,0α

)]
,

Gext(η) := ∑
x∈�j\C int

[
gδx −µ

(
gδx
)].

(5.8)

PROPOSITION 5.4. – Assume USMT(C,m, l) and fix t0 > 0. Then there exists a
constant A=A(C,m, l, t0,‖g‖∞, ρj ) such that

(i) µ
(
et G

ext)� et
2LdAl

−1/2
0 ∀t,

(ii) µ
(
et (Gν−Gµ)

)
� et

2LdAl−d0 ∀t ∈ [0, t0],
(iii) µ

(
et (G

0
µ−Gµ)

)
� et

2LdAl−1
0 ∀t,

(iv) µ
(
et G

0
µ
)
� et

2LdAl−d0 ∀t ∈ [
0, t0 l

−d
0

]
.

The same bounds hold, but with an extra factor B = B(‖)‖∞,C,m, l, r, δ) in front of
the exponential, if µ is replaced by the multicanonical measure ν.
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Proof. – In what follows k will always denote a generic numerical constant depending
only on ‖)‖,C,m, l, t0, r, d,‖g‖∞ and whose value may vary in different estimates.

(i). Let µj := µτ
�j

and write µ(et G
ext
) = µ(µj (et G

ext
)). We simply apply part (i) of

Proposition 5.1 to the function µj(et G
ext
) together with the observation that, thanks to

the mixing condition, supτ cµτ
j
� k(C,m, l, ρj, δ). The reason why we refrain to apply

directly such an argument to µ(et G
ext
) is that it is possible that the global logarithmic

Sobolev constant cµ is very large, up to order k lnL, because in some atom �j , j �= i,
the density is either very small or very close to one. As we will see, conditioning on the
exterior of �j is a simple way to take care of such a nasty possibility. Since

∑
x∈�j

∥∥∇xG
ext∥∥2

∞ � kLdl
− 1

2
0

we get

µ
(
µj

(
et G

ext))� µ
(
etµj (G

ext)
)
et

2kLdl
− 1

2
0 . (5.9)

The term µ(etµj (G
ext)) can also be estimated by the Herbst argument if we recall

the observation that, under the mixing assumption, cµ � k lnL (see the proof of
Proposition 5.3). We get

cµ
∑
x∈�

∥∥∇xµ
τ
j

(
Gext)∥∥2

∞ � kLd−1 lnL

so that

µ
(
etµj (G

ext)
)
� et

2kLd−1 lnL. (5.10)

Clearly (5.9) and (5.10) complete the proof.
(ii). First we observe that, because of the equivalence of ensembles (see 3.2 point (1)),

supα ‖(gδα − ξ δα)‖∞ � k. Next, given α, let Vα be an ( 1
2 l

1/2
0 − 2r)-neighborhood of the

cube Cα . For l0 large enough the sets {Vα} satisfy the condition of Proposition 5.1.
Moreover

∥∥∇xµVα

(
gδα − ξ δα

)∥∥∞ �
{
k e−

1
2ml

1
2

0 if x ∈ ∂+r Vα,
0 otherwise,

for l0 large enough.
Thus, part (ii) of Proposition 5.1 together the usual conditioning µ(·)= µ

(
µj (·)) give

(see also the argument leading to formula (5.10))

µ
(
et (Gν−Gµ)

)
� et

2Ldk l−d0 µ
(
etµj (Gν−Gµ)

)
,

� et
2Ldk (l−d0 +L−1 lnL)

� et
2LdAl−d0 ∀t ∈ [0, t0] (5.11)

for L large enough.
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(iii). Notice that

∥∥∇x

(
ξ δα(η)− ξ δ,0

α (η)
)∥∥∞ �

{
k if x ∈ ∂+r Cα,
k l−1

0 if x ∈ Cα,

because of Lemma 3.1 point (i) of (1) and (2). Therefore we can apply the same
reasoning leading to (5.11) to get

µ
(
et (G

0
µ−Gµ)

)
� et

2LdA(l−1
0 +L−1 lnL) ∀t (5.12)

and the sought bound follows for L large enough.
(iv). We want to use part (ii) of Proposition 5.1.

As in the proof of point (ii), let Vα be an ( 1
2 l

1
2
0 −2r)-neighborhood of the cube Cα . For

l0 large enough the sets {Vα} satisfy the condition of Proposition 5.1 and because of the
mixing assumption

∥∥∇xµVα

(
ξ δ,0
α

)∥∥∞ �
{
k e−

1
2ml

1
2

0 if x ∈ ∂+r Vα ,
0 otherwise,

for l0 large enough.
Let us now compute Varα(ξ

δ,0
α ) and Oscα(ξ

δ,0
α ). For this purpose we first observe,

that, by the very definition of δ and the constance of the chemical potential inside �j ,
we have (see point (ii) of part (2) of Lemma 3.1)

ξ δα(0, n)− ξ δα(0, n̄)=
n∫

n̄

ds

s∫
n̄

dt
d2

dt2
ξ δα(0, t)� k

(n− n̄)2

n̄
. (5.13)

Therefore Oscα(ξ
δ,0
α )� kld0 and (nα :=NCα

(η))

Varα
(
ξ δ,0
α

)
� k

l2d0

∥∥µVα

(
(nα − n̄)4)∥∥∞

� k

l2d0

∥∥µVα

((
nα −µVα(nα)

)4)∥∥∞ + k

l2d0

‖µVα(nα)− n̄‖4
∞

� k (5.14)

again because of the mixing condition. The statement now follows at once from point (ii)
of Proposition 5.1 applied to f =G

0
µ.

Finally the statements for the multicanonical measure follow exactly as in the proof
of Proposition 5.3. ✷

6. On the covariance of f 2 with sums of local functions

In this section we discuss some important bounds on covariances of the form
ν(f 2,G), where ν is a multicanonical measure on � = ⋃jmax

j=1 �j as in the standard
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multicanonical setting of Section 3, f an arbitrary function with ν(f 2) = 1 and G =∑
x∈�j

gx for some 1 � j � jmax, where gx is the translate by x of a local function g

with small support around the origin.
Roughly speaking our main goal is to bound ν(f 2,G)2 in terms of the only quantities

that enter in the logarithmic Sobolev inequality, namely the entropy Entν(f 2) and the
Dirichelt form Eν(f, f ), but we want to keep track of the right dependence on the volume
or, more precisely, on the number of particles Nj in �j . Moreover, for reasons that will
become more clear later in the paper, we have another constraint in that Entν(f 2) must
appear multiplied by a very small constant times the volume.

In order to appreciate the difficulty of the problem, we notice that, since f enters
as f 2, one of the natural tool to bound covariances, namely Schwarz inequality, becomes
useless since no Lp-norm of f , p > 2, enters into the logarithmic Sobolev inequality.
This is precisely one of the main technical difference and new challenge between the
Poincaré inequality (where f appears linearly) and the logarithmic Sobolev inequality
for conservative stochastic dynamics.

A natural counterpart to Schwarz inequality in this context is the so called entropy
inequality that can be stated as follows.

LEMMA 6.1. – Let (�,F,µ) be a finite probability space. Then, for any t > 0 and
any real valued functions f,G on � with µ(f 2)= 1,

µ
(
f 2G

)
� 1

t
ln
(
µ
(
etG

))+ 1

t
Entµ

(
f 2). (6.1)

Proof. – It is an immediate consequence of the following Young’s inequality, valid for
all u > 0 and all v: uv � u lnu+ ev − u. ✷

In our case we can assume G of zero mean w.r.t. µ (because we are taking the
covariance of G with f 2) so that it is natural to expect (see Section 4) a Gaussian bound
of the form ν(etG) � et

2K |�j | for all t > 0 and some constant K that may depend on the
particle density. If that is the case, Lemma 6.1 gives

ν
(
f 2G

)
� tK|�j | + 1

t
Entν

(
f 2) ∀t > 0. (6.2)

If we finally optimize over the free parameter t , namely we take t2 = 1
K |�j | Entν(f 2),

and we assume, without loss of generality, that ν(f 2G)� 0, we get

ν
(
f 2G

)2 � 4K|�j |Entν
(
f 2). (6.3)

Let us pause for a moment to clarify (for the alert reader only) more explicitely how
we plan to use the results of Section 4. In that section in fact, Gaussian bounds on the
canonical Laplace transform of G were established under the hypothesis of vanishing
grand canonical (not of the canonical) average of G. Moreover the resulting estimates
are distorted Gaussian bounds because of the presence of an extra constant B in front of
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the exponential. Thus, in reality, (6.2) is slightly more complicated and looks like

ν
(
f 2,G

)
� µ(G)+ 1

t
lnB + tK|�j | + 1

t
Entµ

(
f 2) ∀t > 0.

The two extra terms, µ(G) and 1
t

lnB are just a little nuisance; the first one can in fact be
handled quite easily using the equivalence of ensembles while the second one becomes
harmless by choosing the “optimal” t always greater than |�j |− 1

2 .
Let us continue our informal discussion. Let t2∗ = 1

|�j | Entν(f 2) and let t0 be some
large number independent of the volume and particle density. If t∗ � t0, i.e. |�j | �
1
t20

Entν(f 2), then trivially

ν
(
f 2G

)2 � ‖G‖2
∞ � ‖g‖2

∞|�j |� ‖g‖2
∞

1

t2
0
|�j |Entν

(
f 2) (6.4)

which is like (6.3) but with a smaller constant in front of |�j |Entν(f 2) if t0 is large
enough. In other words, if t∗ � t0 a simple L∞ estimate gives a better result than the
entropy bound.

In order to understand this point we remark that, on the basis of the central limit
theorem and for “normal” values of the particle density in �j , one expects the
distribution dP (G) of the random variable

∑
x∈�j

gx to be close to a centered gaussian
with variance proportional to |�j |. If this is the case, then, for t large enough, the
distorted distribution dPt(G) ∝ etGdP(G) becomes concentrated on the largest value
of G and the gaussian bound ν(etG) � et

2K |�j | becomes unnatural and certainly worst
than the trivial one ν(etG) � et‖G‖∞ . On the contrary, for “moderate” values of t , the
distortion only moves the center of the gaussian and in this case the entropy inequality
will perform better.

Thus, in what follows, our strategy will always be, roughly speaking, the following.
Depending on the ratio between the entropy and the volume, we will either apply the
entropy bound with the optimal t and appeal several times to the results of Section 4 or
we will apply the trivial L∞ bound. It remains to explain how we get in both cases a small
constant in front of the entropy. For small values of the density or large values of the
entropy it will follow quite easily from the results of Section 4 (see Proposition 5.3). In
all the other cases we will have to appeal to a partial average argument, almost identical
to the one used in [14] and [10] under the name of “two-blocks estimates”, in order to
reduce the fluctuations of the function G.

We now explain more precisely our results.

6.1. Low density case

Here we discuss our first result in the low density regime.

PROPOSITION 6.2. – Assume USMT(C,m, l) and that there exists a constant k =
k(‖)‖∞,C,m, l) > 0 such that

µ(|gx |)� kρ2
j ‖g‖∞ ∀x ∈�j such that dist

(
x,�c

j

)
� 2r,
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µ(|gx |)� kρj‖g‖∞ ∀x ∈�j such that dist
(
x,�c

j

)
� 2r,

‖G‖∞ � kNj .

Then, for any ε > 0, there exists Cε and ρ0 such that for all ρj < ρ0, for all function f

with ν(f 2)= 1,

ν
(
f 2,G

)2 �Nj

(
Cε + εEntν

(
f 2))

for L large enough.

Proof. – We can assume µ(G)= 0. As usual, in what follows, k will always denote a
generic positive numerical constant depending only on ‖)‖,C,m, l, r, d, δ0,‖g‖∞ and
whose value may vary in different estimates.

Fix ε > 0 and f with ν(f 2)= 1. Let M > 0 be an arbitrary, large constant that will
be fixed further on and let t2∗ = 1

Nj
(1∨M Entν(f 2)). We distinguish between two cases.

In the first one, we suppose t∗ �M . According to the general discussion we can safely
apply an L∞ bound to get

ν
(
f 2,G

)2 � 2‖G‖2
∞ � kN2

j � k

M
Nj Entν

(
f 2), (6.5)

where we have used the hypotheses on ‖G‖∞ and the definition of t∗.
In the second case, we suppose t∗ �M and we first write

ν
(
f 2,G

)2 � 2ν
(
f 2G

)2 + 2ν(G)2. (6.6)

Using the equivalence of ensembles (see Proposition 3.3) and the fact that µ(G) = 0,
|ν(G)| � k for some constant k. Thus, we can focus our attention on the first term
ν(f 2G)2.

By applying Proposition 5.3 with t0 = M , we get that there exist constants A,B

depending on ‖)‖∞,C,m, l, t0, r,‖g‖∞, δ0 such that

ν
(
et∗G

)
� Bet

2∗ALdρj [ρj+ lnL
L
] = Bet

2∗ANj [ρj+ lnL
L
].

Thus, by applying Lemma 6.1 with t = t∗, we get

ν
(
f 2G

)2 �
(

1

t∗
lnB + t∗ANj

[
ρj + lnL

L

]
+ 1

t∗
Entν

(
f 2))2

� kNj

(
1+

(
MA2

[
ρj + lnL

L

]2

+ 1

M

)
Entν

(
f 2)). (6.7)

Now, from (6.6), (6.5) and (6.7), one can choose first M large enough and then ρj small
enough and L large enough in order to conclude the proof. ✷
6.2. Normal density

Here we treat instead the case of “normal” density ρj , namely we assume that ρj � ρ0

for some constant ρ0 independent of L.
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PROPOSITION 6.3. – Assume USMT(C,m, l). Then, for any ε > 0 and any 0 < ρ0 <
1
2 , there exists Cε such that for all ρ0 � ρj � 1

2 ,

ν
(
f 2,G

)2 � |�j |[Cε + εEntν
(
f 2)+L2Eν(f, f )

]
.

Proof. – Fix f with ν(f 2)= 1, together with ε > 0, ρ0 > 0 and M large enough (how
large will be specified later on).

As in Proposition 6.2 we define t2∗ = 1
|�j |(1 ∨ M Entν(f 2)) where the number of

particles Nj has been replaced by the volume |�j | because we are assuming that ρj � ρ0.
If t∗ �M , then we can proceed as in (6.5) to get

ν
(
f 2,G

)2 � k

M
|�j |Entν

(
f 2) (6.8)

and the proof is finished provided that M was taken large enough.
Let us now examine the much more complicate case of t∗ �M .
We define {Cα}α∈I to be a collection of cubes of side l0 + r multiple of l inside �j ,

such that

(i) dist(Cα,Cβ)� l
1
2
0 ∀α �= β,

(ii) dist(Cα, ∂�j)� l
1
2
0 ∀α,

(iii)
∣∣∣∣�j \

⋃
α

Cα

∣∣∣∣ � l
− 1

2
0 |�j |.

Clearly such a construction is always possible. Define also Cint
α = {x ∈ Cα: d(x,Cc

α) �
l
1/4
0 } and C int =⋃

α C
int
α .

Next we observe that, without loss of generality, we can replace G by G − δN�j
,

δ being an arbitrary constant independent of x, because N�j
= Nj almost surely. Our

choice of δ will be made later (see (6.16)) but we anticipate that it will be almost
independent of l0 and that under USMT(C,m, l), there exists a constant δ(C,m, l,‖g‖∞)
such that δ � δ(C,m, l,‖g‖∞) uniformly in L. Finally we set gδx(σ ) := gx(σ )− δσ (x)

and

Gext= ∑
x∈�j\C int

[
gδx −µ

(
gδx
)]
,

Gint= ∑
x∈C int

[
gδx −µ

(
gδx
)]
.

Then we write

ν
(
f 2,Gext)2 � 2ν

(
f 2Gext)2 + 2ν

(
Gext)2

� k|�j |
[
1+

(
l−1
0 K + 1

M

)
Entν

(
f 2)]+ kl−1

0

� |�j |(k + εEntν
(
f 2)),

where K is some constant independent of l0 but possibly dependent on M and the last
inequality holds if M and l0 are chosen appropriately.



S0246-0203(01)01096-2/FLA AID:1096 p. 41 (3674-3757)
PARISGML 2001/05/22 Prn:10/09/2001; 9:52 F:PXPB1096.tex; by:ELE

N. CANCRINI ET AL. / Ann. I. H. Poincaré – PR 0 (2001) 1–52 41

Above we have applied Lemma 6.1 with t = t∗ together with Proposition 5.4 point (i)
to bound the first term and the equivalence of ensembles (see Proposition 3.2 point 1)
together with (iii) above to bound the second one.

We now turn to the relevant term ν(f 2,Gint)2.
Let F0 be the σ -algebra generated by the random variables {σ (x)}x∈�\⋃

α
Cα
, {Nα}α∈I ,

where Nα(σ ) :=∑
x∈Cα

σ (x). Then, by the formula for the conditional covariance, we
get

ν
(
f 2,Gint

δ

)2 � 2ν
(
ν
(
f 2,Gint |F0

))2 + 2ν
(
f 2, ν

(
Gint |F0

))2
. (6.9)

For simplicity let ν0(·) := ν(· |F0), f 2
0 := f 2/ν0(f

2) and s2∗ := M
|�j | Entν0(f

2
0 ). Then the

entropy inequality (Lemma 6.1) gives

ν0
(
f 2

0 ,G
int)� 1

s∗
ln
(
ν0
(
es∗(G

int−ν0(G
int))

))+ 1

s∗
Entν0

(
f 2

0

)
.

Notice that ν0 is the product of standard canonical measures on each cube Cα with a
certain number of particles and boundary conditions. Thus a simple Taylor expansion
gives

ν0
(
es∗(G

int−ν0(G
int))

)
� eKs2∗|�j |,

where K now may depend on l0. Thus

ν0
(
f 2

0 ,G
int)�K|�j |s∗ + 1

s∗
Entν0 f

2
0

and similarily for Gint replaced by −Gint. The definition of s∗ yields

ν0
(
f 2

0 ,G
int)2 � 2K2

(
M + 1

M

)
|�j |Entν0

(
f 2

0

)
.

Finally, since ν0 is a product measure it certainly satisfies the logarithmic Sobolev
inequality Entν0(f

2
0 )�C(l0)Eν0(f0, f0), and we can conclude that

ν
(
ν
(
f 2,Gint |F0

))2 �K ′Eν(f, f )|�j |, (6.10)

where K ′ =K ′(‖)‖∞,‖g‖∞, r, l0,M).
The second term in the r.h.s. of (6.9) needs some more reductions. We recall first some

definitions introduced in Section 4.
Given η ∈ ��j

and n ∈ [0, . . . , ld0 ], write µη,n
α (·) := µ

η,λ(η,n)
Cα

(·) to denote the grand
canonical Gibbs measure on Cα with boundary condition η and constant chemical
potential λ(η,n) such that µη,λ(η,n)

Cα
(NCα

) = n. We will use the standard notation ν
η
Cα,n

for the corresponding canonical Gibbs measure.
With this notation we define (see (5.7)),

ξ δα(η, n)=
∑
x∈C int

α

µη,n
α

(
gx − δσ (x)

); ξ δα(η) := ξ δα
(
η,NCα

(η)
)
,
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gδα(η, n)=
∑
x∈C int

α

ν
η
Cα,n

(
gx − δσ (x)

); gδα(η) := gδα
(
η,NCα

(η)
)

and

Gν(η) := ν
(
Gint |F0

)=∑
α

[
gδα(η)−µ

(
gδα
)]
,

Gµ(η) :=
∑
α

[
ξ δα(η)−µ

(
ξ δα
)]
.

Then we write

ν
(
f 2, ν

(
Gint |F0

))2

= ν
(
f 2,Gν

)2 � 4ν
(
f 2(Gν −Gµ)

)2 + 4
(
ν(Gν −Gµ)

)2 + 2ν
(
f 2,Gµ

)2
. (6.11)

Let us examine the three terms separately.
Using Lemma 6.1 with t = t∗ combined with (ii) of Proposition 5.4, we can bound the

first term by

4ν
(
f 2(Gν −Gµ)

)2 � k|�j |
[
1+

(
MA2

l2d0

+ 1

M

)
Entν

(
f 2)], (6.12)

where A=A(C,m, l,M,‖g‖∞, ρ0) is the constant appearing in Proposition 5.4.
Because of the equivalence of ensembles (see point (1) of Proposition 3.2) and the

fact that µ(Gν −Gµ)= 0

4
(
ν(Gν −Gµ)

)2 � kl2d0 . (6.13)

In conclusion, by a suitable choice of M and l0 we get

4ν
(
f 2(Gν −Gµ)

)2 + 4
(
ν(Gν −Gµ)

)2 � |�j |(Cε + εEntν f
2) (6.14)

for a suitable constant Cε.
So, it remains to bound the third term in the r.h.s. of (6.11) ν(f 2,Gµ)

2. Here we are
(unfortunately) forced to distinguish between two subcases.

(a) t∗ �M/ld0 .
We can appeal to Lemma 6.1 with t = t∗ combined with (iii), (iv) of Proposition 5.4

to get

ν
(
f 2,Gµ

)2 � 2ν
(
f 2 Gµ

)2 + 2
∣∣ν(Gµ)−µ(Gµ)

∣∣2
� k|�j |

[
1+

(
MA2

l0
+ 1

M

)
Entν

(
f 2)]+ kl2d0

� |�j |(Cε + εEntν f
2) (6.15)

for a suitable choice of M , l0 and for all L large enough.
(b) M/ld0 � t∗ �M .
In this case we can assume, without loss of generality, that |�j | is so large that

t2∗ = 1
|�j |M Entν(f 2).
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We first need to simplify a bit the random variable Gµ by reducing it to a sum of
variables each of which depends only on the number of particles in Cint

α and not also on
the boundary condition outside Cα .

Let ξ
δ,0
α (n) := ξ δα(0, n) and let G

0
µ(η)=∑

α[ξ δ,0
α (NCα

(η))−µ(ξ
δ,0
α )]. Notice that, by

translation invariance inside �j , ξ
δ,0
α (n) is independent of α.

Using once more Proposition 3.2 we have |ν(Gµ −G
0
µ)|� kld0 . Therefore

ν
(
f 2,Gµ

)2 � k
[
ν
(
f 2(Gµ −G0

µ

))2 + kl2d0 + ν
(
f 2,G0

µ

)2]
.

Now, using Lemma 6.1 with t = t∗ together with Proposition 5.4 point (iii), we get

ν
(
f 2(Gµ −G0

µ

))2 � kNj

(
1+ MA2

l20
+ 1

M
Entν f

2
)
.

In conclusion

ν
(
f 2,Gµ

)2 � |�j |(Cε + εEntν f
2)+ kν

(
f 2,G0

µ

)2

for suitably chosen M and l0.
We are left with the estimate of the term ν(f 2,G

0
µ)2. It is at this point that the

substraction with the free parameter δ made at the beginning becomes important.
Let δ be such that for one (and therefore all) cube Cα , d

ds ξ
δ,0
α (s)|s=n̄ = 0 where

n̄ = ρj |Cα|. By definition, δ is independent of α and it is given by the following
expression

δ = µ
0,λ(0,n̄)
Cα

(
∑

x∈C int
α
gx,NCα

)

µ
0,λ(0,n̄)
Cα

(NC int
α
,NCα

)
(6.16)

so that, thanks to the mixing hypothesis, |δ|� k uniformly in L.
Notice that with this choice,

∣∣ξ δ,0
α (n)− ξ δ,0

α (n̄)
∣∣=

∣∣∣∣∣
n∫

n̄

ds

s∫
n̄

dt
d2

dt2
ξ δα(0, t)

∣∣∣∣∣ � k
(n− n̄)2

n̄
(6.17)

because of Lemma 3.1 (point (ii) of (2)). In turn (6.17) implies, in particular, that

ν
(∣∣ξ δ,0

α − ξ δ,0
α (n̄)

∣∣)� kµ
(∣∣ξ δ,0

α − ξ δ,0
α (n̄)

∣∣)� k (6.18)

again because of the mixing condition.

LEMMA 6.4. – Assume USMT(C,m, l). Then, for any ε > 0, there exists a constant
Cε such that for all function f ,

ν
(
f 2,G0

µ

)2 � |�j |[Cε +Cε L
2Eν(f, f )+ εEntν

(
f 2)].



S0246-0203(01)01096-2/FLA AID:1096 p. 44 (3955-4035)
PARISGML 2001/05/22 Prn:10/09/2001; 9:52 F:PXPB1096.tex; by:ELE

44 N. CANCRINI ET AL. / Ann. I. H. Poincaré – PR 0 (2001) 1–52

Proof. – First write (nα ≡NCα
(η))

ν
(
f 2,G0

µ

)2 � 2ν
(
f 2

∑
α∈I

[
ξ δ,0
α (nα)− ξ δ,0

α (n̄)
])2

+ 2ν
(∑

α∈I

[
ξ δ,0
α (nα)− ξ δ,0

α (n̄)
])2

� 2ν
(
f 2

∑
α∈I

[
ξ δ,0
α (nα)− ξ δ,0

α (n̄)
])2

+ k|I |2

� 2ν
(
f 2

∑
α∈I

[
ξ δ,0
α (nα)− ξ δ,0

α (n̄)
])2

+ k
|�j |
M

Entν
(
f 2),

where we have used once more the equivalence of ensembles, Proposition 3.2 point (1),
together with (6.17) and the fact that t∗ � M

ld0
.

We can thus focus our attention on the relevant term ν(f 2 ∑
α∈I [ξ δ,0

α (nα)− ξ
δ,0
α (n̄)])2.

Thanks to (6.17) we can write

ν

(
f 2

∑
α∈I

[
ξ δ,0
α (nα)− ξ δ,0

α (n̄)
])2

� kν

(
f 2

∑
α∈I

(nα − n̄)2

n̄

)2

. (6.19)

We now analyze the r.h.s. of (6.19). Let 〈·〉 denote the average (normalized sum) over
the cubes {Cβ}β∈I . Thanks to the conservation law we expect 〈nβ〉 to be quite close to n̄.
In fact, it is easy to check that 〈nβ〉 − n̄= 1

|I |
∑

x∈�j\C[ρj − η(x)]. Notice that

∑
y

∥∥∥∥∇y

[ ∑
x∈�j\C

(
ρj − η(x)

)]2∥∥∥∥
2

∞
� k|�j \C|3.

Moreover, using the mixing condition together with the Poincaré inequality for µ, we
also have ∣∣∣∣µ

( ∑
x∈�j \C

[
ρj − η(x)

])∣∣∣∣� k
lnL

L
|�j |,

Varµ

( ∑
x∈�j\C

[
ρj − η(x)

])
� k|�j \C|3.

Thus

ν

(
f 2

∑
α

(〈nβ〉 − n̄)2

n̄

)2

� k
1

|�j |2 ν
(
f 2

[ ∑
x∈�j\C

(
ρj − η(x)

)]2)2

� k

(
lnL

L

)4

|�j |2 + k
1

|�j |2 |�j \C|3 Entν
(
f 2)

� ε|�j |Entν
(
f 2) (6.20)

provided that l0 and L are large enough.
Above we have used Lemma 6.1 together with part (i) of Proposition 5.1 applied to

the function F̂ = F −µ(F), F = [∑x∈�j\C(ρj − η(x))]2, the bound ν(et F̂ )�Aµ(et F̂ )
and the hypothesis t∗ �M/ld0 .
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Therefore we can safely add and subtract 〈nβ〉 inside the r.h.s. of (6.19) and confine

ourselves to the estimate of ν(f 2 ∑
α∈I

(nα−〈nβ 〉)2
n̄

)2. We get

ν

(
f 2

∑
α∈I

(nα − 〈nβ〉)2

n̄

)2

� 2

|I |2
[∑

α,β

ν

(
f 2,

(nα − nβ)
2

n̄

)]2

+ 2

|I |2
[∑

α,β

ν

(
(nα − nβ)

2

n̄

)]2

. (6.21)

Since, by the strong mixing assumption and Proposition 3.3,

ν

(
(nα − nβ)

2

n̄

)
� kµ

(
(nα − nβ)

2

n̄

)
� k,

the second term in the r.h.s. of (6.21) is bounded by k|I |2 � k
|�j |
M

Entν(f 2) because of
the hypothesis t∗ �M/ld0 .

It now remains to bound the first term of (6.21). At this stage we cannot appeal to the
same old argument based on the entropy inequality and we must proceed differently.

Following [?] we introduce Fα,β , the σ -algebra generated by the random variables
{σ (x)}x∈�\(Cα∪Cβ), and we write

∣∣∣∣ν
(
f 2,

(nα − nβ)
2

n̄

)∣∣∣∣
�
∣∣∣∣ν
(
ν

(
f 2,

(nα − nβ)
2

n̄

∣∣∣Fα,β

))∣∣∣∣+
∣∣∣∣ν
(
f 2, ν

(
(nα − nβ)

2

n̄

∣∣∣Fα,β

))∣∣∣∣
�
∣∣∣∣ν
(
ν

(
f 2,

(nα − nβ)
2

n̄

∣∣∣Fα,β

))∣∣∣∣+ k,

where we have used once more the equivalence of ensembles (Proposition 3.3), the
mixing assumption and the fact that nα (nβ ) being the number of particles in Cα (Cβ ) is
weakly sensitive to the boundary conditions outside Cα (Cβ), to bound the second term.

Define now

Eα,β(f, f )=
∑

x,y∈Cα∪Cβ

ν
((∇xyf

)2 |Fα,β

)
.

Obviously there exists a “spectral gap” constant C(l0) such that

ν(f, f |Fα,β)� C(l0)Eα,β(f, f ) ∀f.

Thus∣∣∣∣ν
(
f 2,

(nα − nβ)
2

n̄

∣∣∣Fα,β

)∣∣∣∣� 2
∥∥∥∥ (nα − nβ)

2

n̄

∥∥∥∥∞
(
ν
(
f,f |Fα,β

)) 1
2
(
ν
(
f 2 |Fα,β

)) 1
2

� ld0C(l0)
1
2
(
Eα,β(f, f )

) 1
2
(
ν
(
f 2 |Fα,β

)) 1
2 .
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Schwarz inequality yields

ν

(∣∣∣∣ν
(
f 2,

(nα − nβ)

n̄
|Fα,β

)∣∣∣∣
)

� C ′(l0)ν
(
Eα,β(f, f )

) 1
2 . (6.22)

Finally, from (6.22), we get that the first term in the r.h.s. of (6.21) is bounded from
above by (define να,β(·) := ν(· |Fα,β))

2

|I |2
[∑

α,β

ν

(
f 2,

(nα − nβ)
2

n̄

)]2

� C ′′(l0)
∑
α,β

ν
(
Eα,β(f, f )

)+ k

( |�j |
ld0

)2

� C ′′(l0)
∑
α,β

ν

( ∑
x,y∈Cα

να,β
([∇x,yf ]2)+ ∑

x,y∈Cβ

να,β
([∇x,yf ]2)

+ ∑
x∈Cα
y∈Cβ

να,β
([∇x,yf ]2)

)
+ k

M
|�j |Entν

(
f 2)

� C ′′′(l0)|�j |(l20 +L2)E(f, f )+ k

M
|�j |Entν

(
f 2)

since t∗ �M/ld0 .
Above we have used once more the “path” bound

∑
x,y∈�j

ν(∇xyf )
2 � kLd+2Eν(f, f )

given in (3.15). By choosing M large enough we get the sought result also in this
case. ✷
6.3. Applications

Here we discuss an application of our results which is directly relevant for the proof
of the diffusive scaling of the logarithmic Sobolev constant for the Kawasaki dynamics.

Fix i, j ∈ {1, . . . , jmax} with i �= j and let ρ = Nj+Nj

|�j |+|�j | . Clearly δ0
2 (ρi + ρj ) � ρ �

ρi + ρj where ρi and ρj are the densities in �i and �j . Without loss of generality we
assume that ρi � ρ which implies ρj � ρi . Let also

gx(σ )= [
e−∇xH

τ (σ ) − 1
]
σ (x), G := ∑

x∈�i

gx,

hx(σ )= [
e−∇xH

τ (σ ) − 1
](

1− σ (x)
)
, H := ∑

z∈�j

hz.

Notice that gx satisfies the hypotheses of Proposition 5.3 simply because gx = 0 if there
are less than two particles (spins equal to 1) inside its support. Similarly hz = 0 if there
is less than one particle inside its support. In particular ‖H‖∞ � kNj .

PROPOSITION 6.5. – Assume condition USMT(C,m, l). Then for any ε > 0 there
exist Cε and ρ0 such that for any f with ν(f 2)= 1
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(i) if ρ � ρ0

ν

(
f 2,

∑
x∈�i
z∈�j

gxhz

)2

� ρ|�|3[Cε + εEntν
(
f 2)];

(ii) if ρ > ρ0

ν

(
f 2,

∑
x∈�i
z∈�j

gxhz

)2

� |�|3[Cε +CεL
2Eν(f, f )+ εEntν

(
f 2)]

provided that |�| is large enough.

Proof. – (i). Fix ε > 0 and observe first that, thanks to Proposition 6.2, we can safely
replace H and G by H−µ(H) and G−µ(G), respectively. The extra terms we get are
in fact bounded by

|µ(H)|2(ν(f 2,G)
)2 � |�j |2Ni

(
Cε + εEntν

(
f 2))� ρ|�|3(Cε + εEntν

(
f 2)),

|µ(G)|2(ν(f 2,H
))2 �

(
ρ2
i |�i | + ρi|∂+�i |

ρj

)2

Nj

(
Cε + εEntν

(
f 2))

� ρ|�|3(Cε + εEntν
(
f 2))

provided that ρ is small enough. Above we have applied Proposition 6.2 to G and ρjH
respectively. Note that in the case ρi � ρ which implies ρj � ρi every thing is the same
except that we apply Proposition 6.2 to ρH. From now on we will write G for G−µ(G)

and similarily for H.
Next we write H =Hin +Hext where Hin is the sum over those z’s in �j such that

�hz ⊂�j and Hext the rest. Similarily for G. Thus we have to bound four terms

ν
(
f 2,GintHint)2

, ν
(
f 2,GintHext)2

, ν
(
f 2,GextHext)2

, ν
(
f 2,GextHint)2

.

All the mix terms can be treated similarily and therefore we will only analyze one of
them e.g. ν(f 2,GintHext)2.

If we combine part (i) of Proposition 5.1 together with Lemma 6.1 we get

ν
(
f 2,GintHext)2 � k inf

t�0

(
k

t
+ tkcµ|�|2|∂+�j | + 1

t
Entν

(
f 2))2

� k|�|2|∂+�j |cµ Entν
(
f 2)

� kρ|�|3 Entν
(
f 2) (6.23)

for |�| large enough, where cµ denotes the logarithmic Sobolev constant of µ w.r.t. to
the Heat Bath rates and we have used the fact (see the proof of Proposition 5.3) that
cµ � k lnL uniformly in the (vector) chemical potential λ.

We are left with the estimate of the “diagonal” term ν(f 2,GintHint)2. Let Fi = F�c
i
.

Then
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ν
(
f 2,GintHint)2 � kN2

j ν
(
ν
(
f 2,G |Fi

)2)+ 2ν
(
f 2,Hintν

(
Gint |Fi

))2

� kN2
j Ni

(
Cε + εEntν

(
f 2))+ 2ν

(
f 2,Hintν

(
Gint |Fi

))2
(6.24)

provided that ρ is small enough. In order to estimate the last term in the r.h.s. of (6.24),
we observe that, thanks to the strong mixing assumption, the fact that µ(G) = 0, and
points (1) and (2) of Proposition 3.2 one has

∥∥∇xHintν
(
Gint |Fi

)∥∥∞ �
{
kρi|∂+�i | if dist(x,�i)� r ,
kNj if dist(x, ∂+�i)� r.

In particular ∑
x∈�j

∥∥∇xHintν
(
Gint |Fi

)∥∥2
∞ � kρ|�||∂+�i|2.

Thus, we can proceed as in (6.23) and get that also ν(f 2,Hintν(Gint | Fi))
2 is smaller

than kρ|�|3(Cε + εEntν(f 2)).
To prove point (ii) the argument is unchanged with the only difference that now we

must use Proposition 6.3 instead of Proposition 6.2. ✷
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Appendix A. Logarithmic Sobolev inequality for one dimensional discrete random
walks

Let � = {nmin, nmin + 1, . . . , nmax} be a finite subset of the integers and let γ be a
positive probability measure on �. We present a result, based on Hardy type inequalities,
to bound in a precise way the logarithmic Sobolev constant of γ with respect to the
Dirichlet form of discrete random walks reversible w.r.t. γ . After that we discuss
a concrete example related to the distribution of the number of particles under a
multicanonical measure (see Section 7).

PROPOSITION A.1. – For all functions f on � we have

Entγ
(
f 2)� 20B

nmax∑
n=nmin+1

(
γ (n)∧ γ (n− 1)

)[
f (n)− f (n− 1)

]2
,

where B := infi[B+(i)∨B−(i)], with

B+(i) := sup
n�i+1

(
nmax∑
k=n

γ (k)

)
ln
(

1∑nmax
k=n γ (k)

)( n∑
k=i+1

1

γ (k)∧ γ (k− 1)

)
,

B−(i) := sup
n�i−1

(
n∑

k=nmin

γ (k)

)
ln
(

1∑n
k=nmin

γ (k)

)( i−1∑
k=n

1

γ (k)∧ γ (k+ 1)

)
.
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Proof. – The proof is a straight forward application of Hardy type inequalities (see [17,
Section 3]). Indeed, it’s enough to consider the birth and death continuous time Markov
chain (Metropolis chain) with transition rates

c(n, j)=
{

γ (j)

γ (n)
∧ 1

2 if j = n± 1,

0 otherwise.
✷ (A.1)

We now define a convexity assumption for the probability measure under considera-
tion that will allow us to bound rather sharply the constant B described above.

DEFINITION OF CONDITION CONV(c, n̄). – We say that γ satisfies the convexity
hypothesis with parameters c > 0 and n̄ ∈ �, in what follows denoted by CONV(c, n̄),
if c−1 n̄� nmax − n̄� cn̄ and similarily for n̄− nmin,

γ (n+ 1)

γ (n)
� ce−

(n−n̄)
cn̄ for all n� n̄,

γ (n− 1)

γ (n)
� ce−

(n̄−n)
cn̄ for all n� n̄,

1

c
√
n̄

e−
c(n̄−n)2

n̄ � γ (n)� c√
n̄

e−
(n̄−n)2

cn̄ for all n ∈�. (A.2)

Remark. – Since γ is assumed to be a positive probability measure, we can always
write it in the Gibbsian form γ (n) = Z−1 exp(−H(n)). Then, if H is strictly convex
with “second derivative” bounded from below and from above by c−1 and c respectively,
and the minimum in n̄, i.e.

1

c n̄
�H(n+ 2)− 2H(n+ 1)+H(n)� c

n̄
∀n ∈�,

H(n̄+ 1)=H(n̄),

(A.3)

then, if (c, n̄, nmax, nmin) are in the right proportion described in CONV(c, n̄), γ satisfies
condition CONV(c, n̄).

Our aim now is to prove that under CONV(c, n̄) the measure γ satisfies a logarithmic
Sobolev inequality with optimal constant proportional (depending on c) to n̄ (see
Proposition A.5 below). For this purpose, let us first discuss some simple lemma that deal
with the different terms appearing in the constants B+(i) and B−(i) of Proposition A.1.
Since obviously B � B+(n̄)∨B−(n̄)) we can restrict us to the case i = n̄.

LEMMA A.2. – Let γ satisfies CONV(c, n̄). Then
nmax∑
k=n

γ (k)�C
n̄

n− n̄
γ (n) for all n� n̄+ 1,

n∑
k=nmin

γ (k)�C
n̄

n̄− n
γ (n) for all n� n̄− 1,

for a suitable numerical constant C depending only on c and not on n̄.



S0246-0203(01)01096-2/FLA AID:1096 p. 50 (4494-4604)
PARISGML 2001/05/22 Prn:10/09/2001; 9:52 F:PXPB1096.tex; by:ELE

50 N. CANCRINI ET AL. / Ann. I. H. Poincaré – PR 0 (2001) 1–52

Proof. – Fix n� n̄+ 1. By using the definition of CONV(c, n̄) together with a simple
telescopic argument we get

nmax∑
k=n

γ (k)

γ (n)
=

nmax∑
k=n

k−1∏
j=n

γ (j + 1)

γ (j)
� c

nmax∑
k=n

k−1∏
j=n

exp
(
−(j − n̄)

cn̄

)

� c
∑
k�n

exp
(
−(k − n)(n− n̄)

2cn̄

)
= c

1

1− exp(− (n−n̄)
2cn̄ )

.

But, (n− n̄)/n̄� (nmax − n̄)/n̄� c and therefore

(
1− exp

(
−(n− n̄)

2cn̄

))−1

� C
n̄

n− n̄

for some constant C depending only on c. A similar computation gives the corresponding
result for n� n̄− 1. This achieves the proof. ✷

LEMMA A.3. – Let γ satisfies CONV(c, n̄). Then
n∑

k=n̄+1

1

γ (k)
�C

n̄

n− n̄

1

γ (n)
for all n� n̄+ 1,

n̄−1∑
k=n

1

γ (k)
�C

n̄

n̄− n

1

γ (n)
for all n� n̄− 1,

for a suitable numerical constant C depending only on c.

Proof. – The proof is practically the same as that of Lemma A.2 and it is omitted. ✷
LEMMA A.4. – Let γ satisfies CONV(c, n̄). Then

ln
(

1∑nmax
k=n γ (k)

)
�C

(
1+ (n̄− n)2

n̄

)
for all n� n̄+√n̄,

ln
(

1∑n
k=nmin

γ (k)

)
�C

(
1+ (n̄− n)2

n̄

)
for all n� n̄−√n̄,

where C is a suitable numerical constant depending only on c.

Proof. – If n̄ is smaller than some large constant depending on c there is nothing to be
proved. Therefore we can assume that n̄ is large enough and we consider two cases.

In the first one, we suppose n̄ + √n̄ � n � nmax −
√
n̄. By using the definition of

CONV(c, n̄) we get

nmax∑
k=n

γ (k)� 1

c

nmax∑
k=n

1√
n̄

exp
(
− c

n̄
(n̄− k)2

)
� 1

c

n+√n̄∑
k=n

1√
n̄

exp
(
− c

n̄
(n̄− k)2

)

� 1

c

√
n̄

1√
n̄

exp
(
− c

n̄

(
n+√n̄− n̄

)2
)

� 1

c
exp

(
−4c

n̄
(n− n̄)2

)
, (A.4)

where, in the last inequality, we have used the fact that (n+√n̄− n̄)2 � 4(n− n̄)2 for
all n� n̄+√n̄.



S0246-0203(01)01096-2/FLA AID:1096 p. 51 (4604-4714)
PARISGML 2001/05/22 Prn:10/09/2001; 9:52 F:PXPB1096.tex; by:ELE

N. CANCRINI ET AL. / Ann. I. H. Poincaré – PR 0 (2001) 1–52 51

In the second case, we suppose n� nmax −
√
n̄. An easy computation gives

nmax∑
k=n

γ (k)� 1

c

nmax∑
k=n

1√
n̄

exp
(
− c

n̄
(n̄− k)2

)
� 1

c

1√
n̄

exp
(
− c

n̄
(n̄− n)2

)

�C−1 exp
(
−C

n̄
(n̄− n)2

)
(A.5)

for some constant C depending only on c. Finally the first statement of the lemma
follows at once from (A.4) and (A.5) by taking the logarithm. Similarly one proceeds
for the proof of the second part of the lemma. ✷

We can now state the main result of the appendix.

PROPOSITION A.5. – Let γ satisfies CONV(c, n̄). Then there exists a constant C
depending only on c such that for all real functions f on �

Entγ (f )�Cn̄

nmax∑
n=nmin+1

(
γ (n)∧ γ (n− 1)

)[
f (n)− f (n− 1)

]2
. (A.6)

Proof. – Thanks to Proposition A.1 it is enough to bound from above the constant B
or, what is enough B+(n̄)∨B−(n̄). First notice that by symmetry we can only consider
one of them e.g.

B+(n̄)= sup
n�n̄+1

(
nmax∑
k=n

γ (k)

)
ln
(

1∑nmax
k=n γ (k)

)( n∑
k=n̄+1

1

γ (k)∧ γ (k+ 1)

)
.

Let us consider two cases.
In the first one, we suppose n̄+ 1 � n � n̄+√n̄. Then, because

∑nmax
k=n γ (k)� 1 and

x ln(1/x) � 1 for all x ∈ [0,1],
(

nmax∑
k=n

γ (k)

)
ln
(

1∑nmax
k=n γ (k)

)
� 1.

Moreover, by (A.2)

n∑
k=n̄+1

1

γ (k)
� c

n∑
k=n̄+1

1√
n̄

exp
(
c

n̄
(n̄− k)2

)
� c
√
n̄

1√
n̄

exp
(
C

n̄
(n̄− n+ 1)2

)
� C

for some constant C depending only on c.
In the second case, n� n̄+√n̄, we apply Lemmas A.2, A.3 and A.4 to get

nmax∑
k=n

γ (k) ln
(

1∑nmax
k=n γ (k)

) n∑
k=n̄+1

1

γ (k)
�C

n̄

n− n̄

(
1+ (n̄− n)2

n̄

)
n̄

n− n̄

�Cn̄.

This achieves the proof. ✷
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